WorldWideScience

Sample records for insulin secretory capacity

  1. Glucoregulation after canine islet transplantation : Contribution of insulin secretory capacity, insulin action, and the entero-insular axis

    vanderBurg, MPM; van Suylichem, PTR; Guicherit, OR; Frolich, M; Lemkes, HHPJ; Gooszen, HG

    1997-01-01

    The physiological glucoregulatory mechanisms after islet transplantation have been incompletely investigated, We studied the insulin secretory capacity (ISC) by intravenous arginine stimulation during 35-mM glucose clamps, insulin action during hyperinsulinemic euglycemic clamps, and mixed-meal

  2. Failure to increase insulin secretory capacity during pregnancy-induced insulin resistance is associated with ethnicity and gestational diabetes.

    Mørkrid, Kjersti; Jenum, Anne K; Sletner, Line; Vårdal, Mari H; Waage, Christin W; Nakstad, Britt; Vangen, Siri; Birkeland, Kåre I

    2012-10-01

    To assess changes in insulin resistance and β-cell function in a multiethnic cohort of women in Oslo, Norway, from early to 28 weeks' gestation and 3 months post partum and relate the findings to gestational diabetes mellitus (GDM). Population-based cohort study of 695 healthy pregnant women from Western Europe (41%), South Asia (25%), Middle East (15%), East Asia (6%) and elsewhere (13%). Blood samples and demographics were recorded at mean 15 (V1) and 28 (V2) weeks' gestation and 3 months post partum (V3). Universal screening was by 75 g oral glucose tolerance test at V2, GDM with modified IADPSG criteria (no 1-h measurement): fasting plasma glucose (PG) ≥5.1 or 2-h PG ≥8.5 mmol/l. Homeostatic model assessment (HOMA)-β (β-cell function) and HOMA-IR (insulin resistance) were calculated from fasting glucose and C-peptide. Characteristics were comparable across ethnic groups, except age (South Asians: younger, Pinsulin resistant than Western Europeans at V1. From V1 to V2, the increase in insulin resistance was similar across the ethnic groups, but the increase in β-cell function was significantly lower for the East and South Asians compared with Western Europeans. GDM women compared with non-GDM women were more insulin resistant at V1; from V1 to V2, their β-cell function increased significantly less and the percentage increase in β-cell function did not match the change in insulin resistance. Pregnant women from East Asia and South Asia were more insulin resistant and showed poorer HOMA-β-cell function than Western Europeans.

  3. Population-based cross-sectional study on insulin resistance and insulin-secretory capacity in Japanese school children.

    Nishimura, Rimei; Sano, Hironari; Onda, Yoshiko; Tsujino, Daisuke; Ando, Kiyotaka; Ebara, Futoshi; Matsudaira, Toru; Ishikawa, Shinichiro; Sakamoto, Takuya; Tajima, Naoko; Utsunomiya, Kazunori

    2017-09-01

    Little information is available regarding the status of insulin resistance (IR) and insulin deficiency (ID), as well as their relationship with obesity in children using the homeostasis model assessment (HOMA) in a population-based setting. The study included a total of 445 ninth-grade children participating in health check-up programs implemented in Tsunan Town, Niigata, Japan (boys/girls, 252/193 [participation rates: 98.1/95.5%]). HOMA of insulin resistance ≥2.5 was defined as IR, and HOMA of β-cell function insulin resistance, HOMA of β-cell function, Disposition Index and body mass index in boys were 1.2 (0.8-1.7), 64 (44-93), 52 (43-64) and 19.2 (18.0-20.7) kg/m 2 , respectively, vs 1.5 (1.0-2.0), 86 (63-120), 60 (50-74) and 20.4 (18.9-22.0) kg/m 2 , respectively, in girls. The HOMA of insulin resistance, HOMA of β-cell function and Disposition Index values were significantly higher in the girls (P = 0.002, P < 0.001 and P < 0.001, respectively). Those with IR accounted for a significantly higher proportion of girls than boys (15.5/8.7%; P = 0.027); those with obesity accounted for 9.9/10.7% (boys/girls); and those with IR and obesity accounted for 2.4/4.7%. Those with ID accounted for a significantly higher proportion of boys than girls (20.6/8.8%; P = 0.001), whereas those with ID and obesity accounted for a very small proportion of either group (0.4/0.5%). The presence of IR was higher among the girls. In contrast, ID was more frequent among the boys. The infrequent presence of ID among children might support the presence of non-obese type 2 diabetes adults in Japan. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  4. The GLP-1 analogue liraglutide improves first-phase insulin secretion and maximal beta-cell secretory capacity over 14 weeks of therapy in subjects with Type 2 diabetes

    Madsbad, Sten; Vilsbøll, Tina; Brock, Birgitte

    Aims: We investigated the clinical effect of liraglutide, a long- acting GLP-1 analogue, on insulin secretion in Type 2 diabetes. Methods: Thirty-nine subjects (28 completed) from a randomised trial received a hyperglycaemic clamp (20 mM) with intravenous arginine stimulation, and an insulin...... group. Conclusion: In subjects with Type 2 diabetes, 14 weeks’ once-daily liraglutide (1.25 and 1.9 mg/day) markedly improves beta-cell function, significantly increases first-phase insulin secretion and maximal beta-cell secretory capacity....

  5. Morphology of the pancreas in type 2 diabetes: effect of weight loss with or without normalisation of insulin secretory capacity.

    Al-Mrabeh, Ahmad; Hollingsworth, Kieren G; Steven, Sarah; Taylor, Roy

    2016-08-01

    This study was designed to establish whether the low volume and irregular border of the pancreas in type 2 diabetes would be normalised after reversal of diabetes. A total of 29 individuals with type 2 diabetes undertook a very low energy (very low calorie) diet for 8 weeks followed by weight maintenance for 6 months. Methods were established to quantify the pancreas volume and degree of irregularity of the pancreas border. Three-dimensional volume-rendering and fractal dimension (FD) analysis of the MRI-acquired images were employed, as was three-point Dixon imaging to quantify the fat content. There was no change in pancreas volume 6 months after reversal of diabetes compared with baseline (52.0 ± 4.9 cm(3) and 51.4 ± 4.5 cm(3), respectively; p = 0.69), nor was any volumetric change observed in the non-responders. There was an inverse relationship between the volume and fat content of the pancreas in the total study population (r =-0.50, p = 0.006). Reversal of diabetes was associated with an increase in irregularity of the pancreas borders between baseline and 8 weeks (FD 1.143 ± 0.013 and 1.169 ± 0.006, respectively; p = 0.05), followed by a decrease at 6 months (1.130 ± 0.012, p = 0.006). On the other hand, no changes in FD were seen in the non-reversed group. Restoration of normal insulin secretion did not increase the subnormal pancreas volume over 6 months in the study population. A significant change in irregularity of the pancreas borders occurred after acute weight loss only after reversal of diabetes. Pancreas morphology in type 2 diabetes may be prognostically important, and its relationship to change in beta cell function requires further study.

  6. Dieta hiperlipídica e capacidade secretória de insulina em ratos High-fat diet and secretory capacity of insulin in rats

    Ana Cláudia Garcia de Oliveira Duarte

    2006-06-01

    the effects of continuous feeding of rats with a palatable high-fat diet on: body weight gain, adiposity, liver and muscle glycogen content, blood glucose and insulin levels, and pancreatic morphology and insulin secretion by in vitro isolated pancreatic beta cells. METHODS: Male Wistar rats (21 days old were fed with a palatable high-fat diet or a chow diet during 15wk. Body weight and food intake were recorded daily whereas blood glucose and insulin were analyzed weekly. After they were killed, pancreas, liver, gastrocnemius muscle and adipose tissues were removed and weighted. Morphology analysis of pancreatic tissue sections was performed using light microscopy. Serum insulin and the insulin secreted by isolated pancreatic islets, incubated for 90min under different concentrations of glucose, were analyzed by radioimmunoassay. RESULTS: The palatable high-fat diet increased adiposity, body weight gain and liver glycogen content when compared with the animals fed with a chow diet. Blood glucose and insulin levels did not differ between groups. The insulin secretion from isolated islets increased in the high-fat diet group only at physiological concentrations of glucose (G= 8.3mM. The size of the pancreas of rats receiving the high-fat diet decreased, although the number of beta cells increased. In addition, the lumen of pancreatic vessels was narrower compared with control islets. CONCLUSION: The obesity resulting from a high-fat diet did not alter the blood glucose and insulin levels of fasted rats. Despite the morphological alterations of the pancreas, normal blood glucose concentration in rats receiving a high-fat diet remained at physiological range due to a preserved secretory capacity of the pancreatic islets.

  7. The Prohormone VGF Regulates β Cell Function via Insulin Secretory Granule Biogenesis

    Samuel B. Stephens

    2017-09-01

    Full Text Available The prohormone VGF is expressed in neuroendocrine and endocrine tissues and regulates nutrient and energy status both centrally and peripherally. We and others have shown that VGF-derived peptides have direct action on the islet β cell as secretagogues and cytoprotective agents; however, the endogenous function of VGF in the β cell has not been described. Here, we demonstrate that VGF regulates secretory granule formation. VGF loss-of-function studies in both isolated islets and conditional knockout mice reveal a profound decrease in stimulus-coupled insulin secretion. Moreover, VGF is necessary to facilitate efficient exit of granule cargo from the trans-Golgi network and proinsulin processing. It also functions to replenish insulin granule stores following nutrient stimulation. Our data support a model in which VGF operates at a critical node of granule biogenesis in the islet β cell to coordinate insulin biosynthesis with β cell secretory capacity.

  8. Analysis of the effect of diabetes type 2 duration on beta cell secretory function and insulin resistance

    Popović Ljiljana

    2006-01-01

    Full Text Available Diabetes type 2 is a chronic metabolic disorder. Pathogenesis of diabetes type 2 results from the impaired insulin secretion, impaired insulin action and increased endogenous glucose production. Diabetes evolves through several phases characterized by qualitative and quantitative changes of beta cell secretory function. The aim of our study was to analyze the impact of diabetes duration on beta cell secretory function and insulin resistance. The results indicated significant negative correlation of diabetes duration and fasting insulinemia, as well as beta cell secretory function assessed by HOMA β index. Our study also found significant negative correlation of diabetes duration and insulin resistance assessed by HOMA IR index. Significant positive correlation was established between beta cell secretory capacity (fasting insulinemia and HOMA β and insulin resistance assessed by HOMA IR index, independently of diabetes duration. These results indicate that: beta cell secretory capacity, assessed by HOMA β index, significantly decreases with diabetes duration. In parallel with decrease of fasting insulinemia, reduction of insulin resistance assessed by HOMA IR index was found as well.

  9. Differential testosterone secretory capacity of the testes of aggressive and nonaggressive house mice during ontogeny

    de Ruiter, Anne J H; Koolhaas, Jaap M; van Oortmerssen, Geert A; Bohus, Bela

    1992-01-01

    In this study, testosterone secretory capacity of testicular Leydig cells during ontogeny was determined in males of an aggressive and a nonaggressive genetic selection line of wild house mice. Neonates, 23-day-old prepubertals, and adult male mice were studied. A morphometric method was used to quantify 3-beta-hydroxy steroid dehydrogenase (3-beta-HSD)-stained Leydig cells in testicular sections to determine testosterone secretory capacity. We consider this parameter to reflect circulating t...

  10. Evaluation of beta-cell secretory capacity using glucagon-like peptide 1

    Vilsbøll, Tina; Nielsen, Mette Toft; Krarup, T

    2000-01-01

    Beta-cell secretory capacity is often evaluated with a glucagon test or a meal test. However, glucagon-like peptide 1 (GLP-1) is the most insulinotropic hormone known, and the effect is preserved in type 2 diabetic patients.......Beta-cell secretory capacity is often evaluated with a glucagon test or a meal test. However, glucagon-like peptide 1 (GLP-1) is the most insulinotropic hormone known, and the effect is preserved in type 2 diabetic patients....

  11. Insulin replacement restores the vesicular secretory apparatus in the diabetic rat lacrimal gland

    Ana Carolina Dias

    2015-06-01

    Full Text Available ABSTRACT Purpose: In the lacrimal gland (LG acinar cells, signaling regulates the release of secretory vesicles through specific Rab and SNARE exocytotic proteins. In diabetes mellitus (DM, the LGs are dysfunctional. The aim of this work was to determine if secretory apparatus changes were associated with any effects on the secretory vesicles (SV in diabetic rats as well as the expression levels of constituent Rab and members of the SNARE family, and if insulin supplementation reversed those changes. Methods: DM was induced in male Wistar rats with an intravenous dose of streptozotocin (60 mg/kg. One of the two diabetic groups was then treated every other day with insulin (1 IU. A third control group was injected with vehicle. After 10 weeks, Western blotting and RT-PCR were used to compared the Rab and SNARE secretory factor levels in the LGs. Transmission electron microscopy evaluated acinar cell SV density and integrity. Results: In the diabetes mellitus group, there were fewer and enlarged SV. The Rab 27b, Rab 3d, and syntaxin-1 protein expression declined in the rats with diabetes mellitus. Insulin treatment restored the SV density and the Rab 27b and syntaxin expression to their control protein levels, whereas the Vamp 2 mRNA expression increased above the control levels. Conclusions: Diabetes mellitus LG changes were associated with the declines in protein expression levels that were involved in supporting exocytosis and vesicular formation. They were partially reversed by insulin replacement therapy. These findings may help to improve therapeutic management of dry eye in diabetes mellitus.

  12. Snapin mediates insulin secretory granule docking, but not trans-SNARE complex formation

    Somanath, Sangeeta [Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT (United Kingdom); Partridge, Christopher J. [Diabetes Research Laboratories, Oxford Centre for Diabetes, Endocrinology and Churchill Hospital, University of Oxford, Oxford, OX3 7LJ (United Kingdom); Marshall, Catriona [Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT (United Kingdom); Rowe, Tony [CSL Limited, 45 Poplar Road, Parkville, Victoria 3052 (Australia); Turner, Mark D., E-mail: mark.turner@ntu.ac.uk [Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS (United Kingdom)

    2016-04-29

    Secretory granule exocytosis is a tightly regulated process requiring granule targeting, tethering, priming, and membrane fusion. At the heart of this process is the SNARE complex, which drives fusion through a coiled-coil zippering effect mediated by the granule v-SNARE protein, VAMP2, and the plasma membrane t-SNAREs, SNAP-25 and syntaxin-1A. Here we demonstrate that in pancreatic β-cells the SNAP-25 accessory protein, snapin, C-terminal H2 domain binds SNAP-25 through its N-terminal Sn-1 domain. Interestingly whilst snapin binds SNAP-25, there is only modest binding of this complex with syntaxin-1A under resting conditions. Instead synataxin-1A appears to be recruited in response to secretory stimulation. These results indicate that snapin plays a role in tethering insulin granules to the plasma membrane through coiled coil interaction of snapin with SNAP-25, with full granule fusion competency only resulting after subsequent syntaxin-1A recruitment triggered by secretory stimulation. - Highlights: • Snapin mediates granule docking. • Snapin binds SNAP-25. • SNARE complex forms downstream.

  13. Snapin mediates insulin secretory granule docking, but not trans-SNARE complex formation

    Somanath, Sangeeta; Partridge, Christopher J.; Marshall, Catriona; Rowe, Tony; Turner, Mark D.

    2016-01-01

    Secretory granule exocytosis is a tightly regulated process requiring granule targeting, tethering, priming, and membrane fusion. At the heart of this process is the SNARE complex, which drives fusion through a coiled-coil zippering effect mediated by the granule v-SNARE protein, VAMP2, and the plasma membrane t-SNAREs, SNAP-25 and syntaxin-1A. Here we demonstrate that in pancreatic β-cells the SNAP-25 accessory protein, snapin, C-terminal H2 domain binds SNAP-25 through its N-terminal Sn-1 domain. Interestingly whilst snapin binds SNAP-25, there is only modest binding of this complex with syntaxin-1A under resting conditions. Instead synataxin-1A appears to be recruited in response to secretory stimulation. These results indicate that snapin plays a role in tethering insulin granules to the plasma membrane through coiled coil interaction of snapin with SNAP-25, with full granule fusion competency only resulting after subsequent syntaxin-1A recruitment triggered by secretory stimulation. - Highlights: • Snapin mediates granule docking. • Snapin binds SNAP-25. • SNARE complex forms downstream.

  14. Deletion of glutamate dehydrogenase in beta-cells abolishes part of the insulin secretory response not required for glucose homeostasis

    Carobbio, Stefania; Frigerio, Francesca; Rubi, Blanca

    2009-01-01

    Insulin exocytosis is regulated in pancreatic ss-cells by a cascade of intracellular signals translating glucose levels into corresponding secretory responses. The mitochondrial enzyme glutamate dehydrogenase (GDH) is regarded as a major player in this process, although its abrogation has not been...... tested yet in animal models. Here, we generated transgenic mice, named betaGlud1(-/-), with ss-cell-specific GDH deletion. Our results show that GDH plays an essential role in the full development of the insulin secretory response. In situ pancreatic perfusion revealed that glucose-stimulated insulin...... secretion was reduced by 37% in betaGlud1(-/-). Furthermore, isolated islets with either constitutive or acute adenovirus-mediated knock-out of GDH showed a 49 and 38% reduction in glucose-induced insulin release, respectively. Adenovirus-mediated re-expression of GDH in betaGlud1(-/-) islets fully restored...

  15. Patients with neuroglycopenia after gastric bypass surgery have exaggerated incretin and insulin secretory responses to a mixed meal.

    Goldfine, A B; Mun, E C; Devine, E; Bernier, R; Baz-Hecht, M; Jones, D B; Schneider, B E; Holst, J J; Patti, M E

    2007-12-01

    Hyperinsulinemic hypoglycemia is newly recognized as a rare but important complication after Roux-en-Y gastric bypass (GB). The etiology of the syndrome and metabolic characteristics remain incompletely understood. Recent studies suggest that levels of incretin hormones are increased after GB and may promote excessive beta-cell function and/or growth. We performed a cross-sectional analysis of metabolic variables, in both the fasting state and after a liquid mixed-meal challenge, in four subject groups: 1) with clinically significant hypoglycemia [neuroglycopenia (NG)] after GB surgery, 2) with no symptoms of hypoglycemia at similar duration after GB surgery, 3) without GB similar to preoperative body mass index of the surgical cohorts, and 4) without GB similar to current body mass index of the surgical cohorts. Insulin and C-peptide after the liquid mixed meal were both higher relative to the glucose level achieved in persons after GB with NG compared with asymptomatic individuals. Glucagon, glucagon-like peptide 1, and glucose-dependent insulinotropic peptide levels were higher in both post-GB surgical groups compared with both overweight and morbidly obese persons, and glucagon-like peptide 1 was markedly higher in the group with NG. Insulin resistance, assessed by homeostasis model assessment of insulin resistance, the composite insulin sensitivity index, or adiponectin, was similar in both post-GB groups. Dumping score was also higher in both GB groups but did not discriminate between asymptomatic and symptomatic patients. Notably, the frequency of asymptomatic hypoglycemia after a liquid mixed meal was high in post-GB patients. A robust insulin secretory response was associated with postprandial hypoglycemia in patients after GB presenting with NG. Increased incretin levels may contribute to the increased insulin secretory response.

  16. Characterization of Phospholipids in Insulin Secretory Granules and Mitochondria in Pancreatic Beta Cells and Their Changes with Glucose Stimulation*

    MacDonald, Michael J.; Ade, Lacmbouh; Ntambi, James M.; Ansari, Israr-Ul H.; Stoker, Scott W.

    2015-01-01

    The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis. PMID:25762724

  17. Characterization of phospholipids in insulin secretory granules and mitochondria in pancreatic beta cells and their changes with glucose stimulation.

    MacDonald, Michael J; Ade, Lacmbouh; Ntambi, James M; Ansari, Israr-Ul H; Stoker, Scott W

    2015-04-24

    The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Impact of infection on the secretory capacity of the male accessory glands

    M. Marconi

    2009-06-01

    Full Text Available INTRODUCTION: Studies that compare the impact of different infectious entities of the male reproductive tract (MRT on the male accessory gland function are controversial. MATERIAL AND METHODS: Semen analyses of 71 patients with proven infections of the MRT were compared with the results of 40 healthy non-infected volunteers. Patients were divided into 3 groups according to their diagnosis: chronic prostatitis NIH type II (n = 38, chronic epididymitis (n = 12, and chronic urethritis (n = 21. RESULTS: The bacteriological analysis revealed 9 different types of microorganisms, considered to be the etiological agents, isolated in different secretions, including: urine, expressed prostatic secretions, semen and urethral smears: E. Coli (n = 20, Klebsiella (n = 2, Proteus spp. (n = 1, Enterococcus (n = 20, Staphylococcus spp. (n = 1, M. tuberculosis (n = 2, N. gonorrhea (n = 8, Chlamydia tr. (n = 16 and, Ureaplasma urealyticum (n = 1. The infection group had significantly (p < 0.05 lower: semen volume, alpha-glucosidase, fructose, and zinc in seminal plasma and, higher pH than the control group. None of these parameters was sufficiently accurate in the ROC analysis to discriminate between infected and non-infected men. CONCLUSION: Proven bacterial infections of the MRT impact negatively on all the accessory gland function parameters evaluated in semen, suggesting impairment of the secretory capacity of the epididymis, seminal vesicles and prostate. These findings were associated with an infectious related significant increase of semen pH. None of the semen parameters evaluated can be suggested as a diagnostic tool for infection.

  19. Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin

    Chugh Dipti

    2010-05-01

    Full Text Available Abstract Background The prevalence of diabetes is predicted to rise significantly in the coming decades. A recent analysis projects that by the year 2030 there will be ~366 million diabetics around the world, leading to an increased demand for inexpensive insulin to make this life-saving drug also affordable for resource poor countries. Results A synthetic insulin precursor (IP-encoding gene, codon-optimized for expression in P. pastoris, was cloned in frame with the Saccharomyces cerevisiae α-factor secretory signal and integrated into the genome of P. pastoris strain X-33. The strain was grown to high-cell density in a batch procedure using a defined medium with low salt and high glycerol concentrations. Following batch growth, production of IP was carried out at methanol concentrations of 2 g L-1, which were kept constant throughout the remaining production phase. This robust feeding strategy led to the secretion of ~3 gram IP per liter of culture broth (corresponding to almost 4 gram IP per liter of cell-free culture supernatant. Using immobilized metal ion affinity chromatography (IMAC as a novel approach for IP purification, 95% of the secreted product was recovered with a purity of 96% from the clarified culture supernatant. Finally, the purified IP was trypsin digested, transpeptidated, deprotected and further purified leading to ~1.5 g of 99% pure recombinant human insulin per liter of culture broth. Conclusions A simple two-phase cultivation process composed of a glycerol batch and a constant methanol fed-batch phase recently developed for the intracellular production of the Hepatitis B surface antigen was adapted to secretory IP production. Compared to the highest previously reported value, this approach resulted in an ~2 fold enhancement of IP production using Pichia based expression systems, thus significantly increasing the efficiency of insulin manufacture.

  20. Bimodal effect on pancreatic β-cells of secretory products from normal or insulin-resistant human skeletal muscle

    Bouzakri, Karim; Plomgaard, Peter; Berney, Thierry

    2011-01-01

    Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells.......Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells....

  1. The secretory products of Trichomonas vaginalis decrease fertilizing capacity of mice sperm in vitro

    Jaesook Roh

    2015-04-01

    Full Text Available Trichomonas vaginalis infection is one of the most prevalent sexually transmitted infections in humans and is now recognized as an important cause of infertility in men. There is little information about the effect of extracellular polymeric substances (EPS from T. vaginalis on sperm, but previous reports do not provide a conclusive description of the functional integrity of the sperm. To investigate the impact of EPS on the fertilizing capacity of sperm, we assessed sperm motility, acrosomal status, hypo-osmotic swelling, and in vitrofertilization rate after incubating the sperm with EPS in vitrousing mice. The incubation of sperm with EPS significantly decreased sperm motility, viability, and functional integrity in a concentration and time-dependent manner. These effects on sperm quality also resulted in a decreased fertilization rate in vitro. This is the first report that demonstrates the direct negative impact of the EPS of T. vaginalis on the fertilization rate of sperm in vitro. However, further study should be performed using human sperm to determine if EPS has similar negative impact on human sperm fertilizing capacity in vitro.

  2. The secretory products of Trichomonas vaginalis decrease fertilizing capacity of mice sperm in vitro

    Roh, Jaesook; Lim, Young-Su; Seo, Min-Young; Choi, Yuri; Ryu, Jae-Sook

    2015-01-01

    Trichomonas vaginalis infection is one of the most prevalent sexually transmitted infections in humans and is now recognized as an important cause of infertility in men. There is little information about the effect of extracellular polymeric substances (EPS) from T. vaginalis on sperm, but previous reports do not provide a conclusive description of the functional integrity of the sperm. To investigate the impact of EPS on the fertilizing capacity of sperm, we assessed sperm motility, acrosomal status, hypo-osmotic swelling, and in vitro fertilization rate after incubating the sperm with EPS in vitro using mice. The incubation of sperm with EPS significantly decreased sperm motility, viability, and functional integrity in a concentration and time-dependent manner. These effects on sperm quality also resulted in a decreased fertilization rate in vitro. This is the first report that demonstrates the direct negative impact of the EPS of T. vaginalis on the fertilization rate of sperm in vitro. However, further study should be performed using human sperm to determine if EPS has similar negative impact on human sperm fertilizing capacity in vitro. PMID:25578937

  3. Patients with neuroglycopenia after gastric bypass surgery have exaggerated incretin and insulin secretory responses to a mixed meal

    Goldfine, A B; Mun, E C; Devine, E

    2007-01-01

    [neuroglycopenia (NG)] after GB surgery, 2) with no symptoms of hypoglycemia at similar duration after GB surgery, 3) without GB similar to preoperative body mass index of the surgical cohorts, and 4) without GB similar to current body mass index of the surgical cohorts. RESULTS: Insulin and C-peptide after...... and morbidly obese persons, and glucagon-like peptide 1 was markedly higher in the group with NG. Insulin resistance, assessed by homeostasis model assessment of insulin resistance, the composite insulin sensitivity index, or adiponectin, was similar in both post-GB groups. Dumping score was also higher...

  4. The relative contribution of insulin secretory capacity, insulin action, and incretins to metabolic control after islet transplantation in dogs

    van der Burg, MPM; van Suylichem, PTR; Guicherit, OR; Frolich, M; Lemkes, HHPJ; Gooszen, HG

    Adequate metabolic control is central to the concept of islet transplantation, but has received limited attention. We studied metabolic control in 8 dogs at 6-9 months after intrasplenic autografting of similar to 25% of the normal mass islets - as compared to 30 controls. A similar posttransplant

  5. Mitochondrial oxidative stress contributes differently to rat pancreatic islet cell apoptosis and insulin secretory defects after prolonged culture in a low non-stimulating glucose concentration.

    Roma, L P; Pascal, S M; Duprez, J; Jonas, J-C

    2012-08-01

    Pancreatic beta cells chronically exposed to low glucose concentrations show signs of oxidative stress, loss of glucose-stimulated insulin secretion (GSIS) and increased apoptosis. Our aim was to confirm the role of mitochondrial oxidative stress in rat islet cell apoptosis under these culture conditions and to evaluate whether its reduction similarly improves survival and GSIS. Apoptosis, oxidative stress-response gene mRNA expression and glucose-induced stimulation of mitochondrial metabolism, intracellular Ca(2+) concentration and insulin secretion were measured in male Wistar rat islets cultured for 1 week in RPMI medium containing 5-10 mmol/l glucose with or without manganese(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP) or N-acetyl-L-: cysteine (NAC). Oxidative stress was measured in islet cell clusters cultured under similar conditions using cytosolic and mitochondrial redox-sensitive green fluorescent protein (roGFP1/mt-roGFP1). Prolonged culture in 5 vs 10 mmol/l glucose increased mt-roGFP1 (but not roGFP1) oxidation followed by beta cell apoptosis and loss of GSIS resulting from reduced insulin content, mitochondrial metabolism, Ca(2+) influx and Ca(2+)-induced secretion. Tolbutamide-induced, but not high K(+)-induced, Ca(2+) influx was also suppressed. Under these conditions, MnTBAP, but not NAC, triggered parallel ~50-70% reductions in mt-roGFP1 oxidation and beta cell apoptosis, but failed to protect against the loss of GSIS despite significant improvement in glucose-induced and tolbutamide-induced Ca(2+) influx. Mitochondrial oxidative stress contributes differently to rat pancreatic islet cell apoptosis and insulin secretory defects during culture in a low glucose concentration. Thus, targeting beta cell survival may not be sufficient to restore insulin secretion when beta cells suffer from prolonged mitochondrial oxidative stress, e.g. in the context of reduced glucose metabolism.

  6. Use of radioimmunoassay to study secretory potentialities of β-cells in patients with insulin-independent diabetes mellitus

    Balabolkin, M.I.; Sharapov, A.N.

    1984-01-01

    The nature of insulin and C-peptides secretion in 21 patient with insulin-independent diabetes mellitus (IIDM) with different acetilating phenotype in the course of intravenous glucose loadin is studied by means of the radioimmunoassay. In all patients a different nature of insulin secretion during the first stage is revealed. In the group of fast acetilators an increase in the immuno-reactive insulin (IRI) concentration in the blood serum has been observed, more strongly pronounced in patients with accompanying obesity, whereas in the group of slow acetilators a regular decrease in the IRI level is revealed during this period. The nature of C-peptides secretion in patients with the second type of diabetes mellitus with different acetilator phenotype repeats in the main the IRI dynamics characteristic of fast and slow acetilators. In patients with IIDM with obesity belonging to fast acetilators, the nature of C-peptide secretion has dynamics with differing from IRI

  7. Early phase glucagon and insulin secretory abnormalities, but not incretin secretion, are similarly responsible for hyperglycemia after ingestion of nutrients

    Yabe, Daisuke; Kuroe, Akira; Watanabe, Koin

    2015-01-01

    AIMS: Hypersecretion of glucagon and reduced insulin secretion both contribute to hyperglycemia in type 2 diabetes (T2DM). However, the relative contributions of impaired glucagon and insulin secretions in glucose excursions at the various stages of T2DM development remain to be determined. METHODS...... secretions but not incretin secretion are involved in hyperglycemia after ingestion of nutrients in T2DM of even a short duration....

  8. Impaired aerobic work capacity in insulin dependent diabetics with increased urinary albumin excretion

    Jensen, T; Richter, Erik; Feldt-Rasmussen, Bo

    1988-01-01

    To assess whether decreased aerobic work capacity was associated with albuminuria in insulin dependent diabetics aerobic capacity was measured in three groups of 10 patients matched for age, sex, duration of diabetes, and degree of physical activity. Group 1 comprised 10 patients with normal...... were not explained by differences in metabolic control or the degree of autonomic neuropathy. Thus the insulin dependent diabetics with only slightly increased urinary albumin excretion had an appreciably impaired aerobic work capacity which could not be explained by autonomic neuropathy...... or the duration of diabetes. Whether the reduced capacity is due to widespread microangiopathy or another pathological process affecting the myocardium remains to be established....

  9. Effects of sitagliptin and metformin treatment on incretin hormone and insulin secretory responses to oral and "isoglycemic" intravenous glucose

    Vardarli, Irfan; Arndt, Elisabeth; Deacon, Carolyn F

    2014-01-01

    ,000 mg/day), sitagliptin (100 mg/day), or their combination, on GLP-1 responses and on the incretin effect in 20 patients with type 2 diabetes, comparing an oral glucose challenge (75 g, day 5) and an "isoglycemic" intravenous glucose infusion (day 6). Fasting total GLP-1 was significantly increased...... by metformin and not changed by sitagliptin. After oral glucose, metformin increased and sitagliptin significantly decreased (by 53%) total GLP-1. Fasting and postload intact GLP-1 increased with sitagliptin but not with metformin. After oral glucose, only sitagliptin, but not metformin, significantly...... the numerical contribution of the incretin effect. Insulin secretion with sitagliptin treatment was similarly stimulated with oral and "isoglycemic" intravenous glucose. This points to an important contribution of small changes in incretin concentrations within the basal range or to additional insulinotropic...

  10. Secretory diarrhea.

    Schiller, L R

    1999-10-01

    Diarrhea, defined as loose stools, occurs when the intestine does not complete absorption of electrolytes and water from luminal contents. This can happen when a nonabsorbable, osmotically active substance is ingested ("osmotic diarrhea") or when electrolyte absorption is impaired ("secretory diarrhea"). Most cases of acute and chronic diarrhea are due to the latter mechanism. Secretory diarrhea can result from bacterial toxins, reduced absorptive surface area caused by disease or resection, luminal secretagogues (such as bile acids or laxatives), circulating secretagogues (such as various hormones, drugs, and poisons), and medical problems that compromise regulation of intestinal function. Evaluation of patients with secretory diarrhea must be tailored to find the likely causes of this problem. Specific and nonspecific treatment can be valuable.

  11. Stimulation by ATP of proinsulin to insulin conversion in isolated rat pancreatic islet secretory granules. Association with the ATP-dependent proton pump

    Rhodes, C.J.; Lucas, C.A.; Mutkoski, R.L.; Orci, L.; Halban, P.A.

    1987-01-01

    Isolated rat pancreatic islets were pulse-labeled for 5 min with [ 3 H]leucine then chased for 25 min, during which time endogenously labeled [ 3 H]proinsulin becomes predominantly compartmented in immature secretory granules. The islets were then homogenized in isotonic sucrose (pH 7.4) and a beta-granule preparation obtained by differential centrifugation and discontinuous sucrose gradient ultracentrifugation. This preparation was enriched 8-fold in beta-granules. Aside from contamination with mitochondria and a limited number of lysosomes, the beta-granule preparation was essentially free of any other organelles involved in proinsulin synthesis and packaging (i.e. microsomal elements and, more particularly, Golgi complex). Conversion of endogenously labeled [ 3 H]proinsulin was followed in this beta-granule fraction for up to 2 h at 37 degrees C in a buffer (pH 7.3) that mimicked the cationic constituents of B-cell cytosol, during which time 92% of the beta-granules remained intact. Proinsulin conversion was analyzed by high performance liquid chromatography. The rate of proinsulin conversion to insulin was stimulated by 2.2 +/- 0.1-fold (n = 6) (at a 60-min incubation) in the presence of ATP (2 mM) and an ATP regenerating system compared to beta-granule preparations incubated without ATP. This ATP stimulation was abolished in the presence of beta-granule proton pump ATPase inhibitors (tributyltin, 2.5 microM, or 1,3-dicyclohexylcarbodiimide, 50 microM). Inhibitors of mitochondrial proton pump ATPases had no effect on the ATP stimulation of proinsulin conversion. When granules were incubated in a more acidic buffer, proinsulin conversion was increased relative to that at pH 7.3. At pH 5.5, ATP no longer stimulated conversion, and tributyltin and 1,3-dicyclohexylcarbodiimide had no effect

  12. Insulin resistance, exercise capacity and body composition in subjects with two hypertensive parents

    Andersen, U B; Dige-Petersen, H; Ibsen, H

    1999-01-01

    OBJECTIVE: To study insulin resistance in subjects with strong genetic predisposition to essential hypertension, compared with non-disposed subjects. SUBJECTS: Thirty normotensive subjects aged 18-35 years whose parents both had essential hypertension, and 30 age- and sex matched subjects whose...... correlated to abdominal fat mass but not to insulin sensitivity. CONCLUSION: Subjects with a strong genetic predisposition to essential hypertension had increased diastolic blood pressure compared with subjects with normotensive parents, but they were not insulin resistant. This may be due to the subjects...... for the difference between the means; -0.5; -7.9), but the insulin sensitivity index was similar: 312 versus 362 I(2) min(-1) pmol(-1) kg(-1) (28; -129). The two groups were similar in terms of body composition, exercise capacity and composition of usual diet. Resting and 24-h diastolic blood pressures were...

  13. Impaired aerobic work capacity in insulin dependent diabetics with increased urinary albumin excretion

    Jensen, T; Richter, E A; Feldt-Rasmussen, B

    1988-01-01

    To assess whether decreased aerobic work capacity was associated with albuminuria in insulin dependent diabetics aerobic capacity was measured in three groups of 10 patients matched for age, sex, duration of diabetes, and degree of physical activity. Group 1 comprised 10 patients with normal...... urinary albumin excretion (less than 30 mg/24 h), group 2 comprised 10 with incipient diabetic nephropathy (urinary albumin excretion 30-300 mg/24 h, and group 3 comprised 10 with clinical diabetic nephropathy (urinary albumin excretion greater than 300 mg/24 h). Ten non-diabetic subjects matched for sex...... were not explained by differences in metabolic control or the degree of autonomic neuropathy. Thus the insulin dependent diabetics with only slightly increased urinary albumin excretion had an appreciably impaired aerobic work capacity which could not be explained by autonomic neuropathy...

  14. Crif1 Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice

    Ryu, Min Jeong; Kim, Soung Jung; Kim, Yong Kyung; Choi, Min Jeong; Tadi, Surendar; Lee, Min Hee; Lee, Seong Eun; Chung, Hyo Kyun; Jung, Saet Byel; Kim, Hyun-Jin; Jo, Young Suk; Kim, Koon Soon; Lee, Sang-Hee; Kim, Jin Man; Kweon, Gi Ryang; Park, Ki Cheol; Lee, Jung Uee; Kong, Young Yun; Lee, Chul-Ho; Chung, Jongkyeong; Shong, Minho

    2013-01-01

    Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance. PMID:23516375

  15. Complete loss of insulin secretion capacity in type 1A diabetes patients during long-term follow up.

    Uno, Sae; Imagawa, Akihisa; Kozawa, Junji; Fukui, Kenji; Iwahashi, Hiromi; Shimomura, Iichiro

    2017-10-16

    Patients with type 1 diabetes are classified into three subtypes in Japan: acute onset, fulminant and slowly progressive. Acute-onset type 1 diabetes would be equivalent to type 1A diabetes, the typical type 1 diabetes in Western countries. The insulin secretion capacity in Japanese patients with long-standing type 1A diabetes is unclear. The aim of the present study was to clarify the course of endogenous insulin secretion during long-term follow up and the factors associated with residual insulin secretion in patients with acute-onset type 1 diabetes (autoimmune). We retrospectively investigated endogenous insulin secretion capacity in 71 patients who fulfilled the diagnostic criteria for acute-onset type 1 diabetes (autoimmune) in Japan. To assess the residual insulin secretion capacity, we evaluated randomly measured C-peptide levels and the results of glucagon stimulation test in 71 patients. In the first year of disease, the child- and adolescent-onset patients had significantly more in residual insulin secretion than the adult-onset patients (34 patients in total). C-peptide levels declined more rapidly in patients whose age of onset was ≤18 years than in patients whose age of onset was ≥19 years. Endogenous insulin secretion capacity stimulated by glucagon was completely lost in almost all patients at >15 years after onset (61 patients in total). Most patients with acute-onset type 1 diabetes (autoimmune) completely lose their endogenous insulin secretion capacity during the disease duration in Japan. Age of onset might affect the course of insulin secretion. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  16. Insulin resistance, exercise capacity and body composition in subjects with two hypertensive parents

    Andersen, U B; Dige-Petersen, H; Ibsen, H

    1999-01-01

    -ray absorptiometry; (4) an exercise test with gas exchange analysis; and (5) investigation of composition of usual diet by diet registration for 5 days. RESULTS: The 24-h diastolic blood pressure was higher in subjects predisposed to hypertension compared with the controls: 78.1 versus 74.0 mmHg (confidence interval...... for the difference between the means; -0.5; -7.9), but the insulin sensitivity index was similar: 312 versus 362 I(2) min(-1) pmol(-1) kg(-1) (28; -129). The two groups were similar in terms of body composition, exercise capacity and composition of usual diet. Resting and 24-h diastolic blood pressures were...

  17. No relationship between cerebral blood flow velocity and cerebrovascular reserve capacity and contemporaneously measured glucose and insulin concentrations in diabetes mellitus

    Fülesdi, B.; Limburg, M.; Bereczki, D.; Molnár, C.; Michels, R. P.; Leányvári, Z.; Csiba, L.

    1999-01-01

    Blood glucose and insulin concentrations have been reported to influence cerebral hemodynamics. We studied the relationship between actual blood glucose and insulin concentrations and resting cerebral blood flow velocity in the middle cerebral artery and cerebrovascular reserve capacity after

  18. Insulin resistance and hyperinsulinaemia in mild to moderate progressive chronic renal failure and its association with aerobic work capacity

    Eidemak, I; Feldt-Rasmussen, B; Kanstrup, I L

    1995-01-01

    Tissue sensitivity to insulin and aerobic work capacity was measured in patients with mild to moderate progressive chronic renal failure. Twenty-nine non-diabetic patients with a glomerular filtration rate of 25 ml.min-1.1.73 m-2 (11-43) (median, range) and 15 sex, age, and body mass index matched.......02) (M/I ratio 1.77 +/- 0.71 vs 2.57 +/- 0.70 (mg/(kgBW.min) per pmol/l.100, p aerobic work capacity was significantly lower in the patients than in the control subjects (24 +/- 8 vs 32 +/- 11 ml O2/(kg body weight.min), p .../I ratio in both groups. In conclusion, not only patients with end-stage chronic renal failure but also those with mild to moderate progressive chronic renal failure are insulin resistant and hyperinsulinaemic. The tissue sensitivity to insulin is correlated to the maximal aerobic work capacity suggesting...

  19. The insulin secretory action of novel polycyclic guanidines: discovery through open innovation phenotypic screening, and exploration of structure-activity relationships.

    Shaghafi, Michael B; Barrett, David G; Willard, Francis S; Overman, Larry E

    2014-02-15

    We report the discovery of the glucose-dependent insulin secretogogue activity of a novel class of polycyclic guanidines through phenotypic screening as part of the Lilly Open Innovation Drug Discovery platform. Three compounds from the University of California, Irvine, 1-3, having the 3-arylhexahydropyrrolo[1,2-c]pyrimidin-1-amine scaffold acted as insulin secretagogues under high, but not low, glucose conditions. Exploration of the structure-activity relationship around the scaffold demonstrated the key role of the guanidine moiety, as well as the importance of two lipophilic regions, and led to the identification of 9h, which stimulated insulin secretion in isolated rat pancreatic islets in a glucose-dependent manner. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Chronic Insulin Exposure Induces ER Stress and Lipid Body Accumulation in Mast Cells at the Expense of Their Secretory Degranulation Response

    Greineisen, William E.; Maaetoft-Udsen, Kristina; Speck, Mark; Balajadia, Januaria; Shimoda, Lori M. N.; Sung, Carl; Turner, Helen

    2015-01-01

    Lipid bodies (LB) are reservoirs of precursors to inflammatory lipid mediators in immunocytes, including mast cells. LB numbers are dynamic, increasing dramatically under conditions of immunological challenge. We have previously shown in vitro that insulin-influenced lipogenic pathways induce LB biogenesis in mast cells, with their numbers attaining steatosis-like levels. Here, we demonstrate that in vivo hyperinsulinemia resulting from high fat diet is associated with LB accumulation in muri...

  1. Mitochondrial respiratory capacity remains stable despite a comprehensive and sustained increase in insulin sensitivity in obese patients undergoing gastric bypass surgery

    Lund, M T; Larsen, S; Hansen, M

    2018-01-01

    will correlate with a corresponding change in mitochondrial respiratory capacity over the same time period. METHODS: Insulin sensitivity was evaluated using the hyperinsulinaemic-euglycaemic clamp technique, and skeletal muscle mitochondrial respiratory capacity was evaluated by high-resolution respirometry...

  2. Chronic Insulin Exposure Induces ER Stress and Lipid Body Accumulation in Mast Cells at the Expense of Their Secretory Degranulation Response.

    William E Greineisen

    Full Text Available Lipid bodies (LB are reservoirs of precursors to inflammatory lipid mediators in immunocytes, including mast cells. LB numbers are dynamic, increasing dramatically under conditions of immunological challenge. We have previously shown in vitro that insulin-influenced lipogenic pathways induce LB biogenesis in mast cells, with their numbers attaining steatosis-like levels. Here, we demonstrate that in vivo hyperinsulinemia resulting from high fat diet is associated with LB accumulation in murine mast cells and basophils. We characterize the lipidome of purified insulin-induced LB, and the shifts in the whole cell lipid landscape in LB that are associated with their accumulation, in both model (RBL2H3 and primary mast cells. Lipidomic analysis suggests a gain of function associated with LB accumulation, in terms of elevated levels of eicosanoid precursors that translate to enhanced antigen-induced LTC4 release. Loss-of-function in terms of a suppressed degranulation response was also associated with LB accumulation, as were ER reprogramming and ER stress, analogous to observations in the obese hepatocyte and adipocyte. Taken together, these data suggest that chronic insulin elevation drives mast cell LB enrichment in vitro and in vivo, with associated effects on the cellular lipidome, ER status and pro-inflammatory responses.

  3. Insulin

    ... For Consumers Home For Consumers Consumer Information by Audience For Women Women's Health Topics Insulin Share Tweet ... I start having side effects? What is my target blood sugar level? How often should I check ...

  4. The effect of training on responses of beta-endorphin and other pituitary hormones to insulin-induced hypoglycemia

    Mikines, K J; Kjær, Michael; Hagen, C

    1985-01-01

    in untrained (25 +/- 6 mU X l-1) subjects (P less than 0.05). Levels of thyrotropin (TSH) changed in neither of the groups. It is concluded that, in contrast to what has been formerly proposed, training does not result in a general increase in secretory capacity of the anterior pituitary gland. TSH responds......We studied whether the previously reported intensified beta-endorphin response to exercise after training might result from a training-induced general increase in anterior pituitary secretory capacity. Identical hypoglycemia was induced by insulin infusion in 7 untrained (VO2max 49 +/- 4 ml X (kg X...

  5. A case with relapsed transient neonatal diabetes mellitus treated with sulfonylurea, ending chronic insulin requirement

    Akihiko Ando

    2018-04-01

    Full Text Available We report a case of a woman with diabetes mellitus caused by a genetic defect in ABCC8-coding sulfonylurea receptor 1 (SUR1, a subunit of the ATP-sensitive potassium (KATP channel protein. She was diagnosed with diabetes at 7 days after birth. After intravenous insulin drip for 1 month, her hyperglycaemia remitted. At the age of 13 years, her diabetes relapsed, and after that she had been treated by intensive insulin therapy for 25 years with relatively poor glycaemic control. She was switched to oral sulfonylurea therapy and attained euglycaemia. In addition, her insulin secretory capacity was ameliorated gradually.

  6. PICK1 deficiency impairs secretory vesicle biogenesis and leads to growth retardation and decreased glucose tolerance

    Holst, Birgitte; Madsen, Kenneth L; Jansen, Anna M

    2013-01-01

    by electron microscopy showing prominent reduction in secretory vesicle number. Evidence was also obtained for impaired insulin secretion associated with decreased glucose tolerance. PICK1 localized in cells to immature secretory vesicles, and the PICK1 BAR domain was shown by live imaging to associate...

  7. Effects of insulin resistance on skeletal muscle growth and exercise capacity in type 2 diabetic mouse models.

    Ostler, Joseph E; Maurya, Santosh K; Dials, Justin; Roof, Steve R; Devor, Steven T; Ziolo, Mark T; Periasamy, Muthu

    2014-03-01

    Type 2 diabetes mellitus is associated with an accelerated muscle loss during aging, decreased muscle function, and increased disability. To better understand the mechanisms causing this muscle deterioration in type 2 diabetes, we assessed muscle weight, exercise capacity, and biochemistry in db/db and TallyHo mice at prediabetic and overtly diabetic ages. Maximum running speeds and muscle weights were already reduced in prediabetic db/db mice when compared with lean controls and more severely reduced in the overtly diabetic db/db mice. In contrast to db/db mice, TallyHo muscle size dramatically increased and maximum running speed was maintained during the progression from prediabetes to overt diabetes. Analysis of mechanisms that may contribute to decreased muscle weight in db/db mice demonstrated that insulin-dependent phosphorylation of enzymes that promote protein synthesis was severely blunted in db/db muscle. In addition, prediabetic (6-wk-old) and diabetic (12-wk-old) db/db muscle exhibited an increase in a marker of proteasomal protein degradation, the level of polyubiquitinated proteins. Chronic treadmill training of db/db mice improved glucose tolerance and exercise capacity, reduced markers of protein degradation, but only mildly increased muscle weight. The differences in muscle phenotype between these models of type 2 diabetes suggest that insulin resistance and chronic hyperglycemia alone are insufficient to rapidly decrease muscle size and function and that the effects of diabetes on muscle growth and function are animal model-dependent.

  8. Biomarkers and insulin sensitivity in women with Polycystic Ovary Syndrome: Characteristics and predictive capacity.

    Cassar, Samantha; Teede, Helena J; Harrison, Cheryce L; Joham, Anju E; Moran, Lisa J; Stepto, Nigel K

    2015-07-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with metabolic complications. Metabolic biomarkers with roles in obesity, glycaemic control and lipid metabolism are potentially relevant in PCOS. The aim was to investigate metabolic biomarkers in lean and overweight women with and without PCOS and to determine whether any biomarker was able to predict insulin resistance in PCOS. Cross-sectional study. Eighty-four women (22 overweight and 22 lean women with PCOS, 18 overweight and 22 lean women without PCOS) were recruited from the community and categorized based on PCOS and BMI status. Primary outcomes were metabolic biomarkers [ghrelin, resistin, visfatin, glucagon-like peptide-1 (GLP-1), leptin, plasminogen activator inhibitor -1 (PAI-1), glucose-dependent insulinotropic polypeptide (GIP) and C-Peptide] measured using the Bio-Plex Pro Diabetes assay and insulin sensitivity as assessed by glucose infusion rate on euglycaemic-hyperinsulinaemic clamp. The biomarkers C-peptide, leptin, ghrelin and visfatin were different between overweight and lean women, irrespective of PCOS status. The concentration of circulating biomarkers did not differ between women with PCOS diagnosed by the Rotterdam criteria or National Institute of Health criteria. PAI-1 was the only biomarker that significantly predicted insulin resistance in both control women (P = 0.04) and women with PCOS (P = 0.01). Biomarkers associated with metabolic diseases appear more strongly associated with obesity rather than PCOS status. PAI-1 may also be a novel independent biomarker and predictor of insulin resistance in women with and without PCOS. © 2014 John Wiley & Sons Ltd.

  9. Associations between insulin action and integrity of brain microstructure differ with familial longevity and with age

    Akintola, Abimbola A; van den Berg, Annette; van Buchem, Mark A

    2015-01-01

    [fasted glucose and glucose area-under-the-curve (AUC)], insulin resistance [fasted insulin, AUCinsulin, and homeostatic model assessment of insulin resistance (HOMA-IR)], and pancreatic Beta cell secretory capacity (insulinogenic index). 3 Tesla MRI and Magnetization Transfer (MT) imaging MT-ratio (MTR......-height in gray and white matter was inversely associated with AUCinsulin, fasted insulin, HOMA-IR and insulinogenic-index (all p 65 years): in younger controls, significantly stronger inverse associations were observed between MTR peak-height and fasted glucose......, AUCglucose, fasted insulin, AUCinsulin and HOMA-IR in gray matter; and for AUCglucose, fasted insulin and HOMA-IR in white matter (all P-interaction

  10. The zinc transporter ZNT3 co-localizes with insulin in INS-1E pancreatic beta cells and influences cell survival, insulin secretion capacity, and ZNT8 expression

    Smidt, Kamille; Larsen, Agnete; Brønden, Andreas

    2016-01-01

    Zinc trafficking in pancreatic beta cells is tightly regulated by zinc transporting (ZNTs) proteins. The role of different ZNTs in the beta cells is currently being clarified. ZNT8 transports zinc into insulin granules and is critical for a correct insulin crystallization and storage in the granu......Zinc trafficking in pancreatic beta cells is tightly regulated by zinc transporting (ZNTs) proteins. The role of different ZNTs in the beta cells is currently being clarified. ZNT8 transports zinc into insulin granules and is critical for a correct insulin crystallization and storage...

  11. Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells

    Li, Yangxin; Yu, XiYong; Lin, ShuGuang; Li, XiaoHong; Zhang, Saidan; Song, Yao-Hua

    2007-01-01

    Mesenchymal stem cells (MSCs) are attractive candidates for cell based therapies. However, the mechanisms responsible for stem cell migration and homing after transplantation remain unknown. It has been shown that insulin-like growth factor-1 (IGF-1) induces proliferation and migration of some cell types, but its effects on stem cells have not been investigated. We isolated and cultured MSC from rat bone marrow, and found that IGF-1 increased the expression levels of the chemokine receptor CXCR4 (receptor for stromal cell-derived factor-1, SDF-1). Moreover, IGF-1 markedly increased the migratory response of MSC to SDF-1. The IGF-1-induced increase in MSC migration in response to SDF-1 was attenuated by PI3 kinase inhibitor (LY294002 and wortmannin) but not by mitogen-activated protein/ERK kinase inhibitor PD98059. Our data indicate that IGF-1 increases MSC migratory responses via CXCR4 chemokine receptor signaling which is PI3/Akt dependent. These findings provide a new paradigm for biological effects of IGF-1 on MSC and have implications for the development of novel stem cell therapeutic strategies

  12. Combined epigallocatechin-3-gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat oxidation, but not insulin sensitivity, in obese humans: a randomized controlled trial

    Most, Jasper; Timmers, S.; Warnke, I.; Jocken, J.J.W.; Boekschoten, M.V.; Groot, de Philip; Bendik, Igor; Schrauwen, Patrick; Goossens, Gijs H.; Blaak, Ellen E.

    2016-01-01

    Background: The obese insulin-resistant state is characterized by
    impairments in lipid metabolism.We previously showed that 3-d supplementation
    of combined epigallocatechin-3-gallate and resveratrol
    (EGCG+RES) increased energy expenditure and improved the
    capacity to switch from fat

  13. Studies of insulin secretory responses and of arachidonic acid incorporation into phospholipids of stably transfected insulinoma cells that overexpress group VIA phospholipase A2 (iPLA2beta ) indicate a signaling rather than a housekeeping role for iPLA2beta.

    Ma, Z; Ramanadham, S; Wohltmann, M; Bohrer, A; Hsu, F F; Turk, J

    2001-04-20

    A cytosolic 84-kDa group VIA phospholipase A(2) (iPLA(2)beta) that does not require Ca(2+) for catalysis has been cloned from several sources, including rat and human pancreatic islet beta-cells and murine P388D1 cells. Many potential iPLA(2)beta functions have been proposed, including a signaling role in beta-cell insulin secretion and a role in generating lysophosphatidylcholine acceptors for arachidonic acid incorporation into P388D1 cell phosphatidylcholine (PC). Proposals for iPLA(2)beta function rest in part on effects of inhibiting iPLA(2)beta activity with a bromoenol lactone (BEL) suicide substrate, but BEL also inhibits phosphatidate phosphohydrolase-1 and a group VIB phospholipase A(2). Manipulation of iPLA(2)beta expression by molecular biologic means is an alternative approach to study iPLA(2)beta functions, and we have used a retroviral construct containing iPLA(2)beta cDNA to prepare two INS-1 insulinoma cell clonal lines that stably overexpress iPLA(2)beta. Compared with parental INS-1 cells or cells transfected with empty vector, both iPLA(2)beta-overexpressing lines exhibit amplified insulin secretory responses to glucose and cAMP-elevating agents, and BEL substantially attenuates stimulated secretion. Electrospray ionization mass spectrometric analyses of arachidonic acid incorporation into INS-1 cell PC indicate that neither overexpression nor inhibition of iPLA(2)beta affects the rate or extent of this process in INS-1 cells. Immunocytofluorescence studies with antibodies directed against iPLA(2)beta indicate that cAMP-elevating agents increase perinuclear fluorescence in INS-1 cells, suggesting that iPLA(2)beta associates with nuclei. These studies are more consistent with a signaling than with a housekeeping role for iPLA(2)beta in insulin-secreting beta-cells.

  14. Decreased insulin secretory response of pancreatic islets during culture in the presence of low glucose is associated with diminished 45Ca2+ net uptake, NADPH/NADP+ and GSH/GSSG ratios

    Verspohl, E.J.; Kaiser, P.; Wahl, M.; Ammon, H.P.T.

    1988-01-01

    In isolated rat pancreatic islets maintained at a physiologic glucose concentration (5.6 mM) the effect of glucose on parameters which are known to be involved in the insulin secretion coupling such as NADPH, reduced glutathione (GSH), 86 Rb + efflux, and 45 Ca ++ net uptake were investigated. The insulinotropic effect of 16.7 mM glucose was decreased with the period of culturing during the first 14 days being significant after 2 days though in control experiments both protein content and ATP levels per islet were not affected and insulin content was only slightly decreased. Both NADPH and GSH decreased with time of culture. 86 Rb + efflux which is decreased by enhancing the glucose concentration from 3 to 5.6 mM in freshly isolated islets was not affected by culturing whatsoever, even not after 14 days of culture when there was not longer any insulin responsiveness to glucose. The 45 Ca ++ net uptake was decreased during culturing. The data indicate (1) that the diminished glucose-stimulated release of insulin during culturing is not due to cell loss or simple energy disturbances, (2) that more likely it is the result of a diminished 45 Ca ++ net uptake as a consequence of the inability of islet cells to maintain proper NADPH and GSH levels, and (3) that potassium ( 86 Rb + ) efflux may not be related to changes of NADPH and GSH

  15. Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and beta-cell dysfunction in humans.

    Xiao, Changting; Giacca, Adria; Lewis, Gary F

    2011-03-01

    Chronically elevated free fatty acids contribute to insulin resistance and pancreatic β-cell failure. Among numerous potential factors, the involvement of endoplasmic reticulum (ER) stress has been postulated to play a mechanistic role. Here we examined the efficacy of the chemical chaperone, sodium phenylbutyrate (PBA), a drug with known capacity to reduce ER stress in animal models and in vitro, on lipid-induced insulin resistance and β-cell dysfunction in humans. Eight overweight or obese nondiabetic men underwent four studies each, in random order, 4 to 6 weeks apart. Two studies were preceded by 2 weeks of oral PBA (7.5 g/day), followed by a 48-h i.v. infusion of intralipid/heparin or saline, and two studies were preceded by placebo treatment, followed by similar infusions. Insulin secretion rates (ISRs) and sensitivity (S(I)) were assessed after the 48-h infusions by hyperglycemic and hyperinsulinemic-euglycemic clamps, respectively. Lipid infusion reduced S(I), which was significantly ameliorated by pretreatment with PBA. Absolute ISR was not affected by any treatment; however, PBA partially ameliorated the lipid-induced reduction in the disposition index (DI = ISR × S(I)), indicating that PBA prevented lipid-induced β-cell dysfunction. These results suggest that PBA may provide benefits in humans by ameliorating the insulin resistance and β-cell dysfunction induced by prolonged elevation of free fatty acids.

  16. Effect of physical training on insulin secretion and action in skeletal muscle and adipose tissue of first-degree relatives of type 2 diabetic patients

    Dela, Flemming; Stallknecht, Bente Merete

    2010-01-01

    in CON but not in FDR, whereas glucose-mediated GU increased (P groups. Adipose tissue GU was not affected by training, but it was higher (abdominal, P Training increased skeletal muscle lipolysis (P ...- to sevenfold. We conclude that insulin-secretory capacity is lower in FDR than in CON and that there is dissociation between training-induced changes in insulin secretion and insulin-mediated GU. Maximal GU rates are similar between groups and increases with physical training.......Physical training affects insulin secretion and action, but there is a paucity of data on the direct effects in skeletal muscle and adipose tissue and on the effect of training in first-degree relatives (FDR) of patients with type 2 diabetes. We studied insulin action at the whole body level...

  17. The Fas pathway is involved in pancreatic beta cell secretory function

    Schumann, Desiree M; Maedler, Kathrin; Franklin, Isobel

    2007-01-01

    Pancreatic beta cell mass and function increase in conditions of enhanced insulin demand such as obesity. Failure to adapt leads to diabetes. The molecular mechanisms controlling this adaptive process are unclear. Fas is a death receptor involved in beta cell apoptosis or proliferation, depending...... on the activity of the caspase-8 inhibitor FLIP. Here we show that the Fas pathway also regulates beta cell secretory function. We observed impaired glucose tolerance in Fas-deficient mice due to a delayed and decreased insulin secretory pattern. Expression of PDX-1, a beta cell-specific transcription factor...... regulating insulin gene expression and mitochondrial metabolism, was decreased in Fas-deficient beta cells. As a consequence, insulin and ATP production were severely reduced and only partly compensated for by increased beta cell mass. Up-regulation of FLIP enhanced NF-kappaB activity via NF...

  18. Parasympathetic blockade attenuates augmented pancreatic polypeptide but not insulin secretion in Pima Indians

    de Courten, Barbora; Weyer, Christian; Stefan, Norbert

    2004-01-01

    was administered for 120 min at the following doses: 0, 2.5, 5, and 10 micro g. kg fat-free mass (FFM)(-1). h(-1). Areas under the curve for early (AUC(0-30 min)) and total (AUC(0-120 min)) postprandial insulin and PP secretory responses were calculated. Early postprandial insulin and PP secretory responses were...

  19. Periodic activity of secretory glands of stomach in ulcer erosion of gastro-duodenal zone

    A. I. Rudenko

    2005-12-01

    Full Text Available It was fixed, that development of atophanum-carbacholimun ulcer of the gastroduodenal zone invoked various changes of secretory activity of the stomach. The changes directly depend on a progress of pathological process. As this takes place the reaction of stomach secretory glands varies under the stimulation with histamine: the decrease of stomach secretory glands’ work capacity till 10th day and its increase after 10–15th day were observed. Disorders of the glands’ ultradian rhythms at initial stages of modeling of gastrointestinal nervous regulation disturbances testify to dependence of periodic activity of gastrointestinal tract on resistance of regulatory mechanisms correlation.

  20. Antepartal insulin-like growth factor concentrations indicating differences in the metabolic adaptive capacity of dairy cows.

    Piechotta, Marion; Holzhausen, Lars; Araujo, Marcelo Gil; Heppelmann, Maike; Sipka, Anja; Pfarrer, Chistiane; Schuberth, Hans-Joachim; Bollwein, Heinrich

    2014-01-01

    Cows with different Insulin-like Growth Factor-I (IGF-I) concentrations showed comparable expression levels of hepatic growth hormone receptor (GHR). Suppressor of cytokine signaling 2 (SOCS2), could be responsible for additional inhibition of the GHR signal cascade. The aims were to monitor cows with high or low antepartal IGF-I concentrations (IGF-I(high) or IGF-I(low)), evaluate the interrelationships of endocrine endpoints, and measure hepatic SOCS2 expression. Dairy cows (n = 20) were selected (240 to 254 days after artificial insemination (AI)). Blood samples were drawn daily (day -17 until calving) and IGF-I, GH, insulin, thyroid hormones, estradiol, and progesterone concentrations were measured. Liver biopsies were taken (day 264 ± 1 after AI and postpartum) to measure mRNA expression (IGF-I, IGFBP-2, IGFBP-3, IGFBP-4, acid labile subunit (ALS), SOCS2, deiodinase1, GHR1A). IGF-I concentrations in the two groups were different (p 0.05). Thyroxine levels and ALS expression were higher in the IGF-I(high) cows compared to IGF-I(low) cows. Estradiol concentration tended to be greater in the IGF-I(low) group (p = 0.06). It was hypothesized that low IGF-I levels are associated with enhanced SOCS2 expression although this could not be decisively confirmed by the present study.

  1. Antepartal insulin-like growth factor concentrations indicating differences in the metabolic adaptive capacity of dairy cows

    Holzhausen, Lars; Araujo, Marcelo Gil; Heppelmann, Maike; Sipka, Anja; Pfarrer, Chistiane; Schuberth, Hans-Joachim; Bollwein, Heinrich

    2014-01-01

    Cows with different Insulin-like Growth Factor-I (IGF-I) concentrations showed comparable expression levels of hepatic growth hormone receptor (GHR). Suppressor of cytokine signaling 2 (SOCS2), could be responsible for additional inhibition of the GHR signal cascade. The aims were to monitor cows with high or low antepartal IGF-I concentrations (IGF-Ihigh or IGF-Ilow), evaluate the interrelationships of endocrine endpoints, and measure hepatic SOCS2 expression. Dairy cows (n = 20) were selected (240 to 254 days after artificial insemination (AI)). Blood samples were drawn daily (day -17 until calving) and IGF-I, GH, insulin, thyroid hormones, estradiol, and progesterone concentrations were measured. Liver biopsies were taken (day 264 ± 1 after AI and postpartum) to measure mRNA expression (IGF-I, IGFBP-2, IGFBP-3, IGFBP-4, acid labile subunit (ALS), SOCS2, deiodinase1, GHR1A). IGF-I concentrations in the two groups were different (p 0.05). Thyroxine levels and ALS expression were higher in the IGF-Ihigh cows compared to IGF-Ilow cows. Estradiol concentration tended to be greater in the IGF-Ilow group (p = 0.06). It was hypothesized that low IGF-I levels are associated with enhanced SOCS2 expression although this could not be decisively confirmed by the present study. PMID:24962413

  2. Physical capacity influences the response of insulin-like growth factor and its binding proteins to training

    Rosendal, Lars; Langberg, Henning; Flyvbjerg, Allan

    2002-01-01

    The influence of initial training status on the response of circulating insulin-like growth factor (IGF) and its binding proteins (IGFBP) to prolonged physical training was studied in young men. It was hypothesized that highly standardized training would result in more extensive changes...... in the circulating IGF system in untrained subjects because of lower fitness level. Seven untrained (UT) and 12 well-trained (WT) individuals performed 11 wk of intense physical training (2-4 h daily). Fasting serum samples were analyzed for total and free IGF-I and -II, for IGFBP-1 to -4, as well as for IGFBP-3...... proteolysis. Eleven weeks of physical training resulted in decreased levels of total IGF-I, free IGF-I, and IGFBP-4 in both the UT and WT groups. In the UT group, IGFBP-2 increased, IGFBP-3 decreased [from 4,255 +/- 410 (baseline) to 3,896 +/- 465 (SD) microg/l (week 4); P

  3. Coronary microvascular function, insulin sensitivity and body composition in predicting exercise capacity in overweight patients with coronary artery disease

    Jürs, Anders; Pedersen, Lene Rørholm; Olsen, Rasmus Huan

    2015-01-01

    BACKGROUND: Coronary artery disease (CAD) has a negative impact on exercise capacity. The aim of this study was to determine how coronary microvascular function, glucose metabolism and body composition contribute to exercise capacity in overweight patients with CAD and without diabetes. METHODS...... by a cardiopulmonary exercise test. Body composition was determined by whole body dual-energy X-ray absorptiometry scan and magnetic resonance imaging. Coronary flow reserve (CFR) assessed by transthoracic Doppler echocardiography was used as a measure of microvascular function. RESULTS: Median BMI was 31.3 and 72...... metabolism and body composition. CFR, EDV and LVEF remained independent predictors of VO2peak in multivariable regression analysis. CONCLUSION: The study established CFR, EDV and LVEF as independent predictors of VO2peak in overweight CAD patients with no or only mild functional symptoms and a LVEF > 35...

  4. [Study of human secretory immunoglobulin A. I. Obtaining monospecific antiserum to human secretory immunoglobulin A].

    German, G P; Chernokhvostova, E V; Gol'derman, S Ia

    1975-10-01

    A method of obtaining monospecific antiserum to the human secretory IgA is described. Immunochemically pure secretory IgA (isolated from human colostrum by fractionation with ammonium sulfate and gel-filtration on Sephadex G-200) was used for immunization of rabbits or sheep. Heterologous antibodies were removed by adsorption with commercial gamma globulin, normal serum, the serum of a patient suffering from A-myeloma with the IgA polymere and purified lactoferrin. Monospecific antiserum to the secretory IgA gave a reaction of complete immunological identity with the secretory IgA and a free secretory component.

  5. Uncoupling protein 2 regulates daily rhythms of insulin secretion capacity in MIN6 cells and isolated islets from male mice

    Nivedita Seshadri

    2017-07-01

    Conclusions: Our study suggests that Ucp2/UCP2 in the β cell is part of an important, endogenous, metabolic regulator that controls the temporal capacity of GSIS over the course of the day/night cycle, which, in turn, regulates time-of-day glucose tolerance. Targeting Ucp2/UCP2 as a therapeutic in type 2 diabetes or any other metabolic condition must take into account the rhythmic nature of its expression and its impact on glucose tolerance over 24 h, specifically during the inactive/fasted phase.

  6. Quantitation of secretory protein levels by radioimmunoassay

    Klein, J.L.; Dawson, J.R.

    1978-01-01

    A radioimmunoassay was designed for the detection of secretory protein, a component of secretory immunoglobulin A, in human serum. The assay uses free secretory protein isolated from human colostrum, and antisera raised in rabbits to be purified antigen. The mean level of secretory protein in the control group was 2.34+-0.41 μg/ml (mean+-S.E.M.). The level in cord blood was slightly lower (0.74+-0.26 μg/ml), while the level in patients with ovarian carcinoma was significantly increased (12.67+-1.43 μg/ml). Pregnant women have increasingly secretory protein levels with increasing length of gestation (5.86+-2.02, 11.55+-1.30 and 17.00+-1.16 μg/ml for the first, second and third trimesters, respectively. (Auth.)

  7. Muscle as a secretory organ

    Pedersen, Bente K

    2013-01-01

    Skeletal muscle is the largest organ in the body. Skeletal muscles are primarily characterized by their mechanical activity required for posture, movement, and breathing, which depends on muscle fiber contractions. However, skeletal muscle is not just a component in our locomotor system. Recent e...... proteins produced by skeletal muscle are dependent upon contraction. Therefore, it is likely that myokines may contribute in the mediation of the health benefits of exercise.......Skeletal muscle is the largest organ in the body. Skeletal muscles are primarily characterized by their mechanical activity required for posture, movement, and breathing, which depends on muscle fiber contractions. However, skeletal muscle is not just a component in our locomotor system. Recent...... evidence has identified skeletal muscle as a secretory organ. We have suggested that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert either autocrine, paracrine, or endocrine effects should be classified as "myokines." The muscle secretome consists...

  8. The effects of synbiotic supplementation on insulin resistance/sensitivity, lipid profile and total antioxidant capacity in women with gestational diabetes mellitus: A randomized double blind placebo controlled clinical trial.

    Nabhani, Zohoor; Hezaveh, Seyed Jamal Ghaemmaghami; Razmpoosh, Elham; Asghari-Jafarabadi, Mohammad; Gargari, Bahram Pourghassem

    2018-04-01

    The role of gut microbiota in the management of diabetes is shown. In this randomized clinical trial we assessed the effects of synbiotic supplementation on insulin, lipid profile and antioxidative status among women with gestational diabetes mellitus (GDM). Ninety pregnant women with GDM were randomly assigned into two groups to receive either a daily synbiotic capsule - consisting of L. acidophilus, L. plantarum, L. fermentum, L. gasseri (1.5-7.0 × 10 9-10  CFU/g) - with fructooligosaccharide (38.5 mg), or placebo for 6 weeks. Fasting plasma glucose (FPG), insulin, homeostasis model assessment-insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), high- and low density lipoprotein cholesterol (HDL-C, LDL-C), total cholesterol (TC), triglycerides (TG), total antioxidant capacity (TAC), and systolic and diastolic blood pressure (SBP, DSP) were assessed before and after the intervention. No significant changes in FPG, insulin resistance/sensitivity, lipid profile and TAC indices were seen in synbiotic group compared to the placebo one (p > 0.05). Significant within group increases for HDL-C and TAC levels in synbiotic group were observed (p insulin resistance/sensitivity indices. Lipid profile and TAC status may be affected by synbiotic supplementation. Synbiotic is effective in reducing of blood pressure in women with GDM. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Rac1 Regulates Endometrial Secretory Function to Control Placental Development.

    Juanmahel Davila

    2015-08-01

    Full Text Available During placenta development, a succession of complex molecular and cellular interactions between the maternal endometrium and the developing embryo ensures reproductive success. The precise mechanisms regulating this maternal-fetal crosstalk remain unknown. Our study revealed that the expression of Rac1, a member of the Rho family of GTPases, is markedly elevated in mouse decidua on days 7 and 8 of gestation. To investigate its function in the uterus, we created mice bearing a conditional deletion of the Rac1 gene in uterine stromal cells. Ablation of Rac1 did not affect the formation of the decidua but led to fetal loss in mid gestation accompanied by extensive hemorrhage. To gain insights into the molecular pathways affected by the loss of Rac1, we performed gene expression profiling which revealed that Rac1 signaling regulates the expression of Rab27b, another GTPase that plays a key role in targeting vesicular trafficking. Consequently, the Rac1-null decidual cells failed to secrete vascular endothelial growth factor A, which is a critical regulator of decidual angiogenesis, and insulin-like growth factor binding protein 4, which regulates the bioavailability of insulin-like growth factors that promote proliferation and differentiation of trophoblast cell lineages in the ectoplacental cone. The lack of secretion of these key factors by Rac1-null decidua gave rise to impaired angiogenesis and dysregulated proliferation of trophoblast cells, which in turn results in overexpansion of the trophoblast giant cell lineage and disorganized placenta development. Further experiments revealed that RAC1, the human ortholog of Rac1, regulates the secretory activity of human endometrial stromal cells during decidualization, supporting the concept that this signaling G protein plays a central and conserved role in controlling endometrial secretory function. This study provides unique insights into the molecular mechanisms regulating endometrial secretions

  10. Rac1 Regulates Endometrial Secretory Function to Control Placental Development

    Davila, Juanmahel; Laws, Mary J.; Kannan, Athilakshmi; Li, Quanxi; Taylor, Robert N.; Bagchi, Milan K.; Bagchi, Indrani C.

    2015-01-01

    During placenta development, a succession of complex molecular and cellular interactions between the maternal endometrium and the developing embryo ensures reproductive success. The precise mechanisms regulating this maternal-fetal crosstalk remain unknown. Our study revealed that the expression of Rac1, a member of the Rho family of GTPases, is markedly elevated in mouse decidua on days 7 and 8 of gestation. To investigate its function in the uterus, we created mice bearing a conditional deletion of the Rac1 gene in uterine stromal cells. Ablation of Rac1 did not affect the formation of the decidua but led to fetal loss in mid gestation accompanied by extensive hemorrhage. To gain insights into the molecular pathways affected by the loss of Rac1, we performed gene expression profiling which revealed that Rac1 signaling regulates the expression of Rab27b, another GTPase that plays a key role in targeting vesicular trafficking. Consequently, the Rac1-null decidual cells failed to secrete vascular endothelial growth factor A, which is a critical regulator of decidual angiogenesis, and insulin-like growth factor binding protein 4, which regulates the bioavailability of insulin-like growth factors that promote proliferation and differentiation of trophoblast cell lineages in the ectoplacental cone. The lack of secretion of these key factors by Rac1-null decidua gave rise to impaired angiogenesis and dysregulated proliferation of trophoblast cells, which in turn results in overexpansion of the trophoblast giant cell lineage and disorganized placenta development. Further experiments revealed that RAC1, the human ortholog of Rac1, regulates the secretory activity of human endometrial stromal cells during decidualization, supporting the concept that this signaling G protein plays a central and conserved role in controlling endometrial secretory function. This study provides unique insights into the molecular mechanisms regulating endometrial secretions that mediate stromal

  11. Insulin receptors

    Kahn, C.R.; Harrison, L.C.

    1988-01-01

    This book contains the proceedings on insulin receptors. Part A: Methods for the study of structure and function. Topics covered include: Method for purification and labeling of insulin receptors, the insulin receptor kinase, and insulin receptors on special tissues

  12. Metformin and insulin receptors

    Vigneri, R.; Gullo, D.; Pezzino, V.

    1984-01-01

    The authors evaluated the effect of metformin (N,N-dimethylbiguanide), a biguanide known to be less toxic than phenformin, on insulin binding to its receptors, both in vitro and in vivo. Specific 125 I-insulin binding to cultured IM-9 human lymphocytes and MCF-7 human breast cancer cells was determined after preincubation with metformin. Specific 125 I-insulin binding to circulating monocytes was also evaluated in six controls, eight obese subjects, and six obese type II diabetic patients before and after a short-term treatment with metformin. Plasma insulin levels and blood glucose were also measured on both occasions. Metformin significantly increased insulin binding in vitro to both IM-9 lymphocytes and MCF-7 cells; the maximum increment was 47.1% and 38.0%, respectively. Metformin treatment significantly increased insulin binding in vivo to monocytes of obese subjects and diabetic patients. Scatchard analysis indicated that the increased binding was mainly due to an increase in receptor capacity. Insulin binding to monocytes of normal controls was unchanged after metformin as were insulin levels in all groups; blood glucose was significantly reduced after metformin only in diabetic patients. These data indicate that metformin increases insulin binding to its receptors in vitro and in vivo. The effect in vivo is observed in obese subjects and in obese type II diabetic patients, paralleling the clinical effectiveness of this antidiabetic agent, and is not due to receptor regulation by circulating insulin, since no variation in insulin levels was recorded

  13. Porosome: The Universal Secretory Portal in Cells

    Jena, Bhanu

    2012-10-01

    In the past 50 years it was believed that during cell secretion, membrane-bound secretory vesicles completely merge at the cell plasma membrane resulting in the diffusion of intra-vesicular contents to the cell exterior and the compensatory retrieval of the excess membrane by endocytosis. This explanation made no sense or logic, since following cell secretion partially empty vesicles accumulate as demonstrated in electron micrographs. Furthermore, with the ``all or none'' mechanism of cell secretion by complete merger of secretory vesicle membrane at the cell plasma membrane, the cell is left with little regulation and control of the amount of content release. Moreover, it makes no sense for mammalian cells to possess such `all or none' mechanism of cell secretion, when even single-cell organisms have developed specialized and sophisticated secretory machinery, such as the secretion apparatus of Toxoplasma gondii, the contractile vacuoles in paramecium, or the various types of secretory structures in bacteria. Therefore, in 1993 in a News and Views article in Nature, E. Neher wrote ``It seems terribly wasteful that, during the release of hormones and neurotransmitters from a cell, the membrane of a vesicle should merge with the plasma membrane to be retrieved for recycling only seconds or minutes later.'' This conundrum in the molecular mechanism of cell secretion was finally resolved in 1997 following discovery of the ``Porosome,'' the universal secretory machinery in cells. Porosomes are supramolecular lipoprotein structures at the cell plasma membrane, where membrane-bound secretory vesicles transiently dock and fuse to release inravesicular contents to the outside during cell secretion. In the past decade, the composition of the porosome, its structure and dynamics at nm resolution and in real time, and its functional reconstitution into artificial lipid membrane, have all been elucidated. Since porosomes in exocrine and neuroendocrine cells measure 100-180 nm

  14. Differential effects of age and sex on insulin sensitivity and body composition in adolescent offspring of women with type 1 diabetes: results from the EPICOM study

    Lohse, Zuzana; Knorr, Sine; Bytoft, Birgitte

    2018-01-01

    in fasting OGTT-derived indices for insulin sensitivity (BIGTT-SI0-30-120, Matsuda index, HOMA-IR) and insulin secretion (acute insulin response [BIGTT-AIR0-0-30-120], insulinogenic index, HOMA of insulin secretory function [HOMA-β], disposition index) and physical activity (International Physical Activity...

  15. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion

    Vozarova, B; Weyer, C; Hanson, K

    2001-01-01

    Plasma concentrations of interleukin-6 (IL-6), a proinflammatory cytokine produced and released in part by adipose tissue, are elevated in people with obesity and type 2 diabetes. Because recent studies suggest that markers of inflammation predict the development of type 2 diabetes, we examined w...... whether circulating plasma IL-6 concentrations were related to direct measures of insulin resistance and insulin secretory dysfunction in Pima Indians, a population with high rates of obesity and type 2 diabetes....

  16. PICK1 deficiency impairs secretory vesicle biogenesis and leads to growth retardation and decreased glucose tolerance.

    Birgitte Holst

    Full Text Available Secretory vesicles in endocrine cells store hormones such as growth hormone (GH and insulin before their release into the bloodstream. The molecular mechanisms governing budding of immature secretory vesicles from the trans-Golgi network (TGN and their subsequent maturation remain unclear. Here, we identify the lipid binding BAR (Bin/amphiphysin/Rvs domain protein PICK1 (protein interacting with C kinase 1 as a key component early in the biogenesis of secretory vesicles in GH-producing cells. Both PICK1-deficient Drosophila and mice displayed somatic growth retardation. Growth retardation was rescued in flies by reintroducing PICK1 in neurosecretory cells producing somatotropic peptides. PICK1-deficient mice were characterized by decreased body weight and length, increased fat accumulation, impaired GH secretion, and decreased storage of GH in the pituitary. Decreased GH storage was supported by electron microscopy showing prominent reduction in secretory vesicle number. Evidence was also obtained for impaired insulin secretion associated with decreased glucose tolerance. PICK1 localized in cells to immature secretory vesicles, and the PICK1 BAR domain was shown by live imaging to associate with vesicles budding from the TGN and to possess membrane-sculpting properties in vitro. In mouse pituitary, PICK1 co-localized with the BAR domain protein ICA69, and PICK1 deficiency abolished ICA69 protein expression. In the Drosophila brain, PICK1 and ICA69 co-immunoprecipitated and showed mutually dependent expression. Finally, both in a Drosophila model of type 2 diabetes and in high-fat-diet-induced obese mice, we observed up-regulation of PICK1 mRNA expression. Our findings suggest that PICK1, together with ICA69, is critical during budding of immature secretory vesicles from the TGN and thus for vesicular storage of GH and possibly other hormones. The data link two BAR domain proteins to membrane remodeling processes in the secretory pathway of

  17. Insulin Biosynthetic Interaction Network Component, TMEM24, Facilitates Insulin Reserve Pool Release

    Anita Pottekat

    2013-09-01

    Full Text Available Insulin homeostasis in pancreatic β cells is now recognized as a critical element in the progression of obesity and type II diabetes (T2D. Proteins that interact with insulin to direct its sequential synthesis, folding, trafficking, and packaging into reserve granules in order to manage release in response to elevated glucose remain largely unknown. Using a conformation-based approach combined with mass spectrometry, we have generated the insulin biosynthetic interaction network (insulin BIN, a proteomic roadmap in the β cell that describes the sequential interacting partners of insulin along the secretory axis. The insulin BIN revealed an abundant C2 domain-containing transmembrane protein 24 (TMEM24 that manages glucose-stimulated insulin secretion from a reserve pool of granules, a critical event impaired in patients with T2D. The identification of TMEM24 in the context of a comprehensive set of sequential insulin-binding partners provides a molecular description of the insulin secretory pathway in β cells.

  18. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study

    Zander, Mette; Madsbad, Sten; Madsen, Jan Lysgaard

    2002-01-01

    subcutaneous infusion of GLP-1 (n=10) or saline (n=10) for 6 weeks. Before (week 0) and at weeks 1 and 6, they underwent beta-cell function tests (hyperglycaemic clamps), 8 h profiles of plasma glucose, insulin, C-peptide, glucagon, and free fatty acids, and appetite and side-effect ratings on 100 mm visual...... analogue scales; at weeks 0 and 6 they also underwent dexascanning, measurement of insulin sensitivity (hyperinsulinaemic euglycaemic clamps), haemoglobin A(1c), and fructosamine. The primary endpoints were haemoglobin A(1c) concentration, 8-h profile of glucose concentration in plasma, and beta......-cell function (defined as the first-phase response to glucose and the maximum insulin secretory capacity of the cell). Analyses were per protocol. FINDINGS: One patient assigned saline was excluded because no veins were accessible. In the remaining nine patients in that group, no significant changes were...

  19. Synaptic Control of Secretory Trafficking in Dendrites

    Cyril Hanus

    2014-06-01

    Full Text Available Localized signaling in neuronal dendrites requires tight spatial control of membrane composition. Upon initial synthesis, nascent secretory cargo in dendrites exits the endoplasmic reticulum (ER from local zones of ER complexity that are spatially coupled to post-ER compartments. Although newly synthesized membrane proteins can be processed locally, the mechanisms that control the spatial range of secretory cargo transport in dendritic segments are unknown. Here, we monitored the dynamics of nascent membrane proteins in dendritic post-ER compartments under regimes of low or increased neuronal activity. In response to activity blockade, post-ER carriers are highly mobile and are transported over long distances. Conversely, increasing synaptic activity dramatically restricts the spatial scale of post-ER trafficking along dendrites. This activity-induced confinement of secretory cargo requires site-specific phosphorylation of the kinesin motor KIF17 by Ca2+/calmodulin-dependent protein kinases (CaMK. Thus, the length scales of early secretory trafficking in dendrites are tuned by activity-dependent regulation of microtubule-dependent transport.

  20. Ursodeoxycholic acid attenuates colonic epithelial secretory function

    Kelly, Orlaith B; Mroz, Magdalena S; Ward, Joseph B J; Colliva, Carolina; Scharl, Michael; Pellicciari, Roberto; Gilmer, John F; Fallon, Padraic G; Hofmann, Alan F; Roda, Aldo; Murray, Frank E; Keely, Stephen J

    2013-01-01

    Dihydroxy bile acids, such as chenodeoxycholic acid (CDCA), are well known to promote colonic fluid and electrolyte secretion, thereby causing diarrhoea associated with bile acid malabsorption. However, CDCA is rapidly metabolised by colonic bacteria to ursodeoxycholic acid (UDCA), the effects of which on epithelial transport are poorly characterised. Here, we investigated the role of UDCA in the regulation of colonic epithelial secretion. Cl− secretion was measured across voltage-clamped monolayers of T84 cells and muscle-stripped sections of mouse or human colon. Cell surface biotinylation was used to assess abundance/surface expression of transport proteins. Acute (15 min) treatment of T84 cells with bilateral UDCA attenuated Cl− secretory responses to the Ca2+ and cAMP-dependent secretagogues carbachol (CCh) and forskolin (FSK) to 14.0 ± 3.8 and 40.2 ± 7.4% of controls, respectively (n= 18, P acid (LCA). Accordingly, LCA (50–200 μm) enhanced agonist-induced secretory responses in vitro and a metabolically stable UDCA analogue, 6α-methyl-UDCA, exerted anti-secretory actions in vitro and in vivo. In conclusion, UDCA exerts direct anti-secretory actions on colonic epithelial cells and metabolically stable derivatives of the bile acid may offer a new approach for treating intestinal diseases associated with diarrhoea. PMID:23507881

  1. Predicting Secretory Proteins with SignalP

    Nielsen, Henrik

    2017-01-01

    SignalP is the currently most widely used program for prediction of signal peptides from amino acid sequences. Proteins with signal peptides are targeted to the secretory pathway, but are not necessarily secreted. After a brief introduction to the biology of signal peptides and the history...

  2. Radioimmunologic analysis of insulin secretion during acute radiation sickness

    Barkalaya, A I

    1975-01-01

    Rats were subjected to whole-body gamma irradiation (750 rad) and the secretory activity of the insular apparatus was studied radioimmunologically, using insulin labelled with iodine-125. The post-radiation dynamics of the insulin concentration in the blood were shown to have a phase character. The insulin level had risen after 1, 3 and 8 days. After 2 days the hormone concentration had dropped significantly and become two times lower than normal. After the other time intervals, the concentration of insulin in the blood varied within normal limits.

  3. RFP tags for labeling secretory pathway proteins

    Han, Liyang; Zhao, Yanhua [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Zhang, Xi; Peng, Jianxin [College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei (China); Xu, Pingyong, E-mail: pyxu@ibp.ac.cn [Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Huan, Shuangyan, E-mail: shuangyanhuan@163.com [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Zhang, Mingshu, E-mail: mingshu1984@gmail.com [Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2014-05-09

    Highlights: • Membrane protein Orai1 can be used to report the fusion properties of RFPs. • Artificial puncta are affected by dissociation constant as well as pKa of RFPs. • Among tested RFPs mOrange2 is the best choice for secretory protein labeling. - Abstract: Red fluorescent proteins (RFPs) are useful tools for live cell and multi-color imaging in biological studies. However, when labeling proteins in secretory pathway, many RFPs are prone to form artificial puncta, which may severely impede their further uses. Here we report a fast and easy method to evaluate RFPs fusion properties by attaching RFPs to an environment sensitive membrane protein Orai1. In addition, we revealed that intracellular artificial puncta are actually colocalized with lysosome, thus besides monomeric properties, pKa value of RFPs is also a key factor for forming intracellular artificial puncta. In summary, our current study provides a useful guide for choosing appropriate RFP for labeling secretory membrane proteins. Among RFPs tested, mOrange2 is highly recommended based on excellent monomeric property, appropriate pKa and high brightness.

  4. Lactadherin inhibits secretory phospholipase A2 activity on pre-apoptotic leukemia cells.

    Steffen Nyegaard

    Full Text Available Secretory phospholipase A2 (sPLA2 is a critical component of insect and snake venoms and is secreted by mammalian leukocytes during inflammation. Elevated secretory PLA2 concentrations are associated with autoimmune diseases and septic shock. Many sPLA2's do not bind to plasma membranes of quiescent cells but bind and digest phospholipids on the membranes of stimulated or apoptotic cells. The capacity of these phospholipases to digest membranes of stimulated or apoptotic cells correlates to the exposure of phosphatidylserine. In the present study, the ability of the phosphatidyl-L-serine-binding protein, lactadherin to inhibit phospholipase enzyme activity has been assessed. Inhibition of human secretory phospholipase A2-V on phospholipid vesicles exceeded 90%, whereas inhibition of Naja mossambica sPLA2 plateaued at 50-60%. Lactadherin inhibited 45% of activity of Naja mossambica sPLA2 and >70% of human secretory phospholipase A2-V on the membranes of human NB4 leukemia cells treated with calcium ionophore A23187. The data indicate that lactadherin may decrease inflammation by inhibiting sPLA2.

  5. Insulin Secretagogues

    ... than sulfonylureas. What are the side effects and disadvantages of insulin secretagogues? Both types of insulin-releasing ... help find the cause. Questions to ask your doctor What else can I do to keep my ...

  6. OXIDATIVE STRESS: ITS ROLE IN INSULIN SECRETION, HORMONE RECEPTION BY ADIPOCYTES AND LIPOLYSIS IN ADIPOSE TISSUE

    V. V. Ivanov

    2014-01-01

    Full Text Available Oxidative stress is one of the pathogenetic components of many diseases during which generation of reactive oxigen species increases and the capacity of the antioxidant protection system diminishes. In the research of the last decades special attention has been given to adipose tissue, production of adipokines by it and their role in development of immunoresistance associated with formation of the metabolic syndrome and diabetes.Search for methods of therapeutic correction of adipokine secretion disorders, their influence on metabolism of separate cells and the organism on the whole as well as development of new approaches to correction of disorders in cell sensitivity to insulin are extremely topical nowadays. Systematization and consolidation of accumulated data allow to determine the strategies of further research more accurately; as a result, we have attempted to summarize and analyze the accumulated data on the role of adipose tissue in oxidative stress development.On the basis of literature data and the results of the personal investigations, the role of adipose tissue in forming oxidative stress in diabetes has been analyzed in the article. Brief description of adipose tissue was given as a secretory organ regulating metabolic processes in adipocytes and influencing functions of various organs and systems of the body. Mechanisms of disorder in insulin secretion as well as development of insulin sesistance in type I diabetes were described along with the contribution of lipolysis in adipose tissue to these processes.

  7. Ionic and secretory response of pancreatic islet cells to minoxidil sulfate

    Antoine, M.H.; Hermann, M.; Herchuelz, A.; Lebrun, P.

    1991-01-01

    Minoxidil sulfate is an antihypertensive agent belonging to the new class of vasodilators, the K+ channel openers. The present study was undertaken to characterize the effects of minoxidil sulfate on ionic and secretory events in rat pancreatic islets. The drug unexpectedly provoked a concentration-dependent decrease in 86Rb outflow. This inhibitory effect was reduced in a concentration-dependent manner by glucose and tolbutamide. Minoxidil sulfate did not affect 45Ca outflow from islets perfused in the presence of extracellular Ca++ and absence or presence of glucose. However, in islets exposed to a medium deprived of extracellular Ca++, the drug provoked a rise in 45Ca outflow. Whether in the absence or presence of extracellular Ca++, minoxidil sulfate increased the cytosolic free Ca++ concentration of islet cells. Lastly, minoxidil sulfate increased the release of insulin from glucose-stimulated pancreatic islets. These results suggest that minoxidil sulfate reduces the activity of the ATP-sensitive K+ channels and promotes an intracellular translocation of Ca++. The latter change might account for the effect of the drug on the insulin-releasing process. However, the secretory response to minoxidil sulfate could also be mediated, at least in part, by a modest Ca++ entry

  8. Secretory expression of the non-secretory-type Lentinula edodes laccase by Aspergillus oryzae.

    Yano, Akira; Kikuchi, Sayaka; Nakagawa, Yuko; Sakamoto, Yuichi; Sato, Toshitsugu

    2009-01-01

    The shiitake mushroom, Lentinula edodes, has an extracelluar secretory-type laccase, Lcc1, and a fruiting-body-accumulation-type laccase, Lcc4. We previously reported the production of Lcc1 by plant cells, but had difficulty producing Lcc4. Here, we report the production of Lcc1 and Lcc4 by Aspergillus oryzae and the extracellular secretory production of Lcc4 using a modified secretion signal peptide (SP) from Lcc1. Sp-Lcc4 produced by A. oryzae had biochemical activities similar to Lcc4 produced by L. edodes. Lcc1 did not react with beta-(3,4-dihydroxyphenol) alanine (DOPA), but Lcc4 from L. edodes and A. oryzae could oxidize DOPA. K(M) values for the substrates 2,2'-azino-di-(3-ethylbenzthiazolinsulfonate), 2,6-dimethoxyphenol, guaiacol, pyrogallol, and catechol were similar for Lcc4 and Sp-Lcc4. In conclusion, a non-secretory-type fungal laccase is secreted into the culture media with its original enzymatic properties by exploiting modified secretory signal peptide. 2008 Elsevier GmbH.

  9. Secretory activity and endocrine regulation of male accessory glands in the blood-sucking bug Panstrongylus megistus (Hemiptera: Reduviidae

    Lêda Regis

    1987-01-01

    Full Text Available The epithelial cells of Panstrongylus megistus male accessory glands (MAG present ultrastructural characteristics of a secretory cell. Their secretory products are accumulated in the lumen of the four MAG lobes. During the first 8 days of adult life a strong secretion activity occurs, accumulating enough material to produce the first spermatophore. Cerebral neurosecretions as well as juvenile hormone are both involved in MAG secretory activity regulation. Juvenile hormone seems to be the responsible for the stimulation of most protein synthesis in male accessory glands. Cerebral neurosecretion seems to be necessary to stimulate juvenile hormone production and release by the corpus allatum. Furthermore, neurosecretion is required for some polypeptides synthesis by MAG. Although topic application of precocene II to adult males does not reproduce the same effects on MAG as does allatectomy, this compound causes strong reduction on male reproductive capacity.

  10. Secretory proteins of the pulmonary extracellular lining

    Gupta, R.P.; Patton, S.E.; Eddy, M.; Smits, H.L.; Jetten, A.M.; Nettesheim, P.; Hook, G.E.R.

    1986-01-01

    The objective of this investigation was to identify proteins in the pulmonary extracellular lining (EL) that are secreted by cells of the pulmonary epithelium. Pulmonary lavage effluents from the lungs of rabbits were centrifuged to remove all cells and particulate materials. Serum proteins were removed by repeatedly passing concentrated lavage effluent fluid through an affinity column containing IgG fraction of goat anti-rabbit (whole serum) antiserum bound to Sepharose-4B. Nonserum proteins accounted for 21.3 +/- 10.3% of the total soluble proteins in pulmonary lavage effluents. Serum free lavage effluents (SFL) contained 25 identifiable proteins as determined by using SDS-PAGE under reducing conditions. Of these proteins approximately 73% was accounted for by a single protein with MW of 66 kd. The secretory nature of the proteins present in SFL was investigated by studying the incorporation of 35 S-methionine into proteins released by lung slices and trachea followed by SDS-PAGE and autoradiography. Many, but not all proteins present in SFL were identified as proteins secreted by pulmonary tissues. The major secretory proteins appeared to have MWs of 59, 53, 48, 43, 24, 14, and 6 kd under reducing conditions. These data demonstrate the presence of several proteins in the pulmonary extracellular lining that appear to be secreted by the pulmonary epithelium

  11. Secretory pattern of canine growth hormone

    French, M.B.; Vaitkus, P.; Cukerman, E.; Sirek, A.; Sirek, O.V.

    1987-01-01

    The aim of this paper was to define the secretory pattern of growth hormone (GH) under basal conditions in fasted, conscious, male dogs accustomed to handling. Blood samples were withdrawn from a cephalic vein at 15-min intervals. In this way, any ultradian rhythms, if present, could be detected within the frequency range of 0.042-2 cycles/h. In addition, samples were drawn at either 1- or 2.5-min intervals for 2.5 or 5 h to determine whether frequency components greater than 2 cycles/h were present. GH was measured by radioimmunoassay and the raw data were submitted to time series analysis employing power spectral estimation by means of fast Fourier transformation techniques. Peak plasma levels were up to 12 times higher than the baseline concentration of ∼ 1 ng/ml. Spectral analysis revealed an endogenous frequency of 0.22 cycles/h, i.e., a periodicity of 4.5 h/cycle. The results indicate that under basal conditions the secretory bursts of canine GH are limited to one peak every 4.5 h

  12. The glycolipid sulfatide protects insulin-producing cells against cytokine-induced apoptosis, a possible role in diabetes

    Roeske-Nielsen, A; Dalgaard, L T; Månsson, Sven-Erik

    2010-01-01

    these is NO production. The glycosphingolipid sulfatide is present in ß-cells in the secretory granules in varying amounts and is secreted together with insulin. We now investigate whether sulfatide is able to protect insulin-producing cells against the pro-apoptotic effect of interleukin-1ß, interferon-¿ and tumour...

  13. Secretory Phospholipase A2-IIA and Cardiovascular Disease

    Holmes, Michael V; Simon, Tabassome; Exeter, Holly J

    2013-01-01

    This study sought to investigate the role of secretory phospholipase A2 (sPLA2)-IIA in cardiovascular disease.......This study sought to investigate the role of secretory phospholipase A2 (sPLA2)-IIA in cardiovascular disease....

  14. Mammary Analog Secretory Carcinoma of the Nasal Cavity

    Baneckova, Martina; Agaimy, Abbas; Andreasen, Simon

    2018-01-01

    Secretory carcinoma, originally described as mammary analog secretory carcinoma (MASC), is a low-grade salivary gland tumor characterized by a t(12;15)(p13;q25) translocation, resulting in an ETV6-NTRK3 gene fusion. Most MASCs are localized to the parotid gland and intraoral minor salivary glands...

  15. Lipomatous secretory meningioma: case report and review of the literature

    Liebig, T.; Hoffmann, T.; Hosten, N.; Sander, B.; Lanksch, W.R.

    1998-01-01

    Secretory meningioma is a rare entity which may be characterised by imaging features unusual for other subtypes of meningoma, such as low attenuation on CT, high (fat-tissue equivalent) signal intensity on T1-weighted MRI, marked surrounding oedema, and irregular contrast enhancement. We report a case of secretory meningioma and review the literature. (orig.) (orig.)

  16. Eustachian tube three-dimensional reconstruction of secretory otitis media

    Yu Yafeng; Zhou Weirong; Bao Xueping; Li Min; Hu Zhenmin

    2006-01-01

    Objective: To study relationship between Eustachian tube and secretory otitis media and to explore the pathogeny of secretory otitis by three-dimensional reconstruction of Eustachian tube. Methods: Thirty cases of secretory otitis media (male 19, female 11) were selected randomly. Everyone was checked by otoscope and audiometry. Their bilateral Eustachian tubes were scanning by helix CT while making Valsalva's action. All images were passed on to work station to make three-dimensional reconstruction. Results: Four patients were found have Eustachian tube diseases, while most of patients' Eustachian tubes ventilated normally. Conclusions: Three-dimensional reconstruction of Eustachian tube can open out some pathogens of some secretory otitis medias. It will be helpful to diagnosis and therapy of secretory otitis media. (authors)

  17. Quantitative analysis of secretome from adipocytes regulated by insulin

    Hu Zhou; Yuanyuan Xiao; Rongxia Li; Shangyu Hong; Sujun Li; Lianshui Wang; Rong Zeng; Kan Liao

    2009-01-01

    Adipocyte is not only a central player involved in storage and release of energy, but also in regulation of energy metabolism in other organs via secretion of pep-tides and proteins. During the pathogenesis of insulin resistance and type 2 diabetes, adipocytes are subjected to the increased levels of insulin, which may have a major impact on the secretion of adipokines. We have undertaken cleavable isotope-coded affinity tag (clCAT) and label-free quantitation approaches to identify and quantify secretory factors that are differen-tially secreted by 3T3-LI adipocytes with or without insulin treatment. Combination of clCAT and label-free results, there are 317 proteins predicted or annotated as secretory proteins. Among these secretory proteins, 179 proteins and 53 proteins were significantly up-regulated and down-regulated, respectively. A total of 77 reported adipokines were quantified in our study, such as adiponectin, cathepsin D, cystatin C, resistin, and transferrin. Western blot analysis of these adipo-kines confirmed the quantitative results from mass spectrometry, and revealed individualized secreting pat-terns of these proteins by increasing insulin dose. In addition, 240 proteins were newly identified and quanti-fied as secreted proteins from 3T3-L1 adipocytes in our study, most of which were up-regulated upon insulin treatment. Further comprehensive bioinformatics analysis revealed that the secretory proteins in extra-cellular matrix-receptor interaction pathway and glycan structure degradation pathway were significantly up-regulated by insulin stimulation.

  18. Studies on insulin receptor, 2

    Sakai, Yukio

    1979-01-01

    The present study is to investigate an influence of starvation and high fat diet on insulin receptor of the plasma membrane by means of radioreceptor assay using 125 I-labelled insulin. Male guinea pigs of Hartley strain were employed for the starvation study, and 125 I-insulin binding capacity on the plasma membrane of the liver and kidney was determined at 24, 48 and 72 hours of the fast after the last meal. Male rats of Wistar strain were employed for the high fat study where the diet containing 35% of butter was fed ad libitum for 38 or 68 days. The animals were killed at the fast of 12 hours, and 125 I-insulin binding capacity on the plasma membrane of the liver was determined. The results obtained are summarized as follows: 1) An increase in 125 I-insulin binding capacity on the plasma membrane of the liver and kidney was observed by the starvation for 24 to 72 hours. 2) The mechanism of the increase by starvation was considered to be different by the organs; it was due to an increase in number of insulin receptor in the liver, and due to an increase in affinity of insulin receptor in the kidney. 3) In non-obese rats fed with high fat diet, the number of insulin receptor on the liver plasma membrane showed a decrease, and this observation clearly indicated that the decrease in number of the receptor did not depend on the obesity. 4) Obese rats also fed with high fat diet presented a decrease in number of insulin receptor without an elevation of insulin levels in the circulating blood. This indicated that at least in the obese rats fed with high fat diet, the decrease in number of the receptor was not due to hyperinsulinemia. (author)

  19. Secretory NaCl and volume flow in renal tubules.

    Beyenbach, K W

    1986-05-01

    This review attempts to give a retrospective survey of the available evidence concerning the secretion of NaCl and fluid in renal tubules of the vertebrate kidney. In the absence of glomerular filtration, epithelial secretory mechanisms, which to this date have not been elucidated, are responsible for the renal excretion of NaCl and water in aglomerular fish. However, proximal tubules isolated from glomerular fish kidneys of the flounder, killifish, and the shark also have the capacity to secrete NaCl and fluid. In shark proximal tubules, fluid secretion appears to be driven via secondary active transport of Cl. In another marine vertebrate, the sea snake, secretion of Na (presumably NaCl) and fluid is observed in freshwater-adapted and water-loaded animals. Proximal tubules of mammals can be made to secrete NaCl in vitro together with secretion of aryl acids. An epithelial cell line derived from dog kidney exhibits secondary active secretion of Cl when stimulated with catecholamines. Tubular secretion of NaCl and fluid may serve a variety of renal functions, all of which are considered here. The occurrence of NaCl and fluid secretion in glomerular proximal tubules of teleosts, elasmobranchs, and reptiles and in mammalian renal tissue cultures suggests that the genetic potential for NaCl secretion is present in every vertebrate kidney.

  20. Quantitative parameters of seminiferous epithelium in secretory and excretory oligoazoospermia.

    Francavilla, S; Martini, M; Properzi, G; Cordeschi, G

    1990-01-01

    Testicular biopsy specimens from infertile men (sperm count, less than 10(6)/ml) were evaluated on 1-micron thick sections, and counts of stem cells and differentiated spermatogonia, primary spermatocytes, early and late spermatids, and Sertoli cells were compared to counts in six fertile men. Biopsy specimens were also compared for the appearance of seminiferous tubule wall, blood vessels, and interstitium. Infertile men were grouped according to the following diagnoses: hypospermatogenesis (n = 5), spermatocyte arrest of spermatogenesis (n = 5), and obstruction of the genital tract (n = 7). A low productivity of spermatogenesis in cases of hypospermatogenesis appeared to be due to an exaggerated degeneration of primary spermatocytes and to a yield of abnormal spermatids. A block of meiosis in spermatocyte arrest was associated with a degeneration of primary spermatocytes and with a reduced number of staminal spermatogonia. Abnormal spermiogenesis was observed in cases of obstruction of the genital tract and was associated with an increase in stem cell spermatogonia. A thickening of seminiferous tubule and blood vessel walls could be responsible for the limited functional capacity of Sertoli cells, causing altered spermiogenesis in cases of excretory azoospermia. A severe primitive failure of Sertoli cells in secretory oligoazoospermia could account for a deranged maturation and degeneration of premeiotic and postmeiotic germ cells.

  1. Adverse effects of reduced oxygen tension on the proliferative capacity of rat kidney and insulin-secreting cell lines involve DNA damage and stress responses

    Chen Jianhua; Jones, R. Huw; Tarry-Adkins, Jane; Smith, Noel H.; Ozanne, Susan E.

    2008-01-01

    Standard cell culture conditions do not reflect the physiological environment in terms of oxygen tension (20% vs 3%). The effects of lowering oxygen tension on cell proliferation in culture can be beneficial as well as detrimental depending on the cell line studied, but the molecular mechanism underlying such effects is not fully understood. We observed that the proliferative capacity of the rat cell lines NRK and INS-1 was inhibited when cultured under 3% oxygen as compared to 20% oxygen. Suppression of proliferation in NRK cells was accompanied by induction of DNA double strand breaks whereas in INS-1 cells it was accompanied by up-regulation of p53 and p27. Although Sirt1 was up-regulated in both cell lines by 3% oxygen the effects on antioxidant enzymes (MnSOD, CuZnSOD and catalase) were cell line specific. Marked up-regulation of heme oxygenase-1 (HO-1) was detected in both NRK and INS-1 cells when cultured in 3% oxygen. HO-1 expression can be readily induced by exposure to hydrogen peroxide in culture. These results suggest that reduced oxygen tension suppresses the proliferative capacity of these two cell lines through a stress response that is similar to an oxidative stress response but the molecular events that lead to the reduced cell proliferation are cell line specific

  2. Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice

    Gustavsson, Natalia; Lao, Ye; Maximov, Anton

    2008-01-01

    and insulin release. Here, we show that synaptotagmin-7 is required for the maintenance of systemic glucose tolerance and glucose-stimulated insulin secretion. Mutant mice have normal insulin sensitivity, insulin production, islet architecture and ultrastructural organization, and metabolic and calcium...... secretion in pancreatic beta-cells. Of these other synaptotagmins, synaptotagmin-7 is one of the most abundant and is present in pancreatic beta-cells. To determine whether synaptotagmin-7 regulates Ca(2+)-dependent insulin secretion, we analyzed synaptotagmin-7 null mutant mice for glucose tolerance...... responses but exhibit impaired glucose-induced insulin secretion, indicating a calcium-sensing defect during insulin-containing secretory granule exocytosis. Taken together, our findings show that synaptotagmin-7 functions as a positive regulator of insulin secretion and may serve as a calcium sensor...

  3. Generic sorting of raft lipids into secretory vesicles in yeast

    Surma, Michal A; Klose, Christian; Klemm, Robin W

    2011-01-01

    Previous work has showed that ergosterol and sphingolipids become sorted to secretory vesicles immunoisolated using a chimeric, artificial raft membrane protein as bait. In this study, we have extended this analysis to three populations of secretory vesicles isolated using natural yeast plasma...... a complete lipid overview of the yeast late secretory pathway. We could show that vesicles captured with different baits carry the same cargo and have almost identical lipid compositions; being highly enriched in ergosterol and sphingolipids. This finding indicates that lipid raft sorting is a generic...

  4. Wolfram syndrome 1 gene (WFS1) product localizes to secretory granules and determines granule acidification in pancreatic beta-cells.

    Hatanaka, Masayuki; Tanabe, Katsuya; Yanai, Akie; Ohta, Yasuharu; Kondo, Manabu; Akiyama, Masaru; Shinoda, Koh; Oka, Yoshitomo; Tanizawa, Yukio

    2011-04-01

    Wolfram syndrome is an autosomal recessive disorder characterized by juvenile-onset insulin-dependent diabetes mellitus and optic atrophy. The gene responsible for the syndrome (WFS1) encodes an endoplasmic reticulum (ER) resident transmembrane protein. The Wfs1-null mouse exhibits progressive insulin deficiency causing diabetes. Previous work suggested that the function of the WFS1 protein is connected to unfolded protein response and to intracellular Ca(2+) homeostasis. However, its precise molecular function in pancreatic β-cells remains elusive. In our present study, immunofluorescent and electron-microscopic analyses revealed that WFS1 localizes not only to ER but also to secretory granules in pancreatic β-cells. Intragranular acidification was assessed by measuring intracellular fluorescence intensity raised by the acidotrophic agent, 3-[2,4-dinitroanilino]-3'-amino-N-methyldipropyramine. Compared with wild-type β-cells, there was a 32% reduction in the intensity in WFS1-deficient β-cells, indicating the impairment of granular acidification. This phenotype may, at least partly, account for the evidence that Wfs1-null islets have impaired proinsulin processing, resulting in an increased circulating proinsulin level. Morphometric analysis using electron microscopy evidenced that the density of secretory granules attached to the plasma membrane was significantly reduced in Wfs1-null β-cells relative to that in wild-type β-cells. This may be relevant to the recent finding that granular acidification is required for the priming of secretory granules preceding exocytosis and may partly explain the fact that glucose-induced insulin secretion is profoundly impaired in young prediabetic Wfs1-null mice. These results thus provide new insights into the molecular mechanisms of β-cell dysfunction in patients with Wolfram syndrome.

  5. Altered synthesis of some secretory proteins in pancreatic lobules isolated from streptozotocin-induced diabetic rats

    Duan, R.D.; Erlanson-Albertsson, C.

    1990-01-01

    The in vitro incorporation of [35S]cysteine into lipase, colipase, amylase, procarboxypeptidase A and B, and the serine proteases and total proteins was studied in pancreatic lobules isolated from normal and diabetic rats with or without insulin treatment. The incorporation of [35S]cysteine into total proteins was 65% greater in pancreatic lobules from diabetic animals than from normal rats. The increased incorporation was partly reversed by insulin treatment (2 U/100 g/day for 5 days) of diabetic rats. The relative rates of biosynthesis for amylase and the procarboxypeptidases in diabetic pancreatic lobules were decreased by 75 and 25%, respectively, after 1 h of incubation, while those for lipase, colipase, and the serine proteases were increased by 90, 85, and 35%, respectively. The absolute rates of synthesis for these enzymes changed in the same direction as the relative rates in diabetic lobules, except that for the procarboxypeptidases, which did not change. The changed rates of biosynthesis for the pancreatic enzymes were reversed by insulin treatment of the diabetic rats. Kinetic studies showed that the incorporation of [35S]cysteine into amylase, lipase, and colipase was linear until up to 2 h of incubation in normal pancreatic lobules, while in the diabetic lobules the incorporation into lipase and colipase was accelerated, reaching a plateau level already after 1 h of incubation. It is concluded that the biosynthesis of pancreatic secretory proteins in diabetic rats is greatly changed both in terms of quantity and kinetics

  6. Radiation-induced secretory protein, clusterin. Its inductive mechanism and biological significance

    Suzuki, Masatoshi; Boothman, D.A.

    2007-01-01

    This paper describes biochemistry of secretory clusterin (C), its radiation-inductive mechanism and biological significance. C is a glycoprotein found to be secreted from cells given various stresses like radiation and ultraviolet (UV)-ray, and participates to red cell clustering. Human C gene locates on the chromosome 8p21-p12, C has MW of 60 kDa, its precursor undergoes the degrading processing to α- and β-chains to form their heterodimer before glycosylation, and the C is finally secreted. So many other names have been given to C due to its numerous functions which have been discovered in other fields, such as apolipoprotein J. C is abundant in plasma, milk, urine, cerebrospinal fluid, semen, etc. Within 24 hr after X-ray irradiation, extracellular insulin-like growth factor-1 (IGF-1) level is elevated, and through its binding to the receptor, Src/MAPK signaling participates to C expression. Nuclear C, also induced by radiation, is a splicing variant of C and not secreted from cells. C is induced by radiation with as low dose as 2 cGy, which is different from induction of nuclear C. Secreted C is incorporated in cells by endocytosis and promotes the intracellular survival reaction through IGF-1 receptor/MAPK/Egr-1 pathway, whereas nuclear C induces cell apoptosis via unknown mechanism. Further studies are required for elucidation of the roles of secretory and nuclear C in cellular radiation responses. (R.T.)

  7. Secretory products of helminth parasites as immunomodulators.

    Harnett, William

    2014-07-01

    Parasitic helminths release molecules into their environment, which are generally referred to as excretory-secretory products or ES. ES derived from a wide range of nematodes, trematodes and cestodes have been studied during the past 30-40 years, their characterization evolving from simple biochemical procedures such as SDS-PAGE in the early days to sophisticated proteomics in the 21st century. Study has incorporated investigation of ES structure, potential as vaccines, immunodiagnostic utility, functional activities and immunomodulatory properties. Immunomodulation by ES is increasingly the area of most intensive research with a number of defined helminth products extensively analyzed with respect to the nature of their selective effects on cells of the immune system as well as the molecular mechanisms, which underlie these immunomodulatory effects. As a consequence, we are now beginning to learn the identities of the receptors that ES employ and are increasingly acquiring detailed knowledge of the signalling pathways that they interact with and subvert. Such information is contributing to the growing idea that the anti-inflammatory properties of a number of ES products makes them suitable starting points for the development of novel drugs for treating human inflammatory disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Male accessory gland secretory protein polymorphism in natural ...

    [Ravi Ram K. and Ramesh S. R. 2007 Male accessory gland secretory protein polymorphism in natural ..... quence of species-specific genetic responses to variations in .... Eberhard W. G. 1996 Female control: sexual selection by cryptic.

  9. Secretory Phospholipase A(2) Activity toward Diverse Substrates

    Madsen, Jesper Jonasson; Linderoth, Lars; Subramanian, Arun Kumar

    2011-01-01

    We have studied secretory phospholipase A(2)-IIA (sPLA(2)) activity toward different phospholipid analogues by performing biophysical 1 characterizations and molecular dynamics simulations. The phospholipids were natural substrates, triple alkyl phospholipids, a prodrug anticancer etherlipid, and...

  10. Influence of continuous light and darkness on the secretory ...

    Unknown

    rent phases of the secretory process were demonstrated. (Srivastava 1999). ..... in the pineal supportive cells of deep sea fish, Nezumia liolepis (McNulty 1976) and .... factors as light and temperature. Melatonin and ... Brain Res. 52 271–296.

  11. P-selectin targeting to secretory lysosomes of Rbl-2H3 cells

    Kaur, J.; Cutler, D. F.

    2002-01-01

    The biogenesis of secretory lysosomes, which combine characteristics of both lysosomes and secretory granules, is currently of high interest. In particular, it is not clear whether delivery of membrane proteins to the secretory lysosome requires lysosomal, secretory granule, or some novel targeting determinants. Heterologous expression of P-selectin has established that this membrane protein contains targeting signals for both secretory granules and lysosomes. P-selectin is therefore an ideal...

  12. Vitamin D deficiency impairs glucose-stimulated insulin secretion and increases insulin resistance by reducing PPAR-γ expression in nonobese Type 2 diabetic rats.

    Park, Sunmin; Kim, Da Sol; Kang, Suna

    2016-01-01

    Human studies have provided relatively strong associations of poor vitamin D status with Type 2 diabetes but do not explain the nature of the association. Here, we explored the physiological pathways that may explain how vitamin D status modulates energy, lipid and glucose metabolisms in nonobese Type 2 diabetic rats. Goto-Kakizaki (GK) rats were fed high-fat diets containing 25 (VD-low), 1000 (VD-normal) or 10,000 (VD-high) cholecalciferol-IU/kg diet for 8 weeks. Energy expenditure, insulin resistance, insulin secretory capacity and lipid metabolism were measured. Serum 25-OH-D levels, an index of vitamin D status, increased dose dependently with dietary vitamin D. VD-low resulted in less fat oxidation without a significant difference in energy expenditure and less lean body mass in the abdomen and legs comparison to the VD-normal group. In comparison to VD-low, VD-normal had lower serum triglycerides and intracellular fat accumulation in the liver and skeletal muscles which was associated with down-regulation of the mRNA expressions of sterol regulatory element binding protein-1c and fatty acid synthase and up-regulation of gene expressions of peroxisome proliferator-activated receptors (PPAR)-α and carnitine palmitoyltransferase-1. In euglycemic hyperinsulinemic clamp, whole-body and hepatic insulin resistance was exacerbated in the VD-low group but not in the VD-normal group, possibly through decreasing hepatic insulin signaling and PPAR-γ expression in the adipocytes. In 3T3-L1 adipocytes 1,25-(OH)2-D (10 nM) increased triglyceride accumulation by elevating PPAR-γ expression and treatment with a PPAR-γ antagonist blocked the triglyceride deposition induced by 1,25-(OH)2-D treatment. VD-low impaired glucose-stimulated insulin secretion in hyperglycemic clamp and decreased β-cell mass by decreasing β-cell proliferation. In conclusion, vitamin D deficiency resulted in the dysregulation of glucose metabolism in GK rats by simultaneously increasing insulin

  13. Progressive quality control of secretory proteins in the early secretory compartment by ERp44.

    Sannino, Sara; Anelli, Tiziana; Cortini, Margherita; Masui, Shoji; Degano, Massimo; Fagioli, Claudio; Inaba, Kenji; Sitia, Roberto

    2014-10-01

    ERp44 is a pH-regulated chaperone of the secretory pathway. In the acidic milieu of the Golgi, its C-terminal tail changes conformation, simultaneously exposing the substrate-binding site for cargo capture and the RDEL motif for ER retrieval through interactions with cognate receptors. Protonation of cysteine 29 in the active site allows tail movements in vitro and in vivo. Here, we show that conserved histidine residues in the C-terminal tail also regulate ERp44 in vivo. Mutants lacking these histidine residues retain substrates more efficiently. Surprisingly, they are also O-glycosylated and partially secreted. Co-expression of client proteins prevents secretion of the histidine mutants, forcing tail opening and RDEL accessibility. Client-induced RDEL exposure allows retrieval of proteins from distinct stations along the secretory pathway, as indicated by the changes in O-glycosylation patterns upon overexpression of different partners. The ensuing gradients might help to optimize folding and assembly of different cargoes. Endogenous ERp44 is O-glycosylated and secreted by human primary endometrial cells, suggesting possible pathophysiological roles of these processes. © 2014. Published by The Company of Biologists Ltd.

  14. INDUCTION OF A SECRETORY IGA RESPONSE IN THE MURINE FEMALE UROGENITAL TRACT BY IMMUNIZATION OF THE LUNGS WITH LIPOSOME-SUPPLEMENTED VIRAL SUBUNIT ANTIGEN

    DEHAAN, A; RENEGAR, KB; SMALL, PA; WILSCHUT, J

    This study demonstrates that liposomes administered to the lower respiratory tract of mice have the capacity to stimulate secretory IgA (s-IgA) antibody production in the female urogenital system. Total respiratory tract immunization of mice with influenza virus subunit antigen simply mixed with

  15. Secretory structure and histochemistry test of some Zingiberaceae plants

    Indriyani, Serafinah

    2017-11-01

    A secretory structure is a structure that produces a plant's metabolite substances. Secretory structures are grouped into an internal and external. Zingiberaceae plants are known as traditional medicine plants and as spice plants due to secretory structures in their tissues. The objective of the research were to describe the secretory structure of Zingiberaceae plants and to discover the qualitatively primary metabolite substances in plant's tissues via histochemistry test. The research was conducted by observation descriptive design, quantitative data including the density of secretory cells per mm². The quantitative data were analyzed by ANOVA and continued by Duncan at α = 5 %. The results showed that the secretory structures in leaves, rhizome, and the root of 14 species of Zingiberaceae plants are found in the mesophyll of leaves and cortex, and also pith in rhizome and roots. The type of secretory structure is internal. Within the root of Zingiber cassumunar Roxb.(bengle), Curcuma domestica Val. (kunyit), Curcuma zedoaria (Berg.) Roscoe (kunyit putih), Zingiber zerumbet (L.) J.E. Smith (lempuyang), Alpiniapurpurata K. Schum (lengkuas merah), and Curcuma aeruginosa Val. (temu ireng) were found amylum grains, while in Kaemferia galanga L. (kencur), Boesen bergiapandurata L. (temu kunci), and Curcuma xanthorrhiza Roxb. (temulawak) there were no amylum grains in the root as well as in the leaves. The roots of bengle had the greatest density of amylum grain, it had 248.1 ± 9.8 secretory cells of amylum grains per mm². Lipids (oil droplets) were found in the root of bengle, Zingiber officinale Roxb. Var. emprit (jahe emprit), Zingiber officinale Roxb. Var. Gajah (jahe gajah), Zingiber officinale Roxb. Var. Rubrum (jahe merah), Keampferia angustifolia L. (kunci pepet), kunyit, kunyit putih, lempuyang, lengkua smerah, Curcuma aeruginosa Val. (temu ireng), and Curcuma mangga Val. and van Zijp (temu mangga); the root of lempuyang had the greatest density of oil

  16. Potent Insulin Secretagogue from Scoparia dulcis Linn of Nepalese Origin.

    Sharma, Khaga Raj; Adhikari, Achyut; Hafizur, Rahman M; Hameed, Abdul; Raza, Sayed Ali; Kalauni, Surya Kant; Miyazaki, Jun-Ichi; Choudhary, M Iqbal

    2015-10-01

    Ethno-botanical inspired isolation from plant Scoparia dulcis Linn. (Sweet Broomweed) yielded six compounds, coixol (1), glutinol (2), glutinone (3), friedelin (4), betulinic acid (5), and tetratriacontan-1-ol (6). There structures were identified using mass and 1D- and 2D-NMR spectroscopy techniques. Compounds 1-6 were evaluated for their insulin secretory activity on isolated mice islets and MIN-6 pancreatic β-cell line, and compounds 1 and 2 were found to be potent and mildly active, respectively. Compound 1 was further evaluated for insulin secretory activity on MIN-6 cells. Compound 1 was subjected to in vitro cytotoxicity assay against MIN-6, 3T3 cell lines, and islet cells, and in vivo acute toxicity test in mice that was found to be non-toxic. The insulin secretory activity of compounds 1 and 2 supported the ethno-botanic uses of S. dulcis as an anti-diabetic agent. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Insulin Resistance

    Jensen, Benjamin Anderschou Holbech

    Insulin resistance (IR) is escalating with alarming pace and is no longer restricted to westernized countries. As a forerunner for some of the most serious threats to human health including metabolic syndrome, cardiovascular diseases, and type 2-diabetes, the need for new treatment modalities...... interventions. We further show that improving the inflammatory toning, using fish oil as fat source, protects mice against diet induced obesity and -inflammation while preserving insulin sensitivity, even in the absence of free fatty acid receptor 4. Conversely, HFD-induced intestinal dysbiosis is associated...

  18. Economic benefits of improved insulin stability in insulin pumps.

    Weiss, Richard C; van Amerongen, Derek; Bazalo, Gary; Aagren, Mark; Bouchard, Jonathan R

    2011-05-01

    Insulin pump users discard unused medication and infusion sets according to labeling and manufacturer's instructions. The stability labeling for insulin aspart (rDNA origin] (Novolog) was increased from two days to six. The associated savings was modeled from the perspective of a hypothetical one-million member health plan and the total United States population. The discarded insulin volume and the number of infusion sets used under a two-day stability scenario versus six were modeled. A mix of insulin pumps of various reservoir capacities with a range of daily insulin dosages was used. Average daily insulin dose was 65 units ranging from 10 to 150 units. Costs of discarded insulin aspart [rDNA origin] were calculated using WAC (Average Wholesale Price minus 16.67%). The cost of pump supplies was computed for the two-day scenario assuming a complete infusion set change, including reservoirs, every two days. Under the six-day scenario complete infusion sets were discarded every six days while cannulas at the insertion site were changed midway between complete changes. AWP of least expensive supplies was used to compute their costs. For the hypothetical health plan (1,182 pump users) the annual reduction in discarded insulin volume between scenarios was 19.8 million units. The corresponding cost reduction for the plan due to drug and supply savings was $3.4 million. From the U.S. population perspective, savings of over $1 billion were estimated. Using insulin that is stable for six days in pump reservoirs can yield substantial savings to health plans and other payers, including patients.

  19. Remodeling of bovine oviductal epithelium by mitosis of secretory cells.

    Ito, Sayaka; Kobayashi, Yoshihiko; Yamamoto, Yuki; Kimura, Koji; Okuda, Kiyoshi

    2016-11-01

    Two types of oviductal epithelial cells, secretory and ciliated, play crucial roles in the first days after fertilization in mammals. Secretory cells produce various molecules promoting embryo development, while ciliated cells facilitate transport of oocytes and zygotes by ciliary beating. The proportions of the two cell types change during the estrous cycle. The proportion of ciliated cells on the oviductal luminal surface is abundant at the follicular phase, whereas the proportion of secretory cells gradually increases with the formation of the corpus luteum. In the present study, we hypothesize that the proportions of ciliated and secretory epithelial cells are regulated by mitosis. The proportion of the cells being positive for FOXJ1 (a ciliated cell marker) or Ki67 (a mitosis marker) in epithelial cells during the estrous cycle were immunohistochemically examined. Ki67 and FOXJ1 or PAX8 (a secretory cell marker), were double-stained to clarify which types of epithelial cells undergo mitosis. In the ampulla, the percentage of FOXJ1-positive cells was highest at the day of ovulation (Day 0) and decreased by about 50 % by Days 8-12, while in the isthmus it did not change during the estrous cycle. The proportion of Ki67-positive cells was highest at around the time of ovulation in both the ampulla and isthmus. All the Ki67-positive cells were PAX8-positive and FOXJ1-negative in both the ampulla and isthmus. These findings suggest that epithelial remodeling, which is regulated by differentiation and/or proliferation of secretory cells of the oviduct, provides the optimal environment for gamete transport, fertilization and embryonic development.

  20. Anti-insulin antibody test

    Insulin antibodies - serum; Insulin Ab test; Insulin resistance - insulin antibodies; Diabetes - insulin antibodies ... Normally, there are no antibodies against insulin in your blood. ... different laboratories. Some labs use different measurements or ...

  1. The transcriptional corepressor MTGR1 regulates intestinal secretory lineage allocation.

    Parang, Bobak; Rosenblatt, Daniel; Williams, Amanda D; Washington, Mary K; Revetta, Frank; Short, Sarah P; Reddy, Vishruth K; Hunt, Aubrey; Shroyer, Noah F; Engel, Michael E; Hiebert, Scott W; Williams, Christopher S

    2015-03-01

    Notch signaling largely determines intestinal epithelial cell fate. High Notch activity drives progenitors toward absorptive enterocytes by repressing secretory differentiation programs, whereas low Notch permits secretory cell assignment. Myeloid translocation gene-related 1 (MTGR1) is a transcriptional corepressor in the myeloid translocation gene/Eight-Twenty-One family. Given that Mtgr1(-/-) mice have a dramatic reduction of intestinal epithelial secretory cells, we hypothesized that MTGR1 is a key repressor of Notch signaling. In support of this, transcriptome analysis of laser capture microdissected Mtgr1(-/-) intestinal crypts revealed Notch activation, and secretory markers Mucin2, Chromogranin A, and Growth factor-independent 1 (Gfi1) were down-regulated in Mtgr1(-/-) whole intestines and Mtgr1(-/-) enteroids. We demonstrate that MTGR1 is in a complex with Suppressor of Hairless Homolog, a key Notch effector, and represses Notch-induced Hairy/Enhancer of Split 1 activity. Moreover, pharmacologic Notch inhibition using a γ-secretase inhibitor (GSI) rescued the hyperproliferative baseline phenotype in the Mtgr1(-/-) intestine and increased production of goblet and enteroendocrine lineages in Mtgr1(-/-) mice. GSI increased Paneth cell production in wild-type mice but failed to do so in Mtgr1(-/-) mice. We determined that MTGR1 can interact with GFI1, a transcriptional corepressor required for Paneth cell differentiation, and repress GFI1 targets. Overall, the data suggest that MTGR1, a transcriptional corepressor well characterized in hematopoiesis, plays a critical role in intestinal lineage allocation. © FASEB.

  2. Secretory Phospholipase A(2)-IIA and Cardiovascular Disease

    Holmes, Michael V.; Simon, Tabassome; Exeter, Holly J.; Folkersen, Lasse; Asselbergs, Folkert W.; Guardiola, Montse; Cooper, Jackie A.; Palmen, Jutta; Hubacek, Jaroslav A.; Carruthers, Kathryn F.; Horne, Benjamin D.; Brunisholz, Kimberly D.; Mega, Jessica L.; Van Iperen, Erik P. A.; Li, Mingyao; Leusink, Maarten; Trompet, Stella; Verschuren, Jeffrey J. W.; Hovingh, G. Kees; Dehghan, Abbas; Nelson, Christopher P.; Kotti, Salma; Danchin, Nicolas; Scholz, Markus; Haase, Christiane L.; Rothenbacher, Dietrich; Swerdlow, Daniel I.; Kuchenbaecker, Karoline B.; Staines-Urias, Eleonora; Goel, Anuj; van 't Hooft, Ferdinand; Gertow, Karl; de Faire, Ulf; Panayiotou, Andrie G.; Tremoli, Elena; Baldassarre, Damiano; Veglia, Fabrizio; Holdt, Lesca M.; Beutner, Frank; Gansevoort, Ron T.; Navis, Gerjan J.; Mateo Leach, Irene; Breitling, Lutz P.; Brenner, Hermann; Thiery, Joachim; Dallmeier, Dhayana; Franco-Cereceda, Anders; Boer, Jolanda M. A.; Stephens, Jeffrey W.; Hofker, Marten H.; Tedgui, Alain; Hofman, Albert; Uitterlinden, Andre G.; Adamkova, Vera; Pitha, Jan; Onland-Moret, N. Charlotte; Cramer, Maarten J.; Nathoe, Hendrik M.; Spiering, Wilko; Klungel, Olaf H.; Kumari, Meena; Whincup, Peter H.; Morrow, David A.; Braund, Peter S.; Hall, Alistair S.; Olsson, Anders G.; Doevendans, Pieter A.; Trip, Mieke D.; Tobin, Martin D.; Hamsten, Anders; Watkins, Hugh; Koenig, Wolfgang; Nicolaides, Andrew N.; Teupser, Daniel; Day, Ian N. M.; Carlquist, John F.; Gaunt, Tom R.; Ford, Ian; Sattar, Naveed; Tsimikas, Sotirios; Schwartz, Gregory G.; Lawlor, Debbie A.; Morris, Richard W.; Sandhu, Manjinder S.; Poledne, Rudolf; Maitland-van der Zee, Anke H.; Khaw, Kay-Tee; Keating, Brendan J.; van der Harst, Pim; Price, Jackie F.; Mehta, Shamir R.; Yusuf, Salim; Witteman, Jaqueline C. M.; Franco, Oscar H.; Jukema, J. Wouter; de Knijff, Peter; Tybjaerg-Hansen, Anne; Rader, Daniel J.; Farrall, Martin; Samani, Nilesh J.; Kivimaki, Mika; Fox, Keith A. A.; Humphries, Steve E.; Anderson, Jeffrey L.; Boekholdt, S. Matthijs; Palmer, Tom M.; Eriksson, Per; Pare, Guillaume; Hingorani, Aroon D.; Sabatine, Marc S.; Mallat, Ziad; Casas, Juan P.; Talmud, Philippa J.

    2013-01-01

    Objectives This study sought to investigate the role of secretory phospholipase A(2) (sPLA(2))-IIA in cardiovascular disease. Background Higher circulating levels of sPLA(2)-IIA mass or sPLA(2) enzyme activity have been associated with increased risk of cardiovascular events. However, it is not

  3. Mammary analogue secretory carcinoma: A rare salivary gland tumour

    Salivary gland malignancy is rare, with a global annual incidence of. 3 per 100 000 people.[1,2] A rare salivary gland tumour, mammary analogue secretory carcinoma (MASC), has only recently been described.[3] The few reports and studies concerning MASC have been published in several pathology journals. We report ...

  4. Dietary Sodium Restriction Decreases Insulin Secretion Without Affecting Insulin Sensitivity in Humans

    Byrne, Loretta M.; Yu, Chang; Wang, Thomas J.; Brown, Nancy J.

    2014-01-01

    Context: Interruption of the renin-angiotensin-aldosterone system prevents incident diabetes in high-risk individuals, although the mechanism remains unclear. Objective: To test the hypothesis that activation of the endogenous renin-angiotensin-aldosterone system or exogenous aldosterone impairs insulin secretion in humans. Design: We conducted a randomized, blinded crossover study of aldosterone vs vehicle and compared the effects of a low-sodium versus a high-sodium diet. Setting: Academic clinical research center. Participants: Healthy, nondiabetic, normotensive volunteers. Interventions: Infusion of exogenous aldosterone (0.7 μg/kg/h for 12.5 h) or vehicle during low or high sodium intake. Low sodium (20 mmol/d; n = 12) vs high sodium (160 mmol/d; n = 17) intake for 5–7 days. Main Outcome Measures: Change in acute insulin secretory response assessed during hyperglycemic clamps while in sodium balance during a low-sodium vs high-sodium diet during aldosterone vs vehicle. Results: A low-sodium diet increased endogenous aldosterone and plasma renin activity, and acute glucose-stimulated insulin (−16.0 ± 5.6%; P = .007) and C-peptide responses (−21.8 ± 8.4%; P = .014) were decreased, whereas the insulin sensitivity index was unchanged (−1.0 ± 10.7%; P = .98). Aldosterone infusion did not affect the acute insulin response (+1.8 ± 4.8%; P = .72) or insulin sensitivity index (+2.0 ± 8.8%; P = .78). Systolic blood pressure and serum potassium were similar during low and high sodium intake and during aldosterone infusion. Conclusions: Low dietary sodium intake reduces insulin secretion in humans, independent of insulin sensitivity. PMID:25029426

  5. Proinsulin C-peptide interferes with insulin fibril formation

    Landreh, Michael; Stukenborg, Jan-Bernd; Willander, Hanna; Söder, Olle; Johansson, Jan; Jörnvall, Hans

    2012-01-01

    Highlights: ► Insulin and C-peptide can interact under insulin fibril forming conditions. ► C-peptide is incorporated into insulin aggregates and alters aggregation lag time. ► C-peptide changes insulin fibril morphology and affects backbone accessibility. ► C-peptide may be a regulator of fibril formation by β-cell granule proteins. -- Abstract: Insulin aggregation can prevent rapid insulin uptake and cause localized amyloidosis in the treatment of type-1 diabetes. In this study, we investigated the effect of C-peptide, the 31-residue peptide cleaved from proinsulin, on insulin fibrillation at optimal conditions for fibrillation. This is at low pH and high concentration, when the fibrils formed are regular and extended. We report that C-peptide then modulates the insulin aggregation lag time and profoundly changes the fibril appearance, to rounded clumps of short fibrils, which, however, still are Thioflavine T-positive. Electrospray ionization mass spectrometry also indicates that C-peptide interacts with aggregating insulin and is incorporated into the aggregates. Hydrogen/deuterium exchange mass spectrometry further reveals reduced backbone accessibility in insulin aggregates formed in the presence of C-peptide. Combined, these effects are similar to those of C-peptide on islet amyloid polypeptide fibrillation and suggest that C-peptide has a general ability to interact with amyloidogenic proteins from pancreatic β-cell granules. Considering the concentrations, these peptide interactions should be relevant also during physiological secretion, and even so at special sites post-secretory or under insulin treatment conditions in vivo.

  6. Proinsulin C-peptide interferes with insulin fibril formation

    Landreh, Michael [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm (Sweden); Stukenborg, Jan-Bernd [Department of Women' s and Children' s Health, Astrid Lindgren Children' s Hospital, Pediatric Endocrinology Unit, Karolinska Institutet and University Hospital, S-17176 Stockholm (Sweden); Willander, Hanna [KI-Alzheimer' s Disease Research Center, NVS Department, Karolinska Institutet, S-141 86 Stockholm (Sweden); Soeder, Olle [Department of Women' s and Children' s Health, Astrid Lindgren Children' s Hospital, Pediatric Endocrinology Unit, Karolinska Institutet and University Hospital, S-17176 Stockholm (Sweden); Johansson, Jan [KI-Alzheimer' s Disease Research Center, NVS Department, Karolinska Institutet, S-141 86 Stockholm (Sweden); Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, S-751 23 Uppsala (Sweden); Joernvall, Hans, E-mail: Hans.Jornvall@ki.se [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm (Sweden)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Insulin and C-peptide can interact under insulin fibril forming conditions. Black-Right-Pointing-Pointer C-peptide is incorporated into insulin aggregates and alters aggregation lag time. Black-Right-Pointing-Pointer C-peptide changes insulin fibril morphology and affects backbone accessibility. Black-Right-Pointing-Pointer C-peptide may be a regulator of fibril formation by {beta}-cell granule proteins. -- Abstract: Insulin aggregation can prevent rapid insulin uptake and cause localized amyloidosis in the treatment of type-1 diabetes. In this study, we investigated the effect of C-peptide, the 31-residue peptide cleaved from proinsulin, on insulin fibrillation at optimal conditions for fibrillation. This is at low pH and high concentration, when the fibrils formed are regular and extended. We report that C-peptide then modulates the insulin aggregation lag time and profoundly changes the fibril appearance, to rounded clumps of short fibrils, which, however, still are Thioflavine T-positive. Electrospray ionization mass spectrometry also indicates that C-peptide interacts with aggregating insulin and is incorporated into the aggregates. Hydrogen/deuterium exchange mass spectrometry further reveals reduced backbone accessibility in insulin aggregates formed in the presence of C-peptide. Combined, these effects are similar to those of C-peptide on islet amyloid polypeptide fibrillation and suggest that C-peptide has a general ability to interact with amyloidogenic proteins from pancreatic {beta}-cell granules. Considering the concentrations, these peptide interactions should be relevant also during physiological secretion, and even so at special sites post-secretory or under insulin treatment conditions in vivo.

  7. Glucose tolerance, insulin release, and insulin binding to monocytes in kidney transplant recipients

    Briggs, W.A.; Wielechowski, K.S.; Mahajan, S.K.; Migdal, S.D.; McDonald, F.D.

    1982-01-01

    In order to evaluate glucose tolerance following renal transplantation, intravenous glucose tolerance tests (IVGTT), with evaluation of hormonal responses to the intravenous glucose load and percent specific 125 I-insulin binding to peripheral blood monocytes, were studied in eight clinically stable kidney transplant recipients. For comparison purposes, identical studies were done in eight control subjects and seven clinically stable hemodialysis patients. One transplant recipient was glucose intolerant, with fasting hyperglycemia, elevated HbA1C, and abnormal glucose decay constant. Impaired pancreatic insulin release appeared to be the major factor accounting for his glucose intolerance. The seven glucose-tolerant transplant recipients had significantly increased insulin release during IVGTT compared to control subjects, and significant correlations were found among insulin release, glucose decay constant, and fasting blood sugar in those patients. Insulin binding to monocytes was significantly greater in transplant recipients than control subjects due to an increase in insulin binding capacity per cell. A significant correlation was found between percent specific 125 I-insulin binding and steroid dose, expressed as mg/kg body weight/day, in those patients. Thus, chronic steroid administration does not cause glucose intolerance in transplant recipients who manifest steroid-associated increases in pancreatic insulin release and cellular insulin binding capacity

  8. Insulin-like factor 3 serum levels in 135 normal men and 85 men with testicular disorders

    Bay, K; Hartung, S; Ivell, R

    2005-01-01

    Insulin-like factor 3 (INSL3) serum levels were measured in 135 andrologically well-characterized normal men and 85 patients with testicular disorders to investigate how the hormone, which is a major secretory product of human Leydig cells, is related to testosterone (T), LH, and semen quality. I...

  9. Reduced insulin exocytosis in human pancreatic β-cells with gene variants linked to type 2 diabetes

    Rosengren, Anders H; Braun, Matthias; Mahdi, Taman

    2012-01-01

    The majority of genetic risk variants for type 2 diabetes (T2D) affect insulin secretion, but the mechanisms through which they influence pancreatic islet function remain largely unknown. We functionally characterized human islets to determine secretory, biophysical, and ultrastructural features ...

  10. A controlled study on serum insulin-like growth factor-I and urinary excretion of growth hormone in fibromyalgia

    Jacobsen, S; Main, K; Danneskiold-Samsøe, B

    1995-01-01

    OBJECTIVE. It has been hypothesized that secretory deficiencies of growth hormone may play a pathophysiological role in fibromyalgia (FM). Our objective was thus to evaluate the secretion of growth hormone in FM. METHODS. The 24-h urinary growth hormone excretion and serum levels of insulin...

  11. Concentrated insulins: the new basal insulins

    Lamos EM

    2016-03-01

    Full Text Available Elizabeth M Lamos,1 Lisa M Younk,2 Stephen N Davis3 1Division of Endocrinology, Diabetes and Nutrition, 2Department of Medicine, University of Maryland School of Medicine, 3Department of Medicine, University of Maryland Medical Center, Baltimore, MD, USA Introduction: Insulin therapy plays a critical role in the treatment of type 1 and type 2 diabetes mellitus. However, there is still a need to find basal insulins with 24-hour coverage and reduced risk of hypoglycemia. Additionally, with increasing obesity and insulin resistance, the ability to provide clinically necessary high doses of insulin at low volume is also needed. Areas covered: This review highlights the published reports of the pharmacokinetic (PK and glucodynamic properties of concentrated insulins: Humulin-R U500, insulin degludec U200, and insulin glargine U300, describes the clinical efficacy, risk of hypoglycemic, and metabolic changes observed, and finally, discusses observations about the complexity of introducing a new generation of concentrated insulins to the therapeutic market. Conclusion: Humulin-R U500 has a similar onset but longer duration of action compared with U100 regular insulin. Insulin glargine U300 has differential PK/pharmacodynamic effects when compared with insulin glargine U100. In noninferiority studies, glycemic control with degludec U200 and glargine U300 is similar to insulin glargine U100 and nocturnal hypoglycemia is reduced. Concentrated formulations appear to behave as separate molecular entities when compared with earlier U100 insulin analog compounds. In the review of available published data, newer concentrated basal insulins may offer an advantage in terms of reduced intraindividual variability as well as reducing the injection burden in individuals requiring high-dose and large volume insulin therapy. Understanding the PK and pharmacodynamic properties of this new generation of insulins is critical to safe dosing, dispensing, and administration

  12. Distribution Profile of Inositol 1,4,5-Trisphosphate Receptor/Ca2+ Channels in α and β Cells of Pancreas: Dominant Localization in Secretory Granules and Common Error in Identification of Secretory Granule Membranes.

    Hur, Yong Suk; Yoo, Seung Hyun

    2015-01-01

    The α and β cells of pancreatic islet release important hormones in response to intracellular Ca increases that result from Ca releases through the inositol 1,4,5-trisphoshate receptor (IP3R)/Ca channels. Yet no systematic studies on distribution of IP3R/Ca channels have been done, prompting us to investigate the distribution of all 3 IP3R isoforms. Immunogold electron microscopy was performed to determine the presence and the relative concentrations of all 3 IP3R isoforms in 2 major organelles secretory granules (SGs) and the endoplasmic reticulum of α and β cells of rat pancreas. All 3 IP3R isoforms were present in SG membranes of both cells, and the IP3R concentrations in SGs were ∼2-fold higher than those in the endoplasmic reticulum. Moreover, large halos shown in the electron microscope images of insulin-containing SGs of β cells were gap spaces that resulted from separation of granule membranes from the surrounding cytoplasm. These results strongly suggest the important roles of SGs in IP3-induced, Ca-dependent regulatory secretory pathway in pancreas. Moreover, the accurate location of SG membranes of β cells was further confirmed by the location of another integral membrane protein synaptotagmin V and of membrane phospholipid PI(4,5)P2.

  13. The effect of metformin on monocyte secretory function in simvastatin-treated patients with impaired fasting glucose.

    Krysiak, Robert; Okopien, Bogusław

    2013-01-01

    This study was designed to investigate whether metformin affects monocyte secretory function in patients with impaired fasting glucose receiving chronic statin therapy. The study included 48 patients with impaired fasting glucose treated for at least three months with simvastatin (40 mg daily). These patients were randomized to either metformin (3 g daily) or placebo, which was administered together with simvastatin for 90 days. Plasma lipids, glucose homeostasis markers, monocyte cytokine release and plasma C-reactive protein levels were determined before randomization and at the end of the treatment. Compared to placebo, metformin reduced monocyte release of tumor necrosis factor-α, interleukin-1β, interleukin-6, monocyte chemoattractant protein-1 and interleukin-8, as well as decreased plasma C-reactive protein levels, which were accompanied by an improvement in insulin sensitivity. The obtained results suggest that metformin may inhibit monocyte secretory function and reduce systemic inflammation in statin-treated patients with prediabetes. Impaired fasting glucose patients with high cardiovascular risk may receive the greatest benefits from concomitant treatment with a statin and metformin. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Novelties in secretory structures and anatomy of Rhynchosia (Fabaceae).

    De Vargas, Wanderleia; Sartori, Ângela L B; Dias, Edna S

    2015-03-01

    A comparative anatomical study was carried out on the secretory structures of leaflets from taxa belonging to the genus Rhynchosia - taxa difficult to delimit because of uncertain interspecific relations - in order to evaluate the potential diagnostic value of these anatomical traits for taxonomic assignment. A further objective was to establish consensual denomination for these secretory structures. The new anatomical features found in these taxa were sufficiently consistent to separate the species evaluated. The presence and localization of glandular-punctate structures bulbous-based trichomes, the number of layers in the palisade parenchyma and the arrangement of vascular units distinguish the taxa investigated and these characteristics can be extended to other species of Papilionoideae. The trichomes analyzed were described and classified into five types. Depicted in diagrams, photomicrographs, and by scanning electron microscopy, and listed for the first time at the genus and species levels. The information obtained served to effectively distinguish the taxa investigated among species of Papilonoideae.

  15. Analysis of Membrane Protein Topology in the Plant Secretory Pathway.

    Guo, Jinya; Miao, Yansong; Cai, Yi

    2017-01-01

    Topology of membrane proteins provides important information for the understanding of protein function and intermolecular associations. Integrate membrane proteins are generally transported from endoplasmic reticulum (ER) to Golgi and downstream compartments in the plant secretory pathway. Here, we describe a simple method to study membrane protein topology along the plant secretory pathway by transiently coexpressing a fluorescent protein (XFP)-tagged membrane protein and an ER export inhibitor protein, ARF1 (T31N), in tobacco BY-2 protoplast. By fractionation, microsome isolation, and trypsin digestion, membrane protein topology could be easily detected by either direct confocal microscopy imaging or western-blot analysis using specific XFP antibodies. A similar strategy in determining membrane protein topology could be widely adopted and applied to protein analysis in a broad range of eukaryotic systems, including yeast cells and mammalian cells.

  16. Giant renin secretory granules in beige mouse renal afferent arterioles

    Jensen, B L; Rasch, Ruth; Nyengaard, Jens Randel

    1997-01-01

    The mutant beige mouse (C57BL/6 bg) has a disease characterised by abnormally enlarged cytoplasmic granules in a variety of cells. With the purpose of establishing a suitable cellular model for studying renin secretion, the present study was undertaken to compare renin granule morphology in beige...... (average granular volume 0.681 microm3), whereas 1-2 large granules were present per cell in beige mice. The volume of afferent arteriole that contained secretory granules was lower in the beige mice. We conclude that the beige mouse synthesizes, stores and releases active renin. Renin secretory granules...... in beige mice are grossly enlarged with 1-2 granules per juxtaglomerular cell. Compared with control mice, a similar amount of total renin granule volume per afferent arteriole is contained in a smaller part of beige mouse afferent arteriole. Granular cells from beige mice could therefore be a valuable...

  17. In vivo secretory potential and the effect of combination therapy with octreotide and cabergoline in patients with clinically non-functioning pituitary adenomas

    Andersen, M; Bjerre, P; Schrøder, H D

    2001-01-01

    The secretory capacity, in vivo, of clinically non-functioning pituitary adenomas may possibly predict tumour volume reduction during intensive medical therapy. Ten patients (mean (range) 53 years (26-73)) with clinically non-functioning macroadenomas, > or = 10 mm were studied. The secretory...... capacity of the adenomas was examined using basal, NaCl and TRH-stimulated LH, FSH and alpha-subunit levels. The effect on tumour volume of 6 months' therapy with the combination of a somatostatin analogue, octreotide 200 microg x 3/day and a dopamine-D2-agonist, cabergoline 0.5 mg x 1/day was studied...... therapy in all of our patients with non-functioning pituitary adenomas....

  18. Degludec insulin: A novel basal insulin

    Kalra, Sanjay; Unnikrishnan, Ambika Gopalakrishnan; Baruah, Manash; Kalra, Bharti

    2011-01-01

    This paper reviews a novel insulin analogue, degludec, which has the potential to emerge as an ideal basal insulin. It reviews the limitations of existing basal insulin and analogues, and highlights the need for a newer molecule. The paper discusses the potential advantages of degludec, while reviewing its pharmacologic and clinical studies done so far. The paper assesses the potential role of insulin degludec and degludec plus in clinical diabetes practice.

  19. Isolation of intact sub-dermal secretory cavities from Eucalyptus

    Goodger Jason QD

    2010-09-01

    Full Text Available Abstract Background The biosynthesis of plant natural products in sub-dermal secretory cavities is poorly understood at the molecular level, largely due to the difficulty of physically isolating these structures for study. Our aim was to develop a protocol for isolating live and intact sub-dermal secretory cavities, and to do this, we used leaves from three species of Eucalyptus with cavities that are relatively large and rich in essential oils. Results Leaves were digested using a variety of commercially available enzymes. A pectinase from Aspergillus niger was found to allow isolation of intact cavities after a relatively short incubation (12 h, with no visible artifacts from digestion and no loss of cellular integrity or cavity contents. Several measurements indicated the potential of the isolated cavities for further functional studies. First, the cavities were found to consume oxygen at a rate that is comparable to that estimated from leaf respiratory rates. Second, mRNA was extracted from cavities, and it was used to amplify a cDNA fragment with high similarity to that of a monoterpene synthase. Third, the contents of the cavity lumen were extracted, showing an unexpectedly low abundance of volatile essential oils and a sizeable amount of non-volatile material, which is contrary to the widely accepted role of secretory cavities as predominantly essential oil repositories. Conclusions The protocol described herein is likely to be adaptable to a range of Eucalyptus species with sub-dermal secretory cavities, and should find wide application in studies of the developmental and functional biology of these structures, and the biosynthesis of the plant natural products they contain.

  20. Secretory processes involved in the formation of milk

    Knutsson, P.G.

    1976-01-01

    Current knowledge on milk formation is reviewed. Emphasis is given to sites of formation of protein, fat and lactose, and transfer of these compounds into the alveolar lumen. Further, the formation of the water phase of milk is thoroughly discussed, and evidence presented that milk formation includes both secretory and re-absorptive processes as well as diffusion. A short presentation of colostrum formation is included. Neither biochemical processes involved in synthesis of organic compounds nor mammary gland endocrinology are discussed. (author)

  1. Delineation of glutamate pathways and secretory responses in pancreatic islets with ß-cell-specific abrogation of the glutamate dehydrogenase

    Vetterli, Laurene; Carobbio, Stefania; Pournourmohammadi, Shirin

    2012-01-01

    isolated from βGlud1(-/-) mice exhibited half of the response measured in control islets. The amplifying pathway, tested at stimulatory glucose concentrations in the presence of KCl and diazoxide, was markedly inhibited in βGlud1(-/-) islets. On glucose stimulation, net synthesis of glutamate from α......-ketoglutarate was impaired in GDH-deficient islets. Accordingly, glucose-induced elevation of glutamate levels observed in control islets was absent in βGlud1(-/-) islets. Parallel biochemical pathways, namely alanine and aspartate aminotransferases, could not compensate for the lack of GDH. However, the secretory response...... to glucose was fully restored by the provision of cellular glutamate when βGlud1(-/-) islets were exposed to dimethyl glutamate. This shows that permissive levels of glutamate are required for the full development of glucose-stimulated insulin secretion and that GDH plays an indispensable role...

  2. Synaptotagmin-7 phosphorylation mediates GLP-1-dependent potentiation of insulin secretion from β-cells

    Wu, Bingbing; Wei, Shunhui; Petersen, Natalia

    2015-01-01

    Glucose stimulates insulin secretion from β-cells by increasing intracellular Ca(2+). Ca(2+) then binds to synaptotagmin-7 as a major Ca(2+) sensor for exocytosis, triggering secretory granule fusion and insulin secretion. In type-2 diabetes, insulin secretion is impaired; this impairment...... is ameliorated by glucagon-like peptide-1 (GLP-1) or by GLP-1 receptor agonists, which improve glucose homeostasis. However, the mechanism by which GLP-1 receptor agonists boost insulin secretion remains unclear. Here, we report that GLP-1 stimulates protein kinase A (PKA)-dependent phosphorylation...... of synaptotagmin-7 at serine-103, which enhances glucose- and Ca(2+)-stimulated insulin secretion and accounts for the improvement of glucose homeostasis by GLP-1. A phospho-mimetic synaptotagmin-7 mutant enhances Ca(2+)-triggered exocytosis, whereas a phospho-inactive synaptotagmin-7 mutant disrupts GLP-1...

  3. Pancreatic β-Cell Electrical Activity and Insulin Secretion: of Mice and Men

    Rorsman, Patrik; Ashcroft, Frances M

    2018-01-01

    The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycaemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM. PMID:29212789

  4. A rapid radioimmunoassay for insulin suitable for testing pancreatic tissue prior to transplantation

    Besch, W.; Kohnert, K.-D.; Hahn, H.-J.; Ziegler, M.; Lorenz, D.

    1984-01-01

    One way of diabetes mellitus treatment is the transplantation of insulin-producing tissue. As islet or pancreas transplantation has made progress, testing of the tissue for its vitality, insulin content and insulin secretory response prior to transplantation became necessary. Apart from problems of rejection of allografted tissue, improvement of the patients metabolic control partly depends on the insulin content of the tissue transplanted. It was the aim of the present work to establish a radioimmunoassay which ensures rapid determination of immunoreactive insulin concentrations (IRI) either intracellularly-stored or released upon stimulation of human pancreas or islet with glucose, and to demonstrate the useful application of this assay for the assessment of transplantable tissue. (Auth.)

  5. BPIFB6 Regulates Secretory Pathway Trafficking and Enterovirus Replication.

    Morosky, Stefanie; Lennemann, Nicholas J; Coyne, Carolyn B

    2016-05-15

    Bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 3 (BPIFB3) is an endoplasmic reticulum (ER)-localized host factor that negatively regulates coxsackievirus B (CVB) replication through its control of the autophagic pathway. Here, we show that another member of the BPIFB family, BPIFB6, functions as a positive regulator of CVB, and other enterovirus, replication by controlling secretory pathway trafficking and Golgi complex morphology. We show that similar to BPIFB3, BPIFB6 localizes exclusively to the ER, where it associates with other members of the BPIFB family. However, in contrast to our findings that RNA interference (RNAi)-mediated silencing of BPIFB3 greatly enhances CVB replication, we show that silencing of BPIFB6 expression dramatically suppresses enterovirus replication in a pan-viral manner. Mechanistically, we show that loss of BPIFB6 expression induces pronounced alterations in retrograde and anterograde trafficking, which correlate with dramatic fragmentation of the Golgi complex. Taken together, these data implicate BPIFB6 as a key regulator of secretory pathway trafficking and viral replication and suggest that members of the BPIFB family participate in diverse host cell functions to regulate virus infections. Enterovirus infections are associated with a number of severe pathologies, such as aseptic meningitis, dilated cardiomyopathy, type I diabetes, paralysis, and even death. These viruses, which include coxsackievirus B (CVB), poliovirus (PV), and enterovirus 71 (EV71), co-opt the host cell secretory pathway, which controls the transport of proteins from the endoplasmic reticulum to the Golgi complex, to facilitate their replication. Here we report on the identification of a novel regulator of the secretory pathway, bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 6 (BPIFB6), whose expression is required for enterovirus replication. We show that loss of BPIFB6 expression

  6. BPIFB6 Regulates Secretory Pathway Trafficking and Enterovirus Replication

    Morosky, Stefanie; Lennemann, Nicholas J.

    2016-01-01

    ABSTRACT Bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 3 (BPIFB3) is an endoplasmic reticulum (ER)-localized host factor that negatively regulates coxsackievirus B (CVB) replication through its control of the autophagic pathway. Here, we show that another member of the BPIFB family, BPIFB6, functions as a positive regulator of CVB, and other enterovirus, replication by controlling secretory pathway trafficking and Golgi complex morphology. We show that similar to BPIFB3, BPIFB6 localizes exclusively to the ER, where it associates with other members of the BPIFB family. However, in contrast to our findings that RNA interference (RNAi)-mediated silencing of BPIFB3 greatly enhances CVB replication, we show that silencing of BPIFB6 expression dramatically suppresses enterovirus replication in a pan-viral manner. Mechanistically, we show that loss of BPIFB6 expression induces pronounced alterations in retrograde and anterograde trafficking, which correlate with dramatic fragmentation of the Golgi complex. Taken together, these data implicate BPIFB6 as a key regulator of secretory pathway trafficking and viral replication and suggest that members of the BPIFB family participate in diverse host cell functions to regulate virus infections. IMPORTANCE Enterovirus infections are associated with a number of severe pathologies, such as aseptic meningitis, dilated cardiomyopathy, type I diabetes, paralysis, and even death. These viruses, which include coxsackievirus B (CVB), poliovirus (PV), and enterovirus 71 (EV71), co-opt the host cell secretory pathway, which controls the transport of proteins from the endoplasmic reticulum to the Golgi complex, to facilitate their replication. Here we report on the identification of a novel regulator of the secretory pathway, bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 6 (BPIFB6), whose expression is required for enterovirus replication. We show that loss of

  7. Opiate-prostaglandin interactions in the regulation of insulin secretion from rat islets of Langerhans in vitro

    Green, I.C.; Tadayyon, M.

    1988-01-01

    The inadequate insulin secretory response to glucose stimulation in non-insulin dependent diabetes has been attributed to many factors including high PGE 2 levels blunting the secretory response, and to the existence of inhibitory opiate activity in vivo. The purpose of the present work was to see if there was a connection between these two independent theories. Radioimmunoassayable PGE 2 in islets of Langerhans was found to be proportional to islet number and protein content and was typically 4 to 5pg/μg islet protein. Indomethacin sodium salicylate and chlorpropamide all lowered islet PGE 2 levels and stimulated insulin release in vitro. Dynorphin stimulated insulin release at a concentration of 6 x 10 -9 M, while lowering islet PGE 2 . Conversely, at a higher concentration, dynorphin had no stimulatory effect on insulin secretion and did not lower PGE 2 levels in islets or in the incubation media. The stimulatory effects of dynorphin and sodium salicylate on insulin secretion were blocked by exogenous PGE 2 . PGE 2 at a lower concentration did not exert any inhibitory effect on dynorphin- or sodium salicylate-induced insulin release. This concentration of exogenous PGE 2 stimulated insulin release in the presence of 6mM glucose

  8. Neurotrophin Signaling Is Required for Glucose-Induced Insulin Secretion.

    Houtz, Jessica; Borden, Philip; Ceasrine, Alexis; Minichiello, Liliana; Kuruvilla, Rejji

    2016-11-07

    Insulin secretion by pancreatic islet β cells is critical for glucose homeostasis, and a blunted β cell secretory response is an early deficit in type 2 diabetes. Here, we uncover a regulatory mechanism by which glucose recruits vascular-derived neurotrophins to control insulin secretion. Nerve growth factor (NGF), a classical trophic factor for nerve cells, is expressed in pancreatic vasculature while its TrkA receptor is localized to islet β cells. High glucose rapidly enhances NGF secretion and increases TrkA phosphorylation in mouse and human islets. Tissue-specific deletion of NGF or TrkA, or acute disruption of TrkA signaling, impairs glucose tolerance and insulin secretion in mice. We show that internalized TrkA receptors promote insulin granule exocytosis via F-actin reorganization. Furthermore, NGF treatment augments glucose-induced insulin secretion in human islets. These findings reveal a non-neuronal role for neurotrophins and identify a new regulatory pathway in insulin secretion that can be targeted to ameliorate β cell dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Insulin and the Brain

    Grosu Cristina

    2017-12-01

    Full Text Available The brain represents an important site for the action of insulin. Besides the traditionally known importance in glucoregulation, insulin has significant neurotrophic properties and influences the brain activity: insulin influences eating behavior, regulates the storage of energy and several aspects concerning memory and knowledge. Insulin resistance and hyperinsulinism could be associated with brain aging, vascular and metabolic pathologies. Elucidating the pathways and metabolism of brain insulin could have a major impact on future targeted therapies.

  10. Clinical significance of changes of serum true insulin and proinsulin levels in relations of patients with type 2 diabetes mellitus

    Tian Xiaoping; Huang Huijian; Huang Haibo; Wu Yan; He Haoming

    2004-01-01

    Objective: To explore the degree of insulin resistance and β-cell secretory function impairment in close (1st degree) relations of patients with type 2 diabetes (DMII). Methods: Serum true insulin (TI), pro-insulin (PI), immunoreactive insulin (IRI) levels at fasting and after oral 75g glucose loading were determined in: 1) patients with DM 2, n=65 2)relations of DM 2 patients with impaired glucose tolerance (IGT), n=34 3) relations of DM 2 patients with normal glucose tolerance (NGT), n=66 and 4) controls, n=48. HOMA-IR and HOMA-β cell secretory indices were calculated from the data. Results: Fasting serum PI levels were significantly higher in DM 2 patients, relations with IGT and NGT than those in the controls (t=2.38, t=2.16, t=1.95, P 1 C percentages were significantly higher in DM 2 patients and IGT, NGT groups than those in controls (t=3.67, t=2.45, t=1.97, P 1 C percentage, fasting TI and IRI levels. Conclusion: Insulin resistance was already obvious in those relations of DM 2 patients with normal glucose tolerance and β-cell secretory function impairment was also present. Early intervention in these subjects might be beneficial. (authors)

  11. Functional Evaluation of TSH Secretory Reserve Capacity in Hypothalamo pituitary Disorders

    Kim, Sun Yong; Choi, Kyoo Ok; Park, Chang Yun; Huh, Kab Bum; Ryu, Kyung Ja [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1979-03-15

    The TRH stimulation test was known as a highly diagnostic method in hypothalamo pituitary disorders. To evaluate the location and the extension of the lesion, we estimated TSH response to TRH test in 27 patients. Correlation between volume of sella and TSH response was also studied. The results obtained were 25 follows: 1) In Sheehan's syndrome, TSH response after TRH test were not observed in all of 12 patients. 2) All 2 acromegaly patients showed normal TSH response. 3) In 4 cases of chromophobe adenoma, 2 cases showed no TSH response. In 2 responded cases, one patient whose tumor mass extended to suprasella region was hypothyroid state. 4) In craniopharyingioma 3 cases, the tumor which extended to intrasella showed hypothyroid and no TSH response. 5) Correlation between volume of sella and TSH response were valuable in 2 cases, but no diagnostic significance. 6) In diabetes inspidus, TSH response were all absent. 7) In primary amenorrhea, TSH response observed in 1 case, which conformed with isolated FSH deficiency.

  12. Functional Evaluation of TSH Secretory Reserve Capacity in Hypothalamo pituitary Disorders

    Kim, Sun Yong; Choi, Kyoo Ok; Park, Chang Yun; Huh, Kab Bum; Ryu, Kyung Ja [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1979-03-15

    The TRH stimulation test was known as a highly diagnostic method in hypothalamo pituitary disorders. To evaluate the location and the extension of the lesion, we estimated TSH response to TRH test in 27 patients. Correlation between volume of sella and TSH response was also studied. The results obtained were 25 follows: 1) In Sheehan's syndrome, TSH response after TRH test were not observed in all of 12 patients. 2) All 2 acromegaly patients showed normal TSH response. 3) In 4 cases of chromophobe adenoma, 2 cases showed no TSH response. In 2 responded cases, one patient whose tumor mass extended to suprasella region was hypothyroid state. 4) In craniopharyingioma 3 cases, the tumor which extended to intrasella showed hypothyroid and no TSH response. 5) Correlation between volume of sella and TSH response were valuable in 2 cases, but no diagnostic significance. 6) In diabetes inspidus, TSH response were all absent. 7) In primary amenorrhea, TSH response observed in 1 case, which conformed with isolated FSH deficiency.

  13. Functional Evaluation of TSH Secretory Reserve Capacity in Hypothalamo pituitary Disorders

    Kim, Sun Yong; Choi, Kyoo Ok; Park, Chang Yun; Huh, Kab Bum; Ryu, Kyung Ja

    1979-01-01

    The TRH stimulation test was known as a highly diagnostic method in hypothalamo pituitary disorders. To evaluate the location and the extension of the lesion, we estimated TSH response to TRH test in 27 patients. Correlation between volume of sella and TSH response was also studied. The results obtained were 25 follows: 1) In Sheehan's syndrome, TSH response after TRH test were not observed in all of 12 patients. 2) All 2 acromegaly patients showed normal TSH response. 3) In 4 cases of chromophobe adenoma, 2 cases showed no TSH response. In 2 responded cases, one patient whose tumor mass extended to suprasella region was hypothyroid state. 4) In craniopharyingioma 3 cases, the tumor which extended to intrasella showed hypothyroid and no TSH response. 5) Correlation between volume of sella and TSH response were valuable in 2 cases, but no diagnostic significance. 6) In diabetes inspidus, TSH response were all absent. 7) In primary amenorrhea, TSH response observed in 1 case, which conformed with isolated FSH deficiency.

  14. An immunochemical method for the quantitation of insulin antibodies

    Reeves, W.G.; Kelly, U.

    1980-01-01

    A 125 I-labelled insulin binding assay is described in which IgG antibody is precipitated by the addition of an optimal concentration of second antibody. Other features include the removal of unlabelled insulin from test sera prior to assay and the use of 22 Na as a volume marker. This approach overcomes problems associated with previous assays for insulin antibodies. Clear differences are seen in the IgG insulin binding capacity (IBC) of sera from patients with insulin resistance and injection site lipo-atrophy when compared with insulin-treated diabetics who lack such complications. The precision and flexibility of this technique make it particularly suitable for studies of the immune response to different species and forms of insulin. (Auth.)

  15. Inkjet printing of insulin microneedles for transdermal delivery.

    Ross, Steven; Scoutaris, Nicolaos; Lamprou, Dimitrios; Mallinson, David; Douroumis, Dennis

    2015-08-01

    Inkjet printing technology was used to apply insulin polymeric layers on metal microneedles for transdermal delivery. A range of various polymers such as gelatin (GLN), polyvinyl caprolactame-polyvinyl acetate-polyethylene glycol (SOL), poly(2-ethyl-2-oxazoline) (POX) and trehalose (THL) were assessed for their capacity to form thin uniform and homogeneous layers that preserve insulin intact. Atomic force microscopy (AFM) showed homogeneous insulin-polymer layers without any phase separation while SOL demonstrated the best performance. Circular discroism (CD) analysis of rehydrated films showed that insulin's alpha helices and β-sheet were well preserved for THL and SOL. In contrast, GLN and POX insulin layers revealed small band shifts indicating possible conformational changes. Insulin release in Franz diffusion cells from MNs inserted into porcine skin showed rapid release rates for POX and GLN within the first 20 min. Inkjet printing was proved an effective approach for transdermal delivery of insulin in solid state.

  16. Secretory immunity with special reference to the oral cavity

    Per Brandtzaeg

    2013-03-01

    Full Text Available The two principal antibody classes present in saliva are secretory IgA (SIgA and IgG; the former is produced as dimeric IgA by local plasma cells (PCs in the stroma of salivary glands and is transported through secretory epithelia by the polymeric Ig receptor (pIgR, also named membrane secretory component (SC. Most IgG in saliva is derived from the blood circulation by passive leakage mainly via gingival crevicular epithelium, although some may be locally produced in the gingiva or salivary glands. Gut-associated lymphoid tissue (GALT and nasopharynx-associated lymphoid tissue (NALT do not contribute equally to the pool of memory/effector B cells differentiating to mucosal PCs throughout the body. Thus, enteric immunostimulation may not be the best way to activate the production of salivary IgA antibodies although the level of specific SIgA in saliva may still reflect an intestinal immune response after enteric immunization. It remains unknown whether the IgA response in submandibular/sublingual glands is better related to B-cell induction in GALT than the parotid response. Such disparity is suggested by the levels of IgA in submandibular secretions of AIDS patients, paralleling their highly upregulated intestinal IgA system, while the parotid IgA level is decreased. Parotid SIgA could more consistently be linked to immune induction in palatine tonsils/adenoids (human NALT and cervical lymph nodes, as supported by the homing molecule profile observed after immune induction at these sites. Several other variables influence the levels of antibodies in salivary secretions. These include difficulties with reproducibility and standardization of immunoassays, the impact of flow rate, acute or chronic stress, protein loss during sample handling, and uncontrolled admixture of serum-derived IgG and monomeric IgA. Despite these problems, saliva is an easily accessible biological fluid with interesting scientific and clinical potentials.

  17. Amelogenins as potential buffers during secretory-stage amelogenesis.

    Guo, J; Lyaruu, D M; Takano, Y; Gibson, C W; DenBesten, P K; Bronckers, A L J J

    2015-03-01

    Amelogenins are the most abundant protein species in forming dental enamel, taken to regulate crystal shape and crystal growth. Unprotonated amelogenins can bind protons, suggesting that amelogenins could regulate the pH in enamel in situ. We hypothesized that without amelogenins the enamel would acidify unless ameloblasts were buffered by alternative ways. To investigate this, we measured the mineral and chloride content in incisor enamel of amelogenin-knockout (AmelX(-/-)) mice and determined the pH of enamel by staining with methyl-red. Ameloblasts were immunostained for anion exchanger-2 (Ae2), a transmembrane pH regulator sensitive for acid that secretes bicarbonate in exchange for chloride. The enamel of AmelX(-/-) mice was 10-fold thinner, mineralized in the secretory stage 1.8-fold more than wild-type enamel and containing less chloride (suggesting more bicarbonate secretion). Enamel of AmelX(-/-) mice stained with methyl-red contained no acidic bands in the maturation stage as seen in wild-type enamel. Secretory ameloblasts of AmelX(-/-) mice, but not wild-type mice, were immunopositive for Ae2, and stained more intensely in the maturation stage compared with wild-type mice. Exposure of AmelX(-/-) mice to fluoride enhanced the mineral content in the secretory stage, lowered chloride, and intensified Ae2 immunostaining in the enamel organ in comparison with non-fluorotic mutant teeth. The results suggest that unprotonated amelogenins may regulate the pH of forming enamel in situ. Without amelogenins, Ae2 could compensate for the pH drop associated with crystal formation. © International & American Associations for Dental Research 2014.

  18. Alteration in insulin action

    Tanti, J F; Gual, P; Grémeaux, T

    2004-01-01

    Insulin resistance, when combined with impaired insulin secretion, contributes to the development of type 2 diabetes. Insulin resistance is characterised by a decrease in insulin effect on glucose transport in muscle and adipose tIssue. Tyrosine phosphorylation of insulin receptor substrate 1 (IRS......-1) and its binding to phosphatidylinositol 3-kinase (PI 3-kinase) are critical events in the insulin signalling cascade leading to insulin-stimulated glucose transport. Modification of IRS-1 by serine phosphorylation could be one of the mechanisms leading to a decrease in IRS-1 tyrosine...... to phosphorylate these serine residues have been identified. These exciting results suggest that serine phosphorylation of IRS-1 is a possible hallmark of insulin resistance in biologically insulin responsive cells or tIssues. Identifying the pathways by which "diabetogenic" factors activate IRS-1 kinases...

  19. Primary secretory otitis media in Cavalier King Charles spaniels.

    Cole, Lynette K

    2012-11-01

    Primary secretory otitis media (PSOM) is a disease that has been described in the Cavalier King Charles spaniel (CKCS). A large, bulging pars flaccida identified on otoscopic examination confirms the diagnosis. However, in many CKCS with PSOM the pars flaccida is flat, and radiographic imaging is needed to confirm the diagnosis. Current treatment for PSOM includes performing a myringotomy into the caudal-ventral quadrant of the pars tensa with subsequent flushing of the mucus out of the bulla using a video otoscope. Repeat myringotomies and flushing of the middle ear are necessary to keep the middle ear free of mucus. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Genome-scale modeling of the protein secretory machinery in yeast

    Feizi, Amir; Österlund, Tobias; Petranovic, Dina

    2013-01-01

    The protein secretory machinery in Eukarya is involved in post-translational modification (PTMs) and sorting of the secretory and many transmembrane proteins. While the secretory machinery has been well-studied using classic reductionist approaches, a holistic view of its complex nature is lacking....... Here, we present the first genome-scale model for the yeast secretory machinery which captures the knowledge generated through more than 50 years of research. The model is based on the concept of a Protein Specific Information Matrix (PSIM: characterized by seven PTMs features). An algorithm...

  1. Ghrelin differentially affects hepatic and peripheral insulin sensitivity in mice

    Heijboer, A. C.; van den Hoek, A. M.; Parlevliet, E. T.; Havekes, L. M.; Romijn, J. A.; Pijl, H.; Corssmit, E. P. M.

    2006-01-01

    This study was conducted to evaluate the effects of ghrelin on insulin's capacity to suppress endogenous glucose production and promote glucose disposal in mice. To establish whether the growth hormone secretagogue (GHS) receptor can mediate the putative effect of ghrelin on the action of insulin,

  2. Intensive insulin therapy improves insulin sensitivity and mitochondrial function in severely burned children.

    Fram, Ricki Y; Cree, Melanie G; Wolfe, Robert R; Mlcak, Ronald P; Qian, Ting; Chinkes, David L; Herndon, David N

    2010-06-01

    To institute intensive insulin therapy protocol in an acute pediatric burn unit and study the mechanisms underlying its benefits. Prospective, randomized study. An acute pediatric burn unit in a tertiary teaching hospital. Children, 4-18 yrs old, with total body surface area burned > or =40% and who arrived within 1 wk after injury were enrolled in the study. Patients were randomized to one of two groups. Intensive insulin therapy maintained blood glucose levels between 80 and 110 mg/dL. Conventional insulin therapy maintained blood glucose patients were included in the data analysis consisting of resting energy expenditure, whole body and liver insulin sensitivity, and skeletal muscle mitochondrial function. Studies were performed at 7 days postburn (pretreatment) and at 21 days postburn (posttreatment). Resting energy expenditure significantly increased posttreatment (1476 +/- 124 to 1925 +/- 291 kcal/m(2) x day; p = .02) in conventional insulin therapy as compared with a decline in intensive insulin therapy. Glucose infusion rate was identical between groups before treatment (6.0 +/- 0.8 conventional insulin therapy vs. 6.8 +/- 0.9 mg/kg x min intensive insulin therapy; p = .5). Intensive insulin therapy displayed a significantly higher glucose clamp infusion rate posttreatment (9.1 +/- 1.3 intensive insulin therapy versus 4.8 +/- 0.6 mg/kg x min conventional insulin therapy, p = .005). Suppression of hepatic glucose release was significantly greater in the intensive insulin therapy after treatment compared with conventional insulin therapy (5.0 +/- 0.9 vs. 2.5 +/- 0.6 mg/kg x min; intensive insulin therapy vs. conventional insulin therapy; p = .03). States 3 and 4 mitochondrial oxidation of palmitate significantly improved in intensive insulin therapy (0.9 +/- 0.1 to 1.7 +/- 0.1 microm O(2)/CS/mg protein/min for state 3, p = .004; and 0.7 +/- 0.1 to 1.3 +/- 0.1 microm O(2)/CS/mg protein/min for state 4, p protocol improves insulin sensitivity and mitochondrial

  3. Reciprocal links between metabolic and ionic events in islet cells. Their relevance to the rhythmics of insulin release.

    Malaisse, W J

    1998-02-01

    The notion of reciprocal links between metabolic and ionic events in islet cells and the rhythmics of insulin release is based on (i) the rhythmic pattern of hormonal release from isolated perfused rat pancreas, which supports the concept of an intrapancreatic pacemaker; (ii) the assumption that this phasic pattern is due to the integration of secretory activity in distinct functional units, e.g. distinct islets; and (iii) the fact that reciprocal coupling between metabolic and ionic events is operative in the secretory sequence.

  4. Insulin binding to individual rat skeletal muscles

    Koerker, D.J.; Sweet, I.R.; Baskin, D.G.

    1990-01-01

    Studies of insulin binding to skeletal muscle, performed using sarcolemmal membrane preparations or whole muscle incubations of mixed muscle or typical red (soleus, psoas) or white [extensor digitorum longus (EDL), gastrocnemius] muscle, have suggested that red muscle binds more insulin than white muscle. We have evaluated this hypothesis using cryostat sections of unfixed tissue to measure insulin binding in a broad range of skeletal muscles; many were of similar fiber-type profiles. Insulin binding per square millimeter of skeletal muscle slice was measured by autoradiography and computer-assisted densitometry. We found a 4.5-fold range in specific insulin tracer binding, with heart and predominantly slow-twitch oxidative muscles (SO) at the high end and the predominantly fast-twitch glycolytic (FG) muscles at the low end of the range. This pattern reflects insulin sensitivity. Evaluation of displacement curves for insulin binding yielded linear Scatchard plots. The dissociation constants varied over a ninefold range (0.26-2.06 nM). Binding capacity varied from 12.2 to 82.7 fmol/mm2. Neither binding parameter was correlated with fiber type or insulin sensitivity; e.g., among three muscles of similar fiber-type profile, the EDL had high numbers of low-affinity binding sites, whereas the quadriceps had low numbers of high-affinity sites. In summary, considerable heterogeneity in insulin binding was found among hindlimb muscles of the rat, which can be attributed to heterogeneity in binding affinities and the numbers of binding sites. It can be concluded that a given fiber type is not uniquely associated with a set of insulin binding parameters that result in high or low binding

  5. Molecular phenotyping of multiple mouse strains under metabolic challenge uncovers a role for Elovl2 in glucose-induced insulin secretion

    Céline Cruciani-Guglielmacci

    2017-04-01

    Conclusion: Our results suggest a role for Elovl2 in ensuring normal insulin secretory responses to glucose. Moreover, the large comprehensive dataset and integrative network-based approach provides a new resource to dissect the molecular etiology of β cell failure under metabolic stress.

  6. Optimization of Pathogenetic Treatment of Secretory Diarrhea in Infants

    O.K. Koloskova

    2014-02-01

    Full Text Available The aim of the research was to access clinical efficacy of oral rehydration therapy using III generation solutions in the treatment of secretory diarrhea in infants. To achieve this aim, on the basis of infectious box unit (enteric infections of regional clinical hospital (Chernivtsi we examined 116 infants, randomly selected, with acute gastroenteritis, who admitted to the hospital with signs of exycosis due to secretory diarrhea. Among examined patients, 73 (67.5 % children with the purpose of oral rehydration therapy received rehydration solutions, and 35 (32.4 % patients received other rehydration solutions. Monitoring of the dynamics of patients’ state enabled to state that, when we used III generation mixture as a main component of oral rehydration therapy, rate of positive dynamics in terms of clinical status of patients was significantly faster, in particular, body temperature, frequency and nature of bowel movements normalized significantly earlier, vomiting disappeared. In children treated with rehydration solutions, compared with patients receiving other rehydration solutions, odds ratio to confine only oral rehydration was 3.7 (95% CI 0.4–38.9 with an absolute risk to avoid the need for infusion therapy — 11 %.

  7. Post-secretory fate of host defence components in mucus.

    Salathe, Matthias; Forteza, Rosanna; Conner, Gregory E

    2002-01-01

    Airway mucus is a complex mixture of secretory products that provide a multifaceted defence against infection. Among many antimicrobial substances, mucus contains a peroxidase identical to milk lactoperoxidase (LPO) that is produced by goblet cells and submucosal glands. Airway secretions contain the substrates for LPO, namely thiocyanate and hydrogen peroxide, at concentrations sufficient for production of the biocidal compound hypothiocyanite, a fact confirmed by us in vitro. In vivo, inhibition of airway LPO in sheep significantly inhibits bacterial clearance, suggesting that the LPO system is a major contributor to host defences. Since secretory products including LPO are believed to be steadily removed by mucociliary clearance, their amount and availability on the surface is thought to be controlled solely by secretion. In contrast to this paradigm, new data suggest that LPO and other substances are retained at the ciliary border of the airway epithelium by binding to surface-associated hyaluronan, thereby providing an apical, fully active enzyme pool. Thus, hyaluronan, secreted from submucosal gland cells, plays a previously unrecognized pivotal role in mucosal host defence by retaining LPO and possibly other substances important for first line host defence at the apical surface 'ready for use' and protected from ciliary clearance.

  8. Secretory structures of Ipomoea asarifolia: anatomy and histochemistry

    Fabiano M. Martins

    2012-02-01

    Full Text Available Ipomoea asarifolia (Desr. Roem. & Schult., Convolvulaceae, is a weed that infests agricultural areas and is toxic to cattle. In spite of its toxicity, the leaves of this plant are used in traditional remedies in the state of Bahia, Brazil. The present work describes the leaf anatomy of I. asarifolia and characterizes the exudates of its secretory structures. The leaves have a unistratified epidermis composed of ordinary cells with straight to slightly sinuous anticlinal walls and thin cuticles. Paracytic stomata are found on both surfaces of the leaves at the same level as the ordinary epidermal cells. Trichomes producing polysaccharide secretions occur on the petiole and leaf blade and are considered colleters. The mesophyll is dorsiventral and the vascular bundle of the central vein is bicollateral. Two opposed nectaries occur on the petiole near the leaf blade. Each nectary is composed of a small canal with internal ramifications and numerous secretory trichomes. The laticiferous glands are articulated, not anastomosed, and are composed of large diameter cells with thin cell walls. The secretions of the laticiferous glands are lipidic.

  9. Identification of Secretory Odontoblasts Using DMP1-GFP Transgenic Mice

    Balic, Anamaria; Mina, Mina

    2011-01-01

    Terminal differentiation of odontoblasts from dental papilla is a long process involving several intermediate steps and changes in the transcriptional profile and expression of proteins secreted by cells in the odontoblast lineage. Transgenic mouse lines in which GFP expression is under the control of tissue-and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stages of differentiation along a lineage. Our previous studies showed utilization of pOBCol3.6GFP and pOBCol2.3GFP animals for identification of odontoblasts at early and late stages of polarization respectively. In the present study we used the DMP1-GFP transgenic animal as an experimental model to examine its expression during the differentiation of odontoblasts from progenitor cells in vivo and in vitro. Our observations showed that DMP1-GFP transgene is first activated in secretory/functional odontoblasts engaged in secretion of predentin and then transiently expressed at high levels in newly differentiated odontoblasts. Expression of DMP1-GFP was down-regulated in highly differentiated odontoblasts. The temporal and spatial pattern of expression of DMP1-GFP transgene closely mimics the expression of endogenous DMP1. This transgenic animal will facilitate studies of gene expression and biological functions in secretory/functional odontoblasts. PMID:21172466

  10. Decreased serum betatrophin levels correlate with improved fasting plasma glucose and insulin secretion capacity after Roux-en-Y gastric bypass in obese Chinese patients with type 2 diabetes: a 1-year follow-up.

    Guo, Kaifeng; Yu, Haoyong; Lu, Junxi; Bao, Yuqian; Chen, Haibing; Jia, Weiping

    2016-08-01

    There is increasing evidence that serum betatrophin levels, a hormone derived from adipose tissue and liver, are elevated in type 2 diabetes (T2D). To investigate the relationships among betatrophin and metabolic control, insulin resistance, and pancreatic β-cell function in obese Chinese patients with T2D who underwent Roux-en-Y gastric bypass (RYGB). University hospital, China. This 1-year follow-up study included 34 obese individuals with T2D (18 males, 16 females) who underwent RYGB in our hospital. Anthropometric results, glucose levels, lipid profiles, and serum betatrophin levels were determined before and 1 year after RYGB. The serum betatrophin level decreased significantly after RYGB (72.0 ng/mL [33.4-180.9] versus 35.7 ng/mL [14.8-103.3]); Pfasting plasma glucose and negatively correlated with the changes in the 2-hour C-peptide/fasting C-peptide and homeostasis model of assessment of β-cell function (Pfasting plasma glucose (β = .586, Pfasting C-peptide (β = -.309, P = .021). Circulating betatrophin might be involved in the regulation of glucose control and insulin secretion in obese Chinese with T2D soon after RYGB. Copyright © 2016 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  11. Giving an insulin injection

    ... hand. The bubbles will float to the top. Push the bubbles back into the insulin bottle, then pull back to ... hand. The bubbles will float to the top. Push the bubbles back into the insulin bottle, then pull back to ...

  12. Insulin Resistance and Prediabetes

    ... Your Baby is Born Monogenic Diabetes Insulin Resistance & Prediabetes Insulin resistance and prediabetes occur when your body ... will stay in the healthy range. What is prediabetes? Prediabetes means your blood glucose levels are higher ...

  13. Classifying insulin regimens

    Neu, A; Lange, K; Barrett, T

    2015-01-01

    Modern insulin regimens for the treatment of type 1 diabetes are highly individualized. The concept of an individually tailored medicine accounts for a broad variety of different insulin regimens applied. Despite clear recommendations for insulin management in children and adolescents with type 1...

  14. Glycosphingolipids and insulin resistance

    Langeveld, Mirjam; Aerts, Johannes M. F. G.

    2009-01-01

    Obesity is associated with an increased risk for insulin resistance, a state characterized by impaired responsiveness of liver, muscle and adipose tissue to insulin. One class of lipids involved in the development of insulin resistance are the (glyco)sphingolipids. Ceramide, the most simple

  15. Increased biogenesis of glucagon-containing secretory granules and glucagon secretion in BIG3-knockout mice

    Hongyu Li

    2015-03-01

    Conclusions: Together with our previous studies, the current data reveal a conserved role for BIG3 in regulating alpha- and beta-cell functions. We propose that BIG3 negatively regulates hormone production at the secretory granule biogenesis stage and that such regulatory mechanism may be used in secretory pathways of other endocrine cells.

  16. Lactadherin inhibits secretory phospholipase A2 activity on pre-apoptotic leukemia cells

    Nyegaard, Steffen; Novakovic, Valerie A.; Rasmussen, Jan Trige

    2013-01-01

    Secretory phospholipase A2 (sPLA2) is a critical component of insect and snake venoms and is secreted by mammalian leukocytes during inflammation. Elevated secretory PLA2 concentrations are associated with autoimmune diseases and septic shock. Many sPLA2’s do not bind to plasma membranes of quies...

  17. Insulin structure and stability.

    Brange, J; Langkjoer, L

    1993-01-01

    Insulin is composed of 51 amino acids in two peptide chains (A and B) linked by two disulfide bonds. The three-dimensional structure of the insulin molecule (insulin monomer), essentially the same in solution and in solid phase, exists in two main conformations. These differ in the extent of helix in the B chain which is governed by the presence of phenol or its derivatives. In acid and neutral solutions, in concentrations relevant for pharmaceutical formulation, the insulin monomer assembles to dimers and at neutral pH, in the presence of zinc ions, further to hexamers. Many crystalline modifications of insulin have been identified but only those with the hexamer as the basic unit are utilized in preparations for therapy. The insulin hexamer forms a relatively stable unit but some flexibility remains within the individual molecules. The intrinsic flexibility at the ends of the B chain plays an important role in governing the physical and chemical stability of insulin. A variety of chemical changes of the primary structure (yielding insulin derivatives), and physical modifications of the secondary to quaternary structures (resulting in "denaturation," aggregation, and precipitation) are known to affect insulin and insulin preparations during storage and use (Fig. 8). The tendency of insulin to undergo structural transformation resulting in aggregation and formation of insoluble insulin fibrils has been one of the most intriguing and widely studied phenomena in relation to insulin stability. Although the exact mechanism of fibril formation is still obscure, it is now clear that the initial step is an exposure of certain hydrophobic residues, normally buried in the three-dimensional structure, to the surface of the insulin monomer. This requires displacement of the COOH-terminal B-chain residues from their normal position which can only be accomplished via monomerization of the insulin. Therefore, most methods stabilizing insulin against fibrillation share the

  18. The evolution of plant secretory structures and emergence of terpenoid chemical diversity.

    Lange, Bernd Markus

    2015-01-01

    Secretory structures in terrestrial plants appear to have first emerged as intracellular oil bodies in liverworts. In vascular plants, internal secretory structures, such as resin ducts and laticifers, are usually found in conjunction with vascular bundles, whereas subepidermal secretory cavities and epidermal glandular trichomes generally have more complex tissue distribution patterns. The primary function of plant secretory structures is related to defense responses, both constitutive and induced, against herbivores and pathogens. The ability to sequester secondary (or specialized) metabolites and defense proteins in secretory structures was a critical adaptation that shaped plant-herbivore and plant-pathogen interactions. Although this review places particular emphasis on describing the evolution of pathways leading to terpenoids, it also assesses the emergence of other metabolite classes to outline the metabolic capabilities of different plant lineages.

  19. File list: ALL.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available ALL.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 All antigens Uterus Fallopian tube secret...hg19/assembled/ALL.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  20. File list: ALL.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available ALL.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 All antigens Uterus Fallopian tube secret...hg19/assembled/ALL.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  1. File list: ALL.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available ALL.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 All antigens Uterus Fallopian tube secret...hg19/assembled/ALL.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  2. Insulin and the Lung

    Singh, Suchita; Prakash, Y S; Linneberg, Allan

    2013-01-01

    , molecular understanding is necessary. Insulin resistance is a strong, independent risk factor for asthma development, but it is unknown whether a direct effect of insulin on the lung is involved. This review summarizes current knowledge regarding the effect of insulin on cellular components of the lung...... and highlights the molecular consequences of insulin-related metabolic signaling cascades that could adversely affect lung structure and function. Examples include airway smooth muscle proliferation and contractility and regulatory signaling networks that are associated with asthma. These aspects of insulin...

  3. Secretory expression of a heterologous nattokinase in Lactococcus lactis.

    Liang, Xiaobo; Zhang, Lixin; Zhong, Jin; Huan, Liandong

    2007-05-01

    Nattokinase has been reported as an oral health product for the prevention of atherosclerosis. We developed a novel strategy to express a nattokinase from Bacillus subtilis in a live delivery vehicle, Lactococcus lactis. Promoter P( nisZ) and signal peptide SP(Usp) were used for inducible and secretory expression of nattokinase in L. lactis. Western blotting analysis demonstrated that nattokinase was successfully expressed, and about 94% of the enzyme was secreted to the culture. The recombinant nattokinase showed potent fibrinolytic activity, equivalent to 41.7 urokinase units per milliliter culture. Expression and delivery of such a fibrinolytic enzyme in the food-grade vehicle L. lactis would facilitate the widespread application of nattokinase in the control and prevention of thrombosis diseases.

  4. Insulin aspart in diabetic pregnancy

    Mathiesen, Elisabeth R

    2008-01-01

    in insulin requirements during pregnancy necessitate short-acting insulins for postprandial control of hyperglycemia. The fast-acting insulin analogue insulin aspart has been tested in a large, randomized trial of pregnant women with Type 1 diabetes and offers benefits in control of postprandial...... hyperglycemia with a tendency towards fewer episodes of severe hypoglycemia compared with human insulin. Treatment with insulin aspart was associated with a tendency toward fewer fetal losses and preterm deliveries than treatment with human insulin. Insulin aspart could not be detected in the fetal circulation...... and no increase in insulin antibodies was found. Thus, the use of insulin aspart in pregnancy is regarded safe....

  5. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer's disease and correction by insulin.

    Jolivalt, C G; Lee, C A; Beiswenger, K K; Smith, J L; Orlov, M; Torrance, M A; Masliah, E

    2008-11-15

    We have evaluated the effect of peripheral insulin deficiency on brain insulin pathway activity in a mouse model of type 1 diabetes, the parallels with Alzheimer's disease (AD), and the effect of treatment with insulin. Nine weeks of insulin-deficient diabetes significantly impaired the learning capacity of mice, significantly reduced insulin-degrading enzyme protein expression, and significantly reduced phosphorylation of the insulin-receptor and AKT. Phosphorylation of glycogen synthase kinase-3 (GSK3) was also significantly decreased, indicating increased GSK3 activity. This evidence of reduced insulin signaling was associated with a concomitant increase in tau phosphorylation and amyloid beta protein levels. Changes in phosphorylation levels of insulin receptor, GSK3, and tau were not observed in the brain of db/db mice, a model of type 2 diabetes, after a similar duration (8 weeks) of diabetes. Treatment with insulin from onset of diabetes partially restored the phosphorylation of insulin receptor and of GSK3, partially reduced the level of phosphorylated tau in the brain, and partially improved learning ability in insulin-deficient diabetic mice. Our data indicate that mice with systemic insulin deficiency display evidence of reduced insulin signaling pathway activity in the brain that is associated with biochemical and behavioral features of AD and that it can be corrected by insulin treatment.

  6. Toward understanding insulin fibrillation.

    Brange, J; Andersen, L; Laursen, E D; Meyn, G; Rasmussen, E

    1997-05-01

    Formation of insulin fibrils is a physical process by which partially unfolded insulin molecules interact with each other to form linear aggregates. Shielding of hydrophobic domains is the main driving force for this process, but formation of intermolecular beta-sheet may further stabilize the fibrillar structure. Conformational displacement of the B-chain C-terminal with exposure of nonpolar, aliphatic core residues, including A2, A3, B11, and B15, plays a crucial role in the fibrillation process. Recent crystal analyses and molecular modeling studies have suggested that when insulin fibrillates this exposed domain interacts with a hydrophobic surface domain formed by the aliphatic residues A13, B6, B14, B17, and B18, normally buried when three insulin dimers form a hexamer. In rabbit immunization experiments, insulin fibrils did not elicit an increased immune response with respect to formation of IgG insulin antibodies when compared with native insulin. In contrast, the IgE response increased with increasing content of insulin in fibrillar form. Strategies and practical approaches to prevent insulin from forming fibrils are reviewed. Stabilization of the insulin hexameric structure and blockage of hydrophobic interfaces by addition of surfactants are the most effective means of counteracting insulin fibrillation.

  7. Secretory immunoglobulin purification from whey by chromatographic techniques.

    Matlschweiger, Alexander; Engelmaier, Hannah; Himmler, Gottfried; Hahn, Rainer

    2017-08-15

    Secretory immunoglobulins (SIg) are a major fraction of the mucosal immune system and represent potential drug candidates. So far, platform technologies for their purification do not exist. SIg from animal whey was used as a model to develop a simple, efficient and potentially generic chromatographic purification process. Several chromatographic stationary phases were tested. A combination of two anion-exchange steps resulted in the highest purity. The key step was the use of a small-porous anion exchanger operated in flow-through mode. Diffusion of SIg into the resin particles was significantly hindered, while the main impurities, IgG and serum albumin, were bound. In this step, initial purity was increased from 66% to 89% with a step yield of 88%. In a second anion-exchange step using giga-porous material, SIg was captured and purified by step or linear gradient elution to obtain fractions with purities >95%. For the step gradient elution step yield of highly pure SIg was 54%. Elution of SIgA and SIgM with a linear gradient resulted in a step yield of 56% and 35%, respectively. Overall yields for both anion exchange steps were 43% for the combination of flow-through and step elution mode. Combination of flow-through and linear gradient elution mode resulted in a yield of 44% for SIgA and 39% for SIgM. The proposed process allows the purification of biologically active SIg from animal whey in preparative scale. For future applications, the process can easily be adopted for purification of recombinant secretory immunoglobulin species. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effects of insulin on messenger RNA activities in rat liver

    Hill, R.E.; Lee, K.L.; Kenney, F.T.

    1981-01-01

    Liver poly(A) RNA, isolated from adrenalectomized rats after insulin treatment, was translated in a nuclease-treated lysate of rabbit reticulocytes and quantitated for both total activity and the capacity to synthesize the insulin-inducible enzyme tyrosine amino-transferase. Analysis of the translated products from poly(A) RNA isolated 1 h after insulin treatment showed a 2.7-fold increase in activity of tyrosine aminotransferase mRNA. During the same interval, the capacity of poly(A) RNA to direct the synthesis of total protein in lysates also changed, showing a 30 to 40% increase in translational activity/unit of RNA. Increased translatability was apparent in all fractions of poly(A) RNA separated by centrifugation on sucrose gradients. Insulin thus appears to mediated a generalized changed in mRNAs leading to increased capacity for translation; induction of tyrosine aminotransferase may reflect unusual sensitivity to this effect of the hormone

  9. File list: Pol.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available Pol.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 RNA polymerase Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  10. File list: Oth.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available Oth.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 TFs and others Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  11. File list: Oth.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available Oth.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 TFs and others Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  12. File list: NoD.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available NoD.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 No description Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  13. File list: Unc.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available Unc.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Unclassified Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  14. File list: NoD.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available NoD.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 No description Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  15. File list: NoD.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available NoD.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 No description Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  16. File list: Unc.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available Unc.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Unclassified Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  17. File list: Oth.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available Oth.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 TFs and others Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  18. File list: DNS.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available DNS.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 DNase-seq Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  19. File list: Pol.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available Pol.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 RNA polymerase Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  20. File list: DNS.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available DNS.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 DNase-seq Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  1. File list: DNS.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available DNS.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 DNase-seq Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  2. File list: Pol.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available Pol.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 RNA polymerase Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  3. File list: Unc.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available Unc.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Unclassified Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  4. File list: DNS.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available DNS.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 DNase-seq Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  5. File list: NoD.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available NoD.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 No description Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  6. File list: Unc.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available Unc.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Unclassified Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  7. File list: Oth.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available Oth.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 TFs and others Uterus Fallopian tube secret...ory epithelial cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  8. Does Insulin Explain the Relation between Maternal Obesity and Poor Lactation Outcomes? An Overview of the Literature.

    Nommsen-Rivers, Laurie A

    2016-03-01

    It is well established that obese women are at increased risk of delayed lactogenesis and short breastfeeding duration, but the underlying causal contributors remain unclear. This review summarizes the literature examining the role of insulin in lactation outcomes. Maternal obesity is a strong risk factor for insulin resistance and prediabetes, but until recently a direct role for insulin in milk production had not been elucidated. Over the past 6 y, studies in both animal models and humans have shown insulin-sensitive gene expression to be dramatically upregulated specifically during the lactation cycle. Insulin is now considered to play a direct role in lactation, including essential roles in secretory differentiation, secretory activation, and mature milk production. At the same time, emerging clinical research suggests an important association between suboptimal glucose tolerance and lactation difficulty. To develop effective interventions to support lactation success in obese women further research is needed to identify how, when, and for whom maternal insulin secretion and sensitivity affect lactation ability. © 2016 American Society for Nutrition.

  9. Does Insulin Explain the Relation between Maternal Obesity and Poor Lactation Outcomes? An Overview of the Literature1234

    2016-01-01

    It is well established that obese women are at increased risk of delayed lactogenesis and short breastfeeding duration, but the underlying causal contributors remain unclear. This review summarizes the literature examining the role of insulin in lactation outcomes. Maternal obesity is a strong risk factor for insulin resistance and prediabetes, but until recently a direct role for insulin in milk production had not been elucidated. Over the past 6 y, studies in both animal models and humans have shown insulin-sensitive gene expression to be dramatically upregulated specifically during the lactation cycle. Insulin is now considered to play a direct role in lactation, including essential roles in secretory differentiation, secretory activation, and mature milk production. At the same time, emerging clinical research suggests an important association between suboptimal glucose tolerance and lactation difficulty. To develop effective interventions to support lactation success in obese women further research is needed to identify how, when, and for whom maternal insulin secretion and sensitivity affect lactation ability. PMID:26980825

  10. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut.

    Mantis, N J; Rol, N; Corthésy, B

    2011-11-01

    Secretory IgA (SIgA) serves as the first line of defense in protecting the intestinal epithelium from enteric toxins and pathogenic microorganisms. Through a process known as immune exclusion, SIgA promotes the clearance of antigens and pathogenic microorganisms from the intestinal lumen by blocking their access to epithelial receptors, entrapping them in mucus, and facilitating their removal by peristaltic and mucociliary activities. In addition, SIgA functions in mucosal immunity and intestinal homeostasis through mechanisms that have only recently been revealed. In just the past several years, SIgA has been identified as having the capacity to directly quench bacterial virulence factors, influence composition of the intestinal microbiota by Fab-dependent and Fab-independent mechanisms, promote retro-transport of antigens across the intestinal epithelium to dendritic cell subsets in gut-associated lymphoid tissue, and, finally, to downregulate proinflammatory responses normally associated with the uptake of highly pathogenic bacteria and potentially allergenic antigens. This review summarizes the intrinsic biological activities now associated with SIgA and their relationships with immunity and intestinal homeostasis.

  11. Station Capacity

    Landex, Alex

    2011-01-01

    the probability of conflicts and the minimum headway times into account. The last method analyzes how optimal platform tracks are used by examining the arrival and departure pattern of the trains. The developed methods can either be used separately to analyze specific characteristics of the capacity of a station......Stations are often limiting the capacity of railway networks. This is due to extra need of tracks when trains stand still, trains turning around, and conflicting train routes. Although stations are often the capacity bottlenecks, most capacity analysis methods focus on open line capacity. Therefore...... for platform tracks and the probability that arriving trains will not get a platform track immediately at arrival. The third method is a scalable method that analyzes the conflicts in the switch zone(s). In its simplest stage, the method just analyzes the track layout while the more advanced stages also take...

  12. Insulin resistance in dairy cows.

    De Koster, Jenne D; Opsomer, Geert

    2013-07-01

    Glucose is the molecule that drives milk production, and insulin plays a pivotal role in the glucose metabolism of dairy cows. The effect of insulin on the glucose metabolism is regulated by the secretion of insulin by the pancreas and the insulin sensitivity of the skeletal muscles, the adipose tissue, and the liver. Insulin resistance may develop as part of physiologic (pregnancy and lactation) and pathologic processes, which may manifest as decreased insulin sensitivity or decreased insulin responsiveness. A good knowledge of the normal physiology of insulin is needed to measure the in vivo insulin resistance of dairy cows. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. I-123-insulin: A new marker for hepatoma

    Sodoyez, J.C.; Goffaux, F.S.; Fallais, C.; Bourgeois, P.

    1984-01-01

    Previous studies have demonstrated that carrier-free I-123-Tyr Al4 insulin was taken up by the liver (by a saturable mechanism) and by the kidneys (by a non saturable mechanism). Autoradiographs of rat liver after injection of I-125-insulin showed that binding specifically occurred at the plasma membrane of the hepatocytes. I-123-Insulin binding to the hepatocyte plasma membrane appeared mediated by specific receptors. Indeed it was blocked by antibodies to the insulin receptors and by an excess of native insulin. Futhermore insulin derivatives with low biological potency (proinsulin and desoctapeptide insulin) did not inhibit I-123-insulin binding to the hepatocytes. I-123-Insulin (1.3 mCi) was I.V. injected into a patient in whom the right liver lobe was normal (normal uptake of Tc-99m-colloid sulfur) but the left liver lobe was occupied by a voluminous hepatoma (no uptake of Tc-99m-colloid sulfur). Liver blood supply was also studied by Tc-99m-pyrophosphate-labeled red cells. Computer analysis of the data revealed that compared to the normal liver lobe, binding of I-123-insulin to the hepatoma was more precocious (vascularization through the hepatic artery and not the portal vein), more intense and more prolonged (half-lives were 6 min in the normal liver and 14 min in the hepatoma). These results are consistent with characteristics of hepatoma cells in culture in which high insulin binding capacity contrasts with a markedly decreased insulin degrading activity. It is concluded that I-123-insulin may be used as a specific marker of hepatoma in man

  14. Flexibility in insulin prescription

    Sanjay Kalra

    2016-01-01

    Full Text Available This communication explores the concept of flexibility, a propos insulin preparations and insulin regimes used in the management of type 2 diabetes. The flexibility of an insulin regime or preparation is defined as their ability to be injected at variable times, with variable injection-meal time gaps, in a dose frequency and quantum determined by shared decision making, with a minimal requirement of glucose monitoring and health professional consultation, with no compromise on safety, efficiency and tolerability. The relative flexibility of various basal, prandial and dual action insulins, as well as intensive regimes, is compared. The biopsychosocial model of health is used to assess the utility of different insulins while encouraging a philosophy of flexible insulin usage.

  15. Insulin sensitivity and albuminuria

    Pilz, Stefan; Rutters, Femke; Nijpels, Giel

    2014-01-01

    OBJECTIVE: Accumulating evidence suggests an association between insulin sensitivity and albuminuria, which, even in the normal range, is a risk factor for cardiovascular diseases. We evaluated whether insulin sensitivity is associated with albuminuria in healthy subjects. RESEARCH DESIGN...... AND METHODS: We investigated 1,415 healthy, nondiabetic participants (mean age 43.9 ± 8.3 years; 54.3% women) from the RISC (Relationship between Insulin Sensitivity and Cardiovascular Disease) study, of whom 852 participated in a follow-up examination after 3 years. At baseline, insulin sensitivity...... was assessed by hyperinsulinemic-euglycemic clamps, expressed as the M/I value. Oral glucose tolerance test-based insulin sensitivity (OGIS), homeostasis model assessment of insulin resistance (HOMA-IR), and urinary albumin-to-creatinine ratio (UACR) were determined at baseline and follow-up. RESULTS...

  16. Insulin aspart pharmacokinetics

    Rasmussen, Christian Hove; Roge, Rikke Meldgaard; Ma, Zhulin

    2014-01-01

    Background: Insulin aspart (IAsp) is used by many diabetics as a meal-time insulin to control postprandial glucose levels. As is the case with many other insulin types, the pharmacokinetics (PK), and consequently the pharmacodynamics (PD), is associated with clinical variability, both between...... to investigate and quantify the properties of the subcutaneous depot. Data from Brange et al. (1990) are used to determine the effects of insulin chemistry in subcutis on the absorption rate. Intravenous (i.v.) bolus and infusion PK data for human insulin are used to understand and quantify the systemic...... distribution and elimination (Porksen et al., 1997; Sjostrand et al., 2002). PK and PD profiles for type 1 diabetics from Chen et al. (2005) are analyzed to demonstrate the effects of IAsp antibodies in terms of bound and unbound insulin. PK profiles from Thorisdottir et al. (2009) and Ma et al. (2012b...

  17. Diabetes, insulin and exercise

    Richter, Erik; Galbo, H

    1986-01-01

    The metabolic and hormonal adaptations to single exercise sessions and to exercise training in normal man and in patients with insulin-dependent as well as non-insulin-dependent diabetes mellitus are reviewed. In insulin-dependent (type I) diabetes good metabolic control is best obtained...... by a regular pattern of life which will lead to a fairly constant demand for insulin from day to day. Exercise is by nature a perturbation that makes treatment of diabetes difficult: Muscle contractions per se tend to decrease the plasma glucose concentration whereas the exercise-induced response of the so......-called counter-regulatory hormones tend to increase plasma glucose by increasing hepatic glucose production and adipose tissue lipolysis. If the pre-exercise plasma insulin level is high, hypoglycaemia may develop during exercise whereas hyperglycaemia and ketosis may develop if pre-exercise plasma insulin...

  18. Insulin, cognition, and dementia

    Cholerton, Brenna; Baker, Laura D.; Craft, Suzanne

    2015-01-01

    Cognitive disorders of aging represent a serious threat to the social and economic welfare of current society. It is now widely recognized that pathology related to such conditions, particularly Alzheimer’s disease, likely begins years or decades prior to the onset of clinical dementia symptoms. This revelation has led researchers to consider candidate mechanisms precipitating the cascade of neuropathological events that eventually lead to clinical Alzheimer’s disease. Insulin, a hormone with potent effects in the brain, has recently received a great deal of attention for its potential beneficial and protective role in cognitive function. Insulin resistance, which refers to the reduced sensitivity of target tissues to the favorable effects of insulin, is related to multiple chronic conditions known to impact cognition and increase dementia risk. With insulin resistance-associated conditions reaching epidemic proportions, the prevalence of Alzheimer’s disease and other cognitive disorders will continue to rise exponentially. Fortunately, these chronic insulin-related conditions are amenable to pharmacological intervention. As a result, novel therapeutic strategies that focus on increasing insulin sensitivity in the brain may be an important target for protecting or treating cognitive decline. The following review will highlight our current understanding of the role of insulin in brain, potential mechanisms underlying the link between insulin resistance and dementia, and current experimental therapeutic strategies aimed at improving cognitive function via modifying the brain’s insulin sensitivity. PMID:24070815

  19. Insulin and the brain.

    Derakhshan, Fatemeh; Toth, Cory

    2013-03-01

    Mainly known for its role in peripheral glucose homeostasis, insulin has also significant impact within the brain, functioning as a key neuromodulator in behavioral, cellular, biochemical and molecular studies. The brain is now regarded as an insulin-sensitive organ with widespread, yet selective, expression of the insulin receptor in the olfactory bulb, hypothalamus, hippocampus, cerebellum, amygdala and cerebral cortex. Insulin receptor signaling in the brain is important for neuronal development, glucoregulation, feeding behavior, body weight, and cognitive processes such as with attention, executive functioning, learning and memory. Emerging evidence has demonstrated insulin receptor signaling to be impaired in several neurological disorders. Moreover, insulin receptor signaling is recognized as important for dendritic outgrowth, neuronal survival, circuit development, synaptic plasticity and postsynaptic neurotransmitter receptor trafficking. We review the multiple roles of insulin in the brain, as well as its endogenous trafficking to the brain or its exogenous intervention. Although insulin can be directly targeted to the brain via intracerebroventricular (ICV) or intraparenchymal delivery, these invasive techniques are with significant risk, necessitating repeated surgical intervention and providing potential for systemic hypoglycemia. Another method, intranasal delivery, is a non-invasive, safe, and alternative approach which rapidly targets delivery of molecules to the brain while minimizing systemic exposure. Over the last decades, the delivery of intranasal insulin in animal models and human patients has evolved and expanded, permitting new hope for associated neurodegenerative and neurovascular disorders.

  20. Studies on insulin receptor, 2. Studies on the influence of starvation and high fat diet on insulin receptor

    Sakai, Y [Hiroshima Univ. (Japan). School of Medicine

    1979-08-01

    The present study is to investigate an influence of starvation and high fat diet on insulin receptor of the plasma membrane by means of radioreceptor assay using /sup 125/I-labelled insulin. Male guinea pigs of Hartley strain were employed for the starvation study, and /sup 125/I-insulin binding capacity on the plasma membrane of the liver and kidney was determined at 24, 48 and 72 hours of the fast after the last meal. Male rats of Wistar strain were employed for the high fat study where the diet containing 35% of butter was fed ad libitum for 38 or 68 days. The animals were killed at the fast of 12 hours, and /sup 125/I-insulin binding capacity on the plasma membrane of the liver was determined. The results obtained are summarized as follows: 1) An increase in /sup 125/I-insulin binding capacity on the plasma membrane of the liver and kidney was observed by the starvation for 24 to 72 hours. 2) The mechanism of the increase by starvation was considered to be different by the organs; it was due to an increase in number of insulin receptor in the liver, and due to an increase in affinity of insulin receptor in the kidney. 3) In non-obese rats fed with high fat diet, the number of insulin receptor on the liver plasma membrane showed a decrease, and this observation clearly indicated that the decrease in number of the receptor did not depend on the obesity. 4) Obese rats also fed with high fat diet presented a decrease in number of insulin receptor without an elevation of insulin levels in the circulating blood. This indicated that at least in the obese rats fed with high fat diet, the decrease in number of the receptor was not due to hyperinsulinemia.

  1. The relationship between vitronectin and hepatic insulin resistance in type 2 diabetes mellitus.

    Cao, Yan; Li, Xinyu; Lu, Chong; Zhan, Xiaorong

    2018-05-18

    The World Health Organization (WHO) estimates that approximately 300 million people will suffer from diabetes mellitus by 2025. Type 2 diabetes mellitus (T2DM) is much more prevalent. T2DM comprises approximately 90% of diabetes mellitus cases, and it is caused by a combination of insulin resistance and inadequate compensatory insulin secretory response. In this study, we aimed to compare the plasma vitronectin (VN) levels between patients with T2DM and insulin resistance (IR) and healthy controls. Seventy patients with IR and 70 age- and body mass index (BMI)-matched healthy controls were included in the study. The insulin, Waist-to-Hip Ratio (WHR), C-peptide (CP) and VN levels of all participants were examined. The homeostasis model of assessment for insulin resistence index (HOMA-IR (CP)) formula was used to calculate insulin resistance. The levels of BMI, fasting plasma gluose (FPG), 2-hour postprandial glucose (2hPG), glycated hemoglobins (HbA1c), and HOMA-IR (CP) were significantly elevated in case group compared with controls. VN was found to be significantly decreased in case group. (VN Mean (Std): 8.55 (2.92) versus 12.88 (1.26) ng/mL p insulin resistance in patients with T2DM.

  2. Urea impairs β cell glycolysis and insulin secretion in chronic kidney disease

    Koppe, Laetitia; Nyam, Elsa; Vivot, Kevin; Manning Fox, Jocelyn E.; Dai, Xiao-Qing; Nguyen, Bich N.; Attané, Camille; Moullé, Valentine S.; MacDonald, Patrick E.; Ghislain, Julien

    2016-01-01

    Disorders of glucose homeostasis are common in chronic kidney disease (CKD) and are associated with increased mortality, but the mechanisms of impaired insulin secretion in this disease remain unclear. Here, we tested the hypothesis that defective insulin secretion in CKD is caused by a direct effect of urea on pancreatic β cells. In a murine model in which CKD is induced by 5/6 nephrectomy (CKD mice), we observed defects in glucose-stimulated insulin secretion in vivo and in isolated islets. Similarly, insulin secretion was impaired in normal mouse and human islets that were cultured with disease-relevant concentrations of urea and in islets from normal mice treated orally with urea for 3 weeks. In CKD mouse islets as well as urea-exposed normal islets, we observed an increase in oxidative stress and protein O-GlcNAcylation. Protein O-GlcNAcylation was also observed in pancreatic sections from CKD patients. Impairment of insulin secretion in both CKD mouse and urea-exposed islets was associated with reduced glucose utilization and activity of phosphofructokinase 1 (PFK-1), which could be reversed by inhibiting O-GlcNAcylation. Inhibition of O-GlcNAcylation also restored insulin secretion in both mouse models. These results suggest that insulin secretory defects associated with CKD arise from elevated circulating levels of urea that increase islet protein O-GlcNAcylation and impair glycolysis. PMID:27525435

  3. Intracellular and extracellular adenosine triphosphate in regulation of insulin secretion from pancreatic β cells (β).

    Wang, Chunjiong; Geng, Bin; Cui, Qinghua; Guan, Youfei; Yang, Jichun

    2014-03-01

    Adenosine triphosphate (ATP) synthesis and release in mitochondria play critical roles in regulating insulin secretion in pancreatic β cells. Mitochondrial dysfunction is mainly characterized by a decrease in ATP production, which is a central event in the progression of pancreatic β cell dysfunction and diabetes. ATP has been demonstrated to regulate insulin secretion via several pathways: (i) Intracellular ATP directly closes ATP-sensitive potassium channel to open L-type calcium channel, leading to an increase in free cytosolic calcium levels and exocytosis of insulin granules; (ii) A decrease in ATP production is always associated with an increase in production of reactive oxygen species, which exerts deleterious effects on pancreatic β cell survival and insulin secretion; and (iii) ATP can be co-secreted with insulin from pancreatic β cells, and the released ATP functions as an autocrine signal to modulate insulin secretory process via P2 receptors on the cell membrane. In this review, the recent findings regarding the role and mechanism of ATP synthesis and release in regulation of insulin secretion from pancreatic β cells will be summarized and discussed. © 2013 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  4. Genetic markers of insulin resistance in gestational diabetes

    Tatiana Vasil'evna Sebko

    2009-12-01

    Full Text Available Aim. To search for genetic markers of insulin resistance and impaired insulin secretion in pregnant women with gestational diabetes mellitus (GDM. Materials and methods. A total of 100 healthy pregnant women and 185 patients with GDM were available for examination. 80 patients developedGDM during current pregnancy, in 105 it was diagnosed 4-19 years ago. 25 of the 105 GDM patients had a history of type 2 DM. The following parameterswere measured: beta-cell secretory activity (proinsulin, ITI, C-peptide, total cholesterol (CH, HDL and LDL CH, triglycerides, HbA1c,fasting glycemia. Molecular-genetic DNA testing using PCR included studies of KCNJ 11, TCF7L2, PPARG2, ADIPOQ, ADIPOR1, ADIPOR2gene polymorphism. These genes were chosen based on the published data associating them with disturbed insulin secretion and sensitivity in DM2patient. Results. Pregnant women with GDM and obesity showed elevated IRI and leptin levels compared with controls. This rise was accompanied bymarked insulin resistance in 75% of these patients. In 50% of the healthy women proinsulin and insulin secretion decreased. Obesity in pregnantpatients was associated with significant elevation of proinsulin, IRI, and C-peptyide levels and GDM with Lys/Lys genotype of polymorphous markerGlu23k of KCNJ11 gene, pro and ala allele of polymorphous marker A219T of ADIPOR2 gene. These associations suggest specific genetic featuresof GDM related to impaired insulin secretion and sensitivity. Conclusion. Studies of common genetic nature of GDM and DM2 permit to identify risk groups at the preclinical stage, plan prevention and treatmentof these disorders.

  5. A Unifying Organ Model of Pancreatic Insulin Secretion.

    Andrea De Gaetano

    Full Text Available The secretion of insulin by the pancreas has been the object of much attention over the past several decades. Insulin is known to be secreted by pancreatic β-cells in response to hyperglycemia: its blood concentrations however exhibit both high-frequency (period approx. 10 minutes and low-frequency oscillations (period approx. 1.5 hours. Furthermore, characteristic insulin secretory response to challenge maneuvers have been described, such as frequency entrainment upon sinusoidal glycemic stimulation; substantial insulin peaks following minimal glucose administration; progressively strengthened insulin secretion response after repeated administration of the same amount of glucose; insulin and glucose characteristic curves after Intra-Venous administration of glucose boli in healthy and pre-diabetic subjects as well as in Type 2 Diabetes Mellitus. Previous modeling of β-cell physiology has been mainly directed to the intracellular chain of events giving rise to single-cell or cell-cluster hormone release oscillations, but the large size, long period and complex morphology of the diverse responses to whole-body glucose stimuli has not yet been coherently explained. Starting with the seminal work of Grodsky it was hypothesized that the population of pancreatic β-cells, possibly functionally aggregated in islets of Langerhans, could be viewed as a set of independent, similar, but not identical controllers (firing units with distributed functional parameters. The present work shows how a single model based on a population of independent islet controllers can reproduce very closely a diverse array of actually observed experimental results, with the same set of working parameters. The model's success in reproducing a diverse array of experiments implies that, in order to understand the macroscopic behaviour of the endocrine pancreas in regulating glycemia, there is no need to hypothesize intrapancreatic pacemakers, influences between different

  6. High Serum Advanced Glycation End Products Are Associated with Decreased Insulin Secretion in Patients with Type 2 Diabetes: A Brief Report

    Tsuyoshi Okura

    2017-01-01

    Full Text Available Objective. Advanced glycation end products (AGEs are important in the pathophysiology of type 2 diabetes mellitus (T2DM. They directly cause insulin secretory defects in animal and cell culture models and may promote insulin resistance in nondiabetic subjects. We have developed a highly sensitive liquid chromatography-tandem mass spectrometry method for measuring AGEs in human serum. Here, we use this method to investigate the relationship between AGEs and insulin secretion and resistance in patients with T2DM. Methods. Our study involved 15 participants with T2DM not on medication and 20 nondiabetic healthy participants. We measured the AGE carboxyethyllysine (CEL, carboxymethyllysine (CML, and methyl-glyoxal-hydro-imidazolone (MG-H1. Plasma glucose and insulin were measured in these participants during a meal tolerance test, and the glucose disposal rate was measured during a euglycemic-hyperinsulinemic clamp. Results. CML and CEL levels were significantly higher in T2DM than non-DM participants. CML showed a significant negative correlation with insulin secretion, HOMA-%B, and a significant positive correlation with the insulin sensitivity index in T2DM participants. There was no correlation between any of the AGEs measured and glucose disposal rate. Conclusions. These results suggest that AGE might play a role in the development or prediction of insulin secretory defects in type 2 diabetes.

  7. The differences in RCAS1 and DFF45 endometrial expression between late proliferative, early secretory, and mid-secretory cycle phases.

    Jerzy Sikora

    2008-04-01

    Full Text Available RCAS1 expression is related to the regulation of activated immune cells and to connective tissue remodeling within the endometrium. DFF45 seems to play an important role in the apoptotic process, most likely by acting through the regulation of DNA fragmentation. Its expression changes within the endometrium seem to be related to the resistance of endometrial cells to apoptosis. The aim of the present study was to evaluate RCAS1 and DFF45 endometrial expressions during ovulation and the implantation period. RCAS1 and DFF45 expression was assessed by the Western-blot method in endometrial tissue samples obtained from 20 patients. The tissue samples were classified according to the menstrual cycle phases in which they were collected, with a division into three phases: late proliferative, early secretory, and mid-secretory. The lowest level of RCAS1 and the highest level of DFF45 endometrial expression was found during the early secretory cycle phase. Statistically significantly higher RCAS1 and statistically significantly lower DFF45 endometrial expression was identified in the endometrium during the late proliferative as compared to the early secretory cycle phase. Moreover, statistically significantly higher RCAS1 and statistically significantly lower DFF45 expression was found in the endometrium during the mid-secretory as compared to the early secretory cycle phase. The preparation for implantation process in the endometrium is preceded by dynamic changes in endometrial ECM and results from the proper interaction between endometrial and immune cells. The course of this process is conditioned by the immunomodulating activity of endometrial cells and their resistance to immune-mediated apoptosis. These dynamic changes are closely related to RCAS1 and DFF45 expression alterations.

  8. Protein thiophosphorylation associated with secretory inhibition in permeabilized chromaffin cells

    Brooks, J.C.; Brooks, M.

    1985-01-01

    Permeabilized cells treated with the adenosine triphosphate analog, ( 35 S)adenosine-5'-0-3(3-thiotriphosphate) ((γ- 35 S)ATP), showed thiophosphorylation of a small number of cellular proteins. A 54 kilodalton (kDa) protein was heavily thiophosphorylated in unstimulated control cells and a 43 kilodalton protein was more heavily thiophosphorylated in calcium stimulated cells. Intact cells incorporated 35 S into a series of higher molecular weight proteins. Stimulation of prelabelled, permeabilized cells resulted in a loss of 35 S from the cells over a 20 min period. Treatment of permeabilized cells with ATPγS inhibited secretion and 35 S incorporation into the cells. Pretreatment with ATPγS resulted in subsequent inhibition of both secretion and the ability of the cells to incorporate 35 S from (γ- 35 S)ATP. These results indicate that the sites normally available for phosphorylation were inactivated by thiophosphorylation and were unavailable to participate in the secretory process. The inhibition of secretion associated with thiophosphorylation of these proteins suggests that they may play a role in the control of secretion by chromaffin cells. 15 references, 1 figure, 3 tables

  9. Correlation between CT and tympanogram in secretory otitis media

    Kobayashi, Toshimitsu; Sakurai, Tokio; Taniguchi, Kazuhiko; Takahashi, Kuniaki; Ikeda, Katsuhisa; Kawamoto, Kazutomo.

    1984-01-01

    In an attempt to evaluate the feasibility of the tympanometry in detecting the middle ear effusion (MEE) in secretory otitis media (SOM) in childhood, the findings of the computed tomography (CT) were evaluated whether they were compatible with that of tympanometry in 27 cases (51 ears) of SOM. Tympanometry (tympanogram, static compliance measurement and stapedial reflex test), pure tone audiometry and high resolution CT were performed sequentially, and the CT findings were compared with the results of the other tests. The conclusions obtained were summarized as follows. 1. Among the tests performed, tympanogram appeared to be the most reliable measure in detection of MEE. 2. Fifteen ears out of 16 with type B tympanograms and 6 ears out of 15 with type C 2 tympanograms, were diagnosed by CT as having MEE. MEE occupied the entire middile ear space in most ears with type B tympanograms. By contrast, in the ears with type C 2 tympanograms, air containing space of varying size were always observed even in the ears with MEE. (author)

  10. ERAD-dependent control of the Wnt secretory factor Evi.

    Glaeser, Kathrin; Urban, Manuela; Fenech, Emma; Voloshanenko, Oksana; Kranz, Dominique; Lari, Federica; Christianson, John C; Boutros, Michael

    2018-02-15

    Active regulation of protein abundance is an essential strategy to modulate cellular signaling pathways. Within the Wnt signaling cascade, regulated degradation of β-catenin by the ubiquitin-proteasome system (UPS) affects the outcome of canonical Wnt signaling. Here, we found that abundance of the Wnt cargo receptor Evi (Wls/GPR177), which is required for Wnt protein secretion, is also regulated by the UPS through endoplasmic reticulum (ER)-associated degradation (ERAD). In the absence of Wnt ligands, Evi is ubiquitinated and targeted for ERAD in a VCP-dependent manner. Ubiquitination of Evi involves the E2-conjugating enzyme UBE2J2 and the E3-ligase CGRRF1. Furthermore, we show that a triaging complex of Porcn and VCP determines whether Evi enters the secretory or the ERAD pathway. In this way, ERAD-dependent control of Evi availability impacts the scale of Wnt protein secretion by adjusting the amount of Evi to meet the requirement of Wnt protein export. As Wnt and Evi protein levels are often dysregulated in cancer, targeting regulatory ERAD components might be a useful approach for therapeutic interventions. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  11. Pulmonary deposition and disappearance of aerosolised secretory leucocyte protease inhibitor.

    Stolk, J.; Camps, J.; Feitsma, H. I.; Hermans, J.; Dijkman, J. H.; Pauwels, E. K.

    1995-01-01

    BACKGROUND--The neutrophil elastase inhibitor, secretory leucocyte protease inhibitor (SLPI), is a potential therapeutic tool in inflammatory lung diseases such as cystic fibrosis and pulmonary emphysema. The distribution and disappearance in the lung of aerosolised recombinant SLPI (rSLPI) was investigated in healthy humans and in patients with cystic fibrosis or alpha 1-antitrypsin-associated emphysema. METHODS--To distinguish aerosolised rSLPI from endogenous SLPI the recombinant inhibitor was radiolabelled with 99m-technetium (99mTc) pertechnetate. Distribution and disappearance of aerosolised 99mTc-rSLPI in the lungs were studied by gamma radiation imaging. RESULTS--The deposition of 99mTc-rSLPI in normal volunteers was homogeneous in all lung lobes, while in patients with cystic fibrosis or emphysema only well ventilated areas showed deposition of the aerosol. The disappearance rate of 99mTc-rSLPI was biexponential. The half life of the rapid phase was 0.2-2.8 hours, while that of the slow phase was more than 24 hours. CONCLUSIONS--Future aerosol therapy with rSLPI will be most beneficial for well ventilated lung tissue that needs protection against neutrophil derived elastase. It may be more difficult to neutralise the burden of elastase in poorly ventilated, highly inflamed areas as are seen in cystic fibrosis. Images PMID:7638807

  12. Mapping organelle motion reveals a vesicular conveyor belt spatially replenishing secretory vesicles in stimulated chromaffin cells.

    Maucort, Guillaume; Kasula, Ravikiran; Papadopulos, Andreas; Nieminen, Timo A; Rubinsztein-Dunlop, Halina; Meunier, Frederic A

    2014-01-01

    How neurosecretory cells spatially adjust their secretory vesicle pools to replenish those that have fused and released their hormonal content is currently unknown. Here we designed a novel set of image analyses to map the probability of tracked organelles undergoing a specific type of movement (free, caged or directed). We then applied our analysis to time-lapse z-stack confocal imaging of secretory vesicles from bovine Chromaffin cells to map the global changes in vesicle motion and directionality occurring upon secretagogue stimulation. We report a defined region abutting the cortical actin network that actively transports secretory vesicles and is dissipated by actin and microtubule depolymerizing drugs. The directionality of this "conveyor belt" towards the cell surface is activated by stimulation. Actin and microtubule networks therefore cooperatively probe the microenvironment to transport secretory vesicles to the periphery, providing a mechanism whereby cells globally adjust their vesicle pools in response to secretagogue stimulation.

  13. Antigenic analyses of tissues and excretory and secretory products from Strongylus vulgaris.

    Wynne, E; Slocombe, J O; Wilkie, B N

    1981-07-01

    Rabbit antisera were prepared against veronal buffered saline extracts of L4 and L5 Strongylus vulgaris, adult S. vulgaris and adult Strongylus equinus retrieved from naturally infected horses. In agar gel diffusion with these antisera, adult S vulgaris and S. equinus each appeared to have at least one unique antigen; larval S. vulgaris appeared to have two species-specific and two stage-specific antigens. There were several common antigens. Excretory and secretory products were collected also from L4 and L5 an maintained over several days in tissue culture fluid. In agar gel diffusion against the above rabbit antisera, a stage-specific antigen was found also in excretory and secretory products. In addition, excretory and secretory products had three antigens in common with adult and larval S. vulgaris, but only one of these was common to adult S. equinus. The excretory and secretory products appear, therefore, to have two species-specific and one stage-specific antigens.

  14. Chronic regulation of colonic epithelial secretory function by activation of G protein-coupled receptors.

    Toumi, F

    2011-02-01

    Enteric neurotransmitters that act at G protein-coupled receptors (GPCRs) are well known to acutely promote epithelial Cl(-) and fluid secretion. Here we examined if acute GPCR activation might have more long-term consequences for epithelial secretory function.

  15. Fundamental studies on the insulin receptor in rabbit erythrocytes

    Shinomiya, Y; Kagawa, S; Konishi, Y; Morimoto, H; Tsumura, Y [Hyogo Medical Coll. (Japan)

    1975-09-01

    The authors studied the binding of insulin to rabbit erythrocytes as a mode case in the hope of characterizing the physiologic role of the binding of insulin to receptor in both normal adults and patients. Specific binding sites for insulin were detected in rabbit erythrocytes. The characteristics of the binding were similar to those observed in other target tissues. The specific binding of /sup 125/I-labeled insulin was competitively inhibited by a small amount of unlabeled insulin and was completely inhibited by 1,000 ng/ml of unlabeled insulin. Glucagon, however, had no effect on the insulin binding to fat cells or liver membranes nor had it any effect on the binding of insulin to rabbit erythrocytes. Scatchard analysis of this binding reaction indicated two different binding sites with Ksub(aff)=3.2 x 10/sup 8//M, Ksub(diss)=3.1 x 10/sup -9/M; Ksub(aff)=1.4 x 10/sup 8//M, Ksub(diss)=7.1 x 10/sup -9/M respectively, and the binding capacities of each site were estimated at 0.011 ng/4 x 10/sup 8/ cells and 0.138 ng/4 x 10/sup 8/ cells. The binding of /sup 125/I-insulin to rabbit erythrocytes was a saturable function of the insulin concentration and was a linear function of cell concentration. The pH optimum for the reaction was 7.4 at 0/sup 0/C, the amount of insulin binding increased continuously under the reaction and this binding reaction reached a steady state after 10 to 15hr. On the other hand, the specific binding of insulin at higher temperatures showed maximal amounts after 20 to 30 min. and subsequently fell off at later time points.

  16. Fifty Years of Insulin

    has since saved millions of lives throughout the world. The year 197I is the 50th anniversary of Banting's historic discovery. The story of insulin ... He found no evidence of injury. An impaired ... Prize in medicine for his discovery of insulin.

  17. Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway.

    Kambe, Taiho; Matsunaga, Mayu; Takeda, Taka-Aki

    2017-10-19

    More than one-third of newly synthesized proteins are targeted to the early secretory pathway, which is comprised of the endoplasmic reticulum (ER), Golgi apparatus, and other intermediate compartments. The early secretory pathway plays a key role in controlling the folding, assembly, maturation, modification, trafficking, and degradation of such proteins. A considerable proportion of the secretome requires zinc as an essential factor for its structural and catalytic functions, and recent findings reveal that zinc plays a pivotal role in the function of the early secretory pathway. Hence, a disruption of zinc homeostasis and metabolism involving the early secretory pathway will lead to pathway dysregulation, resulting in various defects, including an exacerbation of homeostatic ER stress. The accumulated evidence indicates that specific members of the family of Zn transporters (ZNTs) and Zrt- and Irt-like proteins (ZIPs), which operate in the early secretory pathway, play indispensable roles in maintaining zinc homeostasis by regulating the influx and efflux of zinc. In this review, the biological functions of these transporters are discussed, focusing on recent aspects of their roles. In particular, we discuss in depth how specific ZNT transporters are employed in the activation of zinc-requiring ectoenzymes. The means by which early secretory pathway functions are controlled by zinc, mediated by specific ZNT and ZIP transporters, are also subjects of this review.

  18. Insulin Resistance of Puberty.

    Kelsey, Megan M; Zeitler, Philip S

    2016-07-01

    Puberty is a time of considerable metabolic and hormonal change. Notably, puberty is associated with a marked decrease in insulin sensitivity, on par with that seen during pregnancy. In otherwise healthy youth, there is a nadir in insulin sensitivity in mid-puberty, and then it recovers at puberty completion. However, there is evidence that insulin resistance (IR) does not resolve in youth who are obese going into puberty and may result in increased cardiometabolic risk. Little is known about the underlying pathophysiology of IR in puberty, and how it might contribute to increased disease risk (e.g., type 2 diabetes). In this review, we have outlined what is known about the IR in puberty in terms of pattern, potential underlying mechanisms and other mediating factors. We also outline other potentially related metabolic changes that occur during puberty, and effects of underlying insulin resistant states (e.g., obesity) on pubertal changes in insulin sensitivity.

  19. Carrying Capacity

    Schroll, Henning; Andersen, Jan; Kjærgård, Bente

    2012-01-01

    A spatial planning act was introduced inIndonesia 1992 and renewed in 2008. It emphasised the planning role of decentralised authorities. The spatial planning act covers both spatial and environmental issues. It defines the concept of carrying capacity and includes definitions of supportive....../cities. Four different sectors (water, food production, waste, and forests) were selected as core areas for decentralised spatial planning. Indicators for SCC and ACC were identified and assessed with regard to relevance and quantifiability. For each of the indicators selected, a legal threshold or guiding...... was introduced inIndonesia 1992 and renewed in 2008. It emphasised the planning role of decentralised authorities. The spatial planning act covers both spatial and environmental issues. It defines the concept of carrying capacity and includes definitions of supportive carrying capacity (SCC) and assimilative...

  20. Tattooing to "Toughen up": Tattoo experience and secretory immunoglobulin A.

    Lynn, Christopher D; Dominguez, Johnna T; DeCaro, Jason A

    2016-09-10

    A costly signaling model suggests tattooing inoculates the immune system to heightened vigilance against stressors associated with soft tissue damage. We sought to investigate this "inoculation hypothesis" of tattooing as a costly honest signal of fitness. We hypothesized that the immune system habituates to the tattooing stressor in repeatedly tattooed individuals and that immune response to the stress of the tattooing process would correlate with lifetime tattoo experience. Participants were 24 women and 5 men (aged 18-47). We measured immune function using secretory immunoglobulin A (SIgA) and cortisol (sCORT) in saliva collected before and after tattoo sessions. We measured tattoo experience as a sum of number of tattoos, lifetime hours tattooed, years since first tattoo, percent of body covered, and number of tattoo sessions. We predicted an inverse relationship between SIgA and sCORT and less SIgA immunosuppression among those with more tattoo experience. We used hierarchical multiple regression to test for a main effect of tattoo experience on post-tattoo SIgA, controlling for pretest SIgA, tattoo session duration, body mass, and the interaction between tattoo experience and test session duration. The regression model was significant (P = 0.006) with a large effect size (r(2)  = 0.711) and significant and positive main (P = 0.03) and interaction effects (P = 0.014). Our data suggest that the body habituates over time to the tattooing stressor. It is possible that individuals with healthy immune systems heal faster, making them more likely to get multiple tattoos. Am. J. Hum. Biol. 28:603-609, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Urinary secretory IgA after nutritional rehabilitation

    M.R. Teodósio

    1999-04-01

    Full Text Available We studied the secretory IgA (sIgA response of the mucosal urinary tract of malnourished children before and after nutritional rehabilitation. sIgA concentration (mg/l was determined by ELISA in 187 children aged 3 months to 5 years. The children, who frequented a day care center, were divided into four groups, according to nutritional status: 57 were eutrophic, 49 were undergrown, 57 were moderately malnourished and 24 were severely malnourished. In addition, dip slide (Urotube, Roche and dip-stick (Combur 9-Boehringer tests showed that children had no bacteriuria or any other urinary abnormalities. Plasma albumin concentration (g/dl was significantly lower (P<0.005 in the severely malnourished group (mean 3.0 ± 0.3 SD than in the eutrophic group (mean 4.0 ± 0.5 SD. When each nutritional state was analyzed, no significant differences in the sIgA were found between the 0 |-| 1 and 1 -| 5 year age range. In the moderately and severely malnourished groups, sIgA (0.36 and 0.45, respectively was significantly lower than in the eutrophic (0.69 and undergrown (0.75 groups. Ninety-five children were included in the 8-month follow-up study; 30 children were excluded from the follow-up because 4 had bacteriuria, 11 had leukocyturia, 8 had proteinuria and 7 had hematuria. Among the malnourished children, 40% showed nutritional improvement (P<0.05 and significantly increased sIgA as compared to reference values for the eutrophic and undergrown groups. These data suggest that malnourished children have a significantly lower urinary sIgA than eutrophic children. After nutritional rehabilitation, they develop local immunity with a significant increase in sIgA.

  2. Postnatal development of bile secretory physiology in the dog

    Tavoloni, N.; Jones, M.J.; Berk, P.D.

    1985-01-01

    To determine whether bile formation in the dog is an immature process at birth, several determinants of bile secretion were studied in anesthetized, bile duct-cannulated puppies of 0-42 days of age and adult dogs. Basal canalicular bile flow rate, estimated by 14 C-erythritol biliary clearance, averaged 0.182 microliter/min/g liver in 0-3 day-old puppies and increased to 0.324 and 0.461 microliter/min/g in puppies 7-21 and 28-42 days of age, respectively. Calculated ductular bile water reabsorption ( 14 C-erythritol biliary clearance-bile flow) was virtually absent in 0-3 day-old puppies, and averaged 0.017 and 0.092 microliter/min/g in puppies of 7-21 and 28-42 days of age, respectively. In adult dogs, ductular bile water reabsorption was 0.132 microliter/min/g. These functional deficiencies of the newborn dog were associated with an increased biliary permeability to 3 H-inulin which could not be accounted for solely by an increased solute diffusion due to the lower rate of canalicular bile flow. Administration of taurocholate up to 2000 nmol/min/kg produced in all animals a similar increase in canalicular bile flow and bile acid excretion, and was not associated with changes in ductular bile water reabsorption rate. These findings are interpreted to indicate that, in the dog, bile secretory function is immature at birth and develops during postnatal life

  3. Differential effects of insulin injections and insulin infusions on levels ...

    Studies have shown that while injections of insulin cause an increase in fat mass, infusions of insulin increase fat mass. The aim of this paper was to test the hypothesis that if an increase in glycogen is an indicator of an impending increase in adipose mass, then insulin infusions should not increase glycogen, while insulin ...

  4. Secretory pathway Ca2+/Mn2+-ATPase isoform 2 and lactation: specific localization of plasmalemmal and secretory pathway Ca2+ pump isoforms in the mammary gland

    Faddy, Helen M.; Smart, Chanel E.; Xu, Ren; Lee, Genee Y.; Kenny, Paraic A.; Feng, Mingye; Rao, Rajini; Brown, Melissa A.; Bissell, Mina J.; Roberts-Thomson, Sarah J.; Monteith, Gregory R.

    2008-04-09

    The supply of calcium to the developing neonate via milk is an important physiological process. Until recently the mechanism for the enrichment of milk with calcium was thought to be almost entirely mediated via the secretory pathway. However, recent studies suggest that a specific isoform of the plasma membrane calcium ATPase, PMCA2, is the primary mechanism for calcium transport into milk, highlighting a major role for apical calcium transport. We compared the expression of the recently identified secretory calcium ATPase, SPCA2, and SPCA1, in the mouse mammary gland during different stages of development. SPCA2 levels increased over 35 fold during lactation, while SPCA1 increased only a modest two fold. The potential importance of SPCA2 in lactation was also highlighted by its localization to luminal secretory cells of the mammary gland during lactation, while SPCA1 was expressed throughout the cells of the mammary gland. We also observed major differences in the localization of PMCA2 and PMCA1 during lactation. Using the SCp2 mouse mammary epithelial cell 3D culture model, differences in the sub-cellular distribution of PMCA2 and PMCA1 were clear. These studies highlight the likely specific roles of PMCA2 and SPCA2 in lactation, and link the recently characterized SPCA2 calcium pump to the supply of calcium into milk and the regulation of Golgi resident enzymes important in lactation. They also indicate that calcium transport into milk is a complex interplay between apical and secretory pathways.

  5. Insulin and GLP-1 infusions demonstrate the onset of adipose-specific insulin resistance in a large fasting mammal: potential glucogenic role for GLP-1.

    Viscarra, Jose A; Rodriguez, Ruben; Vazquez-Medina, Jose Pablo; Lee, Andrew; Tift, Michael S; Tavoni, Stephen K; Crocker, Daniel E; Ortiz, Rudy M

    2013-08-01

    Prolonged food deprivation increases lipid oxidation and utilization, which may contribute to the onset of the insulin resistance associated with fasting. Because insulin resistance promotes the preservation of glucose and oxidation of fat, it has been suggested to be an adaptive response to food deprivation. However, fasting mammals exhibit hypoinsulinemia, suggesting that the insulin resistance-like conditions they experience may actually result from reduced pancreatic sensitivity to glucose/capacity to secrete insulin. To determine whether fasting results in insulin resistance or in pancreatic dysfunction, we infused early- and late-fasted seals (naturally adapted to prolonged fasting) with insulin (0.065 U/kg), and a separate group of late-fasted seals with low (10 pM/kg) or high (100 pM/kg) dosages of glucagon-like peptide-1 (GLP-1) immediately following a glucose bolus (0.5g/kg), and measured the systemic and cellular responses. Because GLP-1 facilitates glucose-stimulated insulin secretion, these infusions provide a method to assess pancreatic insulin-secreting capacity. Insulin infusions increased the phosphorylation of insulin receptor and Akt in adipose and muscle of early and late fasted seals; however the timing of the signaling response was blunted in adipose of late fasted seals. Despite the dose-dependent increases in insulin and increased glucose clearance (high dose), both GLP-1 dosages produced increases in plasma cortisol and glucagon, which may have contributed to the glucogenic role of GLP-1. Results suggest that fasting induces adipose-specific insulin resistance in elephant seal pups, while maintaining skeletal muscle insulin sensitivity, and therefore suggests that the onset of insulin resistance in fasting mammals is an evolved response to cope with prolonged food deprivation.

  6. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    Naidoo, C.

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, 125 I-insulin binding to the solubilized erythrocyte membrane receptor and 125 I-insulin binding to fibroblasts in culture

  7. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    Naidoo, C

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, /sup 125/I-insulin binding to the solubilized erythrocyte membrane receptor and /sup 125/I-insulin binding to fibroblasts in culture.

  8. Functional Characterization of Monomeric GTPase Rab1 in the Secretory Pathway of Leishmania*

    Bahl, Surbhi; Parashar, Smriti; Malhotra, Himanshu; Raje, Manoj; Mukhopadhyay, Amitabha

    2015-01-01

    Leishmania secretes a large number of its effectors to the extracellular milieu. However, regulation of the secretory pathway in Leishmania is not well characterized. Here, we report the cloning, expression, and characterization of the Rab1 homologue from Leishmania. We have found that LdRab1 localizes in Golgi in Leishmania. To understand the role of LdRab1 in the secretory pathway of Leishmania, we have generated transgenic parasites overexpressing GFP-LdRab1:WT, GFP-LdRab1:Q67L (a GTPase-deficient dominant positive mutant of Rab1), and GFP-LdRab1:S22N (a GDP-locked dominant negative mutant of Rab1). Surprisingly, our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N does not disrupt the trafficking and localization of hemoglobin receptor in Leishmania. To determine whether the Rab1-dependent secretory pathway is conserved in parasites, we have analyzed the role of LdRab1 in the secretion of secretory acid phosphatase and Ldgp63 in Leishmania. Our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N significantly inhibits the secretion of secretory acid phosphatase by Leishmania. We have also found that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N retains RFP-Ldgp63 in Golgi and blocks the secretion of Ldgp63, whereas the trafficking of RFP-Ldgp63 in GFP-LdRab1:WT-expressing cells is unaltered in comparison with control cells. Taken together, our results have shown that the Rab1-regulated secretory pathway is well conserved, and hemoglobin receptor trafficking follows an Rab1-independent secretory pathway in Leishmania. PMID:26499792

  9. Functional Characterization of Monomeric GTPase Rab1 in the Secretory Pathway of Leishmania.

    Bahl, Surbhi; Parashar, Smriti; Malhotra, Himanshu; Raje, Manoj; Mukhopadhyay, Amitabha

    2015-12-11

    Leishmania secretes a large number of its effectors to the extracellular milieu. However, regulation of the secretory pathway in Leishmania is not well characterized. Here, we report the cloning, expression, and characterization of the Rab1 homologue from Leishmania. We have found that LdRab1 localizes in Golgi in Leishmania. To understand the role of LdRab1 in the secretory pathway of Leishmania, we have generated transgenic parasites overexpressing GFP-LdRab1:WT, GFP-LdRab1:Q67L (a GTPase-deficient dominant positive mutant of Rab1), and GFP-LdRab1:S22N (a GDP-locked dominant negative mutant of Rab1). Surprisingly, our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N does not disrupt the trafficking and localization of hemoglobin receptor in Leishmania. To determine whether the Rab1-dependent secretory pathway is conserved in parasites, we have analyzed the role of LdRab1 in the secretion of secretory acid phosphatase and Ldgp63 in Leishmania. Our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N significantly inhibits the secretion of secretory acid phosphatase by Leishmania. We have also found that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N retains RFP-Ldgp63 in Golgi and blocks the secretion of Ldgp63, whereas the trafficking of RFP-Ldgp63 in GFP-LdRab1:WT-expressing cells is unaltered in comparison with control cells. Taken together, our results have shown that the Rab1-regulated secretory pathway is well conserved, and hemoglobin receptor trafficking follows an Rab1-independent secretory pathway in Leishmania. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. BAG3 regulates formation of the SNARE complex and insulin secretion

    Iorio, V; Festa, M; Rosati, A; Hahne, M; Tiberti, C; Capunzo, M; De Laurenzi, V; Turco, M C

    2015-01-01

    Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release. PMID:25766323

  11. Response of the adrenal medulla to exogenous insulin in head X-irradiated dogs

    Yamashita, K; Mieno, M; Shimizu, T [Nagasaki Univ. (Japan). School of Medicine

    1976-12-01

    The observed results on the secretory response of the adrenal medulla to exogenous insulin in dogs whose heads had been irradiated with 200 rad X-irradiation at a rate of 60.6 rad/min are reported. Approximately 20 h after irradiation 2 i.u. insulin/kg body weight was administered to both irradiated and control (non-irradiated) dogs. The secretion of both adrenaline and noradrenaline in five control dogs which received insulin had increased markedly 30 min after the injection and it was sustained over the first 120 min. Five irradiated dogs also responded to the injection of insulin by secreting appreciable amounts of both adrenaline and noradrenaline, but the responsiveness was considerably lower; adrenaline and noradrenaline secretion 30 and 60 min after the injection was 59 and 33% less than that caused by insulin in control animals respectively, and these differences were significant (P < 0.01). Since insulin induces hypoglycaemia and thereby leads to an increase in the adrenal medullary secretion through the central mechanism, the present results observed 1 day after X-irradiation of the head indicate that the susceptibility of the adrenomedullary activating mechanism in the central nervous system may be diminished considerably after X-irradiation, even at doses as low as 200 rad.

  12. Response of the adrenal medulla to exogenous insulin in head X-irradiated dogs

    Yamashita, K.; Mieno, M.; Shimizu, T.

    1976-01-01

    The observed results on the secretory response of the adrenal medulla to exogenous insulin in dogs whose heads had been irradiated with 200 rad X-irradiation at a rate of 60.6 rad/min are reported. Approximately 20 h after irradiation 2 i.u. insulin/kg body weight was administered to both irradiated and control (non-irradiated) dogs. The secretion of both adrenaline and noradrenaline in five control dogs which received insulin had increased markedly 30 min after the injection and it was sustained over the first 120 min. Five irradiated dogs also responded to the injection of insulin by secreting appreciable amounts of both adrenaline and noradrenaline, but the responsiveness was considerably lower; adrenaline and noradrenaline secretion 30 and 60 min after the injection was 59 and 33% less than that caused by insulin in control animals respectively, and these differences were significant (P < 0.01). Since insulin induces hypoglycaemia and thereby leads to an increase in the adrenal medullary secretion through the central mechanism, the present results observed 1 day after X-irradiation of the head indicate that the susceptibility of the adrenomedullary activating mechanism in the central nervous system may be diminished considerably after X-irradiation, even at doses as low as 200 rad. (U.K.)

  13. Influence of Unweighting on Insulin Signal Transduction in Muscle

    Tischler, Marc E.

    2002-01-01

    Unweighting of the juvenile soleus muscle is characterized by an increased binding capacity for insulin relative to muscle mass due to sparing of the receptors during atrophy. Although carbohydrate metabolism and protein degradation in the unweighted muscle develop increased sensitivity to insulin in vivo, protein synthesis in vivo and system A amino acid transport in vitro do not appear to develop such an enhanced response. The long-term goal is to identify the precise nature of this apparent resistance in the insulin signal transduction pathway and to consider how reduced weight-bearing may elicit this effect, by evaluating specific components of the insulin signalling pathway. Because the insulin-signalling pathway has components in common with the signal transduction pathway for insulin-like growth factor (IGF-1) and potentially other growth factors, the study could have important implications in the role of weight-bearing function on muscle growth and development. Since the insulin signalling pathway diverges following activation of insulin receptor tyrosine kinase, the immediate specific aims will be to study the receptor tyrosine kinase (IRTK) and those branches, which lead to phosphorylation of insulin receptor substrate-1 (IRS-1) and of Shc protein. To achieve these broader objectives, we will test in situ, by intramuscular injection, the responses of glucose transport, system A amino acid transport and protein synthesis to insulin analogues for which the receptor has either a weaker or much stronger binding affinity compared to insulin. Studies will include: (1) estimation of the ED(sub 50) for each analogue for these three processes; (2) the effect of duration (one to four days) of unweighting on the response of each process to all analogues tested; (3) the effect of unweighting and the analogues on IRTK activity; and (4) the comparative effects of unweighting and analogue binding on the tyrosine phosphorylation of IRTK, IRS-1, and Shc protein.

  14. Exerting Capacity.

    Leger, J Michael; Phillips, Carolyn A

    2017-05-01

    Patient safety has been at the forefront of nursing research since the release of the Institute of Medicine's report estimating the number of preventable adverse events in hospital settings; yet no research to date has incorporated the perspectives of bedside nurses using classical grounded theory (CGT) methodology. This CGT study explored the perceptions of bedside registered nurses regarding patient safety in adult acute care hospitals. Data analysis used three techniques unique to CGT-the constant comparative method, coding, and memoing-to explore the values, realities, and beliefs of bedside nurses about patient safety. The analysis resulted in a substantive theory, Exerting Capacity, which explained how bedside nurses balance the demands of keeping their patients safe. Exerting Capacity has implications for health care organization leaders, nursing leaders, and bedside nurses; it also has indications for future research into the concept of patient safety.

  15. 65Zinc and endogenous zinc content and distribution in islets in relationship to insulin content

    Figlewicz, D.P.; Forhan, S.E.; Hodgson, A.T.; Grodsky, G.M.

    1984-01-01

    Uptake of 65 Zn and distribution of 65 Zn, total zinc, and insulin were measured in rat islets and islet granules under different conditions of islet culture. Specific activity of islet zinc ( 65 Zn/zinc) was less than 15% that of extracellular zinc even after 48 h. In contrast, once in the islet, 65 Zn approached 70% of equilibrium with granular zinc in 24 h and apparent equilibrium by 48 h. During a 24-h culture, at either high or low glucose, reduction of both islet zinc and insulin occurred. However, zinc depletion was greater than that predicted if zinc loss was proportional to insulin depletion and occurred only from the granular compartment, which represents only one third of the total islet zinc. Extension of culture to 48 h caused additional insulin depletion, but islet zinc was unchanged. Omission of calcium during the 48-h culture caused a predicted increase in insulin retention, presumably by inhibiting secretion; however, zinc retention was not increased proportionately. Pretreatment of rats with tolbutamide caused a massive depletion of insulin stored in isolated islets, with little change in total islet zinc; subsequent culture of these islets resulted in a greater loss of granular zinc than predicted from the small loss of granular insulin. None of the conditions tested affected the percentage of either 65 Zn or total zinc that was distributed in the islet granules. Results show that zinc exists in a metabolically labile islet compartment(s) as well as in secretory granules; and extra-granular zinc, although not directly associated with insulin storage, may act as a reservoir for granular zinc and may regulate insulin synthesis, storage, and secretion in ways as yet unknown

  16. Radioreceptor assay for insulin

    Suzuki, Kazuo [Tokyo Univ. (Japan). Faculty of Medicine

    1975-04-01

    Radioreceptor assay of insulin was discussed from the aspects of the measuring method, its merits and problems to be solved, and its clinical application. Rat liver 10 x g pellet was used as receptor site, and enzymatic degradation of insulin by the system contained in this fraction was inhibited by adding 1 mM p-CMB. /sup 125/I-labelled porcine insulin was made by lactoperoxidase method under overnight incubation at 4/sup 0/C and later purification by Sephadex G-25 column and Whatman CF-11 cellulose powder. Dog pancreatic vein serum insulin during and after the glucose load was determined by radioreceptor assay and radioimmunoassay resulting that both measurements accorded considerably. Radioreceptor assay would clarify the pathology of disorders of glucose metabolism including diabetes.

  17. AMPK and insulin action

    Frøsig, Christian; Jensen, Thomas Elbenhardt; Jeppesen, Jacob

    2013-01-01

    The 5'-AMP-activated protein kinase (AMPK) is considered "a metabolic master-switch" in skeletal muscle reducing ATP- consuming processes whilst stimulating ATP regeneration. Within recent years, AMPK has also been proposed as a potential target to attenuate insulin resistance, although the exact...... role of AMPK is not well understood. Here we hypothesized that mice lacking a2AMPK activity in muscle would be more susceptible to develop insulin resistance associated with ageing alone or in combination with high fat diet. Young (~4 month) or old (~18 month) wild type and muscle specific a2AMPK...... kinase-dead mice on chow diet as well as old mice on 17 weeks of high fat diet were studied for whole body glucose homeostasis (OGTT, ITT and HOMA-IR), insulin signaling and insulin-stimulated glucose uptake in muscle. We demonstrate that high fat diet in old mice results in impaired glucose homeostasis...

  18. Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse

    Ning, Jie; Hong, Tao; Yang, Xuefeng; Mei, Shuang; Liu, Zhenqi; Liu, Hui-Yu

    2011-01-01

    The primary player that induces insulin resistance has not been established. Here, we studied whether or not fat can cause insulin resistance in the presence of insulin deficiency. Our results showed that high-fat diet (HFD) induced insulin resistance in C57BL/6 (B6) mice. The HFD-induced insulin resistance was prevented largely by the streptozotocin (STZ)-induced moderate insulin deficiency. The STZ-induced insulin deficiency prevented the HFD-induced ectopic fat accumulation and oxidative stress in liver and gastrocnemius. The STZ-induced insulin deficiency prevented the HFD- or insulin-induced increase in hepatic expression of long-chain acyl-CoA synthetases (ACSL), which are necessary for fatty acid activation. HFD increased mitochondrial contents of long-chain acyl-CoAs, whereas it decreased mitochondrial ADP/ATP ratio, and these HFD-induced changes were prevented by the STZ-induced insulin deficiency. In cultured hepatocytes, we observed that expressions of ACSL1 and -5 were stimulated by insulin signaling. Results in cultured cells also showed that blunting insulin signaling by the PI3K inhibitor LY-294002 prevented fat accumulation, oxidative stress, and insulin resistance induced by the prolonged exposure to either insulin or oleate plus sera that normally contain insulin. Finally, knockdown of the insulin receptor prevented the oxidative stress and insulin resistance induced by the prolonged exposure to insulin or oleate plus sera. Together, our results show that insulin and insulin signaling are required for fat induction of insulin resistance in mice and cultured mouse hepatocytes. PMID:21586696

  19. Establishing human lacrimal gland cultures with secretory function.

    Shubha Tiwari

    Full Text Available PURPOSE: Dry eye syndrome is a multifactorial chronic disabling disease mainly caused by the functional disruptions in the lacrimal gland. The treatment involves palliation like ocular surface lubrication and rehydration. Cell therapy involving replacement of the gland is a promising alternative for providing long-term relief to patients. This study aimed to establish functionally competent lacrimal gland cultures in-vitro and explore the presence of stem cells in the native gland and the established in-vitro cultures. METHODS: Fresh human lacrimal gland from patients undergoing exenteration was harvested for cultures after IRB approval. The freshly isolated cells were evaluated by flow cytometry for expression of stem cell markers ABCG2, high ALDH1 levels and c-kit. Cultures were established on Matrigel, collagen and HAM and the cultured cells evaluated for the presence of stem cell markers and differentiating markers of epithelial (E-cadherin, EpCAM, mesenchymal (Vimentin, CD90 and myofibroblastic (α-SMA, S-100 origin by flow cytometry and immunocytochemistry. The conditioned media was tested for secretory proteins (scIgA, lactoferrin, lysozyme post carbachol (100 µM stimulation by ELISA. RESULTS: Native human lacrimal gland expressed ABCG2 (mean±SEM: 3.1±0.61%, high ALDH1 (3.8±1.26% and c-kit (6.7±2.0%. Lacrimal gland cultures formed a monolayer, in order of preference on Matrigel, collagen and HAM within 15-20 days, containing a heterogeneous population of stem-like and differentiated cells. The epithelial cells formed 'spherules' with duct like connections, suggestive of ductal origin. The levels of scIgA (47.43 to 61.56 ng/ml, lysozyme (24.36 to 144.74 ng/ml and lactoferrin (32.45 to 40.31 ng/ml in the conditioned media were significantly higher than the negative controls (p<0.05 for all comparisons. CONCLUSION: The study reports the novel finding of establishing functionally competent human lacrimal gland cultures in-vitro. It also

  20. Insulin degludec versus insulin glargine in insulin-naive patients with type 2 diabetes

    Zinman, Bernard; Philis-Tsimikas, Athena; Cariou, Bertrand

    2012-01-01

    To compare ultra-long-acting insulin degludec with glargine for efficacy and safety in insulin-naive patients with type 2 diabetes inadequately controlled with oral antidiabetic drugs (OADs).......To compare ultra-long-acting insulin degludec with glargine for efficacy and safety in insulin-naive patients with type 2 diabetes inadequately controlled with oral antidiabetic drugs (OADs)....

  1. Insulin and Glucagon

    Holst, Jens Juul; Holland, William; Gromada, Jesper

    2017-01-01

    In August 2016, several leaders in glucagon biology gathered for the European Association for the Study of Diabetes Hagedorn Workshop in Oxford, England. A key point of discussion focused on the need for basal insulin to allow for the therapeutic benefit of glucagon blockade in the treatment...... of the discussion as a consensus was reached. Agents that antagonize glucagon may be of great benefit for the treatment of diabetes; however, sufficient levels of basal insulin are required for their therapeutic efficacy....

  2. Imaging Polarized Secretory Traffic at the Immune Synapse in Living T Lymphocytes.

    Calvo, Víctor; Izquierdo, Manuel

    2018-01-01

    Immune synapse (IS) formation by T lymphocytes constitutes a crucial event involved in antigen-specific, cellular and humoral immune responses. After IS formation by T lymphocytes and antigen-presenting cells, the convergence of secretory vesicles toward the microtubule-organizing center (MTOC) and MTOC polarization to the IS are involved in polarized secretion at the synaptic cleft. This specialized mechanism appears to specifically provide the immune system with a fine strategy to increase the efficiency of crucial secretory effector functions of T lymphocytes, while minimizing non-specific, cytokine-mediated stimulation of bystander cells, target cell killing and activation-induced cell death. The molecular bases involved in the polarized secretory traffic toward the IS in T lymphocytes have been the focus of interest, thus different models and several imaging strategies have been developed to gain insights into the mechanisms governing directional secretory traffic. In this review, we deal with the most widely used, state-of-the-art approaches to address the molecular mechanisms underlying this crucial, immune secretory response.

  3. Effects of 5-fluorouracil on the secretory process of the rat parotid gland

    Sandborg, R.R.

    1986-01-01

    Experimental animals were injected intraperitoneally with 100 mg/kg 5-fluorouracil for three days. The total volume, amylase and protein content of cannulated parotid saliva were determined following stimulation with either 5 mg/kg pilocarpine or 5 mg/kg isoproterenol in experimental, pair-fed , and control animals. Saliva from experimental animals was significantly lower in volume, amylase and protein content than both control groups. 5-fluorouracil treatment reduced the total glandular amylase per unit DNA in both unstimulated and isoproterenol-stimulated parotid glands. Decreased protein synthesis may be the mechanism underlying depleted secretory protein stores since the contents of isolated secretory granules from experimental parotid glands contained less radiolabelled protein than either control group and whole gland homogenates showed marked reductions in the activities of three lysosomal enzymes and total RNA content. Experimental animals contained less labelled protein in their secretory granules than controls, but secreted a greater proportion of their total glandular radiolabelled secretory protein into saliva relative to amylase suggesting that newly synthesized secretory proteins are preferentially secreted

  4. Effects of 5-fluorouracil on the secretory process of the rat parotid gland

    Sandborg, R.R.

    1986-01-01

    Experimental animals were injected intraperitoneally with 100 mg/kg 5-fluorouracil for three days. The total volume, amylase and protein content of cannulated parotid saliva were determined following stimulation with either 5 mg/kg pilocarpine or 5 mg/kg isoproterenol in experimental, pair-fed , and control animals. Saliva from experimental animals was significantly lower in volume, amylase and protein content than both control groups. 5-fluorouracil treatment reduced the total glandular amylase per unit DNA in both unstimulated and isoproterenol-stimulated parotid glands. Decreased protein synthesis may be the mechanism underlying depleted secretory protein stores since the contents of isolated secretory granules from experimental parotid glands contained less radiolabelled protein than either control group and whole gland homogenates showed marked reductions in the activities of three lysosomal enzymes and total RNA content. Experimental animals contained less labelled protein in their secretory granules than controls, but secreted a greater proportion of their total glandular radiolabelled secretory protein into saliva relative to amylase suggesting that newly synthesized secretory proteins are preferentially secreted.

  5. Coordinated activation of the secretory pathway during notochord formation in the Xenopus embryo.

    Tanegashima, Kosuke; Zhao, Hui; Rebbert, Martha L; Dawid, Igor B

    2009-11-01

    We compared the transcriptome in the developing notochord of Xenopus laevis embryos with that of other embryonic regions. A coordinated and intense activation of a large set of secretory pathway genes was observed in the notochord, but not in notochord precursors in the axial mesoderm at early gastrula stage. The genes encoding Xbp1 and Creb3l2 were also activated in the notochord. These two transcription factors are implicated in the activation of secretory pathway genes during the unfolded protein response, where cells react to the stress of a build-up of unfolded proteins in their endoplasmic reticulum. Xbp1 and Creb3l2 are differentially expressed but not differentially activated in the notochord. Reduction of expression of Xbp1 or Creb3l2 by injection of antisense morpholinos led to strong deficits in notochord but not somitic muscle development. In addition, the expression of some, but not all, genes encoding secretory proteins was inhibited by injection of xbp1 morpholinos. Furthermore, expression of activated forms of Xbp1 or Creb3l2 in animal explants could activate a similar subset of secretory pathway genes. We conclude that coordinated activation of a battery of secretory pathway genes mediated by Xbp1 and Creb/ATF factors is a characteristic and necessary feature of notochord formation.

  6. Clinical, immunologic and insulin secretory characteristics of young black South African patients with diabetes: Hospital based single centre study.

    Ekpebegh, C O; Longo-Mbenza, B

    2013-03-01

    To classify and characterize the clinical features of various diabetes classes among young black South Africans. Cross sectional study of 60 black patients with diabetes, all less than 30 years of age and attending Nelson Mandela Academic Hospital, Mthatha, South Africa. Diabetes was classified as Types 1A, 1B and 2 based on the anti-glutamic acid decarboxylase status and serum C-peptide response to intravenous injection of glucagon. Mean age was 19.6±4.8 years (n=60) with similar gender distribution. The mean duration of diabetes was 24.2±45.1 months. Type 1A was the class of diabetes in 55% (n=33/60) of patients. Type 1B and 2 accounted for 30% (n=18/60) and 15% (n=9/60) of patients respectively. Patients classified as Type 2 had higher waist circumference and higher prevalence of acanthosis nigricans than Types 1A and 1B groups. History of diabetes in a first degree relative and hypertension were found in similar proportions of patients with Types 1A, 1B and 2 diabetes. Five Type 1A diabetes patients had body mass index of 26.2-41kg/m(2) and this included two newly diagnosed patients with body mass index of 26.7kg/m(2) and 33.2kg/m(2). The majority of our young black South Africans with diabetes are of the Type 1A class. Acanthosis nigricans was not found in any patient with Type 1 A diabetes. A minority of Type 1 A diabetes patients were obese at initial diagnosis. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Capacity Building

    Molloy, Brian; Mallick, Shahid

    2014-01-01

    Outcomes & Recommendations: • Significant increase needed in the nuclear workforce both to replace soon-to-retire current generation and to staff large numbers of new units planned • Key message, was the importance of an integrated approach to workforce development. • IAEA and other International Organisations were asked to continue to work on Knowledge Management, Networks and E&T activities • IAEA requested to conduct Global Survey of HR needs – survey initiated but only 50% of operating countries (30% of capacity) took part, so results inconclusive

  8. Effect of Semen on Vaginal Fluid Cytokines and Secretory Leukocyte Protease Inhibitor

    Kathy J. Agnew

    2008-01-01

    Methods: 138 pregnant women had vaginal fluid collected for Gram stain, acid phosphatase detection by colorimetric assay, and interleukin 1-Beta, interleukin-6, interleukin-8, and secretory leukocyte protease inhibitor measurement by enzyme immunoassay. Results for women with and without acid phosphatase were compared by Mann-Whitney test. Results: of 138 subjects, 28 (20% had acid phosphatase detected; of these, only 19 (68% reported recent intercourse and 3 (11% had sperm seen on Gram stain. There were no significant differences in proinflammatory cytokine concentrations; however, secretory leukocyte protease inhibitor concentrations were significantly higher among women with acid phosphatase. Conclusions: proinflammatory cytokine measurement does not appear to be affected by the presence of semen, but secretory leukocyte protease inhibitor is significantly higher when semen is present. Detection of semen by acid phosphatase was associated with higher vaginal SLPI concentrations, however, the presence of semen did not appear to influence vaginal proinflammatory cytokine concentrations.

  9. Dipeptidyl peptidase IV is sorted to the secretory granules in pancreatic islet A-cells

    Poulsen, Mona Dam; Hansen, Gert Helge; Dabelsteen, Erik

    1993-01-01

    Dipeptidyl peptidase IV (DP IV:EC 3.4.14.5) was localized in endocrine cells of pig pancreas by immunohistochemical and enzyme histochemical methods. Immunolight microscopy with both monoclonal and polyclonal antibodies demonstrated DP IV immunoreactivity in cells located in the peripheral part...... of the islets of Langerhans. The antigen is enzymatically active, as shown by enzyme histochemical analysis with a synthetic DP IV substrate. By immunoelectron microscopy (immunogold labeling), the labeling of DP IV in the islets was associated with the secretory granules of the A-cells, as identified by double...... labeling using a monoclonal glucagon antibody as the second primary antibody. These results show that DP IV is sorted to secretory granules in the pig pancreatic islet A-cells. Furthermore, this secretory granule enzyme, as opposed to intestinal brush border DP IV, is suggested to be a soluble protein...

  10. Aspirin induces morphological transformation to the secretory state in isolated rabbit parietal cells.

    Murthy, U K; Levine, R A

    1991-08-01

    The morphological response of rabbit parietal cells to aspirin was evaluated by grading several ultra-structural features including the extent of the tubulovesicular system, intracellular secretory canaliculi, and microvilli. After exposure of isolated parietal cells and gastric glands to aspirin or histamine, there was an approximately twofold increase in the ratio of secretory to nonsecretory parietal cells, and depletion of extracellular Ca2+ abolished the aspirin-induced morphological changes. Morphometry in parietal cells showed that aspirin induced a sixfold increase in secretory canalicular membrane elaboration. Aspirin potentiated histamine-induced parietal cell respiration and aminopyrine uptake ratio but did not increase basal respiration or aminopyrine uptake, suggesting an apparent dissociation from aspirin-induced morphological changes.

  11. Microbiota promote secretory cell determination in the intestinal epithelium by modulating host Notch signaling.

    Troll, Joshua V; Hamilton, M Kristina; Abel, Melissa L; Ganz, Julia; Bates, Jennifer M; Stephens, W Zac; Melancon, Ellie; van der Vaart, Michiel; Meijer, Annemarie H; Distel, Martin; Eisen, Judith S; Guillemin, Karen

    2018-02-23

    Resident microbes promote many aspects of host development, although the mechanisms by which microbiota influence host tissues remain unclear. We showed previously that the microbiota is required for allocation of appropriate numbers of secretory cells in the zebrafish intestinal epithelium. Because Notch signaling is crucial for secretory fate determination, we conducted epistasis experiments to establish whether the microbiota modulates host Notch signaling. We also investigated whether innate immune signaling transduces microbiota cues via the Myd88 adaptor protein. We provide the first evidence that microbiota-induced, Myd88-dependent signaling inhibits host Notch signaling in the intestinal epithelium, thereby promoting secretory cell fate determination. These results connect microbiota activity via innate immune signaling to the Notch pathway, which also plays crucial roles in intestinal homeostasis throughout life and when impaired can result in chronic inflammation and cancer. © 2018. Published by The Company of Biologists Ltd.

  12. Insulin redirects differentiation from cardiogenic mesoderm and endoderm to neuroectoderm in differentiating human embryonic stem cells.

    Freund, C.M.A.H.; Ward-van Oostwaard, D.; Monshouwer-Kloots, J.; van den Brink, S.; van Rooijen, M.A.; Xu, X.; Zweigerdt, R.; Mummery, C.L.; Passier, R.

    2008-01-01

    Human embryonic stem cells (hESC) can proliferate indefinitely while retaining the capacity to form derivatives of all three germ layers. We have reported previously that hESC differentiate into cardiomyocytes when cocultured with a visceral endoderm-like cell line (END-2). Insulin/insulin-like

  13. Exogenous insulin does not increase muscle protein synthesis rate when administered systemically: a systematic review

    Trommelen, J.; Groen, B.; Hamer, H.M.; Groot, de C.P.G.M.; Loon, van L.J.C.

    2015-01-01

    Background Though it is well appreciated that insulin plays an important role in the regulation of muscle protein metabolism, there is much discrepancy in the literature on the capacity of exogenous insulin administration to increase muscle protein synthesis rates in vivo in humans. Objective To

  14. Distribution and structure of internal secretory reservoirs on the vegetative organs of Inula helenium L. (Asteraceae

    Aneta Sulborska

    2012-12-01

    Full Text Available The aim of the study was to investigate the structure and topography of endogenous secretory tissues of Inula helenium L. By using light and electron microscopy, morphological and anatomical observations of stems, leaves and rhizomes were made. It was shown that in the stems secretory cavities were situated in the vicinity of phloem and xylem bundles. The number of the reservoirs reached its maximum value (34 at shoot flowerig termination, whereas the cavities with the largest diameter were observed at full flowering stage (44.6 µm. In the leaf petioles and midribs, the reservoirs also accompanied the vascular bundles, and their number and size increased along with the growth of the assimilation organs. Observations of the cross sections of the rhizomes revealed the presence of several rings of secretory reservoirs. The measurements of the cavities showed that as a rule the reservoirs with a larger dimension were located in the phelloderm, whereas the smallest ones in the xylem area. The secretory cavities located in the stems and leaves developed by schizogenesis, whereas the rhizome reservoirs were probably formed schizolisygenously. The cells lining the reservoirs formed a one - four-layered epithelium. Observed in TEM, the secretory cells of the mature cavities located in the rhizomes were characterised by the presence of a large central vacuole, whereas the protoplast was largely degraded. Fibrous elements of osmophilic secretion and numerous different coloured vesicles could be distinguished in it. The cell walls formed, from the side of the reservoir lumen, ingrowths into the interior of the epithelial cells. Between the cell wall and the plasmalemma of the glandular cells, a brighter periplasmatic zone with secretory vesicles was observed.

  15. Changes in mean plasma ACTH reflect changes in amplitude and frequency of secretory pulses

    Carnes, M.; Lent, S.J.; Erisman, S.; Feyzi, J.

    1988-01-01

    ACTH is secreted in an episodic manner from the anterior pituitary. Unanesthetized rats with indwelling jugular and femoral venous cannulae were continuously bled and simultaneously infused with isotonic fluid by peristaltic pump. Two-minute blood samples were collected for up to five hours in 8 male rats. ACTH was measured by radioimmunoassay. The resulting time series were analyzed for significant secretory pulses with the PULSAR program. Elevations or declines in mean plasma ACTH levels were associated with significant changes in amplitude and frequency of secretory pulses

  16. Insulin secretion and insulin action in non-insulin-dependent diabetes mellitus: which defect is primary?

    Reaven, G M

    1984-01-01

    Defects in both insulin secretion and insulin action exist in patients with non-insulin-dependent diabetes mellitus (NIDDM). The loss of the acute plasma insulin response to intravenous glucose is seen in patients with relatively mild degrees of fasting hyperglycemia, but patients with severe fasting hyperglycemia also demonstrate absolute hypoinsulinemia in response to an oral glucose challenge. In contrast, day-long circulating insulin levels are within normal limits even in severely hyperglycemic patients with NIDDM. The relationship between NIDDM and insulin action in NIDDM is less complex, and is a characteristic feature of the syndrome. This metabolic defect is independent of obesity, and the severity of the resistance to insulin-stimulated glucose uptake increases with magnitude of hyperglycemia. Control of hyperglycemia with exogenous insulin ameliorates the degree of insulin resistance, and reduction of insulin resistance with weight loss in obese patients with NIDDM leads to an enhanced insulin response. Since neither therapeutic intervention is capable of restoring all metabolic abnormalities to normal, these observations do not tell us which of these two defects is primarily responsible for the development of NIDDM. Similarly, the observation that most patients with impaired glucose tolerance are hyperinsulinemic and insulin resistant does not prove that insulin resistance is the primary defect in NIDDM. In conclusion, reduction in both insulin secretion and action is seen in patients with NIDDM, and the relationship between these two metabolic abnormalities is very complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Molecular Mechanisms of Insulin Secretion and Insulin Action.

    Flatt, Peter R.; Bailey, Clifford J.

    1991-01-01

    Information and current ideas on the factors regulating insulin secretion, the mechanisms underlying the secretion and biological actions of insulin, and the main characteristics of diabetes mellitus are presented. (Author)

  18. Improved insulin sensitivity after exercise: focus on insulin signaling

    Frøsig, Christian; Richter, Erik

    2009-01-01

    After a single bout of exercise, the ability of insulin to stimulate glucose uptake is markedly improved locally in the previously active muscles. This makes exercise a potent stimulus counteracting insulin resistance characterizing type 2 diabetes (T2D). It is believed that at least part...... of the mechanism relates to an improved ability of insulin to stimulate translocation of glucose transporters (GLUT4) to the muscle membrane after exercise. How this is accomplished is still unclear; however, an obvious possibility is that exercise interacts with the insulin signaling pathway to GLUT4...... translocation allowing for a more potent insulin response. Parallel to unraveling of the insulin signaling cascade, this has been investigated within the past 25 years. Reviewing existing studies clearly indicates that improved insulin action can occur independent of interactions with proximal insulin signaling...

  19. Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation.

    Nils Paulmann

    2009-10-01

    Full Text Available While serotonin (5-HT co-localization with insulin in granules of pancreatic beta-cells was demonstrated more than three decades ago, its physiological role in the etiology of diabetes is still unclear. We combined biochemical and electrophysiological analyses of mice selectively deficient in peripheral tryptophan hydroxylase (Tph1-/- and 5-HT to show that intracellular 5-HT regulates insulin secretion. We found that these mice are diabetic and have an impaired insulin secretion due to the lack of 5-HT in the pancreas. The pharmacological restoration of peripheral 5-HT levels rescued the impaired insulin secretion in vivo. These findings were further evidenced by patch clamp experiments with isolated Tph1-/- beta-cells, which clearly showed that the secretory defect is downstream of Ca(2+-signaling and can be rescued by direct intracellular application of 5-HT via the clamp pipette. In elucidating the underlying mechanism further, we demonstrate the covalent coupling of 5-HT by transglutaminases during insulin exocytosis to two key players in insulin secretion, the small GTPases Rab3a and Rab27a. This renders them constitutively active in a receptor-independent signaling mechanism we have recently termed serotonylation. Concordantly, an inhibition of such activating serotonylation in beta-cells abates insulin secretion. We also observed inactivation of serotonylated Rab3a by enhanced proteasomal degradation, which is in line with the inactivation of other serotonylated GTPases. Our results demonstrate that 5-HT regulates insulin secretion by serotonylation of GTPases within pancreatic beta-cells and suggest that intracellular 5-HT functions in various microenvironments via this mechanism in concert with the known receptor-mediated signaling.

  20. The Role of Insulin, Insulin Growth Factor, and Insulin-Degrading Enzyme in Brain Aging and Alzheimer's Disease

    Messier, Claude; Teutenberg, Kevin

    2005-01-01

    Most brain insulin comes from the pancreas and is taken up by the brain by what appears to be a receptor-based carrier. Type 2 diabetes animal models associated with insulin resistance show reduced insulin brain uptake and content. Recent data point to changes in the insulin receptor cascade in obesity-related insulin resistance, suggesting that brain insulin receptors also become less sensitive to insulin, which could reduce synaptic plasticity. Insulin transport to the brain is reduced in a...

  1. File list: InP.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available InP.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Input control Uterus Fallopian tube secret...iencedbc.jp/kyushu-u/hg19/assembled/InP.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  2. File list: InP.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available InP.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Input control Uterus Fallopian tube secret...iencedbc.jp/kyushu-u/hg19/assembled/InP.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  3. File list: InP.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available InP.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Input control Uterus Fallopian tube secret...iencedbc.jp/kyushu-u/hg19/assembled/InP.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  4. File list: InP.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available InP.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Input control Uterus Fallopian tube secret...iencedbc.jp/kyushu-u/hg19/assembled/InP.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  5. File list: His.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available His.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Histone Uterus Fallopian tube secret...2681,SRX1002688 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  6. File list: His.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available His.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Histone Uterus Fallopian tube secret...2688,SRX1002689 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.10.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  7. File list: His.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available His.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Histone Uterus Fallopian tube secret...2680,SRX1002681 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  8. File list: His.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Full Text Available His.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 Histone Uterus Fallopian tube secret...2689,SRX1002688 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  9. Tailoring Escherichia coli for the L-rhamnose PBAD promoter-based production of membrane and secretory proteins

    Hjelm, Anna; Karyolaimos, Alexandros; Zhang, Zhe; Rujas, Edurne; Vikström, David; Slotboom, Dirk Jan; de Gier, Jan-Willem

    Membrane and secretory protein production in Escherichia coli requires precisely controlled production rates to avoid the deleterious saturation of their biogenesis pathways. Based on this requirement, the E. coli L-rhamnose PBAD promoter (PrhaBAD) is often used for membrane and secretory protein

  10. Chemical and thermal stability of insulin

    Huus, Kasper; Havelund, Svend; Olsen, Helle B

    2006-01-01

    To study the correlation between the thermal and chemical stability of insulin formulations with various insulin hexamer ligands.......To study the correlation between the thermal and chemical stability of insulin formulations with various insulin hexamer ligands....

  11. Measurement of insulin and C-peptide excitatory test levels in gestational diabetes mellitus

    Du Tongxin; Wang Zizheng

    2001-01-01

    To investigate the function of islet β cells in patients with gestational diabetes mellitus (GDM), serum insulin and C-peptide (C-P) excitatory test levels were measured dynamically by radioimmunoassay in 41 patients with GDM and 30 normal pregnant controls. The results showed that there were significant difference in insulin and C-peptide excitatory test levels between normal pregnancy for 32-40 weeks and patients with GDM (P < 0.001). The secretory peak of insulin occurred at 60 min in normal pregnancy, while at 120 min in patients with GDM, and the recovery postponed in patients with GDM. The peak time for C-P was just as same as that of insulin, but the peak error for C-P between normal pregnant controls and patients with GDM was more larger than that for insulin and it recovered more slowly. It suggested that majority of islet β cells in patients with GDM were good enough for response to islet resistance factors and big stress from pregnancy, and also suggested a relation between pregnancy and islet β cells function

  12. The GTPase Rab37 Participates in the Control of Insulin Exocytosis.

    Sanda Ljubicic

    Full Text Available Rab37 belongs to a subclass of Rab GTPases regulating exocytosis, including also Rab3a and Rab27a. Proteomic studies indicate that Rab37 is associated with insulin-containing large dense core granules of pancreatic β-cells. In agreement with these observations, we detected Rab37 in extracts of β-cell lines and human pancreatic islets and confirmed by confocal microscopy the localization of the GTPase on insulin-containing secretory granules. We found that, as is the case for Rab3a and Rab27a, reduction of Rab37 levels by RNA interference leads to impairment in glucose-induced insulin secretion and to a decrease in the number of granules in close apposition to the plasma membrane. Pull-down experiments revealed that, despite similar functional effects, Rab37 does not interact with known Rab3a or Rab27a effectors and is likely to operate through a different mechanism. Exposure of insulin-secreting cells to proinflammatory cytokines, fatty acids or oxidized low-density lipoproteins, mimicking physiopathological conditions that favor the development of diabetes, resulted in a decrease in Rab37 expression. Our data identify Rab37 as an additional component of the machinery governing exocytosis of β-cells and suggest that impaired expression of this GTPase may contribute to defective insulin release in pre-diabetic and diabetic conditions.

  13. Future of newer basal insulin

    Madhu, S. V.; Velmurugan, M.

    2013-01-01

    Basal insulin have been developed over the years. In recent times newer analogues have been added to the armanentarium for diabetes therapy. This review specifically reviews the current status of different basal insulins

  14. Insulin C-peptide test

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...

  15. Passive administration of purified secretory IgA from human colostrum induces protection against Mycobacterium tuberculosis in a murine model of progressive pulmonary infection

    Alvarez Nadine

    2013-02-01

    Full Text Available Abstract Background Immunoglobulin A is the most abundant isotype in secretions from mucosal surfaces of the gastrointestinal, respiratory and genitourinary tracts and in external secretions such as colostrum, breast milk, tears and saliva. The high concentration of human secretory IgA (hsIgA in human colostrum strongly suggests that it should play an important role in the passive immune protection against gastrointestinal and respiratory infections. Materials and methods Human secretory IgA was purified from colostrum. The reactivity of hsIgA against mycobacterial antigens and its protective capacity against mycobacterial infection was evaluated. Results The passive administration of hsIgA reduces the pneumonic area before challenge with M. tuberculosis. The intratracheal administration of M. tuberculosis preincubated with hsIgA to mice greatly reduced the bacterial load in the lungs and diminished lung tissue injury. Conclusions HsIgA purified from colostrum protects against M. tuberculosis infection in an experimental mouse model.

  16. Ghrelin differentially affects hepatic and peripheral insulin sensitivity in mice

    Heijboer, A.C.; Hoek, A.M. van den; Parlevliet, E.T.; Havekes, L.M.; Romijn, J.A.; Pijl, H.; Corssmit, E.P.M.

    2006-01-01

    Aims/hypothesis: This study was conducted to evaluate the effects of ghrelin on insulin's capacity to suppress endogenous glucose production and promote glucose disposal in mice. To establish whether the growth hormone secretagogue (GHS) receptor can mediate the putative effect of ghrelin on the

  17. Preparative isolation by high performance liquid chromatography of human insulin B chain produced in escherichia coli

    Cruz, N.; Antonio, S.; De Anda, R.; Gosset, G.; Bolivar, F. (Centro de Investigacion sobre Ingenieria Genetica y Biotecnologia, Universidad Nacional Autonoma de Mexico, Apdo. Postal 510-3 Cuernavaca, Mor. 62271 (MX))

    1990-01-01

    This paper reports on a simple method developed for the analytical and preparative purification of human insulin B chain from recombinant origin. Three solvent systems: acetonitrile, isopropanol and methanol, were studied to determine their capacity to resolve the insulin B chain from a mixture of cyanogen bromide generated bacterial peptides. Using a {mu}Bondapak C18 column, it was possible to resolve the insulin B chain in all three systems. On a preparative scale, using a PrePak 500 C18 column with the isopropanol system, it was possible to purify insulin B chain and to obtain a 95% protein recovery.

  18. Comparison of ion transport by cultured secretory and absorptive canine airway epithelia

    Boucher, R C; Larsen, Erik Hviid

    1988-01-01

    The use of primary cell culture techniques to predict the function of native respiratory epithelia was tested in studies of dog airway epithelia. Epithelial cells from Cl- secretory (tracheal) and Na+ absorptive (bronchial) airway regions were isolated by enzymatic digestion, plated on collagen...

  19. Disparate effects of p24alpha and p24delta on secretory protein transport and processing.

    Jeroen R P M Strating

    Full Text Available BACKGROUND: The p24 family is thought to be somehow involved in endoplasmic reticulum (ER-to-Golgi protein transport. A subset of the p24 proteins (p24alpha(3, -beta(1, -gamma(3 and -delta(2 is upregulated when Xenopus laevis intermediate pituitary melanotrope cells are physiologically activated to produce vast amounts of their major secretory cargo, the prohormone proopiomelanocortin (POMC. METHODOLOGY/PRINCIPAL FINDINGS: Here we find that transgene expression of p24alpha(3 or p24delta(2 specifically in the Xenopus melanotrope cells in both cases causes an effective displacement of the endogenous p24 proteins, resulting in severely distorted p24 systems and disparate melanotrope cell phenotypes. Transgene expression of p24alpha(3 greatly reduces POMC transport and leads to accumulation of the prohormone in large, ER-localized electron-dense structures, whereas p24delta(2-transgenesis does not influence the overall ultrastructure of the cells nor POMC transport and cleavage, but affects the Golgi-based processes of POMC glycomaturation and sulfation. CONCLUSIONS/SIGNIFICANCE: Transgenic expression of two distinct p24 family members has disparate effects on secretory pathway functioning, illustrating the specificity and non-redundancy of our transgenic approach. We conclude that members of the p24 family furnish subcompartments of the secretory pathway with specific sets of machinery cargo to provide the proper microenvironments for efficient and correct secretory protein transport and processing.

  20. Total soluble and endogenous secretory receptor for advanced glycation endproducts (RAGE) in IBD

    Meijer, Berrie; Hoskin, Teagan; Ashcroft, Anna; Burgess, Laura; Keenan, Jacqueline I.; Falvey, James; Gearry, Richard B.; Day, Andrew S.

    2014-01-01

    Recruitment and activation of neutrophils, with release of specific proteins such as S100 proteins, is a feature of inflammatory bowel disease (IBD). Soluble forms of the receptor for advanced glycation endproducts (sRAGE), and variants such as endogenous secretory (esRAGE), can act as decoy

  1. Secretory expression of functional barley limit dextrinase by Pichia pastoris using high cell-density fermentation

    Vester-Christensen, Malene Bech; Abou Hachem, Maher; Næsted, Henrik

    2010-01-01

    biosynthesis by trimming of intermediate branched alpha-glucan structures. Highly active barley LD is obtained by secretory expression during high cell-density fermentation of Pichia pastoris. The LD encoding gene fragment without signal peptide was subcloned in-frame with the Saccharomyces cerevisiae alpha...

  2. Analysis of Protein Localization and Secretory Pathway Function Using the Yeast "Saccharomyces Cerevisiae"

    Vallen, Elizabeth

    2002-01-01

    The isolation and characterization of mutants has been crucial in understanding a number of processes in the field of cell biology. In this exercise, students examine the effects of mutations in the secretory pathway on protein localization. Yeast strains deficient for synthesis of histidinol dehydrogenase are transformed with a plasmid encoding a…

  3. Secretory Phospholipase A2-IIA and Cardiovascular Disease: A Mendelian Randomization Study

    Holmes, Michael V.; Simon, Tabassome; Exeter, Holly J.; Folkersen, Lasse; Asselbergs, Folkert W.; Guardiola, Montse; Cooper, Jackie A.; Palmen, Jutta; Hubacek, Jaroslav A.; Carruthers, Kathryn F.; Horne, Benjamin D.; Brunisholz, Kimberly D.; Mega, Jessica L.; van Iperen, Erik P. A.; Li, Mingyao; Leusink, Maarten; Trompet, Stella; Verschuren, Jeffrey J. W.; Hovingh, G. Kees; Dehghan, Abbas; Nelson, Christopher P.; Kotti, Salma; Danchin, Nicolas; Scholz, Markus; Haase, Christiane L.; Rothenbacher, Dietrich; Swerdlow, Daniel I.; Kuchenbaecker, Karoline B.; Staines-Urias, Eleonora; Goel, Anuj; van 't Hooft, Ferdinand; Gertow, Karl; de Faire, Ulf; Panayiotou, Andrie G.; Tremoli, Elena; Baldassarre, Damiano; Veglia, Fabrizio; Holdt, Lesca M.; Beutner, Frank; Gansevoort, Ron T.; Navis, Gerjan J.; Mateo Leach, Irene; Breitling, Lutz P.; Brenner, Hermann; Thiery, Joachim; Dallmeier, Dhayana; Franco-Cereceda, Anders; Boer, Jolanda M. A.; Stephens, Jeffrey W.; Hofker, Marten H.; Tedgui, Alain; Hofman, Albert; Uitterlinden, André G.; Adamkova, Vera; Pitha, Jan; Onland-Moret, N. Charlotte; Cramer, Maarten J.; Nathoe, Hendrik M.; Spiering, Wilko; Klungel, Olaf H.; Kumari, Meena; Whincup, Peter H.; Morrow, David A.; Braund, Peter S.; Hall, Alistair S.; Olsson, Anders G.; Doevendans, Pieter A.; Trip, Mieke D.; Tobin, Martin D.; Hamsten, Anders; Watkins, Hugh; Koenig, Wolfgang; Nicolaides, Andrew N.; Teupser, Daniel; Day, Ian N. M.; Carlquist, John F.; Gaunt, Tom R.; Ford, Ian; Sattar, Naveed; Tsimikas, Sotirios; Schwartz, Gregory G.; Lawlor, Debbie A.; Morris, Richard W.; Sandhu, Manjinder S.; Poledne, Rudolf; Maitland-van der Zee, Anke H.; Khaw, Kay-Tee; Keating, Brendan J.; van der Harst, Pim; Price, Jackie F.; Mehta, Shamir R.; Yusuf, Salim; Witteman, Jaqueline C. M.; Franco, Oscar H.; Jukema, J. Wouter; de Knijff, Peter; Tybjaerg-Hansen, Anne; Rader, Daniel J.; Farrall, Martin; Samani, Nilesh J.; Kivimaki, Mika; Fox, Keith A. A.; Humphries, Steve E.; Anderson, Jeffrey L.; Boekholdt, S. Matthijs; Palmer, Tom M.; Eriksson, Per; Paré, Guillaume; Hingorani, Aroon D.; Sabatine, Marc S.; Mallat, Ziad; Casas, Juan P.; Talmud, Philippa J.

    2013-01-01

    This study sought to investigate the role of secretory phospholipase A2 (sPLA2)-IIA in cardiovascular disease. Higher circulating levels of sPLA2-IIA mass or sPLA2 enzyme activity have been associated with increased risk of cardiovascular events. However, it is not clear if this association is

  4. The Role of Adenoid Mast Cells in the Pathogenesis of Secretory Otitis Media

    M. Faruk Oktay

    2007-01-01

    Full Text Available To investigate the possible role of adenoid mast cells in the etiology of secretory otitis media. Between 2001-2002, 25 patients with chronic adenoitis and chronic secretory otitis media and 25 patients with isolated adenoid hypertrophy were included to the study. Adenoidectomy performed to the all patients under general anesthesia. Adenoidectomy specimens were evaluated under the light microscopy and the number of mast cells were calculated for each patient. The number of mast cells were compared between two groups. The number of mast cells were between 4-84 in the otitis media with effusion and adenoid hypertrophy group (median:52, however it was between 2-63 (median: 23 in the isolated adenoid hypertrophy group. When comparing the two groups using Mann-Withney U test, the number of mast cells found to be significantly higher in the chronic secretory otitis media group (p<0.001.Based on our findings there is a relationship between increased adenoid mast cells and otitis media with effusion and these cells may have a possible role in the etiology of chronic secretory otitis media.

  5. Interactions between Melanin Enzymes and Their Atypical Recruitment to the Secretory Pathway by Palmitoylation

    Srijana Upadhyay

    2016-11-01

    Full Text Available Melanins are biopolymers that confer coloration and protection to the host organism against biotic or abiotic insults. The level of protection offered by melanin depends on its biosynthesis and its subcellular localization. Previously, we discovered that Aspergillus fumigatus compartmentalizes melanization in endosomes by recruiting all melanin enzymes to the secretory pathway. Surprisingly, although two laccases involved in the late steps of melanization are conventional secretory proteins, the four enzymes involved in the early steps of melanization lack a signal peptide or a transmembrane domain and are thus considered “atypical” secretory proteins. In this work, we found interactions among melanin enzymes and all melanin enzymes formed protein complexes. Surprisingly, the formation of protein complexes by melanin enzymes was not critical for their trafficking to the endosomal system. By palmitoylation profiling and biochemical analyses, we discovered that all four early melanin enzymes were strongly palmitoylated during conidiation. However, only the polyketide synthase (PKS Alb1 was strongly palmitoylated during both vegetative hyphal growth and conidiation when constitutively expressed alone. This posttranslational lipid modification correlates the endosomal localization of all early melanin enzymes. Intriguingly, bioinformatic analyses predict that palmitoylation is a common mechanism for potential membrane association of polyketide synthases (PKSs and nonribosomal peptide synthetases (NRPSs in A. fumigatus. Our findings indicate that protein-protein interactions facilitate melanization by metabolic channeling, while posttranslational lipid modifications help recruit the atypical enzymes to the secretory pathway, which is critical for compartmentalization of secondary metabolism.

  6. Glycosaminoglycan synthesis by adult rat submandibular salivary-gland secretory units.

    Cutler, L S; Christian, C P; Rendell, J K

    1987-01-01

    The synthesis of glycosaminoglycans (GAG) by a preparation of purified, functional submandibular-gland secretory units (acini and intercalated ducts) was examined. Such units were isolated from Sprague-Dawley rats by digestion of minced gland with hyaluronidase and collagenase followed by gentle sieving of the digest through a graded series of Teflon screens. They incorporated amino acids into exocrine proteins which could be released by stimulation with isoproterenol as in vivo, indicating their functional integrity. Secretory units, incubated for 2 h in medium containing [35S]-sodium sulphate alone or in combination with [3H]-glucosamine, were then washed, homogenized and digested in pronase. The resulting material was then sequentially digested by specific enzymic and chemical procedures and analysed by chromatography on Sephadex G-50 columns to identify the various GAG synthesized. Secretory units synthesized a GAG mixture which was 20-25 per cent hyaluronic acid, 70-75 per cent heparan sulphate, and only 3-5 per cent chondroitin or dermatan sulphates, similar to that synthesized in vivo. No GAG was present in the secretory material, suggesting that all the GAG synthesized was destined for the basement membrane or cell surface.

  7. Loss of Sonic hedgehog leads to alterations in intestinal secretory cell maturation and autophagy.

    Jessica Gagné-Sansfaçon

    Full Text Available BACKGROUND: Intestinal epithelial cells express the Sonic and Indian hedgehog ligands. Despite the strong interest in gut hedgehog signaling in GI diseases, no studies have specifically addressed the singular role of intestinal epithelial cell Sonic hedgehog signaling. The aim of this study was to investigate the specific role of Sonic hedgehog in adult ileal epithelial homeostasis. METHODOLOGY/PRINCIPAL FINDINGS: A Sonic hedgehog intestinal epithelial conditional knockout mouse model was generated. Assessment of ileal histological abnormalities, crypt epithelial cell proliferation, epithelial cell fate, junctional proteins, signaling pathways, as well as ultrastructural analysis of intracellular organelles were performed in control and mutant mice. Mice lacking intestinal epithelial Sonic Hedgehog displayed decreased ileal crypt/villus length, decreased crypt proliferation as well as a decrease in the number of ileal mucin-secreting goblet cells and antimicrobial peptide-secreting Paneth cells during adult life. These secretory cells also exhibited disruption of their secretory products in mutant mice. Ultrastructural microscopy analysis revealed a dilated ER lumen in secretory cells. This phenotype was also associated with a decrease in autophagy. CONCLUSIONS/SIGNIFICANCE: Altogether, these findings indicate that the loss of Sonic hedgehog can lead to ileal secretory cell modifications indicative of endoplasmic reticulum stress, accompanied by a significant reduction in autophagy.

  8. Insulin Resistance in Alzheimer's Disease

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  9. Molecular mechanism of insulin resistance

    Free fatty acids are known to play a key role in promoting loss of insulin sensitivity, thereby causing insulin resistance and type 2 diabetes. However, the underlying mechanism involved is still unclear. In searching for the cause of the mechanism, it has been found that palmitate inhibits insulin receptor (IR) gene expression, ...

  10. Effect of taurine on the insuline secretion isolated by the pancreatic tissue of intact and irradiated rats

    Dokshina, G.A.; Silaeva, T.Yu.

    1976-01-01

    The whole-body irradiation of rats (700 rads) inhibits the secretory activity of insular pancreatic tissue. Administration of taurine (200 mg/kg), on the fifth day after irradiation, five times every second day normalizes the secretory function of pancreatic islands. In the experiments in vitro, taurine (1.5 and 3.0 mg/ml) stimulated hormone secretion. The stimulating action of the amino acid manifests itself when β-receptors are blocked by obsidane (0.5 μg/ml). It is suggested that insuline secretion by β-cells of pancreas is restored and enhanced by taurine not merely through the adenylatecyclase system; other ways are also possible

  11. Effect of taurine on the insuline secretion isolated by the pancreatic tissue of intact and irradiated rats

    Dokshina, G A; Silaeva, T Yu [Tomskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Biologii i Biofiziki

    1976-05-01

    The whole-body irradiation of rats (700 rads) inhibits the secretory activity of insular pancreatic tissue. Administration of taurine (200 mg/kg), on the fifth day after irradiation, five times every second day normalizes the secretory function of pancreatic islands. In the experiments in vitro, taurine (1.5 and 3.0 mg/ml) stimulated hormone secretion. The stimulating action of the amino acid manifests itself when ..beta..-receptors are blocked by obsidane (0.5 ..mu..g/ml). It is suggested that insuline secretion by ..beta..-cells of pancreas is restored and enhanced by taurine not merely through the adenylatecyclase system; other ways are also possible.

  12. Insulin som trickster

    Lassen, Aske Juul

    2011-01-01

    grænser nedbrydes i en konstant penetrering af huden, når blodsukkeret måles eller insulinen indsprøjtes. Insulin analyseres som en tricksterfigur, der udøver et grænsearbejde på kroppen, leger med dens kategorier og vender forholdet mellem gift og medicin, frihed og ufrihed, kunstighed og naturlighed...

  13. Diabetes and Insulin

    ... are usually used twice daily before breakfast and dinner. They can be used alone or in combination with oral medicines. The type of insulin your doctor prescribes will depend on the type of diabetes you have, your lifestyle (when and what you eat, how much you exercise), your age, and your ...

  14. Polyethyleneglycol RIA (radioimmunoassay) insulin

    1988-01-01

    Insulin is a polypeptide hormone of M.W. 6,000 composed of two peptide chains, A and B, jointed by two cross-linked disulphide bonds and synthesized by the beta-cells of the islets of Langerhans of the pancreas. Insulin influences most of the metabolic functions of the body. Its best known action is to lower the blood glucose concentration by increasing the rate at which glucose is converted to glycogen in the liver and muscles and to fat in adipose tissue, by stimulating the rate of glucose metabolism and by depressing gluconeogenesis. Insulin stimulates the synthesis of proteins, DNA and RNA in cells generally, and promotes the uptake of aminoacids and their incorporation into muscle protein. It increases the uptake of glucose in adipose tissue and its conversion into fat and inhibits lipolysis. Insulin primary action is on the cell membrane, where it probably facilitates the transport of glucose and aminoacids into the cells. At the same time it may activate intracellular enzymes such as glycogen synthetase, concerned with glycogen synthesis. (Author) [es

  15. MECHANISMS IN ENDOCRINOLOGY: Exogenous insulin does not increase muscle protein synthesis rate when administered systemically: a systematic review.

    Trommelen, Jorn; Groen, Bart B L; Hamer, Henrike M; de Groot, Lisette C P G M; van Loon, Luc J C

    2015-07-01

    Though it is well appreciated that insulin plays an important role in the regulation of muscle protein metabolism, there is much discrepancy in the literature on the capacity of exogenous insulin administration to increase muscle protein synthesis rates in vivo in humans. To assess whether exogenous insulin administration increases muscle protein synthesis rates in young and older adults. A systematic review of clinical trials was performed and the presence or absence of an increase in muscle protein synthesis rate was reported for each individual study arm. In a stepwise manner, multiple models were constructed that excluded study arms based on the following conditions: model 1, concurrent hyperaminoacidemia; model 2, insulin-induced hypoaminoacidemia; model 3, supraphysiological insulin concentrations; and model 4, older, more insulin resistant, subjects. From the presented data in the current systematic review, we conclude that: i) exogenous insulin and amino acid administration effectively increase muscle protein synthesis, but this effect is attributed to the hyperaminoacidemia; ii) exogenous insulin administered systemically induces hypoaminoacidemia which obviates any insulin-stimulatory effect on muscle protein synthesis; iii) exogenous insulin resulting in supraphysiological insulin levels exceeding 50, 000  pmol/l may effectively augment muscle protein synthesis; iv) exogenous insulin may have a diminished effect on muscle protein synthesis in older adults due to age-related anabolic resistance; and v) exogenous insulin administered systemically does not increase muscle protein synthesis in healthy, young adults. © 2015 European Society of Endocrinology.

  16. Suppression of cell death by the secretory form of N-terminal ERC/mesothelin.

    Wang, Tegexibaiyin; Kajino, Kazunori; Abe, Masaaki; Tan, Ke; Maruo, Masumi; Sun, Guodong; Hagiwara, Yoshiaki; Maeda, Masahiro; Hino, Okio

    2010-08-01

    ERC/mesothelin is highly expressed in malignant mesothelioma, pancreatic cancer, and ovarian cancer. It is cleaved to a 30 kDa N-terminal secretory form (N-ERC) and a 40 kDa C-terminal membranous form (C-ERC). Several functions have been reported for full-length ERC (full-ERC) and C-ERC/mesothelin, such as in cell adhesion and invasion, stimulation of cell proliferation, and the suppression of cell death. However, there have been no studies to date on the function of secretory N-ERC, despite the fact that it is abundantly secreted into the sera of mesothelioma patients. In this study, we investigated whether N-ERC could function as a secretory factor to stimulate tumor progression. Full-, N, or C-ERC was overexpressed in the human hepatocellular carcinoma cell line Huh7 that lacks endogenous expression of ERC/mesothelin. Changes in the rates of cell proliferation and cell death were determined, and the state of signal transducers was examined using various endpoints: total cell counts, trypan blue exclusion rate, BrdU incorporation rate, TUNEL assay, and the phosphorylation of ERK1/2 and Stat3. In cells overexpressing N-ERC, phosphorylation of ERK1/2 was enhanced and the rate of cell death decreased, leading to the increase of cell number. The culture medium containing the secretory N-ERC also had the activity to increase the number of cells. Our data suggested that one of the full-ERC functions reported previously was mediated by the secretory N-ERC.

  17. Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro.

    Holger A Russ

    Full Text Available Expansion of beta cells from the limited number of adult human islet donors is an attractive prospect for increasing cell availability for cell therapy of diabetes. However, attempts at expanding human islet cells in tissue culture result in loss of beta-cell phenotype. Using a lineage-tracing approach we provided evidence for massive proliferation of beta-cell-derived (BCD cells within these cultures. Expansion involves dedifferentiation resembling epithelial-mesenchymal transition (EMT. Epigenetic analyses indicate that key beta-cell genes maintain open chromatin structure in expanded BCD cells, although they are not transcribed. Here we investigated whether BCD cells can be redifferentiated into beta-like cells.Redifferentiation conditions were screened by following activation of an insulin-DsRed2 reporter gene. Redifferentiated cells were characterized for gene expression, insulin content and secretion assays, and presence of secretory vesicles by electron microscopy. BCD cells were induced to redifferentiate by a combination of soluble factors. The redifferentiated cells expressed beta-cell genes, stored insulin in typical secretory vesicles, and released it in response to glucose. The redifferentiation process involved mesenchymal-epithelial transition, as judged by changes in gene expression. Moreover, inhibition of the EMT effector SLUG (SNAI2 using shRNA resulted in stimulation of redifferentiation. Lineage-traced cells also gave rise at a low rate to cells expressing other islet hormones, suggesting transition of BCD cells through an islet progenitor-like stage during redifferentiation.These findings demonstrate for the first time that expanded dedifferentiated beta cells can be induced to redifferentiate in culture. The findings suggest that ex-vivo expansion of adult human islet cells is a promising approach for generation of insulin-producing cells for transplantation, as well as basic research, toxicology studies, and drug

  18. Improving the secretory capacity of Chinese hamster ovary cells by ectopic expression of effector genes: Lessons learned and future directions

    Hansen, Henning Gram; Pristovsek, Nusa; Kildegaard, Helene Faustrup

    2017-01-01

    Chinese hamster ovary (CHO) cells are the preferred cell factory for the production of therapeutic glycoproteins. Although efforts primarily within bioprocess optimization have led to increased product titers of recombinant proteins (r-proteins) expressed in CHO cells, post-transcriptional bottle...

  19. Adipokines and Hepatic Insulin Resistance

    Hassan, Waseem

    2013-01-01

    Obesity is a major risk factor for insulin resistance and type 2 diabetes. Adipose tissue is now considered to be an active endocrine organ that secretes various adipokines such as adiponectin, leptin, resistin, tumour necrosis factor-α, and interleukin-6. Recent studies have shown that these factors might provide a molecular link between increased adiposity and impaired insulin sensitivity. Since hepatic insulin resistance plays the key role in the whole body insulin resistance, clarification of the regulatory processes about hepatic insulin resistance by adipokines in rodents and human would seem essential in order to understand the mechanism of type 2 diabetes and for developing novel therapeutic strategies to treat it. PMID:23762871

  20. Selective Insulin Resistance in Adipocytes*

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H.; Fazakerley, Daniel J.; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C.; Coster, Adelle C. F.; Stöckli, Jacqueline; James, David E.

    2015-01-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. PMID:25720492

  1. Autocrine effect of Zn²⁺ on the glucose-stimulated insulin secretion.

    Slepchenko, Kira G; Daniels, Nigel A; Guo, Aili; Li, Yang V

    2015-09-01

    It is well known that zinc (Zn(2+)) is required for the process of insulin biosynthesis and the maturation of insulin secretory granules in pancreatic beta (β)-cells, and that changes in Zn(2+) levels in the pancreas have been found to be associated with diabetes. Glucose-stimulation causes a rapid co-secretion of Zn(2+) and insulin with similar kinetics. However, we do not know whether Zn(2+) regulates insulin availability and secretion. Here we investigated the effect of Zn(2+) on glucose-stimulated insulin secretion (GSIS) in isolated mouse pancreatic islets. Whereas Zn(2+) alone (control) had no effect on the basal secretion of insulin, it significantly inhibited GSIS. The application of CaEDTA, by removing the secreted Zn(2+) from the extracellular milieu of the islets, resulted in significantly increased GSIS, suggesting an overall inhibitory role of secreted Zn(2+) on GSIS. The inhibitory action of Zn(2+) was mostly mediated through the activities of KATP/Ca(2+) channels. Furthermore, during brief paired-pulse glucose-stimulated Zn(2+) secretion (GSZS), Zn(2+) secretion following the second pulse was significantly attenuated, probably by the secreted endogenous Zn(2+) after the first pulse. Such an inhibition on Zn(2+) secretion following the second pulse was completely reversed by Zn(2+) chelation, suggesting a negative feedback mechanism, in which the initial glucose-stimulated Zn(2+) release inhibits subsequent Zn(2+) secretion, subsequently inhibiting insulin co-secretion as well. Taken together, these data suggest a negative feedback mechanism on GSZS and GSIS by Zn(2+) secreted from β-cells, and the co-secreted Zn(2+) may act as an autocrine inhibitory modulator.

  2. Insulin resistance and chronic inflammation

    Natalia Matulewicz

    2016-12-01

    Full Text Available Insulin resistance is a condition of reduced biological response to insulin. Growing evidence indicates the role of the chronic low-grade inflammatory response in the pathogenesis of insulin resistance. Adipose tissue in obesity is characterized by increased lipolysis with the excessive release of free fatty acids, and is also a source of proinflammatory cytokines. Both these factors may inhibit insulin action. Proinflammatory cytokines exert their effect by stimulating major inflammatory NFκB and JNK pathways within the cells. Inflammatory processes in other insulin responsive tissues may also play a role in inducing insulin resistance. This paper is an overview of the chronic low-grade inflammation in adipose tissue, skeletal muscle, liver and endothelial cells during the development of insulin resistance.

  3. Insulin/IGF-regulated size scaling of neuroendocrine cells expressing the bHLH transcription factor Dimmed in Drosophila.

    Jiangnan Luo

    Full Text Available Neurons and other cells display a large variation in size in an organism. Thus, a fundamental question is how growth of individual cells and their organelles is regulated. Is size scaling of individual neurons regulated post-mitotically, independent of growth of the entire CNS? Although the role of insulin/IGF-signaling (IIS in growth of tissues and whole organisms is well established, it is not known whether it regulates the size of individual neurons. We therefore studied the role of IIS in the size scaling of neurons in the Drosophila CNS. By targeted genetic manipulations of insulin receptor (dInR expression in a variety of neuron types we demonstrate that the cell size is affected only in neuroendocrine cells specified by the bHLH transcription factor DIMMED (DIMM. Several populations of DIMM-positive neurons tested displayed enlarged cell bodies after overexpression of the dInR, as well as PI3 kinase and Akt1 (protein kinase B, whereas DIMM-negative neurons did not respond to dInR manipulations. Knockdown of these components produce the opposite phenotype. Increased growth can also be induced by targeted overexpression of nutrient-dependent TOR (target of rapamycin signaling components, such as Rheb (small GTPase, TOR and S6K (S6 kinase. After Dimm-knockdown in neuroendocrine cells manipulations of dInR expression have significantly less effects on cell size. We also show that dInR expression in neuroendocrine cells can be altered by up or down-regulation of Dimm. This novel dInR-regulated size scaling is seen during postembryonic development, continues in the aging adult and is diet dependent. The increase in cell size includes cell body, axon terminations, nucleus and Golgi apparatus. We suggest that the dInR-mediated scaling of neuroendocrine cells is part of a plasticity that adapts the secretory capacity to changing physiological conditions and nutrient-dependent organismal growth.

  4. Diabetes mellitus, a complex and heterogeneous disease, and the role of insulin resistance as a determinant of diabetic kidney disease.

    Karalliedde, Janaka; Gnudi, Luigi

    2016-02-01

    Diabetes mellitus (DM) is increasingly recognized as a heterogeneous condition. The individualization of care and treatment necessitates an understanding of the individual patient's pathophysiology of DM that underpins their DM classification and clinical presentation. Classical type-2 diabetes mellitus is due to a combination of insulin resistance and an insulin secretory defect. Type-1 diabetes is characterized by a near-absolute deficiency of insulin secretion. More recently, advances in genetics and a better appreciation of the atypical features of DM has resulted in more categories of diabetes. In the context of kidney disease, patients with DM and microalbuminuria are more insulin resistant, and insulin resistance may be a pathway that results in accelerated progression of diabetic kidney disease. This review summarizes the updated classification of DM, including more rarer categories and their associated renal manifestations that need to be considered in patients who present with atypical features. The benefits and limitations of the tests utilized to make a diagnosis of DM are discussed. We also review the putative pathways and mechanisms by which insulin resistance drives the progression of diabetic kidney disease. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  5. Insulin resistance and serum parameters of iron status in type 2 diabetics

    Zafar, U.

    2011-01-01

    Background: Type 2 diabetes mellitus (T2DM) is a predominant public health concern worldwide, accounting for 90% of the cases of diabetes globally. Pathogenesis of T2DM involves insulin resistance, defective insulin secretion and increased glucose production by the liver. Subclinical haemochromatosis has been considered as one of the probable causes of insulin resistance and diabetes mellitus. The aim of this study was to determine and correlate insulin resistance and serum parameters of iron status (serum ferritin and transferrin saturation) in type 2 diabetics. Methods: It was a correlational study. This study was conducted on sixty male patients with type 2 diabetes mellitus. Fasting blood sample was taken from each subject and analysed for glucose, haemoglobin, insulin, iron, Total Iron Binding Capacity (TIBC) and ferritin. Insulin resistance was determined by HOMA-IR index. Transferrin saturation was calculated from serum iron and TIBC. Data was analysed using SPSS-17. Results: There was significant positive correlation between insulin resistance and transferrin saturation, but there was no significant correlation of insulin resistance with blood haemoglobin, serum iron and serum ferritin in type 2 diabetics. Conclusion: Correlation between insulin resistance and transferrin saturation reveals that iron has negative impact on insulin sensitivity in type 2 diabetics. (author)

  6. Non-cell autonomous or secretory tumor suppression.

    Chua, Christelle En Lin; Chan, Shu Ning; Tang, Bor Luen

    2014-10-01

    Many malignancies result from deletions or loss-of-function mutations in one or more tumor suppressor genes, the products of which curb unrestrained growth or induce cell death in those with dysregulated proliferative capacities. Most tumor suppressors act in a cell autonomous manner, and only very few proteins are shown to exert a non-cell autonomous tumor suppressor function on other cells. Examples of these include members of the secreted frizzled-related protein (SFRP) family and the secreted protein acidic and rich in cysteine (SPARC)-related proteins. Very recent findings have, however, considerably expanded our appreciation of non-cell autonomous tumor suppressor functions. Broadly, this may occur in two ways. Intracellular tumor suppressor proteins within cells could in principle inhibit aberrant growth of neighboring cells by conditioning an antitumor microenvironment through secreted factors. This is demonstrated by an apparent non-cell autonomous tumor suppressing property of p53. On the other hand, a tumor suppressor produced by a cell may be secreted extracellularly, and taken up by another cell with its activity intact. Intriguingly, this has been recently shown to occur for the phosphatase and tensin homolog (PTEN) by both conventional and unconventional modes of secretion. These recent findings would aid the development of therapeutic strategies that seek to reinstate tumor suppression activity in therapeutically recalcitrant tumor cells, which have lost it in the first place. © 2014 Wiley Periodicals, Inc.

  7. Airway Secretory microRNAome Changes during Rhinovirus Infection in Early Childhood.

    Maria J Gutierrez

    Full Text Available Innate immune responses are fine-tuned by small noncoding RNA molecules termed microRNAs (miRs that modify gene expression in response to the environment. During acute infections, miRs can be secreted in extracellular vesicles (EV to facilitate cell-to-cell genetic communication. The purpose of this study was to characterize the baseline population of miRs secreted in EVs in the airways of young children (airway secretory microRNAome and examine the changes during rhinovirus (RV infection, the most common cause of asthma exacerbations and the most important early risk factor for the development of asthma beyond childhood.Nasal airway secretions were obtained from children (≤3 yrs. old during PCR-confirmed RV infections (n = 10 and age-matched controls (n = 10. Nasal EVs were isolated with polymer-based precipitation and global miR profiles generated using NanoString microarrays. We validated our in vivo airway secretory miR data in an in vitro airway epithelium model using apical secretions from primary human bronchial epithelial cells (HBEC differentiated at air-liquid interface (ALI. Bioinformatics tools were used to determine the unified (nasal and bronchial signature airway secretory miRNAome and changes during RV infection in children.Multiscale analysis identified four signature miRs comprising the baseline airway secretory miRNAome: hsa-miR-630, hsa-miR-302d-3p, hsa- miR-320e, hsa-miR-612. We identified hsa-miR-155 as the main change in the baseline miRNAome during RV infection in young children. We investigated the potential biological relevance of the airway secretion of hsa-mir-155 using in silico models derived from gene datasets of experimental in vivo human RV infection. These analyses confirmed that hsa-miR-155 targetome is an overrepresented pathway in the upper airways of individuals infected with RV.Comparative analysis of the airway secretory microRNAome in children indicates that RV infection is associated with airway

  8. New Insulin Delivery Recommendations.

    Frid, Anders H; Kreugel, Gillian; Grassi, Giorgio; Halimi, Serge; Hicks, Debbie; Hirsch, Laurence J; Smith, Mike J; Wellhoener, Regine; Bode, Bruce W; Hirsch, Irl B; Kalra, Sanjay; Ji, Linong; Strauss, Kenneth W

    2016-09-01

    Many primary care professionals manage injection or infusion therapies in patients with diabetes. Few published guidelines have been available to help such professionals and their patients manage these therapies. Herein, we present new, practical, and comprehensive recommendations for diabetes injections and infusions. These recommendations were informed by a large international survey of current practice and were written and vetted by 183 diabetes experts from 54 countries at the Forum for Injection Technique and Therapy: Expert Recommendations (FITTER) workshop held in Rome, Italy, in 2015. Recommendations are organized around the themes of anatomy, physiology, pathology, psychology, and technology. Key among the recommendations are that the shortest needles (currently the 4-mm pen and 6-mm syringe needles) are safe, effective, and less painful and should be the first-line choice in all patient categories; intramuscular injections should be avoided, especially with long-acting insulins, because severe hypoglycemia may result; lipohypertrophy is a frequent complication of therapy that distorts insulin absorption, and, therefore, injections and infusions should not be given into these lesions and correct site rotation will help prevent them; effective long-term therapy with insulin is critically dependent on addressing psychological hurdles upstream, even before insulin has been started; inappropriate disposal of used sharps poses a risk of infection with blood-borne pathogens; and mitigation is possible with proper training, effective disposal strategies, and the use of safety devices. Adherence to these new recommendations should lead to more effective therapies, improved outcomes, and lower costs for patients with diabetes. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  9. Insulin resistance: definition and consequences.

    Lebovitz, H E

    2001-01-01

    Insulin resistance is defined clinically as the inability of a known quantity of exogenous or endogenous insulin to increase glucose uptake and utilization in an individual as much as it does in a normal population. Insulin action is the consequence of insulin binding to its plasma membrane receptor and is transmitted through the cell by a series of protein-protein interactions. Two major cascades of protein-protein interactions mediate intracellular insulin action: one pathway is involved in regulating intermediary metabolism and the other plays a role in controlling growth processes and mitoses. The regulation of these two distinct pathways can be dissociated. Indeed, some data suggest that the pathway regulating intermediary metabolism is diminished in type 2 diabetes while that regulating growth processes and mitoses is normal.--Several mechanisms have been proposed as possible causes underlying the development of insulin resistance and the insulin resistance syndrome. These include: (1) genetic abnormalities of one or more proteins of the insulin action cascade (2) fetal malnutrition (3) increases in visceral adiposity. Insulin resistance occurs as part of a cluster of cardiovascular-metabolic abnormalities commonly referred to as "The Insulin Resistance Syndrome" or "The Metabolic Syndrome". This cluster of abnormalities may lead to the development of type 2 diabetes, accelerated atherosclerosis, hypertension or polycystic ovarian syndrome depending on the genetic background of the individual developing the insulin resistance.--In this context, we need to consider whether insulin resistance should be defined as a disease entity which needs to be diagnosed and treated with specific drugs to improve insulin action.

  10. Pitfalls of Insulin Pump Clocks

    Reed, Amy J.

    2014-01-01

    The objective was to raise awareness about the importance of ensuring that insulin pumps internal clocks are set up correctly at all times. This is a very important safety issue because all commercially available insulin pumps are not GPS-enabled (though this is controversial), nor equipped with automatically adjusting internal clocks. Special attention is paid to how basal and bolus dose errors can be introduced by daylight savings time changes, travel across time zones, and am-pm clock errors. Correct setting of insulin pump internal clock is crucial for appropriate insulin delivery. A comprehensive literature review is provided, as are illustrative cases. Incorrect setting can potentially result in incorrect insulin delivery, with potential harmful consequences, if too much or too little insulin is delivered. Daylight saving time changes may not significantly affect basal insulin delivery, given the triviality of the time difference. However, bolus insulin doses can be dramatically affected. Such problems may occur when pump wearers have large variations in their insulin to carb ratio, especially if they forget to change their pump clock in the spring. More worrisome than daylight saving time change is the am-pm clock setting. If this setting is set up incorrectly, both basal rates and bolus doses will be affected. Appropriate insulin delivery through insulin pumps requires correct correlation between dose settings and internal clock time settings. Because insulin pumps are not GPS-enabled or automatically time-adjusting, extra caution should be practiced by patients to ensure correct time settings at all times. Clinicians and diabetes educators should verify the date/time of insulin pumps during patients’ visits, and should remind their patients to always verify these settings. PMID:25355713

  11. Insulin pumps and insulin quality--requirements and problems.

    Brange, J; Havelund, S

    1983-01-01

    In developing insulin solution suitable for delivery devices the chemical and biological stability, as well as the physical stability, must be taken into consideration. Addition of certain mono- and disaccharides increases the physical stability of neutral insulin solutions, but concurrently the chemical and biological stability decrease to an unacceptable degree. Addition of Ca-ions in low concentrations offers a physiologically acceptable method for stabilizing neutral insulin solutions against heat precipitation without affecting the quality, including the chemical and biological stability.

  12. Effects of 7 days of exercise training on insulin sensitivity and responsiveness in type 2 diabetes mellitus

    Kirwan, John P; Solomon, Thomas; Wojta, Daniel M

    2009-01-01

    sensitivity and responsiveness and 2) short-term exercise training results in improved suppression of hepatic glucose production by insulin. Fourteen obese patients with type 2 diabetes, age 64 +/- 2 yr, underwent a two-stage hyperinsulinemic euglycemic clamp procedure, first stage 40 mU.m(-2).min(-1) insulin......The objectives of this study were to determine whether 1) the improvement in insulin action induced by short-term exercise training in patients with type 2 diabetes is due to an improvement in insulin sensitivity, an improvement in insulin responsiveness, or a combination of improved insulin...... infusion, second stage 1,000 mU.m(-2).min(-1) insulin infusion, together with a [3-(3)H]glucose infusion, before and after 7 days of exercise. The training consisted of 30 min of cycling and 30 min of treadmill walking at approximately 70% of maximal aerobic capacity daily for 7 days. The exercise program...

  13. Role of transglutaminase in insulin release. Study with glycine and sarcosine methylesters

    Sener, A.; Dunlop, M.E.; Gomis, R.; Mathias, P.C.; Malaisse-Lagae, F.; Malaisse, W.J.

    1985-01-01

    The Ca2+-responsive enzyme transglutaminase, which catalyzes the cross-bridging of proteins, is present in pancreatic islet cells, but its participation in the process of insulin release remains to be documented. Glycine methylester (1.0-10.0 mM) inhibited, in a dose-related manner, transglutaminase activity in rat pancreatic islet homogenates, decreased [ 14 C]methylamine incorporation into endogenous proteins of intact islets, and caused a rapid and reversible inhibition of insulin release evoked by D-glucose, while failing to affect D-[U- 14 C]glucose oxidation. Glycine methylester also inhibited insulin release induced by other nutrient or nonnutrient secretagogues. Sarcosine methylester failed to affect transglutaminase activity, [ 14 C]methylamine incorporation, and insulin release. Both methylesters mobilized 45 Ca from prelabeled intact islets, from membranes of islet cells, liver or brain, and from artificial lipid multilayers, this Ca mobilization being apparently unrelated to changes in transglutaminase activity. It is proposed that, in the pancreatic B cell, transglutaminase participates in the machinery controlling the access of secretory granules to the exocytotic sites

  14. Degradation of Uniquely Glycosylated Secretory Immunoglobulin A in Tears From Patients With Pseudomonas aeruginosa Keratitis

    Lomholt, Jeanet Andersen; Kilian, Mogens

    2008-01-01

    PURPOSE. To investigate the integrity of secretory IgA (S-IgA) in tear fluid during bacterial keratitis and to evaluate the significance of specific Pseudomonas aeruginosa extracellular proteases in the observed degradation of S-IgA. METHODS. The integrity of component chains of S-IgA in tear fluid...... from patients with keratitis caused by P. aeruginosa, Streptococcus group G, Moraxella catarrhalis, Staphylococcus aureus, coagulase-negative staphylococci, and the IgA1 protease-producing Streptococcus pneumoniae were compared with S-IgA in tear fluid, colostrum, and saliva from healthy individuals......, and with tear S-IgA incubated with clinical isolates and genetically engineered P. aeruginosa strains with different protease profiles. Degradation of S-IgA and the significance of its glycosylation were analyzed in Western blots developed with antibodies against individual chains of S-IgA. RESULTS. Secretory...

  15. Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network

    Klemm, Robin W; Ejsing, Christer S.; Surma, Michal A

    2009-01-01

    The trans-Golgi network (TGN) is the major sorting station in the secretory pathway of all eukaryotic cells. How the TGN sorts proteins and lipids to generate the enrichment of sphingolipids and sterols at the plasma membrane is poorly understood. To address this fundamental question in membrane...... trafficking, we devised an immunoisolation procedure for specific recovery of post-Golgi secretory vesicles transporting a transmembrane raft protein from the TGN to the cell surface in the yeast Saccharomyces cerevisiae. Using a novel quantitative shotgun lipidomics approach, we could demonstrate that TGN...... than the late Golgi membrane, as measured by C-Laurdan spectrophotometry, strongly suggests that lipid rafts play a role in the TGN-sorting machinery....

  16. Roles of secretory leukocyte protease inhibitor amniotic membrane in oral wound healing

    Elly Munadziroh

    2006-12-01

    Full Text Available Secretory Leukocyte Protease Inhibitor (SLPI is serine protease inhibitor. Secretory Leukocyte Protease Inhibitor is a protein found in secretions such as whole saliva, seminal fluid, cervical mucus, synovial fluid, breast milk, tears, and cerebral spinal fluid, as in secretions from the nose and bronchi, amniotic fluid and amniotic membrane etc. These findings demonstrate that SLPI function as a potent anti protease, anti inflammatory, bactericidal, antifungal, tissue repair, extra cellular synthesis. Impaired healing states are characterized by excessive proteolysis and often bacterial infection, leading to the hypothesis that SLPI may have a role in the process. The objectives of this article are to investigate the role of SLPI in oral inflammation and how it contributes to tissue repair in oral mucosa. The oral wound healing responses are impaired in the SLPI sufficient mice and matrix synthesis and collagen deposition are delayed. This study indicated that SLPI is a povital factor necessary for optimal wound healing.

  17. Network reconstruction of the mouse secretory pathway applied on CHO cell transcriptome data

    Lund, Anne Mathilde; Kaas, Christian Schrøder; Brandl, Julian

    2017-01-01

    , counting 801 different components in mouse. By employing our mouse RECON to the CHO-K1 genome in a comparative genomic approach, we could reconstruct the protein secretory pathway of CHO cells counting 764 CHO components. This RECON furthermore facilitated the development of three alternative methods...... to study protein secretion through graphical visualizations of omics data. We have demonstrated the use of these methods to identify potential new and known targets for engineering improved growth and IgG production, as well as the general observation that CHO cells seem to have less strict transcriptional...... regulation of protein secretion than healthy mouse cells.  Conclusions: The RECON of the secretory pathway represents a strong tool for interpretation of data related to protein secretion as illustrated with transcriptomic data of Chinese Hamster Ovary (CHO) cells, the main platform for mammalian protein...

  18. Crosstalk of Autophagy and the Secretory Pathway and Its Role in Diseases.

    Zahoor, Muhammad; Farhan, Hesso

    2018-01-01

    The secretory and autophagic pathways are two fundamental, evolutionary highly conserved endomembrane processes. Typically, secretion is associated with biosynthesis and delivery of proteins. In contrast, autophagy is usually considered as a degradative pathway. Thus, an analogy to metabolic pathways is evident. Anabolic (biosynthetic) and catabolic (degradative) pathways are usually intimately linked and intertwined, and likewise, the secretory and autophagy pathways are intertwined. Investigation of this link is an emerging area of research, and we will provide an overview of some of the major advances that have been made to contribute to understanding of how secretion regulates autophagy and vice versa. Finally, we will highlight evidence that supports a potential involvement of the autophagy-secretion crosstalk in human diseases. © 2018 Elsevier Inc. All rights reserved.

  19. Comparison of Excretory-Secretory and Somatic Antigens of Ornithobilharzia turkestanicum in Agar Gel Diffusion Test

    H Miranzadeh

    2008-12-01

    Full Text Available Background: Ornithobilharziosis as one of the parasitic infections may give rise to serious economic problems in animal husbandry. The Aim of the study was to prepare and compare the somatic and excretory-secretory (ES antigens of O. tur­kestanicum in gel diffusion test. Methods: Excretory-secretory (ES and somatic antigens of Ornithobilharzia turkestanicum were prepared from collected worms from mesentric blood vessels of infected sheep. The laboratory bred rabbits were immunized with antigens and then antisera were prepared. The reaction of antigens and antisera was observed in gel diffusion test. Results: ES antigens of this species showed positive reaction with antisera raised against ES and also somatic antigens. Somatic antigens also showed positive reaction with antisera raised against somatic and also ES antigens. Conclusion: The antigenicity of O. turkestanicum ES and somatic antigens is the same in gel diffusion test.

  20. Insulin resistance in obesity can be reliably identified from fasting plasma insulin

    ter Horst, K. W.; Gilijamse, P. W.; Koopman, K. E.; de Weijer, B. A.; Brands, M.; Kootte, R. S.; Romijn, J. A.; Ackermans, M. T.; Nieuwdorp, M.; Soeters, M. R.; Serlie, M. J.

    2015-01-01

    Insulin resistance is the major contributor to cardiometabolic complications of obesity. We aimed to (1) establish cutoff points for insulin resistance from euglycemic hyperinsulinemic clamps (EHCs), (2) identify insulin-resistant obese subjects and (3) predict insulin resistance from routinely

  1. Antigenic analyses of tissues and excretory and secretory products from Strongylus vulgaris.

    Wynne, E; Slocombe, J O; Wilkie, B N

    1981-01-01

    Rabbit antisera were prepared against veronal buffered saline extracts of L4 and L5 Strongylus vulgaris, adult S. vulgaris and adult Strongylus equinus retrieved from naturally infected horses. In agar gel diffusion with these antisera, adult S vulgaris and S. equinus each appeared to have at least one unique antigen; larval S. vulgaris appeared to have two species-specific and two stage-specific antigens. There were several common antigens. Excretory and secretory products were collected als...

  2. The secretory endometrial protein, placental protein 14, in women with ectopic gestation

    Ruge, S; Sørensen, Steen; Vejtorp, M

    1992-01-01

    OBJECTIVE: To determine the serum level of the secretory endometrial protein, placental protein 14 (PP14) and progesterone (P) in women with ectopic gestation. DESIGN: Blood samples were collected prospectively and preoperatively. Reference range was determined from a prospective population of 98......: These findings suggest that the regulation of the PP14 production involves either a control mechanism from the ovary or is mediated by paracrine secretion....

  3. Shedding light on the role of lipid flippases in the secretory pathway

    Lopez Marques, Rosa Laura

    that these pumps serve important functions in vesicular traffic, their activities being required to support vesicle formation in the secretory and endocytic pathways. We are now aiming at determining the mechanism by which these ATPases function in vesicle biogenesis. For this purpose, we are using novel...... biophysical approaches based on giant vesicles and several advanced bioimaging methods. The limitations and future perspectives of these techniques for the characterization of lipid translocases will be discussed in the light of our recent results....

  4. Brucella Modulates Secretory Trafficking via Multiple Type IV Secretion Effector Proteins

    Myeni, Sebenzile; Child, Robert; Ng, Tony W.; Kupko, John J.; Wehrly, Tara D.; Porcella, Stephen F.; Knodler, Leigh A.; Celli, Jean

    2013-01-01

    The intracellular pathogenic bacterium Brucella generates a replicative vacuole (rBCV) derived from the endoplasmic reticulum via subversion of the host cell secretory pathway. rBCV biogenesis requires the expression of the Type IV secretion system (T4SS) VirB, which is thought to translocate effector proteins that modulate membrane trafficking along the endocytic and secretory pathways. To date, only a few T4SS substrates have been identified, whose molecular functions remain unknown. Here, we used an in silico screen to identify putative T4SS effector candidate proteins using criteria such as limited homology in other bacterial genera, the presence of features similar to known VirB T4SS effectors, GC content and presence of eukaryotic-like motifs. Using β-lactamase and CyaA adenylate cyclase reporter assays, we identified eleven proteins translocated into host cells by Brucella, five in a VirB T4SS-dependent manner, namely BAB1_0678 (BspA), BAB1_0712 (BspB), BAB1_0847 (BspC), BAB1_1671 (BspE) and BAB1_1948 (BspF). A subset of the translocated proteins targeted secretory pathway compartments when ectopically expressed in HeLa cells, and the VirB effectors BspA, BspB and BspF inhibited protein secretion. Brucella infection also impaired host protein secretion in a process requiring BspA, BspB and BspF. Single or combined deletions of bspA, bspB and bspF affected Brucella ability to replicate in macrophages and persist in the liver of infected mice. Taken together, these findings demonstrate that Brucella modulates secretory trafficking via multiple T4SS effector proteins that likely act coordinately to promote Brucella pathogenesis. PMID:23950720

  5. Labeling and exocytosis of secretory compartments in RBL mastocytes by polystyrene and mesoporous silica nanoparticles

    Ekkapongpisit M

    2012-04-01

    Full Text Available Maneerat Ekkapongpisit1,*, Antonino Giovia1,*, Giuseppina Nicotra1, Matteo Ozzano1, Giuseppe Caputo2,3, Ciro Isidoro1 1Laboratory of Molecular Pathology and Nanobioimaging, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy; 2Department of Chemistry, University of Turin, Turin, 3Cyanine Technology SpA, Torino, Italy *These authors contributed equally to this workBackground: For a safe ‘in vivo’ biomedical utilization of nanoparticles, it is essential to assess not only biocompatibility, but also the potential to trigger unwanted side effects at both cellular and tissue levels. Mastocytes (cells having secretory granules containing cytokines, vasoactive amine, and proteases play a pivotal role in the immune and inflammatory responses against exogenous toxins. Mastocytes are also recruited in the tumor stroma and are involved in tumor vascularization and growth.Aim and methods: In this work, mastocyte-like rat basophilic leukemia (RBL cells were used to investigate whether carboxyl-modified 30 nm polystyrene (PS nanoparticles (NPs and naked mesoporous silica (MPS 10 nm NPs are able to label the secretory inflammatory granules, and possibly induce exocytosis of these granules. Uptake, cellular retention and localization of fluorescent NPs were analyzed by cytofluorometry and microscope imaging.Results: Our findings were that: (1 secretory granules of mastocytes are accessible by NPs via endocytosis; (2 PS and MPS silica NPs label two distinct subpopulations of inflammatory granules in RBL mastocytes; and (3 PS NPs induce calcium-dependent exocytosis of inflammatory granules.Conclusion: These findings highlight the value of NPs for live imaging of inflammatory processes, and also have important implications for the clinical use of PS-based NPs, due to their potential to trigger the unwanted activation of mastocytes.Keywords: secretory lysosomes, inflammation, nanoparticles, vesicular traffic

  6. Signaling from the secretory granule to the nucleus: Uhmk1 and PAM.

    Francone, Victor P; Ifrim, Marius F; Rajagopal, Chitra; Leddy, Christopher J; Wang, Yanping; Carson, John H; Mains, Richard E; Eipper, Betty A

    2010-08-01

    Neurons and endocrine cells package peptides in secretory granules (large dense-core vesicles) for storage and stimulated release. Studies of peptidylglycine alpha-amidating monooxygenase (PAM), an essential secretory granule membrane enzyme, revealed a pathway that can relay information from secretory granules to the nucleus, resulting in alterations in gene expression. The cytosolic domain (CD) of PAM, a type 1 membrane enzyme essential for the production of amidated peptides, is basally phosphorylated by U2AF homology motif kinase 1 (Uhmk1) and other Ser/Thr kinases. Proopiomelanocortin processing in AtT-20 corticotrope tumor cells was increased when Uhmk1 expression was reduced. Uhmk1 was concentrated in the nucleus, but cycled rapidly between nucleus and cytosol. Endoproteolytic cleavage of PAM releases a soluble CD fragment that localizes to the nucleus. Localization of PAM-CD to the nucleus was decreased when PAM-CD with phosphomimetic mutations was examined and when active Uhmk1 was simultaneously overexpressed. Membrane-tethering Uhmk1 did not eliminate its ability to exclude PAM-CD from the nucleus, suggesting that cytosolic Uhmk1 could cause this response. Microarray analysis demonstrated the ability of PAM to increase expression of a small subset of genes, including aquaporin 1 (Aqp1) in AtT-20 cells. Aqp1 mRNA levels were higher in wild-type mice than in mice heterozygous for PAM, indicating that a similar relationship occurs in vivo. Expression of PAM-CD also increased Aqp1 levels whereas expression of Uhmk1 diminished Aqp1 expression. The outlines of a pathway that ties secretory granule metabolism to the transcriptome are thus apparent.

  7. Small intestine in lymphocytic and collagenous colitis: mucosal morphology, permeability, and secretory immunity to gliadin.

    Moayyedi, P; O'Mahony, S; Jackson, P; Lynch, D A; Dixon, M F; Axon, A T

    1997-01-01

    There is a recognised association between the "microscopic" forms of colitis and coeliac disease. There are a variety of subtle small intestinal changes in patients with "latent" gluten sensitivity, namely high intraepithelial lymphocyte (IEL) counts, abnormal mucosal permeability, and high levels of secretory IgA and IgM antibody to gliadin. These changes have hitherto not been investigated in microscopic colitis. Nine patients (four collagenous, five lymphocytic colitis) with normal villous...

  8. Cellular responses to the expression of unstable secretory proteins in the filamentous fungus Aspergillus oryzae.

    Yokota, Jun-Ichi; Shiro, Daisuke; Tanaka, Mizuki; Onozaki, Yasumichi; Mizutani, Osamu; Kakizono, Dararat; Ichinose, Sakurako; Shintani, Tomoko; Gomi, Katsuya; Shintani, Takahiro

    2017-03-01

    Filamentous fungi are often used as cell factories for recombinant protein production because of their ability to secrete large quantities of hydrolytic enzymes. However, even using strong transcriptional promoters, yields of nonfungal proteins are generally much lower than those of fungal proteins. Recent analyses revealed that expression of certain nonfungal secretory proteins induced the unfolded protein response (UPR), suggesting that they are recognized as proteins with folding defects in filamentous fungi. More recently, however, even highly expressed endogenous secretory proteins were found to evoke the UPR. These findings raise the question of whether the unfolded or misfolded state of proteins is selectively recognized by quality control mechanisms in filamentous fungi. In this study, a fungal secretory protein (1,2-α-D-mannosidase; MsdS) with a mutation that decreases its thermostability was expressed at different levels in Aspergillus oryzae. We found that, at moderate expression levels, wild-type MsdS was secreted to the medium, while the mutant was not. In the strain with a deletion for the hrdA gene, which is involved in the endoplasmic reticulum-associated degradation pathway, mutant MsdS had specifically increased levels in the intracellular fraction but was not secreted. When overexpressed, the mutant protein was secreted to the medium to a similar extent as the wild-type protein; however, the mutant underwent hyperglycosylation and induced the UPR. Deletion of α-amylase (the most abundant secretory protein in A. oryzae) alleviated the UPR induction by mutant MsdS overexpression. These findings suggest that misfolded MsdS and unfolded species of α-amylase might act synergistically for UPR induction.

  9. Human protein secretory pathway genes are expressed in a tissue-specific pattern to match processing demands of the secretome

    Feizi, Amir; Gatto, Francesco; Uhlén, Mathias

    2017-01-01

    Protein secretory pathway in eukaryal cells is responsible for delivering functional secretory proteins. The dysfunction of this pathway causes a range of important human diseases from congenital disorders to cancer. Despite the piled-up knowledge on the molecular biology and biochemistry level...... in specific gene families of the secretory pathway. We also inspected the potential functional link between detected extreme genes and the corresponding tissues enriched secretome. As a result, the detected extreme genes showed correlation with the enrichment of the nature and number of specific post......-translational modifications in each tissue's secretome. Our findings conciliate both the housekeeping and tissue-specific nature of the protein secretory pathway, which we attribute to a fine-tuned regulation of defined gene families to support the diversity of secreted proteins and their modifications....

  10. Insulin autoimmune syndrome: case report

    Rodrigo Oliveira Moreira

    Full Text Available CONTEXT: Insulin autoimmune syndrome (IAS, Hirata disease is a rare cause of hypoglycemia in Western countries. It is characterized by hypoglycemic episodes, elevated insulin levels, and positive insulin antibodies. Our objective is to report a case of IAS identified in South America. CASE REPORT: A 56-year-old Caucasian male patient started presenting neuroglycopenic symptoms during hospitalization due to severe trauma. Biochemical evaluation confirmed hypoglycemia and abnormally high levels of insulin. Conventional imaging examinations were negative for pancreatic tumor. Insulin antibodies were above the normal range. Clinical remission of the episodes was not achieved with verapamil and steroids. Thus, a subtotal pancreatectomy was performed due to the lack of response to conservative treatment and because immunosuppressants were contraindicated due to bacteremia. Histopathological examination revealed diffuse hypertrophy of beta cells. The patient continues to have high insulin levels but is almost free of hypoglycemic episodes.

  11. Additional disulfide bonds in insulin

    Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper

    2015-01-01

    The structure of insulin, a glucose homeostasis-controlling hormone, is highly conserved in all vertebrates and stabilized by three disulfide bonds. Recently, we designed a novel insulin analogue containing a fourth disulfide bond located between positions A10-B4. The N-terminus of insulin's B......-chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had...... in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus...

  12. Intracellular and transcellular transport of secretory and membrane proteins in the rat hepatocyte

    Sztul, E.S.

    1984-01-01

    The intra- and transcellular transport of hepatic secretory and membrane proteins was studied in rats in vivo using [ 3 H]fucose and [ 35 S]cyteine as metabolic precursors. Incorporated radioactivity in plasma, bile, and liver subcellular fractions was measured and the labeled proteins of the Golgi complex, bile and plasma were separated by SDS-PAGE and identified by fluorography. 3 H-radioactivity in Golgi fractions peaked at 10 min post injection (p.i.) and then declined concomitantly with the appearance of labeled glycoproteins in plasma. Maximal secretion of secretory fucoproteins from the Golgi complex occurred between 10 and 20 min p.i. In contrast, the clearance of labeled proteins from Golgi membrane subfractions occurred past 30 min p.i., indicating that membrane proteins leave the Golgi complex at least 10 min later than the bulk of content proteins. A major 80K form of Secretory Component (SC) was identified in the bile by precipitation with an anti IgA antibody. A comparative study of kinetics of transport of 35 S-labeled SC and 35 S-labeled albumin showed that albumin peaked in bile at ∼45 min p.i., whereas the SC peak occurred at 80 min p.i., suggesting that the transit time differs for plasma and membrane proteins which are delivered to the bile canaliculus (BC)

  13. Secretory proteins in the reproductive tract of the snapping turtle, Chelhydra serpentina.

    Mahmoud, I Y; Paulson, J R; Dudley, M; Patzlaff, J S; Al-Kindi, A Y A

    2004-12-01

    SDS-polyacrylamide gel electrophoresis was used to separate the secretory proteins produced by the epithelial and endometrial glands of the uterine tube and uterus in the snapping turtle Chelydra serpentina. The proteins were analyzed throughout the phases of the reproductive cycle from May to August, including preovulatory, ovulatory, postovulatory or luteal, and vitellogenic phases. The pattern of secretory proteins is quite uniform along the length of the uterine tube, and the same is true of the uterus, but the patterns for uterine tube and uterus are clearly different. We identify 13 major proteins in C. serpentina egg albumen. Bands co-migrating with 11 of these are found in the uterine tube, but at most 4 are found in the uterus, suggesting that the majority of the albumen proteins are most likely secreted in the uterine tube, not in the uterus. Although some of the egg albumen proteins are present in the uterine tube only at the time of ovulation, most of the bands corresponding to albumen proteins are present throughout the breeding season even though the snapping turtle is a monoclutch species. These results suggest that the glandular secretory phase in the uterine tube is active and quite homogeneous in function regardless of location or phase of the reproductive cycle.

  14. The plant secretory pathway seen through the lens of the cell wall.

    van de Meene, A M L; Doblin, M S; Bacic, Antony

    2017-01-01

    Secretion in plant cells is often studied by looking at well-characterised, evolutionarily conserved membrane proteins associated with particular endomembrane compartments. Studies using live cell microscopy and fluorescent proteins have illuminated the highly dynamic nature of trafficking, and electron microscopy studies have resolved the ultrastructure of many compartments. Biochemical and molecular analyses have further informed about the function of particular proteins and endomembrane compartments. In plants, there are over 40 cell types, each with highly specialised functions, and hence potential variations in cell biological processes and cell wall structure. As the primary function of secretion in plant cells is for the biosynthesis of cell wall polysaccharides and apoplastic transport complexes, it follows that utilising our knowledge of cell wall glycosyltransferases (GTs) and their polysaccharide products will inform us about secretion. Indeed, this knowledge has led to novel insights into the secretory pathway, including previously unseen post-TGN secretory compartments. Conversely, our knowledge of trafficking routes of secretion will inform us about polarised and localised deposition of cell walls and their constituent polysaccharides/glycoproteins. In this review, we look at what is known about cell wall biosynthesis and the secretory pathway and how the different approaches can be used in a complementary manner to study secretion and provide novel insights into these processes.

  15. Studies on insulin receptor, 1

    Sakai, Yukio

    1979-01-01

    The present study was designed for the purpose of establishing a method of insulin radioreceptor assay using plasma membranes of guinea pigs as receptor sites. The results obtained are as follows: 1) Insulin receptor in the renal plasma membranes of guinea pigs showed a significantly high affinity to porcine insulin compared with that in the plasma membranes of guinea pig liver or rat kidney and liver. 2) In the insulin radioreceptor assay, an optimum condition was observed by the incubation at 4 0 C for 24 - 48 hours with 100 μg membrane protein of guinea pig kidney and 0.08 ng of 125 I-insulin. This assay method was specific for insulin and showed an accurate biological activity of insulin. 3) The recovery rate of insulin radioreceptor assay was 98.4% and dilution check up to 16 times did not influence on the result. An average of coefficient variation was 3.92% within assay. All of these results indicated the method to be satisfactory. 4) Glucose induced insulin release by perfusion method in isolated Langerhans islets of rats showed an identical pattern of reaction curves between radioreceptor assay and radioimmunoassay, although the values of radioreceptor assay was slightly low. 5) Insulin free serum produced by ultra filtration method was added to the standard assay medium. By this procedure, direct measurement of human serum by radioreceptor assay became possible. 6) The value of human serum insulin receptor binding activity by the radioreceptor assay showed a high correlation with that of insulin radioimmunoassay in sera of normal, borderline or diabetic type defined by glucose tolerance test. (author)

  16. Protein Crystal Recombinant Human Insulin

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  17. Lysosomal Exoglycosidase Profile and Secretory Function in the Salivary Glands of Rats with Streptozotocin-Induced Diabetes

    Maciejczyk, Mateusz; Kossakowska, Agnieszka; Szulimowska, Julita; Klimiuk, Anna; Knaś, Małgorzata; Car, Halina; Niklińska, Wiesława; Ładny, Jerzy Robert; Chabowski, Adrian; Zalewska, Anna

    2017-01-01

    Before this study, there had been no research evaluating the relationship between a lysosomal exoglycosidase profile and secretory function in the salivary glands of rats with streptozotocin- (STZ-) induced type 1 diabetes. In our work, rats were divided into 4 groups of 8 animals each: control groups (C2, C4) and diabetic groups (STZ2, STZ4). The secretory function of salivary glands—nonstimulated and stimulated salivary flow, α-amylase, total protein—and salivary exoglycosidase activities—N...

  18. Insulin Resistance and Mitochondrial Dysfunction.

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  19. TLR4 and Insulin Resistance

    Jane J. Kim

    2010-01-01

    Full Text Available Chronic inflammation is a key feature of insulin resistance and obesity. Toll-Like Receptor 4 (TLR4, involved in modulating innate immunity, is an important mediator of insulin resistance and its comorbidities. TLR4 contributes to the development of insulin resistance and inflammation through its activation by elevated exogenous ligands (e.g., dietary fatty acids and enteric lipopolysaccharide and endogenous ligands (e.g., free fatty acids which are elevated in obese states. TLR4, expressed in insulin target tissues, activates proinflammatory kinases JNK, IKK, and p38 that impair insulin signal transduction directly through inhibitory phosphorylation of insulin receptor substrate (IRS on serine residues. TLR4 activation also leads to increased transcription of pro-inflammatory genes, resulting in elevation of cytokine, chemokine, reactive oxygen species, and eicosanoid levels that promote further insulin-desensitization within the target cell itself and in other cells via paracrine and systemic effects. Increased understanding of cell type-specific TLR4-mediated effects on insulin action present the opportunity and challenge of developing related therapeutic approaches for improving insulin sensitivity while preserving innate immunity.

  20. Identification and characterization of insulin receptors in basolateral membranes of dog intestinal mucosa

    Gingerich, R.L.; Gilbert, W.R.; Comens, P.G.; Gavin, J.R. III

    1987-01-01

    Little is known about hormonal regulation of substrate transport and metabolism in the mucosal lining of the small intestine. Because insulin regulates these functions in other tissues by binding to its receptor, we have investigated the presence of insulin receptors in canine small intestinal mucosa with basolateral membranes (BLM) and brush border membranes (BBM) prepared by sorbitol density centrifugation. A14-[ 125 I]iodoinsulin was used to study binding and structural characteristics of specific insulin receptors in BLM. Analysis of receptors in BLM identified binding sites with high affinity (Kd 88 pM) and low capacity (0.4 pmol/mg protein) as well as with low affinity (Kd 36 nM) and high capacity (4.7 pmol/mg protein). Binding was time, temperature, and pH dependent, and 125 I-labeled insulin dissociation was enhanced in the presence of unlabeled insulin. Cross-reactivity of these receptors to proinsulin, IGF-II, and IGF-I was 4, 1.8, and less than 1%, respectively. Covalent cross-linking of labeled insulin to BLM insulin receptors with disuccinimidyl suberate revealed a single 135,000-Mr band that was completely inhibited by unlabeled insulin. There was a 16-fold greater specific binding of insulin to BLM (39.0 +/- 2.4%) than to BBM (2.5 +/- 0.6%). These results demonstrate the presence of a highly specific receptor for insulin on the vascular, but not the luminal, surface of the small intestinal mucosa in dogs, and suggest that insulin may play an important role in the regulation of gastrointestinal physiology

  1. Absence of down-regulation of the insulin receptor by insulin. A possible mechanism of insulin resistance in the rat.

    Walker, A P; Flint, D J

    1983-01-01

    Insulin resistance occurs in rat adipocytes during pregnancy and lactation despite increased or normal insulin binding respectively; this suggests that a post-receptor defect exists. The possibility has been examined that, although insulin binding occurs normally, internalization of insulin or its receptor may be impaired in these states. Insulin produced a dose-dependent reduction in the number of insulin receptors on adipocytes from virgin rats maintained in culture medium, probably due to ...

  2. Cerebral insulin, insulin signaling pathway, and brain angiogenesis.

    Zeng, Yi; Zhang, Le; Hu, Zhiping

    2016-01-01

    Insulin performs unique non-metabolic functions within the brain. Broadly speaking, two major areas of these functions are those related to brain endothelial cells and the blood-brain barrier (BBB) function, and those related to behavioral effects, like cognition in disease states (Alzheimer's disease, AD) and in health. Recent studies showed that both these functions are associated with brain angiogenesis. These findings raise interesting questions such as how they are linked to each other and whether modifying brain angiogenesis by targeting certain insulin signaling pathways could be an effective strategy to treat dementia as in AD, or even to help secure healthy longevity. The two canonical downstream pathways involved in mediating the insulin signaling pathway, the phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinase (MAPK) cascades, in the brain are supposed to be similar to those in the periphery. PI3K and MAPK pathways play important roles in angiogenesis. Both are involved in stimulating hypoxia inducible factor (HIF) in angiogenesis and could be activated by the insulin signaling pathway. This suggests that PI3K and MAPK pathways might act as cross-talk between the insulin signaling pathway and the angiogenesis pathway in brain. But the cerebral insulin, insulin signaling pathway, and the detailed mechanism in the connection of insulin signaling pathway, brain angiogenesis pathway, and healthy aging or dementias are still mostly not clear and need further studies.

  3. The evolutionary benefit of insulin resistance

    Soeters, Maarten R.; Soeters, Peter B.

    2012-01-01

    Insulin resistance is perceived as deleterious, associated with conditions as the metabolic syndrome, type 2 diabetes mellitus and critical illness. However, insulin resistance is evolutionarily well preserved and its persistence suggests that it benefits survival. Insulin resistance is important in

  4. Insulin resistance, insulin sensitization and inflammation in polycystic ovarian syndrome

    Dhindsa G

    2004-04-01

    Full Text Available It is estimated that 5-10% of women of reproductive age have polycystic ovarian syndrome (PCOS. While insulin resistance is not part of the diagnostic criteria for PCOS, its importance in the pathogenesis of PCOS cannot be denied. PCOS is associated with insulin resistance independent of total or fat-free body mass. Post-receptor defects in the action of insulin have been described in PCOS which are similar to those found in obesity and type 2 diabetes. Treatment with insulin sensitizers, metformin and thiazolidinediones, improve both metabolic and hormonal patterns and also improve ovulation in PCOS. Recent studies have shown that PCOS women have higher circulating levels of inflammatory mediators like C-reactive protein, tumour necrosis factor- , tissue plasminogen activator and plasminogen activator inhibitor-1 (PAI-1 . It is possible that the beneficial effect of insulin sensitizers in PCOS may be partly due to a decrease in inflammation.

  5. Paediatrics, insulin resistance and the kidney.

    Marlais, Matko; Coward, Richard J

    2015-08-01

    Systemic insulin resistance is becoming more prevalent in the young due to modern lifestyles predisposing to the metabolic syndrome and obesity. There is also evidence that there are critical insulin-resistant phases for the developing child, including puberty, and that renal disease per se causes systemic insulin resistance. This review considers the factors that render children insulin resistant, as well as the accumulating evidence that the kidney is an insulin-responsive organ and could be affected by insulin resistance.

  6. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function.

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao

    2015-11-01

    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1

    Frödin, M; Sekine, N; Roche, E

    1995-01-01

    The signaling pathways whereby glucose and hormonal secretagogues regulate insulin-secretory function, gene transcription, and proliferation of pancreatic beta-cells are not well defined. We show that in the glucose-responsive beta-cell line INS-1, major secretagogue-stimulated signaling pathways...... converge to activate 44-kDa mitogen-activated protein (MAP) kinase. Thus, glucose-induced insulin secretion was found to be associated with a small stimulatory effect on 44-kDa MAP kinase, which was synergistically enhanced by increased levels of intracellular cAMP and by the hormonal secretagogues......-1. Phorbol ester, an activator of protein kinase C, stimulated 44-kDa MAP kinase by both Ca(2+)-dependent and -independent pathways. Nerve growth factor, independently of changes in cytosolic Ca2+, efficiently stimulated 44-kDa MAP kinase without causing insulin release, indicating that activation...

  8. Impact of intensive insulin treatment on the development and consequences of oxidative stress in insulin-dependent diabetes mellitus

    Kocić Radivoj

    2007-01-01

    Full Text Available Background/Aim. The aim of this study, which included patients with insulin-dependent diabetes mellitus, was to determine the influence of the application of various treatment modalities (intensive or conventional on the total plasma antioxidative capacity and lipid peroxidation intensity expressed as malondialdehyde (MDA level, catalase and xanthine oxidase activity, erythrocyte glutatione reduced concentration (GSH RBC, erythrocyte MDA level (MDA RBC, as well as susceptibility of erythrocyte to H2O2-induced oxidative stress. Methods. This study included 42 patients with insulin-dependent diabetes mellitus. In 24 of the patients intensive insulin treatment was applied using the model of short-acting insulin in each meal and medium- acting insulin before going to bed, while in 18 of the patients conventional insulin treatment was applied in two (morning and evening doses. In the examined patients no presence of diabetes mellitus complications was recorded. The control group included 20 healthy adults out of a blood doner group. The plasma and erythrocytes taken from the blood samples were analyzed immediately. Results. This investigation proved that the application of intensive insulin treatment regime significantly improves total antioxidative plasma capacity as compared to the application of conventional therapy regime. The obtained results showed that the both plasma and lipoproteines apo B MDA increased significantly more in the patients on conventional therapy than in the patients on intensive insulin therapy, most probably due to intensified xanthine oxidase activity. The level of the MDA in fresh erythrocytes did not differ significantly between the groups on intensive and conventional therapy. The level of GSH and catalase activity, however, were significantly reduced in the patients on conventional therapy due to the increased susceptibility to H2O2-induced oxidative stress . Conclusion. The presented study confirmed positive effect of

  9. SGLT2 inhibitors provide an effective therapeutic option for diabetes complicated with insulin antibodies.

    Hayashi, Akinori; Takano, Koji; Kawai, Sayuki; Shichiri, Masayoshi

    2016-01-01

    Diabetes mellitus complicated with insulin antibodies is rare in clinical practice but usually difficult to control. A high amount of insulin antibodies, especially with low affinity and high binding capacity, leads to unstable glycemic control characterized by hyperglycemia unresponsive to large volume of insulin and unanticipated hypoglycemia. There are several treatment options, such as changing insulin preparation, immunosupression with glucocorticoids, and plasmapheresis, most of which are of limited efficacy. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a novel class of drug which decrease renal glucose reabsorption and lowers plasma glucose level independent of insulin action. We report here a case with diabetes complicated with insulin antibodies who was effectively controlled by an SGLT2 inhibitor. A 47-year-old man with type 2 diabetes treated with insulin had very poor glycemic control characterized by postprandial hyperglycemia unresponsive to insulin therapy and repetitive hypoglycemia due to insulin antibodies. Treatment with ipragliflozin, an SGLT2 inhibitor, improved HbA1c from 8.4% to 6.0% and glycated albumin from 29.4% to 17.9%. Continuous glucose monitoring revealed improvement of glycemic profile (average glucose level from 212 mg/dL to 99 mg/dL and glycemic standard deviation from 92 mg/dL to 14 mg/dL) with disappearance of hypoglycemic events. This treatment further ameliorated the characteristics of insulin antibodies and resulted in reduced insulin requirement. SGLT2 inhibitors may offer an effective treatment option for managing the poor glycemic control in diabetes complicated with insulin antibodies.

  10. Insulin Signaling and Heart Failure

    Riehle, Christian; Abel, E. Dale

    2016-01-01

    Heart failure is associated with generalized insulin resistance. Moreover, insulin resistant states such as type 2 diabetes and obesity increases the risk of heart failure even after adjusting for traditional risk factors. Insulin resistance or type 2 diabetes alters the systemic and neurohumoral milieu leading to changes in metabolism and signaling pathways in the heart that may contribute to myocardial dysfunction. In addition, changes in insulin signaling within cardiomyocytes develop in the failing heart. The changes range from activation of proximal insulin signaling pathways that may contribute to adverse left ventricular remodeling and mitochondrial dysfunction to repression of distal elements of insulin signaling pathways such as forkhead (FOXO) transcriptional signaling or glucose transport which may also impair cardiac metabolism, structure and function. This article will review the complexities of insulin signaling within the myocardium and ways in which these pathways are altered in heart failure or in conditions associated with generalized insulin resistance. The implications of these changes for therapeutic approaches to treating or preventing heart failure will be discussed. PMID:27034277

  11. Traumatic brain injury and obesity induce persistent central insulin resistance.

    Karelina, Kate; Sarac, Benjamin; Freeman, Lindsey M; Gaier, Kristopher R; Weil, Zachary M

    2016-04-01

    Traumatic brain injury (TBI)-induced impairments in cerebral energy metabolism impede tissue repair and contribute to delayed functional recovery. Moreover, the transient alteration in brain glucose utilization corresponds to a period of increased vulnerability to the negative effects of a subsequent TBI. In order to better understand the factors contributing to TBI-induced central metabolic dysfunction, we examined the effect of single and repeated TBIs on brain insulin signalling. Here we show that TBI induced acute brain insulin resistance, which resolved within 7 days following a single injury but persisted until 28 days following repeated injuries. Obesity, which causes brain insulin resistance and neuroinflammation, exacerbated the consequences of TBI. Obese mice that underwent a TBI exhibited a prolonged reduction of Akt (also known as protein kinase B) signalling, exacerbated neuroinflammation (microglial activation), learning and memory deficits, and anxiety-like behaviours. Taken together, the transient changes in brain insulin sensitivity following TBI suggest a reduced capacity of the injured brain to respond to the neuroprotective and anti-inflammatory actions of insulin and Akt signalling, and thus may be a contributing factor for the damaging neuroinflammation and long-lasting deficits that occur following TBI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Biomimetic insulin-imprinted polymer nanoparticles as a potential oral drug delivery system

    Paul Pijush Kumar

    2017-06-01

    Full Text Available In this study, we investigate molecularly imprinted polymers (MIPs, which form a three-dimensional image of the region at and around the active binding sites of pharmaceutically active insulin or are analogous to b cells bound to insulin. This approach was employed to create a welldefined structure within the nanospace cavities that make up functional monomers by cross-linking. The obtained MIPs exhibited a high adsorption capacity for the target insulin, which showed a significantly higher release of insulin in solution at pH 7.4 than at pH 1.2. In vivo studies on diabetic Wistar rats showed that the fast onset within 2 h is similar to subcutaneous injection with a maximum at 4 h, giving an engaged function responsible for the duration of glucose reduction for up to 24 h. These MIPs, prepared as nanosized material, may open a new horizon for oral insulin delivery.

  13. Co-culture of clonal beta cells with GLP-1 and glucagon-secreting cell line impacts on beta cell insulin secretion, proliferation and susceptibility to cytotoxins.

    Green, Alastair D; Vasu, Srividya; Moffett, R Charlotte; Flatt, Peter R

    2016-06-01

    We investigated the direct effects on insulin releasing MIN6 cells of chronic exposure to GLP-1, glucagon or a combination of both peptides secreted from GLUTag L-cell and αTC1.9 alpha-cell lines in co-culture. MIN6, GLUTag and αTC1.9 cell lines exhibited high cellular hormone content and release of insulin, GLP-1 and glucagon, respectively. Co-culture of MIN6 cells with GLUTag cells significantly increased cellular insulin content, beta-cell proliferation, insulin secretory responses to a range of established secretogogues and afforded protection against exposure cytotoxic concentrations of glucose, lipid, streptozotocin or cytokines. Benefits of co-culture of MIN6 cells with αTC1.9 alphacells were limited to enhanced beta-cell proliferation with marginal positive actions on both insulin secretion and cellular protection. In contrast, co-culture of MIN6 with GLUTag cells plus αTC1.9 cells, markedly enhanced both insulin secretory responses and protection against beta-cell toxins compared with co-culture with GLUTag cells alone. These data indicate important long-term effects of conjoint GLP-1 and glucagon exposure on beta-cell function. This illustrates the possible functional significance of alpha-cell GLP-1 production as well as direct beneficial effects of dual agonism at beta-cell GLP-1 and glucagon receptors. Copyright © 2016 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  14. [News and perspectives in insulin treatment].

    Haluzík, Martin

    2014-09-01

    Insulin therapy is a therapeutic cornerstone in patients with type 1 diabetes and also in numerous patients with type 2 diabetes especially with longer history of diabetes. The initiation of insulin therapy in type 2 diabetes patients is often delayed which is at least partially due to suboptimal pharmacokinetic characteristics of available insulins. The development of novel insulins with more favorable characteristics than those of current insulins is therefore still ongoing. The aim of this paper is to review current knowledge of novel insulins that have been recently introduced to the market or are getting close to routine clinical use. We will also focus on the perspectives of insulin therapy in the long-term run including the alternative routes of insulin administration beyond its classical subcutaneous injection treatment.Key words: alternative routes of insulin administration - diabetes mellitus - hypoglycemia - insulin - insulin analogues.

  15. The relationship between the connecting peptide of recombined single chain insulin and its biological function

    HUANG; Yiding; (

    2001-01-01

    ., Harvey, T. S., Camphell, I. D., Solution structure of human insulin-like growth factor I: a nuclear magnetic resonance and restrained molecular dynamics study, Biochemistry, 1991, 30: 5484-5491.[13]Baker, E. N., Blundell, T. L., Cutfield, J. F. et al., The structure of 2Zn pig insulin crystals at 1.5A resolution, Phil. Trans. R. Soc. Lond., 1988, B 319: 369-456.[14]Kobayashi, Y., Nishimura, S., Ohkubo, T. et al., Solution structure of human insulin-like growth factor-I (IGF-I), in Peptide 1990 (eds. Giralt, E., Andreu, D.), Leiden: ESCOM Science Publishers B. V., 1991, 565-567.[15]Wang, P., Cai, R. R., Feng, Y. M. et al., Studies on insulin/IGF-1 hybrid and IGF-1 growth-promoting functional region, IUBMB Life, 2000, 49: 321-325.[16]Zhang, Y. S., Hu, H. M., Cai, R. R. et al., Secretory expression of a single-chain insulin precursor in yeast and its conversion into human insulin, Science in China, Ser. C, 1996, 39(3): 225-233.[17]Sambrook, J., Fritsch, E. F., Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., New York: Cold Spring Harbor Laboratory Press, 1989.[18]Sanger, F., Nicklen, S., Coulson, A. R., DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. USA, 1977, 74: 5463-5467.[19]Lowrey, O. H., Rosebrough, N. O., Farr, A. L. et al., Protein measurement with the follin-phenol reagent, J. Biol. Chem., 1951, 193: 265-275.[20]Feng, Y. M., Zhu, J. H., Zhang, X. T. et al., Studies on the mechanism of insulin action VIII. The insulin receptor on the membrane of the human placenta, Acta Biochim. Biophys. Sin., 1982, 14: 137-143.[21]Chen, H., Feng, Y. M., Hydrophilic Thr can replace the hydrophobic and absolutely conservative A3Val in insulin, Biochim. Biophys. Acta, 1998, 1429: 69-73.[22]Zhang, X., Xia, S. L., Tomooka, Y. et al., A new assay system for the cell growth promoting effects of insulin and growth factors, Acta Biochim. Biophys. Sin., 1995, 27: 487-492.[23]Ma, J. G., Li, M. Y., Zhen, J. M

  16. Improved insulin loading in poly(lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids.

    García-Díaz, María; Foged, Camilla; Nielsen, Hanne Mørck

    2015-03-30

    Polymeric nanoparticles are widely investigated as drug delivery systems for oral administration. However, the hydrophobic nature of many polymers hampers effective loading of the particles with hydrophilic macromolecules such as insulin. Thus, the aim of this work was to improve the loading of insulin into poly(lactic-co-glycolic) acid (PLGA) nanoparticles by pre-assembly with amphiphilic lipids. Insulin was complexed with soybean phosphatidylcholine or sodium caprate by self-assembly and subsequently loaded into PLGA nanoparticles by using the double emulsion-solvent evaporation technique. The nanoparticles were characterized in terms of size, zeta potential, insulin encapsulation efficiency and loading capacity. Upon pre-assembly with lipids, there was an increased distribution of insulin into the organic phase of the emulsion, eventually resulting in significantly enhanced encapsulation efficiencies (90% as compared to 24% in the absence of lipids). Importantly, the insulin loading capacity was increased up to 20% by using the lipid-insulin complexes. The results further showed that a main fraction of the lipid was incorporated into the nanoparticles and remained associated to the polymer during release studies in buffers, whereas insulin was released in a non-complexed form as a burst of approximately 80% of the loaded insulin. In conclusion, the protein load in PLGA nanoparticles can be significantly increased by employing self-assembled protein-lipid complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice

    Coomans, Claudia P.; Biermasz, Nienke R.; Geerling, Janine J.; Guigas, Bruno; Rensen, Patrick C. N.; Havekes, Louis M.; Romijn, Johannes A.

    2011-01-01

    Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated

  18. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice

    Coomans, C.P.; Biermasz, N.R.; Geerling, J.J.; Guigas, B.; Rensen, P.C.N.; Havekes, L.M.; Romijn, J.A.

    2011-01-01

    OBJECTIVE - Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated

  19. [Effects of secretory and osmotic diarrhea on rats intestinal function and morphology].

    de Lima de Mon, Margarita; Cioccia, Anna M; González, Eduardo; Hevia, Patricio

    2002-03-01

    In order to compare intestinal morphology and function, diarrhea was produced in rats using laxatives in the diet. The 14 day study included two groups of rats with diarrhea (osmotic or secretory), two groups without diarrhea but with a degree of malnutrition which was similar to that seen in the rats with diarrhea (malnourished without diarrhea) and a well-nourished group (control). The inclusion of laxatives(lactose or bisoxatin acetate) cause a reduction in food intake, diarrhea an malnutrition. It also caused a reduction in dietary protein and fat digestibility which was proportional to the severity of diarrhea and more pronounced in secretory diarrhea. In the malnourished rats without diarrhea, malnutrition did not affect their absorptive function. Both in the rats with secretory and osmotic diarrhea an intestinal hypertrophy was observed. This hypertrophy was proportional to the severity of diarrhea and independent of its aetiology. In the intestines of the rats with both types of diarrhea there was inflammation, a greater number of mitotic figures but the flattening of the villi seen in the malnourished rats without diarrhea was not seen. In osmotic diarrhea there was, in addition, a patchy damage of the surface of the jejunal mucosa and an increment in the number of goblet cells, indicating a more severe intestinal deterioration. Since despite this greater deterioration, these rats absorbed more protein and fat we concluded that the alterations in intestinal morphology seen in this study was not predictive of intestinal function. The study also showed that diarrhea had a trophic effect on the intestine which did not occur in malnourished rats without diarrhea.

  20. Ca(2+)-calmodulin-dependent phosphorylation of islet secretory granule proteins

    Watkins, D.T.

    1991-01-01

    The effect of Ca2+ and calmodulin on phosphorylation of islet secretory granule proteins was studied. Secretory granules were incubated in a phosphorylation reaction mixture containing [32P]ATP and test reagents. The 32P-labeled proteins were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the 32P content was visualized by autoradiography, and the relative intensities of specific bands were quantitated. When the reaction mixture contained EGTA and no added Ca2+, 32P was incorporated into two proteins with molecular weights of 45,000 and 13,000. When 10(-4) M Ca2+ was added without EGTA, two additional proteins (58,000 and 48,000 Mr) were phosphorylated, and the 13,000-Mr protein was absent. The addition of 2.4 microM calmodulin markedly enhanced the phosphorylation of the 58,000- and 48,000-Mr proteins and resulted in the phosphorylation of a major protein whose molecular weight (64,000 Mr) is identical to that of one of the calmodulin binding proteins located on the granule surface. Calmodulin had no effect on phosphorylation in the absence of Ca2+ but was effective in the presence of calcium between 10 nM and 50 microM. Trifluoperazine and calmidazolium, calmodulin antagonists, produced a dose-dependent inhibition of the calmodulin effect. 12-O-tetradecanoylphorbol 13-acetate, a phorbol ester that activates protein kinase C, produced no increase in phosphorylation, and 1-(5-isoquinoline sulfonyl)-2-methyl piperazine dihydrochloride, an inhibitor of protein kinase C, had no effect. These results indicate that Ca(2+)-calmodulin-dependent protein kinases and endogenous substrates are present in islet secretory granules

  1. Heterologous Secretory Expression and Characterization of Dimerized Bone Morphogenetic Protein 2 in Bacillus subtilis

    Muhammad Umair Hanif

    2017-01-01

    Full Text Available Recombinant human Bone Morphogenetic Protein 2 (rhBMP2 has important applications in the spine fusion and ortho/maxillofacial surgeries. Here we first report the secretory expression of biological active dimerized rhBMP2 from Bacillus subtilis system. The mature domain of BMP2 gene was amplified from pTz57R/BMP2 plasmid. By using pHT43 expression vector two constructs, pHT43-BMP2-M (single BMP2 gene and pHT43-BMP2-D (two BMP2 genes coupled with a linker to produce a dimer, were designed. After primary cloning (DH5α strain and sequence analysis, constructs were transformed into Bacillus subtilis for secretory expression. Expression conditions like media (2xYT and temperature (30°C were optimized. Maximum 35% and 25% secretory expression of monomer (~13 kDa and dimer (~25 kDa, respectively, were observed on SDS-PAGE in SCK6 strain. The expression and dimeric nature of rhBMP2 were confirmed by western blot and native PAGE analysis. For rhBMP2 purification, 200 ml culture supernatant was freeze dried to 10 ml and dialyzed (Tris-Cl, pH 8.5 and Fast Protein Liquid Chromatography (6 ml, Resource Q column was performed. The rhBMP2 monomer and dimer were eluted at 0.9 M and 0.6 M NaCl, respectively. The alkaline phosphatase assay of rhBMP2 (0, 50, 100, 200, and 400 ng/ml was analyzed on C2C12 cells and maximum 200 ng/ml activity was observed in dose dependent manner.

  2. Expression and secretory profile of buffalo fetal fibroblasts and Wharton's jelly feeder layers.

    Parmar, Mehtab S; Mishra, Smruti Ranjan; Somal, Anjali; Pandey, Sriti; Kumar, G Sai; Sarkar, Mihir; Chandra, Vikash; Sharma, G Taru

    2017-05-01

    The present study examined the comparative expression and secretory profile of vital signaling molecules in buffalo fetal fibroblasts (BFF) and Wharton's jelly (BWJ) feeder layers at different passages. Both feeder layers were expanded up to 8th passage. Signaling molecules viz. bone morphogenetic protein 4 (BMP4), fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF) and transforming growth factor beta 1 (TGFB1) and pluripotency-associated transcriptional factors (POU5F1, SOX2, NANOG, KLF4, MYC and FOXD3) were immunolocalized in the both feeder types. A clear variation in the expression pattern of key signaling molecules with passaging was registered in both feeders compared to primary culture (0 passage). The conditioned media (CM) was collected from different passages (2, 4, 6, 8) of both the feeder layers and was quantified using enzyme-linked immunosorbent assay (ELISA). Concomitant to expression profile, protein quantification also revealed differences in the concentration of signaling molecules at different time points. Conjointly, expression and secretory profile revealed that 2nd passage of BFF and 6th passage of BWJ exhibit optimal levels of key signaling molecules thus may be selected as best passages for embryonic stem cells (ESCs) propagation. Further, the effect of mitomycin-C (MMC) treatment on the expression profile of signaling molecules in the selected passages of BFF and BWJ revealed that MMC modulates the expression profile of these molecules. In conclusion, the results indicate that feeder layers vary in expression and secretory pattern of vital signaling molecules with passaging. Based on these findings, the appropriate feeder passages may be selected for the quality propagation of buffalo ESCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Secretory IgA (SIgA: designed for antimicrobial defence

    Per eBrandtzaeg

    2013-08-01

    Full Text Available Prevention of infections by vaccination remains a compelling goal to improve public health. Mucosal vaccines would make immunization procedures easier, be better suited for mass administration, and most efficiently induce immune exclusion -- a term coined for non-inflammatory antibody shielding of internal body surfaces, mediated principally by secretory immunoglobulin A (SIgA. The exported antibodies are polymeric, mainly IgA dimers (pIgA, produced by local plasma cells stimulated by antigens that target the mucosae. SIgA was early shown to be complexed with an epithelial glycoprotein -- the secretory component (SC. A common SC-dependent transport mechanism for pIgA and pentameric IgM was then proposed, implying that membrane SC acts as a receptor, now usually called the polymeric Ig receptor (pIgR. From the basolateral surface, pIg-pIgR complexes are taken up by endocytosis and then extruded into the lumen after apical cleavage of the receptor -- bound SC having stabilizing and innate functions in the secretory antibodies. Mice deficient for pIgR show that this is the only receptor responsible for epithelial export of IgA and IgM. These knockout mice show a variety of defects in their mucosal defensce and changes in their intestinal microbiota. In the gut, induction of B cells occurs in gut-associated lymphoid tissue (GALT, particularly the Peyer’s patches and isolated lymphoid follicles, but also in mesenteric lymph nodes. Plasma cell differentiation is accomplished in the lamina propria to which the activated memory/effector B cells home. The airways also receive such cells from nasopharynx-associated lymphoid tissue (NALT but by different homing receptors. This compartmentalization is a challenge for mucosal vaccination, as are the mechanisms used by the mucosal immune system to discriminate between commensal symbionts (mutualism, pathobionts and overt pathogens (elimination.

  4. Microarray profiling of progesterone-regulated endometrial genes during the rhesus monkey secretory phase

    Okulicz William C

    2004-07-01

    Full Text Available Abstract Background In the endometrium the steroid hormone progesterone (P, acting through its nuclear receptors, regulates the expression of specific target genes and gene networks required for endometrial maturation. Proper endometrial maturation is considered a requirement for embryo implantation. Endometrial receptivity is a complex process that is spatially and temporally restricted and the identity of genes that regulate receptivity has been pursued by a number of investigators. Methods In this study we have used high density oligonucleotide microarrays to screen for changes in mRNA transcript levels between normal proliferative and adequate secretory phases in Rhesus monkey artificial menstrual cycles. Biotinylated cRNA was prepared from day 13 and days 21–23 of the reproductive cycle and transcript levels were compared by hybridization to Affymetrix HG-U95A arrays. Results Of ~12,000 genes profiled, we identified 108 genes that were significantly regulated during the shift from a proliferative to an adequate secretory endometrium. Of these genes, 39 were up-regulated at days 21–23 versus day 13, and 69 were down-regulated. Genes up-regulated in P-dominant tissue included: secretoglobin (uteroglobin, histone 2A, polo-like kinase (PLK, spermidine/spermine acetyltransferase 2 (SAT2, secretory leukocyte protease inhibitor (SLPI and metallothionein 1G (MT1G, all of which have been previously documented as elevated in the Rhesus monkey or human endometrium during the secretory phase. Genes down-regulated included: transforming growth factor beta-induced (TGFBI or BIGH3, matrix metalloproteinase 11 (stromelysin 3, proenkephalin (PENK, cysteine/glycine-rich protein 2 (CSRP2, collagen type VII alpha 1 (COL7A1, secreted frizzled-related protein 4 (SFRP4, progesterone receptor membrane component 1 (PGRMC1, chemokine (C-X-C ligand 12 (CXCL12 and biglycan (BGN. In addition, many novel/unknown genes were also identified. Validation of array data

  5. [Unilateral exophthalmos as the debut of a non-secretory multiple myeloma].

    Castro-Rebollo, M; Cañones-Zafra, R; Vleming-Pinilla, E N; Drake-Rodríguez-Casanova, P; Pérez-Rico, C

    2009-12-01

    A 56 year-old male presented blurred vision and diplopia for 2 months, left unilateral exophthalmos, restricted ocular motility and papilledema. The imaging proofs showed osteolytic lesions in the left sphenoid bone, fourth rib and fourth dorsal vertebral body with associated masses of soft tissues. Biopsy was performed and the diagnosis of plasma cell neoplasm was established. The diagnosis of non-secretory multiple myeloma was made by analytical criteria and bone marrow biopsy. Local radiotherapy and polychemotherapy was prescribed. The ophthalmologist can play an important role in the diagnosis of systemic neoplasms that require the intervention of a multidisciplinary team.

  6. The secretory endometrial protein, placental protein 14, in women with ectopic gestation

    Ruge, S; Sørensen, Steen; Vejtorp, M

    1992-01-01

    OBJECTIVE: To determine the serum level of the secretory endometrial protein, placental protein 14 (PP14) and progesterone (P) in women with ectopic gestation. DESIGN: Blood samples were collected prospectively and preoperatively. Reference range was determined from a prospective population of 98...... observing the low serum levels of PP14 and P, a correlation analysis was made and compared with the findings in normally pregnant women. RESULTS: A significant positive correlation was found between the level of PP14 and P (P less than 0.00002), not found in normal intrauterine pregnancies. CONCLUSIONS...

  7. Reversal by EGTA of the enhanced secretory responsiveness of mast cells due to treatment with ouabain

    Johansen, Torben; Knudsen, T; Bertelsen, Niels Haldor

    1990-01-01

    The effect of EGTA on the enhancement by ouabain of compound 48/80-induced secretion from mast cells was compared with the effect on the Na(+)-K+ pump activity. The time-dependent secretory enhancement by ouabain was blocked by addition of EGTA to the cell suspension concomitantly with the addition...... of ouabain, and EGTA caused a large increase in the pump activity. Addition of 10 microM EGTA to ouabain-treated cells stopped but did not reverse the enhancement. The experiments show that the effect of ouabain was due to changes in a calcium pool utilized in compound 48/80-induced secretion following...

  8. A model of insulin fibrils derived from the x-ray crystal structure of a monomeric insulin (despentapeptide insulin).

    Brange, J; Dodson, G G; Edwards, D J; Holden, P H; Whittingham, J L

    1997-04-01

    The crystal structure of despentapeptide insulin, a monomeric insulin, has been refined at 1.3 A spacing and subsequently used to predict and model the organization in the insulin fibril. The model makes use of the contacts in the densely packed despentapeptide insulin crystal, and takes into account other experimental evidence, including binding studies with Congo red. The dimensions of this model fibril correspond well with those measured experimentally, and the monomer-monomer contacts within the fibril are in accordance with the known physical chemistry of insulin fibrils. Using this model, it may be possible to predict mutations in insulin that might alleviate problems associated with fibril formation during insulin therapy.

  9. Recognition of secretory proteins in Escherichia coli requires signals in addition to the signal sequence and slow folding

    Flower Ann M

    2002-11-01

    Full Text Available Abstract Background The Sec-dependent protein export apparatus of Escherichia coli is very efficient at correctly identifying proteins to be exported from the cytoplasm. Even bacterial strains that carry prl mutations, which allow export of signal sequence-defective precursors, accurately differentiate between cytoplasmic and mutant secretory proteins. It was proposed previously that the basis for this precise discrimination is the slow folding rate of secretory proteins, resulting in binding by the secretory chaperone, SecB, and subsequent targeting to translocase. Based on this proposal, we hypothesized that a cytoplasmic protein containing a mutation that slows its rate of folding would be recognized by SecB and therefore targeted to the Sec pathway. In a Prl suppressor strain the mutant protein would be exported to the periplasm due to loss of ability to reject non-secretory proteins from the pathway. Results In the current work, we tested this hypothesis using a mutant form of λ repressor that folds slowly. No export of the mutant protein was observed, even in a prl strain. We then examined binding of the mutant λ repressor to SecB. We did not observe interaction by either of two assays, indicating that slow folding is not sufficient for SecB binding and targeting to translocase. Conclusions These results strongly suggest that to be targeted to the export pathway, secretory proteins contain signals in addition to the canonical signal sequence and the rate of folding.

  10. Overproduction of a Model Sec- and Tat-Dependent Secretory Protein Elicits Different Cellular Responses in Streptomyces lividans.

    Sonia Gullón

    Full Text Available Streptomyces lividans is considered an efficient host for the secretory production of homologous and heterologous proteins. To identify possible bottlenecks in the protein production process, a comparative transcriptomic approach was adopted to study cellular responses during the overproduction of a Sec-dependent model protein (alpha-amylase and a Tat-dependent model protein (agarase in Streptomyces lividans. The overproduction of the model secretory proteins via the Sec or the Tat route in S. lividans does elicit a different major cell response in the bacterium. The stringent response is a bacterial response to nutrients' depletion, which naturally occurs at late times of the bacterial cell growth. While the induction of the stringent response at the exponential phase of growth may limit overall productivity in the case of the Tat route, the induction of that response does not take place in the case of the Sec route, which comparatively is an advantage in secretory protein production processes. Hence, this study identifies a potential major drawback in the secretory protein production process depending on the secretory route, and provides clues to improving S. lividans as a protein production host.

  11. Abnormal ion content, hydration and granule expansion of the secretory granules from cystic fibrosis airway glandular cells

    Baconnais, S.; Delavoie, F.; Zahm, J.M.; Milliot, M.; Terryn, C.; Castillon, N.; Banchet, V.; Michel, J.; Danos, O.; Merten, M.; Chinet, T.; Zierold, K.; Bonnet, N.; Puchelle, E.; Balossier, G.

    2005-01-01

    The absence or decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) induces increased Na + absorption and hyperabsorption of the airway surface liquid (ASL) resulting in a dehydrated and hyperviscous ASL. Although the implication of abnormal airway submucosal gland function has been suggested, the ion and water content in the Cystic Fibrosis (CF) glandular secretory granules, before exocytosis, is unknown. We analyzed, in non-CF and CF human airway glandular cell lines (MM-39 and KM4, respectively), the ion content in the secretory granules by electron probe X-ray microanalysis and the water content by quantitative dark field imaging on freeze-dried cryosections. We demonstrated that the ion content (Na + , Mg 2+ , P, S and Cl - ) is significantly higher and the water content significantly lower in secretory granules from the CF cell line compared to the non-CF cell line. Using videomicroscopy, we observed that the secretory granule expansion was deficient in CF glandular cells. Transfection of CF cells with CFTR cDNA or inhibition of non-CF cells with CFTR inh -172, respectively restored or decreased the water content and granule expansion, in parallel with changes in ion content. We hypothesize that the decreased water and increased ion content in glandular secretory granules may contribute to the dehydration and increased viscosity of the ASL in CF

  12. The F-actin modifier villin regulates insulin granule dynamics and exocytosis downstream of islet cell autoantigen 512

    Hassan Mziaut

    2016-08-01

    Full Text Available Objective: Insulin release from pancreatic islet β cells should be tightly controlled to avoid hypoglycemia and insulin resistance. The cortical actin cytoskeleton is a gate for regulated exocytosis of insulin secretory granules (SGs by restricting their mobility and access to the plasma membrane. Prior studies suggest that SGs interact with F-actin through their transmembrane cargo islet cell autoantigen 512 (Ica512 (also known as islet antigen 2/Ptprn. Here we investigated how Ica512 modulates SG trafficking and exocytosis. Methods: Transcriptomic changes in Ica512−/− mouse islets were analyzed. Imaging as well as biophysical and biochemical methods were used to validate if and how the Ica512-regulated gene villin modulates insulin secretion in mouse islets and insulinoma cells. Results: The F-actin modifier villin was consistently downregulated in Ica512−/− mouse islets and in Ica512-depleted insulinoma cells. Villin was enriched at the cell cortex of β cells and dispersed villin−/− islet cells were less round and less deformable. Basal mobility of SGs in villin-depleted cells was enhanced. Moreover, in cells depleted either of villin or Ica512 F-actin cages restraining cortical SGs were enlarged, basal secretion was increased while glucose-stimulated insulin release was blunted. The latter changes were reverted by overexpressing villin in Ica512-depleted cells, but not vice versa. Conclusion: Our findings show that villin controls the size of the F-actin cages restricting SGs and, thus, regulates their dynamics and availability for exocytosis. Evidence that villin acts downstream of Ica512 also indicates that SGs directly influence the remodeling properties of the cortical actin cytoskeleton for tight control of insulin secretion. Keywords: F-actin, Granules, Ica512, Insulin, Secretion, Villin

  13. New ways of insulin delivery.

    Heinemann, L

    2010-02-01

    When Exubera (EXU), the first inhaled insulin formulation to make it through the clinical development process, was introduced to the market some years ago it was hoped that this would be the first in a series of novel insulin formulations applied by this route. In addition, it was hoped that inhaled insulin would pave the way for other alternative routes of insulin administration (ARIA), i.e. oral insulin, nasal insulin or transdermal insulin to mention only some of the different attempts that have been studied in the last 90 years. The failure of EXU, i.e. its withdrawal from the market due to insufficient market success, was followed by the cessation of nearly all other attempts to develop inhaled insulin formulations. Currently there is only one company (MannKind) which moves sturdily ahead with their Technosphere insulin. This company has submitted an NDA for their product recently and hopes to bring it to the market by the end of 2010 or early 2011. Even if the product is able to pass the approval hurdles in the USA and Europe, this does not guarantee that it will become a market success. Many diabetologists were sceptical about the need/advantages of inhaled insulin/EXU from the start and the introduction of this product has raised even more scepticism. Reports about 'side effects' (development of lung cancer in patients treated with EXU) of inhaled insulin are also not helpful, even if the causality of the appearance of cancer with this type of insulin therapy is not proven. One of the very negative consequences of stopping EXU are the huge financial losses to Pfizer. The managers in charge in other pharmaceutical companies and also most venture capitalists are reluctant to invest in ARIA nowadays. This in turn means that many of the small companies that try to develop new forms of insulin administration have issues when they try to find a big brother and/or sufficient financial support. Clearly the economic crisis has further aggravated this issue. One can

  14. Immunocytochemical detection of glucagon and insulin cells in endocrine pancreas and cyclic disparity of plasma glucose in the turtle Melanochelys trijuga.

    Chandavar, Vidya R; Naik, Prakash R

    2008-06-01

    The present investigation was carried out to know the seasonal variation in plasma glucose,insulin and glucagon cells during the reproductive cycle of untreated Melanochelys trijuga. Pancreatic endocrine cells were immunochemically localized.Insulin-immunoreactive (IR) cells occurred in groups of 3-20 and were in close apposition, while glucagon-IR cells were distributed individually between the exocrine pancreas or formed anastomosing cords where cells were not intimately attached. Whenever both IR cell types were present together forming an islet,insulin-IR cells formed clusters in the centre with glucagon-IR cells being scattered at the periphery. Glucagon-IR cells seemed to be secretory throughout the pancreas during the reproductive cycle,while insulin-IR cells were found to be pulsating in their secretion. Mean size of the islet was 1.306, 0.184 and 2.558 mm in the regenerative, reproductive and regressive periods,respectively. In general,insulin-IR cells measured 5.18 (mu)m and glucagon-IR cells 5.22 (mu)m in their longest axis. Invariably, glucagon-IR cells were more in number than insulin-IR cells. The fasting plasma glucose level was 69.97 mg% during the regenerative period, which increased to 97.96 mg% during the reproductive period,and reached a peak value of 113.52 mg% in the regressive period.

  15. Structural Perspectives of Insulin Receptor Isoform-Selective Insulin Analogs

    Jiráček, Jiří; Žáková, Lenka

    2017-01-01

    Roč. 8, Jul 27 (2017), č. článku 167. ISSN 1664-2392 R&D Projects: GA ČR GA15-19018S Institutional support: RVO:61388963 Keywords : insulin receptor * insulin binding * analog * diabetes * glucose Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.675, year: 2016 http://journal.frontiersin.org/article/10.3389/fendo.2017.00167/full

  16. Continuation versus discontinuation of insulin secretagogues when initiating insulin in type 2 diabetes

    Swinnen, S. G.; Dain, M.-P.; Mauricio, D.; DeVries, J. H.; Hoekstra, J. B.; Holleman, F.

    2010-01-01

    We compared the combined use of basal insulin, metformin and insulin secretagogues with a combination of basal insulin and metformin in patients with type 2 diabetes starting basal insulin analogue therapy. This analysis was part of a 24-week trial, in which 964 insulin-naive patients with type 2

  17. Dual role of proapoptotic BAD in insulin secretion and beta cell survival.

    Danial, Nika N; Walensky, Loren D; Zhang, Chen-Yu; Choi, Cheol Soo; Fisher, Jill K; Molina, Anthony J A; Datta, Sandeep Robert; Pitter, Kenneth L; Bird, Gregory H; Wikstrom, Jakob D; Deeney, Jude T; Robertson, Kirsten; Morash, Joel; Kulkarni, Ameya; Neschen, Susanne; Kim, Sheene; Greenberg, Michael E; Corkey, Barbara E; Shirihai, Orian S; Shulman, Gerald I; Lowell, Bradford B; Korsmeyer, Stanley J

    2008-02-01

    The proapoptotic BCL-2 family member BAD resides in a glucokinase-containing complex that regulates glucose-driven mitochondrial respiration. Here, we present genetic evidence of a physiologic role for BAD in glucose-stimulated insulin secretion by beta cells. This novel function of BAD is specifically dependent upon the phosphorylation of its BH3 sequence, previously defined as an essential death domain. We highlight the pharmacologic relevance of phosphorylated BAD BH3 by using cell-permeable, hydrocarbon-stapled BAD BH3 helices that target glucokinase, restore glucose-driven mitochondrial respiration and correct the insulin secretory response in Bad-deficient islets. Our studies uncover an alternative target and function for the BAD BH3 domain and emphasize the therapeutic potential of phosphorylated BAD BH3 mimetics in selectively restoring beta cell function. Furthermore, we show that BAD regulates the physiologic adaptation of beta cell mass during high-fat feeding. Our findings provide genetic proof of the bifunctional activities of BAD in both beta cell survival and insulin secretion.

  18. Tartary buckwheat flavonoids ameliorate high fructose-induced insulin resistance and oxidative stress associated with the insulin signaling and Nrf2/HO-1 pathways in mice.

    Hu, Yuanyuan; Hou, Zuoxu; Yi, Ruokun; Wang, Zhongming; Sun, Peng; Li, Guijie; Zhao, Xin; Wang, Qiang

    2017-08-01

    The present study was conducted to explore the effects of a purified tartary buckwheat flavonoid fraction (TBF) on insulin resistance and hepatic oxidative stress in mice fed high fructose in drinking water (20%) for 8 weeks. The results indicated that continuous administration of TBF dose-dependently improved the insulin sensitivity and glucose intolerance in high fructose-fed mice. TBF treatment also reversed the reduced level of insulin action on the phosphorylation of insulin receptor substrate-1 (IRS-1), protein kinase B (Akt) and phosphatidylinositol 3-kinase (PI3K), as well as the translocation of glucose transporter type 4 (GLUT4) in the insulin-resistant liver. Furthermore, TBF was found to exert high antioxidant capacity as it acts as a shield against oxidative stress induced by high fructose by restoring the antioxidant status, and modulating nuclear factor E2 related factor 2 (Nrf2) translocation to the nucleus with subsequently up-regulated antioxidative enzyme protein expression. Histopathological examinations revealed that impaired pancreatic/hepatic tissues were effectively restored in high fructose-fed mice following TBF treatment. Our results show that TBF intake is effective in preventing the conversion of high fructose-induced insulin resistance and hepatic oxidative stress in mice by improving the insulin signaling molecules and the Nrf2 signal pathway in the liver.

  19. New ways of insulin delivery.

    Heinemann, L

    2011-02-01

    The predominant number of papers published from the middle of 2009 to the middle of 2010 about alternative routes of insulin administration (ARIA) were still about inhaled insulin. Long-term experience with Exubera was the topic of a number of publications that are also of relevance for inhaled insulin in general. The clinical trials performed with AIR insulin by Eli Lilly were published in a supplement issue of one diabetes technology journal and most of these will be presented. A number of other publications (also one in a high ranked journal) about their inhaled insulin were from another company: MannKind. The driving force behind Technosphere insulin (TI) - which is the only one still in clinical development - is Al Mann; he has put a lot of his personal fortune in this development. We will know the opinion of the regulatory authorities about TI in the near future; however, I am personally relatively confident that the Food and Drug Administration will provide TI with market approval. The more critical question for me is: will diabetologists and patients jump on this product once it becomes commercially available? Will it become a commercial success? In view of many negative feelings in the scientific community about inhaled insulin, it might be of help that MannKind publish their studies with TI systematically. Acknowledging being a believer in this route of insulin administration myself, one has to state that Exubera and AIR insulin had not offered profound advantages in terms of pharmacokinetic (PK) and pharmacodynamic (PD) properties in comparison with subcutaneously (SC) applied regular human insulin (RHI) and rapid-acting insulin analogues. The time-action profiles of these inhaled insulins were more or less comparable with that of rapid-acting insulin analogues. This is clearly different with TI which exhibits a strong metabolic effect shortly after application and a rapid decline in the metabolic effect thereafter; probably the duration of action is

  20. Molecular interpretation of ACTH-β-endorphin coaggregation: relevance to secretory granule biogenesis.

    Srivastav Ranganathan

    Full Text Available Peptide/protein hormones could be stored as non-toxic amyloid-like structures in pituitary secretory granules. ACTH and β-endorphin are two of the important peptide hormones that get co-stored in the pituitary secretory granules. Here, we study molecular interactions between ACTH and β-endorphin and their colocalization in the form of amyloid aggregates. Although ACTH is known to be a part of ACTH-β-endorphin aggregate, ACTH alone cannot aggregate into amyloid under various plausible conditions. Using all atom molecular dynamics simulation we investigate the early molecular interaction events in the ACTH-β-endorphin system, β-endorphin-only system and ACTH-only system. We find that β-endorphin and ACTH formed an interacting unit, whereas negligible interactions were observed between ACTH molecules in ACTH-only system. Our data suggest that ACTH is not only involved in interaction with β-endorphin but also enhances the stability of mixed oligomers of the entire system.

  1. Sperm-storage defects and live birth in Drosophila females lacking spermathecal secretory cells.

    Sandra L Schnakenberg

    2011-11-01

    Full Text Available Male Drosophila flies secrete seminal-fluid proteins that mediate proper sperm storage and fertilization, and that induce changes in female behavior. Females also produce reproductive-tract secretions, yet their contributions to postmating physiology are poorly understood. Large secretory cells line the female's spermathecae, a pair of sperm-storage organs. We identified the regulatory regions controlling transcription of two genes exclusively expressed in these spermathecal secretory cells (SSC: Spermathecal endopeptidase 1 (Send1, which is expressed in both unmated and mated females, and Spermathecal endopeptidase 2 (Send2, which is induced by mating. We used these regulatory sequences to perform precise genetic ablations of the SSC at distinct time points relative to mating. We show that the SSC are required for recruiting sperm to the spermathecae, but not for retaining sperm there. The SSC also act at a distance in the reproductive tract, in that their ablation: (1 reduces sperm motility in the female's other sperm-storage organ, the seminal receptacle; and (2 causes ovoviviparity--the retention and internal development of fertilized eggs. These results establish the reproductive functions of the SSC, shed light on the evolution of live birth, and open new avenues for studying and manipulating female fertility in insects.

  2. Secretory Vesicle Priming by CAPS Is Independent of Its SNARE-Binding MUN Domain

    Cuc Quynh Nguyen Truong

    2014-11-01

    Full Text Available Priming of secretory vesicles is a prerequisite for their Ca2+-dependent fusion with the plasma membrane. The key vesicle priming proteins, Munc13s and CAPSs, are thought to mediate vesicle priming by regulating the conformation of the t-SNARE syntaxin, thereby facilitating SNARE complex assembly. Munc13s execute their priming function through their MUN domain. Given that the MUN domain of Ca2+-dependent activator protein for secretion (CAPS also binds syntaxin, it was assumed that CAPSs prime vesicles through the same mechanism as Munc13s. We studied naturally occurring splice variants of CAPS2 in CAPS1/CAPS2-deficient cells and found that CAPS2 primes vesicles independently of its MUN domain. Instead, the pleckstrin homology domain of CAPS2 seemingly is essential for its priming function. Our findings indicate a priming mode for secretory vesicles. This process apparently requires membrane phospholipids, does not involve the binding or direct conformational regulation of syntaxin by MUN domains of CAPSs, and is therefore not redundant with Munc13 action.

  3. Secretory pathway Ca2+ -ATPases promote in vitro microcalcifications in breast cancer cells.

    Dang, Donna; Prasad, Hari; Rao, Rajini

    2017-11-01

    Calcification of the breast is often an outward manifestation of underlying molecular changes that drive carcinogenesis. Up to 50% of all non-palpable breast tumors and 90% of ductal carcinoma in situ present with radiographically dense mineralization in mammographic scans. However, surprisingly little is known about the molecular pathways that lead to microcalcifications in the breast. Here, we report on a rapid and quantitative in vitro assay to monitor microcalcifications in breast cancer cell lines, including MCF7, MDA-MB-231, and Hs578T. We show that the Secretory Pathway Ca 2+ -ATPases SPCA1 and SPCA2 are strongly induced under osteogenic conditions that elicit microcalcifications. SPCA gene expression is significantly elevated in breast cancer subtypes that are associated with microcalcifications. Ectopic expression of SPCA genes drives microcalcifications and is dependent on pumping activity. Conversely, knockdown of SPCA expression significantly attenuates formation of microcalcifications. We propose that high levels of SPCA pumps may initiate mineralization in the secretory pathway by elevating luminal Ca 2+ . Our new findings offer mechanistic insight and functional implications on a widely observed, yet poorly understood radiographic signature of breast cancer. © 2017 Wiley Periodicals, Inc.

  4. Secretory Overexpression of Bacillus thermocatenulatus Lipase in Saccharomyces cerevisiae Using Combinatorial Library Strategy.

    Kajiwara, Shota; Yamada, Ryosuke; Ogino, Hiroyasu

    2018-04-10

    Simple and cost-effective lipase expression host microorganisms are highly desirable. A combinatorial library strategy is used to improve the secretory expression of lipase from Bacillus thermocatenulatus (BTL2) in the culture supernatant of Saccharomyces cerevisiae. A plasmid library including expression cassettes composed of sequences encoding one of each 15 promoters, 15 secretion signals, and 15 terminators derived from yeast species, S. cerevisiae, Pichia pastoris, and Hansenula polymorpha, is constructed. The S. cerevisiae transformant YPH499/D4, comprising H. polymorpha GAP promoter, S. cerevisiae SAG1 secretion signal, and P. pastoris AOX1 terminator, is selected by high-throughput screening. This transformant expresses BTL2 extra-cellularly with a 130-fold higher than the control strain, comprising S. cerevisiae PGK1 promoter, S. cerevisiae α-factor secretion signal, and S. cerevisiae PGK1 terminator, after cultivation for 72 h. This combinatorial library strategy holds promising potential for application in the optimization of the secretory expression of proteins in yeast. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Neutral sphingomyelinase (SMPD3) deficiency disrupts the Golgi secretory pathway and causes growth inhibition

    Stoffel, Wilhelm; Hammels, Ina; Jenke, Bitta; Binczek, Erika; Schmidt-Soltau, Inga; Brodesser, Susanne; Schauss, Astrid; Etich, Julia; Heilig, Juliane; Zaucke, Frank

    2016-01-01

    Systemic loss of neutral sphingomyelinase (SMPD3) in mice leads to a novel form of systemic, juvenile hypoplasia (dwarfism). SMPD3 deficiency in mainly two growth regulating cell types contributes to the phenotype, in chondrocytes of skeletal growth zones to skeletal malformation and chondrodysplasia, and in hypothalamic neurosecretory neurons to systemic hypothalamus–pituitary–somatotropic hypoplasia. The unbiased smpd3−/− mouse mutant and derived smpd3−/− primary chondrocytes were instrumental in defining the enigmatic role underlying the systemic and cell autonomous role of SMPD3 in the Golgi compartment. Here we describe the unprecedented role of SMPD3. SMPD3 deficiency disrupts homeostasis of sphingomyelin (SM), ceramide (Cer) and diacylglycerol (DAG) in the Golgi SMPD3-SMS1 (SM-synthase1) cycle. Cer and DAG, two fusogenic intermediates, modify the membrane lipid bilayer for the initiation of vesicle formation and transport. Dysproteostasis, unfolded protein response, endoplasmic reticulum stress and apoptosis perturb the Golgi secretory pathway in the smpd3−/− mouse. Secretion of extracellular matrix proteins is arrested in chondrocytes and causes skeletal malformation and chondrodysplasia. Similarly, retarded secretion of proteo-hormones in hypothalamic neurosecretory neurons leads to hypothalamus induced combined pituitary hormone deficiency. SMPD3 in the regulation of the protein vesicular secretory pathway may become a diagnostic target in the etiology of unknown forms of juvenile growth and developmental inhibition. PMID:27882938

  6. Identification of Secretory Proteins in Mycobacterium tuberculosis Using Pseudo Amino Acid Composition

    Huan Yang

    2016-01-01

    Full Text Available Tuberculosis is killing millions of lives every year and on the blacklist of the most appalling public health problems. Recent findings suggest that secretory protein of Mycobacterium tuberculosis may serve the purpose of developing specific vaccines and drugs due to their antigenicity. Responding to global infectious disease, we focused on the identification of secretory proteins in Mycobacterium tuberculosis. A novel method called MycoSec was designed by incorporating g-gap dipeptide compositions into pseudo amino acid composition. Analysis of variance-based technique was applied in the process of feature selection and a total of 374 optimal features were obtained and used for constructing the final predicting model. In the jackknife test, MycoSec yielded a good performance with the area under the receiver operating characteristic curve of 0.93, demonstrating that the proposed system is powerful and robust. For user’s convenience, the web server MycoSec was established and an obliging manual on how to use it was provided for getting around any trouble unnecessary.

  7. Localization and activity of multidrug resistance protein 1 in the secretory pathway of Leishmania parasites.

    Dodge, Matthew A; Waller, Ross F; Chow, Larry M C; Zaman, Muhammad M; Cotton, Leanne M; McConville, Malcolm J; Wirth, Dyann F

    2004-03-01

    Upregulation of the multidrug resistance protein 1 (LeMDR1) in the protozoan parasite, Leishmania enriettii, confers resistance to hydrophobic drugs such as vinblastine, but increases the sensitivity of these parasites to the mitochondrial drug, rhodamine 123. In order to investigate the mechanism of action of LeMDR1, the subcellular localization of green fluorescent protein (GFP)-tagged versions of LeMDR1 and the fate of the traceable-fluorescent LeMDR1 substrate calcein AM were examined in both Leishmania mexicana and L. enriettii LeMDR1 -/- and overexpressing cell lines. The LeMDR1-GFP chimera was localized by fluorescence microscopy to a number of secretory and endocytic compartments, including the Golgi apparatus, endoplasmic reticulum (ER) and a multivesicular tubule (MVT)-lysosome. Pulse-chase labelling experiments with calcein AM suggested that the Golgi and ER pools, but not the MVT-lysosome pool, of LeMDR1 were active in pumping calcein AM out of the cell. Cells labelled with calcein AM under conditions that slow vesicular transport (low temperature and stationary growth) inhibited export and resulted in the accumulation of fluorescent calcein in both the Golgi and the mitochondria. We propose that LeMDR1 substrates are pumped into secretory compartments and exported from the parasite by exocytosis. Accumulation of MDR substrates in the ER can result in alternative transport to the mitochondrion, explaining the reciprocal sensitivity of drug-resistant Leishmania to vinblastine and rhodamine 123.

  8. The regulated secretory pathway and human disease: insights from gene variants and single nucleotide polymorphisms

    Stephen eSalton

    2013-08-01

    Full Text Available The regulated secretory pathway provides critical control of peptide, growth factor, and hormone release from neuroendocrine and endocrine cells, and neurons, maintaining physiological homeostasis. Propeptides and prohormones are packaged into dense core granules (DCGs, where they frequently undergo tissue-specific processing as the DCG matures. Proteins of the granin family are DCG components, and although their function is not fully understood, data suggest they are involved in DCG formation and regulated protein/peptide secretion, in addition to their role as precursors of bioactive peptides. Association of gene variation, including single nucleotide polymorphisms (SNPs, with neuropsychiatric, endocrine and metabolic diseases, has implicated specific secreted proteins and peptides in disease pathogenesis. For example, a SNP at position 196 (G/A of the human brain-derived neurotrophic factor (BDNF gene dysregulates protein processing and secretion and leads to cognitive impairment. This suggests more generally that variants identified in genes encoding secreted growth factors, peptides, hormones, and proteins involved in DCG biogenesis, protein processing, and the secretory apparatus, could provide insight into the process of regulated secretion as well as disorders that result when it is impaired.

  9. Immunolocalization of an enterotoxic glycoprotein exoantigen on the secretory organelles of Cryptosporidium parvum sporozoites

    El-Shewy K.A.

    2004-06-01

    Full Text Available In this study, the fine ultrastructures of the secretory organelles of C. parvum sporozoites were demonstrated using transmission electron microscopy (TEM. Meanwhile, a previously identified enterotoxic 18-20 kDa copro-antigen (18-20 kDa CCA, associated with cryptosporidiosis in both human and calves, was isolated and immunolocalized on C. parvum sporozoites. Using immunoelectron microscopy and anti-18-20 kDa monospecific antibody demonstrated marked existence of the 18-20 kDa CCA on the apical organelles and at the trilaminar pellicles. An anterior extrusion of this protein was demonstrated around the excysted and released sporozoites. However, non excysted sporozoites did not show this protein. Affinity blotting, with biotinylated jacalin, demonstrated the O-linked oligosaccharide moiety of this protein. The potential role of this protein in the host cell invasion and/or gliding motility remains unelucidated. However, its enterotoxicity, location and secretory nature suggest that it may be a target for neutralization or invasion inhibition of Cryptosporidium.

  10. Hydroxylase inhibition attenuates colonic epithelial secretory function and ameliorates experimental diarrhea.

    Ward, Joseph B J

    2012-02-01

    Hydroxylases are oxygen-sensing enzymes that regulate cellular responses to hypoxia. Transepithelial Cl(-) secretion, the driving force for fluid secretion, is dependent on O(2) availability for generation of cellular energy. Here, we investigated the role of hydroxylases in regulating epithelial secretion and the potential for targeting these enzymes in treatment of diarrheal disorders. Ion transport was measured as short-circuit current changes across voltage-clamped monolayers of T(84) cells and mouse colon. The antidiarrheal efficacy of dimethyloxallyl glycine (DMOG) was tested in a mouse model of allergic disease. Hydroxylase inhibition with DMOG attenuated Ca(2+)- and cAMP-dependent secretory responses in voltage-clamped T(84) cells to 20.2 +\\/- 2.6 and 38.8 +\\/- 6.7% (n=16; P<\\/=0.001) of those in control cells, respectively. Antisecretory actions of DMOG were time and concentration dependent, being maximal after 18 h of DMOG (1 mM) treatment. DMOG specifically inhibited Na(+)\\/K(+)-ATPase pump activity without altering its expression or membrane localization. In mice, DMOG inhibited agonist-induced secretory responses ex vivo and prevented allergic diarrhea in vivo. In conclusion, hydroxylases are important regulators of epithelial Cl(-) and fluid secretion and present a promising target for development of new drugs to treat transport disorders.

  11. Hydroxylase inhibition attenuates colonic epithelial secretory function and ameliorates experimental diarrhea.

    Ward, Joseph B J

    2011-02-01

    Hydroxylases are oxygen-sensing enzymes that regulate cellular responses to hypoxia. Transepithelial Cl(-) secretion, the driving force for fluid secretion, is dependent on O(2) availability for generation of cellular energy. Here, we investigated the role of hydroxylases in regulating epithelial secretion and the potential for targeting these enzymes in treatment of diarrheal disorders. Ion transport was measured as short-circuit current changes across voltage-clamped monolayers of T(84) cells and mouse colon. The antidiarrheal efficacy of dimethyloxallyl glycine (DMOG) was tested in a mouse model of allergic disease. Hydroxylase inhibition with DMOG attenuated Ca(2+)- and cAMP-dependent secretory responses in voltage-clamped T(84) cells to 20.2 ± 2.6 and 38.8 ± 6.7% (n=16; P≤0.001) of those in control cells, respectively. Antisecretory actions of DMOG were time and concentration dependent, being maximal after 18 h of DMOG (1 mM) treatment. DMOG specifically inhibited Na(+)\\/K(+)-ATPase pump activity without altering its expression or membrane localization. In mice, DMOG inhibited agonist-induced secretory responses ex vivo and prevented allergic diarrhea in vivo. In conclusion, hydroxylases are important regulators of epithelial Cl(-) and fluid secretion and present a promising target for development of new drugs to treat transport disorders.

  12. Identification and characterization of secretory proteins during ionizing radiation-induced premature senescence

    Han, Na Kyung; Hong, Mi Na; Jung, Seung Hee; Kang, Kyoung Ah; Lee, Jae Seon; Chi, Seong Gil

    2011-01-01

    Cellular senescence was first described by Hayflick and Moorhead in 1961 who observed that cultures of normal human fibroblasts had a limited replicative potential and eventually became irreversibly arrest. The majority of senescent cells assume a characteristic flattened and enlarged morphological change, senescence associated β alactosidase positivity. Recently a large number of molecular phenotypes such as changes in gene expression, protein processing and chromatin organization have been also described. In contrast to apoptosis, senescence does not destroy the cells but leaves them metabolically and synthetically active and therefore able to affect their microenvironment. In particular, senescent fibroblasts and some cancer cells were found to secrete proteins with known or putative tumor-promoting functions such as growth factors or proteolytic enzymes. However, the knowledge about secreted proteins from senescent tumor cells and their functions to surrounding cells is still lacking. In this study, changes of senescence associated secretory protein expression profile were observed in MCF7 human breast cancer cells exposed to gamma-ray radiation using two dimensional electrophoresis. Also, we identified up-regulated secretory proteins during ionizing radiation-induced cellular senescence. Here, we show that senescent human breast cancer MCF7 cells promote the proliferation, invasion and migration of neighboring cells

  13. Identification and characterization of secretory proteins during ionizing radiation-induced premature senescence

    Han, Na Kyung; Hong, Mi Na; Jung, Seung Hee; Kang, Kyoung Ah; Lee, Jae Seon [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Chi, Seong Gil [Korea University, Seoul (Korea, Republic of)

    2011-05-15

    Cellular senescence was first described by Hayflick and Moorhead in 1961 who observed that cultures of normal human fibroblasts had a limited replicative potential and eventually became irreversibly arrest. The majority of senescent cells assume a characteristic flattened and enlarged morphological change, senescence associated {beta} alactosidase positivity. Recently a large number of molecular phenotypes such as changes in gene expression, protein processing and chromatin organization have been also described. In contrast to apoptosis, senescence does not destroy the cells but leaves them metabolically and synthetically active and therefore able to affect their microenvironment. In particular, senescent fibroblasts and some cancer cells were found to secrete proteins with known or putative tumor-promoting functions such as growth factors or proteolytic enzymes. However, the knowledge about secreted proteins from senescent tumor cells and their functions to surrounding cells is still lacking. In this study, changes of senescence associated secretory protein expression profile were observed in MCF7 human breast cancer cells exposed to gamma-ray radiation using two dimensional electrophoresis. Also, we identified up-regulated secretory proteins during ionizing radiation-induced cellular senescence. Here, we show that senescent human breast cancer MCF7 cells promote the proliferation, invasion and migration of neighboring cells

  14. Thyroid hormone affects secretory activity and uncoupling protein-3 expression in rat harderian gland.

    Chieffi Baccari, Gabriella; Monteforte, Rossella; de Lange, Pieter; Raucci, Franca; Farina, Paola; Lanni, Antonia

    2004-07-01

    The effects of T(3) administration on the rat Harderian gland were examined at morphological, biochemical, and molecular levels. T(3) induced hypertrophy of the two cell types (A and B) present in the glandular epithelium. In type A cells, the hypertrophy was mainly due to an increase in the size of the lipid compartment. The acinar lumina were filled with lipoproteic substances, and the cells often showed an olocrine secretory pattern. In type B cells, the hypertrophy largely consisted of a marked proliferation of mitochondria endowed with tightly packed cristae, the mitochondrial number being nearly doubled (from 62 to 101/100 microm(2)). Although the average area of individual mitochondria decreased by about 50%, the total area of the mitochondrial compartment increased by about 80% (from 11 to 19/100 microm(2)). This could be ascribed to T(3)-induced mitochondrial proliferation. The morphological and morphometric data correlated well with our biochemical results, which indicated that mitochondrial respiratory activity is increased in hyperthyroid rats. T(3), by influencing the metabolic function of the mitochondrial compartment, induces lipogenesis and the release of secretory product by type A cells. Mitochondrial uncoupling proteins 2 and 3 were expressed at both mRNA and protein levels in the euthyroid rat Harderian gland. T(3) treatment increased the mRNA levels of both uncoupling protein 2 (UCP2) and UCP3, but the protein level only of UCP3. A possible role for these proteins in the Harderian gland is discussed.

  15. A micromethod for the assay of cellular secretory physiology: Application to rabbit parietal cells

    Adrian, T.E.; Goldenring, J.R.; Oddsdottir, M.; Zdon, M.J.; Zucker, K.A.; Lewis, J.J.; Modlin, I.M.

    1989-01-01

    A micromethod for investigating secretory physiology in isolated cells was evaluated. The method utilized a specially designed polycarbonate incubation chamber to provide constant oxygenation to cells incubating in a 96-well microtiter plate. Cells were rapidly separated from media by vacuum filtration. Isolated parietal cells were utilized to demonstrate the versatility of the method for assay of intracellular accumulation of [ 14 C]-aminopyrine, secretion of intrinsic factor into the medium, and assay of intracellular cAMP. Histamine stimulated the uptake of [ 14 C]aminopyrine and intrinsic factor secretion in a sustained and linear fashion. At the end of the 2-h period uptake of aminopyrine and secretion of intrinsic factor were increased 17- and 5-fold, respectively. This response to histamine was accompanied by a rapid and sustained 3-fold rise in intracellular cyclic AMP. In contrast, carbamylcholine caused a transient increase in [ 14 C]aminopyrine accumulation and intrinsic factor secretion which was most pronounced during the first 10 min and had almost ceased by 30 min. Carbamylcholine had no effect on intracellular cAMP levels. This new method, which can handle 400 replicates using parietal cells from the fundic mucosa of a single rabbit, is suitable for studying the time course of intracellular events which accompany general secretory processes

  16. A pH-Regulated Quality Control Cycle for Surveillance of Secretory Protein Assembly

    Vavassori, Stefano; Cortini, Margherita; Masui, Shoji; Sannino, Sara; Anelli, Tiziana; Caserta, Imma R.; Fagioli, Claudio; Mossuto, Maria F.; Fornili, Arianna; van Anken, Eelco; Degano, Massimo; Inaba, Kenji; Sitia, Roberto

    2013-01-01

    Summary To warrant the quality of the secretory proteome, stringent control systems operate at the endoplasmic reticulum (ER)-Golgi interface, preventing the release of nonnative products. Incompletely assembled oligomeric proteins that are deemed correctly folded must rely on additional quality control mechanisms dedicated to proper assembly. Here we unveil how ERp44 cycles between cisGolgi and ER in a pH-regulated manner, patrolling assembly of disulfide-linked oligomers such as IgM and adiponectin. At neutral, ER-equivalent pH, the ERp44 carboxy-terminal tail occludes the substrate-binding site. At the lower pH of the cisGolgi, conformational rearrangements of this peptide, likely involving protonation of ERp44’s active cysteine, simultaneously unmask the substrate binding site and −RDEL motif, allowing capture of orphan secretory protein subunits and ER retrieval via KDEL receptors. The ERp44 assembly control cycle couples secretion fidelity and efficiency downstream of the calnexin/calreticulin and BiP-dependent quality control cycles. PMID:23685074

  17. The effect of hepatocyte growth factor on secretory functions in human eosinophils.

    Yamauchi, Yumiko; Ueki, Shigeharu; Konno, Yasunori; Ito, Wataru; Takeda, Masahide; Nakamura, Yuka; Nishikawa, Junko; Moritoki, Yuki; Omokawa, Ayumi; Saga, Tomoo; Hirokawa, Makoto

    2016-12-01

    Hepatocyte growth factor (HGF), originally identified as a potent mitogen for mature hepatocytes, is now recognized as a humoral mediator in inflammatory and immune responses. Previous studies indicated that HGF negatively regulated allergic airway inflammation. In view of eosinophils playing a role in the pathogenesis of asthma, especially in airway remodeling as a rich source of pro-fibrogenic mediators, the effects of HGF on the different types of eosinophil secretory functions were examined in this study. We found that HGF significantly inhibited IL-5-induced secretion of TGF-β and VEGF from human eosinophils. The inhibitory effect is not associated with TGF-β transcription; rather, it is associated with ultrastructural granule emptying and loss of intracellular TGF-β contents, indicating HGF inhibits the process of piecemeal degranulation. The effect of HGF on extracellular trap cell death (ETosis) that mediates cytolytic degranulation was also investigated; however, immobilized IgG- or phorbol myristate acetate-induced ETosis was only minimally attenuated by HGF. These results reveal the effect of HGF on the distinct pathways of eosinophil secretory functions and also provide novel insights into the role of HGF in the pathogenesis of allergic inflammation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Oral Insulin - Fact or Fiction?

    attempts have explored the following options, either singly, or together: • Protecting ... derivative of insulin has been seen to maintain its biological activity and also have .... that in the short future any oral preparation that can achieve consistent ...

  19. Polyglycidyl methacrylate based immunoaffinity cryogels for insulin adsorption

    Memmedova, Türkan; Armutcu, Canan; Uzun, Lokman; Denizli, Adil

    2015-01-01

    Immunoaffinity chromatography (IAC) is a kind of bioaffinity chromatography which used antibodies or antibody-related molecules as the stationary phase. IAC is used by many applications for analytical, clinical and diagnostic purposes, particularly preferring in analytical purposes on one-step separation and purification of target compounds. Moreover, immunoaffinity chromatography is used in antibody enrichment and separation of cells. IAC columns are usually applied in the antibody experiments due to powerful and selective binding of antibodies and/or their target antigens. Antigen or antibody molecules could be immobilized to the solid support. Therefore, target antibody or cell is purified. Specific bioligands can be immobilized directly on glycidyl based polymeric material with simple acid–base catalyst. In this study, polyglycidyl methacrylate based therefore cryogels were prepared and anti-insulin antibodies were immobilized on porous surface of cryogels. Swelling test, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and scanning electron microscopy (SEM) were conducted to characterize cryogels developed. To optimize separation conditions, effects of pH, initial insulin concentration, flow rate, salt concentration, contact time and temperature on insulin adsorption capacity were examined. The results indicated that the immunoaffinity cryogel developed here could be classified as good alternative with prominent properties such as high reusability and cost-friendly adsorbent and would be one of the primary reports for immunoaffinity purification of insulin molecules in not only lab-scale but also for industrial purposes. - Highlights: • Polyglycidyl methacrylate based cryogels developed as stationary phase • Immunoaffinity cryogels for reusable and cost-friendly insulin adsorption • Increase in worldwide prevalence of diabetes, type 1 or 2 • An exponential increase in the demand on insulin market • Guiding researchers for not

  20. Polyglycidyl methacrylate based immunoaffinity cryogels for insulin adsorption

    Memmedova, Türkan; Armutcu, Canan; Uzun, Lokman, E-mail: lokman@hacettepe.edu.tr; Denizli, Adil

    2015-07-01

    Immunoaffinity chromatography (IAC) is a kind of bioaffinity chromatography which used antibodies or antibody-related molecules as the stationary phase. IAC is used by many applications for analytical, clinical and diagnostic purposes, particularly preferring in analytical purposes on one-step separation and purification of target compounds. Moreover, immunoaffinity chromatography is used in antibody enrichment and separation of cells. IAC columns are usually applied in the antibody experiments due to powerful and selective binding of antibodies and/or their target antigens. Antigen or antibody molecules could be immobilized to the solid support. Therefore, target antibody or cell is purified. Specific bioligands can be immobilized directly on glycidyl based polymeric material with simple acid–base catalyst. In this study, polyglycidyl methacrylate based therefore cryogels were prepared and anti-insulin antibodies were immobilized on porous surface of cryogels. Swelling test, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and scanning electron microscopy (SEM) were conducted to characterize cryogels developed. To optimize separation conditions, effects of pH, initial insulin concentration, flow rate, salt concentration, contact time and temperature on insulin adsorption capacity were examined. The results indicated that the immunoaffinity cryogel developed here could be classified as good alternative with prominent properties such as high reusability and cost-friendly adsorbent and would be one of the primary reports for immunoaffinity purification of insulin molecules in not only lab-scale but also for industrial purposes. - Highlights: • Polyglycidyl methacrylate based cryogels developed as stationary phase • Immunoaffinity cryogels for reusable and cost-friendly insulin adsorption • Increase in worldwide prevalence of diabetes, type 1 or 2 • An exponential increase in the demand on insulin market • Guiding researchers for not

  1. Insulin resistance in therapeutic clinic

    Anna V. Pashentseva

    2017-09-01

    Full Text Available Today an obesity became the global epidemic striking both children, and adults and represents one of the most important problems of health care worldwide. Excess accumulation of fatty tissue is resulted by insulin resistance and a compensatory hyperinsulinaemia which are the main predictors of development of a diabetes mellitus type 2. Insulin resistance is also one of key links of a pathogenesis of such diseases as cardiovascular pathology, not-alcoholic fatty liver disease, a polycystic ovary syndrome, gestational diabetes and many others. Depression of sensitivity of tissues to insulin can be physiological reaction of an organism to stress factors and pathological process. The endogenic reasons also take part in development of insulin resistance besides factors of the external environment. The role of genetic predisposition, a subclinical inflammation of fatty tissue, thyroid hormones, adipokines and vitamin D in formation of this pathological process is studied. As insulin resistance takes part in a pathogenesis of various diseases, methods of its diagnostics and correction are of great importance in therapeutic practice. At purpose of treatment it is worth giving preference to the drugs which are positively influencing sensitivity of tissues to insulin.

  2. Myringotomy versus ventilation tubes in secretory otitis media: eardrum pathology, hearing, and eustachian tube function 25 years after treatment

    Caye-Thomasen, P.; Stangerup, S.E.; Jorgensen, G.

    2008-01-01

    OBJECTIVE: This report documents the dynamics of eardrum pathology, hearing acuity, and eustachian tube function during 25 years after treatment of bilateral secretory otitis media. The included children were treated by myringotomy on the left ear and ventilation tube insertion on the right ear....... MATERIALS AND METHODS: Two hundred twenty-four children with bilateral secretory otitis media were treated by bilateral myringotomy and insertion of a ventilation tube on the right side only. The children were reexamined by otomicroscopy, tympanometry, and pure tone audiometry after 3, 7, and 25 years...

  3. In nondiabetic, human immunodeficiency virus-infected patients with lipodystrophy, hepatic insulin extraction and posthepatic insulin clearance rate are decreased in proportion to insulin resistance

    Haugaard, Steen B; Andersen, Ove; Hansen, Birgitte R

    2005-01-01

    In healthy, nondiabetic individuals with insulin resistance, fasting insulin is inversely correlated to the posthepatic insulin clearance rate (MCRi) and the hepatic insulin extraction (HEXi). We investigated whether similar early mechanisms to facilitate glucose homeostasis exist in nondiabetic...... endogenous insulin secretion, which was estimated by deconvolution of C-peptide concentrations. Hepatic extraction of insulin was calculated as 1 minus the ratio of fasting posthepatic insulin delivery rate to fasting endogenous insulin secretion rate. Compared with controls, LIPO displayed increased fasting...... insulin (130%, P Hepatic extraction of insulin was similar between groups (LIPO, 55%; controls, 57%; P > .8). In LIPO, HEXi and MCRi correlated inversely with fasting insulin (r = -0.56, P

  4. Total iron binding capacity

    ... page: //medlineplus.gov/ency/article/003489.htm Total iron binding capacity To use the sharing features on this page, please enable JavaScript. Total iron binding capacity (TIBC) is a blood test to ...

  5. A Variation in the Cerebroside Sulfotransferase Gene Is Linked to Exercise-Modified Insulin Resistance and to Type 2 Diabetes

    A. Roeske-Nielsen

    2009-01-01

    Full Text Available Aims. The glycosphingolipid β-galactosylceramide-3-O-sulfate (sulfatide is present in the secretory granules of the insulin producing β-cells and may act as a molecular chaperone of insulin. The final step in sulfatide synthesis is performed by cerebroside sulfotransferase (CST (EC 2.8.2.11. The aim of this study was to investigate whether two single nucleotide polymorphisms (SNP, rs2267161 located in an exon or rs42929 located in an intron, in the gene encoding CST are linked to type 2 diabetes (T2D. Methods. As a population survey, 265 male and female patients suffering from T2D and 291 gender matched controls were examined. Results. A higher proportion of T2D patients were heterozygous at SNP rs2267161 with both T (methionine and C (valine alleles present (49.8% versus 41.3%, P=.04. The calculated odd risk for T2D was 1.47 (1.01–2.15, P=.047. Among female controls, the homozygous CC individuals displayed lower insulin resistance measured by HOMA-IR (P=.05 than the C/T or TT persons; this was particularly prevalent in individuals who exercise (P=.03. Conclusion. Heterozygosity at SNP rs2267161 in the gene encoding the CST enzyme confers increased risk of T2D. Females with the CC allele showed lower insulin resistance.

  6. Combined lipidomic and proteomic analysis of isolated human islets exposed to palmitate reveals time-dependent changes in insulin secretion and lipid metabolism.

    Kirsten Roomp

    Full Text Available Studies on the pathophysiology of type 2 diabetes mellitus (T2DM have linked the accumulation of lipid metabolites to the development of beta-cell dysfunction and impaired insulin secretion. In most in vitro models of T2DM, rodent islets or beta-cell lines are used and typically focus is on specific cellular pathways or organs. Our aim was to, firstly, develop a combined lipidomics and proteomics approach for lipotoxicity in isolated human islets and, secondly, investigate if the approach could delineate novel and/ or confirm reported mechanisms of lipotoxicity. To this end isolated human pancreatic islets, exposed to chronically elevated palmitate concentrations for 0, 2 and 7 days, were functionally characterized and their levels of multiple targeted lipid and untargeted protein species determined. Glucose-stimulated insulin secretion from the islets increased on day 2 and decreased on day 7. At day 7 islet insulin content decreased and the proinsulin to insulin content ratio doubled. Amounts of cholesterol, stearic acid, C16 dihydroceramide and C24:1 sphingomyelin, obtained from the lipidomic screen, increased time-dependently in the palmitate-exposed islets. The proteomic screen identified matching changes in proteins involved in lipid biosynthesis indicating up-regulated cholesterol and lipid biosynthesis in the islets. Furthermore, proteins associated with immature secretory granules were decreased when palmitate exposure time was increased despite their high affinity for cholesterol. Proteins associated with mature secretory granules remained unchanged. Pathway analysis based on the protein and lipid expression profiles implicated autocrine effects of insulin in lipotoxicity. Taken together the study demonstrates that combining different omics approaches has potential in mapping of multiple simultaneous cellular events. However, it also shows that challenges exist for effectively combining lipidomics and proteomics in primary cells. Our

  7. Air capacity for Sydney

    Forsyth, Peter

    2013-01-01

    Like most large cities, Sydney has an airport problem. Demand is increasing faster than supply, and additional capacity will be needed if costly rationing, and delays, are to be avoided. However, compared to many cities, the problems facing Sydney are modest. At the moment, demand is only just exceeding capacity. There is a good chance that the available capacity will be rationed efficiently. Options for expanding capacity are being evaluated well. There may be problems in the future- poor op...

  8. Responsibility and Capacities

    Ryberg, Jesper

    2014-01-01

    That responsible moral agency presupposes certain mental capacities, constitutes a widely accepted view among theorists. Moreover, it is often assumed that degrees in the development of the relevant capacities co-vary with degrees of responsibility. In this article it is argued that, the move from...... the view that responsibility requires certain mental capacities to the position that degrees of responsibility co-vary with degrees of the development of the mental capacities, is premature....

  9. CDMA systems capacity engineering

    Kim, Kiseon

    2004-01-01

    This new hands-on resource tackles capacity planning and engineering issues that are crucial to optimizing wireless communication systems performance. Going beyond the system physical level and investigating CDMA system capacity at the service level, this volume is the single-source for engineering and analyzing systems capacity and resources.

  10. PAYMENT CAPACITY SENSITIVITY FACTORS

    Daniel BRÎNDESCU – OLARIU

    2014-11-01

    The results of the study facilitate the determination and classification of the main sensitivity factors for the payment capacity at sample level, the establishment of general benchmarks for the payment capacity (as no such benchmarks currently exist in the Romanian literature and the identification of the mechanisms through which the variation of different factors impacts the payment capacity.

  11. The Ca2+/H+ antiporter TMEM165 expression, localization in the developing, lactating and involuting mammary gland parallels the secretory pathway Ca2+ATPase (SPCA1)

    Plasma membrane Ca2+-ATPase 2 (PMCA2) knockout mice showed that ~ 60 % of calcium in milk is transported across the mammary cells apical membrane by PMCA2. The remaining milk calcium is thought to arrive via the secretory pathway through the actions of secretory pathway Ca2+-ATPase’s 1 and/or 2 (SP...

  12. Fall in C-Peptide During First 4 Years From Diagnosis of Type 1 Diabetes: Variable Relation to Age, HbA1c, and Insulin Dose

    Hao, Wei; Gitelman, Steven; DiMeglio, Linda A.; Boulware, David; Greenbaum, Carla J.

    2016-01-01

    OBJECTIVE We aimed to describe the natural history of residual insulin secretion in Type 1 Diabetes TrialNet participants over 4 years from diagnosis and relate this to previously reported alternative clinical measures reflecting β-cell secretory function. RESEARCH DESIGN AND METHODS Data from 407 subjects from 5 TrialNet intervention studies were analyzed. All subjects had baseline stimulated C-peptide values of ≥0.2 nmol/L from mixed-meal tolerance tests (MMTTs). During semiannual visits, C...

  13. Insulin receptor internalization defect in an insulin-resistant mouse melanoma cell line

    Androlewicz, M.J.; Straus, D.S.; Brandenburg, D.F.

    1989-01-01

    Previous studies from this laboratory demonstrated that the PG19 mouse melanoma cell line does not exhibit a biological response to insulin, whereas melanoma x mouse embryo fibroblast hybrids do respond to insulin. To investigate the molecular basis of the insulin resistance of the PG19 melanoma cells, insulin receptors from the insulin-resistant melanoma cells and insulin-sensitive fibroblast x melanoma hybrid cells were analyzed by the technique of photoaffinity labeling using the photoprobe 125 I-NAPA-DP-insulin. Photolabeled insulin receptors from the two cell types have identical molecular weights as determined by SDS gel electrophoresis under reducing and nonreducing conditions, indicating that the receptors on the two cell lines are structurally similar. Insulin receptor internalization studies revealed that the hybrid cells internalize receptors to a high degree at 37 degree C, whereas the melanoma cells internalize receptors to a very low degree or not at all. The correlation between ability to internalize insulin receptors and sensitivity to insulin action in this system suggests that uptake of the insulin-receptor complex may be required for insulin action in these cells. Insulin receptors from the two cell lines autophosphorylate in a similar insulin-dependent manner both in vitro and in intact cells, indicating that insulin receptors on the melanoma and hybrid cells have functional tyrosine protein kinase activity. Therefore, the block in insulin action in the PG19 melanoma cells appears to reside at a step beyond insulin-stimulated receptor autophosphorylation

  14. Clinical use of the co-formulation of insulin degludec and insulin aspart

    Kumar, A; Awata, T; Bain, S C

    2016-01-01

    (HbA1c ) to current modern insulins, but with lower risk of nocturnal hypoglycaemia. In prior insulin users, glycaemic control was achieved with lower or equal insulin doses vs. other basal+meal-time or premix insulin regimens. In insulin-naïve patients with T2DM, IDegAsp can be started once or twice...... a simpler insulin regimen than other available basal-bolus or premix-based insulin regimens, with stable daytime basal coverage, a lower rate of hypoglycaemia and some flexibility in injection timing compared with premix insulins....

  15. Intranasal insulin therapy: the clinical realities

    Hilsted, J; Madsbad, Sten; Hvidberg, A

    1995-01-01

    To evaluate metabolic control and safety parameters (hypoglycaemia frequency and nasal mucosa physiology), 31 insulin-dependent diabetic patients were treated with intranasal insulin at mealtimes for 1 month and with subcutaneous fast-acting insulin at meals for another month in an open, crossover...... randomized trial. During both treatment periods the patients were treated with intermediate-acting insulin at bedtime. Six of the patients were withdrawn from the study during intranasal insulin therapy due to metabolic dysregulation. Serum insulin concentrations increased more rapidly and decreased more...... quickly during intranasal as compared with subcutaneous insulin administration. Metabolic control deteriorated, as assessed by haemoglobin A1c concentrations, slightly but significantly after intranasal as compared with subcutaneous insulin therapy. The bioavailability of intranasally applied insulin...

  16. Bioavailability and variability of biphasic insulin mixtures

    Søeborg, Tue; Rasmussen, Christian Hove; Mosekilde, Erik

    2012-01-01

    Absorption of subcutaneously administered insulin is associated with considerable variability. Some of this variability was quantitatively explained for both soluble insulin and insulin suspensions in a recent contribution to this journal (Søeborg et al., 2009). In the present article......, the absorption kinetics for mixtures of insulins is described. This requires that the bioavailability of the different insulins is considered. A short review of insulin bioavailability and a description of the subcutaneous depot thus precede the presentation of possible mechanisms associated with subcutaneous...... insulin degradation. Soluble insulins are assumed to be degraded enzymatically in the subcutaneous tissue. Suspended insulin crystals form condensed heaps that are assumed to be degraded from their surface by invading macrophages. It is demonstrated how the shape of the heaps affects the absorption...

  17. Secretory signal peptide modification for optimized antibody-fragment expression-secretion in Leishmania tarentolae

    Klatt Stephan

    2012-07-01

    Full Text Available Abstract Background Secretory signal peptides (SPs are well-known sequence motifs targeting proteins for translocation across the endoplasmic reticulum membrane. After passing through the secretory pathway, most proteins are secreted to the environment. Here, we describe the modification of an expression vector containing the SP from secreted acid phosphatase 1 (SAP1 of Leishmania mexicana for optimized protein expression-secretion in the eukaryotic parasite Leishmania tarentolae with regard to recombinant antibody fragments. For experimental design the online tool SignalP was used, which predicts the presence and location of SPs and their cleavage sites in polypeptides. To evaluate the signal peptide cleavage site as well as changes of expression, SPs were N-terminally linked to single-chain Fragment variables (scFv’s. The ability of L. tarentolae to express complex eukaryotic proteins with highly diverse post-translational modifications and its easy bacteria-like handling, makes the parasite a promising expression system for secretory proteins. Results We generated four vectors with different SP-sequence modifications based on in-silico analyses with SignalP in respect to cleavage probability and location, named pLTEX-2 to pLTEX-5. To evaluate their functionality, we cloned four individual scFv-fragments into the vectors and transfected all 16 constructs into L. tarentolae. Independently from the expressed scFv, pLTEX-5 derived constructs showed the highest expression rate, followed by pLTEX-4 and pLTEX-2, whereas only low amounts of protein could be obtained from pLTEX-3 clones, indicating dysfunction of the SP. Next, we analysed the SP cleavage sites by Edman degradation. For pLTEX-2, -4, and -5 derived scFv’s, the results corresponded to in-silico predictions, whereas pLTEX-3 derived scFv’s contained one additional amino-acid (AA. Conclusions The obtained results demonstrate the importance of SP-sequence optimization for efficient

  18. Secretory IgM Exacerbates Tumor Progression by Inducing Accumulations of MDSCs in Mice.

    Tang, Chih-Hang Anthony; Chang, Shiun; Hashimoto, Ayumi; Chen, Yi-Ju; Kang, Chang Won; Mato, Anthony R; Del Valle, Juan R; Gabrilovich, Dmitry I; Hu, Chih-Chi Andrew

    2018-06-01

    Chronic lymphocytic leukemia (CLL) cells can secrete immunoglobulin M. However, it is not clear whether secretory IgM (sIgM) plays a role in disease progression. We crossed the Eμ-TCL1 mouse model of CLL, in which the expression of human TCL1 oncogene was driven by the V(H) promoter-Ig(H)-Eμ enhancer, with MD4 mice whose B cells produced B-cell receptor (membrane-bound IgM) and sIgM with specificity for hen egg lysozyme (HEL). CLL cells that developed in these MD4/Eμ-TCL1 mice reactivated a parental Ig gene allele and secreted IgM, and did not recognize HEL. The MD4/Eμ-TCL1 mice had reduced survival, increased myeloid-derived suppressor cells (MDSC), and decreased numbers of T cells. We tested whether sIgM could contribute to the accumulation of MDSCs by crossing μS -/- mice, which could not produce sIgM, with Eμ-TCL1 mice. The μS -/- /Eμ-TCL1 mice survived longer than Eμ-TCL1 mice and developed decreased numbers of MDSCs which were less able to suppress proliferation of T cells. We targeted the synthesis of sIgM by deleting the function of XBP-1s and showed that targeting XBP-1s genetically or pharmacologically could lead to decreased sIgM, accompanied by decreased numbers and reduced functions of MDSCs in MD4/Eμ-TCL1 mice. Additionally, MDSCs from μS -/- mice grafted with Lewis lung carcinoma were inefficient suppressors of T cells, resulting in slower tumor growth. These results demonstrate that sIgM produced by B cells can upregulate the functions of MDSCs in tumor-bearing mice to aggravate cancer progression. In a mouse model of CLL, production of secretory IgM led to more MDSCs, fewer T cells, and shorter survival times for the mice. Thus, secretory IgM may aggravate the progression of this cancer. Cancer Immunol Res; 6(6); 696-710. ©2018 AACR . ©2018 American Association for Cancer Research.

  19. Effects of growth hormone administration on bone mineral metabolism, PTH sensitivity and PTH secretory rhythm in postmenopausal women with established osteoporosis.

    Joseph, Franklin; Ahmad, Aftab M; Ul-Haq, Mazhar; Durham, Brian H; Whittingham, Pauline; Fraser, William D; Vora, Jiten P

    2008-05-01

    Growth hormone (GH) replacement improves target organ sensitivity to PTH, PTH circadian rhythm, calcium and phosphate metabolism, bone turnover, and BMD in adult GH-deficient (AGHD) patients. In postmenopausal women with established osteoporosis, GH and insulin like growth factor-1 (IGF-1) concentrations are low, and administration of GH has been shown to increase bone turnover and BMD, but the mechanisms remain unclear. We studied the effects of GH administration on PTH sensitivity, PTH circadian rhythm, and bone mineral metabolism in postmenopausal women with established osteoporosis. Fourteen postmenopausal women with osteoporosis were compared with 14 healthy premenopausal controls at baseline that then received GH for a period of 12 mo. Patients were hospitalized for 24 h before and 1, 3, 6, and 12 mo after GH administration and half-hourly blood and 3-h urine samples were collected. PTH, calcium (Ca), phosphate (PO(4)), nephrogenous cyclic AMP (NcAMP), beta C-telopeptide of type 1 collagen (betaCTX), procollagen type I amino-terminal propeptide (PINP), and 1,25-dihydroxyvitamin D [1,25(OH)(2)D] were measured. Circadian rhythm analysis was performed using Chronolab 3.0 and Student's t-test and general linear model ANOVAs for repeated measures were used where appropriate. IGF-1 concentration was significantly lower in the women with established osteoporosis compared with controls (101.5 +/- 8.9 versus 140.9 +/- 10.8 mug/liter; p bone mineral metabolism. GH administration to postmenopausal osteoporotic women improves target organ sensitivity to PTH and bone mineral metabolism and alters PTH secretory pattern with greater increases in bone formation than resorption. These changes, resulting in a net positive bone balance, may partly explain the mechanism causing the increase in BMD after long-term administration of GH in postmenopausal women with osteoporosis shown in previous studies and proposes a further component in the development of age

  20. Insulin and insulin-like growth factor receptors and responses

    Roth, R.A.; Steele-Perkins, G.; Hari, J.; Stover, C.; Pierce, S.; Turner, J.; Edman, J.C.; Rutter, W.J.

    1988-01-01

    Insulin is a member of a family of structurally related hormones with diverse physiological functions. In humans, the best-characterized members of this family include insulin, insulin-like growth factor (IGF)-I, and IGF-II. Each of these three polypeptide hormones has its own distinct receptor. The structures of each of these receptors have now been deduced from analyses of isolated cDNA clones. To study further the responses mediated through these three different receptors, the authors have been studying cells expressing the proteins encoded by these three cDNAs. The isolated cDNAs have been transfected into Chinese hamster ovary (CHO) cells, and the resulting transfected cell lines have been characterized as to the ligand-binding activities and signal-transducing activities of the expressed proteins

  1. Pregestational diabetes with extreme insulin resistance: use of U-500 insulin in pregnancy.

    Zuckerwise, Lisa C; Werner, Erika F; Pettker, Christian M; McMahon-Brown, Erin K; Thung, Stephen F; Han, Christina S

    2012-08-01

    Increased insulin requirements in pregnancy can hinder attainment of glycemic control in diabetic patients. U-500 insulin is a concentrated form of regular insulin that can be a valuable tool in the treatment of patients with severe insulin resistance. A 24-year-old woman with pregestational diabetes mellitus experienced increasing insulin requirements during pregnancy, peaking at 650 units daily. The frequent, large-volume injections of standard-concentration insulin were poorly tolerated by the patient and resulted in nonadherence. She subsequently achieved glycemic control on thrice-daily U-500 insulin. Pregnancy exacerbates insulin resistance in diabetic patients, and these patients may require high doses of insulin. U-500 insulin is an effective alternative for patients with severe insulin resistance and should be considered for pregnant women with difficulty achieving glycemic control.

  2. Cancer risk among insulin users

    But, Anna; De Bruin, Marie L.; Bazelier, Marloes T.

    2017-01-01

    Aims/hypothesis: The aim of this work was to investigate the relationship between use of certain insulins and risk for cancer, when addressing the limitations and biases involved in previous studies. Methods: National Health Registries from Denmark (1996–2010), Finland (1996–2011), Norway (2005......–2010) and Sweden (2007–2012) and the UK Clinical Practice Research Datalink database (1987–2013) were used to conduct a cohort study on new insulin users (N = 327,112). By using a common data model and semi-aggregate approach, we pooled individual-level records from five cohorts and applied Poisson regression...... models. For each of ten cancer sites studied, we estimated the rate ratios (RRs) by duration (≤0.5, 0.5–1, 1–2, 2–3, 3–4, 4–5, 5–6 and >6 years) of cumulative exposure to insulin glargine or insulin detemir relative to that of human insulin. Results: A total of 21,390 cancer cases occurred during a mean...

  3. Effect of secretory pathway gene overexpression on secretion of a fluorescent reporter protein in Aspergillus nidulans

    Schalén, Martin; Anyaogu, Diana Chinyere; Hoof, Jakob Blæsbjerg

    2016-01-01

    roles in the process have been identified through transcriptomics. The assignment of function to these genes has been enabled in combination with gene deletion studies. In this work, 14 genes known to play a role in protein secretion in filamentous fungi were overexpressed in Aspergillus nidulans....... The background strain was a fluorescent reporter secreting mRFP. The overall effect of the overexpressions could thus be easily monitored through fluorescence measurements, while the effects on physiology were determined in batch cultivations and surface growth studies. Results: Fourteen protein secretion...... pathway related genes were overexpressed with a tet-ON promoter in the RFP-secreting reporter strain and macromorphology, physiology and protein secretion were monitored when the secretory genes were induced. Overexpression of several of the chosen genes was shown to cause anomalies on growth, micro...

  4. Alpha-Synuclein Toxicity in the Early Secretory Pathway: How it Drives Neurodegeneration in Parkinsons Disease

    Ting eWang

    2015-11-01

    Full Text Available Alpha-synuclein is a predominant player in the pathogenesis of Parkinson’s Disease. However, despite extensive study for two decades, its physiological and pathological mechanisms remain poorly understood. Alpha-synuclein forms a perplexing web of interactions with lipids, trafficking machinery, and other regulatory factors. One emerging consensus is that synaptic vesicles are likely the functional site for alpha-synuclein, where it appears to facilitate vesicle docking and fusion. On the other hand, the disfunctions of alpha-synuclein are more dispersed and numerous; when mutated or over-expressed, alpha-synuclein affects several membrane trafficking and stress pathways, including exocytosis, ER-to-Golgi transport, ER stress, Golgi homeostasis, endocytosis, autophagy, oxidative stress and others. Here we examine recent developments in alpha-synuclein’s toxicity in the early secretory pathway placed in the context of emerging themes from other affected pathways to help illuminate its underlying pathogenic mechanisms in neurodegeneration.

  5. Secretory leukocyte protease inhibitor protein regulates the penetrance of frontotemporal lobar degeneration in progranulin mutation carriers.

    Ghidoni, Roberta; Flocco, Rosa; Paterlini, Anna; Glionna, Michela; Caruana, Loredana; Tonoli, Elisa; Binetti, Giuliano; Benussi, Luisa

    2014-01-01

    The discovery that mutations in the gene encoding for progranulin (GRN) cause frontotemporal lobar degeneration (FTLD) and other neurodegenerative diseases leading to dementia has brought renewed interest in progranulin and its functions in the central nervous system. Full length progranulin is preserved from cleavage by secretory leukocyte protease inhibitor (SLPI), one of the smallest serine protease inhibitor circulating in plasma. Herein, we investigated the relationship between circulating SLPI and progranulin in affected and unaffected subjects belonging to 26 Italian pedigrees carrying GRN null mutations. In GRN null mutation carriers, we demonstrated: i) an increase of circulating SLPI levels in affected subjects; ii) an age-related upregulation of the serine-protease inhibitor in response to lifetime progranulin shortage; and iii) a delay in the age of onset in subjects with the highest SLPI protein levels. The study of SLPI and its relation to progranulin suggests the existence of unexpected molecular players in progranulin-associated neurodegeneration.

  6. Lipopolysaccharide-binding protein: localization in secretory granules of Paneth cells in the mouse small intestine

    Hansen, Gert H; Rasmussen, Karina; Niels-Christiansen, Lise-Lotte

    2009-01-01

    Lipopolysaccharide (LPS)-binding protein (LBP) is an acute-phase protein involved in the host's response to endotoxin and mainly synthesized and secreted to the blood by the liver. But in addition, LBP is also made by extrahepatic cells, including the enterocyte-like cell line Caco-2. To study...... in closer detail the synthesis and storage of LBP in the intestinal mucosal epithelium, we performed an immunolocalization of LBP in mouse small intestine. By immunofluorescence microscopy, an antibody recognizing the 58-60 kDa protein of LBP distinctly labeled a small population of cells located deep...... into the crypts. This cell population was also positive for lysozyme and alpha-defensin 4, identifying Paneth cells as the main intestinal LBP-producing cells. By immunogold electron microscopy, intense labeling was observed in the secretory granules of these cells. We conclude that Paneth cells express LBP...

  7. Glutamate signalling and secretory phospholipase A2 modulate the release of arachidonic acid from neuronal membranes

    Rodriguez De Turco, Elena B; Jackson, Fannie R; DeCoster, Mark A

    2002-01-01

    The lipid mediators generated by phospholipases A(2) (PLA(2)), free arachidonic acid (AA), eicosanoids, and platelet-activating factor, modulate neuronal activity; when overproduced, some of them become potent neurotoxins. We have shown, using primary cortical neuron cultures, that glutamate...... and secretory PLA(2) (sPLA(2)) from bee venom (bv sPLA(2)) and Taipan snake venom (OS2) elicit synergy in inducing neuronal cell death. Low concentrations of sPLA(2) are selective ligands of cell-surface sPLA(2) receptors. We investigated which neuronal arachidonoyl phospholipids are targeted by glutamate......) and in minor changes in other phospholipids. A similar profile, although of greater magnitude, was observed 20 hr posttreatment. Glutamate (80 microM) induced much less mobilization of (3)H-AA than did sPLA(2) and resulted in a threefold greater degradation of (3)H-AA PE than of (3)H-AA PC by 20 hr...

  8. Subversion of the Endocytic and Secretory Pathways by Bacterial Effector Proteins

    Mary M. Weber

    2018-01-01

    Full Text Available Intracellular bacteria have developed numerous strategies to hijack host vesicular trafficking pathways to form their unique replicative niches. To promote intracellular replication, the bacteria must interact with host organelles and modulate host signaling pathways to acquire nutrients and membrane for the growing parasitophorous vacuole all while suppressing activation of the immune response. To facilitate host cell subversion, bacterial pathogens use specialized secretion systems to deliver bacterial virulence factors, termed effectors, into the host cell that mimic, agonize, and/or antagonize the function of host proteins. In this review we will discuss how bacterial effector proteins from Coxiella burnetii, Brucella abortus, Salmonella enterica serovar Typhimurium, Legionella pneumophila, Chlamydia trachomatis, and Orientia tsutsugamushi manipulate the endocytic and secretory pathways. Understanding how bacterial effector proteins manipulate host processes not only gives us keen insight into bacterial pathogenesis, but also enhances our understanding of how eukaryotic membrane trafficking is regulated.

  9. Trichinella britovi human infection in Spain : antibody response to surface, excretory/secretory and somatic antigens

    Rodríguez-Osorio M.

    2003-06-01

    Full Text Available A third outbreak of Trichinella britovi with 140 people involved, occurred in Granada Spain (December 1998. The source of infection was sausage made from uninspected wild boar meat. Fifty-two patients agreed to participated in this study. An elevated eosinophil level (> 5 % was detected in 59.6 % of patients, and persisted in most of these cases for two months. A moderate IgG response was observed. At the onset of symptoms, Western blot (WB test detected more positive cases than Enzyme linked immunosorbent assay (ELISA and indirect immunofluorescence (IIF. Six months from infection, ELISA revealed fewer positive cases than the other two tests. It would appear that the response to somatic antigens starts earlier than those to cuticular and excretory/secretory (ES antigens and that the response to ES antigens is the first to decrease.

  10. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps

    Møller, Annette; Asp, Torben; Holm, Preben Bach

    2008-01-01

    prokaryotic genome. Based on a protein alignment we could group the P5 ATPases into two subfamilies, P5A and P5B that, based on the number of negative charges in conserved trans-membrane segment 4, are likely to have different ion specificities. P5A ATPases are present in all eukaryotic genomes sequenced so......Eukaryotes encompass a remarkable variety of organisms and unresolved lineages. Different phylogenetic analyses have lead to conflicting conclusions as to the origin and associations between lineages and species. In this work, we investigated evolutionary relationship of a family of cation pumps...... exclusive for the secretory pathway of eukaryotes by combining the identification of lineage-specific genes with phylogenetic evolution of common genes. Sequences of P5 ATPases, which are regarded to be cation pumps in the endoplasmic reticulum (ER), were identified in all eukaryotic lineages but not in any...

  11. Secretory phospholipase A2 potentiates glutamate-induced rat striatal neuronal cell death in vivo

    Kolko, M; Bruhn, T; Christensen, Thomas

    1999-01-01

    The secretory phospholipases A2 (sPLA2) OS2 (10, 20 and 50 pmol) or OS1, (50 pmol) purified from taipan snake Oxyuranus scutellatus scutellatus venom, and the excitatory amino acid glutamate (Glu) (2.5 and 5.0 micromol) were injected into the right striatum of male Wistar rats. Injection of 10...... no tissue damage or neurological abnormality. After injection of 5.0 micromol Glu, the animals initially circled towards the side of injection, and gradually developed generalized clonic convulsions. These animals showed a well demarcated striatal infarct. When non-toxic concentrations of 20 pmol OS2 and 2.......5 micromol Glu were co-injected, a synergistic neurotoxicity was observed. Extensive histological damage occurred in the entire right hemisphere, and in several rats comprising part of the contralateral hemisphere. These animals were apathetic in the immediate hours following injection, with circling towards...

  12. On psychobiology in psychoanalysis - salivary cortisol and secretory IgA as psychoanalytic process parameters

    Euler, Sebastian; Schimpf, Heinrich; Hennig, Jürgen; Brosig, Burkhard

    2005-01-01

    This study investigates the psychobiological impact of psychoanalysis in its four-hour setting. During a period of five weeks, 20 subsequent hours of psychoanalysis were evaluated, involving two patients and their analysts. Before and after each session, saliva samples were taken and analysed for cortisol (sCortisol) and secretory immunoglobuline A (sIgA). Four time-series (n=80 observations) resulted and were evaluated by "Pooled Time Series Analysis" (PTSA) for significant level changes and setting-mediated rhythms. Over all sessions, sCortisol levels were reduced and sIgA secretion augmented parallel to the analytic work. In one analytic dyad a significant rhythm within the four-hour setting was observed with an increase of sCortisol in sessions 2 and 3 of the week. Psychoanalysis may, therefore, have some psychobiological impact on patients and analysts alike and may modulate immunological and endocrinological processes. PMID:19742067

  13. Dynamic Regulation of Ero1α and Peroxiredoxin 4 Localization in the Secretory Pathway*

    Kakihana, Taichi; Araki, Kazutaka; Vavassori, Stefano; Iemura, Shun-ichiro; Cortini, Margherita; Fagioli, Claudio; Natsume, Tohru; Sitia, Roberto; Nagata, Kazuhiro

    2013-01-01

    In the early secretory compartment (ESC), a network of chaperones and enzymes assists oxidative folding of nascent proteins. Ero1 flavoproteins oxidize protein disulfide isomerase (PDI), generating H2O2 as a byproduct. Peroxiredoxin 4 (Prx4) can utilize luminal H2O2 to oxidize PDI, thus favoring oxidative folding while limiting oxidative stress. Interestingly, neither ER oxidase contains known ER retention signal(s), raising the question of how cells prevent their secretion. Here we show that the two proteins share similar intracellular localization mechanisms. Their secretion is prevented by sequential interactions with PDI and ERp44, two resident proteins of the ESC-bearing KDEL-like motifs. PDI binds preferentially Ero1α, whereas ERp44 equally retains Ero1α and Prx4. The different binding properties of Ero1α and Prx4 increase the robustness of ER redox homeostasis. PMID:23979138

  14. Novel binders derived from an albumin-binding domain scaffold targeting human prostate secretory protein 94 (PSP94)

    Marečková, Lucie; Petroková, Hana; Osička, Radim; Kuchař, Milan; Malý, Petr

    2015-01-01

    Roč. 6, č. 10 (2015), s. 774-779 ISSN 1674-800X Institutional support: RVO:86652036 ; RVO:61388971 Keywords : prostate secretory protein * prostate cancer * oncomarker Subject RIV: EB - Genetics ; Molecular Biology; EB - Genetics ; Molecular Biology (MBU-M) Impact factor: 3.817, year: 2015

  15. Human milk containing specific secretory IgA inhibits binding of Giardia lamblia to nylon and glass surfaces.

    Samra, H K; Ganguly, N K; Mahajan, R C

    1991-06-01

    The effects of human milk, containing specific secretory IgA, on the adherence of Giardia lamblia trophozoites in the presence and in the absence of intestinal mucus in vitro were studied. It was found that the trophozoites treated with breast milk, containing specific secretory IgA to G. lamblia, showed a significant decrease (p less than 0.01) in adherence to nylon fibre columns and glass surfaces than did trophozoites treated with milk containing no SIgA antibodies. The adherence to glass surfaces was significantly more (p less than 0.01) in the presence of intestinal mucus than when the mucus was absent. Milk that did not contain specific secretory SIgA to G. lamblia did not decrease the adherence to glass surfaces either in the presence or in the absence of mucus. The fluorescence study revealed the binding of specific secretory IgA on the trophozoite surface. The results suggest that binding of SIgA antibodies in milk to G. lamblia trophozoites inhibits parasite adherence, thus protecting against this infection in breast-fed babies.

  16. Effect of threonine on secretory immune system using a chicken intestinal ex vivo model with lipopolysaccharide challenge

    Secretory IgA (sIgA) and its transcytosis receptor, polymeric immunoglobulin receptor (pIgR), along with mucus, form the first lines of intestinal defense. Threonine (Thr) is a major constituent component of intestinal mucins and IgA, which are highly secreted under lipopolysaccharide (LPS) induced ...

  17. In Candida albicans hyphae, Sec2p is physically associated with SEC2 mRNA on secretory vesicles.

    Caballero-Lima, David; Hautbergue, Guillaume M; Wilson, Stuart A; Sudbery, Peter E

    2014-11-01

    Candida albicans hyphae grow in a highly polarized fashion from their tips. This polarized growth requires the continuous delivery of secretory vesicles to the tip region. Vesicle delivery depends on Sec2p, the Guanine Exchange Factor (GEF) for the Rab GTPase Sec4p. GTP bound Sec4p is required for the transit of secretory vesicles from the trans-Golgi to sites of polarized growth. We previously showed that phosphorylation of Sec2p at residue S584 was necessary for Sec2p to support hyphal, but not yeast growth. Here we show that on secretory vesicles SEC2 mRNA is physically associated with Sec2p. Moreover, we show that the phosphorylation of S584 allows SEC2 mRNA to dissociate from Sec2p and we speculate that this is necessary for Sec2p function and/or translation. During hyphal extension, the growing tip may be separated from the nucleus by up to 15 μm. Transport of SEC2 mRNA on secretory vesicles to the tip localizes SEC2 translation to tip allowing a sufficient accumulation of this key protein at the site of polarized growth. © 2014 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  18. Cysteine-rich secretory protein 3 is a ligand of alpha1B-glycoprotein in human plasma

    Udby, Lene; Sørensen, Ole E; Pass, Jesper

    2004-01-01

    Human cysteine-rich secretory protein 3 (CRISP-3; also known as SGP28) belongs to a family of closely related proteins found in mammals and reptiles. Some mammalian CRISPs are known to be involved in the process of reproduction, whereas some of the CRISPs from reptiles are neurotoxin...

  19. Secretory Phospholipase A2 Hydrolysis Phospholipid Analogs is Dependent on Water Accessibility to the Active Site

    Peters, Günther H.J.; Møller, Martin S.; Jørgensen, Kent

    2007-01-01

    A new and unnatural type of phospholipids with the head group attached to the 2-position of the glycerol backbone has been synthesized and shown to be a good substrate for secretory phospholipase A2 (sPLA2). To investigate the unexpected sPLA2 activity, we have compared three different phospholip...

  20. Fusion of lysosomes with secretory organelles leads to uncontrolled exocytosis in the lysosomal storage disease mucolipidosis type IV.

    Park, Soonhong; Ahuja, Malini; Kim, Min Seuk; Brailoiu, G Cristina; Jha, Archana; Zeng, Mei; Baydyuk, Maryna; Wu, Ling-Gang; Wassif, Christopher A; Porter, Forbes D; Zerfas, Patricia M; Eckhaus, Michael A; Brailoiu, Eugen; Shin, Dong Min; Muallem, Shmuel

    2016-02-01

    Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells' functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re-expression of TRPML1 in neurons. These features were not observed in Niemann-Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV. © 2015 The Authors.

  1. Effects of Cichorium Intybus L. Root Extract on Secretory Activity of the Stomach in Health and Ulcer Disease.

    Krylova, S G; Vymyatnina, Z K; Zueva, E P; Amosova, E N; Razina, T G; Litvinenko, V I

    2015-09-01

    Gastroprotective effect of Cichorium intybus L. root extract is demonstrated on H. Shay's model of experimental ulcer in rats. The effect is attributed to the antisecretory activity of the plant and stimulation of defense barrier function of the gastric mucosa. The regulatory effect of the phytocomplex on seasonal characteristics of the gastric secretory and defense functions in dogs with Basov's fistula is detected.

  2. Human eosinophils express, relative to other circulating leukocytes, large amounts of secretory 14-kD phospholipase A2

    Blom, M.; Tool, A. T.; Wever, P. C.; Wolbink, G. J.; Brouwer, M. C. [=Maria Clara; Calafat, J.; Egesten, A.; Knol, E. F.; Hack, C. E.; Roos, D.; Verhoeven, A. J.

    1998-01-01

    Human eosinophils perform several functions dependent on phospholipase A2 (PLA2) activity, most notably the synthesis of platelet-activating factor (PAF) and leukotriene C4 (LTC4). Several forms of PLA2 have been identified in mammalian cells. In the present study, the 14-kD, secretory form of PLA2

  3. Probing the mechanism of insulin fibril formation with insulin mutants.

    Nielsen, L; Frokjaer, S; Brange, J; Uversky, V N; Fink, A L

    2001-07-27

    The molecular basis of insulin fibril formation was investigated by studying the structural properties and kinetics of fibril formation of 20 different human insulin mutants at both low pH (conditions favoring monomer/dimer) and at pH 7.4 (conditions favoring tetramer/hexamer). Small-angle X-ray scattering showed insulin to be monomeric in 20% acetic acid, 0.1 M NaCl, pH 2. The secondary structure of the mutants was assessed using far-UV circular dichroism, and the tertiary structure was determined using near-UV circular dichroism, quenching of intrinsic fluorescence by acrylamide and interactions with the hydrophobic probe 1-anilino-8-naphthalene-sulfonic acid (ANS). The kinetics of fibril formation were monitored with the fluorescent dye, Thioflavin T. The results indicate that the monomer is the state from which fibrils arise, thus under some conditions dissociation of hexamers may be rate limiting or partially rate limiting. The insulin mutants were found to retain substantial nativelike secondary and tertiary structure under all conditions studied. The results suggest that fibril formation of the insulin mutants is controlled by specific molecular interactions that are sensitive to variations in the primary structure. The observed effects of several mutations on the rate of fibril formation are inconsistent with a previously suggested model for fibrillation [Brange, J., Whittingham, J., Edwards, D., Youshang, Z., Wollmer, A., Brandenburg, D., Dodson, G., and Finch, J. (1997) Curr. Sci. 72, 470-476]. Two surfaces on the insulin monomer are identified as potential interacting sites in insulin fibrils, one consisting of the residues B10, B16, and B17 and the other consisting of at least the residues A8 and B25. The marked increase in the lag time for fibril formation with mutations to more polar residues, as well as mutations to charged residues, demonstrates the importance of both hydrophobic and electrostatic interactions in the initial stages of fibrillation

  4. Intractable secretory diarrhea in a Japanese boy with mitochondrial respiratory chain complex I deficiency.

    Murayama, Kei; Nagasaka, Hironori; Tsuruoka, Tomoko; Omata, Yuko; Horie, Hiroshi; Tregoning, Simone; Thorburn, David R; Takayanagi, Masaki; Ohtake, Akira

    2009-03-01

    The etiology of secretory diarrhea in early life is often unclear. We report a Japanese boy who survived until 3 years of age, despite intractable diarrhea commencing soon after birth. The fecal sodium content was strikingly high (109 mmol/L [normal range, 27-35 mmol/L]) and the osmotic gap was decreased (15 mOsm/kg), consistent with the findings of congenital sodium diarrhea. We examined the mitochondrial respiratory chain function by blue native polyacrylamide gel electrophoresis (BN-PAGE) in-gel enzyme staining, BN-PAGE western blotting, respiratory chain enzyme activity assay, and immunohistochemistry. Liver respiratory chain complex (Co) I activity was undetectable, while other respiratory chain complex activities were increased (Co II, 138%; Co III, 153%; Co IV, 126% versus respective control activities). Liver BN-PAGE in-gel enzyme staining and western blotting showed an extremely weak complex I band, while immunohistochemistry showed extremely weak staining for the 30-kDa subunit of complex I, but normal staining for the 70-kDa subunit of complex II. The patient was, therefore, diagnosed with complex I deficiency. The overall complex I activity of the jejunum was substantially decreased (63% of the control activity). The immunohistochemistry displayed apparently decreased staining of the 30-kDa complex I subunit, together with a slightly enhanced staining of the 70-kDa complex II subunit in intestinal epithelial cells. These data imply that intestinal epithelial cells are also complex I-deficient in this patient. Complex I deficiency is a novel cause of secretory diarrhea and may act via disrupting the supply of adenosine triphosphate (ATP) needed for the maintenance of ion gradients across membranes.

  5. Human Secretory IgM Antibodies Activate Human Complement and Offer Protection at Mucosal Surface.

    Michaelsen, T E; Emilsen, S; Sandin, R H; Granerud, B K; Bratlie, D; Ihle, O; Sandlie, I

    2017-01-01

    IgM molecules circulate in serum as large polymers, mainly pentamers, which can be transported by the poly-Ig receptor (pIgR) across epithelial cells to mucosal surfaces and released as secretory IgM (SIgM). The mucosal SIgM molecules have non-covalently attached secretory component (SC), which is the extracellular part of pIgR which is cleaved from the epithelial cell membrane. Serum IgM antibodies do not contain SC and have previously been shown to make a conformational change from 'a star' to a 'staple' conformation upon reaction with antigens on a cell surface, enabling them to activate complement. However, it is not clear whether SIgM similarly can induce complement activation. To clarify this issue, we constructed recombinant chimeric (mouse/human) IgM antibodies against hapten 5-iodo-4-hydroxy-3-nitro-phenacetyl (NIP) and in addition studied polyclonal IgM formed after immunization with a meningococcal group B vaccine. The monoclonal and polyclonal IgM molecules were purified by affinity chromatography on a column containing human SC in order to isolate joining-chain (J-chain) containing IgM, followed by addition of excess amounts of soluble SC to create SIgM (IgM J+ SC+). These SIgM preparations were tested for complement activation ability and shown to be nearly as active as the parental IgM J+ molecules. Thus, SIgM may offer protection against pathogens at mucosal surface by complement-mediated cell lysis or by phagocytosis mediated by complement receptors present on effector cells on mucosa. © 2016 The Foundation for the Scandinavian Journal of Immunology.

  6. Unprecedented multiplicity of Ig transmembrane and secretory mRNA forms in the cartilaginous fish.

    Rumfelt, Lynn L; Diaz, Marilyn; Lohr, Rebecca L; Mochon, Evonne; Flajnik, Martin F

    2004-07-15

    In most jawed vertebrates including cartilaginous fish, membrane-bound IgM is expressed as a five Ig superfamily (Igsf)-domain H chain attached to a transmembrane (Tm) region. Heretofore, bony fish IgM was the one exception with IgM mRNA spliced to produce a four-domain Tm H chain. We now demonstrate that the Tm and secretory (Sec) mRNAs of the novel cartilaginous fish Ig isotypes, IgW and IgNAR, are present in multiple forms, most likely generated by alternative splicing. In the nurse shark, Ginglymostoma cirratum, and horn shark, Heterodontus francisci, alternative splicing of Tm exons to the second or the fourth constant (C(H)) exons produces two distinct IgW Tm cDNAs. Although the seven-domain IgW Sec cDNA form contains a canonical secretory tail shared with IgM, IgNAR, and IgA, we report a three-domain cDNA form of shark IgW (IgW(short)) having an unusual Sec tail, which is orthologous to skate IgX(short) cDNA. The IgW and IgW(short) Sec transcripts are restricted in their tissue distribution and expression levels vary among individual sharks, with all forms expressed early in ontogeny. IgNAR mRNA is alternatively spliced to produce a truncated four-domain Tm cDNA and a second Tm cDNA is expressed identical in Igsf domains as the Sec form. PBL is enriched in the Tm cDNA of these Igs. These molecular data suggest that cartilaginous fish have augmented their humoral immune repertoire by diversifying the sizes of their Ig isotypes. Furthermore, these Tm cDNAs are prototypical and the truncated variants may translate as more stable protein at the cell surface.

  7. Protein secretory patterns of rat Sertoli and peritubular cells are influenced by culture conditions

    Kierszenbaum, A.L.; Crowell, J.A.; Shabanowitz, R.B.; DePhilip, R.M.; Tres, L.L.

    1986-01-01

    An approach combining two-dimensional gel electrophoresis and autoradiography was used to correlate patterns of secretory proteins in cultures of Sertoli and peritubular cells with those observed in the incubation medium from segments of seminiferous tubules. Sertoli cells in culture and in seminiferous tubules secreted three proteins designated S70 (Mr 72,000-70,000), S45 (Mr 45,000), and S35 (Mr 35,000). Cultured Sertoli and peritubular cells and incubated seminiferous tubules secreted two proteins designated SP1 (Mr 42,000) and SP2 (Mr 50,000). SP1 and S45 have similar Mr but differ from each other in isoelectric point (pI). Cultured peritubular cells secreted a protein designated P40 (Mr 40,000) that was also seen in intact seminiferous tubules but not in seminiferous tubules lacking the peritubular cell wall. However, a large number of high-Mr proteins were observed only in the medium of cultured peritubular cells but not in the incubation medium of intact seminiferous tubules. Culture conditions influence the morphology and patterns of protein secretion of cultured peritubular cells. Peritubular cells that display a flat-stellate shape transition when placed in culture medium free of serum (with or without hormones and growth factors), accumulate various proteins in the medium that are less apparent when these cells are maintained in medium supplemented with serum. Two secretory proteins stimulated by follicle-stimulating hormone (FSH) (designated SCm1 and SCm2) previously found in the medium of cultured Sertoli cells, were also observed in the incubation medium of seminiferous tubular segments stimulated by FSH. Results of this study show that, although cultured Sertoli and peritubular cells synthesize and secrete proteins also observed in segments of incubated seminiferous tubules anther group of proteins lacks seminiferous tubular correlates

  8. Distorted secretory granule composition in mast cells with multiple protease deficiency.

    Grujic, Mirjana; Calounova, Gabriela; Eriksson, Inger; Feyerabend, Thorsten; Rodewald, Hans-Reimer; Tchougounova, Elena; Kjellén, Lena; Pejler, Gunnar

    2013-10-01

    Mast cells are characterized by an abundance of secretory granules densely packed with inflammatory mediators such as bioactive amines, cytokines, serglycin proteoglycans with negatively charged glycosaminoglycan side chains of either heparin or chondroitin sulfate type, and large amounts of positively charged proteases. Despite the large biological impact of mast cell granules and their contents on various pathologies, the mechanisms that regulate granule composition are incompletely understood. In this study, we hypothesized that granule composition is dependent on a dynamic electrostatic interrelationship between different granule compounds. As a tool to evaluate this possibility, we generated mice in which mast cells are multideficient in a panel of positively charged proteases: the chymase mouse mast cell protease-4, the tryptase mouse mast cell protease-6, and carboxypeptidase A3. Through a posttranslational effect, mast cells from these mice additionally lack mouse mast cell protease-5 protein. Mast cells from mice deficient in individual proteases showed normal morphology. In contrast, mast cells with combined protease deficiency displayed a profound distortion of granule integrity, as seen both by conventional morphological criteria and by transmission electron microscopy. An assessment of granule content revealed that the distorted granule integrity in multiprotease-deficient mast cells was associated with a profound reduction of highly negatively charged heparin, whereas no reduction in chondroitin sulfate storage was observed. Taken together with previous findings showing that the storage of basic proteases conversely is regulated by anionic proteoglycans, these data suggest that secretory granule composition in mast cells is dependent on a dynamic interrelationship between granule compounds of opposite electrical charge.

  9. Virtual analysis of structurally diverse synthetic analogs as inhibitors of snake venom secretory phospholipase A2.

    Sivaramakrishnan, V; Ilamathi, M; Ghosh, K S; Sathish, S; Gowda, T V; Vishwanath, B S; Rangappa, K S; Dhananjaya, B L

    2016-01-01

    Due to the toxic pathophysiological role of snake venom phospholipase A2 (PLA2 ), its compelling limitations to anti-venom therapy in humans and the need for alternative therapy foster considerable pharmacological interest towards search of PLA2 specific inhibitors. In this study, an integrated approach involving homology modeling, molecular dynamics and molecular docking studies on VRV-PL-V (Vipera russellii venom phospholipase A2 fraction-V) belonging to Group II-B secretory PLA2 from Daboia russelli pulchella is carried out in order to study the structure-based inhibitor design. The accuracy of the model was validated using multiple computational approaches. The molecular docking study of this protein was undertaken using different classes of experimentally proven, structurally diverse synthetic inhibitors of secretory PLA2 whose selection is based on IC50 value that ranges from 25 μM to 100 μM. Estimation of protein-ligand contacts by docking analysis sheds light on the importance of His 47 and Asp 48 within the VRV-PL-V binding pocket as key residue for hydrogen bond interaction with ligands. Our virtual analysis revealed that compounds with different scaffold binds to the same active site region. ADME analysis was also further performed to filter and identify the best potential specific inhibitor against VRV-PL-V. Additionally, the e-pharmacophore was generated for the best potential specific inhibitor against VRV-PL-V and reported here. The present study should therefore play a guiding role in the experimental design of VRV-PL-V inhibitors that may provide better therapeutic molecular models for PLA2 recognition and anti-ophidian activity. Copyright © 2015 John Wiley & Sons, Ltd.

  10. A two-hybrid assay to study protein interactions within the secretory pathway.

    Danielle H Dube

    Full Text Available Interactions of transcriptional activators are difficult to study using transcription-based two-hybrid assays due to potent activation resulting in false positives. Here we report the development of the Golgi two-hybrid (G2H, a method that interrogates protein interactions within the Golgi, where transcriptional activators can be assayed with negligible background. The G2H relies on cell surface glycosylation to report extracellularly on protein-protein interactions occurring within the secretory pathway. In the G2H, protein pairs are fused to modular domains of the reporter glycosyltransferase, Och1p, and proper cell wall formation due to Och1p activity is observed only when a pair of proteins interacts. Cells containing interacting protein pairs are identified by selectable phenotypes associated with Och1p activity and proper cell wall formation: cells that have interacting proteins grow under selective conditions and display weak wheat germ agglutinin (WGA binding by flow cytometry, whereas cells that lack interacting proteins display stunted growth and strong WGA binding. Using this assay, we detected the interaction between transcription factor MyoD and its binding partner Id2. Interfering mutations along the MyoD:Id2 interaction interface ablated signal in the G2H assay. Furthermore, we used the G2H to detect interactions of the activation domain of Gal4p with a variety of binding partners. Finally, selective conditions were used to enrich for cells encoding interacting partners. The G2H detects protein-protein interactions that cannot be identified via traditional two-hybrid methods and should be broadly useful for probing previously inaccessible subsets of the interactome, including transcriptional activators and proteins that traffic through the secretory pathway.

  11. Diagnostic potential of low molecular weight excretory secretory proteins of Paramphistomum epiclitum for caprine amphistomosis.

    Jaiswal, Amit Kumar; Shanker, Daya; Sudan, Vikrant; Singh, Amit

    2018-06-15

    In the present study, the 75% alcoholic fractionation of excretory-secretory (ES) antigen isolated from 200 to 300 live P. epiclitum was assessed for its diagnostic potential for the detection of caprine amphistomosis by using antibody detection enzyme immunoassay. Prior to enzyme immunoassay, 75% alcoholic fractionation of excretory-secretory (ES) antigen was subjected to SDS- PAGE and western blot analysis for the presence of immunoreactive polypeptides. SDS-PAGE analysis of ES antigen resolved a total 7 polypeptides bands of size 56, 27, 25, 22.5, 12, 11 and 10 kDa. Western blot analysis revealed only two immunoreactive polypeptides (11 kDa and 12 kDa) when polypeptides resolved in SDS-PAGE were probed with known positive pooled serum. None of the polypeptides showed reactions with pooled known negative serum. The working dilutions of antigen, sera and conjugates were determined by checkerboard titration for employing ELISA and cut-off O.D. was calculated 0.616 by using the mean absorbance value of 11 negative kid sera. The sensitivity and specificity of ELISA was found to be 100% and 86.76%, respectively. As per kappa value estimation, the strength of agreement was found to be good. Antibodies to 75% alcoholic fractionation of ES antigen was detected in 20% goats (n = 160) of either sex, although faecal examination detected 10.6% goats to be infected with amphistomosis. The study confirmed that 75% alcoholic fractionation of ES antigen of P. epiclitum based ELISA had good value for serodiagnosis of caprine amphistomosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Hormone-sensitive lipase deficiency suppresses insulin secretion from pancreatic islets of Lepob/ob mice

    Sekiya, Motohiro; Yahagi, Naoya; Tamura, Yoshiaki; Okazaki, Hiroaki; Igarashi, Masaki; Ohta, Keisuke; Takanashi, Mikio; Kumagai, Masayoshi; Takase, Satoru; Nishi, Makiko; Takeuchi, Yoshinori; Izumida, Yoshihiko; Kubota, Midori; Ohashi, Ken; Iizuka, Yoko; Yagyu, Hiroaki; Gotoda, Takanari; Nagai, Ryozo; Shimano, Hitoshi; Yamada, Nobuhiro

    2009-01-01

    It has long been a matter of debate whether the hormone-sensitive lipase (HSL)-mediated lipolysis in pancreatic β-cells can affect insulin secretion through the alteration of lipotoxicity. We generated mice lacking both leptin and HSL (Lep ob/ob /HSL -/- ) and explored the role of HSL in pancreatic β-cells in the setting of obesity. Lep ob/ob /HSL -/- developed elevated blood glucose levels and reduced plasma insulin levels compared with Lep ob/ob /HSL +/+ in a fed state, while the deficiency of HSL did not affect glucose homeostasis in Lep +/+ background. The deficiency of HSL exacerbated the accumulation of triglycerides in Lep ob/ob islets, leading to reduced glucose-stimulated insulin secretion. The deficiency of HSL also diminished the islet mass in Lep ob/ob mice due to decreased cell proliferation. In conclusion, HSL affects insulin secretary capacity especially in the setting of obesity.

  13. Preparation and Characterization of Water-Soluble Chitosan Microparticles Loaded with Insulin Using the Polyelectrolyte Complexation Method

    Wu, S.; Tao, Y.; Zhang, H.; Su, Z.

    2011-01-01

    Polymeric delivery systems based on microparticles have emerged as a promising approach for peroral insulin delivery. The amount of insulin was quantified by the improved Bradford method. It was shown that water-soluble chitosan/insulin/tripolyphosphate (TPP) mass ratio played an important role in microparticles formation. Stable, uniform, and spherical water-soluble chitosan microparticles (WSC-MPs) with high insulin association efficiency were formed at or close to optimized WSC/insulin/TPP mass ratio. WSC-MPs had higher association efficiency in the ph 4.0 and ph 9.7 of TPP solution. The results showed that association efficiency and loading capacity of insulin-loaded WSC-MPs prepared in 0.01 mol/L HCl of insulin were 48.28 ± 0.90% and 9.52 ± 1.34%. The average size of insulin-loaded WSC-MPs was 292 nm. The presented WSC microparticulate system has promising properties towards the development of an oral delivery system for insulin

  14. Insulin receptors in the mammary gland

    Smith, D.H.

    1986-01-01

    Insulin binding studies were conducted using mammary membrane preparations to further the authors understanding of insulin's role in regulating mammary metabolism, particularly ruminant mammary metabolism. Specific objectives were to: (1) characterize insulin binding to bovine mammary microsomes and determine if the specificity and kinetics of binding indicate the presence of insulin receptors in bovine mammary gland; (2) examine and compare insulin binding by liver and mammary microsomes of the pig and dairy cow; (3) examine insulin binding to bovine milk fat globule membranes (MFGM) and evaluate this model's usefulness in assessing insulin receptor regulation in the mammary gland of the cow; (4) examine the effect of dietary fat in insulin binding by rat mammary and liver microsomes. The specificity and kinetics of 125 I-insulin binding of bovine mammary microsomes indicated the presence of insulin receptors in bovine mammary gland. Bovine liver and mammary microsomes specifically bound less 125 I-insulin than did the corresponding porcine microsomes, and mammary microsomes, regardless of species, specifically bound less 125 I-insulin than did liver microsomes. These differences in binding suggest differences in insulin responsiveness between pigs and cattle, as well as between the liver and mammary glands

  15. Characterization of the chicken muscle insulin receptor

    Adamo, M.; Simon, J.; Rosebrough, R.W.; McMurtry, J.P.; Steele, N.C.; LeRoith, D.

    1987-01-01

    Insulin receptors are present in chicken skeletal muscle. Crude membrane preparations demonstrated specific 125 I-insulin binding. The nonspecific binding was high (36-55% of total binding) and slightly lower affinity receptors were found than are typically observed for crude membrane insulin binding in other chicken tissues. Affinity crosslinking of 125 I-insulin to crude membranes revealed insulin receptor alpha-subunits of Mr 128K, intermediate between those of liver (134K) and brain (124K). When solubilized and partially purified on wheat germ agglutinin (WGA) affinity columns, chicken muscle insulin receptors exhibited typical high affinity binding, with approximately 10(-10) M unlabeled insulin producing 50% inhibition of the specific 125 I-insulin binding. WGA purified chicken muscle insulin receptors also exhibited insulin-stimulated autophosphorylation of the beta-subunit, which appeared as phosphorylated bands of 92- and 81K. Both bands were immunoprecipitated by anti-receptor antiserum (B10). WGA purified membranes also demonstrated dose-dependent insulin-stimulated phosphorylation of the exogenous substrate poly(Glu,Tyr)4:1. However, unlike chicken liver, chicken muscle insulin receptor number and tyrosine kinase activity were unaltered by 48 hr of fasting or 48 hr of fasting and 24 hr of refeeding. Thus, despite the presence of insulin receptors in chicken muscle showing normal coupling to receptor tyrosine kinase activity, nutritional alterations modulate these parameters in a tissue-specific manner in chickens

  16. Microvascular Recruitment in Insulin Resistance

    Sjøberg, Kim Anker

    the resonating sound from the microbubbles in the systemic circulation were recorded for determination of microvascular recruitment in designated muscle segments. Results showed that microvascular recruitment increased with insulin stimulation by ~30% in rats and ~40% in humans (study I). Furthermore......, it was observed that muscle contractions increased muscle perfusion rapidly by 3-4 fold and by 1-2 fold compared to basal and insulin, respectively, in both rat and human skeletal muscle (study I). The real-time contrast-enhanced ultrasound method was applied to investigate the vaso-active effect of the incretin...... hormone glucagon-like-peptide-1 (GLP-1) in the microcirculation. Glucagon-like-peptide-1 analogs are drugs used for treatments of insulin resistance and type 2 diabetes but the vascular effects of GLP-1 in vivo are elusive. Here it was shown that GLP-1 rapidly increased the microvascular recruitment...

  17. Resistance training, insulin sensitivity and muscle function in the elderly

    Dela, Flemming; Kjaer, Michael

    2006-01-01

    Ageing is associated with a loss in both muscle mass and in the metabolic quality of skeletal muscle. This leads to sarcopenia and reduced daily function, as well as to an increased risk for development of insulin resistance and type 2 diabetes. A major part, but not all, of these changes......, and likewise to improve muscle strength in both elderly healthy individuals and in elderly individuals with chronic disease. The increased strength is coupled to improved function and a decreased risk for fall injuries and fractures. Elderly individuals have preserved the capacity to improve muscle strength...... are associated with an age-related decrease in the physical activity level and can be counteracted by increased physical activity of a resistive nature. Strength training has been shown to improve insulin-stimulated glucose uptake in both healthy elderly individuals and patients with manifest diabetes...

  18. SPRED: A machine learning approach for the identification of classical and non-classical secretory proteins in mammalian genomes

    Kandaswamy, Krishna Kumar [Institute for Neuro- and Bioinformatics, University of Luebeck, 23538 Luebeck (Germany); Graduate School for Computing in Medicine and Life Sciences, University of Luebeck, 23538 Luebeck (Germany); Pugalenthi, Ganesan [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hartmann, Enno; Kalies, Kai-Uwe [Centre for Structural and Cell Biology in Medicine, Institute of Biology, University of Luebeck, 23538 Luebeck (Germany); Moeller, Steffen [Institute for Neuro- and Bioinformatics, University of Luebeck, 23538 Luebeck (Germany); Suganthan, P.N. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Martinetz, Thomas, E-mail: martinetz@inb.uni-luebeck.de [Institute for Neuro- and Bioinformatics, University of Luebeck, 23538 Luebeck (Germany)

    2010-01-15

    Eukaryotic protein secretion generally occurs via the classical secretory pathway that traverses the ER and Golgi apparatus. Secreted proteins usually contain a signal sequence with all the essential information required to target them for secretion. However, some proteins like fibroblast growth factors (FGF-1, FGF-2), interleukins (IL-1 alpha, IL-1 beta), galectins and thioredoxin are exported by an alternative pathway. This is known as leaderless or non-classical secretion and works without a signal sequence. Most computational methods for the identification of secretory proteins use the signal peptide as indicator and are therefore not able to identify substrates of non-classical secretion. In this work, we report a random forest method, SPRED, to identify secretory proteins from protein sequences irrespective of N-terminal signal peptides, thus allowing also correct classification of non-classical secretory proteins. Training was performed on a dataset containing 600 extracellular proteins and 600 cytoplasmic and/or nuclear proteins. The algorithm was tested on 180 extracellular proteins and 1380 cytoplasmic and/or nuclear proteins. We obtained 85.92% accuracy from training and 82.18% accuracy from testing. Since SPRED does not use N-terminal signals, it can detect non-classical secreted proteins by filtering those secreted proteins with an N-terminal signal by using SignalP. SPRED predicted 15 out of 19 experimentally verified non-classical secretory proteins. By scanning the entire human proteome we identified 566 protein sequences potentially undergoing non-classical secretion. The dataset and standalone version of the SPRED software is available at (http://www.inb.uni-luebeck.de/tools-demos/spred/spred).

  19. SPRED: A machine learning approach for the identification of classical and non-classical secretory proteins in mammalian genomes

    Kandaswamy, Krishna Kumar; Pugalenthi, Ganesan; Hartmann, Enno; Kalies, Kai-Uwe; Moeller, Steffen; Suganthan, P.N.; Martinetz, Thomas

    2010-01-01

    Eukaryotic protein secretion generally occurs via the classical secretory pathway that traverses the ER and Golgi apparatus. Secreted proteins usually contain a signal sequence with all the essential information required to target them for secretion. However, some proteins like fibroblast growth factors (FGF-1, FGF-2), interleukins (IL-1 alpha, IL-1 beta), galectins and thioredoxin are exported by an alternative pathway. This is known as leaderless or non-classical secretion and works without a signal sequence. Most computational methods for the identification of secretory proteins use the signal peptide as indicator and are therefore not able to identify substrates of non-classical secretion. In this work, we report a random forest method, SPRED, to identify secretory proteins from protein sequences irrespective of N-terminal signal peptides, thus allowing also correct classification of non-classical secretory proteins. Training was performed on a dataset containing 600 extracellular proteins and 600 cytoplasmic and/or nuclear proteins. The algorithm was tested on 180 extracellular proteins and 1380 cytoplasmic and/or nuclear proteins. We obtained 85.92% accuracy from training and 82.18% accuracy from testing. Since SPRED does not use N-terminal signals, it can detect non-classical secreted proteins by filtering those secreted proteins with an N-terminal signal by using SignalP. SPRED predicted 15 out of 19 experimentally verified non-classical secretory proteins. By scanning the entire human proteome we identified 566 protein sequences potentially undergoing non-classical secretion. The dataset and standalone version of the SPRED software is available at (http://www.inb.uni-luebeck.de/tools-demos/spred/spred).

  20. Influence of insulin sensitivity and secretion on glycated albumin and hemoglobin A1c in pregnant women with gestational diabetes mellitus.

    Pan, Jiemin; Zhang, Feng; Zhang, Lei; Bao, Yuqian; Tao, Minfang; Jia, Weiping

    2013-06-01

    To examine the differential effects of insulin sensitivity and secretion on hemoglobin A1c (HbA1c) and glycated albumin (GA) at 24-32weeks of pregnancy in women with gestational diabetes mellitus (GDM). A cross-sectional, sequential case series study was performed in pregnant women with an abnormal 50-g oral glucose-screening test. Hemoglobin A1c and GA measurements were taken during oral glucose tolerance test (OGTT). The homeostasis model assessment of insulin resistance (HOMA-IR) and beta-cell function (HOMA-%β), insulin sensitivity index (ISOGTT), and modified insulinogenic index were calculated to assess insulin sensitivity and secretory function. A total of 713 pregnant women were enrolled. The GDM group had lower ISOGTT and insulinogenic index scores, and a higher HOMA-IR score. Hemoglobin A1c was positively correlated with HOMA-IR. Glycated albumin was negatively correlated with insulinogenic index and HOMA-%β. Multiple regression analysis revealed that HbA1c was independently associated with diastolic pressure, 0- and 120-minute glucose, and HOMA-IR; GA was independently associated with 0- and 120-minute glucose. Compared with HbA1c, GA is more closely correlated with fasting and postprandial glucose, regardless of insulin resistance and blood pressure, and might be a better monitoring index in women with GDM. Copyright © 2013 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  1. A Plant-Based Dietary Intervention Improves Beta-Cell Function and Insulin Resistance in Overweight Adults: A 16-Week Randomized Clinical Trial.

    Kahleova, Hana; Tura, Andrea; Hill, Martin; Holubkov, Richard; Barnard, Neal D

    2018-02-09

    The aim of this study was to test the effect of a plant-based dietary intervention on beta-cell function in overweight adults with no history of diabetes. Participants ( n = 75) were randomized to follow a low-fat plant-based diet ( n = 38) or to make no diet changes ( n = 37) for 16 weeks. At baseline and 16 weeks, beta-cell function was quantified with a mathematical model. Using a standard meal test, insulin secretory rate was calculated by C-peptide deconvolution. The Homeostasis Model Assessment (HOMA-IR) index was used to assess insulin resistance while fasting. A marked increase in meal-stimulated insulin secretion was observed in the intervention group compared with controls (interaction between group and time, Gxt, p effect -1.0 (95% CI, -1.2 to -0.8); Gxt, p = 0.004). Changes in HOMA-IR correlated positively with changes in body mass index (BMI) and visceral fat volume ( r = 0.34; p = 0.009 and r = 0.42; p = 0.001, respectively). The latter remained significant after adjustment for changes in BMI ( r = 0.41; p = 0.002). Changes in glucose-induced insulin secretion correlated negatively with BMI changes ( r = -0.25; p = 0.04), but not with changes in visceral fat. Beta-cell function and insulin sensitivity were significantly improved through a low-fat plant-based diet in overweight adults.

  2. The relationship between obesity, insulin and arsenic methylation capability in Taiwan adolescents

    Su, Chien-Tien; Lin, Hsiu-Chen; Choy, Cheuk-Sing; Huang, Yung-Kai; Huang, Shiau-Rung; Hsueh, Yu-Mei

    2012-01-01

    Purpose: This study evaluated the arsenic methylation profile of adolescents and explored the influence of body mass index (BMI) on the arsenic methylation profile of adolescents in an area of Taiwan with no-obvious arsenic exposure. Methods: This study evaluated 202 normal weight students and 101 obese students from eight elementary schools, recruited from September 2009 to December 2009. Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA 5+ ) and dimethylarsinic acid (DMA 5+ ) were determined by a high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Results: Urinary total arsenic was significantly decreased with increasing BMI, indicating that obese children may retain higher levels of arsenic in the body, as compared to normal weight children. Participants with obesity accompanied by high insulin levels had higher inorganic arsenic, significantly higher MMA percentage and significantly lower DMA percentage than those with obesity and low insulin levels. It seems children with obesity and high insulin levels had lower arsenic methylation capacity than those with obesity and low insulin. Conclusions: This is the first study to demonstrate that total urinary arsenic is negatively associated with the BMI in adolescents in Taiwan, adjusted for age and sex. Obese adolescents with high insulin levels had significantly higher MMA% and significantly lower DMA% than obese adolescents with low insulin. - Highlights: ► This is the first to find that urinary total arsenic is related inversely to the BMI. ► Arsenic methylation capability may be associated with obesity and insulin. ► Obese adolescents with high insulin had low arsenic methylation capacity.

  3. The relationship between obesity, insulin and arsenic methylation capability in Taiwan adolescents

    Su, Chien-Tien [Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Lin, Hsiu-Chen [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Choy, Cheuk-Sing [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Emergency Department, Taipei Hospital, Department of Health, Taiwan (China); Huang, Yung-Kai [School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan (China); Huang, Shiau-Rung [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2012-01-01

    Purpose: This study evaluated the arsenic methylation profile of adolescents and explored the influence of body mass index (BMI) on the arsenic methylation profile of adolescents in an area of Taiwan with no-obvious arsenic exposure. Methods: This study evaluated 202 normal weight students and 101 obese students from eight elementary schools, recruited from September 2009 to December 2009. Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA{sup 5+}) and dimethylarsinic acid (DMA{sup 5+}) were determined by a high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Results: Urinary total arsenic was significantly decreased with increasing BMI, indicating that obese children may retain higher levels of arsenic in the body, as compared to normal weight children. Participants with obesity accompanied by high insulin levels had higher inorganic arsenic, significantly higher MMA percentage and significantly lower DMA percentage than those with obesity and low insulin levels. It seems children with obesity and high insulin levels had lower arsenic methylation capacity than those with obesity and low insulin. Conclusions: This is the first study to demonstrate that total urinary arsenic is negatively associated with the BMI in adolescents in Taiwan, adjusted for age and sex. Obese adolescents with high insulin levels had significantly higher MMA% and significantly lower DMA% than obese adolescents with low insulin. - Highlights: Black-Right-Pointing-Pointer This is the first to find that urinary total arsenic is related inversely to the BMI. Black-Right-Pointing-Pointer Arsenic methylation capability may be associated with obesity and insulin. Black-Right-Pointing-Pointer Obese adolescents with high insulin had low arsenic methylation capacity.

  4. Characterisation of insulin-producing cells differentiated from tonsil derived mesenchymal stem cells.

    Kim, So-Yeon; Kim, Ye-Ryung; Park, Woo-Jae; Kim, Han Su; Jung, Sung-Chul; Woo, So-Youn; Jo, Inho; Ryu, Kyung-Ha; Park, Joo-Won

    2015-01-01

    Tonsil-derived (T-) mesenchymal stem cells (MSCs) display mutilineage differentiation potential and self-renewal capacity and have potential as a banking source. Diabetes mellitus is a prevalent disease in modern society, and the transplantation of pancreatic progenitor cells or various stem cell-derived insulin-secreting cells has been suggested as a novel therapy for diabetes. The potential of T-MSCs to trans-differentiate into pancreatic progenitor cells or insulin-secreting cells has not yet been investigated. We examined the potential of human T-MSCs to trans-differentiate into pancreatic islet cells using two different methods based on β-mercaptoethanol and insulin-transferin-selenium, respectively. First, we compared the efficacy of the two methods for inducing differentiation into insulin-producing cells. We demonstrated that the insulin-transferin-selenium method is more efficient for inducing differentiation into insulin-secreting cells regardless of the source of the MSCs. Second, we compared the differentiation potential of two different MSC types: T-MSCs and adipose-derived MSCs (A-MSCs). T-MSCs had a differentiation capacity similar to that of A-MSCs and were capable of secreting insulin in response to glucose concentration. Islet-like clusters differentiated from T-MSCs had lower synaptotagmin-3, -5, -7, and -8 levels, and consequently lower secreted insulin levels than cells differentiated from A-MSCs. These results imply that T-MSCs can differentiate into functional pancreatic islet-like cells and could provide a novel, alternative cell therapy for diabetes mellitus. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  5. Streptozotocin diabetes and insulin resistance impairment of ...

    ... insulin resistance impairment of spermatogenesis in adult rat testis: Central Vs local ... Summary: Mammalian reproduction is dynamically regulated by the pituitary ... Group 3 > Streptozotocin-insulin treated group; received a single dose IP ...

  6. Chapter 10: Glucose control: insulin therapy*

    Insulin and its analogues lower blood glucose by stimulating peripheral glucose uptake, especially by skeletal muscle and fat, and by inhibiting hepatic glucose production. Insulin inhibits ... control on 2 or 3 oral glucose lowering drugs.

  7. Insulin requirements in type 1 diabetic pregnancy

    Callesen, Nicoline; Ringholm, Lene; Stage, Edna

    2012-01-01

    To evaluate the insulin requirements in women with type 1 diabetes during twin pregnancy compared with singleton pregnancy.......To evaluate the insulin requirements in women with type 1 diabetes during twin pregnancy compared with singleton pregnancy....

  8. A Systematic Review on Insulin Overdose Cases

    Johansen, Nicklas Järvelä; Christensen, Mikkel Bring

    2018-01-01

    A large overdose of insulin is a serious health matter. Information concerning administration and duration of intravenous (IV) glucose, other treatment options or complications beside hypoglycaemia following large insulin overdoses is not readily apparent from the literature. This article...

  9. Insulin analogues with improved absorption characteristics.

    Brange, J; Hansen, J F; Langkjaer, L; Markussen, J; Ribel, U; Sørensen, A R

    1992-01-01

    The insulin preparations available today are not ideal for therapy as s.c. injection does not provide a physiological insulin profile. With the aim to improve the absorption properties recombinant DNA technology has been utilized to design novel insulin molecules with changed physico-chemical characteristics and hence altered subcutaneous absorption kinetics. Soluble, long-acting human insulin analogues in which the isoelectric point has been increased from 5.4 to approx. 7 are absorbed very slowly, providing a more constant basal insulin delivery with lower day-to-day variation than present protracted preparations. In addition they have better storage stability. Rapid-acting human insulin analogues with largely reduced self-association are absorbed substantially faster from subcutaneous tissue than current regular insulin and thus are better suited for bolus injection. The absorption kinetics of these analogues have been able to explain the mechanism behind the dose effect on insulin absorption rate.

  10. Capacity planning and management

    Boydell, Briony

    2011-01-01

    After reading this chapter you should be able to: • Define and measure capacity and appreciate the factors that influence it. • Assess the difficulties of matching capacity to demand. • Evaluate and apply the different strategies for matching capacity with demand in the short, medium and long term. • Analyse the impact of constraints and bottlenecks on a process and consider the Theory of Constraints. • Outline the different strategies available for both manufacturing and service operations. ...

  11. Identification of residues in the insulin molecule important for binding to insulin-degrading enzyme

    Affholter, J.A.; Roth, R.A.; Cascieri, M.A.; Bayne, M.L.; Brange, J.; Casaretto, M.

    1990-01-01

    Insulin-degrading enzyme (IDE) hydrolyzes insulin at a limited number of sites. Although the positions of these cleavages are known, the residues of insulin important in its binding to IDE have not been defined. To this end, the authors have studied the binding of a variety of insulin analogues to the protease in a solid-phase binding assay using immunoimmobilized IDE. Since IDE binds insulin with 600-fold greater affinity than it does insulin-like growth factor, the first set of analogues studied were hybrid molecules of insulin and IGF I. Removal of the eight amino acid D-chain region of IGF I (which has been predicted to interfere with binding to the 23-25 region) results in a 25-fold increase in affinity for IDE, confirming the importance of residues 23-25 in the high-affinity recognition of IDE. A similar role for the corresponding (B24-26) residues of insulin is supported by the use of site-directed mutant and semisynthetic insulin analogues. Insulin mutants [B25-Asp]insulin and [B25-His]insulin display 16- and 20-fold decreases in IDE affinity versus wild-type insulin. Similar decreases in affinity are observed with the C-terminal truncation mutants [B1-24-His 25 -NH 2 ]insulin and [B1-24-Leu 25 -NH 2 ]insulin, but not [B1-24-Trp 25 -NH 2 ]insulin and [B1-24-Tyr 25 -NH 2 ]insulin. The truncated analogue with the lowest affinity for IDE ([B1-24-His 25 -NH 2 ]insulin) has one of the highest affinities for the insulin receptor. Therefore, they have identified a region of the insulin molecule responsible for its high-affinity interaction with IDE. Although the same region has been implicated in the binding of insulin to its receptor, the data suggest that the structural determinants required for binding to receptor and IDE differ

  12. Comparison of metformin and insulin versus insulin alone for type 2 diabetes

    Hemmingsen, Bianca; Christensen, Louise Lundby; Wetterslev, Jørn

    2012-01-01

    To compare the benefits and harms of metformin and insulin versus insulin alone as reported in randomised clinical trials of patients with type 2 diabetes.......To compare the benefits and harms of metformin and insulin versus insulin alone as reported in randomised clinical trials of patients with type 2 diabetes....

  13. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus

    Almind, K; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Since relative or absolute insulin deficiency and insulin insensitivity are involved in the aetiology of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether patients with NIDDM exhibit genetic variability in the coding region of insulin receptor substrate-1 (IRS-1), a candidate...

  14. The French capacity mechanism

    2014-01-01

    The French capacity mechanism has been design to ensure security of supply in the context of the energy transition. This energy transition challenges the electricity market design with several features: peak load growth, the development of renewables, demand response,... To ensure security of supply in this context, a capacity mechanism is being implemented in France. It is a market wide capacity obligation on electricity suppliers, based on market principles. Suppliers are responsible for forecasting their obligation, which corresponds to their contribution to winter peak load, and must procure enough capacity certificates to meet their obligations. Capacity certificates are granted to capacities through a certification process, which assesses their contribution to security of supply on the basis of availability commitments. This certification process is technology neutral and performance based, associated with controls and penalties in case of non compliance. Demand Side is fully integrated in the market, either through the reduction of suppliers' capacity obligation or direct participation after certification. In addition to the expected benefits in terms of security of supply, the French capacity market will foster the development of demand response. The participation of foreign capacities will require adaptations which are scheduled in a road-map, and could pave the way for further European integration of energy policies. (authors)

  15. Improved insulin loading in poly (lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids

    Garcia Diaz, Maria; Foged, Camilla; Nielsen, Hanne Mørck

    2015-01-01

    Polymeric nanoparticles are widely investigated as drug delivery systems for oral administration. However, the hydrophobic nature of many polymers hampers effective loading of the particles with hydrophilic macromolecules such as insulin. Thus, the aim of this work was to improve the loading...... of insulin into poly(lactic-co-glycolic) acid (PLGA) nanoparticles by pre-assembly with amphiphilic lipids. Insulin was complexed with soybean phosphatidylcholine or sodium caprate by self-assembly and subsequently loaded into PLGA nanoparticles by using the double emulsion-solvent evaporation technique...... efficiencies (90% as compared to 24% in the absence of lipids). Importantly, the insulin loading capacity was increased up to 20% by using the lipid–insulin complexes. The results further showed that a main fraction of the lipid was incorporated into the nanoparticles and remained associated to the polymer...

  16. Modern basal insulin analogs: An incomplete story

    Singh, Awadhesh Kumar; Gangopadhyay, Kalyan Kumar

    2014-01-01

    The currently available basal insulin does not completely mimic the endogenous insulin secretion. This has continued to promote the search for ideal basal insulin. The newer basal insulin have primarily focused on increasing the duration of action, reducing variability, and reducing the incidence of hypoglycemia, particularly nocturnal. However, the changing criteria of hypoglycemia within a short span of a few years along with the surprising introduction of major cardiac events as another ou...

  17. Stimulation of protein synthesis by internalized insulin

    Miller, D.S.; Sykes, D.B.

    1991-01-01

    Previous studies showed that microinjected insulin stimulates transcription and translation in Stage 4 Xenopus oocytes by acting at nuclear and cytoplasmic sites. The present report is concerned with the question of whether hormone, internalized from an external medium, can act on those sites to alter cell function. Both intracellular accumulation of undegraded 125I-insulin and insulin-stimulated 35S-methionine incorporation into oocyte protein were measured. Anti-insulin antiserum and purified anti-insulin antibody were microinjected into the cytoplasm of insulin-exposed cells to determine if insulin derived from the medium acted through internal sites. In cells exposed for 2 h to 7 or 70 nM external insulin, methionine incorporation was stimulated, but intracellular hormone accumulation was minimal and microinjected antibody was without effect. In cells exposed for 24 h, methionine incorporation again increased, but now accumulation of undegraded, intracellular hormone was substantial (2.6 and 25.3 fmol with 7 and 70 nM, respectively), and microinjected anti-insulin antibody significantly reduced the insulin-stimulated component of incorporation; basal incorporation was not affected. For cells exposed to 70 nM insulin for 24 h, inhibition of the insulin-stimulated component was maximal at 39%. Thus under those conditions, about 40% of insulin's effects were mediated by the internal sites. Together, the data show that inhibition of insulin-stimulated protein synthesis by microinjected antibody was associated with the intracellular accumulation of insulin. They indicate that when oocytes are exposed to external insulin, hormone eventually gains access to intracellular sites of action and through these stimulates translation. Control of translation appears to be shared between the internal sites and the surface receptor

  18. Serum leptin and insulin tests in obesity

    Yang Yin; Jiang Xiaojin; Leng Xiumei

    2001-01-01

    Objective: To study the clinical significance and the relations of leptin and insulin on obesity group. Methods: Leptin and insulin were tested with radioimmunoassay (RIA) in pre-obesity group and obesity group respectively. Results: Serum leptin and insulin levels were significantly elevated in obesity group compare with the controls (P<0.01). Conclusion: Changing with insulin, the elevation of leptin in obesity group has been identified as an important agent of diabetes mellitus (DM)

  19. Three-dimensional ultrastructural analyses of anterior pituitary gland expose spatial relationships between endocrine cell secretory granule localization and capillary distribution.

    Yoshitomi, Munetake; Ohta, Keisuke; Kanazawa, Tomonoshin; Togo, Akinobu; Hirashima, Shingo; Uemura, Kei-Ichiro; Okayama, Satoko; Morioka, Motohiro; Nakamura, Kei-Ichiro

    2016-10-31

    Endocrine and endothelial cells of the anterior pituitary gland frequently make close appositions or contacts, and the secretory granules of each endocrine cell tend to accumulate at the perivascular regions, which is generally considered to facilitate secretory functions of these cells. However, three-dimensional relationships between the localization pattern of secretory granules and blood vessels are not fully understood. To define and characterize these spatial relationships, we used scanning electron microscopy (SEM) three-dimensional reconstruction method based on focused ion-beam slicing and scanning electron microscopy (FIB/SEM). Full three-dimensional cellular architectures of the anterior pituitary tissue at ultrastructural resolution revealed that about 70% of endocrine cells were in apposition to the endothelial cells, while almost 30% of endocrine cells were entirely isolated from perivascular space in the tissue. Our three-dimensional analyses also visualized the distribution pattern of secretory granules in individual endocrine cells, showing an accumulation of secretory granules in regions in close apposition to the blood vessels in many cases. However, secretory granules in cells isolated from the perivascular region tended to distribute uniformly in the cytoplasm of these cells. These data suggest that the cellular interactions between the endocrine and endothelial cells promote an uneven cytoplasmic distribution of the secretory granules.

  20. Early events of secretory granule formation in the rat parotid acinar cell under the influence of isoproterenol. An ultrastructural and lectin cytochemical study

    F D’Amico

    2009-12-01

    Full Text Available The events involved in the maturation process of acinar secretory granules of rat parotid gland were investigated ultrastructurally and cytochemically by using a battery of four lectins [Triticum vulgaris agglutinin (WGA, Ulex europaeus agglutinin I (UEA-I, Glycine max agglutinin (SBA, Arachys hypogaea agglutinin (PNA]. In order to facilitate the study, parotid glands were chronically stimulated with isoproterenol to induce secretion. Specimens were embedded in the Lowicryl K4M resin. The trans-Golgi network (TGN derived secretory granules, which we refer to as immature secretory granules, were found to be intermediate structures in the biogenesis process of the secretory granules in the rat parotid acinar cell. These early structures do not seem to be the immediate precursor of the mature secretory granules: in fact, a subsequent interaction process between these early immature granule forms and TGN elements seems to occur, leading, finally, to the mature granules. These findings could explain the origin of the polymorphic subpopulations of the secretory granules in the normal acinar cells of the rat parotid gland. The lectin staining patterns were characteristic of each lectin. Immature and mature secretory gran- ules were labelled with WGA, SBA, PNA, and lightly with UEA-I. Cis and intermediate cisternae of the Golgi apparatus were labelled with WGA, and trans cisternae with WGA and SBA.