WorldWideScience

Sample records for insulin resistant rats

  1. Less of insulin desensitization in sympathetic nerve terminals from wistar rats with insulin resistance.

    Science.gov (United States)

    Chi, T C; Liu, I M; Cheng, J T

    2000-04-12

    In an attempt to determine the effect of hyperinsulinemia on sympathetic function, release of norepinephrine (NE) from isolated aorta by insulin was measured in Wistar rats with insulin resistance. Insulin resistance was produced when the hypoglycemic action of glibenclamide at a dose of 10 mg/kg was almost abolished in rats that received daily injections of long-acting insulin for 15 days. Moreover, the stimulatory effect of insulin on glucose uptake was markedly reduced in both skeletal muscle strips and white adipocytes obtained from these rats with insulin resistance. However, the stimulatory effects of insulin at concentrations from 5 to 15 U/l on the release of NE from the aortic strip of insulin-resistant rats were not modified in the same manner but only slightly reduced compared with that of normal rats. These results suggest that insulin desensitization was produced later in sympathetic nerve terminals than in other organs in insulin-resistant rats and this may be helpful to explain the sympathetic hyperactivity associated with diabetes in clinics.

  2. Acupuncture Alters Expression of Insulin Signaling Related Molecules and Improves Insulin Resistance in OLETF Rats

    Directory of Open Access Journals (Sweden)

    Xin-Yu Huang

    2016-01-01

    Full Text Available To determine effect of acupuncture on insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF rats and to evaluate expression of insulin signaling components. Rats were divided into three groups: Sprague-Dawley (SD rats, OLETF rats, and acupuncture+OLETF rats. Acupuncture was subcutaneously applied to Neiguan (PC6, Zusanli (ST36, and Sanyinjiao (SP6; in contrast, acupuncture to Shenshu (BL23 was administered perpendicularly. For Neiguan (PC6 and Zusanli (ST36, needles were connected to an electroacupuncture (EA apparatus. Fasting blood glucose (FPG was measured by glucose oxidase method. Plasma fasting insulin (FINS and serum C peptide (C-P were determined by ELISA. Protein and mRNA expressions of insulin signaling molecules were determined by Western blot and real-time RT-PCR, respectively. OLETF rats exhibit increased levels of FPG, FINS, C-P, and homeostasis model assessment-estimated insulin resistance (HOMA-IR, which were effectively decreased by acupuncture treatment. mRNA expressions of several insulin signaling related molecules IRS1, IRS2, Akt2, aPKCζ, and GLUT4 were decreased in OLETF rats compared to SD controls. Expression of these molecules was restored back to normal levels upon acupuncture administration. PI3K-p85α was increased in OLETF rats; this increase was also reversed by acupuncture treatment. Acupuncture improves insulin resistance in OLETF rats, possibly via regulating expression of key insulin signaling related molecules.

  3. [Simvastatin's effect on insulin resistance in rats with diabetes mellitus].

    Science.gov (United States)

    Iskakova, S; Zharmakhanova, G; Bekmukhambetov, Y; Dworacka, M; Dworacki, G

    2015-05-01

    The aim of this experimental study was to estimate the effect of Simvastatin on glycemic variability-related insulin resistance in the course of diabetes mellitus (DM) in rats. Fifty seven male Wistar rats were divided into four groups: I - rats with diabetes mellitus and glycemic variability treated with Simvastatin (20 mg/kg body weight, intragastral during 8 weeks); II - placebo-treated rats with DM and glycemic variability; III - placebo treated rats with DM and IV - nondiabetic control rats. DM was induced by feeding rats with high-fat diet (61%) during five weeks and low-dose of Streptozotocin (30 mg/kg, intraperitoneally). Daily glucose excursions were stimulated by feeding animals twice a day. We measured fasting blood glucose, glycated hemoglobin (HbA1c), insulin and HOMAIR was calculated. Higher insulin resistance in diabetic rats is related to greater daily glycemic variability. In our study was installed significant increasing HOMAIR in diabetics rats with glycemic excursions comparison with the control. Our results showed that the simvastatin-treatment decreases the indices glycemic variability and HOMA in diabetic rats with glycemic excursions.

  4. Pulmonary arterial dysfunction in insulin resistant obese Zucker rats

    Directory of Open Access Journals (Sweden)

    Cogolludo Angel

    2011-04-01

    Full Text Available Abstract Background Insulin resistance and obesity are strongly associated with systemic cardiovascular diseases. Recent reports have also suggested a link between insulin resistance with pulmonary arterial hypertension. The aim of this study was to analyze pulmonary vascular function in the insulin resistant obese Zucker rat. Methods Large and small pulmonary arteries from obese Zucker rat and their lean counterparts were mounted for isometric tension recording. mRNA and protein expression was measured by RT-PCR or Western blot, respectively. KV currents were recorded in isolated pulmonary artery smooth muscle cells using the patch clamp technique. Results Right ventricular wall thickness was similar in obese and lean Zucker rats. Lung BMPR2, KV1.5 and 5-HT2A receptor mRNA and protein expression and KV current density were also similar in the two rat strains. In conductance and resistance pulmonary arteries, the similar relaxant responses to acetylcholine and nitroprusside and unchanged lung eNOS expression revealed a preserved endothelial function. However, in resistance (but not in conductance pulmonary arteries from obese rats a reduced response to several vasoconstrictor agents (hypoxia, phenylephrine and 5-HT was observed. The hyporesponsiveness to vasoconstrictors was reversed by L-NAME and prevented by the iNOS inhibitor 1400W. Conclusions In contrast to rat models of type 1 diabetes or other mice models of insulin resistance, the obese Zucker rats did not show any of the characteristic features of pulmonary hypertension but rather a reduced vasoconstrictor response which could be prevented by inhibition of iNOS.

  5. Development of Wistar rat model of insulin resistance

    Institute of Scientific and Technical Information of China (English)

    Jing Ai; Ning Wang; Mei Yang; Zhi-Min Du; Yong-Chun Zhang; Bao-Feng Yang

    2005-01-01

    AIM: To establish a simplified and reliable animal model of insulin resistance with low cost in Wistar rats. METHODS: Wistar rats were treated with a high fat emulsion by ig for 10 d. Changes of the diets, drinking and body weight were monitored every day and insulin resistance was evaluated by hyperinsulinemic-euglycemicclamp techniques and short insulin tolerance test using capillary blood glucose. Morphologic changes of liver, fat, skeletal muscles, and pancreatic islets were assessed under light microscope. mRNA expressions of GLUT2 and α-glucosidase in small intestine epithelium, GLUT4 in skeletal muscles and Kir6.2 in beta cell of islets were determined by in situ hybridization.RESULTS: KITT was smaller in treated animals (4.5±0.9)than in untreated control Wistar rats (6.8±1.5), and so was glucose injection rate. Both adipocyte hypertrophy and large pancreatic islets were seen in high fat fed rats,but no changes of skeletal muscles and livers wereobserved. mRNA levels of GLUT2, α-glucosidase in small intestinal epithelium and Kir6.2 mRNA in beta cells of islets increased, whereas that of GLUT4 in skeletal muscles decreased in high fat fed group compared with normal control group.CONCLUSION: An insulin resistance animal model in Wistar rats is established by ig special fat emulsion.

  6. Spirulina protects against rosiglitazone induced osteoporosis in insulin resistance rats.

    Science.gov (United States)

    Gupta, Sumeet; Hrishikeshvan, H J; Sehajpal, Prabodh K

    2010-01-01

    The study was undertaken to assess the protective effect of Spirulina fusiformis extract against Rosiglitazone induced osteoporosis and pharmacodynamic effects of Rosiglitazone with Spirulina in treating hyperglycemia and hyperlipidemia of insulin resistance rat. For this aim, 30 Wistar albino rats were equally divided into five groups as control (C), diabetes mellitus (DM), diabetes mellitus+Rosiglitazone (DM+R), diabetes mellitus+Spirulina (DM+S), and diabetes mellitus+Rosiglitazone+Spirulina (DM+R+S). Serum glucose, triglyceride, HDL, LDL and insulin concentrations were estimated by routine standard methods in blood samples collected on 21th day. Integrity of the bone surface was examined by scanning electronic microscopy, and bone strength was measured by micro-hardness test on 45th day. A significant decrease in total bone mineral density was observed in group DM+R rats (pSpirulina administration. The intactness and integrity of the bone surface as well as the bone strength improved due to the high content of calcium and phosphorous in Spirulina. Besides, chromium and gamma-linoleic acid in Spirulina helped to decrease the fasting serum glucose, HDL, LDL and triglycerides levels in insulin resistance rats. These findings suggest that combination therapy of Rosiglitazone with Spirulina reduced the risk of osteoporosis in insulin resistance rats. Additionally, Spirulina complemented the antihyperglycemic and antilipidemic activity of Rosiglitazone. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  7. Delayed insulin transport across endothelium in insulin-resistant JCR:LA-cp rats.

    Science.gov (United States)

    Wascher, T C; Wölkart, G; Russell, J C; Brunner, F

    2000-05-01

    Capillary endothelial cells are thought to limit the transport of insulin across the endothelium, resulting in attenuated insulin action at target sites. Whether endothelial insulin transport is altered in dysglycemic insulin-resistant states is not clear and was therefore investigated in the JCR:LA-cp corpulent male rat, which exhibits the metabolic syndrome of obesity, insulin resistance, hyperlipidemia, and hyperinsulinemia. Lean littermates that did not develop these alterations served as controls. Animals of both groups were normotensive (mean arterial pressure 136+/-2 mmHg). Hearts from obese and lean rats aged 7 (n = 6) or 18 (n = 8) weeks were perfused in vitro at 10 ml/min per gram wet wt over 51 min with Krebs-Henseleit buffer containing 0.1 or 0.5 U human insulin/l (equivalent to 0.6 and 3 nmol/l). Interstitial fluid was collected using a validated method, and interstitial insulin was determined with a radioimmunoassay. At 0.1 U/l, insulin transfer velocity was similar in both experimental groups (half-times of transfer: 11+/-0.2 min in obese and 18+/-4 min in lean rats; NS), but at 0.5 U/l, the respective half-times were 7+/-1 min in lean and 13+/-2 min in obese rats (P < 0.05). The steady-state level of insulin in the interstitium was 34+/-1% of the vascular level at 0.1 U/l and reached the vascular level (102+/-2%) at 0.5 U/l in both lean and obese rats. In rats aged 18 weeks, the half-times of insulin transfer were 31+/-2 and 14+/-l min in obese rats and 10+/-0.3 and 7+/-0.3 min in lean rats (P < 0.05). Again, interstitial steady-state levels were similar in both groups. Finally, postprandial insulin dynamics were simulated over a period of 120 min with a peak concentration of 0.8 U/l in rats aged 27 weeks (n = 4). The maximal interstitial level was 0.38+/-0.02 U/l in lean rats and 0.24+/-0.02 U/l in obese rats (P < 0.05), and a similar difference was noted throughout insulin infusion (areas under the transudate concentration-time curves: 17 and 11 U

  8. Effect of TNF-alpha--converting enzyme inhibitor on insulin resistance in fructose-fed rats.

    Science.gov (United States)

    Togashi, Nobuhiko; Ura, Nobuyuki; Higashiura, Katsuhiro; Murakami, Hideyuki; Shimamoto, Kazuaki

    2002-02-01

    Insulin resistance is associated with hypertension, obesity, dyslipidemia, and type 2 diabetes. It is well known that tumor necrosis factor (TNF)-alpha is one of the factors linked to obesity-induced insulin resistance; however, there have been no reports on the role of TNF-alpha in insulin resistance in nonobese insulin-resistant hypertensives. We tested the hypothesis that TNF-alpha affects insulin resistance in nonobese insulin-resistant hypertensive fructose-fed rats (FFR) and that a TNF-alpha--converting enzyme (TACE) inhibitor that blocks TNF-alpha secretion improves insulin resistance in FFR. Six-week-old male Sprague-Dawley rats were fed either standard chow (control) or fructose-rich chow (FFR) for 6 weeks. For the last two weeks of a six-week period of either diet, the rats were treated with a vehicle (control or FFR) or a TACE inhibitor (100 mg/kg/d of KB-R7785; FFR+TACE-I) in peritoneal injection. At the age of 12 weeks, insulin sensitivity was assessed in all conscious rats by the euglycemic hyperinsulinemic glucose clamp technique. While FFR had higher blood pressure than the control rats (Pobese models but also in nonobese insulin-resistant models.

  9. Lipid metabolism disturbances contribute to insulin resistance and decrease insulin sensitivity by malathion exposure in Wistar rat.

    Science.gov (United States)

    Lasram, Mohamed Montassar; Bouzid, Kahena; Douib, Ines Bini; Annabi, Alya; El Elj, Naziha; El Fazaa, Saloua; Abdelmoula, Jaouida; Gharbi, Najoua

    2015-04-01

    Several studies showed that organophosphorus pesticides disturb glucose homeostasis and can increase incidence of metabolic disorders and diabetes via insulin resistance. The current study investigates the influence of malathion on glucose metabolism regulation, in vivo, during subchronic exposure. Malathion was administered orally (200 mg/kg), once a day for 28 consecutive days. Plasma glucose, insulin and Glycated hemoglobin levels were significantly increased while hepatic glycogen content was decreased in intoxicated animals compared with the control group. Furthermore, there was a significant disturbance of lipid content in subchronic treated and post-treated rats deprived of malathion for one month. In addition, we used the homeostasis model assessment (HOMA) to assess insulin resistance (HOMA-IR) and pancreatic β-cell function (HOMA-β). Our results show that malathion increases insulin resistance biomarkers and decreases insulin sensitivity indices. Statistical analysis demonstrates that there was a positive and strong significant correlation between insulin level and insulin resistance indices, HOMA-IR, HOMA-β. Similarly, a negative and significant correlation was also found between insulin level and insulin sensitivity indices. For the first time, we demonstrate that malathion induces insulin resistance in vivo using homeostasis model assessment and these changes were detectable one month after the end of exposure. To explain insulin resistance induced by malathion we focus on lipid metabolism disturbances and their interaction with many proteins involved in insulin signaling pathways.

  10. The effects of eight weeks of endurance training on BDNF, insulin and insulin resistance in rats

    Directory of Open Access Journals (Sweden)

    A zar

    2016-06-01

    Full Text Available Background & aim: Brain-derived neurotrophic factor (BDNF is one of the most important neurotrophin that it will lead to the development of metabolic syndrome. Brain-derived neurotrophic factor directly related to conditions such as epilepsy, Alzheimer's and depression. The purpose of this research was investigate effect of eight weeks endurance training on Neutrophic factor that derived from the rats' brain , Insulin and resistance to Insulin. Methods:  Statistical Society in this research consist of Male Sprague Dawley rats. Among them, 24 rats at 8 weeks of age and weight of 43/31 ± 72/280 grams were purchased from Pasteur Institute in Shiraz. Then transferred to the laboratory and randomly assigned to two experimental and control groups (endurance training. Also before the start of the study, the rats a period of one week to adapt to the new environment and the activities during the treadmill. During eight weeks the endurance exercise mice group running on treadmill machine without slope(zero percent slope with speeding 8 till 20 meter per minute and about 60 minute in each session and 3 session in a week. Control mice group during this time did not have any exercise activity. 24 hours after the last training session at the end of week the eighth, the rats sacrificed to measure the parameters studied until biochemical alterations resulting endurance investigate training effects. For analysis data, was used of independent T-test that was considered as significance level (a=0/05. Results: Analysis of the findings showed that Eight weeks of endurance training has not   significant effect on the Brain-derived neurotrophic factor in rat(p=0/011. Eight weeks endurance training leads to a significant reduction on Insulin (p=0/005 and eight weeks endurance training leads to significant reduction resistance to Insulin (p=0/001.  Discussion: Hence get conclusion that endurance training have significant effect on reduction of Insulin and don

  11. Cocoa-rich diet ameliorates hepatic insulin resistance by modulating insulin signaling and glucose homeostasis in Zucker diabetic fatty rats.

    Science.gov (United States)

    Cordero-Herrera, Isabel; Martín, María Ángeles; Escrivá, Fernando; Álvarez, Carmen; Goya, Luis; Ramos, Sonia

    2015-07-01

    Insulin resistance is the primary characteristic of type 2 diabetes and results from insulin signaling defects. Cocoa has been shown to exert anti-diabetic effects by lowering glucose levels. However, the molecular mechanisms responsible for this preventive activity and whether cocoa exerts potential beneficial effects on the insulin signaling pathway in the liver remain largely unknown. Thus, in this study, the potential anti-diabetic properties of cocoa on glucose homeostasis and insulin signaling were evaluated in type 2 diabetic Zucker diabetic fatty (ZDF) rats. Male ZDF rats were fed a control or cocoa-rich diet (10%), and Zucker lean animals received the control diet. ZDF rats supplemented with cocoa (ZDF-Co) showed a significant decrease in body weight gain, glucose and insulin levels, as well as an improved glucose tolerance and insulin resistance. Cocoa-rich diet further ameliorated the hepatic insulin resistance by abolishing the increased serine-phosphorylated levels of the insulin receptor substrate 1 and preventing the inactivation of the glycogen synthase kinase 3/glycogen synthase pathway in the liver of cocoa-fed ZDF rats. The anti-hyperglycemic effect of cocoa appeared to be at least mediated through the decreased levels of hepatic phosphoenolpyruvate carboxykinase and increased values of glucokinase and glucose transporter 2 in the liver of ZDF-Co rats. Moreover, cocoa-rich diet suppressed c-Jun N-terminal kinase and p38 activation caused by insulin resistance. These findings suggest that cocoa has the potential to alleviate both hyperglycemia and hepatic insulin resistance in type 2 diabetic ZDF rats.

  12. Anesthesia with propofol induces insulin resistance systemically in skeletal and cardiac muscles and liver of rats

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Yoshikazu; Fukushima, Yuji; Kaneki, Masao [Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Boston, MA 02114 (United States); Martyn, J.A. Jeevendra, E-mail: jmartyn@partners.org [Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Boston, MA 02114 (United States)

    2013-02-01

    Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anesthetics have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [{sup 3}H]glucose and 2-deoxy[{sup 14}C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats.

  13. Fine-mapping diabetes-related traits, including insulin resistance, in heterogeneous stock rats.

    Science.gov (United States)

    Solberg Woods, Leah C; Holl, Katie L; Oreper, Daniel; Xie, Yuying; Tsaih, Shirng-Wern; Valdar, William

    2012-11-01

    Type 2 diabetes (T2D) is a disease of relative insulin deficiency resulting from both insulin resistance and beta cell failure. We have previously used heterogeneous stock (HS) rats to fine-map a locus for glucose tolerance. We show here that glucose intolerance in the founder strains of the HS colony is mediated by different mechanisms: insulin resistance in WKY and an insulin secretion defect in ACI, and we demonstrate a high degree of variability for measures of insulin resistance and insulin secretion in HS rats. As such, our goal was to use HS rats to fine-map several diabetes-related traits within a region on rat chromosome 1. We measured blood glucose and plasma insulin levels after a glucose tolerance test in 782 male HS rats. Using 97 SSLP markers, we genotyped a 68 Mb region on rat chromosome 1 previously implicated in glucose and insulin regulation. We used linkage disequilibrium mapping by mixed model regression with inferred descent to identify a region from 198.85 to 205.9 that contains one or more quantitative trait loci (QTL) for fasting insulin and a measure of insulin resistance, the quantitative insulin sensitivity check index. This region also encompasses loci identified for fasting glucose and Insulin_AUC (area under the curve). A separate <3 Mb QTL was identified for body weight. Using a novel penalized regression method we then estimated effects of alternative haplotype pairings under each locus. These studies highlight the utility of HS rats for fine-mapping genetic loci involved in the underlying causes of T2D.

  14. ANTIDIABETIC AND HYPOLIPIDEMIC ACTIVITY OF GYMNEMA SYLVESTRE IN DEXAMETHASONE INDUCED INSULIN RESISTANCE IN ALBINO RATS

    OpenAIRE

    Hemanth Kumar V, Nagendra Nayak IM , Shobha V Huilgol, Saeed M Yendigeri , Narendar K

    2015-01-01

    Background: Gymnema sylvestre plant was widely used for medicinal purpose. The plant leaves were traditionally used to treat diabetes. Aim: To determine the antidiabetic and hypolipidemic activity of Gymnema sylvestre in dexamethasone induced insulin resistance in Albino rats. Objectives: The present study was undertaken to evaluate antidiabetic and hypolipidemic activity of Gymnema sylvestre leaf aqueous extract against dexamethasone induced insulin resistance in Albino rats. Materials and M...

  15. Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulin-resistant JCR:LA-cp rats.

    Science.gov (United States)

    Wang, Zhong Q; Zhang, Xian H; Russell, James C; Hulver, Matthew; Cefalu, William T

    2006-02-01

    Chromium is one of the few trace minerals for which a specific cellular mechanism of action has not been identified. Recent in vitro studies suggest that chromium supplementation may improve insulin sensitivity by enhancing insulin receptor signaling, but this has not been demonstrated in vivo. We investigated the effect of chromium supplementation on insulin receptor signaling in an insulin-resistant rat model, the JCR:LA-corpulent rat. Male JCR:LA-cp rats (4 mo of age) were randomly assigned to receive chromium picolinate (CrPic) (obese n=6, lean n=5) or vehicle (obese n=5, lean n=5) for 3 mo. The CrPic was provided in the water, and based on calculated water intake, rats randomized to CrPic received 80 microg/(kg.d). At the end of the study, skeletal muscle (vastus lateralis) biopsies were obtained at baseline and at 5, 15, and 30 min postinsulin stimulation to assess insulin signaling. Obese rats treated with CrPic had significantly improved glucose disposal rates and demonstrated a significant increase in insulin-stimulated phosphorylation of insulin receptor substrate (IRS)-1 and phosphatidylinositol (PI)-3 kinase activity in skeletal muscle compared with obese controls. The increase in cellular signaling was not associated with increased protein levels of the IRS proteins, PI-3 kinase or Akt. However, protein tyrosine phosphatase 1B (PTP1B) levels were significantly lower in obese rats administered CrPic than obese controls. When corrected for protein content, PTP1B activity was also significantly lower in obese rats administered CrPic than obese controls. Our data suggest that chromium supplementation of obese, insulin-resistant rats may improve insulin action by enhancing intracellular signaling.

  16. Garlic extract attenuates brain mitochondrial dysfunction and cognitive deficit in obese-insulin resistant rats.

    Science.gov (United States)

    Pintana, Hiranya; Sripetchwandee, Jirapas; Supakul, Luerat; Apaijai, Nattayaporn; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-12-01

    Oxidative stress in the obese-insulin resistant condition has been shown to affect cognitive as well as brain mitochondrial functions. Garlic extract has exerted a potent antioxidant effect. However, the effects of garlic extract on the brain of obese-insulin resistant rats have never been investigated. We hypothesized that garlic extract improves cognitive function and brain mitochondrial function in obese-insulin resistant rats induced by long-term high-fat diet (HFD) consumption. Male Wistar rats were fed either normal diet or HFD for 16 weeks (n = 24/group). At week 12, rats in each dietary group received either vehicle or garlic extract (250 and 500 mg·kg(-1)·day(-1)) for 28 days. Learning and memory behaviors, metabolic parameters, and brain mitochondrial function were determined at the end of treatment. HFD led to increased body weight, visceral fat, plasma insulin, cholesterol, and malondialdehyde (MDA) levels, indicating the development of insulin resistance. Furthermore, HFD rats had cognitive deficit and brain mitochondrial dysfunction. HFD rats treated with both doses of garlic extract had decreased body weight, visceral fat, plasma cholesterol, and MDA levels. Garlic extract also improved cognitive function and brain mitochondrial function, which were impaired in obese-insulin resistant rats caused by HFD consumption.

  17. Insulin and Insulin Resistance

    OpenAIRE

    Wilcox, Gisela

    2005-01-01

    As obesity and diabetes reach epidemic proportions in the developed world, the role of insulin resistance and its consequences are gaining prominence. Understanding the role of insulin in wide-ranging physiological processes and the influences on its synthesis and secretion, alongside its actions from the molecular to the whole body level, has significant implications for much chronic disease seen in Westernised populations today. This review provides an overview of insulin, its history, stru...

  18. Silymarin induces insulin resistance through an increase of phosphatase and tensin homolog in Wistar rats.

    Directory of Open Access Journals (Sweden)

    Kai-Chun Cheng

    Full Text Available BACKGROUND AND AIMS: Phosphatase and tensin homolog (PTEN is a phosphoinositide phosphatase that regulates crucial cellular functions, including insulin signaling, lipid and glucose metabolism, as well as survival and apoptosis. Silymarin is the active ingredient in milk thistle and exerts numerous effects through the activation of PTEN. However, the effect of silymarin on the development of insulin resistance remains unknown. METHODS: Wistar rats fed fructose-rich chow or normal chow were administered oral silymarin to identify the development of insulin resistance using the homeostasis model assessment of insulin resistance and hyperinsulinemic- euglycemic clamping. Changes in PTEN expression in skeletal muscle and liver were compared using western blotting analysis. Further investigation was performed in L6 cells to check the expression of PTEN and insulin-related signals. PTEN deletion in L6 cells was achieved by small interfering ribonucleic acid transfection. RESULTS: Oral administration of silymarin at a dose of 200 mg/kg once daily induced insulin resistance in normal rats and enhanced insulin resistance in fructose-rich chow-fed rats. An increase of PTEN expression was observed in the skeletal muscle and liver of rats with insulin resistance. A decrease in the phosphorylation of Akt in L6 myotube cells, which was maintained in a high-glucose condition, was also observed. Treatment with silymarin aggravated high-glucose-induced insulin resistance. Deletion of PTEN in L6 cells reversed silymarin-induced impaired insulin signaling and glucose uptake. CONCLUSIONS: Silymarin has the ability to disrupt insulin signaling through increased PTEN expression. Therefore, silymarin should be used carefully in type-2 diabetic patients.

  19. Adaptive response of rat pancreatic β-cells to insulin resistance induced by monocrotophos: Biochemical evidence.

    Science.gov (United States)

    Nagaraju, Raju; Rajini, Padmanabhan Sharda

    2016-11-01

    Our previous findings clearly suggested the role of duration of exposure to monocrotophos (MCP) in the development of insulin resistance. Rats exposed chronically to MCP developed insulin resistance with hyperinsulinemia without overt diabetes. In continuation of this vital observation, we sought to delineate the biochemical mechanisms that mediate heightened pancreatic β-cell response in the wake of MCP-induced insulin resistance in rats. Adult rats were orally administered (0.9 and 1.8mg/kgb.w/d) MCP for 180days. Terminally, MCP-treated rats exhibited glucose intolerance, hyperinsulinemia, and potentiation of glucose-induced insulin secretion along with elevated levels of circulating IGF1, free fatty acids, corticosterone, and paraoxonase activity. Biochemical analysis of islet extracts revealed increased levels of insulin, malate, pyruvate and ATP with a concomitant increase in activities of cytosolic and mitochondrial enzymes that are known to facilitate insulin secretion and enhanced shuttle activities. Interestingly, islets from MCP-treated rats exhibited increased insulin secretory potential ex vivo compared to those isolated from control rats. Further, MCP-induced islet hypertrophy was associated with increased insulin-positive cells. Our study demonstrates the impact of the biological interaction between MCP and components of metabolic homeostasis on pancreatic beta cell function/s. We speculate that the heightened pancreatic beta cell function evidenced may be mediated by increased IGF1 and paraoxonase activity, which effectively counters insulin resistance induced by chronic exposure to MCP. Our findings emphasize the need for focused research to understand the confounding environmental risk factors which may modulate heightened beta cell functions in the case of organophosphorus insecticide-induced insulin resistance. Such an approach may help us to explain the sharp increase in the prevalence of type II diabetes worldwide. Copyright © 2016 Elsevier

  20. The effects of soy isoflavone on insulin sensitivity and adipocytokines in insulin resistant rats administered with high-fat diet.

    Science.gov (United States)

    Zhang, Hong-Min; Chen, Shi-Wei; Zhang, Li-Shi; Feng, Xiao-Fan

    2008-12-01

    The effects of soy isoflavone (SIF) on insulin sensitivity and adipocytokines in high-fat-diet-induced insulin resistant (IR) rats were studied. Male Sprague Dawley rats (n = 80) were randomly assigned into a basal diet fed group and high-fat diet fed group. The high-fat-diet-induced IR rats were assigned into IR model control group and three SIF-treated groups with different dosages. Thirty days later, the fasting blood glucose, insulin and adipocytokines in serum and mRNA expressions of adipocytokines in perirenal white adipose tissue were measured. The Homeostasis Model Assessment of IR was calculated. The administration of 450 mg kg(-1) d(-1) SIF decreased the body weights and depositions of visceral adipose tissue as well as improved insulin resistance in high-fat-diet-induced IR rats. The mechanisms were associated with SIF regulating the expression of adipocytokines, including adiponectin, leptin, resistin and TNF-alpha. SIF supplements may have favourable effects on insulin resistance in high-fat-diet-induced IR rats.

  1. Study of the expression of apelin and its recoptor in ischemic myocardium in insulin-resistant rats

    Institute of Scientific and Technical Information of China (English)

    魏芳晶

    2013-01-01

    Objective To investigate the expression of apelin and its recoptor (APJ) in myocardium in insulin-resistant CIR rats with myocardial ischemia.Methods Totally 24male SD rats were randomly divided into three groups:IR group,IR+ischemia group,the control group (n=8each) .Rats in IR and IR+ischemia groups were fed with the high fat diet.Rats in control group were given the basic diet.The rat model of insulin resistance was assessed by fasting blood glucose (FBG) ,fasting insulin (Fins) and insulin resistance index (HOMA-IR) .The

  2. Effects of Portulaca Oleracea on Insulin Resistance in Rats with Type 2 Diabetes Mellitus

    Institute of Scientific and Technical Information of China (English)

    沈岚; 陆付耳

    2003-01-01

    Objective: To study the effects of Portulaca oleracea, a Chinese medicinal herb, on insulin resistance in rats with type 2 diabetes mellitus (T2DM). Methods: Experimental model of T2DM was established by injection of streptozotocin (25mg/kg) and feeding with high calorie forage. The effects of Portulaca oleracea on oral glucose tolerance, serum levels of insulin, triglyceride, total cholesterol, high-density lipoproteins-cholesterol and free fatty acids, and insulin sensitivity index were all observed. Results: Portulaca oleracea could reduce the body weight, improve the impaired glucose tolerance and lipid metabolism, decrease serum free fatty acids, attenuate hyperinsulinemia and elevate insulin sensitivity. Conclusion: Portulaca oleracea could improve insulin resistance in rats with T2DM, and the mechanism might be related to its actions in improving lipid metabolism and decreasing free fatty acids.

  3. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats

    Directory of Open Access Journals (Sweden)

    Iagher Fabiola

    2011-04-01

    Full Text Available Abstract Background Obesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats. Methods Monosodium glutamate (MSG (4 mg/g body weight was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C, coconut fat-treated normal weight group (CO, fish oil-treated normal weight group (FO, obese control group (Ob, coconut fat-treated obese group (ObCO and fish oil-treated obese group (ObFO. Obese insulin-resistant rats were supplemented with fish oil or coconut fat (1 g/kg/day for 4 weeks. Insulin sensitivity, fasting blood biochemicals parameters, and skeletal muscle glucose metabolism were analyzed. Results Obese animals (Ob presented higher Index Lee and 2.5 fold epididymal and retroperitoneal adipose tissue than C. Insulin sensitivity test (Kitt showed that fish oil supplementation was able to maintain insulin sensitivity of obese rats (ObFO similar to C. There were no changes in glucose and HDL-cholesterol levels amongst groups. Yet, ObFO revealed lower levels of total cholesterol (TC; 30% and triacylglycerol (TG; 33% compared to Ob. Finally, since exposed to insulin, ObFO skeletal muscle revealed an increase of 10% in lactate production, 38% in glycogen synthesis and 39% in oxidation of glucose compared to Ob. Conclusions Low dose of fish oil supplementation (1 g/kg/day was able to reduce TC and TG levels, in addition to improved systemic and muscle insulin sensitivity. These results lend credence to the benefits of n-3 fatty acids upon the deleterious effects of insulin resistance mechanisms.

  4. Resistin induces insulin resistance, but does not affect glucose output in rat-derived hepatocytes

    Institute of Scientific and Technical Information of China (English)

    Feng LIU; Xiao-qing PAN; Mei GUO; Rong-hua CHEN; Xi-rong GUO; Tao YANG; Bin WANG; Min ZHANG; Nan GU; Jie QIU; Hong-qi FAN; Chun-mei ZHANG; Li FEI

    2008-01-01

    Aim: The aim of the present study was to observe the effects of resistin on insulin sensitivity and glucose output in rat-derived hepatocytes. Methods: The rat hepatoma cell line H4IIE was cultured and stimulated with resistin; supernant glucose and glycogen content were detected. The insulin receptor substrate (IRS)-1 and IRS-2, protein kinase B/Akt, glycogen synthase kinase-3β (GSK-3β), the suppressor of cytokine signaling 3 (SOCS-3) protein content, as well as the phosphorylation status were assessed by Western blotting. Specific antisense oligodeoxynucleotides directed against SOCS-3 were used to knockdown SOCS-3. Results: Resistin induced insulin resistance, but did not affect glucose output in rat hepatoma cell line H4IIE. Resistin attenuated multiple effects of insulin, including insulin-stimulated glycogen synthesis and phosphorylation of IRS, pro-tein kinase B/Akt, as well as GSK-3β. Resistin treatment markedly induced the gene and protein expression of SOCS-3, a known inhibitor of insulin signaling. Furthermore, a specific antisense oligodeoxynucleotide directed against SOCS-3 treatment prevented resistin from antagonizing insulin action. Conclusion: The major function of resistin on liver is to induce insulin resistance. SOCS-3 induc-tion may contribute to the resistin-mediated inhibition of insulin signaling in H4IIE hepatocytes.

  5. Effects of different free fatty acids on insulin resistance in rats

    Institute of Scientific and Technical Information of China (English)

    Ping Han; Yong-Yan Zhang; Yan Lu; Bing He; Wei Zhang; Fei Xia

    2008-01-01

    BACKGROUND:Much evidence demonstrates that elevated free fatty acids (FFAs) are associated with insulin resistance. However, it is not clear whether different FFAs can cause different degrees of peripheral insulin resistance. This study aimed to investigate the effects of short-term elevation of FFAs on hepatic and peripheral insulin action, and determine whether FFAs with different degrees of saturation have differential effects on hepatic insulin resistance. METHODS:Intralipid+heparin (IH, polyunsaturated fatty acids), oleate (OLE), lard oil+heparin (LOH), and saline (SAL) were separately infused intravenously for 7 hours in normal Wistar rats. During the last 2 hours of the fat/saline infusion, a hyperinsulinemic-euglycemic clamping was performed with [6-3H] glucose tracer. Plasma glucose was measured using the glucose oxygenase method. Plasma insulin and C-peptide were determined by radioimmunoassays. Plasma FFAs were measured using a colorimetric method. RESULTS:Compared with infusion of SAL, plasma FFA levels were signiifcantly elevated by infusions of IH, OLE, and LOH (P CONCLUSIONS:Short-term elevation of FFAs can induce hepatic and peripheral insulin resistance. Polyunsaturated fatty acids induced less hepatic insulin resistance than monounsaturated or saturated fatty acids. However, IH, OLE, and LOH infusions induced similar peripheral insulin resistance.

  6. Beneficial insulin-sensitizing and vascular effects of S15261 in the insulin-resistant JCR:LA-cp rat.

    Science.gov (United States)

    Russell, J C; Ravel, D; Pégorier, J P; Delrat, P; Jochemsen, R; O'Brien, S F; Kelly, S E; Davidge, S T; Brindley, D N

    2000-11-01

    S15261, a compound developed for the oral treatment of type II diabetes, is cleaved by esterases to the fragments Y415 and S15511. The aim was to define the insulin-sensitizing effects of S15261, the cleavage products, and troglitazone and metformin in the JCR:LA-cp rat, an animal model of the obesity/insulin resistance syndrome that exhibits an associated vasculopathy and cardiovascular disease. Treatment of the animals from 8 to 12 weeks of age with S15261 or S15511 resulted in reductions in food intake and body weights, whereas Y415 had no effect. Troglitazone caused a small increase in food intake (P JCR:LA-cp rat. S15261 may thus offer effective treatment for the insulin resistance syndrome and its associated vascular complications.

  7. Effects of high-sucrose feeding on insulin resistance and hemodynamic responses to insulin in spontaneously hypertensive rats.

    Science.gov (United States)

    Mélançon, Sébastien; Bachelard, Hélène; Badeau, Mylène; Bourgoin, Frédéric; Pitre, Maryse; Larivière, Richard; Nadeau, André

    2006-06-01

    This study was designed to investigate the effects of a sucrose diet on vascular and metabolic actions of insulin in spontaneously hypertensive rats (SHR). Male SHR were randomized to receive a sucrose or regular chow diet for 4 wk. Age-matched, chow-fed Wistar-Kyoto (WKY) rats were used as normotensive control. In a first series of experiments, the three groups of rats had pulsed Doppler flow probes and intravascular catheters implanted to determine blood pressure, heart rate, and blood flows. Insulin sensitivity was assessed during a euglycemic hyperinsulinemic clamp performed in conscious rats. In a second series of experiments, new groups of rats were used to examine glucose transport activity in isolated muscles and to determine endothelial nitric oxide synthase (eNOS) protein expression in muscles and endothelin content in vascular tissues. Sucrose feeding was shown to markedly enhance the pressor response to insulin and its hindquarter vasoconstrictor effect when compared with chow-fed SHR. A reduction in eNOS protein content in muscle, but no change in vascular endothelin-1 protein, was noted in sucrose-fed SHR when compared with WKY rats, but these changes were not different from those noted in chow-fed SHR. Similar reductions in insulin-stimulated glucose transport were observed in soleus muscles from both groups of SHR when compared with WKY rats. In extensor digitorum longus muscles, a significant reduction in insulin-stimulated glucose transport was only seen in sucrose-fed rats when compared with the other two groups. Environmental factors, that is, high intake of simple sugars, could possibly potentiate the genetic predisposition in SHR to endothelial dysfunction and insulin resistance.

  8. Acute insulin resistance mediated by advanced glycation endproducts in severely burned rats.

    Science.gov (United States)

    Zhang, Xing; Xu, Jie; Cai, Xiaoqing; Ji, Lele; Li, Jia; Cao, Bing; Li, Jun; Hu, Dahai; Li, Yan; Wang, Haichang; Xiong, Lize; Xiao, Ruiping; Gao, Feng

    2014-06-01

    Hyperglycemia often occurs in severe burns; however, the underlying mechanisms and importance of managing postburn hyperglycemia are not well recognized. This study was designed to investigate the dynamic changes of postburn hyperglycemia and the underlying mechanisms and to evaluate whether early glycemic control is beneficial in severe burns. Prospective, randomized experimental study. Animal research laboratory. Sprague-Dawley rats. Anesthetized rats were subjected to a full-thickness burn injury comprising 40% of the total body surface area and were randomized to receive vehicle, insulin, and a soluble form of receptor for advanced glycation endproducts treatments. An in vitro study was performed on cultured H9C2 cells subjected to vehicle or carboxymethyllysine treatment. We found that blood glucose change presented a distinct pattern with two occurrences of hyperglycemia at 0.5- and 3-hour postburn, respectively. Acute insulin resistance evidenced by impaired insulin signaling and glucose uptake occurred at 3-hour postburn, which was associated with the second hyperglycemia and positively correlated with mortality. Mechanistically, we found that serum carboxymethyllysine, a dominant species of advanced glycation endproducts, increased within 1-hour postburn, preceding the occurrence of insulin resistance. More importantly, treatment of animals with soluble form of receptor for advanced glycation endproducts, blockade of advanced glycation endproducts signaling, alleviated severe burn-induced insulin resistance. In addition, early hyperglycemic control with insulin not only reduced serum carboxymethyllysine but also blunted postburn insulin resistance and reduced mortality. These findings suggest that severe burn-induced insulin resistance is partly at least mediated by serum advanced glycation endproducts and positively correlated with mortality. Early glycemic control with insulin or inhibition of advanced glycation endproducts with soluble form of receptor

  9. Symplocos cochinchinensis enhances insulin sensitivity via the down regulation of lipogenesis and insulin resistance in high energy diet rat model.

    Science.gov (United States)

    Antu, Kalathookunnel Antony; Riya, Mariam Philip; Nair, Anupama; Mishra, Arvind; Srivastava, Arvind K; Raghu, Kozhiparambil Gopalan

    2016-12-04

    This plant has been utilized in Indian system of medicine for treatment of diabetes. This is clearly evident from the composition of Ayurvedic preparation for diabetes 'Nisakathakadi Kashayam' where this is one of the main ingredients of this preparation AIM OF THE STUDY: The study aims in elucidating the molecular mechanisms underlying the insulin sensitizing effects of Symplocos cochinchinensis ethanol extract (SCE) using a high fructose and saturated fat (HFS) fed insulin resistant rat model. Experimental groups consisted of normal diet (ND), ND+SCE 500mg/kg bwd, HFS+vehicle, HFS+metformin 100mg/kg bwd, HFS+SCE 250/500mg/kg bwd. Initially the animals were kept under HFS diet for 8 weeks, and at the end of 8 week period, animals were found to develop insulin resistance and dyslipidemia. Post-administration of SCE, metformin or vehicle were carried out for 3 weeks. Gene and protein expressions relevant to insulin signalling pathway were analysed. HFS significantly altered the normal physiology of animals via proteins and genes relevant to metabolism like stearoyl-CoA desaturase (SCD1), sterol regulatory element binding protein 1 (SREBP-1c), fatty acid synthase (FAS), glucose 6 phosphatase (G6Pase), phosphoenol pyruvate carboxykinase (PEPCK), glucose transporter 2 (GLUT2), protein tyrosine phosphatse 1B (PTP1B), peroxisome proliferator activated receptor alpha (PPAR alpha), sirtuin 1 (SIRT1) and glucokinase. SCE administration attenuates the insulin resistance in HFS rat by the down regulation of SCD1 gene expression that modulates SREBP-1c dependent and independent hepatic lipid accumulation. SCE enhances insulin sensitivity via the down regulation of lipogenesis and insulin resistance in HFS rat model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. JNK and IKKβ phosphorylation is reduced by glucocorticoids in adipose tissue from insulin-resistant rats.

    Science.gov (United States)

    Motta, Katia; Barbosa, Amanda Marreiro; Bobinski, Franciane; Boschero, Antonio Carlos; Rafacho, Alex

    2015-01-01

    Peripheral insulin resistance (IR) is one of the main side effects caused by glucocorticoid (GC)-based therapies, and the molecular mechanisms of GC-induced IR are not yet fully elucidated. Thus, we aimed to investigate the effects of dexamethasone treatment on the main components of insulin and inflammatory signaling in the adipose tissue of rats. Male Wistar rats received daily injections of dexamethasone (1mg/kg body weight (b.w.), intraperitoneally (i.p.)) for 5 days (DEX), whereas control rats received saline (CTL). The metabolic status was investigated, and the epididymal fat fragments were collected for lipolysis and western blot analyses. The DEX rats became hyperglycemic, hyperinsulinemic, insulin resistant and glucose intolerant, compared with the CTL rats (Pinsulin receptor substrate (IRS)-1 at ser(307) increased by 93% in the adipose tissue of the DEX rats after an oral bolus of glucose (Padipose tissue of the DEX rats (Padipose tissue of the DEX rats (Pinsulin-resistant status of rats induced by dexamethasone administration have PKB and IRS-1 activity attenuated in epididymal fat without increases in the phosphorylation of the proinflammatory signals JNK and IKKβ. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Vascular wall dysfunction in JCR:LA-cp rats: effects of age and insulin resistance.

    Science.gov (United States)

    O'brien, S F; Russell, J C; Davidge, S T

    1999-11-01

    We tested the hypothesis that aging and insulin resistance interact to increase vascular dysfunction by comparing the function of isolated mesenteric resistance arteries in obese, insulin-resistant JCR:LA-cp rats and lean, insulin-sensitive rats of the same strain at 3, 6, 9, and 12 mo of age. The peak constrictor responses to norepinephrine, phenylephrine, and high potassium were elevated in arteries from obese rats. Responses to these agents increased with age in both obese and lean rats. An eicosanoid constrictor contributed substantially to vasoconstriction in the arteries from both lean and obese animals. Inhibition of nitric oxide synthase increased the vasoconstrictor response to norepinephrine in both obese and lean rats. This effect increased with age in lean rats only. Vascular relaxation in response to acetylcholine and sodium nitroprusside was impaired in the obese rats and did not alter with age. The results suggest that obese JCR:LA-cp rats have enhanced maximal constriction, which originates in the arterial smooth muscle and increases with age. There is evidence that the ability of the arteries to compensate for the enhanced contractility is impaired in obese rats, particularly with advanced age.

  12. Rat Strain Differences in Susceptibility to Alcohol-Induced Chronic Liver Injury and Hepatic Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Sarah M. DeNucci

    2010-01-01

    Full Text Available The finding of more severe steatohepatitis in alcohol fed Long Evans (LE compared with Sprague Dawley (SD and Fisher 344 (FS rats prompted us to determine whether host factors related to alcohol metabolism, inflammation, and insulin/IGF signaling predict proneness to alcohol-mediated liver injury. Adult FS, SD, and LE rats were fed liquid diets containing 0% or 37% (calories ethanol for 8 weeks. Among controls, LE rats had significantly higher ALT and reduced GAPDH relative to SD and FS rats. Among ethanol-fed rats, despite similar blood alcohol levels, LE rats had more pronounced steatohepatitis and fibrosis, higher levels of ALT, DNA damage, pro-inflammatory cytokines, ADH, ALDH, catalase, GFAP, desmin, and collagen expression, and reduced insulin receptor binding relative to FS rats. Ethanol-exposed SD rats had intermediate degrees of steatohepatitis, increased ALT, ADH and profibrogenesis gene expression, and suppressed insulin receptor binding and GAPDH expression, while pro-inflammatory cytokines were similarly increased as in LE rats. Ethanol feeding in FS rats only reduced IL-6, ALDH1–3, CYP2E1, and GAPDH expression in liver. In conclusion, susceptibility to chronic steatohepatitis may be driven by factors related to efficiency of ethanol metabolism and degree to which ethanol exposure causes hepatic insulin resistance and cytokine activation.

  13. Morphine Sulphate Toxicity on Liver Function Tests in Fructose-Induced Insulin Resistant Male Rats

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Shahraki

    2014-02-01

    Full Text Available Background: Since liver is a gland which has an important role in drug metabolism, the present study was conducted to evaluate the effect of a single dose and repeated administration of morphine on LFT, blood sugar and fasting insulin resistance index in fructose- fed male rats. Materials and Methods: The experiment was performed on 36 Wistar-Albino male rats, which were divided into a control (A and three tests groups (B, C and D. The control group consumed tap water, but the test groups consumed fructose-enriched water (10%, w/v and received null, single, and repeated doses of morphine, respectively. At the end, animals were anesthetized and blood samples were collected. Liver enzymes, insulin and insulin resistance were measured. Data were analyzed by SPSS-11, using ANOVA and Tukey tests as post hoc test. Results were expressed as mean±SD and Statistical differences were recognized significant by p<0.05. Results: The results showed that all test groups were insulin resistant; alanine aminotransferase (ALT and asparatate aminotransferase (AST activity values in group D significantly increased compared to other groups while its plasma glucose and insulin values showed a significant decrease in comparison to other test groups. Conclusion: It seems that repeated morphine administration can affect liver function test (LFT and fasting Insulin resistance index (FIRI in fructose- fed male rats.

  14. Insulin Resistance

    DEFF Research Database (Denmark)

    Jensen, Benjamin Anderschou Holbech

    Insulin resistance (IR) is escalating with alarming pace and is no longer restricted to westernized countries. As a forerunner for some of the most serious threats to human health including metabolic syndrome, cardiovascular diseases, and type 2-diabetes, the need for new treatment modalities...... interventions. We further show that improving the inflammatory toning, using fish oil as fat source, protects mice against diet induced obesity and -inflammation while preserving insulin sensitivity, even in the absence of free fatty acid receptor 4. Conversely, HFD-induced intestinal dysbiosis is associated...

  15. Melatonin prevents mitochondrial dysfunction and insulin resistance in rat skeletal muscle.

    Science.gov (United States)

    Teodoro, Bruno G; Baraldi, Flavia G; Sampaio, Igor H; Bomfim, Lucas H M; Queiroz, André L; Passos, Madla A; Carneiro, Everardo M; Alberici, Luciane C; Gomis, Ramon; Amaral, Fernanda G; Cipolla-Neto, José; Araújo, Michel B; Lima, Tanes; Akira Uyemura, Sérgio; Silveira, Leonardo R; Vieira, Elaine

    2014-09-01

    Melatonin has a number of beneficial metabolic actions and reduced levels of melatonin may contribute to type 2 diabetes. The present study investigated the metabolic pathways involved in the effects of melatonin on mitochondrial function and insulin resistance in rat skeletal muscle. The effect of melatonin was tested both in vitro in isolated rats skeletal muscle cells and in vivo using pinealectomized rats (PNX). Insulin resistance was induced in vitro by treating primary rat skeletal muscle cells with palmitic acid for 24 hr. Insulin-stimulated glucose uptake was reduced by palmitic acid followed by decreased phosphorylation of AKT which was prevented my melatonin. Palmitic acid reduced mitochondrial respiration, genes involved in mitochondrial biogenesis and the levels of tricarboxylic acid cycle intermediates whereas melatonin counteracted all these parameters in insulin-resistant cells. Melatonin treatment increases CAMKII and p-CREB but had no effect on p-AMPK. Silencing of CREB protein by siRNA reduced mitochondrial respiration mimicking the effect of palmitic acid and prevented melatonin-induced increase in p-AKT in palmitic acid-treated cells. PNX rats exhibited mild glucose intolerance, decreased energy expenditure and decreased p-AKT, mitochondrial respiration, and p-CREB and PGC-1 alpha levels in skeletal muscle which were restored by melatonin treatment in PNX rats. In summary, we showed that melatonin could prevent mitochondrial dysfunction and insulin resistance via activation of CREB-PGC-1 alpha pathway. Thus, the present work shows that melatonin play an important role in skeletal muscle mitochondrial function which could explain some of the beneficial effects of melatonin in insulin resistance states.

  16. Fish oil and olive oil can modify insulin resistance and plasma desacyl-ghrelin in rats

    Directory of Open Access Journals (Sweden)

    Atoosa Saidpour

    2011-01-01

    Full Text Available Background: Evidence exists for reciprocal effects of insulin and desacyl-ghrelin (DAG concentration, but the association between different fatty acid saturation in high fat diet (HFD and these hormones remain to be established. To evaluate the impact of different sources of dietary fat and the level of fatty acid saturation on plasma insulin and DAG levels and also the association of DAG with insulin action this study was carried out. Methods: Male weaning Wistar rats were randomly divided into four groups of HFDs, high fat butter (HF-B, high fat soy (HF-S, high fat olive (HF-O, high fat fish (HF-F, and a group of standard diet (SD. Blood samples were collected after 8 weeks and after they were fasted for 24 h. Body weight, food intake, plasma glucose, insulin, DAG and insulin resistance (HOMA-IR were measured. Results: Plasma insulin levels at fed and fasted status, were significantly higher in rats on HF-B compared to those on SD, HF-F and HF-O diets (P<0.05. Insulin concentration in rats on HF-S was also higher than those on SD, HF-F and HF-O diets (P<0.05, in the feeding status. Insulin resistance was significantly higher in rats on HF-B, compared to those on SD, HF-F and HF-O (P<0.05. Rats that were fed with HF-B diet had lower fasting plasma DAG levels than the SD, HF-F and HF-O groups (P<0.05; furthermore, the HF-F group had significantly higher DAG level than the HF-S groups (P<0.05. Conclusions: Fish and olive oils may hence contribute to lower insulin level and HOMA-IR by increasing DAG concentration and may have more health benefits than other fat sources in diets.

  17. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    Energy Technology Data Exchange (ETDEWEB)

    Vikram, Ajit [Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab 160 062 (India); Jena, Gopabandhu, E-mail: gbjena@gmail.com [Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab 160 062 (India)

    2010-07-23

    Research highlights: {yields}Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. {yields}Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. {yields}Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. {yields}Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia ({approx}18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPAR{gamma}) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 {+-} 16.32 vs. 126.37 {+-} 27.07 mg/dl) and glucose intolerance ({approx}78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  18. Vaspin gene in rat adipose tissue: relation to obesity-induced insulin resistance.

    Science.gov (United States)

    Shaker, Olfat G; Sadik, Nermin Abdel Hamid

    2013-01-01

    Visceral adipose fat has been claimed to be the link between obesity and insulin resistance through the released adipokines. This study aimed to assess the expression of vaspin as one of the recent adipokines in rats abdominal subcutaneous and visceral fat in diet-induced obese (DIO) and in DIO performing 3 weeks swimming exercise (DIO + EXE) compared to control and control + exercise (C + EXE) groups. Vaspin mRNA and protein expression assessed using RT-PCR and Western blotting analysis revealed vaspin expression in DIO and DIO + EXE but not in controls groups. In DIO group, visceral vaspin expression was higher than in that of subcutaneous fat and was positively correlated with body weight. Upregulation of visceral vaspin expression in DIO was concomitant with the development of insulin resistance (increase in fasting serum insulin and HOMA-IR) and rise in serum leptin level. Unchanged visceral vaspin mRNA in DIO + EXE rats, with significant improvements of insulin resistance parameters and serum leptin compared to DIO group was found. In conclusion, increased visceral vaspin expression in obesity was associated with insulin resistance. Further investigations into the molecular links between vaspin and obesity may unravel innovative therapeutic strategies in people affected by obesity-linked insulin resistance, metabolic syndrome, and type 2 diabetes.

  19. Protective effects of vitamin E and selenium on spermatogenesis in adult male rat insulin-resistant

    Directory of Open Access Journals (Sweden)

    Alireza Zakerabasali

    2013-03-01

    Full Text Available Background & Objective: Diabetes mellitus is a metabolic disease and is a multifactorial disorder characterized by chronic hyperglycemia resulting from impaired insulin secretion and insulin factional or both. In this study, the protective role of vitamin E and sodium selenite in preventing the harmful effects of insulin resistance (diabetes type 2 on spermatogenesis was studied.   Materials & Methods: Male adults (180-200 g of Wistar rats were divided into five groups, each containing 7 rats (control, sham, and three experimental groups. The rats were fed daily with water-soluble fructose (10%, mg/kg 200 of vitamin E (gavage, and 5/0 mg/kg of sodium selenite (intraperitoneal injection or both for 110 days. Subsequently, sperm parameters, levels of testosterone, LH, and daily sperm production (DSP were checked. Additionally, testicular histopathology and malondialdehyde (MDA in the testis were examined.   Results: Sperm count, sperm motility and viability, and insulin resistance in the rats decreased DSP. A significant decrease was observed in the number of Leydig cells, spermatogonia, spermatogenesis, and spermatozoa in the testis of the insulin-resistant animals, whereas MDA and testosterone rose in the insulin-resistant rats. Vitamin E and sodium selenite intake reduced the levels of MDA and harmful effects of fructose on testicles, as well as sperm parameters and testicular pathology. A simultaneous intake of vitamin E and sodium selenite conferred the highest level of protection.   Conclusion: These findings suggest that vitamin E and sodium selenite can have a protective role in the testes of rats against oxidative stress induced by diabetes type 2.

  20. High-fat diet induced insulin resistance in pregnant rats through pancreatic pax6 signaling pathway.

    Science.gov (United States)

    Wu, Hao; Liu, Yunyun; Wang, Hongkun; Xu, Xianming

    2015-01-01

    To explore the changes in pancreas islet function of pregnant rats after consumption of high-fat diet and the underlying mechanism. Thirty pregnant Wistar rats were randomly divided into two groups: high-fat diet group and normal control group. Twenty days after gestation, fasting blood glucose concentration (FBG) and fasting serum insulin concentration (FINS) were measured. Then, oral glucose tolerance test (OGTT) and insulin release test (IRT) were performed. Finally, all the rats were sacrificed and pancreas were harvested. Insulin sensitivity index (ISI) and insulin resistance index (HOMA-IR) were calculated according to FBG and FINS. RT-PCR and Real-time PCR were performed to study the expression of paired box 6 transcription factor (Pax6) and its target genes in pancreatic tissues. The body weight was significantly increased in the high-fat diet group compared with that of normal control rats (Pfat diet group was significantly increased compared with that of normal control rats (6.62 mmol/L vs. 4.96 mmol/L, Pinsulin concentration between the two groups. OGTT and IRT were abnormal in the high-fat diet group. The high-fat diet rats were more prone to impaired glucose tolerance and insulin resistance. The level of the expression of Pax6 transcription factor and its target genes in pancreas, such as pancreatic and duodenal homeobox factor-1 (Pdx1), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) and glucose transporter 2 (Glut2) were decreased significantly compared with those of normal control group. High-fat diet feeding during pregnancy may induce insulin resistance in maternal rats by inhibiting pancreatic Pax6 and its target genes expression.

  1. The Effect of Different Doses of Vitamin D Supplementation on Insulin Resistance in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Rastegar Hoseini

    2016-04-01

    Full Text Available Background and Aim: Type 2 diabetes mellitus (T2DM and vitamin D deficiency are both too common during menopause. Since the effect of different doses of vitamin D supplements on blood sugar, insulin concentration  and insulin resistance are unknown, the present study aimed at investigating the effects of different doses of the vitamin D supplements on visceral fat, blood sugar, insulin concentration,  and insulin resistance in ovariectomized rats. Materials and Methods: In this randomized experimental study, 32 female Wistar rats were divided into 4 equal groups  as follows: three groups . that received vitamin D supplements (high, moderate, and low dose and one control group. After 8 weeks of different doses of vitamin D supplementation plasma concentration of glucose, insulin and HOMA-IR were measured  in the three groups. The obtained data  was statistically analyzed by means of dependent t-test and ANOVA . at the significance level of P<0.05. Results: After a period of eight-week  intervention, body weight, BMI, waist circumference, visceral fat, insulin, blood glucose and HOMA-IR at high, moderate, and low doses of vitamin D supplementation were significantly lower than those in the control group (P<0.05. High dose of vitamin D compared with moderate and low doses significantly caused reduction in insulin, blood glucose, and HOMA-IR (P<0.001 for all three variables. Conclusion: The findings of the current study showed that a high dose of vitamin D causes significant improvements in FPG, insulin, and insulin resistance  evaluated by HOMA-IR. It was also found that adding vitamin D supplements can improve glucose control in menopause model of rats.

  2. ANTIDIABETIC AND HYPOLIPIDEMIC ACTIVITY OF GYMNEMA SYLVESTRE IN DEXAMETHASONE INDUCED INSULIN RESISTANCE IN ALBINO RATS

    Directory of Open Access Journals (Sweden)

    Hemanth Kumar V, Nagendra Nayak IM , Shobha V Huilgol, Saeed M Yendigeri , Narendar K

    2015-07-01

    Full Text Available Background: Gymnema sylvestre plant was widely used for medicinal purpose. The plant leaves were traditionally used to treat diabetes. Aim: To determine the antidiabetic and hypolipidemic activity of Gymnema sylvestre in dexamethasone induced insulin resistance in Albino rats. Objectives: The present study was undertaken to evaluate antidiabetic and hypolipidemic activity of Gymnema sylvestre leaf aqueous extract against dexamethasone induced insulin resistance in Albino rats. Materials and Methods: Animals were divided into five groups. Normal control and diabetic control group received gum acacia (2% orally for 12days, and normal saline (i.p., dexamethasone (8mg/kg/i.p. from day 7- day12 respectively. Two test groups (Gymnema sylvestre leaf aqueous extract 2 and 4gm/kg/p.o./12days and standard control received metformin (2gm/kg/p.o./12 days. The two test groups, standard control group received dexamethasone (8mg/kg/i.p from day 7- day 12 respectively. The antidiabetic and hypolipidemic activity was estimated by measuring serum glucose, insulin, lipid levels and histopathological evaluation of liver tissue. Results were analyzed by using one way ANOVA followed by Scheffe’s multiple comparison test. Results: Treatment with aqueous extract of Gymnema sylvestre (2 and 4gm/kg/p.o significantly (p<0.01 altered the elevated glucose, lipid, insulin levels and also improved the histopathology of liver in dexamethasone induced insulin resistance rats. Conclusion: Treatment with aqueous extract of Gymnema sylvestre improved the altered glucose, insulin and lipid profile in insulin resistance rats.

  3. [The role of arecoline on hepatic insulin resistance in type 2 diabetes rats].

    Science.gov (United States)

    Ling, Hong-Yan; Yao, Qi-Xin; Qi, Zhu-Qing; Yang, Si-Si; He, Jian-Qin; Zhang, Kai-Fang; Hu, Bi

    2014-05-01

    To explore the effects of arecoline on hepatic insulin resistance in type 2 diabetes rats and to elucidate its possible mechanism. Forty five Wistar rats were fed with high fructose diet for 12 weeks to induce type 2 diabetic rat model. rats were randomly divided into 5 groups (n = 8): control group, model group and model group were treated with different dose (0, 0.5, 1, 5 mg/kg) of arecoline. After 4 weeks, the fasting blood glucose, blood lipid and insulin level measured , mRNA expression of liver constitutive androstane receptor (CAR), pregnane X receptor (PXR), glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) were detected by reverse transcription polymerase chain reaction (RT-PCR), the protein expression of p-AKT and glucose transporter4 (GLUT4) were detected by Western blot. 1.5 mg/kg arecoline could significantly decrease the level of fasting blood glucose, blood lipid, blood insulin level and liver G6Pase, PEPCK, IL-6, TNF-alpha mRNA level in type 2 diabetes rats. 1.5 mg/kg arecoline also could significantly increase CAR, PXR mRNA level and p-AKT and GLUT4 protein expression. Arecoline improved hepatic insulin resistance in type 2 diabetes rats by increasing the mRNA levels of CAR and PXR leading to the creased glucose metabolism and inflammation related genes expression.

  4. Beneficial effects of argan oil on blood pressure, insulin resistance, and oxidative stress in rat.

    Science.gov (United States)

    El Midaoui, Adil; Haddad, Youssef; Couture, Réjean

    2016-10-01

    The aim of the present study was to investigate whether a 5-wk treatment with argan oil, which is known for its antioxidant properties, can reduce arterial hypertension, hyperglycemia, insulin resistance, and enhanced basal superoxide anion production and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in the aorta of glucose-fed rats. Sprague-Dawley rats had free access to a drinking solution containing 10% d-glucose or tap water (control) for 5 wk. The effect of argan oil in glucose-fed rats was compared with that of corn oil given daily by gavage (5 mL/kg) over a 5-wk period. Oxidative stress was evaluated by measuring the superoxide anion production and the NADPH oxidase activity using the lucigenin method. The 5-wk treatment with glucose led to increases in systolic blood pressure, plasma glucose, and insulin levels as well as an increase in the insulin resistance index in association with a rise in superoxide anion production and NADPH oxidase activity (sensitive to diphenyleneiodonium) in the aorta. The simultaneous treatment with argan oil prevented or significantly reduced all of these effects, yet the same treatment with corn oil had a positive effect only on hyperinsulinemia and insulin resistance. The findings from the present study demonstrated that argan oil treatment reduced elevation of blood pressure, hyperglycemia, and insulin resistance through its antioxidative properties in glucose-fed rats. Hence, argan oil, which is now available in the market as a consumable food, may be of potential therapeutic value in the treatment of arterial hypertension and insulin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. comparison of serum visfatin levels in restricted diet rats,type2 diabetic rats and insulin resistance rats with normal rats

    Directory of Open Access Journals (Sweden)

    mohammadali ghaffari

    2015-11-01

    Full Text Available Background and Purpose: Adipose tissue is not only a site of triglycerides storage, but also an active endocrine organ that secretes many biologically active mediators refered to as "adipokines". Visfatin, as a new adipokine has an important role in Homeostasis of energy and glucose metabolism. In the present study serum visfatin levels in restricted diet rats,type2 diabetic rats and insulin resistant rats has been measured and compared with control group. relationship between Visfatin and blood sugar, lipid profile, insulin, and HOMA-IR in these groups has been investigated Methods and Materials: 32 male wistar rats were divided into 4 groups (8 rats in each group.group 1 was control,with free access to diet, group 2 or restricted diet group using 65% of normal diet , group3 orinduced type2 diabetic group with nicotinamide and streptozocin and group 4 was insulin resistance ,induced with fructose diet. After 6 weeks animals weight and other biochemical factors such as FBS (Fasting Blood Sugar, lipid profile, insulin and visfatin were measured. Results of this study were analyzed using SPSS16.and then examined and reported as ±average of standard deviation. Values of p< 0.05 were considered statistically significant . Results: Results of this study showed that body weight increased in all groups except diabetic group. Triglyceride were increased in all groups, in this order,restricted diet, control, insulin resistance and diabetic groups. visfatin, insulin, and Homa-IR increase significantly in type 2 diabetic rats and insulin resistant group. Conclusion: There was a positive and significant relationship between visfatin and HOMA-IR, and between visfain and FBS (Fasting Blood Sugar, while there was a negative relationship between visfatin and insulin, but this relationship was not significant.

  6. Genetic, physiological and comparative genomic studies of hypertension and insulin resistance in the spontaneously hypertensive rat

    Directory of Open Access Journals (Sweden)

    Philip M. Coan

    2017-03-01

    Full Text Available We previously mapped hypertension-related insulin resistance quantitative trait loci (QTLs to rat chromosomes 4, 12 and 16 using adipocytes from F2 crosses between spontaneously hypertensive (SHR and Wistar Kyoto (WKY rats, and subsequently identified Cd36 as the gene underlying the chromosome 4 locus. The identity of the chromosome 12 and 16 genes remains unknown. To identify whole-body phenotypes associated with the chromosome 12 and 16 linkage regions, we generated and characterised new congenic strains, with WKY donor segments introgressed onto an SHR genetic background, for the chromosome 12 and 16 linkage regions. We found a >50% increase in insulin sensitivity in both the chromosome 12 and 16 strains. Blood pressure and left ventricular mass were reduced in the two congenic strains consistent with the congenic segments harbouring SHR genes for insulin resistance, hypertension and cardiac hypertrophy. Integrated genomic analysis, using physiological and whole-genome sequence data across 42 rat strains, identified variants within the congenic regions in Upk3bl, RGD1565131 and AABR06087018.1 that were associated with blood pressure, cardiac mass and insulin sensitivity. Quantitative trait transcript analysis across 29 recombinant inbred strains showed correlation between expression of Hspb1, Zkscan5 and Pdgfrl with adipocyte volume, systolic blood pressure and cardiac mass, respectively. Comparative genome analysis showed a marked enrichment of orthologues for human GWAS-associated genes for insulin resistance within the syntenic regions of both the chromosome 12 and 16 congenic intervals. Our study defines whole-body phenotypes associated with the SHR chromosome 12 and 16 insulin-resistance QTLs, identifies candidate genes for these SHR QTLs and finds human orthologues of rat genes in these regions that associate with related human traits. Further study of these genes in the congenic strains will lead to robust identification of the

  7. Exercise improves cardiac function and attenuates insulin resistance in Dahl salt-sensitive rats.

    Science.gov (United States)

    Stevens, An L M; Ferferieva, Vesselina; Bito, Virginie; Wens, Inez; Verboven, Kenneth; Deluyker, Dorien; Voet, Annemie; Vanhoof, Joke; Dendale, Paul; Eijnde, Bert O

    2015-01-01

    The development of heart failure (HF) secondary to hypertension is a complex process related to a series of physiological and molecular factors including glucose dysregulation. The overall objective of this study was to investigate whether exercise training could improve cardiac function and insulin resistance in a rat model of hypertensive HF. Seven week old Dahl salt-sensitive rats received either 8% NaCl (n = 30) or 0.3% NaCl (n = 18) diet. After a 5-week diet, animals were randomly assigned to exercise training (treadmill running at 18 m/min, 5% inclination for 60 min, 5 days/week) or kept sedentary for 6 additional weeks. 2D echocardiography was used to calculate left ventricular (LV) dimensions, volumes and global functional parameters. LV global deformation parameters were measured with speckle tracking echocardiography. Insulin resistance was assessed using 1h oral glucose tolerance testing. High salt diet led to cardiac hypertrophy and HF, characterized by increased wall thicknesses and LV volumes as well as reduced deformation parameters. In addition, high salt diet was associated with the development of insulin resistance. Exercise training improved cardiac function, reduced the extent of interstitial fibrosis and reduced insulin levels 60 min post-glucose administration. Even if not fully reversed, exercise training in HF animals improved cardiac function and insulin resistance. Adjusted modalities of exercise training might offer new insights not only as a preventive strategy, but also as a treatment for HF patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Tissue-specific PAI-1 gene expression and glycosylation pattern in insulin-resistant old rats.

    Science.gov (United States)

    Serrano, R; Barrenetxe, J; Orbe, J; Rodríguez, J A; Gallardo, N; Martínez, C; Andrés, A; Páramo, J A

    2009-11-01

    Increased levels of plasminogen activator inhibitor-1 (PAI-1) have been associated with obesity, aging, insulin resistance, and type 2 diabetes, conditions that contribute to increased cardiovascular risk. PAI-1 is expressed in a variety of tissues, but the cellular origin of plasma PAI-1 is unknown. To link insulin resistance, aging, and cardiovascular disease, we examined the expression and glycosylation pattern of PAI-1 in liver and white adipose tissue (WAT) from adult (3 mo) and insulin-resistant old (24 mo) Wistar rats. Glycosylated PAI-1 protein was also purified by affinity chromatography from endothelial culture supernatans to analyze its inhibitory activity. We also analyzed the contribution of adipocytes and stromal vascular cells from WAT to PAI-1 levels with aging. Aging caused a significant increase of PAI-1 mRNA (P < 0.001) in WAT that was predominantly due to the adipocytes and not to stroma-vascular cells, while there was no modification in liver from aged rats. Moreover, PAI-1 expression increased during preadipocyte differentiation (P < 0.001). Furthermore, we found a tissue-dependent PAI-1 glycosylation pattern: adipose tissue only expresses the glycosylated PAI-1 form, whereas the liver mainly expresses the nonglycosylated form. Finally, we also found evidences suggesting that the glycosylated PAI-1 form shows higher inhibitory activity than the nonglycosylated. Our data suggest that WAT may be a major source of the elevated plasma levels of PAI-1 in insulin-resistant old rats. Additionally, the high degree of PAI-1 glycosylation and activity, together with the significant increase in visceral fat in old rats, may well contribute to an increased cardiovascular risk associated with insulin-resistant states.

  9. Histopathological changes in rat pancreas and skeletal muscle associated with high fat diet induced insulin resistance.

    Science.gov (United States)

    Ickin Gulen, M; Guven Bagla, A; Yavuz, O; Hismiogullari, A A

    2015-01-01

    The effects of a high fat diet on the development of diabetes mellitus, insulin resistance and secretion have been widely investigated. We investigated the effects of a high fat diet on the pancreas and skeletal muscle of normal rats to explore diet-induced insulin resistance mechanisms. Forty-four male Wistar rats were divided into six groups: a control group fed standard chow, a group fed a 45% fat diet and a group fed a 60% fat diet for 3 weeks to measure acute effects; an additional three groups were fed the same diet regimens for 8 weeks to measure chronic effects. The morphological effects of the two high fat diets were examined by light microscopy. Insulin in pancreatic islets was detected using immunohistochemistry. The homeostasis model assessment of insulin resistance index and insulin staining intensity in islets increased significantly with acute administration of high fat diets, whereas staining intensity decreased with chronic administration of the 45% fat diet. Islet areas increased significantly with chronic administration. High fat diet administration led to islet degeneration, interlobular adipocyte accumulation and vacuolization in the pancreatic tissue, as well as degeneration and lipid droplet accumulation in the skeletal muscle tissue. Vacuolization in the pancreas and lipid droplets in skeletal muscle tissue increased significantly with chronic high fat diet administration. We suggest that the glucolipotoxic effects of high fat diet administration depend on the ratio of saturated to unsaturated fatty acid content in the diet and to the total fat content of the diet.

  10. Deficient hippocampal insulin signaling and augmented Tau phosphorylation is related to obesity- and age-induced peripheral insulin resistance: a study in Zucker rats.

    Science.gov (United States)

    Špolcová, Andrea; Mikulášková, Barbora; Kršková, Katarína; Gajdošechová, Lucia; Zórad, Štefan; Olszanecki, Rafał; Suski, Maciej; Bujak-Giżycka, Beata; Železná, Blanka; Maletínská, Lenka

    2014-09-25

    Insulin signaling and Tau protein phosphorylation in the hippocampi of young and old obese Zucker fa/fa rats and their lean controls were assessed to determine whether obesity-induced peripheral insulin resistance and aging are risk factors for central insulin resistance and whether central insulin resistance is related to the pathologic phosphorylation of the Tau protein. Aging and obesity significantly attenuated the phosphorylation of the insulin cascade kinases Akt (protein kinase B, PKB) and GSK-3β (glycogen synthase kinase 3β) in the hippocampi of the fa/fa rats. Furthermore, the hyperphosphorylation of Tau Ser396 alone and both Tau Ser396 and Thr231 was significantly augmented by aging and obesity, respectively, in the hippocampi of these rats. Both age-induced and obesity-induced peripheral insulin resistance are associated with central insulin resistance that is linked to hyperTau phosphorylation. Peripheral hyperinsulinemia, rather than hyperglycemia, appears to promote central insulin resistance and the Tau pathology in fa/fa rats.

  11. Effect of adrenomedullin gene delivery on insulin resistance in type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Hoda Y. Henein

    2011-01-01

    Full Text Available Type 2 diabetes mellitus is one of the common metabolic disorders that ultimately afflicts large number of individuals. Adrenomedullin (AM is a potent vasodilator peptide; previous studies reported development of insulin resistance in aged AM deficient mice. In this study, we employed a gene delivery approach to explore its potential role in insulin resistance. Four groups were included: control, diabetic, non-diabetic injected with the AM gene and diabetic injected with the AM gene. One week following gene delivery, serum glucose, insulin, triglycerides, leptin, adiponectin and corticosterone were measured as well as the insulin resistance index (HOMA-IR. Soleus muscle glucose uptake and RT-PCR of both AM and glucose transporter-4 (GLUT 4 gene expressions were assessed. A single tail vein injection of adrenomedullin gene in type 2 diabetic rats improved skeletal muscle insulin responsiveness with significant improvement of soleus muscle glucose uptake, HOMA-IR, serum glucose, insulin and triglycerides and significant increase in muscle GLUT 4 gene expression (P < 0.05 compared with the non-injected diabetic rats. The beneficial effects of AM gene delivery were accompanied by a significant increase in the serum level of adiponectin (2.95 ± 0.09 versus 2.33 ± 0.17 μg/ml in the non-injected diabetic group as well as a significant decrease in leptin and corticosterone levels (7.51 ± 0.51 and 262.88 ± 10.34 versus 10.63 ± 1.4 and 275.86 ± 11.19 ng/ml respectively in the non-injected diabetic group. The conclusion of the study is that AM gene delivery can improve insulin resistance and may have significant therapeutic applications in type 2 diabetes mellitus.

  12. Improvements of insulin resistance in ovariectomized rats by a novel phytoestrogen from Curcuma comosa Roxb

    Directory of Open Access Journals (Sweden)

    Prasannarong Mujalin

    2012-03-01

    Full Text Available Abstract Background Curcuma comosa Roxb. (C. comosa is an indigenous medicinal herb that has been used in Thailand as a dietary supplement to relieve postmenopausal symptoms. Recently, a novel phytoestrogen, (3R-1,7-diphenyl-(4E,6E-4,6-heptadien-3-ol or compound 049, has been isolated and no study thus far has investigated the role of C. comosa in preventing metabolic alterations occurring in estrogen-deprived state. The present study investigated the long-term effects (12 weeks of C. comosa hexane extract and compound 049 on insulin resistance in prolonged estrogen-deprived rats. Methods Female Sprague-Dawley rats were ovariectomized (OVX and treated with C. comosa hexane extract (125 mg, 250 mg, or 500 mg/kg body weight (BW and compound 049 (50 mg/kg BW intraperitoneally three times per week for 12 weeks. Body weight, food intake, visceral fat weight, uterine weight, serum lipid profile, glucose tolerance, insulin action on skeletal muscle glucose transport activity, and GLUT-4 protein expression were determined. Results Prolonged ovariectomy resulted in dyslipidemia, impaired glucose tolerance and insulin-stimulated skeletal muscle glucose transport, as compared to SHAM. Treatment with C. comosa hexane extract and compound 049, three times per week for 12 weeks, markedly reduced serum total cholesterol and low-density lipoprotein levels, improved insulin sensitivity and partially restored uterine weights in ovariectomized rats. In addition, compound 049 or high doses of C. comosa hexane extract enhanced insulin-mediated glucose uptake in skeletal muscle and increased muscle GLUT-4 protein levels. Conclusions Treatment with C. comosa and its diarylheptanoid derivative improved glucose and lipid metabolism in estrogen-deprived rats, supporting the traditional use of this natural phytoestrogen as a strategy for relieving insulin resistance and its related metabolic defects in postmenopausal women.

  13. THE OREXIN SYSTEM IN INSULIN RESISTANCE RAT MODEL INDUCED BY HIGH-FRUCTOSE DIET

    Institute of Scientific and Technical Information of China (English)

    赵玉岩; 郭磊; 都健; 刘国良

    2003-01-01

    Objective. To evaluate the effects of high-fructose diet on expression of orexin and its receptors,orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R) in rat hypothalamus tissue, and to analysis the interaction of related factors involved in regulating orexin and its receptors. Methods. Insulin resistance rat model induced by high fructose confirmed by the gold standard eug-lycaemic clamping was employed and mRNA expression of orexin and its receptors OX1R and OX2R in hypothalamus, mRNA expression of leptin in adipose tissue were measured by reverse transcription poly-merase chain reaction. Serum insulin and triglyceride levels were measured by chemiluminescence im-munoassay and biochemical enzyme techniques. Results. Expression of orexin mRNA decreased about 40% in high fructose diet rats compared to control group (P<0.01), whereas expression of orexin 1 receptor and orexin 2 receptor mRNA increased up to 4.4 and 5.1 fold (P<0.01). Leptin mRNA expression in adipose tissue increased about 30% in comparison with control group (P<0.01). Blood glucose, serum insulin and triglyceride have shown signi ficant higher levels than those in control group (P<0.01). Glucose infusion rate (GIR60-120) was much lower in comparison with control group (P<0.01). Conclusions. High- fructose diet induces insulin resistance in rats with impact on orexin and leptin regulations. Blood glucose, serum insulin, lipid metabolism and leptin play an interactive role on orexin and its receptors regulation in rats.

  14. Improvement of insulin resistance by miracle fruit (Synsepalum dulcificum) in fructose-rich chow-fed rats.

    Science.gov (United States)

    Chen, Chang-Chih; Liu, I-Min; Cheng, Juei-Tang

    2006-11-01

    In an attempt to probe a new target to improve insulin resistance, miracle fruit (Synsepalum dulcificum) was employed to investigate the effect on insulin resistance induced by fructose-rich chow in rats. Single oral administration of the powder of this miracle fruit decreased the plasma glucose in a dose-dependent manner for 150 min in rats fed fructose-rich chow for 4 weeks. Insulin action on the glucose disposal rate was measured using the glucose-insulin index, the value of the areas under the curve of glucose and insulin during the intraperitoneal glucose tolerance test. Oral administration of miracle fruit (0.2 mg/kg) to fructose-rich chow fed rats, three times daily for 3 days, reversed the raised value of the glucose-insulin index, indicating that miracle fruit has the ability to improve insulin sensitivity. The plasma glucose lowering action of tolbutamide, induced by secretion of endogenous insulin, is widely used to characterize the formation of insulin resistance. The time for the loss of the plasma glucose lowering response to tolbutamide (10.0 mg/kg, i.p.) in fructose-rich chow fed rats was markedly delayed after treatment with miracle fruit compared with the vehicle-treated group. Thus providing supportive data that oral administration of miracle fruit could delay the development of insulin resistance in rats. Also, the in vivo insulin sensitivity was markedly raised by miracle fruit. In conclusion, the results suggest that miracle fruit may be used as an adjuvant for treating diabetic patients with insulin resistance because this fruit has the ability to improve insulin sensitivity.

  15. The Effect of Estrogen on Visceral Fat, Serum Omentin-1 and Insulin Resistance in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Parvin Babaei

    2016-07-01

    Full Text Available Background & objectives: Estrogen reduction after the menopause is associated with visceral adipose tissue accumulation and insulin resistance. Serum omentin-1 level is also decreased by abdominal obesity and insulin resistance. This study investigated the effect of estrogen on visceral fat, omentin-1 and insulin resistance in ovariectomized (OVX rats. Methods: Thirty 13-week-old female Wistar rats weighing180±5 gr were randomly matched on their body weight and divided into OVX (n=20 and sham-operated (SHAM; n=10 groups. OVX rats were subdivided into estrogen replacement therapy (Ovx+Est; n=10, and control (Ovx+sesame Oil; n=10 groups. The estrogen replacement therapy received 17b-estradiol (30µg/kg bw; in 0.2 ml sesame oil three days a week, for eight weeks. Ovx+Oil received the same sesame oil subcutaneously as vehicle. All intra-abdominal fat depots were dissected out and weighed immediately. Omentin-1 concentration was measured by rat omentin ELISA kit and HOMA-IR was used to estimate the insulin resistance. Obtained data were analyzed by ANOVA and post hoc Tukey test. Results: Visceral fat was decreased by 12.84% in Ovx+Est compared to Ovx+Oil group; but it wasn ́t significant. Whereas, body weight was significantly decreased by 7.87 % in Ovx+Est compared to Ovx+Oil; and it was significantly increased by 12.5% in Ovx+Oil compared to SHAM group. Omentin-1 level was significantly increased by 41% in Ovx+Est compared to Ovx+Oil group; whereas it was significantly decreased by 13.9% in Ovx+Oil compared to SHAM group. The levels of glucose, insulin and HOMA-IR were significantly decreased to 51.16%, 24.23% and 61.52%, respectively, in Ovx+Est group compared to the rats in Ovx+Oil group (p=0.0001. Conclusion: 8-week estrogen reduces body weight and improves insulin resistance probably via increase in omentin-1.

  16. Trigonella foenum-graecum water extract improves insulin sensitivity and stimulates PPAR and γ gene expression in high fructose-fed insulin-resistant rats

    Directory of Open Access Journals (Sweden)

    Abbas Mohammadi

    2016-01-01

    Conclusion: This study demonstrates the beneficial effects of trigonella foenum-graecum extract on insulin resistance in rats fed on a high-fructose diet. At least three mechanisms are involved, including direct insulin-like effect, increase in adiponectin levels, and PPARγ protein expression.

  17. Amylin evokes protein p20 phosphorylation and insulin resistance in rat skeletal muscle extensor digitorum longus

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In the present study, we investigate effect of amylin on the insulin sensitivity of rat skeletal muscle extensor digitorum longus (EDL) using in vitro intact muscle incubation in combination with metabolic radioactive labeling. The molecular basis of the amylin action was further examined using proteomic analysis. In particular, proteins of interest were characterized using an integrated microcharacterization procedure that involved in-gel trypsin digestion, organic solvent extraction, high performance liquid chromatography separation, microsequencing and microsequence analysis. We found that amylin significantly decreased the insulin-stimulated glucose incorporation into glycogen (p < 0.01) and produced a protein spot of approximately 20 ku in size. This amylin responsive protein (hereby designated as amylin responsive protein 1, APR1) was identified to be protein p20. Moreover, ARP1 spots on gels were found to consistently produce a corresponding radioactive spot on X-ray films in 32Pi but not in 35S-methionine labeling experiments. In conclusion, our results showed that in vitro amylin concomitantly evoked the production of ARP1 and caused insulin resistance in EDL muscle. It is suggested that protein p20 may be involved in amylin signal transduction and the appearance of ARP1 may be a step in a molecular pathway leading to the development of insulin resistance. ARP1 might therefore be a useful molecular marker for amylin action, insulin resistance and Type 2 diabetes.

  18. Streptozotocin diabetes and insulin resistance impairment of spermatogenesis in adult rat testis: central vs. local mechanism.

    Science.gov (United States)

    Arikawe, A P; Oyerinde, A; Olatunji-Bello, I I; Obika, L F O

    2012-12-18

    Mammalian reproduction is dynamically regulated by the pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). These hormones are synthesized in the pituitary gland following stimulation by the gonadotropin-releasing hormone (GnRH) and act by stimulating steroid production and gametogenesis in both males and females. Male adult Sprague-Dawley rats (120 - 140 g) were randomly divided into 7 groups. Group 1 > Control group; fed on normal rat pellets. Group 2 > Streptozotocin group; received a single dose IP injection of streptozotocin 45 mg/kg BW in Na+ citrate buffer pH 4.5. Group 3 > Streptozotocin-insulin treated group; received a single dose IP injection of streptozotocin as in group 2 above and treated with insulin sub-cutaneously. Group 4 > Streptozotocin-ginger treated group; received a single dose IP injection of streptozotocin as in group 2 above and treated with 500 mg/Kg Ginger extract orally. Group 5 > Insulin resistant group; fed ad libitum on a special diet containing 25% fructose mixed with 75% normal rat chow (w/w). Group 6 > Insulin resistant-pioglitazone treated group; fed ad libitum on a special diet as in group 5 above and treated with Pioglitazone 15 mg/kg orally. Group 7 > Insulin resistant-ginger treated group; fed ad libitum on a special diet as in group 4 above, and also treated with 500 mg/Kg Ginger extract orally. Hormonal and tissue biochemistry analyses revealed that both central and local mechanisms are implicated in the impairment of spermatogenesis by diabetes but the hypothalamo-pituitary testicular axis alteration might not likely have a major impact as the local defect on steroidogenesis in the testis. This local defect could also predispose to male hypogonadism, i.e. failure of gonadal function.

  19. Curcuma oil ameliorates insulin resistance & associated thrombotic complications in hamster & rat

    Directory of Open Access Journals (Sweden)

    Vishal Singh

    2015-01-01

    Full Text Available Background & objectives: Curcuma oil (C. oil isolated from turmeric (Curcuma longa L. has been shown to have neuro-protective, anti-cancer, antioxidant and anti-hyperlipidaemic effects in experimental animal models. However, its effect in insulin resistant animals remains unclear. The present study was carried out to investigate the disease modifying potential and underlying mechanisms of the C. oil in animal models of diet induced insulin resistance and associated thrombotic complications. Methods: Male Golden Syrian hamsters on high fructose diet (HFr for 12 wk were treated orally with vehicle, fenofibrate (30 mg/kg or C. oil (300 mg/kg in the last four weeks. Wistar rats fed HFr for 12 wk were treated orally with C. oil (300 mg/kg in the last two weeks. To examine the protective effect of C. oil, blood glucose, serum insulin, platelet aggregation, thrombosis and inflammatory markers were assessed in these animals. Results: Animals fed with HFr diet for 12 wk demonstrated hyperlipidaemia, hyperglycaemia, hyperinsulinaemia, alteration in insulin sensitivity indices, increased lipid peroxidation, inflammation, endothelial dysfunction, platelet free radical generation, tyrosine phosphorylation, aggregation, adhesion and intravascular thrombosis. Curcuma oil treatment for the last four weeks in hamsters ameliorated HFr-induced hyperlipidaemia, hyperglycaemia, insulin resistance, oxidative stress, inflammation, endothelial dysfunction, platelet activation, and thrombosis. In HFr fed hamsters, the effect of C. oil at 300 mg/kg [ ] was comparable with the standard drug fenofibrate. Curcuma oil treatment in the last two weeks in rats ameliorated HFr-induced hyperglycaemia and hyperinsulinaemia by modulating hepatic expression of sterol regulatory element binding protein 1c (SREBP-1c, peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1α and PGC-1β genes known to be involved in lipid and glucose metabolism. Interpretation

  20. Curcuma oil ameliorates insulin resistance & associated thrombotic complications in hamster & rat.

    Science.gov (United States)

    Singh, Vishal; Jain, Manish; Misra, Ankita; Khanna, Vivek; Prakash, Prem; Malasoni, Richa; Dwivedi, Anil Kumar; Dikshit, Madhu; Barthwal, Manoj Kumar

    2015-06-01

    Curcuma oil (C. oil) isolated from turmeric (Curcuma longa L.) has been shown to have neuro-protective, anti-cancer, antioxidant and anti-hyperlipidaemic effects in experimental animal models. However, its effect in insulin resistant animals remains unclear. The present study was carried out to investigate the disease modifying potential and underlying mechanisms of the C. oil in animal models of diet induced insulin resistance and associated thrombotic complications. Male Golden Syrian hamsters on high fructose diet (HFr) for 12 wk were treated orally with vehicle, fenofibrate (30 mg/kg) or C. oil (300 mg/kg) in the last four weeks. Wistar rats fed HFr for 12 wk were treated orally with C. oil (300 mg/kg) in the last two weeks. To examine the protective effect of C. oil, blood glucose, serum insulin, platelet aggregation, thrombosis and inflammatory markers were assessed in these animals. Animals fed with HFr diet for 12 wk demonstrated hyperlipidaemia, hyperglycaemia, hyperinsulinaemia, alteration in insulin sensitivity indices, increased lipid peroxidation, inflammation, endothelial dysfunction, platelet free radical generation, tyrosine phosphorylation, aggregation, adhesion and intravascular thrombosis. Curcuma oil treatment for the last four weeks in hamsters ameliorated HFr-induced hyperlipidaemia, hyperglycaemia, insulin resistance, oxidative stress, inflammation, endothelial dysfunction, platelet activation, and thrombosis. In HFr fed hamsters, the effect of C. oil at 300 mg/kg [ ] was comparable with the standard drug fenofibrate. Curcuma oil treatment in the last two weeks in rats ameliorated HFr-induced hyperglycaemia and hyperinsulinaemia by modulating hepatic expression of sterol regulatory element binding protein 1c (SREBP-1c), peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1)α and PGC-1β genes known to be involved in lipid and glucose metabolism. High fructose feeding to rats and hamsters led to the development of insulin

  1. Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats.

    Science.gov (United States)

    Brandt, Nina; De Bock, Katrien; Richter, Erik A; Hespel, Peter

    2010-08-01

    Excess energy intake via a palatable low-fat diet (cafeteria diet) is known to induce obesity and glucose intolerance in rats. However, the molecular mechanisms behind this adaptation are not known, and it is also not known whether exercise training can reverse it. Male Wistar rats were assigned to 12-wk intervention groups: chow-fed controls (CON), cafeteria diet (CAF), and cafeteria diet plus swimming exercise during the last 4 wk (CAF(TR)). CAF feeding led to increased body weight (16%, P cafeteria diet resulted in obesity and insulin resistance that was rescued by exercise training. Interestingly, insulin resistance was not accompanied by major defects in the insulin-signaling cascade or in altered AMPK expression or phosphorylation. Thus, compared with previous studies of high-fat feeding, where insulin signaling is significantly impaired, the mechanism by which CAF diet induces insulin resistance seems different.

  2. Arginine and glutamine availability and macrophage functions in the obese insulin-resistant Zucker rat.

    Science.gov (United States)

    Blanc, Marie-Céline; Moinard, Christophe; Béziel, Aurélie; Darquy, Sylviane; Cynober, Luc; De Bandt, Jean-Pascal

    2005-01-01

    Increased susceptibility to infections in obese patients may be related to decreased availability of arginine and glutamine, which may affect immune cell functions. Our aim was to evaluate the in vitro effects of these amino acids on the function of macrophages from obese insulin-resistant Zucker rats. Macrophages, isolated from male Zucker obese or lean rats by peritoneal lavage, were incubated in Dulbecco's modified Eagle medium (DMEM) without arginine or glutamine. Arginine or glutamine was added to the medium at increasing final concentrations (0, 0.25, 0.5, 1 or 2 mM). After stimulation by lipopolysaccharide (LPS) from E. coli (40 microg/ml), productions of tumour necrosis factor alpha (TNFalpha) and of nitric oxide (NO) were measured after 3 or 48 h incubation, respectively. NO production, lower in macrophages from obese rats, decreased in macrophages from lean rats (0 mM: 2,423 +/- 1,174 vs. 2 mM: 198 +/- 31 microM/mg protein/24 h; P glutamine was added. TNFalpha production, lower in macrophages from obese rats, was inversely correlated with glutamine concentration. In the presence of arginine, NO production was constantly higher in macrophages from obese rats. It peaked at 0.5 mM arginine and decreased thereafter in both groups. TNFalpha production in macrophages from lean rats was unaffected by arginine, but decreased in macrophages from obese rats (0 mM: 1920 +/- 450 vs. 2 mM: 810 +/- 90 microM/mg protein/3 h; P arginine and glutamine metabolism in macrophages of obese rats, resulting in decreased TNFalpha production and increased NO release, may contribute to increased susceptibility to infection in insulin-resistant states.

  3. Skeletal muscle atrogene expression and insulin resistance in a rat model of polytrauma.

    Science.gov (United States)

    Akscyn, Robert M; Franklin, John L; Gavrikova, Tatyana A; Messina, Joseph L

    2016-02-01

    Polytrauma is a combination of injuries to more than one body part or organ system. Polytrauma is common in warfare, and in automobile and industrial accidents. The combination of injuries can include burn, fracture, hemorrhage, and trauma to the extremities or specific organ systems. Resistance to anabolic hormones, loss of muscle mass, and metabolic dysfunction can occur following injury. To investigate the effects of combined injuries, we have developed a highly reproducible rodent model of polytrauma. This model combines burn injury, soft tissue trauma, and penetrating injury to the gastrointestinal (GI) tract. Adult, male Sprague-Dawley rats were anesthetized with pentobarbital and subjected to a 15-20% total body surface area scald burn, or laparotomy and a single puncture of the cecum with a G30 needle, or the combination of both injuries (polytrauma). In the current studies, the inflammatory response to polytrauma was examined in skeletal muscle. Changes in skeletal muscle mRNA levels of the proinflammatory cytokines TNF-α, IL-1β, and IL-6 were observed following single injuries and polytrauma. Increased expression of the E3 ubiquitin ligases Atrogin-1/FBX032 and TRIM63/MuRF-1 were measured following injury, as was skeletal muscle insulin resistance, as evidenced by decreased insulin-inducible insulin receptor (IR) and AKT/PKB (Protein Kinase B) phosphorylation. Changes in the abundance of IR and insulin receptor substrate-1 (IRS-1) were observed at the protein and mRNA levels. Additionally, increased TRIB3 mRNA levels were observed 24 h following polytrauma, the same time when insulin resistance was observed. This may suggest a role for TRIB3 in the development of acute insulin resistance following injury.

  4. Intracerebroventricular administration of galanin antagonist sustains insulin resistance in adipocytes of type 2 diabetic trained rats.

    Science.gov (United States)

    Zhang, Zhenwen; Sheng, Shudong; Guo, Lili; Li, Guangzhi; Zhang, Ling; Zhang, Linxiang; Shi, Mingyi; Bo, Ping; Zhu, Yan

    2012-09-25

    The aim of this study is to investigate whether galanin (GAL) central receptors are involved in regulation of insulin resistance. To test it, a GAL antagonist, M35 was intracerebroventricularly administrated in trained type 2 diabetic rats. The euglycemic-hyperinsulinemic clamp test was conducted for an index of glucose infusion rates. The epididymal fat pads were processed for determination of glucose uptake and Glucose Transporter 4 (GLUT4) amounts. The Gal mRNA expression levels in hypothalamus were quantitatively assessed too. We found an inhibitory effect of M35 on glucose uptake into adipocytes, Gal mRNA expression levels in hypothalamus, glucose infusion rates in the clamp test and GLUT4 concentration in plasma membranes and total cell membranes of adipocytes. The ratios of GLUT4 contents of the former to the latter in M35 groups were lower. These results suggest a facilitating role for GAL on GLUT4 translocation and insulin sensitivity via its central receptors in rats.

  5. Resveratrol prevents high-fructose corn syrup-induced vascular insulin resistance and dysfunction in rats.

    Science.gov (United States)

    Babacanoglu, C; Yildirim, N; Sadi, G; Pektas, M B; Akar, F

    2013-10-01

    Dietary intake of fructose and sucrose can cause development of metabolic and cardiovascular disorders. The consequences of high-fructose corn syrup (HFCS), a commonly consumed form of fructose and glucose, have poorly been examined. Therefore, in this study, we investigated whether HFCS intake (10% and 20% beverages for 12 weeks) impacts vascular reactivity to insulin and endothelin-1 in conjunction with insulin receptor substrate-1(IRS-1), endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) mRNA/proteins levels in aorta of rats. At challenge, we tested the effectiveness of resveratrol (28-30 mg/kg body weight/day) on outcomes of HFCS feeding. HFCS (20%) diet feeding increased plasma triglyceride, VLDL, cholesterol, insulin and glucose levels, but not body weights of rats. Impaired nitric oxide-mediated relaxation to insulin (10⁻⁹ to 3×10⁻⁶ M), and enhanced contraction to endothelin-1 (10⁻¹¹ to 10⁻⁸ M) were associated with decreased expression of IRS-1 and eNOS mRNA and protein, but increased expression of iNOS, in aortas of rats fed with HFCS. Resveratrol supplementation restored many features of HFCS-induced disturbances, probably by regulating eNOS and iNOS production. In conclusion, dietary HFCS causes vascular insulin resistance and endothelial dysfunction through attenuating IRS-1 and eNOS expressions as well as increasing iNOS in rats. Resveratrol has capability to recover HFCS-induced disturbances.

  6. Cafeteria diet intake for fourteen weeks can cause obesity and insulin resistance in Wistar rats

    Directory of Open Access Journals (Sweden)

    Danilo Antônio Corrêa Pinto Júnior

    2012-06-01

    Full Text Available OBJECTIVE: Obesity is a strong predictor of some kinds of diseases. High intake of high-fat foods contributes significantly to the growth of the obese population globally. The aim of this study was to verify if consumption of a cafeteria diet for fourteen weeks could increase white fat mass, body weight and skeletal muscle mass and promote insulin resistance in male Wistar rats. METHODS: Twenty animals were divided into two groups: control and obese. Both were fed standard chow and water ad libitum. Additionally, a cafeteria diet consisting of bacon, bologna sausage, sandwich cookies and soft drink was given to the obese group. RESULTS: The obese group was significantly heavier (p<0.0001 than controls from the second week until the end of the cafeteria-diet intervention. Absolute and relative fat mass, liver weight and Lee Index increased significantly (p<0.05 in the obese group. Furthermore, the obese group had lower (p<0.05 insulin sensitivity than the control group. CONCLUSION: In conclusion, fourteen weeks of cafeteria diet promoted a progressive increase of fat mass and insulin resistance. Therefore, this is a great and inexpensive diet-induced insulin resistance model.

  7. Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats

    DEFF Research Database (Denmark)

    Brandt, Nina; De Bock, Katrien; Richter, Erik

    2010-01-01

    Excess energy intake via a palatable low-fat diet (cafeteria diet) is known to induce obesity and glucose intolerance in rats. However, the molecular mechanisms behind this adaptation are not known, and it is also not known whether exercise training can reverse it. Male Wistar rats were assigned...... was counteracted by training. In the perfused hindlimb, insulin-stimulated glucose transport in red gastrocnemius muscle was completely abolished in CAF and rescued by exercise training. Apart from a tendency toward an approximately 20% reduction in both basal and insulin-stimulated Akt Ser(473) phosphorylation (P......) among the groups. In conclusion, surplus energy intake of a palatable but low-fat cafeteria diet resulted in obesity and insulin resistance that was rescued by exercise training. Interestingly, insulin resistance was not accompanied by major defects in the insulin-signaling cascade or in altered AMPK...

  8. Resistant starch improves insulin resistance and reduces adipose tissue weight and CD11c expression in rat OLETF adipose tissue.

    Science.gov (United States)

    Harazaki, Tomomi; Inoue, Seiya; Imai, Chihiro; Mochizuki, Kazuki; Goda, Toshinao

    2014-05-01

    CD11s/CD18 dimers induce monocyte/macrophage infiltration into many tissues, including adipose tissues. In particular, it was reported that β2-integrin CD11c-positive macrophages in adipose tissues are closely associated with the development of insulin resistance. The aim of this study was to determine whether intake of resistant starch (RS) reduces macrophage accumulation in adipose tissues and inhibits the development of insulin resistance at an early stage in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Twenty-two-wk-old male OLETF rats were fed a control diet (55% α-corn starch) or an RS diet (55% RS) for 5 wk. An oral glucose tolerance test was performed after 4 wk of feeding; tissues (mesenteric and epididymal adipose tissues, and liver) and tail vein blood were collected after 5 wk of feeding the test diets. Feeding the RS diet to OLETF rats for 5 wk improved insulin resistance, reduced the mesenteric adipose tissue weight, and enhanced the number of small adipocytes. CD68 expression, a macrophage infiltration marker, was not changed by the RS diet, whereas the gene expression levels of integrins such as CD11c, CD11d, and CD18, but not CD11a, and CD11b, were significantly reduced. CD11c protein expression was reduced by the RS diet. These findings suggest that part of the mechanism for the improved insulin resistance by the RS diet involves a reduction of CD11c expression in adipose tissues. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Induction of insulin resistance by high-sucrose feeding does not raise mean arterial blood pressure but impairs haemodynamic responses to insulin in rats.

    Science.gov (United States)

    Santuré, Marta; Pitre, Maryse; Marette, André; Deshaies, Yves; Lemieux, Christian; Larivière, Richard; Nadeau, André; Bachelard, Hélène

    2002-09-01

    1. This study was undertaken to further investigate the effects of a sucrose-enriched diet on vascular function and insulin sensitivity in rats. 2. Male Sprague-Dawley rats were randomized to receive a sucrose- or regular rat chow-diet for 4 weeks. A first group of sucrose- and chow-fed rats was instrumented with pulsed Doppler flow probes and intravascular catheters to determine blood pressure, heart rate, regional blood flows and insulin sensitivity in conscious rats. Insulin sensitivity was assessed by the euglycemic hyperinsulinemic clamp technique. Glucose transport activity was examined in isolated muscles by using the glucose analogue [(3)H]-2-deoxy-D-glucose. A second group of sucrose- and chow-fed rats was used to obtain information regarding nitric oxide synthase (NOS) isozymes protein expression in muscles, and determine endothelin content in vascular tissues isolated from both dietary groups. 3. Sucrose feeding was found to induce insulin resistance, but had no effect on resting blood pressure, heart rate, or regional haemodynamics. This insulin resistance was accompanied by alteration in the vascular responses to insulin. Insulin-mediated skeletal muscle vasodilation was impaired, whereas the mesenteric vasoconstrictor response was potentiated in sucrose-fed rats. A reduction in eNOS protein content in muscle and an increase in vascular endothelin peptide were noted in these animals. Moreover, a reduction in insulin-simulated glucose transport activity was also noted in muscles isolated from sucrose-fed rats. 4. Together these data suggest that a cluster of metabolic and haemodynamic abnormalities occur in response to the intake of simple sugars in rats.

  10. Effect of Arctium Lappa Root Extract on Glucose Levels and Insulin Resistance in Rats with High Sucrose Diet

    OpenAIRE

    A Ahangarpour; M Mohaghegh; E Asadinia; F Ramazani Ali-Akbari

    2013-01-01

    Introduction: Diabetes Mellitus is a growing health problem in all over the world. Arctium Lappa has been used therapeutically in Europe, North America and Asia. Antioxidants and antidiabetic compounds have been found in the root of Arctium Lappa. This study intends to investigate the effects of Arctium Lappa root aqueous extract on glucose, insulin levels and Fasting Insulin Resistance Index in female rats with high sucrose diet. Methods: 40 female Wistar rats weighting 150-250(g) were appli...

  11. Effect of Moringa oleifera bark extracts on dexamethasone-induced insulin resistance in rats.

    Science.gov (United States)

    Sholapur, H N; Patil, B M

    2013-10-01

    Experimental study has revealed the antidiabetic potentials of ethanolic extract of the bark of Moringa oleifera Lam., (Moringaceae), a multipurpose tree of south Asia. To investigate the effects of alcoholic and petroleum ether extracts of Moringa oleifera bark on acute and chronic insulin resistance induced by dexamethasone in rats. Dexamethasone (dexa) was administered for 11 days (1 mg/kg, s. c., once daily) and single dose (1 mg/kg, i. p.) to induce chronic and acute insulin resistance respectively. 2 doses each of alcoholic (AE125 and AE250 mg/kg) and petroleum ether extracts (PEE30 and PEE60 mg/kg) and single dose each of alcoholic (AE250 mg/kg) and petroleum ether extract (PEE 60 mg/kg) of Moringa oleifera bark were tested in chronic and acute studies. At the end of the studies fasting plasma glucose, triglyceride levels and oral glucose tolerance were measured. In chronic study, treatment of rats with AE125 and AE250 prevented dexamethasone-induced hypertriglyceridemia and oral glucose intolerance but not fasting hyperglycemia, whereas both PEE30 and PEE60 had no effects on any of these parameters measured except that significant reduction of triglyceride level was observed in PEE60 treated rats. Oral glucose intolerance induced by single dose administration of dexamethasone was prevented by AE250 but not by PEE60. In normal rats AE250 treatment improved the glucose tolerance, where as PEE60 had no effect on this parameter. The present study indicates that AE of Moringa oleifera prevents dexamethasone-induced insulin resistance in peripheral tissues. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Effect of melatonin on expression of leptin in subcutaneous fat tissue in insulin-resistant rats

    Directory of Open Access Journals (Sweden)

    Ying LIU

    2014-03-01

    Full Text Available Objective To investigate the effect of melatonin (MLT on protein and mRNA expression of leptin (Lep in subcutaneous fat tissue in insulin resistance (IR rats. Methods Thirty seven Sprague-Dawley (SD rats were randomly divided into model group (n=27 and control group (CN group, n=10. Rats in model group were fed with high glucose diet for 6 weeks. Twenty rats having developed IR in the model group were further randomly divided into two groups: IR group (n=10 and melatonin group (MLT group, n=10. Rats in CN group and MLT group were fed with 10mg/(kg.d of standard chow or MLT, respectively, for 6 weeks from the beginning of the 7th week. At the end of the 12th week, the subcutaneous fat tissue was harvested from bilateral inguinal areas of the rats for the evaluation of the protein and mRNA expression of Lep by immunohistochemistry and RTPCR. Results Systolic blood pressure (SBP, fasting serum leptin (Lep, triglycerides (TG, low density lipoprotein cholesterol (LDL-C, malondialdehyde (MDA and homeostasis model assessment insulin resistance (HOMA-IR were significantly lower (P0.05. The protein and mRNA expressions of Lep in subcutaneous adipose tissue were significantly higher in IR group than in CN group (P<0.01, while they were significantly lower in MLT group than in IR group (P<0.01. Conclusion MLT may improve IR and the status of oxidation stress, and inhibit the over expression of Lep protein and mRNA in subcutaneous fat tissue in the high-glucose diet-induced IR rats. DOI: 10.11855/j.issn.0577-7402.2014.01.04

  13. Pioglitazone can ameliorate insulin resistance in low-dose streptozotocin and high sucrose-fat diet induced obese rats

    Institute of Scientific and Technical Information of China (English)

    Shi-ying DING; Zhu-fang SHEN; Yue-teng CHEN; Su-juan SUN; Quan Liu; Ming-zhi XIE

    2005-01-01

    Aim: To investigate the effect of the peroxisome proliferator-activator receptor (PPAR)-γ agonist, pioglitazone, on insulin resistance in low-dose streptozotocin and high sucrose-fat diet induced obese rats. Methods: Normal female Wistar rats were injected intraperitoneally with low-dose streptozotocin (STZ, 30 mg/kg) and fed with a high sucrose-fat diet for 8 weeks. Pioglitazone (20 mg/kg) was administered orally to the obese and insulin-resistant rats for 28 d. Intraperitoneal glucose tolerance tests, insulin tolerance tests and gluconeogenesis tests were carried out over the last 14 d. At the end of d 28 of the treatment, serums were collected for biochemical analysis. Glucose transporter 4 (GLUT4) and insulin receptor substrate-1 (IRS-1) protein expression in the liver and skeletal muscle were detected using Western blotting. Results: Significant insulin resistance and obesity were observed in low-dose STZ and high sucrose-fat diet induced obese rats. Pioglitazone (20 mg/kg) treatment significantly decreased serum insulin,triglyceride and free fatty acid levels, and elevated high density lipoprotein-cholesterol (HDL-C) levels. Pioglitazone also lowered the lipid contents in the liver and muscles of rats undergoing treatment. Gluconeogenesis was inhibited and insulin sensitivity was improved markedly. The IRS-1 protein contents in the liver and skeletal muscles and the GLUT4 contents in skeletal muscle were elevated significantly. Conclusion: The data suggest that treatment with pioglitazone improves insulin sensitivity in low-dose STZ and high sucrose-fat diet induced obese rats. The insulin sensitizing effect may be associated with ameliorating lipid metabolism, reducing hyperinsulinemia, inhibiting gluconeogenesis, and increasing IRS-1 and GLUT4 protein expression in insulin-sensitive tissues.

  14. Chronic hyperinsulinemia contributes to insulin resistance under dietary restriction in association with altered lipid metabolism in Zucker diabetic fatty rats.

    Science.gov (United States)

    Morita, Ippei; Tanimoto, Keiichi; Akiyama, Nobuteru; Naya, Noriyuki; Fujieda, Kumiko; Iwasaki, Takanori; Yukioka, Hideo

    2017-04-01

    Hyperinsulinemia is widely thought to be a compensatory response to insulin resistance, whereas its potentially causal role in the progression of insulin resistance remains to be established. Here, we aimed to examine whether hyperinsulinemia could affect the progression of insulin resistance in Zucker fatty diabetic (ZDF) rats. Male ZDF rats at 8 wk of age were fed a diet ad libitum (AL) or dietary restriction (DR) of either 15 or 30% from AL feeding over 6 wk. Insulin sensitivity was determined by hyperinsulinemic euglycemic clamp. ZDF rats in the AL group progressively developed hyperglycemia and hyperinsulinemia by 10 wk of age, and then plasma insulin rapidly declined to nearly normal levels by 12 wk of age. Compared with AL group, DR groups showed delayed onset of hyperglycemia and persistent hyperinsulinemia, leading to weight gain and raised plasma triglycerides and free fatty acids by 14 wk of age. Notably, insulin sensitivity was significantly reduced in the DR group rather than the AL group and inversely correlated with plasma levels of insulin and triglyceride but not glucose. Moreover, enhanced lipid deposition and upregulation of genes involved in lipogenesis were detected in liver, skeletal muscle, and adipose tissues of the DR group rather than the AL group. Alternatively, continuous hyperinsulinemia induced by insulin pellet implantation produced a decrease in insulin sensitivity in ZDF rats. These results suggest that chronic hyperinsulinemia may lead to the progression of insulin resistance under DR conditions in association with altered lipid metabolism in peripheral tissues in ZDF rats. Copyright © 2017 the American Physiological Society.

  15. Diet-induced obesity and insulin resistance spur tumor growth and cancer cachexia in rats bearing the Yoshida sarcoma.

    Science.gov (United States)

    Honors, Mary Ann; Kinzig, Kimberly P

    2014-01-01

    Obesity and insulin resistance are associated with increased risk of cancer and cancer mortality. However, it is currently unknown whether they contribute to the development of cancer cachexia, a syndrome that contributes significantly to morbidity and mortality in individuals with cancer. The present experiment addresses the question of whether preexisting obesity and insulin resistance alter tumor growth and cancer cachexia symptoms in Yoshida sarcoma bearing male rats. Obesity and insulin resistance were induced through 5 weeks of high-fat (HF) diet feeding and insulin resistance was confirmed by intraperitoneal glucose tolerance testing. Chow-fed animals were used as a control group. Following the establishment of insulin resistance, HF- and chow-fed animals were implanted with fragments of the Yoshida sarcoma or received a sham surgery. Tumor growth rate was greater in HF-fed animals, resulting in larger tumors. In addition, cancer cachexia symptoms developed in HF-fed animals but not chow-fed animals during the 18-day experiment. These results support a stimulatory effect of obesity and insulin resistance on tumor growth and cancer cachexia development in Yoshida sarcoma-bearing rats. Future research should investigate the relationship between obesity, insulin resistance, and cancer cachexia in human subjects.

  16. Liraglutide prevents microvascular insulin resistance and preserves muscle capillary density in high-fat diet-fed rats.

    Science.gov (United States)

    Chai, Weidong; Fu, Zhuo; Aylor, Kevin W; Barrett, Eugene J; Liu, Zhenqi

    2016-09-01

    Muscle microvasculature critically regulates endothelial exchange surface area to facilitate transendothelial delivery of insulin, nutrients, and oxygen to myocytes. Insulin resistance blunts insulin-mediated microvascular recruitment and decreases muscle capillary density; both contribute to lower microvascular blood volume. Glucagon-like peptide 1 (GLP-1) and its analogs are able to dilate blood vessels and stimulate endothelial cell proliferation. In this study, we aim to determine the effects of sustained stimulation of the GLP-1 receptors on insulin-mediated capillary recruitment and metabolic insulin responses, small arterial endothelial function, and muscle capillary density. Rats were fed a high-fat diet (HFD) for 4 wk with or without simultaneous administration of liraglutide and subjected to a euglycemic hyperinsulinemic clamp for 120 min after an overnight fast. Insulin-mediated muscle microvascular recruitment and muscle oxygenation were determined before and during insulin infusion. Muscle capillary density was determined and distal saphenous artery used for determination of endothelial function and insulin-mediated vasodilation. HFD induced muscle microvascular insulin resistance and small arterial vessel endothelial dysfunction and decreased muscle capillary density. Simultaneous treatment of HFD-fed rats with liraglutide prevented all of these changes and improved insulin-stimulated glucose disposal. These were associated with a significantly increased AMPK phosphorylation and the expressions of VEGF and its receptors. We conclude that GLP-1 receptor agonists may exert their salutary glycemic effect via improving microvascular insulin sensitivity and muscle capillary density during the development of insulin resistance, and early use of GLP-1 receptor agonists may attenuate metabolic insulin resistance as well as prevent cardiovascular complications of diabetes. Copyright © 2016 the American Physiological Society.

  17. Oxidized fish oil in rat pregnancy causes high newborn mortality and increases maternal insulin resistance.

    Science.gov (United States)

    Albert, Benjamin B; Vickers, Mark H; Gray, Clint; Reynolds, Clare M; Segovia, Stephanie A; Derraik, José G B; Lewandowski, Paul A; Garg, Manohar L; Cameron-Smith, David; Hofman, Paul L; Cutfield, Wayne S

    2016-09-01

    Fish oil is commonly taken by pregnant women, and supplements sold at retail are often oxidized. Using a rat model, we aimed to assess the effects of supplementation with oxidized fish oil during pregnancy in mothers and offspring, focusing on newborn viability and maternal insulin sensitivity. Female rats were allocated to a control or high-fat diet and then mated. These rats were subsequently randomized to receive a daily gavage treatment of 1 ml of unoxidized fish oil, a highly oxidized fish oil, or control (water) throughout pregnancy. At birth, the gavage treatment was stopped, but the same maternal diets were fed ad libitum throughout lactation. Supplementation with oxidized fish oil during pregnancy had a marked adverse effect on newborn survival at day 2, leading to much greater odds of mortality than in the control (odds ratio 8.26) and unoxidized fish oil (odds ratio 13.70) groups. In addition, maternal intake of oxidized fish oil during pregnancy led to increased insulin resistance at the time of weaning (3 wks after exposure) compared with control dams (HOMA-IR 2.64 vs. 1.42; P = 0.044). These data show that the consumption of oxidized fish oil is harmful in rat pregnancy, with deleterious effects in both mothers and offspring.

  18. Insulin-induced generation of reactive oxygen species and uncoupling of nitric oxide synthase underlie the cerebrovascular insulin resistance in obese rats.

    Science.gov (United States)

    Katakam, Prasad V G; Snipes, James A; Steed, Mesia M; Busija, David W

    2012-05-01

    Hyperinsulinemia accompanying insulin resistance (IR) is an independent risk factor for stroke. The objective is to examine the cerebrovascular actions of insulin in Zucker obese (ZO) rats with IR and Zucker lean (ZL) control rats. Diameter measurements of cerebral arteries showed diminished insulin-induced vasodilation in ZO compared with ZL. Endothelial denudation revealed vasoconstriction to insulin that was greater in ZO compared with ZL. Nonspecific inhibition of nitric oxide synthase (NOS) paradoxically improved vasodilation in ZO. Scavenging of reactive oxygen species (ROS), supplementation of tetrahydrobiopterin (BH(4)) precursor, and inhibition of neuronal NOS or NADPH oxidase or cyclooxygenase (COX) improved insulin-induced vasodilation in ZO. Immunoblot experiments revealed that insulin-induced phosphorylation of Akt, endothelial NOS, and expression of GTP cyclohydrolase-I (GTP-CH) were diminished, but phosphorylation of PKC and ERK was enhanced in ZO arteries. Fluorescence studies showed increased ROS in ZO arteries in response to insulin that was sensitive to NOS inhibition and BH(4) supplementation. Thus, a vicious cycle of abnormal insulin-induced ROS generation instigating NOS uncoupling leading to further ROS production underlies the cerebrovascular IR in ZO rats. In addition, decreased bioavailability and impaired synthesis of BH(4) by GTP-CH induced by insulin promoted NOS uncoupling.

  19. Endothelial Dysfunction and Insulin Resistance as Pathophysiologic Mechanisms in a Rat Model of Preeclampsia

    Directory of Open Access Journals (Sweden)

    Ayman Z. Elsamanoudy

    2010-01-01

    Full Text Available Problem statement: To assess the plasma concentrations and placental gene expression of soluble fms like tyrosine kinase (sFlt-1, Vascular Endothelial Growth Factor (VEGF, visfatin and Tumour Necrosis Factor α (TNFα in a rat model of preeclampsia, induced by chronic Reduction of Uterine Perfusion Pressure (RUPP and to investigate the involvement of Insulin Resistance (IR in the pathophysiology of preeclampsia and the possible relation of visfatin and TNFα to IR in preclampsia. Approach: Twenty female Sprague-Dawley rats weighing 220-250 g were divided into either RUPP (n = 10 or Normal Pregnant (NP; n = 10 (control groups. Plasma levels and placental gene expression of sFlt-1, VEGF, visfatin, TNFα, plasma endothelin (ET-1, glucose, serum insulin, creatinine, HOMA-IR and placental Malondialdehyde (MDA and total antioxidants were measured. Also, Mean Arterial Pressure (MAP, fetal number and weight were determined. Results: In RUPP rats, MAP increased, plasma level and placental gene expression of sFlt-1, visfatin and TNFα increased while those of VEGF decreased. Moreover, plasma ET-1, glucose, insulin, HOMA-IR increased while GFR, fetal weight and number decreased. There is a significant positive correlation between TNFα, ET-1, sFlt-1 and MAP, between plasma visfatin or TNFα levels and both serum insulin and HOMA-IR, between visfatin and TNFα, between TNFα and ET-1 and between placental MDA and either sFlt-1 or ET-1. Furthermore, a negative correlation was reported between VEGF and MAP. Conclusion: RUPP increased sFlt-1, TNFα and decreased VEGF resulting in endothelial dysfunction which is manifested by increased MDA and ET-1. This results in altered renal function and hypertension. Moreover, IR may be involved in the pathophysiology of preeclampsia. Visfatin and TNFα, may have a role in IR during preclampsia.

  20. The effect of N-stearoylethanolamine on plasma lipid composition in rats with experimental insulin resistance

    Directory of Open Access Journals (Sweden)

    O. V. Onopchenko

    2015-02-01

    Full Text Available A model of insulin resistance (IR, induced by prolonged high fat diet with high content of saturated fats was used to investigate the effect of N-stearoylethanolamine (NSE on the composition of free fatty acids (FFA, plasma lipoprotein spectrum and content of proinflammatory cytokine TNFα in rats. The results of this work showed a rise in the content of monounsaturated fatty acids (18:1 n-9 and a reduction in the level of polyunsaturated fatty acids (20:4 n-6 in plasma of rats with experimental IR. These findings are accompanied by the increased TNFα production and significant changes in plasma lipoprotein profile of rats with the fat overload. Particularly, a decreased high-density lipoprotein (HDL cholesterol level and increased low-density (LDL and very low-density lipoprotein (VLDL cholesterol level were detected. The NSE administration to obese rats with IR restored the content of mono- and polyunsaturated FFA, increased HDL cholesterol content and reduced LDL cholesterol level. In addition, the IR rats treated with NSE showed normalization in the serum TNFα level. Our results showed the restoration of plasma lipid profile under NSE administration in rats with obesity-induced IR. Considering the fact that plasma lipid composition displays the lipid metabolism in general, the NSE actions may play a significant role in the prevention of IR-associated complications.

  1. N-stearoylethanolamine restores pancreas lipid composition in obesity-induced insulin resistant rats.

    Science.gov (United States)

    Onopchenko, Oleksandra V; Kosiakova, Galina V; Oz, Murat; Klimashevsky, Vitaliy M; Gula, Nadiya M

    2015-01-01

    This study investigates the protective effect of N-stearoylethanolamine (NSE), a bioactive N-acylethanolamine , on the lipid profile distribution in the pancreas of obesity-induced insulin resistant (IR) rats fed with prolonged high fat diet (58% of fat for 6 months). The phospholipid composition was determined using 2D thin-layer chromatography. The level of individual phospholipids was estimated by measuring inorganic phosphorus content. The fatty acid (FA) composition and cholesterol level were investigated by gas-liquid chromatography. Compared to controls, plasma levels of triglycerides and insulin were significantly increased in IR rats. The pancreas lipid composition indicated a significant reduction of the free cholesterol level and some phospholipids such as phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn), phosphatidylinositol (PtdIns), phosphatidylserine (PtdSer) compared to controls. Moreover, the FA composition of pancreas showed a significant redistribution of the main FA (18:1n-9, 18:2n-6, 18:3n-6 and 20:4n-6) levels between phospholipid, free FA, triglyceride fractions under IR conditions that was accompanied by a change in the estimated activities of Δ9-, Δ6-, Δ5-desaturase. Administration of N-stearoylethanolamine (NSE, 50 mg/kg daily per os for 2 weeks) IR rats triggered an increase in the content of free cholesterol, PtdCho and normalization of PtdEtn, PtdSer level. Furthermore, the NSE modulated the activity of desaturases, thus influenced FA composition and restored the FA ratios in the lipid fractions. These NSE-induced changes were associated with a normalization of plasma triglyceride content, considerable decrease of insulin and index HOMA-IR level in rats under IR conditions.

  2. Protective effects of garlic extract on cardiac function, heart rate variability, and cardiac mitochondria in obese insulin-resistant rats.

    Science.gov (United States)

    Supakul, Luerat; Pintana, Hiranya; Apaijai, Nattayaporn; Chattipakorn, Siriporn; Shinlapawittayatorn, Krekwit; Chattipakorn, Nipon

    2014-04-01

    Garlic has been shown to exhibit antioxidant effects and cardioprotective properties. However, the effects of garlic extract on the heart in insulin resistance induced by long-term high-fat-diet consumption are not well defined. Therefore, we sought to determine the effects of garlic extract in the obese insulin-resistant rats. Male Wistar rats (180-200 g) were divided into two groups: normal-diet or high-fat-diet (n = 24/group) fed for 12 weeks. Rats in each groups were divided into three subgroups (n = 8 each): vehicle or garlic extract (250 or 500 mg/kg/day, respectively) treated for 28 days. At the end of the treatment, the metabolic parameters, heart rate variability (HRV), cardiac function, and cardiac mitochondrial function were determined. Rats that received a high-fat-diet for 12 weeks had increased body weight, visceral fat, plasma insulin levels, total cholesterol, oxidative stress levels, depressed HRV, and cardiac mitochondrial dysfunction. Garlic extract at both concentrations significantly decreased the plasma insulin, total cholesterol, homeostasis model assessment index, and oxidative stress levels. Furthermore, garlic extract at both doses restored the HRV, cardiac function, and cardiac mitochondrial function. We concluded that garlic extract at both concentrations exerted cardioprotective effects against cardiac dysfunction and mitochondrial dysfunction in obese insulin-resistant rats.

  3. Tinospora crispa Ameliorates Insulin Resistance Induced by High Fat Diet in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Mohd Nazri Abu

    2015-01-01

    Full Text Available The antidiabetic properties of Tinospora crispa, a local herb that has been used in traditional Malay medicine and rich in antioxidant, were explored based on obesity-linked insulin resistance condition. Male Wistar rats were randomly divided into four groups, namely, the normal control (NC which received standard rodent diet, the high fat diet (HFD which received high fat diet only, the high fat diet treated with T. crispa (HFDTC, and the high fat diet treated with orlistat (HFDO. After sixteen weeks of treatment, blood and organs were harvested for analyses. Results showed that T. crispa significantly (p < 0.05 reduced the body weight (41.14 ± 1.40%, adiposity index serum levels (4.910 ± 0.80%, aspartate aminotransferase (AST: 161 ± 4.71 U/L, alanine aminotransferase (ALT: 100.95 ± 3.10 U/L, total cholesterol (TC: 18.55 ± 0.26 mmol/L, triglycerides (TG: 3.70 ± 0.11 mmol/L, blood glucose (8.50 ± 0.30 mmo/L, resistin (0.74 ± 0.20 ng/mL, and leptin (17.428 ± 1.50 ng/mL hormones in HFDTC group. The insulin (1.65 ± 0.07 pg/mL and C-peptide (136.48 pmol/L hormones were slightly decreased but within normal range. The histological results showed unharmed and intact liver tissues in HFDTC group. As a conclusion, T. crispa ameliorates insulin resistance-associated with obesity in Wistar rats fed with high fat diet.

  4. Supplemental arginine above the requirement during suckling causes obesity and insulin resistance in rats.

    Science.gov (United States)

    Otani, Lila; Mori, Tomomi; Koyama, Ayaka; Takahashi, Shin-Ichiro; Kato, Hisanori

    2016-06-01

    Nutrition in early life is important in determining susceptibility to adult obesity, and arginine may promote growth acceleration in infants. We hypothesized that maternal arginine supplementation may promote growth in their pups and contribute to obesity and alteration of the metabolic system in later life. Dams and pups of Wistar rats were given a normal diet (15% protein) as a control (CN) or a normal diet with 2% arginine (ARG). Altered profiles of free amino acids in breast milk were observed in that the concentrations of threonine and glycine were lower in the ARG dams compared with the CN dams. The offspring of the CN and ARG dams were further subdivided into normal-diet (CN-CN and ARG-CN) groups and a high fat-diet groups (CN-HF and ARG-HF). In response to the high fat-diet feeding, the visceral fat deposits were significantly increased in the ARG-HF group (although not compared with the CN-HF group); no difference was observed between the CN-CN and ARG-CN groups. The blood glucose and insulin levels after glucose loading were significantly higher in the ARG-HF group compared with the CN-HF group. The results suggest that the offspring of dams supplemented with arginine during lactation acquired increased susceptibility to a high-fat diet, resulting in visceral obesity and insulin resistance. The lower supply of threonine and glycine to pups may be one of the contributing causes to the programming of lifelong obesity risk in offspring. Our findings also indicated that maternal arginine supplementation during suckling causes obesity and insulin resistance in rats.

  5. Insulin sensitivity is normalized in the third generation (F3 offspring of developmentally programmed insulin resistant (F2 rats fed an energy-restricted diet

    Directory of Open Access Journals (Sweden)

    Martin John F

    2008-10-01

    Full Text Available Abstract Background/Aims The offspring and grandoffspring of female rats fed low protein diets during pregnancy and lactation, but fed nutritionally adequate diets thereafter, have been shown to exhibit altered insulin sensitivity in adulthood. The current study investigates the insulin sensitivity of the offspring and grandoffspring of female rats fed low protein diets during pregnancy, and then maintained on energy-restricted diets post weaning over three generations. Methods Female Sprague Dawley rats (F0 were mated with control males and protein malnourished during pregnancy/lactation. F1 offspring were then weaned to adequate but energy-restricted diets into adulthood. F1 dams were fed energy-restricted diets throughout pregnancy/lactation. F2 offspring were also fed energy-restricted diets post weaning. F2 pregnant dams were maintained as described above. Their F3 offspring were split into two groups; one was maintained on the energy-restricted diet, the other was maintained on an adequate diet consumed ad libitum post weaning. Results F2 animals fed energy-restricted diets were insulin resistant (p ad libitum postweaning diets (p Conclusion Maternal energy-restriction did not consistently program reduced insulin sensitivity in offspring over three consecutive generations. The reasons for this remain unclear. It is possible that the intergenerational transmission of developmentally programmed insulin resistance is determined in part by the relative insulin sensitivity of the mother during pregnancy/lactation.

  6. Modulation of Diabetes and Dyslipidemia in Diabetic Insulin-Resistant Rats by Mangiferin: Role of Adiponectin and TNF-α

    Directory of Open Access Journals (Sweden)

    SAMIRA SALEH

    2014-12-01

    Full Text Available Mangiferin, present in Mangifera indica bark, was reported to produce hypoglycemic and antidiabetic activity in an animal model of genetic type 2 diabetes and in streptozotocin diabetic rats. Its effect on diabetic insulin-resistant animals has not been investigated. The current work aimed to explore the effect of mangiferin on diabetic insulin-resistant rat model. Diabetes was induced by high-fat/high fructose diet for eight weeks followed by a subdiabetogenic dose of streptozotocin (HFD-Fr-STZ. Rats were treated with mangiferin (20 mg/kg i.p. for 28 days starting one week after STZ and its effects were compared to the standard insulin sensitizer, rosiglitazone. HFD-Fr-STZ, induced obesity, hyperglycemia and insulin resistance accompanied by depletion in liver glycogen and dyslipidemia. Moreover, there was an elevation in serum TNF-α and a reduction in adiponectin. Mangiferin ameliorated the consequences of HFD-Fr-STZ and its actions were comparable to the effects of the standard insulin sensitizer, rosiglitazone. The results obtained in this study provide evidence that mangiferin is a possible beneficial natural compound for type 2 diabetes and metabolic disorders associated with the metabolic syndrome. This effect is mediated through improving insulin sensitivity, modulating lipid profile and reverting adipokine levels to normal.

  7. Modulation of diabetes and dyslipidemia in diabetic insulin-resistant rats by mangiferin: role of adiponectin and TNF-α.

    Science.gov (United States)

    Saleh, Samira; El-Maraghy, Nabila; Reda, Enji; Barakat, Waleed

    2014-12-01

    Mangiferin, present in Mangifera indica bark, was reported to produce hypoglycemic and antidiabetic activity in an animal model of genetic type 2 diabetes and in streptozotocin diabetic rats. Its effect on diabetic insulin-resistant animals has not been investigated. The current work aimed to explore the effect of mangiferin on diabetic insulin-resistant rat model. Diabetes was induced by high-fat/high fructose diet for eight weeks followed by a subdiabetogenic dose of streptozotocin (HFD-Fr-STZ). Rats were treated with mangiferin (20 mg/kg i.p.) for 28 days starting one week after STZ and its effects were compared to the standard insulin sensitizer, rosiglitazone. HFD-Fr-STZ, induced obesity, hyperglycemia and insulin resistance accompanied by depletion in liver glycogen and dyslipidemia. Moreover, there was an elevation in serum TNF-α and a reduction in adiponectin. Mangiferin ameliorated the consequences of HFD-Fr-STZ and its actions were comparable to the effects of the standard insulin sensitizer, rosiglitazone. The results obtained in this study provide evidence that mangiferin is a possible beneficial natural compound for type 2 diabetes and metabolic disorders associated with the metabolic syndrome. This effect is mediated through improving insulin sensitivity, modulating lipid profile and reverting adipokine levels to normal.

  8. Glycosphingolipids and insulin resistance

    NARCIS (Netherlands)

    M. Langeveld; J.F.M.G. Aerts

    2009-01-01

    Obesity is associated with an increased risk for insulin resistance, a state characterized by impaired responsiveness of liver, muscle and adipose tissue to insulin. One class of lipids involved in the development of insulin resistance are the (glyco)sphingolipids. Ceramide, the most simple sphingol

  9. The ergogenic supplement β-hydroxy-β-methylbutyrate (HMB) attenuates insulin resistance through suppressing GLUT-2 in rat liver.

    Science.gov (United States)

    Sharawy, Maha H; El-Awady, Mohammed S; Megahed, Nirmeen; Gameil, Nariman M

    2016-05-01

    This study investigates the effect of the ergogenic supplement β-hydroxy-β-methylbutyrate (HMB) on insulin resistance induced by high-fructose diet (HFD) in rats. Male Sprague Dawley rats were fed 60% HFD for 12 weeks and HMB (320 mg·kg(-1)·day(-1), orally) for 4 weeks. HFD significantly increased fasting insulin, fasting glucose, glycosylated hemoglobin (HBA1C), liver glycogen content, and homeostasis model assessment of insulin resistance (HOMA-IR) index, while it decreased glucose and insulin tolerance. Furthermore, HFD significantly increased serum triglycerides (TG), low density lipoprotein cholesterol (LDL-C), and very low density lipoprotein cholesterol (VLDL-C) levels, while it significantly decreased high density lipoprotein cholesterol (HDL-C). Moreover, HFD significantly increased mRNA expression of glucose transporter type-2 (GLUT-2), the mammalian target of rapamycin (mTOR), and sterol regulatory element-binding protein-1c (SREBP-1c) but decreased peroxisome proliferator-activated receptor-alpha (PPAR-α) in liver. Aortic relaxation to acetylcholine (ACh) was impaired and histopathology showed severe hepatic steatosis. HMB significantly increased insulin tolerance and decreased fasting insulin, HOMA-IR, HBA1C, hepatic glycogen content, serum TG, LDL-C, and VLDL-C. Additionally, HMB enhanced ACh-induced relaxation, ameliorated hepatic steatosis, and decreased mRNA expression of GLUT-2. In conclusion, HMB may attenuate insulin resistance and hepatic steatosis through inhibiting GLUT-2 in liver.

  10. Chronic caffeine intake decreases circulating catecholamines and prevents diet-induced insulin resistance and hypertension in rats.

    Science.gov (United States)

    Conde, Silvia V; Nunes da Silva, Tiago; Gonzalez, Constancio; Mota Carmo, Miguel; Monteiro, Emilia C; Guarino, Maria P

    2012-01-01

    We tested the hypothesis that long-term caffeine intake prevents the development of insulin resistance and hypertension in two pathological animal models: the high-fat (HF) and the high-sucrose (HSu) diet rat. We used six groups of animals: control; caffeine-treated (Caff; 1 g/l in drinking water during 15 d); HF; caffeine-treated HF (HFCaff); HSu; caffeine-treated HSu (HSuCaff). Insulin sensitivity was assessed using the insulin tolerance test. Blood pressure, weight gain, visceral fat, hepatic glutathione, plasma caffeine, insulin and NO, and serum NEFA and catecholamines were measured. Caffeine reversed insulin resistance and hypertension induced by both the HF and HSu diets. In the HF-fed animals caffeine treatment restored fasting insulin levels to control values and reversed increased weight gain and visceral fat mass. In the HSu group, caffeine reversed fasting hyperglycaemia and restored NEFA to control values. There were no changes either in plasma NO or in hepatic glutathione levels. In contrast, caffeine totally prevented the increase in serum catecholamines induced by HF and HSu diets. To test the hypothesis that inhibition of the sympathetic nervous system prevents the development of diet-induced insulin resistance we administered carvedilol, an antagonist of β1, β2 and also α1 adrenoceptors, to HF and HSu rats. Carvedilol treatment fully prevented diet-induced insulin resistance and hypertension, mimicking the effect of caffeine. We concluded that long-term caffeine intake prevented the development of insulin resistance and hypertension in HF and HSu models and that this effect was related to a decrease in circulating catecholamines.

  11. Tissue Kallikrein Reverses Insulin Resistance and Attenuates Nephropathy in Diabetic Rats by Activation of PI3 kinase/Akt and AMPK Signaling Pathways

    OpenAIRE

    Yuan, Gang; Deng, Juanjuan; Wang, Tao; Zhao, Chunxia; Xu, Xizheng; Wang, Peihua; Voltz, James W.; Edin, Matthew L.; Xiao, Xiao; Chao, Lee; Chao, Julie; Zhang, Xin A.; Zeldin, Darryl C.; Wang, Dao Wen

    2007-01-01

    We previously reported that intravenous delivery of the human tissue kallikrein (HK) gene reduced blood pressure and plasma insulin levels in fructose-induced hypertensive rats with insulin resistance. In the current study, we evaluated the potential of a recombinant adeno-associated viral vector expressing the HK cDNA (rAAV·HK) as a sole, long term therapy to correct insulin resistance and prevent renal damage in streptozotocin-induced type-2 diabetic rats. Administration of streptozotocin i...

  12. Hemin, a heme oxygenase-1 inducer, improves aortic endothelial dysfunction in insulin resistant rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Under an insulin resistance(IR)state,overproduction of reactive oxygen species(ROS)may be playing a maior role in the pathogenesis of endothelial dysfunction,hypertension and atherosclerosis.Recently,increasing attention has been drawn to the beneficial effects of heme oxygenase-1(HO-1)in the cardiovascular system.This study aimed to investigate the effects of HO-1 on vascular function of thoracic aorta in IR rats and demonstrate the probable mechanisms of HO-1 against endothelial dysfunction in IR states.Methods Sprague-Dawley (SD) rats fed with high-fat diet for 6 weeks and the IR models were validated with hyperinsulinemic-euglycemic clamp test.Then the IR rat models (n=44) were further randomized into 3 subgroups,namely,the IR control group (n=26, in which 12 were sacrificed immediately and evaluated for all study measures),a hemin treated IR group (n=10) and a zinc protoporphyrin-Ⅸ (ZnPP-Ⅸ)treated IR group (n=8) that were fed with a high-fat diet.Rats with standardized chow diet were used as the normal control group (n=12). The rats in IR control group,hemin treated IR group and ZnPP-Ⅸ treated IR group were subsequently treated every other day with an intraperitoneal injection of normal saline,hemin (inducer of HO-1,30 μmol/kg) or ZnPP-Ⅸ (inhibitor of HO-1,10 μmol/kg) for 4 weeks.Rats in the normal control group remained on a standardized chow diet and were treated with intraperitoneal injections of normal saline every other day for 4 weeks.Systolic arterial blood pressure (SABP) was measured by tall-cuffed microphotoelectric plethysmography.The blood carbon monoxide (CO) was measured by blood gas analysis. The levels of nitric oxide (NO),inducible nitric oxide synthase (INOS),endothelial nitric oxide synthase (eNOS),blood glucose (BG),insulin,total cholesterol (TC) and triglyceride (TG) in serum,and the levels of total antioxidant capacity (rAOC),maIondialdehyde (MDA) and superoxide dismutase (SOD) in the aorta were measured

  13. Effect of Berberine on Expression of Hepatocyte Nuclear Factor-4α in Rats with Fructose-induced Insulin Resistance

    Institute of Scientific and Technical Information of China (English)

    Zhiqiang GAO; Sanhua LENG; Fuer LU; Meijuan XIE; Lijun XU; Kaifu WANG

    2008-01-01

    The effects of berberine on the expression of hepatocyte nuclear factor-4α (HNF-4α) in liver of rats with fructose-induced insulin resistance and the molecular mechanism of berberine preventing insulin resistance were investigated. The experimental animals were divided into two groups of 16 animals each. The control group received a control routine diet containing 60% carbohydrate, and the study group a high-fructose diet containing 60% fructose as the sole source of carbohydrate. At the end of 6 weeks these were each subdivided into two groups. One was administered with berberine [187.5mg/(kg·d) in 5g/L carboxymethyl cellulosel] by intragastric intubation and the other group was treated with a vehicle (5g/L carboxymethyl cellulose). The rats were fed on the same dietary regimen for the next 4 weeks. After the experimental period of 10 weeks, plasma glucose, insulin and triglyceride levels were measured. HOMA insulin resistance index (HOMA-IR) was assayed. Immunohistochemistry, semiquantitative RT-PCR and western blot were used to detect the expression of HNF-4α in liver. Compared with control diet, fructose feeding induced hyperinsulinemia, HOMA-IR and increased triglyceride (all P<0.01). Berberine prevented the rise in plasma insulin (P<0.01), HOMA-IR (P<0.01) and triglyceride (P<0.05) in the fructose-fed rats. No change in plasma glucose was seen among these groups. The mRNA and protein expression of HNF-4α was decreased in the fructose-fed rats, but berberine could promote its expression. It was concluded that berberine could prevent fructose-induced insulin resistance in rats possibly by promoting the expression HNF-4α in liver.

  14. Effect of an avocado oil-enhanced diet (Persea americana on sucrose-induced insulin resistance in Wistar rats

    Directory of Open Access Journals (Sweden)

    Mario Del Toro-Equihua

    2016-04-01

    Full Text Available A number of studies have been conducted to evaluate the effects of vegetable oils with varying percentages of monounsaturated and polyunsaturated fatty acids on insulin resistance. However, there is no report on the effect of avocado oil on this pathologic condition. The aim of this work was to evaluate the effect of avocado oil on sucrose-induced insulin resistance in Wistar rats. An experimental study was carried out on Wistar rats that were randomly assigned into six groups. Each group received a different diet over an 8-week period (n = 11 in each group: the control group was given a standard diet, and the other five groups were given the standard feed plus sucrose with the addition of avocado oil at 0%, 5%, 10%, 20%, and 30%, respectively. Variables were compared using Student t test and analysis of variance. Statistically significant difference was considered when p < 0.05. Rats that were given diets with 10% and 20% avocado oil showed lower insulin resistance (p = 0.022 and p = 0.024, respectively. Similar insulin resistance responses were observed in the control and 30% avocado oil addition groups (p = 0.85. Addition of 5–30% avocado oil lowered high sucrose diet-induced body weight gain in Wistar rats. It was thus concluded that glucose tolerance and insulin resistance induced by high sucrose diet in Wistar rats can be reduced by the dietary addition of 5–20% avocado oil.

  15. The exenatide analogue AC3174 attenuates hypertension, insulin resistance, and renal dysfunction in Dahl salt-sensitive rats

    Directory of Open Access Journals (Sweden)

    Fernandez Rayne

    2010-08-01

    Full Text Available Abstract Background Activation of glucagon-like peptide-1 (GLP-1 receptors improves insulin sensitivity and induces vasodilatation and diuresis. AC3174 is a peptide analogue with pharmacologic properties similar to the GLP-1 receptor agonist, exenatide. Hypothetically, chronic AC3174 treatment could attenuate salt-induced hypertension, cardiac morbidity, insulin resistance, and renal dysfunction in Dahl salt-sensitive (DSS rats. Methods DSS rats were fed low salt (LS, 0.3% NaCl or high salt (HS, 8% NaCl diets. HS rats were treated with vehicle, AC3174 (1.7 pmol/kg/min, or GLP-1 (25 pmol/kg/min for 4 weeks via subcutaneous infusion. Other HS rats received captopril (150 mg/kg/day or AC3174 plus captopril. Results HS rat survival was improved by all treatments except GLP-1. Systolic blood pressure (SBP was lower in LS rats and in GLP-1, AC3174, captopril, or AC3174 plus captopril HS rats than in vehicle HS rats (p Conclusions Thus, AC3174 had antihypertensive, cardioprotective, insulin-sensitizing, and renoprotective effects in the DSS hypertensive rat model. Furthermore, AC3174 improved animal survival, an effect not observed with GLP-1.

  16. Silymarin ameliorates fructose induced insulin resistance syndrome by reducing de novo hepatic lipogenesis in the rat.

    Science.gov (United States)

    Prakash, Prem; Singh, Vishal; Jain, Manish; Rana, Minakshi; Khanna, Vivek; Barthwal, Manoj Kumar; Dikshit, Madhu

    2014-03-15

    High dietary fructose causes insulin resistance syndrome (IRS), primarily due to simultaneous induction of genes involved in glucose, lipid and mitochondrial oxidative metabolism. The present study evaluates effect of a hepatoprotective agent, silymarin (SYM) on fructose-induced metabolic abnormalities in the rat and also assessed the associated thrombotic complications. Wistar rats were kept on high fructose (HFr) diet throughout the 12-week study duration (9 weeks of HFr feeding and subsequently 3 weeks of HFr plus SYM oral administration [once daily]). SYM treatment significantly reduced the HFr diet-induced increase expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α/β, peroxisome proliferator-activated receptor (PPAR)-α, forkhead box protein O1 (FOXO1), sterol regulatory element binding protein (SREBP)-1c, liver X receptor (LXR)-β, fatty acid synthase (FAS) and PPARγ genes in rat liver. SYM also reduced HFr diet mediated increase in plasma triglycerides (TG), non-esterified fatty acids (NEFA), uric acid, malondialdehyde (MDA), total nitrite and pro-inflammatory cytokines (C-reactive protein [CRP], interleukin-6 [IL-6], interferon-gamma [IFN-γ] and tumor necrosis factor [TNF]) levels. Moreover, SYM ameliorated HFr diet induced reduction in glucose utilization and endothelial dysfunction. Additionally, SYM significantly reduced platelet activation (adhesion and aggregation), prolonged ferric chloride-induced blood vessel occlusion time and protected against exacerbated myocardial ischemia reperfusion (MI-RP) injury. SYM treatment prevented HFr induced mRNA expression of hepatic PGC-1α/β and also its target transcription factors which was accompanied with recovery in insulin sensitivity and reduced propensity towards thrombotic complications and aggravated MI-RP injury.

  17. Silymarin preconditioning protected insulin resistant rats from liver ischemia-reperfusion injury: role of endogenous H2S.

    Science.gov (United States)

    Younis, Nahla N; Shaheen, Mohamed A; Mahmoud, Mona F

    2016-08-01

    Hydrogen sulfide (H2S) can protect against hepatic ischemia-reperfusion injury (HIR). However, it is unknown whether it can protect against HIR in insulin resistance. This study investigated the protective effects of silymarin against HIR in a rat model of insulin resistance and the possible involvement of endogenous H2S. Insulin resistance was first established using 10% fructose in drinking water for 10 weeks. HIR was conducted in fructose-fed rats treated with saline or silymarin (100 mg/kg), 15 min before HIR (30 min ischemia, followed by 1 h reperfusion). Insulin resistance and serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), total nitrites (NO2(-)), and H2S were measured. Hepatic malondialdehyde (MDA), reduced glutathione (GSH), hydroxyproline, H2S synthesizing activity, and mRNA expression of cystathionine β-synthase (CBS) or cystathionine γ-lyase (CSE) were determined. Additionally, histopathological examination involved H&E, Sirius red, and caspase-3 immunostaining. Fructose-induced insulin resistance increased serum ALT, TNF-α, H2S and H2S synthesizing activity, and hepatic MDA, hydroxyproline, and CSE mRNA and decreased NO2(-) and GSH. These changes exacerbated the HIR injury in which endogenous H2S production was auxiliary increased. Silymarin preconditioning decreased ALT, AST, MDA, NO2(-), TNF-α, and TNF-α/IL-10 ratio, increased GSH, IL-10, improved hepatic architecture, and lowered caspase-3 immunostaining. Serum H2S, its hepatic synthesizing activity, and CSE and CBS mRNA expressions were all suppressed by silymarin pretreatment. The increases in endogenous H2S exacerbate HIR injury, whereas silymarin preconditioning protected against HIR in insulin resistant rats via powerful antioxidant, anti-inflammatory, and antiapoptotic effects along with suppressing H2S production. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Endurance exercise training ameliorates insulin resistance and reticulum stress in adipose and hepatic tissue in obese rats.

    Science.gov (United States)

    da Luz, Gabrielle; Frederico, Marisa J S; da Silva, Sabrina; Vitto, Marcelo F; Cesconetto, Patricia A; de Pinho, Ricardo A; Pauli, José R; Silva, Adelino S R; Cintra, Dennys E; Ropelle, Eduardo R; De Souza, Cláudio T

    2011-09-01

    Obesity-induced endoplasmatic reticulum (ER) stress has been demonstrated to underlie the induction of obesity-induced JNK and NF-κB activation inflammatory responses, and generation of peripheral insulin resistance. On the other hand, exercise has been used as a crucial tool in obese and diabetic patients, and may reduce inflammatory pathway stimulation. However, the ability of exercise training to reverse endoplasmatic reticulum stress in adipose and hepatic tissue in obesity has not been investigated in the literature. Here, we demonstrate that exercise training ameliorates ER stress and insulin resistance in DIO-induced rats. Rats were fed with standard rodent chow (3,948 kcal kg(-1)) or high-fat diet (5,358 kcal kg(-1)) for 2 months. After that rats were submitted to swimming training (1 h per day, 5 days for week with 5% overload of the body weight for 8 weeks). Samples from epididymal fat and liver were obtained and western blot analysis was performed. Our results showed that swimming protocol reduces pro-inflammatory molecules (JNK, IκB and NF-κB) in adipose and hepatic tissues. In addition, exercise leads to reduction in ER stress, by reducing PERK and eIF2α phosphorylation in these tissues. In parallel, an increase in insulin pathway signaling was observed, as confirmed by increases in IR, IRSs and Akt phosphorylation following exercise training in DIO rats. Thus, results suggest that exercise can reduce ER stress, improving insulin resistance in adipose and hepatic tissue.

  19. Regulation of liver glucokinase activity in rats with fructose-induced insulin resistance and impaired glucose and lipid metabolism.

    Science.gov (United States)

    Francini, Flavio; Castro, María C; Gagliardino, Juan J; Massa, María L

    2009-09-01

    We evaluated the relative role of different regulatory mechanisms, particularly 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFK2/FBPase-2), in liver glucokinase (GK) activity in intact animals with fructose-induced insulin resistance and impaired glucose and lipid metabolism. We measured blood glucose, triglyceride and insulin concentration, glucose tolerance, liver triglyceride content, GK activity, and GK and PFK2 protein and gene expression in fructose-rich diet (FRD) and control rats. After 3 weeks, FRD rats had significantly higher blood glucose, insulin and triglyceride levels, and liver triglyceride content, insulin resistance, and impaired glucose tolerance. FRD rats also had significantly higher GK activity in the cytosolic fraction (18.3 +/- 0.35 vs. 11.27 +/- 0.34 mU/mg protein). Differences in GK protein concentration (116% and 100%) were not significant, suggesting a potentially impaired GK translocation in FRD rats. Although GK transcription level was similar, PFK2 gene expression and protein concentration were 4- and 5-fold higher in the cytosolic fraction of FRD animals. PFK2 immunological blockage significantly decreased GK activity in control and FRD rats; in the latter, this blockage decreased GK activity to control levels. Results suggest that increased liver GK activity might participate in the adaptative response to fructose overload to maintain glucose/triglyceride homeostasis in intact animals. Under these conditions, PFK2 increase would be the main enhancer of GK activity.

  20. Kaempferol alleviates insulin resistance via hepatic IKK/NF-κB signal in type 2 diabetic rats.

    Science.gov (United States)

    Luo, Cheng; Yang, Hui; Tang, Chengyong; Yao, Gaoqiong; Kong, Lingxi; He, Haixia; Zhou, Yuanda

    2015-09-01

    Recent studies show that inflammation underlies the metabolic disorders of insulin resistance and type 2 diabetes mellitus. Since kaempferol, a naturally occurring flavonoid, has been described to have potent anti-inflammatory properties, we investigated whether kaempferol could ameliorate insulin resistance through inhibiting inflammatory responses. The model of diabetic rat was induced by 6-week high-fat diet plus streptozotocin. Animals were orally treated with kaempferol (50 or 150 mg/kg) and aspirin (100mg/kg) for 10 weeks. The results showed that kaempferol ameliorated blood lipids and insulin in an dose-dependent manner. Kaempferol effectively restored insulin resistance induced alteration of glucose disposal by using an insulin tolerance test and the euglycemic-hyperinsulinemic clamp method. Western blotting results showed that KPF inhibited the phosphorylation of insulin receptor substrate-1 (IRS-1), IkB kinase α (IKKα) and IkB kinase β (IKKβ). These effects were accompanied with reduction in nucleic and cytosol levels of nuclear factor kappa-β (NF-κB), and further tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels. Aspirin had similar effects. These results provide in vivo evidence that kaempferol-mediated down-regulation of IKK and subsequent inhibition of NF-κB pathway activation may be associated with the reduction of hepatic inflammatory lesions, which is contributing to the improvement of insulin signaling defect in diabetes.

  1. Protective Effect of Vanillic Acid against Hyperinsulinemia, Hyperglycemia and Hyperlipidemia via Alleviating Hepatic Insulin Resistance and Inflammation in High-Fat Diet (HFD)-Fed Rats.

    Science.gov (United States)

    Chang, Wen-Chang; Wu, James Swi-Bea; Chen, Chen-Wen; Kuo, Po-Ling; Chien, Hsu-Min; Wang, Yuh-Tai; Shen, Szu-Chuan

    2015-12-02

    Excess free fatty acid accumulation from abnormal lipid metabolism results in the insulin resistance in peripheral cells, subsequently causing hyperinsulinemia, hyperglycemia and/or hyperlipidemia in diabetes mellitus (DM) patients. Herein, we investigated the effect of phenolic acids on glucose uptake in an insulin-resistant cell-culture model and on hepatic insulin resistance and inflammation in rats fed a high-fat diet (HFD). The results show that vanillic acid (VA) demonstrated the highest glucose uptake ability among all tested phenolic acids in insulin-resistant FL83B mouse hepatocytes. Furthermore, rats fed HFD for 16 weeks were orally administered with VA daily (30 mg/kg body weight) at weeks 13-16. The results show that levels of serum insulin, glucose, triglyceride, and free fatty acid were significantly decreased in VA-treated HFD rats (p hyperlipidemia in HFD rats. Moreover, VA significantly reduced values of area under the curve for glucose (AUCglucose) in oral glucose tolerance test and homeostasis model assessment-insulin resistance (HOMA-IR) index, suggesting the improving effect on glucose tolerance and insulin resistance in HFD rats. The Western blot analysis revealed that VA significantly up-regulated expression of hepatic insulin-signaling and lipid metabolism-related protein, including insulin receptor, phosphatidylinositol-3 kinase, glucose transporter 2, and phosphorylated acetyl CoA carboxylase in HFD rats. VA also significantly down-regulated hepatic inflammation-related proteins, including cyclooxygenase-2 and monocyte chemoattractant protein-1 expressions in HFD rats. These results indicate that VA might ameliorate insulin resistance via improving hepatic insulin signaling and alleviating inflammation pathways in HFD rats. These findings also suggest the potential of VA in preventing the progression of DM.

  2. Protective Effect of Vanillic Acid against Hyperinsulinemia, Hyperglycemia and Hyperlipidemia via Alleviating Hepatic Insulin Resistance and Inflammation in High-Fat Diet (HFD-Fed Rats

    Directory of Open Access Journals (Sweden)

    Wen-Chang Chang

    2015-12-01

    Full Text Available Excess free fatty acid accumulation from abnormal lipid metabolism results in the insulin resistance in peripheral cells, subsequently causing hyperinsulinemia, hyperglycemia and/or hyperlipidemia in diabetes mellitus (DM patients. Herein, we investigated the effect of phenolic acids on glucose uptake in an insulin-resistant cell-culture model and on hepatic insulin resistance and inflammation in rats fed a high-fat diet (HFD. The results show that vanillic acid (VA demonstrated the highest glucose uptake ability among all tested phenolic acids in insulin-resistant FL83B mouse hepatocytes. Furthermore, rats fed HFD for 16 weeks were orally administered with VA daily (30 mg/kg body weight at weeks 13–16. The results show that levels of serum insulin, glucose, triglyceride, and free fatty acid were significantly decreased in VA-treated HFD rats (p < 0.05, indicating the protective effects of VA against hyperinsulinemia, hyperglycemia and hyperlipidemia in HFD rats. Moreover, VA significantly reduced values of area under the curve for glucose (AUCglucose in oral glucose tolerance test and homeostasis model assessment-insulin resistance (HOMA-IR index, suggesting the improving effect on glucose tolerance and insulin resistance in HFD rats. The Western blot analysis revealed that VA significantly up-regulated expression of hepatic insulin-signaling and lipid metabolism-related protein, including insulin receptor, phosphatidylinositol-3 kinase, glucose transporter 2, and phosphorylated acetyl CoA carboxylase in HFD rats. VA also significantly down-regulated hepatic inflammation-related proteins, including cyclooxygenase-2 and monocyte chemoattractant protein-1 expressions in HFD rats. These results indicate that VA might ameliorate insulin resistance via improving hepatic insulin signaling and alleviating inflammation pathways in HFD rats. These findings also suggest the potential of VA in preventing the progression of DM.

  3. Endothelial and vascular dysfunctions and insulin resistance in rats fed a high-fat, high-sucrose diet.

    Science.gov (United States)

    Bourgoin, Frédéric; Bachelard, Hélène; Badeau, Mylène; Mélançon, Sébastien; Pitre, Maryse; Larivière, Richard; Nadeau, André

    2008-09-01

    This study was designed to examine the effects of a high-fat, high-sucrose (HFHS) diet on vascular and metabolic actions of insulin. Male rats were randomized to receive an HFHS or regular chow diet for 4 wk. In a first series of experiments, the rats had pulsed Doppler flow probes and intravascular catheters implanted to measure blood pressure, heart rate, and regional blood flows. Insulin sensitivity and vascular responses to insulin were assessed during a euglycemic hyperinsulinemic clamp performed in conscious rats. In a second series of experiments, new groups of rats were used to examine skeletal muscle glucose transport activity and to determine in vitro vascular reactivity, endothelial nitric oxide synthase (eNOS) protein expression in muscle and vascular tissues and endothelin content, nitrotyrosine formation, and NAD(P)H oxidase protein expression in vascular tissues. The HFHS-fed rats displayed insulin resistance, hyperinsulinemia, hypertriglyceridemia, hyperlipidemia, elevated blood pressure, and impaired insulin-mediated renal and skeletal muscle vasodilator responses. A reduction in endothelium-dependent vasorelaxation, accompanied by a decreased eNOS protein expression in muscles and blood vessel endothelium, and increased vascular endothelin-1 protein content were also noted in HFHS-fed rats compared with control rats. Furthermore, the HFHS diet induced a reduced insulin-stimulated glucose transport activity in muscles and increased levels of NAD(P)H oxidase protein and nitrotyrosine formation in vascular tissues. These findings support the importance of eNOS protein in linking metabolic and vascular disease and indicate the ability of a Westernized diet to induce endothelial dysfunction and to alter metabolic and vascular homeostasis.

  4. Insulin resistance impairs endothelial function but not adrenergic reactivity or vascular structure in fructose-fed rats.

    Science.gov (United States)

    Romanko, Olga P; Ali, M Irfan; Mintz, James D; Stepp, David W

    2009-07-01

    Obesity and diabetes are major risk factors for the development of vascular disease in the lower limbs. Previous studies have demonstrated reduced nitric oxide (NO)-mediated vasodilation, increased adrenergic constriction, and inward, atrophic remodeling in the limb circulation of obese Zucker rats, but the component of the "metabolic syndrome" driving these changes is unclear. Because insulin resistance precedes the state of frank diabetes, the current study hypothesized that insulin resistance independent of obesity induced by fructose feeding would impair microvascular function in the skeletal muscle circulation in lean Zucker rats (LZR). A 66% fructose diet impaired glucose tolerance and induced moderate insulin resistance with no changes in whole-body hemodynamics of anesthetized rats (FF-LZR), compared to control LZR. NO-mediated vasodilation of isolated gracilis arteries, assessed in vitro with acetylcholine and sodium nitroprusside, was reduced approximately 20% in FF-LZR vs. LZR. NO-independent cGMP-mediated vasodilation was unimpaired. Pretreatment of isolated vessels with the superoxide scavenger, tempol, improved responses to both vasodilators. Reactivity to adrenergic stimulation was unaltered in FF-LZR vs. LZR, although constriction to endothelin was increased. Structural and passive mechanical characteristics of isolated gracilis arteries were similar in both LZR and FF-LZR. Taken together, these findings indicate that moderate insulin resistance is sufficient to impair endothelial function in an oxidant-dependent manner in the rat hindlimb circulation. Other aspects of skeletal muscle vascular function documented in obese models, specifically adrenergic tone and inward remodeling, must reflect either severe insulin resistance or other aspects of obesity. The factors accounting for nonendothelial vasculopathies remain unknown.

  5. Antidiabetic Effect of Hydroalcholic Urtica dioica Leaf Extract in Male Rats with Fructose-Induced Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Akram Ahangarpour

    2012-09-01

    Full Text Available Background: Urtica dioica has been used as antihypertensive, antihyperlipidemic and antidiabetic herbal medicine. The purpose of this study was to study the effect of hydroalcoholic extract of Urtica dioica on fructose-induced insulin resistance rats. Methods: Forty male Wistar rats were randomly divided into five groups including control, fructose, extract 50, extract 100 and extract 200. The control rat received vehicle, the fructose and extract groups received fructose 10% for eight weeks. The extract groups received single daily injection of vehicle, 50, 100 or 200 mg/kg/day for the two weeks. Blood glucose, insulin, last fasting insulin resistance index (FIRI, serum triglyceride (TG, low-density lipoprotein (LDL, very low-density lipoprotein (VLDL, high-density lipoprotein (HDL, alanin trasaminase (AST and alkaline phosphatase (ALP, leptin and LDL/HDL ratio were determined.Results: Compared to control group, daily administration of fructose was associated with significant increase in FIRI, blood glucose and insulin, significant decrease in lepin, and no significant change in TG, HDL, LDL, LDL/HDL ratio, VLDL, ALT, and ALP. The extract significantly decreased serum glucose, insulin, LDL and leptin, and LDL/HDL ratio and FIRI. It also significantly increased serum TG, VLDL, and AST, but did not change serum ALP.Conclusion: We suggest that Urtica dioica extract, by decreasing serum glucose, and FIRI, may be useful to improve type 2 diabetes mellitus. Also, by positive effect on lipid profile and by decreasing effect on leptin, it may improve metabolic syndrome.

  6. Piromelatine, a novel melatonin receptor agonist, stabilizes metabolic profiles and ameliorates insulin resistance in chronic sleep restricted rats.

    Science.gov (United States)

    She, Meihua; Hu, Xiaobo; Su, Zehong; Zhang, Chi; Yang, Shenghua; Ding, Lin; Laudon, Moshe; Yin, Weidong

    2014-03-15

    Chronic sleep deprivation may speed the onset or increase the severity of age-related conditions such as Type 2 diabetes, high blood pressure and obesity. Piromelatine (Neu-P11) is a novel melatonin agonist, which has been developed for the treatment of insomnia. Animal studies have suggested possible efficacy of piromelatine in sleep maintenance, anxiety and depression. In addition, piromelatine has been shown to inhibit weight gain and improve insulin sensitivity in high-fat/high-sucrose-fed (HFSD) rats. The objective of this study was to investigate the effects of piromelatine on insulin sensitivity in sleep restricted rats. Sleep restriction was established by rotating cages intermittently for 20h thereby sleeping time of rats was limited to 4h per day. During 8 days of sleep restriction, rats were injected intraperitoneally with piromelatine (20mg/kg), melatonin (5mg/kg) or a vehicle. The results showed that sleep restriction increased plasma glucose, fasting insulin, total cholesterol (TC), triglycerides (TG) and oxidative stress markers while HDL-cholesterol (HDL-C) level and glucose tolerance were decreased. However, under piromelatine or melatonin treatment, the levels of plasma glucose, TG, TC decreased and HDL-C, glucose tolerance and antioxidative potency increased when compared with the vehicle-treated group. These data suggest that chronic sleep restriction in rats induce metabolic dysfunction, oxidative stress and insulin resistance, and these symptoms were improved by treatment with piromelatine or melatonin. We conclude that piromelatine could regulate metabolic profiles and insulin sensitivity, and attenuate insulin resistance induced by sleep restriction.

  7. Overexpression of manganese superoxide dismutase ameliorates high-fat diet-induced insulin resistance in rat skeletal muscle.

    Science.gov (United States)

    Boden, Michael J; Brandon, Amanda E; Tid-Ang, Jennifer D; Preston, Elaine; Wilks, Donna; Stuart, Ella; Cleasby, Mark E; Turner, Nigel; Cooney, Gregory J; Kraegen, Edward W

    2012-09-15

    Elevated mitochondrial reactive oxygen species have been suggested to play a causative role in some forms of muscle insulin resistance. However, the extent of their involvement in the development of diet-induced insulin resistance remains unclear. To investigate, manganese superoxide dismutase (MnSOD), a key mitochondrial-specific enzyme with antioxidant modality, was overexpressed, and the effect on in vivo muscle insulin resistance induced by a high-fat (HF) diet in rats was evaluated. Male Wistar rats were maintained on chow or HF diet. After 3 wk, in vivo electroporation (IVE) of MnSOD expression and empty vectors was undertaken in right and left tibialis cranialis (TC) muscles, respectively. After one more week, insulin action was evaluated using hyperinsulinemic euglycemic clamp, and tissues were subsequently analyzed for antioxidant enzyme capacity and markers of oxidative stress. MnSOD mRNA was overexpressed 4.5-fold, and protein levels were increased by 70%, with protein detected primarily in the mitochondrial fraction of muscle fibers. This was associated with elevated MnSOD and glutathione peroxidase activity, indicating that the overexpressed MnSOD was functionally active. The HF diet significantly reduced whole body and TC muscle insulin action, whereas overexpression of MnSOD in HF diet animals ameliorated this reduction in TC muscle glucose uptake by 50% (P Decreased protein carbonylation was seen in MnSOD overexpressing TC muscle in HF-treated animals (20% vs. contralateral control leg, P muscle.

  8. Differential effect of amylin on endothelial-dependent vasodilation in mesenteric arteries from control and insulin resistant rats.

    Directory of Open Access Journals (Sweden)

    Mariam El Assar

    Full Text Available Insulin resistance (IR is frequently associated with endothelial dysfunction and has been proposed to play a major role in cardiovascular disease (CVD. On the other hand, amylin has long been related to IR. However the role of amylin in the vascular dysfunction associated to IR is not well addressed. Therefore, the aim of the study was to assess the effect of acute treatment with amylin on endothelium-dependent vasodilation of isolated mesenteric arteries from control (CR and insulin resistant (IRR rats and to evaluate the possible mechanisms involved. Five week-old male Wistar rats received 20% D-fructose dissolved in drinking water for 8 weeks and were compared with age-matched CR. Plasmatic levels of glucose, insulin and amylin were measured. Mesenteric microvessels were dissected and mounted in wire myographs to evaluate endothelium-dependent vasodilation to acetylcholine. IRR displayed a significant increase in plasmatic levels of glucose, insulin and amylin and reduced endothelium-dependent relaxation when compared to CR. Acute treatment of mesenteric arteries with r-amylin (40 pM deteriorated endothelium-dependent responses in CR. Amylin-induced reduction of endothelial responses was unaffected by the H2O2 scavenger, catalase, but was prevented by the extracellular superoxide scavenger, superoxide dismutase (SOD or the NADPH oxidase inhibitor (VAS2870. By opposite, amylin failed to further inhibit the impaired relaxation in mesenteric arteries of IRR. SOD, or VAS2870, but not catalase, ameliorated the impairment of endothelium-dependent relaxation in IRR. At concentrations present in insulin resistance conditions, amylin impairs endothelium-dependent vasodilation in mircrovessels from rats with preserved vascular function and low levels of endogenous amylin. In IRR with established endothelial dysfunction and elevated levels of amylin, additional exposure to this peptide has no effect on endothelial vasodilation. Increased superoxide

  9. Vascular wall function in insulin-resistant JCR:LA-cp rats: role of male and female sex.

    Science.gov (United States)

    O'Brien, S F; Russell, J C; Dolphin, P J; Davidge, S T

    2000-08-01

    Vascular wall function was assessed in obese insulin-resistant (cp/cp) and lean normal (+/?), male and female, JCR:LA-cp rats. Both male and female cp/cp rats showed enhanced maximum contractility in response to norepinephrine; impaired smooth muscle in response to sodium nitroprusside, a nitric oxide (NO) donor; and impaired relaxation in response to acetylcholine (ACh), compared with their lean counterparts. The abnormalities were similar in male and female cp/cp rats. The NO synthase inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME), inhibited ACh-mediated relaxation significantly in male rats, both cp/cp and +/?. The inhibition of ACh-mediated relaxation by L-NAME in +/? females was less, with no reduction in maximal relaxation, and was absent in cp/cp females. These effects suggest that the relative importance of NO in the endothelial modulation of smooth muscle contractility is greater in male rats. The results are consistent with a decreased role for endothelial NO in the cp/cp rats of both sexes and a reduction in NO-independent cholinergic relaxation in the male cp/cp rat. This NO-independent mechanism is not affected in the female cp/cp rats. The relatively small differences between males and females in smooth muscle cell and vascular function may contribute to sex-related differences in the atherogenesis, vasospasm, and ischemic damage associated with the obese insulin-resistant state.

  10. Antioxidant supplementation and obesity have independent effects on hepatic oxylipin profiles in insulin-resistant, obesity-prone rats.

    Science.gov (United States)

    Picklo, Matthew J; Newman, John W

    2015-12-01

    Obesity-induced changes in lipid metabolism are mechanistically associated with the development of insulin resistance and prediabetes. Recent studies have focused on the extent to which obesity-induced insulin resistance is mediated through oxylipins, derived from enzymatic and nonenzymatic lipid peroxidation. Vitamin E and vitamin C are widely used antioxidant supplements, but conflicting data exist as to whether supplementation with vitamins E and C reduces insulin resistance. The purpose of this work is (1) to test the hypothesis that supplementation with vitamin E and vitamin C prevents the development of insulin resistance and (2) to determine the extent to which antioxidant supplementation modifies obesity-induced changes in hepatic oxylipins. Using obesity-prone Sprague-Dawley rats fed a high-fat, hypercaloric diet, we found that vitamin E and C supplementation did not block the development of insulin resistance, despite increased plasma levels of these antioxidants and decreased hepatic F2-isoprostane (F2-IsoP) concentrations. The obese phenotype was associated with increased hepatic concentrations of cytochrome P450 (CYP450)-dependent linoleic acid and α-linolenic acid-derived epoxides. Antioxidant supplementation, but not obesity, decreased levels of the lipoxygenase (LOX)-dependent, arachidonic acid-derived products lipoxin A4 (LXA4), 8,15-dihydroxtetraenoate (8,15-DiHETE), and 5,15-DiHETE. Our data demonstrate that antioxidant supplementation and obesity impact hepatic LOX- and CYP450-dependent oxylipin metabolism. Published by Elsevier Inc.

  11. Therapeutic effects of hydrogen saturated saline on rat diabetic model and insulin resistant model via reduction of oxidative stress

    Institute of Scientific and Technical Information of China (English)

    WANG Qi-jin; ZHA Xiao-juan; KANG Zhi-min; XU Mao-jin; HUANG Qin; ZOU Da-jin

    2012-01-01

    Background Molecular hydrogen,as a novel antioxidant,has been proven effective in treating many diseases.This study aimed to evaluate the therapeutic effects of hydrogen saturated saline in treatment of a rat model of diabetes mellitus and a rat model of insulin resistant.Methods A rat diabetes mellitus model was established by feeding a high fat/high carbohydrate diet followed by injection of a small dose of streptozotocin,and an insulin resistant model was induced with a high glucose and high fat diet.Hydrogen saturated saline was administered to rats with both models conditions on a daily basis for eight weeks.A pioglitazone-treated group and normal saline-treated group served as positive and negative controls.The general condition,body weight,blood glucose,blood lipids,and serum insulin levels of rats were examined at the 8th week after treatment.The oxidative stress indices,including serum superoxide dismutase (SOD),glutathione (GSH) and malondialdehyde (MDA) were also evaluated after eight weeks of treatment using the commercial kits.Results Hydrogen saturated saline showed great efficiency in improving the insulin sensitivity and lowering blood glucose and lipids.Meanwhile,the therapeutic effects of hydrogen saturated saline were superior to those of pioglitazone.Hydrogen saturated saline markedly attenuated the MDA level and elevated the levels of antioxidants SOD and GSH.Conclusion Hydrogen saturated saline may improve the insulin resistance and alleviate the symptoms of diabetes mellitus by reducing the oxidative stress and enhancing the anti-oxidant system.

  12. Preventive effect of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed obese rats.

    Science.gov (United States)

    Maithilikarpagaselvi, Nachimuthu; Sridhar, Magadi Gopalakrishna; Swaminathan, Rathinam Palamalai; Sripradha, Ramalingam

    2016-06-01

    The present study investigated the beneficial effects of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed male Wistar rats. Five-month-old male Wistar rats (n=20) were divided into two groups (10 rats in each group). Among the two groups, one group received 30 % high-fat diet (HFD) and another group received 30 % HFD with curcumin (200 mg/kg body weight). Food intake, body weight and biochemical parameters were measured at the beginning and at the end of the study. After 10 weeks, oxidative stress parameters in skeletal muscle and hepatic triacylglycerol (TAG) content were estimated. Histological examinations of the liver samples were performed at the end of the experiment. High-fat feeding caused increase in body weight, liver and adipose tissue mass. Rats fed with HFD showed increased levels of fasting plasma glucose, insulin, Homeostasis Model Assessment for Insulin resistance (HOMA-IR), total cholesterol (TC), TAG, very low density lipoprotein cholesterol (VLDL-c) and decreased high-density lipoprotein cholesterol (HDL-c). There was also increase in the plasma inflammatory markers [tumor necrosis factor-α (TNF-α), C-reactive protein (CRP)] and skeletal muscle oxidative stress parameters [malondialdehyde (MDA), total oxidant status (TOS)] in these rats. In addition, high-fat feeding increased liver TAG content and caused fat accumulation in the liver. Treatment with curcumin significantly reduced body weight, relative organ weights (liver, adipose tissue), glucose, insulin and HOMA-IR. Curcumin supplementation decreased plasma levels of TC, TAG, VLDL-c, TNF-α and increased HDL-c. Administration of curcumin also reduced MDA, TOS in skeletal muscle, hepatic TAG content and liver fat deposition. Curcumin supplementation improved HFD-induced dyslipidemia, oxidative stress, inflammation and insulin resistance.

  13. Differential Development of Inflammation and Insulin Resistance in Different Adipose Tissue Depots Along Aging in Wistar Rats: Effects of Caloric Restriction.

    Science.gov (United States)

    Sierra Rojas, Johanna X; García-San Frutos, Miriam; Horrillo, Daniel; Lauzurica, Nuria; Oliveros, Eva; Carrascosa, Jose María; Fernández-Agulló, Teresa; Ros, Manuel

    2016-03-01

    The prevalence of insulin resistance and type 2 diabetes increases with aging and these disorders are associated with inflammation. Insulin resistance and inflammation do not develop at the same time in all tissues. Adipose tissue is one of the tissues where inflammation and insulin resistance are established earlier during aging. Nevertheless, the existence of different fat depots states the possibility of differential roles for these depots in the development of age-associated inflammation and insulin resistance. To explore this, we analyzed insulin signaling and inflammation in epididymal, perirenal, subcutaneous, and brown adipose tissues during aging in Wistar rats. Although all tissues showed signs of inflammation and insulin resistance with aging, epididymal fat was the first to develop signs of inflammation and insulin resistance along aging among white fat tissues. Subcutaneous adipose tissue presented the lowest degree of inflammation and insulin resistance that developed latter with age. Brown adipose tissue also presented latter insulin resistance and inflammation but with lower signs of macrophage infiltration. Caloric restriction ameliorated insulin resistance and inflammation in all tissues, being more effective in subcutaneous and brown adipose tissues. These data demonstrate differential susceptibility of the different adipose depots to the development of age-associated insulin resistance and inflammation. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Dietary Supplementation of Fructooligosaccharides Reduces Hepatic Steatosis Associated with Insulin Resistance in Obese Zucker Rats

    Directory of Open Access Journals (Sweden)

    Latha Devareddy

    2011-05-01

    Full Text Available Background: One in five adults in the United States is obese as defined by a body mass index of 30 kg/m2. Obesity is associated with metabolic syndrome, a combination of medical conditions including cardiovascular disease, type 2 diabetes, hypertension, hypercholesterolemia, and hypertriglyceridemia. These conditions present challenges to the medical care system and require a multifaceted approach through a variety of interventions. This study investigated the effects of fructooligosaccharides (FOS at the level of 5 % (w/w in alleviating the complications associated with metabolic syndrome.Methods: The study was carried out using thirty-six, three-month old female lean and obese Zucker rats housed in an environmentally controlled laboratory. The Zucker rats were divided into three groups (N=12: Lean (L-CTRL and obese controls (O-CTRL and obese-FOS (O-FOS. The controls received AIN-93M purified rodent diet and the animals in the O-FOS group were fed AIN-93M diet modified to contain 5.0% FOS (w/w. After 100 days of treatment, the rats were fasted for 12 hours and sacrificed. Tissue and organs of interest, and blood were collected for analysis. Serum concentrations of the following were determined: glucose, glycosylated hemoglobin (HbA1c, total cholesterol (TC, low-density lipoprotein-cholesterol (LDL-C, high-density lipoprotein-cholesterol (HDL-C, triglycerides (TG, and insulin.Functional Foods in Heals and Disease 2011; 5:199-213Gravimetric quantification of liver lipids was performed and peroxisome proliferator-activatedreceptor- (PPAR- gene expression was determined in white adipose tissue by qRT-PCR.Results: No significant differences were observed in the serum lipids, fasting blood glucose,HbA1c and PPAR- gene expression in white adipose tissue of O-FOS group compared to OCTRLgroup. FOS supplementation significantly lowered the percent total liver lipids by 12%with a subsequent reduction in the liver weights compared to O-CTRL rats

  15. Anti-diabetic and anti-oxidant effects of Zingiber officinale on alloxan-induced and insulin-resistant diabetic male rats.

    Science.gov (United States)

    Iranloye, B O; Arikawe, A P; Rotimi, G; Sogbade, A O

    2011-11-23

    This study was designed to investigate the hypoglycaemic and anti-oxidant effects of Zingiber officinale on experimentally induced diabetes mellitus using alloxan and insulin resistance. Aqueous extracts of raw ginger was administered orally at a chosen dose of 500mg/ml for a period of 4 weeks to alloxan-induced diabetic and insulin resistant diabetic rats. The experimental rats exhibited hyperglycaemia accompanied with weight loss to confirm their diabetic state. Ginger effectively reduced fasting blood glucose and malonydealdehyde levels in alloxan-induced diabetic and insulin resistant diabetic rats compared to control and ginger only treated rats. Furthermore, ginger increased serum insulin level and also enhanced insulin sensitivity in alloxan-induced diabetic and insulin resistant diabetic rats compared to control and ginger only treated rats. The results of the study clearly show that dietary ginger has hypoglycaemic effect, enhances insulin synthesis in male rats and has high antioxidant activity. One of the likely mechanisms is the action of malonydealdehyde, which acts as a scavenger of oxygen radicals.

  16. Expressions of NF-κB and downstream inflammatory factors in the kidney of insulin resistance rat

    Directory of Open Access Journals (Sweden)

    Shuang-tong YAN

    2014-10-01

    Full Text Available Objective To investigate the variation and significance of the expressions of NF-κB, inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 in the renal tissue of insulin-resistant rat. Methods Thirty healthy male Wistar rats were bred since 2 months old, and they were randomly divided into normal control (NC group (n=15 and insulin-resistant (IR group (n=15. Insulin resistance rat model was reproduced by feeding with high fat and sucrose diet. Hyperinsulinemic-euglycemic clamp test was used to verify the reproduction of the model. The kidneys of the rats were obtained after the successful reproduction of the model. The change in renal histology was observed by HE staining, and the expressions of iNOS and COX-2 in the kidneys were detected by immunohistochemistry staining. The mRNA expressions of NF-κB, iNOS and COX-2 in the kidneys were assessed with RT-PCR. DNA binding activity of NF-κB in the rat's kidney was assessed with electrophoretic mobility shift assay (EMSA. Results HE staining showed that, compared with NC group, the early lesions of the renal tissue, such as glomerular enlargement and mesangial region broadening, could be seen in IR group. Immunohistochemical staining showed that the positive expressions of iNOS and COX-2 were up-regulated significantly in IR group than in NC group (P<0.05. RT-PCR revealed that the expressions of NF-κB mRNA, iNOS mRNA and COX-2 mRNA in renal tissue were significantly higher in IR group than in NC group (P<0.05. EMSA showed that the binding activity of NF-κB in renal tissue increased significantly in IR group than in NC group (P<0.05. Conclusion NF-κB activation is present in the kidney tissue in the insulin resistance rat, which may upregulate the expression of downstream target gene iNOS and COX-2, resulting in damage to kidney tissue. The activation of NF-κB may be one of the initiative factors that lead to the kidney lesion of the insulin resistance rat. DOI: 10.11855/j

  17. Attenuation of insulin resistance in rats by agmatine: role of SREBP-1c, mTOR and GLUT-2.

    Science.gov (United States)

    Sharawy, Maha H; El-Awady, Mohammed S; Megahed, Nirmeen; Gameil, Nariman M

    2016-01-01

    Insulin resistance is a serious health condition worldwide; however, its exact mechanisms are still unclear. This study investigates agmatine (AGM; an endogenous metabolite of L-arginine) effects on insulin resistance induced by high fructose diet (HFD) in rats and the possible involved mechanisms. Sprague Dawley rats were fed 60% HFD for 12 weeks, and AGM (10 mg/kg/day, orally) was given from week 9 to 12. AGM significantly reduced HFD-induced elevation in fasting insulin level, homeostasis model assessment of insulin resistance (HOMA-IR) index and liver glycogen content from 3.44-, 3.62- and 2.07- to 2.59-, 2.78- and 1.3-fold, respectively, compared to the control group, while it increased HFD-induced reduction in glucose tolerance. Additionally, AGM significantly decreased HFD-induced elevation in serum triglycerides, low density lipoprotein cholesterol and very low density lipoprotein cholesterol levels from 3.18-, 2.97- and 4.75- to 1.25-, 1.25- and 1.07-fold, respectively, compared to control group. Conversely, AGM had no significant effect on HFD-induced changes in fasting glucose, glycosylated hemoglobin, insulin tolerance and high density lipoprotein cholesterol. Furthermore, AGM significantly reduced HFD-induced elevation in mRNA expression of glucose transporter type-2 (GLUT-2), mammalian target of rapamycin (mTOR) and sterol regulatory element-binding protein-1c (SREBP-1c) without affecting that of peroxisome proliferator-activated receptor-alpha (PPAR-α) in the liver. Additionally, AGM enhanced ACh-induced aortic relaxation and attenuated liver steatosis induced by HFD. In conclusion, AGM may have a therapeutic potential in insulin resistance through suppressing SREBP-1c, mTOR and GLUT-2 in liver.

  18. The effect of N-stearoylethanolamine on liver phospholipid composition of rats with insulin resistance caused by alimentary obesity

    Directory of Open Access Journals (Sweden)

    O. V. Onopchenko

    2014-02-01

    Full Text Available We used alimentary obesity-induced insulin resistance (IR model in rats to investigate the influence of N-stearoylethanolamine on the content of phospholipids and their fatty acid composition. Our results show that prolonged high-fat diet triggers considerable aberrations in the composition of main phospholipids in the liver and can be one of the causes of IR in rats. In particular, the increase of phosphatidylcholine, phosphatidylethanolamine and significant decrease of other phospholipids: lysophosphatidylcholine, lysophosphatidylethanolamine, sphingomyelin, phosphatidylinositol, phosphatidylserine and diphosphaglicerol were observed. The levels of monounsaturated (erucic, nervonic, oleic and polyunsaturated (eicosatrienoic, docosatrienoic, arachidonic fatty acids were increased; meanwhile the content of diunsaturated acids was decreased. The NSE administration (50 mg/kg of body weight caused restoration of the phospholipids content in the liver of rats with diet-induced IR that highly correlated with the decrease in plasma insulin level and the improvement of insulin sensitivity. Moreover, the effect of NSE was accompanied by the normalization of fatty acids composition of phospholipids that could be related to modulating influen­ce of NSE on the activity of the main fatty acid desaturases. It is known that the imbalance in phospholipid composition of the rat liver causes substantial metabolic alterations that are associated with the development of IR. Accordingly, the compensations of the imbalance by NSE can help to restore insulin sensitivity, inhibit the development of obesity, IR and type 2 diabetes.

  19. N-acetylcysteine Counteracts Adipose Tissue Macrophage Infiltration and Insulin Resistance Elicited by Advanced Glycated Albumin in Healthy Rats

    Directory of Open Access Journals (Sweden)

    Karolline S. da Silva

    2017-09-01

    Full Text Available Background: Advanced glycation endproducts elicit inflammation. However, their role in adipocyte macrophage infiltration and in the development of insulin resistance, especially in the absence of the deleterious biochemical pathways that coexist in diabetes mellitus, remains unknown. We investigated the effect of chronic administration of advanced glycated albumin (AGE-albumin in healthy rats, associated or not with N-acetylcysteine (NAC treatment, on insulin sensitivity, adipose tissue transcriptome and macrophage infiltration and polarization.Methods: Male Wistar rats were intraperitoneally injected with control (C or AGE-albumin alone, or, together with NAC in the drinking water. Biochemical parameters, lipid peroxidation, gene expression and protein contents were, respectively, determined by enzymatic techniques, reactive thiobarbituric acid substances, RT-qPCR and immunohistochemistry or immunoblot. Carboxymethyllysine (CML and pyrraline (PYR were determined by LC/mass spectrometry (LC-MS/MS and ELISA.Results: CML and PYR were higher in AGE-albumin as compared to C. Food consumption, body weight, systolic blood pressure, plasma lipids, glucose, hepatic and renal function, adipose tissue relative weight and adipocyte number were similar among groups. In AGE-treated animals, insulin resistance, adipose macrophage infiltration and Col12a1 mRNA were increased with no changes in M1 and M2 phenotypes as compared to C-albumin-treated rats. Total GLUT4 content was reduced by AGE-albumin as compared to C-albumin. NAC improved insulin sensitivity, reduced urine TBARS, adipose macrophage number and Itgam and Mrc mRNA and increased Slc2a4 and Ppara. CD11b, CD206, Ager, Ddost, Cd36, Nfkb1, Il6, Tnf, Adipoq, Retn, Arg, and Il12 expressions were similar among groups.Conclusions: AGE-albumin sensitizes adipose tissue to inflammation due to macrophage infiltration and reduces GLUT4, contributing to insulin resistance in healthy rats. NAC antagonizes AGE

  20. Effects of Chinese Fructus Mume formula and its separated prescription extract on insulin resistance in type 2 diabetic rats.

    Science.gov (United States)

    Li, Jing-bin; Xu, Li-jun; Dong, Hui; Huang, Zhao-yi; Zhao, Yan; Chen, Guang; Lu, Fu-er

    2013-12-01

    The effect of Fructus Mume formula and its separated prescription extract on insulin resistance in type 2 diabetic rats was investigated. The rat model of type 2 diabetes was established by feeding on a high-fat diet for 8 weeks and by subsequently intravenous injection of small doses of streptozotocin. Rats in treatment groups, including the Fructus Mume formula treatment group (FM), the cold property herbs of Fructus Mume formula treatment group (CFM), the warm property herbs of Fructus Mume formula treatment group (WFM), were administrated with Fructus Mume formula and its separated prescription extract by gavage, while the rats in diabetic model group (DM) and metformin group (MET) were given by gavage with normal saline and metformin correspondingly. The body weight before and after treatment was measured, and the oral glucose tolerance test (OGTT) and the insulin release test (IRT) were performed. The homeostasis model assessment-insulin resistance index (HOMA-IR) was calculated. The protein and mRNA expression levels of Insr, β-arrestin-2, Irs-1 and Glut-4 in the liver, skeletal muscle and fat tissues were detected by using Western blotting and RT-PCR respectively. The results demonstrated that, as compared with DM group, OGTT, IRT (0 h, 1 h) levels and HOMR-IR in treatment groups were all reduced, meanwhile their protein and mRNA expression levels of Insr, Irs-1 and Glut-4 in the liver, skeletal muscle and fat tissues were obviously increased, and their protein and mRNA expression levels of β-arrestin-2 in the liver and skeletal muscle tissues were also markedly increased. It was suggested that the Fructus Mume formula and its separated prescription extracts could effectively improve insulin resistance in type 2 diabetic rats, which might be related to the up-regulated expression of Insr, Irs-1 and Glut-4 in the liver, skeletal muscle and fat tissues, and β-arrestin-2 in the liver and skeletal muscle tissues.

  1. GLUT4 content decreases along with insulin resistance and high levels of inflammatory markers in rats with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Leguisamo Natalia M

    2012-08-01

    Full Text Available Abstract Background Metabolic syndrome is characterized by insulin resistance, which is closely related to GLUT4 content in insulin-sensitive tissues. Thus, we evaluated the GLUT4 expression, insulin resistance and inflammation, characteristics of the metabolic syndrome, in an experimental model. Methods Spontaneously hypertensive neonate rats (18/group were treated with monosodium glutamate (MetS during 9 days, and compared with Wistar-Kyoto (C and saline-treated SHR (H. Blood pressure (BP and lipid levels, C-reactive protein (CRP, interleukin 6 (IL-6, TNF-α and adiponectin were evaluated. GLUT4 protein was analysed in the heart, white adipose tissue and gastrocnemius. Studies were performed at 3 (3-mo, 6 (6-mo and 9 (9-mo months of age. Results MetS rats were more insulin resistant (pvs H, but adiponectin was lower in MetS at 9 months (MetS: 32 ± 2, H: 42 ± 2, C: 45 ± 2 pg/mL; p Conclusions MSG-treated SHR presented all metabolic syndrome characteristics, as well as reduced GLUT4 content, which must play a key role in the impaired glycemic homeostasis of the metabolic syndrome.

  2. Expression of GLUT4 mRNA of peripheral tissues and insulin resistance in rats with severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    CHEN Da-qing; ZHU Lie-lie; LI Yong-ling

    2007-01-01

    Objective: To evaluate the expression of glucose transporter-4 (GLUT4) mRNA in skeletal muscle and subcutaneous adipose tissues and investigate the mechanism of posttraumatic insulin resistance.Methods: Sixteen adult male Wistar rats were randomly divided into 2 group (n=8 in each group), i.e., severe traumatic brain injury (TBI) group due to falls from a height and normal control group. Blood glucose and serum insulin were measured at 0.5 h before trauma and 3 h, 24 h, 72 h, 7 d after trauma, respectively. And insulin sensitivity was calculated by insulin activity index (IAI) formula. Skeletal muscle and subcutaneous adipose tissue samples were collected at the same time when blood was sampled. The changes of expression of GLUT4 mRNA were observed using reverse transcription-polymerase chain reaction (RT-PCR).Results: Accompanied by the decrease of insulin sensitivity, the expression of GLUT4 mRNA was significantly decreased in adipose tissues at 24 h and 72 h after trauma (P<0.01), however, such phenomena did not appear in skeletal muscle samples.Conclusions: To some extent, the development of posttraumatic insulin resistance is related to the abnormality of transcription activity of GLUT4 gene. Adipose tissues show some difference in the transcriptional level of GLUT4 gene after trauma as compared with skeletal muscle tissues.

  3. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016 (China); Wang, Jianwei, E-mail: wangjianwei1968@gmail.com [Department of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016 (China); Gu, Tieguang [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia); Yamahara, Johji [Pharmafood Institute, Kyoto 602-8136 (Japan); Li, Yuhao, E-mail: yuhao@sitcm.edu.au [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia)

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  4. Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome

    DEFF Research Database (Denmark)

    Buhl, Esben Selmer; Jessen, Niels; Pold, Rasmus

    2002-01-01

    clamp conditions. To investigate whether chronic AICAR administration, in addition to the beneficial effects on insulin sensitivity, is capable of improving other phenotypes associated with the insulin resistance syndrome, obese Zucker (fa/fa) rats (n = 6) exhibiting insulin resistance, hyperlipidemia......The insulin resistance syndrome is characterized by several risk factors for cardiovascular disease. Chronic chemical activation of AMP-activated protein kinase by the adenosine analog 5-aminoimidazole-4-carboxamide-1-beta -D-ribofuranoside (AICAR) has been shown to augment insulin action......, upregulate mitochondrial enzymes in skeletal muscles, and decrease the content of intra-abdominal fat. Furthermore, acute AICAR exposure has been found to reduce sterol and fatty acid synthesis in rat hepatocytes incubated in vitro as well as suppress endogenous glucose production in rats under euglycemic...

  5. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats.

    Science.gov (United States)

    Li, Ying; Wang, Jianwei; Gu, Tieguang; Yamahara, Johji; Li, Yuhao

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Insulin Resistance and Atherosclerosis

    National Research Council Canada - National Science Library

    Nigro, Julie; Osman, Narin; Dart, Anthony M; Little, Peter J

    2006-01-01

    ... morbidity and mortality. It is only now being recognized that the major antecedent of type 2 diabetes, insulin resistance with its attendant syndrome, is the major underlying cause of the susceptibility to type 2 diabetes...

  7. Microvascular Recruitment in Insulin Resistance

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker

    the resonating sound from the microbubbles in the systemic circulation were recorded for determination of microvascular recruitment in designated muscle segments. Results showed that microvascular recruitment increased with insulin stimulation by ~30% in rats and ~40% in humans (study I). Furthermore......, it was observed that muscle contractions increased muscle perfusion rapidly by 3-4 fold and by 1-2 fold compared to basal and insulin, respectively, in both rat and human skeletal muscle (study I). The real-time contrast-enhanced ultrasound method was applied to investigate the vaso-active effect of the incretin...... hormone glucagon-like-peptide-1 (GLP-1) in the microcirculation. Glucagon-like-peptide-1 analogs are drugs used for treatments of insulin resistance and type 2 diabetes but the vascular effects of GLP-1 in vivo are elusive. Here it was shown that GLP-1 rapidly increased the microvascular recruitment...

  8. Pharmacodynamic/Pharmacogenomic Modeling of Insulin Resistance Genes in Rat Muscle After Methylprednisolone Treatment: Exploring Regulatory Signaling Cascades

    Directory of Open Access Journals (Sweden)

    Zhenling Yao

    2008-01-01

    Full Text Available Corticosteroids (CS effects on insulin resistance related genes in rat skeletal muscle were studied. In our acute study, adrenalectomized (ADX rats were given single doses of 50 mg/kg methylprednisolone (MPL intravenously. In our chronic study, ADX rats were implanted with Alzet mini-pumps giving zero-order release rates of 0.3 mg/kg/h MPL and sacrificed at various times up to 7 days. Total RNA was extracted from gastrocnemius muscles and hybridized to Affymetrix GeneChips. Data mining and literature searches identified 6 insulin resistance related genes which exhibited complex regulatory pathways. Insulin receptor substrate-1 (IRS-1, uncoupling protein 3 (UCP3, pyruvate dehydrogenase kinase isoenzyme 4 (PDK4, fatty acid translocase (FAT and glycerol-3-phosphate acyltransferase (GPAT dynamic profiles were modeled with mutual effects by calculated nuclear drug-receptor complex (DR(N and transcription factors. The oscillatory feature of endothelin-1 (ET-1 expression was depicted by a negative feedback loop. These integrated models provide test- able quantitative hypotheses for these regulatory cascades.

  9. Therapeutic effects of tender coconut water on oxidative stress in fructose fed insulin resistant hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    D Bhagya; L Prema; T Rajamohan

    2012-01-01

    ABSTRACT Objective:To investigate whether tender coconut water(TCW)mitigates oxidative stress in fructose fed hypertensive rats.Methods: Male Sprague Dawley rats were fed with fructose rich diet and treated withTCW (4 mL/100 g of body weight) for3 subsequent weeks. Systolic blood pressure was measured every three days using the indirect tail cuff method. At the end of the experimental period, plasma glucose and insulin, serum triglycerides and free fatty acids, lipid peroxidation markers (MDA, hydroperoxides and conjugated dienes) and the activities of antioxidant enzymes were analyzed in all the groups.Results: Treatment withTCW significantly lowered the systolic blood pressure and reduced serum triglycerides and free fatty acids. Plasma glucose and insulin levels and lipid peroxidation markers such asMDA, hydroperoxides and conjugated dienes were significantly reduced in fructose fed rats treated withTCW. Activities of antioxidant enzymes are up regulated significantly inTCW treated rats. Histopathological analysis of liver showed thatTCW treatment reduced the lipid accumulation and inflammatory infiltration without any significant hepatocellular damage.Conclusions: The overall results suggest that, TCW treatment could prevent and reverse high blood pressure induced by high fructose diet probably by inhibition of lipid peroxidation, upregulation of antioxidant status and improved insulin sensitivity.

  10. Effect of Arctium Lappa Root Extract on Glucose Levels and Insulin Resistance in Rats with High Sucrose Diet

    Directory of Open Access Journals (Sweden)

    A Ahangarpour

    2013-06-01

    Full Text Available Introduction: Diabetes Mellitus is a growing health problem in all over the world. Arctium Lappa has been used therapeutically in Europe, North America and Asia. Antioxidants and antidiabetic compounds have been found in the root of Arctium Lappa. This study intends to investigate the effects of Arctium Lappa root aqueous extract on glucose, insulin levels and Fasting Insulin Resistance Index in female rats with high sucrose diet. Methods: 40 female Wistar rats weighting 150-250(g were applied. After having a diet induced by sucrose 50% in drinking water for 5 weeks, the animals were randomly divided into two groups of control, sucrose induced, and three groups of sucrose induced along with Arctium Lappa root aqueous extract (50,100,200 mg/Kg (8 rats in each group. Treatment by extracts was used during 2 weeks (i.p. and 24 hours after the last treatment, heart blood samples were gathered. After Blood samples were centrifuged, fasting plasma glucose (12 h was determined by kit and fasting insulin concentration was assayed by Enzyme-linked immunosorbent assay (Elisa methods. Result: Glucose levels, insulin and FIRI in sucrose group significantly increased in comparison with control group. Glucose levels in aqueous extract groups; 50 mg/kg (116.14±16.64mg/dl and 200 mg/kg (90.66±22.58 mg/dl in comparison with sucrose group (140.5±18.73 mg/dl significantly decreased. Insulin level and FIRI in all of aqueous extract groups were significantly decreased (P<0.001 in comparison with sucrose group. Conclusions: Arctium Lappa root aqueous extracts in animal model has revealed significant decrease in blood glucose and insulin levels.

  11. A low-carbohydrate/high-fat diet reduces blood pressure in spontaneously hypertensive rats without deleterious changes in insulin resistance.

    Science.gov (United States)

    Bosse, John D; Lin, Han Yi; Sloan, Crystal; Zhang, Quan-Jiang; Abel, E Dale; Pereira, Troy J; Dolinsky, Vernon W; Symons, J David; Jalili, Thunder

    2013-06-15

    Previous studies reported that diets high in simple carbohydrates could increase blood pressure in rodents. We hypothesized that the converse, a low-carbohydrate/high-fat diet, might reduce blood pressure. Six-week-old spontaneously hypertensive rats (SHR; n = 54) and Wistar-Kyoto rats (WKY; n = 53, normotensive control) were fed either a control diet (C; 10% fat, 70% carbohydrate, 20% protein) or a low-carbohydrate/high-fat diet (HF; 20% carbohydrate, 60% fat, 20% protein). After 10 wk, SHR-HF had lower (P high-fat diet reduced blood pressure and improved arterial function in SHR without producing signs of insulin resistance or altering insulin-mediated signaling in the heart, skeletal muscle, or vasculature.

  12. Enhanced insulin sensitivity and acute regulation of metabolic genes and signaling pathways after a single electrical or manual acupuncture session in female insulin-resistant rats.

    Science.gov (United States)

    Benrick, Anna; Maliqueo, Manuel; Johansson, Julia; Sun, Miao; Wu, Xiaoke; Mannerås-Holm, Louise; Stener-Victorin, Elisabet

    2014-12-01

    To compare the effect of a single session of acupuncture with either low-frequency electrical or manual stimulation on insulin sensitivity and molecular pathways in the insulin-resistant dihydrotestosterone-induced rat polycystic ovary syndrome (PCOS) model. Both stimulations cause activation of afferent nerve fibers. In addition, electrical stimulation causes muscle contractions, enabling us to differentiate changes induced by activation of sensory afferents from contraction-induced changes. Control and PCOS rats were divided into no-stimulation, manual-, and electrical stimulation groups and insulin sensitivity was measured by euglycemic hyperinsulinemic clamp. Manually stimulated needles were rotated 180° ten times every 5 min, or low-frequency electrical stimulation was applied to evoke muscle twitches for 45 min. Gene and protein expression were analyzed by real-time PCR and Western blot. The glucose infusion rate (GIR) was lower in PCOS rats than in controls. Electrical stimulation was superior to manual stimulation during treatment but both methods increased GIR to the same extent in the post-stimulation period. Electrical stimulation decreased mRNA expression of Adipor2, Adrb1, Fndc5, Erk2, and Tfam in soleus muscle and increased ovarian Adrb2 and Pdf. Manual stimulation decreased ovarian mRNA expression of Erk2 and Sdnd. Electrical stimulation increased phosphorylated ERK levels in soleus muscle. One acupuncture session with electrical stimulation improves insulin sensitivity and modulates skeletal muscle gene and protein expression more than manual stimulation. Although electrical stimulation is superior to manual in enhancing insulin sensitivity during stimulation, they are equally effective after stimulation indicating that it is activation of sensory afferents rather than muscle contraction per se leading to the observed changes.

  13. Lipogenic enzyme activities and glucose uptake in fat tissue of dyslipemic, insulin-resistant rats: effects of fish oil.

    Science.gov (United States)

    Rossi, Andrea S; Lombardo, Yolanda B; Chicco, Adriana G

    2010-02-01

    The purposes of the present work were twofold: (1) investigate same mechanisms involved in the development of fat cell hypertrophy in the experimental model of dyslipidemia and whole-body insulin resistance induced in rats chronically fed a sucrose-rich diet (SRD); and (2) analyze the possible beneficial effect of fish oil on these mechanisms. For 6 mo, male Wistar rats received a sucrose-rich diet (62.5% w/w sucrose, 8% corn oil) or a control diet in which sucrose was replaced by starch. After this period, the sucrose-fed animals were divided randomly into two groups: the first one continued with the same diet up to 8 mo and the second one received the same diet, but with corn oil replaced by 7% fish oil+1 % corn oil. Rats were fed with this diet for the next 2 mo. Although an enlarged fat cell lipolysis and an impaired insulin-stimulated glucose uptake were present in the fat cells of SRD-fed rats, an increase of several key enzymes of the novo lipogenesis could be one of the possible mechanisms involved in visceral adiposity. The addition of dietary fish oil restored or improved the above abnormalities. This study shows possible mechanisms conditioning the influence of nutrients on the development and management of dyslipidemia, insulin sensitivity, and fat cell accretion, all abnormalities present in the metabolic syndrome. 2010 Elsevier Inc. All rights reserved.

  14. Beef Fat Enriched with Polyunsaturated Fatty Acid Biohydrogenation Products Improves Insulin Sensitivity Without Altering Dyslipidemia in Insulin Resistant JCR:LA-cp Rats.

    Science.gov (United States)

    Diane, Abdoulaye; Borthwick, Faye; Mapiye, Cletos; Vahmani, Payam; David, Rolland C; Vine, Donna F; Dugan, Michael E R; Proctor, Spencer D

    2016-07-01

    The main dietary sources of trans fatty acids are partially hydrogenated vegetable oils (PHVO), and products derived from polyunsaturated fatty acid biohydrogenation (PUFA-BHP) in ruminants. Trans fatty acid intake has historically been associated with negative effects on health, generating an anti-trans fat campaign to reduce their consumption. The profiles and effects on health of PHVO and PUFA-BHP can, however, be quite different. Dairy products naturally enriched with vaccenic and rumenic acids have many purported health benefits, but the putative benefits of beef fat naturally enriched with PUFA-BHP have not been investigated. The objective of the present experiment was to determine the effects of beef peri-renal fat (PRF) with differing enrichments of PUFA-BHP on lipid and insulin metabolism in a rodent model of dyslipidemia and insulin resistance (JCR:LA-cp rat). The results showed that 6 weeks of diet supplementation with beef PRF naturally enriched due to flaxseed (FS-PRF) or sunflower-seed (SS-PRF) feeding to cattle significantly improved plasma fasting insulin levels and insulin sensitivity, postprandial insulin levels (only in the FS-PRF) without altering dyslipidemia. Moreover, FS-PRF but not SS-PRF attenuated adipose tissue accumulation. Therefore, enhancing levels of PUFA-BHP in beef PRF with FS feeding may be a useful approach to maximize the health-conferring value of beef-derived fats.

  15. Modulation of Steroidogenic Pathway in Rat Granulosa Cells with Subclinical Cd Exposure and Insulin Resistance: An Impact on Female Fertility

    Directory of Open Access Journals (Sweden)

    Muskaan Belani

    2014-01-01

    Full Text Available Changes in lifestyle lead to insulin resistance (IR in females ultimately predisposing them towards infertility. In addition, cadmium (Cd, an environmental endocrine disruptor, is reported for detrimental effects on granulosa cells, thus leading to ovarian dysfunction. A combination of these factors, lifestyle and environment, seems to play a role in etiology of idiopathic infertility that accounts for 50% amongst the total infertility cases. To address this issue, we made an attempt to investigate the extent of Cd impact on insulin-resistant (IR granulosa cells. We exposed adult female Charles Foster rats to dexamethasone and confirmed IR condition by fasting insulin resistance index (FIRI. On treatment of IR rats with Cd, the preliminary studies demonstrated prolonged estrous cyclicity, decrease in serum estradiol concentrations, abnormal histology of ovary, and increased granulosa cell death. Further gene and protein expression studies of steroidogenic acute regulatory (StAR protein, 17β-hydroxysteroid dehydrogenase (17β-HSD, and cytochrome P450 aromatase (CYP19A1 were performed. Protein expression studies demonstrated significant decrease in treated groups when compared with control. Study revealed that, in spite of the molecular parameters being affected at varied level, overall ovarian physiology is maximally affected in IR and Cd coexposed group, thus mimicking the condition similar to those prevailing in infertile females.

  16. [Cyanidin-3-glucoside attenuates body weight gain, serum lipid concentrations and insulin resistance in high-fat diet-induced obese rats].

    Science.gov (United States)

    Yu, Ren-Qiang; Wu, Xiao-You; Zhou, Xiang; Zhu, Jing; Ma, Lu-Yi

    2014-05-01

    Cyanidin-3-glucoside (C3G) is the main active ingredient of anthocyanidin. This study aimed to evaluate the effects of C3G on body weight gain, visceral adiposity, lipid profiles and insulin resistance in high-fat diet-induced obese rats. Thirty male Sprague-Dawley rats were randomly divided into a control group (n=8) and a high fat diet group (n=22), and were fed with standard diet or high fat diet. Five weeks later, 17 high-fat diet-induced obese rats were randomly given C3G [100 mg/(kg·d)] or normal saline via intragastric administration for 5 weeks. Five weeks later, body weight, visceral adiposity and food intake were measured. Blood samples were collected for detecting fasting glucose, serum insulin, lipid profiles and adiponectin. Insulin resistance index, atherosclerosis index and average feed efficiency ratio were calculated. C3G supplementation markedly decreased body weight, visceral adiposity, average feed efficiency ratio, triglyceride, total cholesterol, low density lipoprotein cholesterol, fasting glucose, serum insulin, insulin resistance index and atherosclerosis index in high-fat diet-induced obese rats. C3G supplementation normalized serum adiponectin and high density lipoprotein cholesterol levels in high-fat diet-induced obese rats. Cyanidin-3-glucoside can reduce body weight gain, and attenuate obesity-associated dyslipidemia and insulin resistance in high-fat diet-fed rats via up-regulating serum adiponectin level.

  17. Effect of hepatic glucose production on acute insulin resistance induced by lipid-infusion in awake rats

    Institute of Scientific and Technical Information of China (English)

    Ling Li; Gang-Yi Yang

    2004-01-01

    AIM: To explore the influence of hepatic glucose production on acute insulin resistance induced by a lipid infusion in awake rats.METHODS: A hyperinsulinaemic-euglycaemic clamp was established in awake chronically catheterized rats. Two groups of rats were studied either with a 4-h intraarterial infusion of lipid/heparin or saline. Insulin-mediated peripheral and hepatic glucose metabolism was assessed by hyperinsulinaemiceuglycaemic clamp combined with [3-3H]-glucose infusion.RESULTS: During hyperinsulinaemic-euglycaemic clamp,there was a significant increase in plasma free fatty acid (FFA, from 741.9±50.6 to 2346.4±238.5 μmol/L, P<0.01) in lipid-infused group. The glucose infusion rates (GIR) in the lipid infusion rats, compared to control rats, were significantly reduced (200-240 min average: lipid infusion; 12.6±1.5 vs control; 34.0±1.6 mg/kg.min, P<0.01), declining to - 35%of the corresponding control values during the last time of the clamp (240 min: lipid infusion; 12.0±1.9 vs control;34.7±1.7 mg/kg.min, P<0.0001). At the end of clamp study,the hepatic glucose production (HGP) in control rats was significantly suppressed (88%) from 19.0±4.5 (basal) to 2.3±0.9 mg/kg.min (P<0.01). The suppressive effect of insulin on HGP was significantly blunted in the lipid-infused (P<0.05). The rate of glucose disappearance (GRd) was a slight decrease in the lipid-infused rats compared with controls during the clamp.CONCLUSION: These data suggest that lipid infusion could induces suppression of hepatic glucose production, impairs the abilities of insulin to suppress lipolysis and mediate glucose utilization in peripheral tissue. Therefore, we conclude that lipid-infusion induces an acute insulin resistance in vivo.

  18. Time course of adipose tissue dysfunction associated with antioxidant defense, inflammatory cytokines and oxidative stress in dyslipemic insulin resistant rats.

    Science.gov (United States)

    D'Alessandro, María Eugenia; Selenscig, Dante; Illesca, Paola; Chicco, Adriana; Lombardo, Yolanda B

    2015-04-01

    The dysfunctional adipose tissue of rats fed a sucrose-rich diet was investigated following the time course of the development of oxidative stress, changes in proinflammatory cytokines and adiponectin levels, and their relationship with insulin resistance. We analyzed the morphometric characteristics of epididymal adipocytes, de novo lipogenesis enzyme activities and cellular antioxidant defense, inflammatory mediators, adiponectin levels and insulin resistance in rats fed a sucrose-rich diet for 3, 15 or 30 weeks and compared to those fed a control diet. The results showed a depletion of antioxidant enzyme activities in the fat pads of rats fed a sucrose-rich diet, with an increase in xanthine oxidase activity and lipid peroxidation after 3, 15 and 30 weeks on the diet. Superoxide dismutase activity and the redox state of glutathione showed a significant decrease at weeks 15 and 30. This was accompanied by visceral adiposity and enhanced lipogenic enzyme activities. An increase in the plasma levels of proinflammatory markers (TNF-α and IL-6) was recorded only after 30 weeks on the diet. A reduction in plasma adiponectin levels accompanied the time course of deterioration of whole-body insulin sensitivity. The results suggest that lipid peroxidation, depletion of antioxidant defenses and changes in inflammatory cytokines induced by a sucrose-rich diet contribute to the dysregulation of adipose tissue and insulin resistance. Finally, these results show that the progressive deterioration of adipose tissue function, which begins in the absence of both visceral adiposity and overweight, is highly dependent on the length of time on the diet.

  19. Central injection of GALR1 agonist M617 attenuates diabetic rat skeletal muscle insulin resistance through the Akt/AS160/GLUT4 pathway.

    Science.gov (United States)

    Fang, Penghua; Yu, Mei; He, Biao; Guo, Lili; Huang, Xiaoli; Kong, Guimei; Shi, Mingyi; Zhu, Yan; Bo, Ping; Zhang, Zhenwen

    2017-03-01

    Insulin resistance of skeletal muscle plays an important role in the pathogenesis of type 2 diabetes. Galanin, a 29/30-amino-acid neuropeptide, plays multiple biological actions, including anti-diabetic effects. Although recent results of our study showed that administration of galanin could mitigate insulin resistance by promoting glucose transporter 4 (GLUT4) expression and translocation in skeletal muscle of rats, there is no literature available regarding to the effect of type 1 of galanin receptors (GALR1) on insulin resistance in skeletal muscle of type 2 diabetic rats. Herein, we intended to survey the central effect of GALR1 agonist M617 on insulin resistance in skeletal muscle and its underlying mechanisms. We found that the intracerebroventricular injection of M617 increased glucose infusion rates in hyperinsulinemic euglycemic clamp tests, but attenuated the plasma insulin and glucose concentrations of diabetic rats. Furthermore, administration of M617 markedly increased GLUT4 mRNA expression and GLUT4 translocation in skeletal muscle of diabetic rats. Last, perfusion of M617 increased phosphorylated Akt and phosphorylated AS160 levels in the skeletal muscle of diabetic rats. In conclusion, central injection of M617 mitigated insulin resistance of skeletal muscle by enhancing GLUT4 translocation from intracellular pools to plasma membranes via the activation of the Akt/AS160/GLUT4 signaling pathway.

  20. Putative PPAR target genes express highly in skeletal muscle of insulin-resistant MetS model SHR/NDmc-cp rats.

    Science.gov (United States)

    Hariya, Natsuyo; Miyake, Kunio; Kubota, Takeo; Goda, Toshinao; Mochizuki, Kazuki

    2015-01-01

    It is known that insulin resistance in skeletal muscle induces subsequent metabolic diseases such as metabolic syndrome (MetS). However, which genes are altered in the skeletal muscle by development of insulin resistance in animal models has not been examined. In this study, we performed microarray and subsequent real-time RT-PCR analyses using total RNA extracted from the gastrocnemius muscle of the MetS model, spontaneously hypertensive corpulent congenic (SHR/NDmc-cp) rats, and control Wistar Kyoto (WKY) rats. SHR/NDmc-cp rats displayed overt insulin resistance relative to WKY rats. The expression of many genes related to fatty acid oxidation was higher in SHR/NDmc-cp rats than in WKY rats. Among 18 upregulated genes, putative peroxisome proliferator responsive elements were found in the upstream region of 15 genes. The protein expression of ACOX2, an upregulated gene, and peroxisome proliferator-activated receptor (PPAR) G1, but not of PPARG2, PPARA or PPARD, was higher in the gastrocnemius muscle of SHR/NDmc-cp rats than that in WKY rats. These results suggest that insulin resistance in the MetS model, SHR/NDmc-cp rats, is positively associated with the expression of fatty acid oxidation-related genes, which are presumably PPARs’ targets, in skeletal muscle.

  1. Gene expression profiling in skeletal muscle of Zucker diabetic fatty rats: implications for a role of stearoyl-CoA desaturase 1 in insulin resistance.

    Science.gov (United States)

    Voss, M D; Beha, A; Tennagels, N; Tschank, G; Herling, A W; Quint, M; Gerl, M; Metz-Weidmann, C; Haun, G; Korn, M

    2005-12-01

    Insulin resistance in skeletal muscle is a hallmark of type 2 diabetes. Therefore, we sought to identify and validate genes involved in the development of insulin resistance in skeletal muscle. Differentially regulated genes in skeletal muscle of male obese insulin-resistant, and lean insulin-sensitive Zucker diabetic fatty (ZDF) rats were determined using Affymetrix microarrays. Based on these data, various aspects of glucose disposal, insulin signalling and fatty acid composition were analysed in a muscle cell line overexpressing stearoyl-CoA desaturase 1 (SCD1). Gene expression profiling in insulin-resistant skeletal muscle revealed the most pronounced changes in gene expression for genes involved in lipid metabolism. Among these, Scd1 showed increased expression in insulin-resistant animals, correlating with increased amounts of palmitoleoyl-CoA. This was further investigated in a muscle cell line that overexpressed SCD1 and accumulated lipids, revealing impairments of glucose uptake and of different steps of the insulin signalling cascade. We also observed differential effects of high-glucose and fatty acid treatment on glucose uptake and long-chain fatty acyl-CoA profiles, and in particular an accumulation of palmitoleoyl-CoA in cells overexpressing SCD1. Insulin-resistant skeletal muscle of ZDF rats is characterised by a specific gene expression profile with increased levels of Scd1. An insulin-resistant phenotype similar to that obtained by treatment with palmitate and high glucose can be induced in vitro by overexpression of SCD1 in muscle cells. This supports the hypothesis that elevated SCD1 expression is a possible cause of insulin resistance and type 2 diabetes.

  2. Accumulation of ceramide in slow-twitch muscle contributes to the development of insulin resistance in the obese JCR:LA-cp rat.

    Science.gov (United States)

    Fillmore, Natasha; Keung, Wendy; Kelly, Sandra E; Proctor, Spencer D; Lopaschuk, Gary D; Ussher, John R

    2015-06-01

    What is the central question of this study? The aim was to determine whether the accumulation of ceramide contributes to skeletal muscle insulin resistance in the JCR obese rat. What is the main finding and its importance? Our main new finding is that ceramides accumulate only in slow-twitch skeletal muscle in the JCR obese rat and that reducing ceramide content in this muscle type by inhibition of serine palmitoyl transferase-1 halts the progression of insulin resistance in this rat model predisposed to early development of type 2 diabetes. Our findings highlight the importance of assessing insulin signalling/sensitivity and lipid intermediate accumulation in different muscle fibre types. It has been postulated that insulin resistance results from the accumulation of cytosolic lipid metabolites (i.e. diacylglycerol/ceramide) that impede insulin signalling and impair glucose homeostasis. De novo ceramide synthesis is catalysed by serine palmitoyl transferase-1. Our aim was to determine whether de novo ceramide synthesis plays a role during development of insulin resistance in the JCR:LA-cp obese rat. Ten-week-old JCR:LA-cp obese rats were supplemented with either vehicle or the serine palmitoyl transferase-1 inhibitor l-cycloserine (360 mg l(-1) ) in their drinking water for a 2 week period, and glycaemia was assessed by meal tolerance testing. Treatment of JCR:LA-cp obese rats with l-cycloserine improved their plasma glucose and insulin levels during a meal tolerance test. Examination of muscle lipid metabolites and protein phosphorylation patterns revealed differential signatures in slow-twitch (soleus) versus fast-twitch muscle (gastrocnemius), in that ceramide levels were increased in soleus but not gastrocnemius muscles of JCR:LA-cp obese rats. Likewise, improved glycaemia in l-cycloserine-treated JCR:LA-cp obese rats was associated with enhanced Akt and pyruvate dehydrogenase signalling in soleus but not gastrocnemius muscles, probably as a result of l

  3. Irbesartan-mediated reduction of renal and cardiac damage in insulin resistant JCR : LA-cp rats.

    Science.gov (United States)

    Russell, J C; Kelly, S E; Vine, D F; Proctor, S D

    2009-11-01

    Angiotensin II receptor antagonists (ARBs), originally developed for antihypertensive properties, have pleiotropic effects including direct vascular actions. We tested the hypothesis that the ARB irbesartan would be effective against micro- and macrovascular complications of the prediabetic metabolic syndrome using the obese, insulin-resistant JCR : LA-cp rat that exhibits micro- and macrovascular disease with ischaemic myocardial lesions and renal disease. Obese male rats were treated with irbesartan (30 mg.kg(-1).day(-1), incorporated into chow) from 12 to 25 weeks of age. Irbesartan treatment caused no change in food intake or body weight. Fasting glycaemic control of the JCR : LA-cp rats was marginally improved, at the expense of increased plasma insulin levels ( approximately 50%). Fasting plasma triglycerides were marginally reduced ( approximately 25%), while cholesterol concentrations were unchanged. Elevated concentrations of adiponectin, monocyte chemotactic protein-1 and plasminogen activator inhibitor-1 were reduced along with severity of glomerular sclerosis. Macrovascular dysfunction (aortic hypercontractile response to noradrenergic stimulus and reduced endothelium-dependent relaxation) was improved and frequency of ischaemic myocardial lesions reduced (62%). Irbesartan reduces markers of inflammation and prothombotic status, improves macrovascular function and reduces glomerular sclerosis and myocardial lesions in a model of the metabolic syndrome. Unlike pharmaceutical agents targeted on metabolic dysfunction, irbesartan reduced end-stage disease without major reduction of plasma lipids or insulin. The protective effects appear to be secondary to unknown intracellular mechanisms, probably involving signal transduction pathways. Understanding these would offer novel pharmaceutical approaches to protection against cardiovascular disease.

  4. Insulin Resistance, Microbiota, and Fat Distribution Changes by a New Model of Vertical Sleeve Gastrectomy in Obese Rats.

    Science.gov (United States)

    Basso, Nicola; Soricelli, Emanuele; Castagneto-Gissey, Lidia; Casella, Giovanni; Albanese, Davide; Fava, Francesca; Donati, Claudio; Tuohy, Kieran; Angelini, Giulia; La Neve, Federica; Severino, Anna; Kamvissi-Lorenz, Virginia; Birkenfeld, Andrea L; Bornstein, Stefan; Manco, Melania; Mingrone, Geltrude

    2016-10-01

    Metabolic surgery improves insulin resistance and type 2 diabetes possibly because of weight loss. We performed a novel sleeve gastrectomy in rats that resects ∼80% of the glandular portion, leaving the forestomach almost intact (glandular gastrectomy [GG]) and compared subsequent metabolic remodeling with a sham operation. GG did not affect body weight, at least after 10 weeks; improved hepatic and peripheral insulin sensitivity likely through increased Akt, glycogen synthase kinase 3, and AMPK phosphorylation; and reduced ectopic fat deposition and hepatic glycogen overaccumulation. Body adipose tissue was redistributed, with reduction of intraabdominal fat. We found a reduction of circulating ghrelin levels, increased GLP-1 plasma concentration, and remodeling of gut microbiome diversity characterized by a lower relative abundance of Ruminococcus and a higher relative abundance of Lactobacillus and Collinsella These data suggest that at least in rat, the glandular stomach plays a central role in the improvement of insulin resistance, even if obesity persists. GG provides a new model of the metabolically healthy obese phenotype.

  5. Periodontitis contributes to adipose tissue inflammation through the NF-B, JNK and ERK pathways to promote insulin resistance in a rat model.

    Science.gov (United States)

    Huang, Yanli; Zeng, Jin; Chen, Guoqing; Xie, Xudong; Guo, Weihua; Tian, Weidong

    2016-12-01

    This study aimed to investigate the mechanism by which periodontitis affects the inflammatory response and systemic insulin resistance in the white adipose and liver tissues in an obese rat model. The obese model was generated by feeding rats a high fat diet. The periodontitis model was induced by ligatures and injection of "red complex", which consisted of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, for two weeks. When compared with rats without periodontitis, fasting glucose levels and homeostasis model assessment index were significantly increased in rats with periodontitis, suggesting that periodontitis promotes the development of insulin resistance in obese rats. Gene and protein expression analysis in white adipose and liver tissue revealed that experimental periodontitis stimulated the expression of inflammatory cytokines, such as tumor necrosis factors-alpha, interleukin-1 beta, toll-like receptor 2 and toll-like receptor 4. Signals associated with inflammation and insulin resistance, including nuclear factor- B, c-Jun amino-terminal kinase and extracellular-signal regulated kinase were significantly activated in the white adipose tissue from obese rats with periodontitis compared to obese rats without periodontitis. Taken together, these findings suggest that periodontitis plays an important role in aggravating the development of local white adipose inflammation and systemic insulin resistance in rat models. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. Dietary sardine protein lowers insulin resistance, leptin and TNF-α and beneficially affects adipose tissue oxidative stress in rats with fructose-induced metabolic syndrome.

    Science.gov (United States)

    Madani, Zohra; Louchami, Karim; Sener, Abdullah; Malaisse, Willy J; Ait Yahia, Dalila

    2012-02-01

    The present study aims at exploring the effects of sardine protein on insulin resistance, plasma lipid profile, as well as oxidative and inflammatory status in rats with fructose-induced metabolic syndrome. Rats were fed sardine protein (S) or casein (C) diets supplemented or not with high-fructose (HF) for 2 months. Rats fed the HF diets had greater body weight and adiposity and lower food intake as compared to control rats. Increased plasma glucose, insulin, HbA1C, triacylglycerols, free fatty acids and impaired glucose tolerance and insulin resistance was observed in HF-fed rats. Moreover, a decline in adipose tissues antioxidant status and a rise in lipid peroxidation and plasma TNF-α and fibrinogen were noted. Rats fed sardine protein diets exhibited lower food intake and fat mass than those fed casein diets. Sardine protein diets diminished plasma insulin and insulin resistance. Plasma triacylglycerol and free fatty acids were also lower, while those of α-tocopherol, taurine and calcium were enhanced as compared to casein diets. Moreover, S-HF diet significantly decreased plasma glucose and HbA1C. Sardine protein consumption lowered hydroperoxide levels in perirenal and brown adipose tissues. The S-HF diet, as compared to C-HF diet decreased epididymal hydroperoxides. Feeding sardine protein diets decreased brown adipose tissue carbonyls and increased glutathione peroxidase activity. Perirenal and epididymal superoxide dismutase and catalase activities and brown catalase activity were significantly greater in S-HF group than in C-HF group. Sardine protein diets also prevented hyperleptinemia and reduced inflammatory status in comparison with rats fed casein diets. Taken together, these results support the beneficial effect of sardine protein in fructose-induced metabolic syndrome on such variables as hyperglycemia, insulin resistance, hyperlipidemia and oxidative and inflammatory status, suggesting the possible use of sardine protein as a protective

  7. Overproduction of altered VLDL in an insulin-resistance rat model: Influence of SREBP-1c and PPAR-α.

    Science.gov (United States)

    Lucero, Diego; Miksztowicz, Verónica; Macri, Vanesa; López, Gustavo H; Friedman, Silvia; Berg, Gabriela; Zago, Valeria; Schreier, Laura

    2015-01-01

    In insulin-resistance, VLDL presents alterations that increase its atherogenic potential. The mechanism by which insulin-resistance promotes the production of altered VLDL is still not completely understood. The aim of this study was to evaluate the relationship between the expression of sterol regulatory element binding protein 1c (SREBP-1c) and of peroxisome proliferator-activated receptor-α (PPAR-α), with the features of composition and size of VLDL in an insulin-resistance rat model induced by a sucrose rich diet (SRD). The study was conducted on 12 male Wistar rats (180g) receiving SRD (12 weeks) and 12 controls. Lipid profile, free fatty acids, glucose, and insulin were measured. Lipid content in liver and visceral fat were assessed. Isolated VLDL (d<1.006g/ml) was characterized by its chemical composition and size by HPLC. The respective hepatic expression of SREBP-1c and PPAR-α was determined (Western blot). As expected, SRD had elevated triglycerides (TG), free fatty acids and insulin levels, and decreased HDL-cholesterol (p<0.05), together with augmented hepatic and visceral fat (p<0.05). SRD showed higher VLDL total mass - with increased TG content - and predominance of large VLDL (p<0.05). SRD showed an increase in SREBP-1c (precursor and mature forms) and decreased PPAR-α expression (p<0.045). SREBP-1c forms were positively associated with VLDL total mass (p<0.04), VLDL-TG% (p<0.019), and large VLDL% (p<0.002). On the other hand, PPAR-α correlated negatively with VLDL total mass (p=0.05), VLDL-TG% (p=0.005), and large VLDL% (p=0.002). Insulin-resistance, by coordinated activation of SREBP-1c and reduction of PPAR-α, could promote the secretion of larger and TG over-enriched VLDL particles, with greater atherogenic capacity. Copyright © 2014 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  8. Sodium butyrate reduces insulin-resistance, fat accumulation and dyslipidemia in type-2 diabetic rat: A comparative study with metformin.

    Science.gov (United States)

    Khan, Sabbir; Jena, Gopabandhu

    2016-07-25

    Recent evidences highlighted that histone deacetylases (HDACs) can deacetylate the histone, various transcription factors and regulatory proteins, which directly or indirectly affect glucose metabolism. The present study aimed to evaluate the comparative effects of sodium butyrate (NaB) and metformin on the glucose homeostasis, insulin-resistance, fat accumulation and dyslipidemia in type-2 diabetic rat. Diabetes was developed in Sprague-Dawley rats by the combination of high-fat diet (HFD) and low dose streptozotocin (STZ, 35 mg/kg). NaB at the doses of 200 and 400 mg/kg twice daily as well as metformin (as a positive control) 150 mg/kg twice daily for 10 consecutive weeks were administered by i.p. and oral route, respectively. NaB treatment significantly reduced the plasma glucose, HbA1c, insulin-resistance, dyslipidemia and gluconeogenesis, which are comparable to metformin treatment. Further, NaB treatment ameliorated the micro- and macro-vesicular steatosis in liver and fat deposition in brown adipose tissue, white adipose tissue (adipocytes hypertrophy) as well as pancreatic beta-cell damage. In the present study, both NaB and metformin inhibited the diabetes-associated increased HDACs activity, thereby increased the acetylation of histone H3 in liver. The present findings demonstrated that NaB and metformin reduced insulin-resistance, dyslipidemia, fat accumulation and gluconeogenesis thereby improved the glucose homeostasis in rat. Thus, NaB might be a promising molecule for the prevention and treatment of type-2 diabetes and dyslipidemia. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Insulin Resistance and Hypertension

    Institute of Scientific and Technical Information of China (English)

    张建华; 张春秀

    2002-01-01

    Summary: The insulin sensitivity in hypertensive patients with normal glucose tolerance (NGT),impaired glucose tolerance (IGT) and type 2 diabetes mellitus (DM) and the insulin resistance(IR) under the disorder of glucose metabolism and hypertension were studied. By glucose toler-ance test and insulin release test, insulin sensitivity index (ISI) and the ratio of area under glucosetolerance curve (AUCG) to area under insulin release curve (AUC1) were calculated and analyzed.The results showed that ISI was decreased to varying degrees in the patients with hypertension,the mildest in the group of NGT with hypertension, followed by the group of IGT without hyper-tension, the group of IGT with hypertension and DM (P=0). There was very significant differ-ence in the ratio of AUCG/AUC1 between the hypertensive patients with NGT and controls (P=0). It was concluded that a significant IR existed during the development of IGT both in hyperten-sion and nonhypertension. The increase of total insulin secretion (AUC1) was associated with non-hypertension simultaneously. IR of the hypertensive patients even existed in NGT and was wors-ened with the deterioration of glucose metabolism disorder, but the AUC1 in the HT groupchanged slightly. A relative deficiency of insulin secretion or dysfunction of β-cell of islet existed inIGT and DM of the hypertensive patients.

  10. Obesity, insulin resistance and diabetes in the sand rat exposed to a hypercaloric diet; possible protective effect for IL1-β.

    Science.gov (United States)

    Khalkhal, Ali; Haddar, Aomar; Semiane, Nesrine; Mallek, Aicha; Abdelmalek, Abdelouadoud; Castex, Françoise; Gross, René; Dahmani, Yasmina

    2012-04-01

    It is well established that, upon changing their natural desert low caloric (succulent halophilic plants) to a regular laboratory high caloric diet, sand rats undergo various phenotypic changes depending on their genetic background and including obesity and various degrees of insulin resistance. Our aim was to investigate the acute effects of Interleukin-1β (IL-1β) and Interferon-γ (IFN-γ) on glucose-induced insulin secretion in normal lean sand rats maintained on their natural diet and in obese insulin resistant normoglycemic or type 2 diabetic animals after a 9-month high caloric diet. Animals were fed either a low or a high caloric diet; after 9 months, pancreatic islets were isolated and incubated in the presence of increasing cytokine concentrations. At the end of the high-energy diet, animals were all over-weight, and probably due to a different genetic background, they displayed either insulin resistance, hyperinsulinemia and normoglycemia or a marked type-2 diabetic state. Pancreatic islets from obese insulin resistant normoglycemic animals were much more sensitive and responsive to IL-1β when compared to lean controls. The cytokine was inefficient in diabetic islets. In conclusion, the markedly increased insulinotropic effect of IL-1β in obese diabetes-resistant sand rat could participate and be involved in pancreatic β-cell hyperactivity that compensates for insulin resistance and thereby prevent the development of type 2 diabetes in these animals.

  11. Effects of insulin resistance on myometrial growth

    OpenAIRE

    Hou, Zhi-Min; Sun, Qian; Liu, Yan-Zhi; Chen, Tie-Fu; Tang,Na

    2015-01-01

    To observe the effects of insulin resistance on gonadal steroid hormone stimulation and the myometrial growth of female rats in order to elucidate the relationship between insulin resistance and the development of uterine leiomyomas. We divided 180 nonpregnant female Wistar rats into three groups as follows: group A, as the control group; group B, as the “model by exogenous sex hormone” group; and group C, as the “model by exogenous sex hormone plus insulin-resistance” group. All the animals ...

  12. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats.

    Science.gov (United States)

    Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Kerdphoo, Sasiwan; Jaiwongkam, Thidarat; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-10-15

    Dipeptidyl peptidase-4 inhibitor (vildagliptin) has been shown to exert beneficial effects on insulin sensitivity and neuroprotection in obese-insulin resistance. Recent studies demonstrated the neuroprotection of the sodium-glucose co-transporter 2 inhibitor (dapagliflozin) in diabetes. However, the comparative effects of both drugs and a combination of two drugs on metabolic dysfunction and brain dysfunction impaired by the obese-insulin resistance have never been investigated. Forty male Wistar rats were divided into two groups, and received either a normal-diet (ND, n=8) or a high-fat diet (HFD, n=32) for 16weeks. At week 13, the HFD-fed rats were divided into four subgroups (n=8/subgroup) to receive either a vehicle, vildagliptin (3mg/kg/day) dapagliflozin (1mg/kg/day) or combined drugs for four weeks. ND rats were given a vehicle for four weeks. Metabolic parameters and brain function were investigated. The results demonstrated that HFD rats developed obese-insulin resistance and cognitive decline. Dapagliflozin had greater efficacy on improved peripheral insulin sensitivity and reduced weight gain than vildagliptin. Single therapy resulted in equally improved brain mitochondrial function, insulin signaling, apoptosis and prevented cognitive decline. However, only dapagliflozin improved hippocampal synaptic plasticity. A combination of the drugs had greater efficacy in improving brain insulin sensitivity and reducing brain oxidative stress than the single drug therapy. These findings suggested that dapagliflozin and vildagliptin equally prevented cognitive decline in the obese-insulin resistance, possibly through some similar mechanisms. Dapagliflozin had greater efficacy than vildagliptin for preserving synaptic plasticity, thus combined drugs could be the best therapeutic approach for neuroprotection in the obese-insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Resistance training associated with the administration of anabolic-androgenic steroids improves insulin sensitivity in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Urtado CB

    2011-11-01

    Full Text Available Christiano Bertoldo Urtado1,2, Guilherme Borges Pereira3, Marilia Bertoldo Urtado4, Érica Blascovi de Carvalho2, Gerson dos Santos Leite1, Felipe Fedrizzi Donatto1, Claudio de Oliveira Assumpção1, Richard Diego Leite3, Carlos Alberto da Silva1, Marcelo Magalhães de Sales5, Ramires Alsamir Tibana5, Silvia Cristina Crepaldi Alves1, Jonato Prestes51Health Sciences, Methodist University of Piracicaba, Piracicaba, SP, 2Center for Investigation in Pediatrics, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, 3Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, 4Laboratory of Orofacial Pain, Division of Oral Physiology, Piracicaba Dental School, State University of Campinas, Campinas, SP, 5Graduation Program in Physical Education, Catholic University of Brasilia, Brasilia, DF, BrazilAbstract: The aim of the present study was to investigate the effects of anabolic-androgenic steroids and resistance training (RT on insulin sensitivity in ovariectomized rats. Adult female Wistar rats were divided into ten experimental groups (n = 5 animals per group: (1 sedentary (Sed-Intact; (2 sedentary ovariectomized (Sed-Ovx; (3 sedentary nandrolone (Sed-Intact-ND; (4 sedentary ovariectomized plus nandrolone (Sed-Ovx-ND; (5 trained (TR-Intact; (6 trained nandrolone (TR-Intact-ND; (7 trained ovariectomized (TR-Ovx; (8 trained ovariectomized plus nandrolone; (9 trained sham; and (10 trained ovariectomized plus sham. Four sessions of RT were used, during which the animals climbed a 1.1 m vertical ladder with weights attached to their tails. The sessions were performed once every 3 days, with between four and nine climbs and with eight to twelve dynamic movements per climb. To test the sensitivity of insulin in the pancreas, glucose and insulin tolerance tests were performed. For insulin sensitivity, there was a statistically significant interaction for the TR-Ovx group, which presented higher sensitivity

  14. Preventative effect of Zingiber officinale on insulin resistance in a high-fat high-carbohydrate diet-fed rat model and its mechanism of action.

    Science.gov (United States)

    Li, Yiming; Tran, Van H; Kota, Bhavani P; Nammi, Srinivas; Duke, Colin C; Roufogalis, Basil D

    2014-08-01

    Insulin resistance is a core component of metabolic syndrome and usually precedes the development of type 2 diabetes mellitus. We have examined the preventative effect of an ethanol extract of ginger (Zingiber officinale, Zingiberaceae) on insulin resistance in a high-fat high-carbohydrate (HFHC) diet-fed rat model of metabolic syndrome. The HFHC control rats displayed severe insulin resistance, whilst rats treated with ginger extract (200 mg/kg) during HFHC diet feeding showed a significant improvement of insulin sensitivity using the homeostatic model assessment of insulin resistance (HOMA-IR) after 10 weeks (p ginger, dose-dependently (from 50 to 150 μM) increased AMPK α-subunit phosphorylation in L6 skeletal muscle cells. This was accompanied by a time-dependent marked increment of PGC-1α mRNA expression and mitochondrial content in L6 skeletal muscle cells. These results suggest that the protection from HFHC diet-induced insulin resistance by ginger is likely associated with the increased capacity of energy metabolism by its major active component (S)-[6]-gingerol.

  15. Vescalagin from Pink Wax Apple [Syzygium samarangense (Blume) Merrill and Perry] Alleviates Hepatic Insulin Resistance and Ameliorates Glycemic Metabolism Abnormality in Rats Fed a High-Fructose Diet.

    Science.gov (United States)

    Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan

    2016-02-10

    This study investigates the ameliorative effect of vescalagin (VES) isolated from Pink wax apple fruit on hepatic insulin resistance and abnormal carbohydrate metabolism in high-fructose diet (HFD)-induced hyperglycemic rats. The results show that in HFD rats, VES significantly reduced the values of the area under the curve for glucose in an oral glucose tolerance test and the homeostasis model assessment of insulin resistance index. VES significantly enhanced the activity of hepatic antioxidant enzymes while reducing thiobarbituric acid-reactive substances in HFD rats. Western blot assay revealed that VES reduced hepatic protein expression involved in inflammation pathways while up-regulating expression of hepatic insulin signaling-related proteins. Moreover, VES up-regulated the expression of hepatic glycogen synthase and hepatic glycolysis-related proteins while down-regulating hepatic gluconeogenesis-related proteins in HFD rats. This study suggests some therapeutic potential of VES in preventing the progression of diabetes mellitus.

  16. Tanshinone I alleviates insulin resistance in type 2 diabetes mellitus rats through IRS-1 pathway.

    Science.gov (United States)

    Wei, Ying; Gao, Jiaqi; Qin, Lingling; Xu, Yunling; Wang, Dongchao; Shi, Haoxia; Xu, Tunhai; Liu, Tonghua

    2017-09-01

    Tanshinone I from tanshen has been used in traditional Chinese medicine for treating cardiovascular diseases and inflammatory diseases. Given the link between inflammation and Type 2 diabetes mellitus (T2DM), we suspect that tanshinone I may have a beneficial effect on T2DM. This study was to investigate the potential effects of tanshinone I on T2DM and its underlying mechanism. T2DM was thus induced in Sprague-Dawley (SD) rats using streptozotocin (STZ) and high-fat diet. It was observed that T2DM rats had higher levels of total cholesterol (TC), nonesterified fatty acids (NEFAs), total triglyceride (TG) and total low density lipoprotein cholesterol (LDL-C) compared with normal, healthy SD rats. Treatment with tanshinone I decreased these levels and lowered blood glucose level in T2DM rats. In addition, enzyme-linked immunosorbent assay (ELISA) analysis showed that T2DM rats had elevated levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). Furthermore, Western blot analysis revealed that T2DM rats had enhanced nuclear translocation of NF-κB as well as elevated phosphorylation of Ser307 in IRS-1(insulin receptor substrate 1). Treatment by tanshinone I lowered the levels of IL-6 and TNF-α, decreased nuclear translocation of NF-κB as well as phosphorylation of Ser307 in IRS-1. These results demonstrated that tanshinone I could alleviate T2DM syndrome in rats. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Curcumin prevents inflammatory response, oxidative stress and insulin resistance in high fructose fed male Wistar rats: Potential role of serine kinases.

    Science.gov (United States)

    Maithilikarpagaselvi, Nachimuthu; Sridhar, Magadi Gopalakrishna; Swaminathan, Rathinam Palamalai; Zachariah, Bobby

    2016-01-25

    Emerging evidence suggests that high fructose consumption may be a potentially important factor responsible for the rising incidence of insulin resistance and diabetes worldwide. The present study investigated the preventive effect of curcumin on inflammation, oxidative stress and insulin resistance in high fructose fed male Wistar rats at the molecular level. Fructose feeding for 10 weeks caused oxidative stress, inflammation and insulin resistance. Curcumin treatment attenuated the insulin resistance by decreasing IRS-1 serine phosphorylation and increasing IRS-1 tyrosine phosphorylation in the skeletal muscle of high fructose fed rats. It also attenuated hyperinsulinemia, glucose intolerance and HOMA-IR level. Curcumin administration lowered tumor necrosis factor alpha (TNF-α), C reactive protein (CRP) levels and downregulated the protein expression of cyclo-oxygenase 2 (COX-2), protein kinase theta (PKCθ). In addition, inhibitor κB alpha (IκBα) degradation was prevented by curcumin supplementation. Treatment with curcumin inhibited the rise of malondialdehyde (MDA), total oxidant status (TOS) and suppressed the protein expression of extracellular kinase ½ (ERK ½), p38 in the skeletal muscle of fructose fed rats. Further, it enhanced Glutathione Peroxidase (GPx) activity in the muscle of fructose fed rats. At the molecular level, curcumin inhibited the activation of stress sensitive kinases and inflammatory cascades. Our findings conclude that curcumin attenuated glucose intolerance and insulin resistance through its antioxidant and anti-inflammatory effects. Thus, we suggest the use of curcumin as a therapeutic adjuvant in the management of diabetes, obesity and their associated complications.

  18. Extremely rapid increase in fatty acid transport and intramyocellular lipid accumulation but markedly delayed insulin resistance after high fat feeding in rats.

    Science.gov (United States)

    Bonen, Arend; Jain, Swati S; Snook, Laelie A; Han, Xiao-Xia; Yoshida, Yuko; Buddo, Kathryn H; Lally, James S; Pask, Elizabeth D; Paglialunga, Sabina; Beaudoin, Marie-Soleil; Glatz, Jan F C; Luiken, Joost J F P; Harasim, Ewa; Wright, David C; Chabowski, Adrian; Holloway, Graham P

    2015-10-01

    The mechanisms for diet-induced intramyocellular lipid accumulation and its association with insulin resistance remain contentious. In a detailed time-course study in rats, we examined whether a high-fat diet increased intramyocellular lipid accumulation via alterations in fatty acid translocase (FAT/CD36)-mediated fatty acid transport, selected enzymes and/or fatty acid oxidation, and whether intramyocellular lipid accretion coincided with the onset of insulin resistance. We measured, daily (on days 1-7) and/or weekly (for 6 weeks), the diet-induced changes in circulating substrates, insulin, sarcolemmal substrate transporters and transport, selected enzymes, intramyocellular lipids, mitochondrial fatty acid oxidation and basal and insulin-stimulated sarcolemmal GLUT4 and glucose transport. We also examined whether upregulating fatty acid oxidation improved glucose transport in insulin-resistant muscles. Finally, in Cd36-knockout mice, we examined the role of FAT/CD36 in intramyocellular lipid accumulation, insulin sensitivity and diet-induced glucose intolerance. Within 2-3 days, diet-induced increases occurred in insulin, sarcolemmal FAT/CD36 (but not fatty acid binding protein [FABPpm] or fatty acid transporter [FATP]1 or 4), fatty acid transport and intramyocellular triacylglycerol, diacylglycerol and ceramide, independent of enzymatic changes or muscle fatty acid oxidation. Diet-induced increases in mitochondria and mitochondrial fatty acid oxidation and impairments in insulin-stimulated glucose transport and GLUT4 translocation occurred much later (≥21 days). FAT/CD36 ablation impaired insulin-stimulated fatty acid transport and lipid accumulation, improved insulin sensitivity and prevented diet-induced glucose intolerance. Increasing fatty acid oxidation in insulin-resistant muscles improved glucose transport. High-fat feeding rapidly increases intramyocellular lipids (in 2-3 days) via insulin-mediated upregulation of sarcolemmal FAT/CD36 and fatty acid

  19. Fish oil and argan oil intake differently modulate insulin resistance and glucose intolerance in a rat model of dietary-induced obesity.

    Science.gov (United States)

    Samane, Samira; Christon, Raymond; Dombrowski, Luce; Turcotte, Stéphane; Charrouf, Zoubida; Lavigne, Charles; Levy, Emile; Bachelard, Hélène; Amarouch, Hamid; Marette, André; Haddad, Pierre Selim

    2009-07-01

    We investigated the potential metabolic benefits of fish oil (FO) or vegetable argan oil (AO) intake in a dietary model of obesity-linked insulin resistance. Rats were fed a standard chow diet (controls), a high-fat/high-sucrose (HFHS) diet, or an HFHS diet in which 6% of the fat was replaced by either FO or AO feeding, respectively. The HFHS diet increased adipose tissue weight and insulin resistance as revealed by increased fasting glucose and exaggerated glycemic and insulin responses to a glucose tolerance test (intraperitoneal glucose tolerance test). Fish oil feeding prevented fat accretion, reduced fasting glycemia, and normalized glycemic or insulin responses to intraperitoneal glucose tolerance test as compared with HFHS diet. Unlike FO consumption, AO intake failed to prevent obesity, yet restored fasting glycemia back to chow-fed control values. Insulin-induced phosphorylation of Akt and Erk in adipose tissues, skeletal muscles, and liver was greatly attenuated in HFHS rats as compared with chow-fed controls. High-fat/high-sucrose diet-induced insulin resistance was also confirmed in isolated hepatocytes. Fish oil intake prevented insulin resistance by improving or fully restoring insulin signaling responses in all tissues and isolated hepatocytes. Argan oil intake also improved insulin-dependent phosphorylations of Akt and Erk; and in adipose tissue, these responses were increased even beyond values observed in chow-fed controls. Taken together, these results strongly support the beneficial action of FO on diet-induced insulin resistance and glucose intolerance, an effect likely explained by the ability of FO to prevent HFHS-induced adiposity. Our data also show for the first time that AO can improve some of the metabolic and insulin signaling abnormalities associated with HFHS feeding.

  20. The Effect of Rosiglitazone on Bone Quality in a Rat Model of Insulin Resistance and Osteoporosis

    Science.gov (United States)

    Sardone, Laura Donata

    Rosiglitazone (RSG) is an insulin-sensitizing drug used to treat Type 2 Diabetes Mellitus (T2DM). Clinical trials show that women taking RSG experience more limb fractures than patients taking other T2DM drugs. The purpose of this study is to understand how RSG (3mg/kg/day and 10mg/kg/day) and the bisphosphonate alendronate (0.7mg/kg/week) alter bone quality in the male, female and female ovariectomized (OVX) Zucker fatty rat model over a 12 week period. Bone quality was evaluated by mechanical testing of cortical and trabecular bone. Microarchitecture, bone mineral density (BMD), cortical bone porosity, bone formation/resorption and mineralization were also measured. Female OVX RSG10mg/kg rats had significantly lower vertebral BMD and compromised trabecular architecture versus OVX controls. Increased cortical porosity and decreased mechanical properties occurred in these rats. ALN treatment prevented these negative effects in the OVX RSG model. Evidence of reduced bone formation and excess bone resorption was detected in female RSG-treated rats.

  1. Effects of n-3 polyunsaturated fatty acids high fat diet intervention on the synthesis of hepatic high-density lipoprotein cholesterol in obesity-insulin resistance rats.

    Science.gov (United States)

    Xie, Xianxing; Zhang, Tao; Zhao, Shuang; Li, Wei; Ma, Lanzhi; Ding, Ming; Liu, Yuan

    2016-04-22

    n-3 polyunsaturated fatty acids (PUFA) have previously been demonstrated in association with a reduced risk of chronic diseases, including insulin resistance, cancer and cardiovascular disease. In the present study, we analyzed the effects of n-3 PUFA-rich perilla oil (PO) and fish oil (FO) high fat diet intervention against the synthesis of hepatic high-density lipoprotein cholesterol (HDL-c) in obesity-insulin resistance model rats. In the modeling period, the male SD rats were randomly divided into 2 groups. The rats in the high fat (HF) group were given a high fat pure diet containing 20.62% lard. In the intervention period, the model rats were intervened with purified high-fat diets rich in PO or FO, containing same energy content with high fat pure diet in HF. After the intervention, the protein and mRNA expressions status of the key genes involved in synthesis of hepatic HDL-c were measured for further analytic comparison. The obesity-insulin resistance model rats were characterized by surprisingly high levels of serum triglyceride (TG) and increased body weight (P hepatic adenosine triphosphate (ATP) binding cassette transporter A1 (ABCA1) mRNA (P hepatic apoA-1mRNA expression (P hepatic ABCA1mRNA expression (P obesity-insulin resistance rats.

  2. Preventive effect of Tinospora cordifolia against high-fructose diet-induced insulin resistance and oxidative stress in male Wistar rats.

    Science.gov (United States)

    Reddy, Singareddy Sreenivasa; Ramatholisamma, Pasurla; Karuna, Rasineni; Saralakumari, Desireddy

    2009-09-01

    High intake of dietary fructose exerts a number of adverse metabolic effects. The aim of the present study was to investigate whether aqueous extract of Tinospora cordifolia stem (TCAE) alleviates high-fructose diet-induced insulin resistance and oxidative stress in rats. High-fructose diet (66% of fructose) and TCAE (400 mg/kg/day) were given simultaneously for a period of 60 days. Fructose fed rats showed hyperglycemia, hyperinsulinemia, hypertriglyceridemia, impaired glucose tolerance and impaired insulin sensitivity (PTCAE treatment prevented the rise in glucose levels by 21.3%, insulin by 51.5%, triglycerides by 54.12% and glucose-insulin index by 59.8% of the fructose fed rats. Regarding liver antioxidant status, fructose fed rats showed higher values of lipid peroxidation (91.3%), protein carbonyl groups (44%) and lowered GSH levels (42.1%) and, lowered activities of enzymatic antioxidants, while TCAE treatment prevented all these observed abnormalities. In conclusion, our data indicate the preventive role of T. cordifolia against fructose-induced insulin resistance and oxidative stress; hence this plant could be used as an adjuvant therapy for the prevention and/or management of chronic diseases characterized by hyperinsulinemia, hypertriglyceridemia, insulin resistance and aggravated antioxidant status.

  3. Decrease in myostatin by ladder-climbing training is associated with insulin resistance in diet-induced obese rats

    Institute of Scientific and Technical Information of China (English)

    Tang Liang; Luo Kai; Liu Chentao; Wang Xudan; Zhang Didi; Chi Aiping; Zhang Jing

    2014-01-01

    Background Suppression of myostatin (MSTN) has been associated with skeletal muscle atrophy and insulin resistance (IR).However,few studies link MSTN suppression by ladder-climbing training (LCT) and IR.Therefore,we intended to identify the correlation with IR between LCT and to analyze the signaling pathways through which MSTN suppression by LCT regulates IR.Methods The rats were randomly assigned to two types of diet:normal pellet diet (NPD,n=8) and high-fat diet (HFD,n=16).After 8 weeks,the HFD rats were randomly re-assigned to two groups (n=8 for each group):HFD sedentary (HFD-S) and high-fat diet ladder-climbing training (HFD-LCT).HFD-LCT rats were assigned to LCT for 8 weeks.Western blotting,immunohistochemistry and enzyme assays were used to measure expression levels and activities of MSTN,GLUT4,PI3K,Akt and Akt-activated targets (mTOR,FoxO1 and GSK-3β).Results The LCT significantly improved IR and whole-body insulin sensitivity in HDF-fed rats.MSTN protein levels decreased in matching serum (42%,P=0.007) and muscle samples (25%,P=0.035) and its receptor mRNA expression also decreased (16%,P=0.041) from obese rats after LCT.But the mRNA expression of insulin receptor had no obvious changes in LCT group compared with NPD and HFD-S groups (P=0.074).The ladder-climbing training significantly enhanced PI3K activity (1.7-fold,P=0.024) and Akt phosphorylation (83.3%,P=0.022) in HFD-fed rats,significantly increased GLUT4 protein expression (84.5%,P=-0.036),enhanced phosphorylation of mTOR (4.8-fold,P <0.001) and inhibited phosphorylation of FoxO1 (57.7%,P=0.020),but did not affect the phosphorylation of GSK-3β.Conclusions The LCT significantly reduced IR in diet-induced obese rats.MSTN may play an important role in regulating IR and fat accumulation by LCT via PI3K/Akt/mTOR and PI3K/Akt/FoxO1 signaling pathway in HFD-fed rats.

  4. Intermittent fasting reduces body fat but exacerbates hepatic insulin resistance in young rats regardless of high protein and fat diets.

    Science.gov (United States)

    Park, Sunmin; Yoo, Kyung Min; Hyun, Joo Suk; Kang, Suna

    2017-02-01

    Intermittent fasting (IMF) is a relatively new dietary approach to weight management, although the efficacy and adverse effects have not been full elucidated and the optimal diets for IMF are unknown. We tested the hypothesis that a one-meal-per-day intermittent fasting with high fat (HF) or protein (HP) diets can modify energy, lipid, and glucose metabolism in normal young male Sprague-Dawley rats with diet-induced obesity or overweight. Male rats aged 5 weeks received either HF (40% fat) or HP (26% protein) diets ad libitum (AL) or for 3 h at the beginning of the dark cycle (IMF) for 5 weeks. Epidydimal fat pads and fat deposits in the leg and abdomen were lower with HP and IMF. Energy expenditure at the beginning of the dark cycle, especially from fat oxidation, was higher with IMF than AL, possibly due to greater activity levels. Brown fat content was higher with IMF. Serum ghrelin levels were higher in HP-IMF than other groups, and accordingly, cumulative food intake was also higher in HP-IMF than HF-IMF. HF-IMF exhibited higher area under the curve (AUC) of serum glucose at the first part (0-40 min) during oral glucose tolerance test, whereas AUC of serum insulin levels in both parts were higher in IMF and HF. During intraperitoneal insulin tolerance test, serum glucose levels were higher with IMF than AL. Consistently, hepatic insulin signaling (GLUT2, pAkt) was attenuated and PEPCK expression was higher with IMF and HF than other groups, and HOMA-IR revealed significantly impaired attenuated insulin sensitivity in the IMF groups. However, surprisingly, hepatic and skeletal muscle glycogen storage was higher in IMF groups than AL. The higher glycogen storage in the IMF groups was associated with the lower expression of glycogen phosphorylase than the AL groups. In conclusion, IMF especially with HF increased insulin resistance, possibly by attenuating hepatic insulin signaling, and lowered glycogen phosphorylase expression despite decreased fat mass in young

  5. Metformin ameliorates insulin resistance in L6 rat skeletal muscle cells through upregulation of SIRT3

    Institute of Scientific and Technical Information of China (English)

    Song Yuping; Shi Jingli; Wu Ying; Han Chong; Zou Junjie; Shi Yongquan; Liu Zhimin

    2014-01-01

    Background SIRT3 is an important regulator in cell metabolism,and recent studies have shown that it may be involved in the pharmacological effects of mefformin.However,the molecular mechanisms underlying this process are unclear.Methods The effects of SIRT3 on the regulation of oxidative stress and insulin resistance in skeletal muscle were evaluated in vitro.Differentiated L6 skeletal muscle cells were treated with 750 μmol/L palmitic acid to induce insulin resistance.SIRT3 was knocked down and overexpressed in L6 cells.SIRT3,nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65,c-Jun N-terminal kinase 1 (JNK1),and superoxide dismutase 2 (SOD2) were evaluated by Western blotting.Results Over expression of SIRT3 increased glucose uptake and decreased ROS production in L6-IR cells as well as in L6 cells.Knock-down of SIRT3 induced increased production of ROS while decreased glucose uptake in both L6 and L6-IR cells,and these effects were reversed by N-acetyl-L-cysteine (NAC).Metformin increased the expression of SIRT3 (1.5-fold) and SOD2 (2-fold) while down regulating NF-κB p65 (1.5-fold) and JNK1 (1.5-fold).Knockdown of SIRT3 (P<0.05)reversed the metformin-induced decreases in NF-κB p65 and JNK1 and the mefformin-induced increase in SOD2 (P<0.05).Conclusions Upregulated SIRT3 is involved in the pharmacological mechanism by which mefformin promotes glucose uptake.Additionally,SIRT3 may function as an important regulator of oxidative stress and a new alternative approach for targeting insulin resistance-related diseases.

  6. Molecular mechanism of insulin resistance

    Indian Academy of Sciences (India)

    Samir Bhattacharya; Debleena Dey; Sib Sankar Roy

    2007-03-01

    Free fatty acids are known to play a key role in promoting loss of insulin sensitivity, thereby causing insulin resistance and type 2 diabetes. However, the underlying mechanism involved is still unclear. In searching for the cause of the mechanism, it has been found that palmitate inhibits insulin receptor (IR) gene expression, leading to a reduced amount of IR protein in insulin target cells. PDK1-independent phosphorylation of PKCε causes this reduction in insulin receptor gene expression. One of the pathways through which fatty acid can induce insulin resistance in insulin target cells is suggested by these studies. We provide an overview of this important area, emphasizing the current status.

  7. Effect of Huanglian Jiedu Decoction(黄连解毒汤)on Glucose Transporter 4 Expression in Adipose and Skeletal Muscle Tissues of Insulin Resistant Rats

    Institute of Scientific and Technical Information of China (English)

    CHEN Guang; LU Fu-er; JIN Dan; XU Li-jun; WANG Kai-fu

    2007-01-01

    Objective:To investigate the effects of Huanglian Jiedu Decoction (黄连解毒汤,HLJDD) on glucose transporter 4 (GLUT4) protein expressions in insulin-resistant murine target tissues.Methods:The experimental male Wistar rats were established into insulin resistant models by injecting streptozotocin (STZ 30 mg/kg) via caudal vein and feeding them with high fat high caloric diet,and randomly divided into the model group,the aspirin group and the HLJDD group.Besides,a normal group was set up for control.Changes of body weight (BW),levels of serum fasting blood glucose (FBG),serum fasting insulin (FINS) and oral glucose tolerance test (OGTT) were routinely determined.The expression of GLUT4 protein in adipose and skeletal muscle tissues before and after insulin stimulation was determined with Western blot.Results:In the HLJDD group after treatment.BW and FBG got decreased,OGTT improved,and the expression and translocation of GLUT4 protein elevated obviously,either before or after insulin stimulation,as compared with those in the model group,showing significant differences respectively.Conclusion:The mechanism of improving insulin resistance by HLJDD is probably associated with its effect in elevating GLUT4 protein expression and translocation in adipose and skeletal muscle tissues of insulin resistant rats.

  8. Treatment with an SSRI antidepressant restores hippocampo-hypothalamic corticosteroid feedback and reverses insulin resistance in low-birth-weight rats.

    Science.gov (United States)

    Buhl, Esben S; Jensen, Thomas Korgaard; Jessen, Niels; Elfving, Betina; Buhl, Christian S; Kristiansen, Steen B; Pold, Rasmus; Solskov, Lasse; Schmitz, Ole; Wegener, Gregers; Lund, Sten; Petersen, Kitt Falck

    2010-05-01

    Low birth weight (LBW) is associated with type 2 diabetes and depression, which may be related to prenatal stress and insulin resistance as a result of chronic hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. We examined whether treatment with a selective serotonin reuptake inhibitor [escitalopram (ESC)] could downregulate HPA axis activity and restore insulin sensitivity in LBW rats. After 4-5 wk of treatment, ESC-exposed LBW (SSRI-LBW) and saline-treated control and LBW rats (Cx and LBW) underwent an oral glucose tolerance test or a hyperinsulinemic euglycemic clamp to assess whole body insulin sensitivity. Hepatic phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression and red skeletal muscle PKB Ser(473) phosphorylation were used to assess tissue-specific insulin sensitivity. mRNA expression of the hypothalamic mineralocorticoid receptor was fivefold upregulated in LBW (P < 0.05 vs. Cx), accompanied by increased corticosterone release during restraint stress and total 24-h urinary excretion (P < 0.05 vs. Cx), whole body insulin resistance (P < 0.001 vs. Cx), and impaired insulin suppression of hepatic PEPCK mRNA expression (P < 0.05 vs. Cx). Additionally, there was a tendency for reduced red muscle PKB Ser(473) phosphorylation. The ESC treatment normalized corticosterone secretion (P < 0.05 vs. LBW), whole body insulin sensitivity (P < 0.01) as well as postprandial suppression of hepatic mRNA PEPCK expression (P < 0.05), and red muscle PKB Ser(473) phosphorylation (P < 0.01 vs. LBW). We conclude that these data suggest that the insulin resistance and chronic HPA axis hyperactivity in LBW rats can be reversed by treatment with an ESC, which downregulates HPA axis activity, lowers glucocorticoid exposure, and restores insulin sensitivity in LBW rats.

  9. Variations in insulin responsiveness in rat fat cells are due to metabolic differences rather than insulin binding

    DEFF Research Database (Denmark)

    Hansen, Finn Mølgård; Nilsson, Poul; Sonne, Ole

    1983-01-01

    Insulin resistance was studied by comparing insulin response and insulin binding in four groups of rats. Glucose metabolism in isolated fat cells from male Wistar rats weighing 340 g was less responsive to a supramaximal dose of insulin than glucose metabolism in fat cells from rats weighing 200 ...

  10. Effects of Dietary Carbohydrate Replaced with Wild Rice (Zizania latifolia (Griseb Turcz on Insulin Resistance in Rats Fed with a High-Fat/Cholesterol Diet

    Directory of Open Access Journals (Sweden)

    Chengkai Zhai

    2013-02-01

    Full Text Available Wild rice (WR is a very nutritious grain that has been used to treat diabetes in Chinese medicinal practice. City diet (CD is based on the diet consumed by Asian area residents in modern society, which is rich in saturated fats, cholesterol and carbohydrates. The present study was aimed at evaluating the effects of replacing white rice and processed wheat starch of CD with WR as the chief source of dietary carbohydrates on insulin resistance in rats fed with a high-fat/cholesterol diet. Except the rats of the low-fat (LF diet group, the rats of the other three groups, including to high-fat/cholesterol (HFC diet, CD and WR diet, were fed with high-fat/cholesterol diets for eight weeks. The rats fed with CD exhibited higher weight gain and lower insulin sensitivity compared to the rats consuming a HFC diet. However, WR suppressed high-fat/cholesterol diet-induced insulin resistance. WR decreased liver homogenate triglyceride and free fatty acids levels, raised serum adiponectin concentration and reduced serum lipocalin-2 and visfatin concentrations. In addition, the WR diet potently augmented the relative expressions of adiponectin receptor 2, peroxisome proliferator-activated receptors, alpha and gamma, and abated relative expressions of leptin and lipocalin-2 in the tissues of interest. These findings indicate that WR is effective in ameliorating abnormal glucose metabolism and insulin resistance in rats, even when the diet consumed is high in fat and cholesterol.

  11. Phthalate is associated with insulin resistance in adipose tissue of male rat: role of antioxidant vitamins.

    Science.gov (United States)

    Rajesh, Parsanathan; Sathish, Sampath; Srinivasan, Chinnapaiyan; Selvaraj, Jayaraman; Balasubramanian, Karundevi

    2013-03-01

    Diethyl hexyl phthalate (DEHP) is a plasticizer, commonly used in a variety of products, including lubricants, perfumes, hairsprays and cosmetics, construction materials, wood finishers, adhesives, floorings and paints. DEHP is an endocrine disruptor and it has a continuum of influence on various organ systems in human beings and experimental animals. However, specific effects of DEHP on insulin signaling in adipose tissue are not known. Adult male albino rats of Wistar strain were divided into four groups. Control, DEHP treated (dissolved in olive oil at a dose of 10, and 100 mg/kg body weight, respectively, once daily through gastric intubations for 30 days) and DEHP + vitamin E (50 mg/kg body weight) and C (100 mg/kg body weight) dissolved in olive oil and distilled water, respectively, once daily through gastric intubations for 30 days. After the completion of treatment, adipose tissue was dissected out to assess various parameters. DEHP treatment escalated H(2)O(2) and hydroxyl radical levels as well as lipid peroxidation in the adipose tissue. DEHP impaired the expression of insulin signaling molecules and their phosphorelay pathways leading to diminish plasma membrane GLUT4 level and thus decreased glucose uptake and oxidation. Blood glucose level was elevated as a result of these changes. Supplementation of vitamins (C & E) prevented the DEHP-induced changes. It is concluded that DEHP-induced ROS and lipid peroxidation disrupts the insulin signal transduction in adipose tissue and favors glucose intolerance. Antioxidant vitamins have a protective role against the adverse effect of DEHP. Copyright © 2012 Wiley Periodicals, Inc.

  12. Yi-Qi-Zeng-Min-Tang,a Chinese medicine,ameliorates insulin resistance in type 2 diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Zeng Zhang; Hong-Li Xue; Yi Liu; Wen-Jian Wang

    2011-01-01

    AIM:To investigate the effects of the Chinese herbal decoction,Yi-Qi-Zeng-Min-Tang (YQZMT),on insulin resistance in type 2 diabetic rats. METHODS:Sprague-Dawley rats were divided into two dietary regiments by feeding either normal pellet diet (NPD) or high fat diet (HFD).Four weeks later,the HFD-fed rats were injected intraperitoneally with lowdose streptozotocin (STZ).Rats with non-fasting blood glucose level ≥ 16.67 mmol/L were considered type 2 diabetic and further divided into five subgroups:the type 2 diabetes model group,low-dose,medium-dose and high-dose YQZMT groups,and rosiglitazone group. Age-matched NPD-fed rats served as controls.YQZMT or rosiglitazone were administered for 8 wk.Intraperitoneal glucose and insulin tolerance tests were performed before and after the treatment to measure the glucose tolerance and insulin sensitivity.Serum levels of biochemical parameters,adipocytokines,such as tumor necrosis factor-α (TNF-α),interleukin-6 (IL-6),as well as free fatty acids (FFAs),were also analyzed. RESULTS:There was significant elevation of insulin resistance and serum levels of fasting glucose (12.82 ± 1.08 mmol/L vs 3.60 ± 0.31 mmol/L,P < 0.01),insulin (7197.36 ± 253.89 pg/mL vs 4820.49 ± 326.89 pg/mL, P < 0.01),total cholesterol (TC) (8.40 ± 0.49 mmol/L vs 2.14 ± 0.06 mmol/L,P < 0.01),triglyceride (2.24 ± 0.12 mmol/L vs 0.78 ± 0.05 mmol/L,P < 0.01),low-density lipoprotein cholesterol (LDL-c) (7.84 ± 0.51 mmol/L vs 0.72 ± 0.04 mmol/L,P < 0.01) and decrease in high-density lipoprotein cholesterol (HDL-c) (0.57 ± 0.03 mmol/L vs 1.27 ± 0.03 mmol/L,P < 0.01) in the low-dose STZ and high-fat diet induced type 2 diabetic group when compared with the control group. Administration of YQZMT induced dose- and timedependent changes in insulin resistance,glucose and lipid profile,and reduced levels of FFA,TNF-α and IL-6 in the type 2 diabetic rats.After the treatment, compared with the diabetic group,the insulin resistance was ameliorated in the

  13. Marked insulin resistance in obese spontaneously hypertensive rat adipocytes is ameliorated by in vivo but not in vitro treatment with moxonidine.

    Science.gov (United States)

    Sun, Zheng; Ernsberger, Paul

    2007-02-01

    The obese spontaneously hypertensive rat (SHROB) is a model of marked insulin resistance with normoglycemia. We sought to determine whether insulin resistance extends to adipocytes and the impact of an insulin-sensitizing imidazoline, moxonidine (4 mg/kg/days for 21 days). Gonadal adipocytes were isolated from SHROB and lean spontaneously hypertensive rat (SHR) littermates. In lean SHR adipocytes, Akt activation by 100 nM insulin peaked at 3 min at 25-fold, whereas SHROB adipocytes showed only 4-fold activation. In dose-response experiments, the maximal response (E(max)) was markedly reduced 18.8 +/- 2.3 versus 3.7 +/- 0.8. Insulin sensitivity was also attenuated, with higher concentrations required for responses (EC(50) = 3.5 +/- 0.5 versus 29 +/- 3.8 nM). Glucose uptake as determined with [(3)H]2-deoxyglucose was also less responsive to insulin in SHROB relative to lean SHR. Moxonidine had little or no effect when applied acutely in vitro, but adipocytes isolated from SHROB treated with moxonidine in vivo showed significantly improved responses to insulin, both in terms of Akt activation and facilitation of glucose uptake. Chronic but not acute moxonidine treatment partially restores insulin sensitivity in SHROB adipocytes, suggesting an indirect action of this agent.

  14. Insulin resistance and hepatitis C

    Institute of Scientific and Technical Information of China (English)

    Manuel Romero-Gómez

    2006-01-01

    Insulin resistance is the major feature of the metabolic syndrome and depends on insulin secretion and insulin sensitivity. In chronic hepatitis C, insulin resistance and type 2 diabetes mellitus are more often seen than in healthy controls or chronic hepatitis B patients.Hepatitis C virus (HCV) infection promotes insulin resistance, mainly by increased TNF production together with enhancement of suppressor of cytokine (SOC-3); both events block PI3K and Akt phosphorylation. Two types of insulin resistance could be found in chronic hepatitis C patients: "viral" and "metabolic" insulin resistance. Insulin resistance in chronic hepatitis C is relevant because it promotes steatosis and fibrosis. The mechanisms by which insulin resistance promotes fibrosis progression include: (1) steatosis, (2) hyperleptinemia, (3) increased TNF production, (4) impaired expression of PPARy receptors. Lastly, insulin resistance has been found as a common denominator in patients difficult-to-treat like cirrhotics, overweight, HIV coinfected and Afro-American.Insulin resistance together with fibrosis and genotype has been found to be independently associated with impaired response rate to peginterferon plus ribavirin.Indeed, in genotype 1, the sustained response rate was twice (60%) in patients with HOMA ≤ 2 than patients with HOMA > 2. In experiments carried out on Huh-7cells transfected by full length HCVRNA, interferon alpha blocks HCV replication. However, when insulin (at doses of 128 μU/mL, similar that seen in the hyperinsulinemic state) was added to interferon, the ability to block HCV replication disappeared, and the PKR synthesis was abolished. In summary, hepatitis C promotes insulin resistance and insulin resistance induces interferon resistance,steatosis and fibrosis progression.

  15. Mitigation of Insulin Resistance by Mangiferin in a Rat Model of Fructose-Induced Metabolic Syndrome Is Associated with Modulation of CD36 Redistribution in the Skeletal Muscle.

    Science.gov (United States)

    Zhou, Liang; Pan, Yongquan; Chonan, Ritsu; Batey, Robert; Rong, Xianglu; Yamahara, Johji; Wang, Jianwei; Li, Yuhao

    2016-01-01

    Mangiferin is one of the prominent active components responsible for the antidiabetic property of many traditional herbs, but its underlying mechanisms of action remain unclear. CD36 in skeletal muscle is known to contribute to the etiology of insulin resistance by facilitating fatty acid uptake. This study investigated the effect of mangiferin on insulin resistance. The results showed that treatment of Wistar-Kyoto rats with mangiferin (15 mg/kg, once daily, by oral gavage) for 7 weeks inhibited chronic liquid fructose consumption-induced increases in plasma insulin concentrations at the baseline and during oral glucose tolerance test (OGTT), and the homeostasis model assessment of insulin resistance index. It also suppressed the increases in fasted plasma nonesterified fatty acid (NEFA) concentration and the adipose tissue insulin resistance index. Mechanistically, mangiferin neither affected intakes of fructose and chow, and the increase in epididymal and perirenal fat, nor attenuated fructose-induced hypertension. In contrast, mangiferin attenuated fructose-induced acceleration of plasma NEFA clearance during OGTT, and tended to decrease excessive triglyceride accumulation in gastrocnemius. Immunofluorescence staining and subsequent rating of CD36-expressing fibers in gastrocnemius revealed that mangiferin restored fructose-stimulated sarcolemmal CD36 overexpression and decreased intracellular CD36 distribution. In addition, the effects of mangiferin on the parameters associated with insulin resistance and abnormal fatty acid metabolism were absent in the spontaneously hypertensive rats carrying numerous nonfunctional mutations in the CD36 gene. Thus, these results suggest that mangiferin treatment mitigates insulin resistance in a rat model of fructose-induced metabolic syndrome by modulating sarcolemmal and intracellular CD36 redistribution in the skeletal muscle.

  16. Association of inflammatory response and oxidative injury in the pathogenesis of liver steatosis and insulin resistance following subchronic exposure to malathion in rats.

    Science.gov (United States)

    Lasram, Mohamed Montassar; Dhouib, Ines Bini; Bouzid, Kahna; Lamine, Aicha Jrad; Annabi, Alya; Belhadjhmida, Nadia; Ahmed, Malika Ben; Fazaa, Saloua El; Abdelmoula, Jaouida; Gharbi, Najoua

    2014-09-01

    Insulin resistance and risk of type 2 diabetes are the most important complications following exposure to organophosphorous (OPs) pesticides. Regarding the importance of liver on metabolic pathways regulation, in particular blood glucose homeostasis, we focused on liver inflammation and oxidative damages in a subchronic model of toxicity by malathion. Adult male Wistar rats of body weight 200-250g were used for the study. Malathion (200mg/kg b.w./day) was administered to rats by oral intubation for 28 days. Glycemic and insulin resistance indices, markers of liver injury, markers of inflammation and oxidative stress were assessed. Malathion-treated rats showed increased glycemia, insulinemia and glycated hemoglobin level, HOMA-IR and HOMA-β indices, plasma activities of hepatocellular enzymes, lipid peroxidation index, CD3(+)/CD4(+) and CD3(+)/CD4(+) and pro-inflammatory cytokines when decreased antioxidant status in liver was noted. Most of our study indicates that malathion promotes insulin resistance, inflammation and Hepatosteatosis in subchronic model of exposure. On the basis of biochemical and molecular findings, it is concluded that insulin resistance induced by malathion occurs through oxidative stress and related pro-inflammatory markers in a way to result in a reduced function of insulin in liver cells.

  17. Herbal Formula HT048 Attenuates Diet-Induced Obesity by Improving Hepatic Lipid Metabolism and Insulin Resistance in Obese Rats

    Directory of Open Access Journals (Sweden)

    Yoon Hee Lee

    2016-10-01

    Full Text Available It is well established that obesity causes a variety of chronic diseases such as cardiovascular diseases and diabetes. Despite the diligent scientific efforts to find effective ways to lower the level of obesity, the size of obese population grows continuously around the world. Here we present the results that show feeding diet containing HT048, a mixture of the extracts of Crataegus pinnatifida leaves and Citrus unshiu peel, two of the well-known traditional herbal medicines in Eastern Asia, decreases obesity in rats. We fed rats with five different diets for 10 weeks: chow diet (STD, high-fat diet (HFD, high-fat diet with 0.04% orlistat, a drug to treat obesity (HFD + Orlistat, high-fat diet with 0.2% HT048 (w/w; HFD + 0.2% HT048, and high-fat diet with 0.6% HT048 (w/w; HFD + 0.6% HT048. It was found that both body and total white adipose tissue weight of HT048 groups significantly decreased compared to those of the HFD group. Moreover, HT048 decreased serum insulin levels in HFD-fed obese rats. At the molecular level, HT048 supplementation downregulated genes involved in lipogenesis, gluconeogenesis, and adipogenesis, while the expression level of β-oxidation genes was increased. Supplementation-drug interactions are not likely as HFD and HT048-containing diet did not significantly induce genes encoding CYPs. Collectively, this study suggests that HT048 taken as dietary supplement helps to decrease obesity and insulin resistance in HFD-fed obese rats.

  18. Herbal Formula HT048 Attenuates Diet-Induced Obesity by Improving Hepatic Lipid Metabolism and Insulin Resistance in Obese Rats.

    Science.gov (United States)

    Lee, Yoon Hee; Jin, Bora; Lee, Sung Hyun; Song, MiKyung; Bae, HyeonHui; Min, Byung Jae; Park, Juyeon; Lee, Donghun; Kim, Hocheol

    2016-10-25

    It is well established that obesity causes a variety of chronic diseases such as cardiovascular diseases and diabetes. Despite the diligent scientific efforts to find effective ways to lower the level of obesity, the size of obese population grows continuously around the world. Here we present the results that show feeding diet containing HT048, a mixture of the extracts of Crataegus pinnatifida leaves and Citrus unshiu peel, two of the well-known traditional herbal medicines in Eastern Asia, decreases obesity in rats. We fed rats with five different diets for 10 weeks: chow diet (STD), high-fat diet (HFD), high-fat diet with 0.04% orlistat, a drug to treat obesity (HFD + Orlistat), high-fat diet with 0.2% HT048 (w/w; HFD + 0.2% HT048), and high-fat diet with 0.6% HT048 (w/w; HFD + 0.6% HT048). It was found that both body and total white adipose tissue weight of HT048 groups significantly decreased compared to those of the HFD group. Moreover, HT048 decreased serum insulin levels in HFD-fed obese rats. At the molecular level, HT048 supplementation downregulated genes involved in lipogenesis, gluconeogenesis, and adipogenesis, while the expression level of β-oxidation genes was increased. Supplementation-drug interactions are not likely as HFD and HT048-containing diet did not significantly induce genes encoding CYPs. Collectively, this study suggests that HT048 taken as dietary supplement helps to decrease obesity and insulin resistance in HFD-fed obese rats.

  19. Ferulic acid, a natural polyphenol, alleviates insulin resistance and hypertension in fructose fed rats: Effect on endothelial-dependent relaxation.

    Science.gov (United States)

    El-Bassossy, Hany; Badawy, Dina; Neamatallah, Thikryat; Fahmy, Ahmed

    2016-07-25

    Ferulic acid (FER) is a polyphenolic compound contained in various types of fruits. It has a substantial therapeutic effect inhibitory activity against aldose reductase (AR) inhibition. In this study, we examined the effect of FER on fructose-fed rats in comparison to a standard AR inhibitor, zopolrestat (ZOP). We determined the protective role of FER against metabolic syndrome by examining serum insulin/Glucose levels, triglycerides (TGs), cholesterol and advanced glycation end product (AGE) in rats supplied with 10% fructose drinking water. In addition, blood pressure, vascular reactivity of isolated thoracic aortas and acetylcholine-induced NO were all evaluated to estimate the cardiovascular complications of metabolic syndrome (MetS) associated with fructose feeding. Animals were randomly divided into four groups: control, (+10% fructose, Fru), zopolrestat-treated fructose fed (Fru-zop) and ferulic acid-treated fructose fed rats (Fru-Fer). After 12 weeks of FER treatment, we found significant reduction in both hyperinsulinemia and elevated diastolic blood pressure associated with fructose-fed to levels comparable to those achieved with ZOP. Both FER and ZOP significantly augmented the impaired relaxation associated with fructose-fed, whereas neither showed any significant effect on the developed vasoconstriction. Isolated aortas from fructose-fed rats incubated with either FER or ZOP, reinstated normal relaxation response to acetylcholine (ACh). Furthermore, isolated aortas showed attenuated nitric oxide (NO) production following the addition of (ACh), while both FER and ZOP restored normal induction of NO. Taken together, the current study shows that, FER alleviated insulin resistance and hypertension associated with metabolic syndrome compared to the standard AR inhibitor (ZOP). This potential protective effect is at least mediated by restoring endothelial relaxation.

  20. Phloretin exerts hypoglycemic effect in streptozotocin-induced diabetic rats and improves insulin resistance in vitro

    Directory of Open Access Journals (Sweden)

    Shen X

    2017-02-01

    Full Text Available Xin Shen,1,* Nan Zhou,1,* Le Mi,1 Zishuo Hu,2 Libin Wang,1 Xueying Liu,1 Shengyong Zhang1 1Department of Medicinal Chemistry, School of Pharmacy, 2Student Brigade, The Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China *These authors contributed equally to this work Abstract: The present study investigated the possible antiobesity and hypoglycemic effects of phloretin (Ph. In an attempt to discover the hypoglycemic effect and potential mechanism of Ph, we used the streptozotocin-induced diabetic rats and (L6 myotubes. Daily oral treatment with Ph for 4 weeks significantly (P<0.05 reduced postprandial blood glucose and improved islet injury and lipid metabolism. Glucose consumption and glucose tolerance were improved by Ph via GOD–POD method. Western blot results revealed that the expression of Akt, PI3K, IRS-1, and GLUT4 were upregulated in skeletal muscle of T2D rats and in L6 myotubes by Ph. The immunofluorescence studies confirmed that Ph improved the translocation of GLUT4 in L6 myotubes. Ph exerted hypoglycemic effects in vivo and in vitro, hence it may play an important role in the management of diabetes. Keywords: phloretin, diabetes, insulin sensitivity, blood glucose consumption, skeletal muscle

  1. The effects of Jiao-Tai-Wan on sleep, inflammation and insulin resistance in obesity-resistant rats with chronic partial sleep deprivation.

    Science.gov (United States)

    Zou, Xin; Huang, Wenya; Lu, Fuer; Fang, Ke; Wang, Dingkun; Zhao, Shuyong; Jia, Jiming; Xu, Lijun; Wang, Kaifu; Wang, Nan; Dong, Hui

    2017-03-23

    Jiao-Tai-Wan (JTW), composed of Rhizome Coptidis and Cortex Cinnamomi, is a classical traditional Chinese prescription for treating insomnia. Several in vivo studies have concluded that JTW could exert its therapeutical effect in insomnia rats. However, the specific mechanism is still unclear. The present study aimed to explore the effect of JTW on sleep in obesity-resistant (OR) rats with chronic partial sleep deprivation (PSD) and to clarify its possible mechanism. JTW was prepared and the main components contained in the granules were identified by 3D-High Performance Liquid Chromatography (3D-HPLC) assay. The Male Sprague-Dawley (SD) rats underwent 4 h PSD by environmental noise and the treatment with low and high doses of JTW orally for 4 weeks, respectively. Then sleep structure was analyzed by electroencephalographic (EEG). Inflammation markers including high-sensitivity C reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels were examined in the rat plasma. Meanwhile, metabolic parameters as body weight increase rate, fasting plasma glucose (FPG), fasting insulin (FINS) levels and insulin resistance index (HOMA-IR) were measured. The expressions of clock gene cryptochromes (Cry1 and Cry2) and inflammation gene nuclear factor-κB (NF-κB) in peripheral blood monocyte cells (PBMC) were also determined. The result showed that the administration of JTW significantly increased total sleep time and total slow wave sleep (SWS) time in OR rats with PSD. Furthermore, the treatment with JTW reversed the increase in the markers of systemic inflammation and insulin resistance caused by sleep loss. These changes were also associated with the up-regulation of Cry1 mRNA and Cry 2 mRNA and the down-regulation of NF-κB mRNA expression in PBMC. This study suggests that JTW has the beneficial effects of improving sleep, inflammation and insulin sensitivity. The mechanism appears to be related to the modulation of circadian clock and

  2. Metabolic effects of a novel silicate inositol complex of the nitric oxide precursor arginine in the obese insulin-resistant JCR:LA-cp rat.

    Science.gov (United States)

    Proctor, Spencer D; Kelly, Sandra E; Vine, Donna F; Russell, James C

    2007-10-01

    Insulin resistance is a major contributor to macro- and microvascular complications, particularly in the presence of the metabolic syndrome, and is also associated with polycystic ovary syndrome. Impaired nitric oxide metabolism and endothelial function are important components of the vascular disease. Increasing the bioavailability of arginine, the precursor of nitric oxide, thus potentially offers protection against end-stage disease. We have recently demonstrated that dietary supplementation with a novel silicate inositol arginine complex reduces vasculopathy and glomerular sclerosis in the insulin-resistant JCR:LA-cp rat. The objective of this study was to address the absorption of, and the underlying metabolic alterations caused by, the arginine silicate inositol complex and arginine HCl (as a reference agent) in obese insulin-resistant male and female JCR:LA-cp rats. Male and female rats were treated with the preparations at 1.0 mg/(kg d) (expressed as arginine HCl) from 8 to 12 and 12 to 18 weeks of age, respectively. Obese female, but not male, rats treated with the arginine silicate inositol complex showed a reduced rate of weight gain without concomitant reduction in food intake. Plasma silicon levels were raised very significantly in arginine silicate-treated rats, consistent with significant absorption of the complex. In male rats, arginine levels were elevated by treatment with arginine silicate only; and female rats responded to both preparations. Plasma concentrations of oxides of nitrogen in rats treated with the silicate complex showed a dimorphism, decreasing in male and increasing in female rats. Fasting insulin levels were elevated in male rats treated with the arginine silicate complex, whereas fasting and postprandial insulin levels were decreased in female rats. Furthermore, female, but not male, rats treated with either of the arginine preparations showed significant reductions in cholesterol, triglyceride, and phospholipid concentrations

  3. Synergistic effects of conjugated linoleic acid and chromium picolinate improve vascular function and renal pathophysiology in the insulin-resistant JCR:LA-cp rat.

    Science.gov (United States)

    Proctor, S D; Kelly, S E; Stanhope, K L; Havel, P J; Russell, J C

    2007-01-01

    Conjugated linoleic acid (CLA) is a natural constituent of dairy products, specific isomers of which have recently been found to have insulin sensitizing and possible antiobesity actions. Chromium is a micronutrient which, as the picolinate (CrP), has been shown to increase insulin sensitivity in animal models, including the JCR:LA-cp rat. We tested the hypothesis that these agents may have beneficial synergistic effects on the micro- and macrovasculopathy associated with hyperinsulinaemia and early type 2 diabetes. Insulin-resistant cp/cp rats of the JCR:LA-cp strain were treated with mixed isomers of CLA (1.5% w/w in the chow) and/or CrP at 80 microg/kg/day (expressed as Cr) from 4 weeks of age to 12 weeks of age. Plasma insulin, lipid and adiponectin levels, aortic vascular function, renal function and glomerular sclerosis were assessed. CLA administration reduced food intake, body weight and fasting insulin in JCR:LA-cp rats. Plasma adiponectin levels were significantly elevated in rats treated with both CLA and CrP. Aortic hypercontractility was reduced and the relaxant response to the nitric oxide-releasing agent acetylcholine (Ach) was increased in CrP-treated rats. Striking reductions were also observed in the level of urinary albumin and the severity of glomerular sclerosis in rats treated specifically with CLA. CLA and CrP have beneficial effects ameliorating several of the pathophysiologic features of an insulin-resistant rat model. These supplements may be useful adjuncts in the management of patients with the metabolic syndrome and warrant further study.

  4. Combination of alcohol and fructose exacerbates metabolic imbalance in terms of hepatic damage, dyslipidemia, and insulin resistance in rats.

    Science.gov (United States)

    Alwahsh, Salamah Mohammad; Xu, Min; Schultze, Frank Christian; Wilting, Jörg; Mihm, Sabine; Raddatz, Dirk; Ramadori, Giuliano

    2014-01-01

    Although both alcohol and fructose are particularly steatogenic, their long-term effect in the development of a metabolic syndrome has not been studied in vivo. Consumption of fructose generally leads to obesity, whereas ethanol can induce liver damage in the absence of overweight. Here, Sprague-Dawley rats were fed ad libitum for 28 days on five diets: chow (control), liquid Lieber-DeCarli (LDC) diet, LDC +30%J of ethanol (L-Et) or fructose (L-Fr), and LDC combined with 30%J ethanol and 30%J fructose (L-EF). Body weight (BW) and liver weight (LW) were measured. Blood and liver samples were harvested and subjected to biochemical tests, histopathological examinations, and RT-PCR. Alcohol-containing diets substantially reduced the food intake and BW (≤3rd week), whereas fructose-fed animals had higher LW than controls (Pfructose-administered rats. Compared to the chow and LDC diets, the L-EF diet significantly elevated blood glucose, insulin, and total-cholesterol levels (also vs. the L-Et group). The albumin and Quick-test levels were the lowest, whereas ALT activity was the highest in the L-EF group. Moreover, the L-EF diet aggravated plasma triglyceride and reduced HDL-cholesterol levels more than 2.7-fold compared to the sum of the effects of the L-Et and L-Fr diets. The decreased hepatic insulin clearance in the L-EF group vs. control and LDC groups was reflected by a significantly decreased C-peptide:insulin ratio. All diets except the control caused hepatosteatosis, as evidenced by Nile red and H&E staining. Hepatic transcription of insulin receptor substrate-1/2 was mainly suppressed by the L-Fr and L-EF diets. The L-EF diet did not enhance the mitochondrial β-oxidation of fatty acids (Cpt1α and Ppar-α expressions) compared to the L-Et or L-Fr diet. Together, our data provide evidence for the coaction of ethanol and fructose with a high-fat-diet on dyslipidemia and insulin resistance-accompanied liver damage.

  5. Combination of alcohol and fructose exacerbates metabolic imbalance in terms of hepatic damage, dyslipidemia, and insulin resistance in rats.

    Directory of Open Access Journals (Sweden)

    Salamah Mohammad Alwahsh

    Full Text Available Although both alcohol and fructose are particularly steatogenic, their long-term effect in the development of a metabolic syndrome has not been studied in vivo. Consumption of fructose generally leads to obesity, whereas ethanol can induce liver damage in the absence of overweight. Here, Sprague-Dawley rats were fed ad libitum for 28 days on five diets: chow (control, liquid Lieber-DeCarli (LDC diet, LDC +30%J of ethanol (L-Et or fructose (L-Fr, and LDC combined with 30%J ethanol and 30%J fructose (L-EF. Body weight (BW and liver weight (LW were measured. Blood and liver samples were harvested and subjected to biochemical tests, histopathological examinations, and RT-PCR. Alcohol-containing diets substantially reduced the food intake and BW (≤3rd week, whereas fructose-fed animals had higher LW than controls (P<0.05. Additionally, leukocytes, plasma AST and leptin levels were the highest in the fructose-administered rats. Compared to the chow and LDC diets, the L-EF diet significantly elevated blood glucose, insulin, and total-cholesterol levels (also vs. the L-Et group. The albumin and Quick-test levels were the lowest, whereas ALT activity was the highest in the L-EF group. Moreover, the L-EF diet aggravated plasma triglyceride and reduced HDL-cholesterol levels more than 2.7-fold compared to the sum of the effects of the L-Et and L-Fr diets. The decreased hepatic insulin clearance in the L-EF group vs. control and LDC groups was reflected by a significantly decreased C-peptide:insulin ratio. All diets except the control caused hepatosteatosis, as evidenced by Nile red and H&E staining. Hepatic transcription of insulin receptor substrate-1/2 was mainly suppressed by the L-Fr and L-EF diets. The L-EF diet did not enhance the mitochondrial β-oxidation of fatty acids (Cpt1α and Ppar-α expressions compared to the L-Et or L-Fr diet. Together, our data provide evidence for the coaction of ethanol and fructose with a high-fat-diet on

  6. Insulin Resistance in Alzheimer's Disease

    Science.gov (United States)

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  7. Insulin resistance in Alzheimer's disease.

    Science.gov (United States)

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-12-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Colesevelam improves insulin resistance in a diet-induced obesity (F-DIO) rat model by increasing the release of GLP-1

    DEFF Research Database (Denmark)

    Shang, Quan; Saumoy, Monica; Holst, Jens Juul;

    2009-01-01

    Bile acid sequestrants have been shown to lower glucose levels in patients with type 2 diabetes. To investigate how colesevelam (CL) HCl improves hyperglycemia, studies were conducted in diet-induced obesity (F-DIO) rats, which develop insulin resistance when fed a high-energy (high fat....../high sucrose) diet (HE). The rats were fed HE; HE + 2% CL; HE + 0.02% SC-435 (SC), an apical sodium-dependent bile acid transporter inhibitor; and regular chow (controls). After 4 wk of treatment, both in the HE group and the SC + HE group, plasma glucose and insulin levels remained elevated compared...

  9. Aegle marmelos (L.) Corr. impedes onset of Insulin resistance syndrome in rats provided with drinking fructose from weaning to adulthood stages of development: A mechanistic study.

    Science.gov (United States)

    Mathur, Rajani; Sehgal, Ratika; Rajora, Preeti; Sharma, Shveta; Kumar, Rajesh; Mathur, Sandeep

    2016-12-17

    To explore the effect of aqueous extract of leaves of Aegle marmelos (AM) on hepatic carbohydrate metabolism and insulin downstream signalling in rats provided with drinking fructose (15%) from weaning to adulthood. Wistar albino rats (4week) were randomly divided into Normal Control (NC), Fructose Control (FC) and treatment (AMT) groups and provided over 8 weeks, chow + water, chow + fructose (15%) and chow + fructose (15%) + AM (500 mg/kg/d, p.o.), respectively. Significantly (pInsulin Resistance Syndrome (IRS) is delineated here, along with the potential of Aegle marmelos in impeding the same.

  10. Insulin resistance and chronic inflammation

    Directory of Open Access Journals (Sweden)

    Natalia Matulewicz

    2016-12-01

    Full Text Available Insulin resistance is a condition of reduced biological response to insulin. Growing evidence indicates the role of the chronic low-grade inflammatory response in the pathogenesis of insulin resistance. Adipose tissue in obesity is characterized by increased lipolysis with the excessive release of free fatty acids, and is also a source of proinflammatory cytokines. Both these factors may inhibit insulin action. Proinflammatory cytokines exert their effect by stimulating major inflammatory NFκB and JNK pathways within the cells. Inflammatory processes in other insulin responsive tissues may also play a role in inducing insulin resistance. This paper is an overview of the chronic low-grade inflammation in adipose tissue, skeletal muscle, liver and endothelial cells during the development of insulin resistance.

  11. Post-exercise changes in myostatin and actRIIB expression in obese insulin-resistant rats.

    Science.gov (United States)

    Bueno, P G; Bassi, D; Contrera, D G; Carnielli, H M; Silva, R N; Nonaka, K O; Selistre-de-Araújo, H S; Leal, A M O

    2011-06-06

    We evaluated the expression of MSTN and ActRIIB mRNA in muscle and adipose tissue in diet-induced obesity and insulin resistance in rats subjected to exercise. There was no difference in the expression of MSTN between exercised and sedentary high-fat fed rats in muscle after swimming training. The expression of ActRIIB mRNA in muscle was not significantly different among the groups. In BAT, MSTN mRNA expression was higher in exercised high-fat fed group (EHF) compared with sedentary high-fat fed group (SHF). ActRIIB mRNA expression in BAT was higher in EHF compared with SHF. In mesenteric fat, MSTN mRNA was lower in EHF compared with SHF and ActRIIB mRNA was lower in EHF compared with SHF. In conclusion, the results demonstrate that the expression of MSTN and ActRIIB mRNA changes in both adipose tissue and skeletal muscle in diet-induced obese and exercised rats and suggest the participation of MSTN in energy homeostasis.

  12. Insulin resistance in two animal models of obesity: A comparison of HISS-dependent and HISS-independent insulin action in high-fat diet-fed and Zucker rats.

    Science.gov (United States)

    Afonso, Ricardo Alexandre; Lautt, W Wayne; Ribeiro, Rogério Tavares; Legare, Dallas J; Macedo, Maria Paula

    2007-01-01

    Normal postprandial insulin sensitivity depends on the action of the hepatic insulin sensitizing substance (HISS), which requires hepatic parasympathetic nerve activation. Since HISS action is impaired in several pathological models, including the genetically-modified obese Zucker rat (OZR), we compared the HISS-dependent and HISS-independent components of insulin action between the OZR model, and the high-fat diet (HFD)-fed rats. We hypothesize that both models present an impaired HISS action, accounting for the decrease in insulin sensitivity. Male Sprague-Dawley rats fed a HFD for 1 week (n = 5) and OZR (n = 5) were used as obese models. Standard diet-fed (STD, n = 5) and lean Zucker rats (LZR, n = 6) were the HFD and OZR non-obese controls, respectively. Rats were 9-weeks-old when tested. Insulin sensitivity was measured in the fed state, before and after atropine blockade of HISS release), using the Rapid Insulin Sensitivity Test (RIST, mg glucose/kg bw). HISS-dependent action was the difference between control and post-atropine RISTs. HISS action was impaired in both the obese groups (HFD vs STD: 40.1 +/- 5.0 vs 117.0 +/- 3.8 mg glucose/kg bw, p < 0.001; OZR vs LZR: 34.4 +/- 12.8 vs 115.9 +/- 19.4 mg glucose/kg bw, p < 0.01), whereas the HISS-independent component (post-atropine RIST), i.e., insulin action per se, was decreased only in the OZR (OZR vs LZR: 39.3 +/- 3.5 vs 173.3 +/- 20.5 mg glucose/kg bw, p < 0.001). According to our data, the insulin resistance mechanisms are different in the two obesity models studied: in the HFD-fed rats, only the HISS-dependent component is impaired, whereas in the OZR both components of nsulin action are equally impaired.

  13. DPP-4 Inhibitor and Estrogen Share Similar Efficacy Against Cardiac Ischemic-Reperfusion Injury in Obese-Insulin Resistant and Estrogen-Deprived Female Rats

    Science.gov (United States)

    Sivasinprasasn, Sivaporn; Tanajak, Pongpan; Pongkan, Wanpitak; Pratchayasakul, Wasana; Chattipakorn, Siriporn C.; Chattipakorn, Nipon

    2017-01-01

    Estrogen deprivation aggravates cardiac injury after myocardial ischemia and reperfusion (I/R) injury. Although either estrogen or the dipeptidyl peptidase-4 (DPP-4) inhibitor, vildagliptin, reduces myocardial damage following cardiac I/R, their effects on the heart in obese-insulin resistant and estrogen deprived conditions remain unknown. Ovariectomized (O) rats (n = 36) were divided to receive either normal diet (NDO) or high-fat diet (HFO) for 12 weeks, followed by treatment with a vehicle, estrogen or vildagliptin for 4 weeks. The setting of in vivo cardiac I/R injury, 30-min ischemia and 120-min reperfusion, was performed. At 12 weeks after ovariectomy, both NDO and HFO rats exhibited an obese-insulin resistant condition. Both NDO and HFO rats treated with estrogen and vildagliptin showed reduced fasting plasma glucose, insulin and HOMA index. Both treatments improved cardiac function indicated by restoration of heart rate variability and increased %left ventricular ejection fraction (%LVEF). The treatments similarly protected cardiac mitochondrial function against I/R injury, leading to a reduction in the infarct size, oxidative stress and apoptosis in the ischemic myocardium. These findings demonstrate that vildagliptin effectively improves metabolic status, and shares similar efficacy to estrogen in reducing myocardial infarction and protecting cardiac mitochondrial function against I/R injury in estrogen-deprived obese-insulin resistant rats. PMID:28281660

  14. Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome.

    Science.gov (United States)

    Buhl, Esben S; Jessen, Niels; Pold, Rasmus; Ledet, Thomas; Flyvbjerg, Allan; Pedersen, Steen B; Pedersen, Oluf; Schmitz, Ole; Lund, Sten

    2002-07-01

    The insulin resistance syndrome is characterized by several risk factors for cardiovascular disease. Chronic chemical activation of AMP-activated protein kinase by the adenosine analog 5-aminoimidazole-4-carboxamide-1-beta -D-ribofuranoside (AICAR) has been shown to augment insulin action, upregulate mitochondrial enzymes in skeletal muscles, and decrease the content of intra-abdominal fat. Furthermore, acute AICAR exposure has been found to reduce sterol and fatty acid synthesis in rat hepatocytes incubated in vitro as well as suppress endogenous glucose production in rats under euglycemic clamp conditions. To investigate whether chronic AICAR administration, in addition to the beneficial effects on insulin sensitivity, is capable of improving other phenotypes associated with the insulin resistance syndrome, obese Zucker (fa/fa) rats (n = 6) exhibiting insulin resistance, hyperlipidemia, and hypertension were subcutaneously injected with AICAR (0.5 mg/g body wt) daily for 7 weeks. Obese control rats were either pair-fed (PF) (n = 6) or ad libitum-fed (AL) (n = 6). Lean Zucker rats (fa/-) (n = 8) served as a reference group. AICAR administration significantly reduced plasma triglyceride levels (P < 0.01 for AICAR vs. AL, and P = 0.05 for AICAR vs. PF) and free fatty acids (P < 0.01 for AICAR vs. AL, and P < 0.05 for AICAR vs. PF) and increased HDL cholesterol levels (P < 0.01 for AICAR vs. AL and PF). AICAR treatment also lowered systolic blood pressure by 14.6 +/- 4.3 mmHg (P < 0.05), and AICAR-treated animals exhibited a tendency toward decreased intra-abdominal fat content. Furthermore, AICAR administration normalized the oral glucose tolerance test and decreased fasting concentrations of glucose and insulin close to the level of the lean animals. Finally, in line with previous findings, AICAR treatment was also found to enhance GLUT4 protein expression and to increase maximally insulin-stimulated glucose transport in primarily white fast-twitch muscles. Our

  15. Selective Insulin Resistance in Adipocytes*

    Science.gov (United States)

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H.; Fazakerley, Daniel J.; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C.; Coster, Adelle C. F.; Stöckli, Jacqueline; James, David E.

    2015-01-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. PMID:25720492

  16. Selective insulin resistance in adipocytes.

    Science.gov (United States)

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H; Fazakerley, Daniel J; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C; Coster, Adelle C F; Stöckli, Jacqueline; James, David E

    2015-05-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses.

    Science.gov (United States)

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-09-01

    Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle microvascular recruitment. We demonstrated that a high-fat diet induces vascular adiponectin and insulin resistance but globular adiponectin administration can restore vascular insulin responses and improve insulin's metabolic action via an AMPK- and nitric oxide-dependent mechanism. This suggests that globular adiponectin might have a therapeutic potential for improving insulin resistance and preventing cardiovascular complications in patients with diabetes via modulation of microvascular insulin responses. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague-Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by

  18. Dietary Docosahexaenoic Acid and Eicosapentaenoic Acid Influence Liver Triacylglycerol and Insulin Resistance in Rats Fed a High-Fructose Diet

    Directory of Open Access Journals (Sweden)

    Gabriela Salim de Castro

    2015-04-01

    Full Text Available This study aimed to examine the benefits of different amounts of omega-3 (n-3 polyunsaturated fatty acids from fish oil (FO on lipid metabolism, insulin resistance and gene expression in rats fed a high-fructose diet. Male Wistar rats were separated into two groups: Control (C, n = 6 and Fructose (Fr, n = 32, the latter receiving a diet containing 63% by weight fructose for 60 days. After this period, 24 animals from Fr group were allocated to three groups: FrFO2 (n = 8 receiving 63% fructose and 2% FO plus 5% soybean oil; FrFO5 (n = 8 receiving 63% fructose and 5% FO plus 2% soybean oil; and FrFO7 (n = 8 receiving 63% fructose and 7% FO. Animals were fed these diets for 30 days. Fructose led to an increase in liver weight, hepatic and serum triacylglycerol, serum alanine aminotransferase and HOMA1-IR index. These alterations were reversed by 5% and 7% FO. FO had a dose-dependent effect on expression of genes related to hepatic β-oxidation (increased and hepatic lipogenesis (decreased. The group receiving the highest FO amount had increased markers of oxidative stress. It is concluded that n-3 fatty acids may be able to reverse the adverse metabolic effects induced by a high fructose diet.

  19. Insulin Resistance and Mitochondrial Dysfunction.

    Science.gov (United States)

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  20. Enhanced Glucose Tolerance and Pancreatic Beta Cell Function by Low Dose Aspirin in Hyperglycemic Insulin-Resistant Type 2 Diabetic Goto-Kakizaki (GK Rats

    Directory of Open Access Journals (Sweden)

    Layla Amiri

    2015-07-01

    Full Text Available Background/Aim: Type 2 diabetes is the most common metabolic disorder, characterized by insulin resistance and pancreatic islet beta-cell failure. The most common complications associated with type 2 diabetes are hyperinsulinemia, hyperglycemia, hyperlipidemia, increased inflammatory and reduced insulin response. Aspirin (ASA and other non-steroidal anti-inflammatory drugs (NSAIDs have been associated with the prevention of diabetes, obesity and related cardiovascular disorders. Aspirin has been used in many clinical and experimental trials for the prevention of diabetes and associated complications. Methods: In this study, five month old Goto-Kakizaki (GK rats, which showed signs of mild hyperglycemia (fasting blood glucose 80-95 mg/dl vs 55-60 mg/dl Wistar control rats were used. Two subgroups of GK and Wistar control rats were injected intraperitoneally with 100 mg aspirin/kg body weight/ day for 5 weeks. Animals were sacrificed and blood and tissues were collected after performing glucose tolerance (2 h post 2g IP glucose ingestion tests in experimental and control groups. Results: Aspirin caused a moderate decrease in hyperglycemia. However, we observed a significant improvement in glucose tolerance after ASA treatment in GK rats compared to the nondiabetic Wistar rats. Also, the ASA treated GK rats exhibited a significant decrease in insulinemia. ASA treatment also caused a marked reduction in the pro-inflammatory prostaglandin, PGE2, which was significantly higher in GK rats. On the other hand, no significant organ toxicity was observed after ASA treatment at this dose and time period. However, the total cholesterol and lipoprotein levels were significantly increased in GK rats, which decreased after ASA treatment. Immunofluorescence staining for insulin/glucagon secreting pancreatic cells showed improved beta-cell structural and functional integrity in ASA-treated rats which was also confirmed by SDS-PAGE and Western blot analysis

  1. Trigonelline attenuates hepatic complications and molecular alterations in high-fat high-fructose diet-induced insulin resistance in rats.

    Science.gov (United States)

    Afifi, Nehal A; Ramadan, Amer; Erian, Emad Y; Saleh, Dalia O; Sedik, Ahmed A; Badawi, Manal; El Hotaby, Walid

    2017-04-01

    The present study aimed to evaluate the effect of trigonelline (TRG) on the hepatic complications associated with high-fat high-fructose (HFHF) diet-induced insulin resistance (IR) in rats. IR was induced by giving a saturated fat diet and 10% fructose in drinking water to rats for 8 weeks. Insulin-resistant rats were orally treated with TRG (50 and 100 mg/kg), sitagliptin (SIT; 5 mg/kg), or a combination of TRG (50 mg/kg) and SIT (5 mg/kg) for 14 days. Liver homogenates were used for assessment of hepatic lipids, oxidative stress biomarkers, and inflammatory cytokines. Histopathological and DNA cytometry examinations were carried out for hepatic and pancreatic tissues. Hepatic tissues were examined using Fourier-transform infrared spectroscopy for assessment of any molecular changes. Results of the present study revealed that oral treatment of insulin-resistant rats with TRG or TRG in combination with SIT significantly decreased homeostatic model assessment of IR, hepatic lipids, oxidative stress biomarkers, and the inflammatory cytokines. TRG or TRG in combination with SIT ameliorated the histopathological, DNA cytometry, and molecular alterations induced by a HFHF diet. Finally, it can be concluded that TRG has beneficial effects on the hepatic complications associated with IR due to its hypoglycemic effect and antioxidant potential.

  2. Effect of Commiphora mukul gum resin on hepatic and renal marker enzymes, lipid peroxidation and antioxidants status in pancreas and heart in fructose fed insulin resistant rats

    Directory of Open Access Journals (Sweden)

    B. Ramesh

    2015-12-01

    Full Text Available This work aims to study the antioxidant efficacy of Commiphora mukul (C. mukul gum resin ethanolic extract in high fructose diet (HFD insulin resistant rats. The male Wistar albino rats were randomly divided into four groups of eight animals each; two of these groups (Control group [C] and Control treated with C. mukul [C + CM] were fed with standard pellet diet and the other two groups (Fructose fed rats [F-group] and fructose fed with C. mukul treated group [F + CM] were fed with high fructose diet (HFD (66%. C. mukul gum resin ethanolic extract (200 mg/kg body weight/day was administered orally to group C + CM and group F + CM. At the end of 60-day experimental period biochemical parameters related to antioxidant, oxidative stress marker enzymes and hepatic and renal marker enzymes of tissues were performed. The fructose fed rats showed increased level of enzymatic activities aspartate aminotransminases (AST, alanine aminotransminases (ALT in liver and kidney and oxidative markers like lipid peroxidation (LPO and protein oxidation (PO in pancreas and heart. Antioxidant enzyme activities were significantly decreased in the pancreas and heart compared to control groups. Administration of C. mukul (200 mg/kg bwt to fructose fed insulin resistant rats for 60 days significantly reversed the above parameters toward normal. In conclusion, our data indicate the preventive role of C. mukul against fructose-induced insulin resistance and oxidative stress; hence this plant could be used as an adjuvant therapy for the prevention and/or management of chronic diseases characterized by hyperinsulinemia, insulin resistance and aggravated antioxidant status.

  3. Mg2+-dependent ATPase activity in cardiac myofibrils from the insulin-resistant JCR:LA-cp rat.

    Science.gov (United States)

    Misra, T; Russell, J C; Clark, T A; Pierce, G N

    2001-01-01

    There is a great deal of information presently available documenting a cardiomyopathic condition in insulin-deficient models of diabetes. Less information is available documenting a similar status in non insulin-dependent models of diabetes. We have studied the functional integrity of the myofibrils isolated from hearts of JCR:LA rats. The JCR:LA rat is hyperinsulinemic, hyperlipidemic, glucose intolerant and obese. As such, it carries many of the characteristics found in humans with non insulin-dependent diabetes mellitus. These animals also have many indications of heart disease. However, it is not clear if the hearts suffer from vascular complications or are cardiomyopathic in nature. We examined Mg2+-dependent myofibrillar ATPase in hearts of JCR:LA-cp/cp rats and their corresponding control animals (+/?) and found no significant differences (P> 0.05). This is in striking contrast to the depression in this activity exhibited by cardiac myofibrils isolated from insulin-deficient models of diabetes. Our data demonstrate that myofibrillar functional integrity is normal in JCR:LA-cp rats and suggest that these hearts are not in a cardiomyopathic state. Insulin status may be critical in generating a cardiomyopathic condition in diabetes.

  4. Insulin-induced cytokine production in macrophages causes insulin resistance in hepatocytes.

    Science.gov (United States)

    Manowsky, Julia; Camargo, Rodolfo Gonzalez; Kipp, Anna P; Henkel, Janin; Püschel, Gerhard P

    2016-06-01

    Overweight and obesity are associated with hyperinsulinemia, insulin resistance, and a low-grade inflammation. Although hyperinsulinemia is generally thought to result from an attempt of the β-cell to compensate for insulin resistance, there is evidence that hyperinsulinaemia itself may contribute to the development of insulin resistance and possibly the low-grade inflammation. To test this hypothesis, U937 macrophages were exposed to insulin. In these cells, insulin induced expression of the proinflammatory cytokines IL-1β, IL-8, CCL2, and OSM. The insulin-elicited induction of IL-1β was independent of the presence of endotoxin and most likely mediated by an insulin-dependent activation of NF-κB. Supernatants of the insulin-treated U937 macrophages rendered primary cultures of rat hepatocytes insulin resistant; they attenuated the insulin-dependent induction of glucokinase by 50%. The cytokines contained in the supernatants of insulin-treated U937 macrophages activated ERK1/2 and IKKβ, resulting in an inhibitory serine phosphorylation of the insulin receptor substrate. In addition, STAT3 was activated and SOCS3 induced, further contributing to the interruption of the insulin receptor signal chain in hepatocytes. These results indicate that hyperinsulinemia per se might contribute to the low-grade inflammation prevailing in overweight and obese patients and thereby promote the development of insulin resistance particularly in the liver, because the insulin concentration in the portal circulation is much higher than in all other tissues. Copyright © 2016 the American Physiological Society.

  5. Chiglitazar, a novel PPARalpha/gamma dual agonists with beneficial effects on insulin resistance and lipid metabolism in MSG rats

    Institute of Scientific and Technical Information of China (English)

    Ping-pingLI; Yue-tengCHEN; QuanLIU; Su-juanSUN; Zhu-fangSHEN

    2004-01-01

    AIM: Peroxisome proliferator-activated receptor (PPAR) alpha and PPAR gamma agonists lower lipid accumulation by different mechanisms. We investigated whether benefits could be achieved on insulin sensitivity and lipid metabolism by the dual PPARalpha/gamma agonist chiglitazar in MSG rats. METHODS: Chiglitazar was orally administered in 5, 10, 20 mg-kg-~.d~ dosages in MSG rats for 40 d. The drug therapeutic effect was evaluated by glucose tolerance tests, insulin tolerance tests, and hyperinsulinemic-euglycemic clamps technique. The level of

  6. Validation of HOMA-IR in a model of insulin-resistance induced by a high-fat diet in Wistar rats.

    Science.gov (United States)

    Antunes, Luciana C; Elkfury, Jessica L; Jornada, Manoela N; Foletto, Kelly C; Bertoluci, Marcello C

    2016-04-01

    Objective The present study aimed to validate homeostasis model assessment of insulin resistance (HOMA-IR) in relation to the insulin tolerance test (ITT) in a model of insulin-resistance in Wistar rats induced by a 19-week high-fat diet. Materials and methods A total of 30 male Wistar rats weighing 200-300 g were allocated into a high-fat diet group (HFD) (55% fat-enriched chow, ad lib, n = 15) and a standard-diet group (CD) standard chow, ad lib, n = 15), for 19 weeks. ITT was determined at baseline and in the 19th week. HOMA-IR was determined between the 18-19th week in three different days and the mean was considered for analysis. Area under the curve (AUC-ITT) of the blood glucose excursion along 120 minutes after intra-peritoneal insulin injection was determined and correlated with the corresponding fasting values for HOMA-IR. Results AUC-ITT and HOMA-IR were significantly greater after 19th week in HFD compared to CD (p < 0.001 for both). AUC-OGTT was also higher in HFD rats (p = 0.003). HOMA-IR was strongly correlated (Pearson's) with AUC-ITT r = 0.637; p < 0.0001. ROC curves of HOMA-IR and AUC-ITT showed similar sensitivity and specificity. Conclusion HOMA-IR is a valid measure to determine insulin-resistance in Wistar rats. Arch Endocrinol Metab. 2016;60(2):138-42.

  7. Magnolol administration in normotensive young spontaneously hypertensive rats postpones the development of hypertension: role of increased PPAR gamma, reduced TRB3 and resultant alleviative vascular insulin resistance.

    Directory of Open Access Journals (Sweden)

    Xiangyan Liang

    Full Text Available Patients with prehypertension are more likely to progress to manifest hypertension than those with optimal or normal blood pressure. However, the mechanisms underlying the development from prehypertension to hypertension still remain largely elusive and the drugs for antihypertensive treatment in prehypertension are absent. Here we determined the effects of magnolol (MAG on blood pressure and aortic vasodilatation to insulin, and investigated the underlying mechanisms. Four-week-old male spontaneous hypertensive rats (SHR and age-matched normotensive Wistar-Kyoto (WKY control rats were used. Our results shown that treatment of young SHRs with MAG (100 mg/kg/day, o.g. for 3 weeks decreased blood pressure, improved insulin-induced aorta vasodilation, restored Akt and eNOS activation stimulated by insulin, and increased PPARγ and decreased TRB3 expressions. In cultured human umbilical vein endothelial cells (HUVECs, MAG incubation increased PPARγ, decreased TRB3 expressions, and restored insulin-induced phosphorylated Akt and eNOS levels and NO production, which was blocked by both PPARγ antagonist and siRNA targeting PPARγ. Improved insulin signaling in HUVECs by MAG was abolished by upregulating TRB3 expression. In conclusion, treatment of young SHRs with MAG beginning at the prehypertensive stage decreases blood pressure via improving vascular insulin resistance that is at least partly attributable to upregulated PPARγ, downregulated TRB3 and consequently increased Akt and eNOS activations in blood vessels in SHRs.

  8. Impaired postprandial apolipoprotein-B48 metabolism in the obese, insulin-resistant JCR:LA-cp rat: increased atherogenicity for the metabolic syndrome.

    Science.gov (United States)

    Vine, D F; Takechi, R; Russell, J C; Proctor, S D

    2007-02-01

    Postprandial lipaemia is a significant contributor to the development of dyslipidaemia and cardiovascular disease, which has more recently been shown as a potential risk factor for obesity and pre-diabetes. Clinically however, the diagnosis of early insulin-resistance remains confounded due to the fact that aberrations in lipid metabolism are not often readily identified using classic indicators of hypercholesterolemia (i.e. LDL). In this study, we assessed the metabolism of apolipoprotein-B48 (apoB48)-containing lipoproteins in an animal model of obesity and insulin-resistance, the JCR:LA-cp rat. The contribution of lipoproteins from the intestine was assessed by measuring plasma apoB48 concentration in the postprandial period following an oral fat load. Plasma apoB48 was measured by improved enhanced chemiluminescent detection and other biochemical parameters measured by established analysis. Fasting concentrations of plasma apoB48, postprandial apoB48 area under the curve (AUC), as well as incremental-AUC (iAUC), were all significantly greater in the obese phenotype compared to lean controls. Fasting apoB48 correlated significantly with apoB48-iAUC, triglyceride (TG)-iAUC and insulin-iAUC. In addition, there was a highly significant association with fasting insulin and the postprandial ratio of TG:apoB48, a relationship not often detected in humans during insulin-resistance. We conclude that the JCR:LA-cp rat can be used as a model of postprandial lipemia to explore chylomicron metabolism during the onset and development of insulin-resistance, including the increased cardiovascular complications of the metabolic syndrome.

  9. Adipocyte lipolysis and insulin resistance.

    Science.gov (United States)

    Morigny, Pauline; Houssier, Marianne; Mouisel, Etienne; Langin, Dominique

    2016-06-01

    Obesity-induced insulin resistance is a major risk factor for the development of type 2 diabetes. Basal fat cell lipolysis (i.e., fat cell triacylglycerol breakdown into fatty acids and glycerol in the absence of stimulatory factors) is elevated during obesity and is closely associated with insulin resistance. Inhibition of adipocyte lipolysis may therefore be a promising therapeutic strategy for treating insulin resistance and preventing obesity-associated type 2 diabetes. In this review, we explore the relationship between adipose lipolysis and insulin sensitivity. After providing an overview of the components of fat cell lipolytic machinery, we describe the hypotheses that may support the causality between lipolysis and insulin resistance. Excessive circulating fatty acids may ectopically accumulate in insulin-sensitive tissues and impair insulin action. Increased basal lipolysis may also modify the secretory profile of adipose tissue, influencing whole body insulin sensitivity. Finally, excessive fatty acid release may also worsen adipose tissue inflammation, a well-known parameter contributing to insulin resistance. Partial genetic or pharmacologic inhibition of fat cell lipases in mice as well as short term clinical trials using antilipolytic drugs in humans support the benefit of fat cell lipolysis inhibition on systemic insulin sensitivity and glucose metabolism, which occurs without an increase of fat mass. Modulation of fatty acid fluxes and, putatively, of fat cell secretory pattern may explain the amelioration of insulin sensitivity whereas changes in adipose tissue immune response do not seem involved. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  10. TLR4 and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Jane J. Kim

    2010-01-01

    Full Text Available Chronic inflammation is a key feature of insulin resistance and obesity. Toll-Like Receptor 4 (TLR4, involved in modulating innate immunity, is an important mediator of insulin resistance and its comorbidities. TLR4 contributes to the development of insulin resistance and inflammation through its activation by elevated exogenous ligands (e.g., dietary fatty acids and enteric lipopolysaccharide and endogenous ligands (e.g., free fatty acids which are elevated in obese states. TLR4, expressed in insulin target tissues, activates proinflammatory kinases JNK, IKK, and p38 that impair insulin signal transduction directly through inhibitory phosphorylation of insulin receptor substrate (IRS on serine residues. TLR4 activation also leads to increased transcription of pro-inflammatory genes, resulting in elevation of cytokine, chemokine, reactive oxygen species, and eicosanoid levels that promote further insulin-desensitization within the target cell itself and in other cells via paracrine and systemic effects. Increased understanding of cell type-specific TLR4-mediated effects on insulin action present the opportunity and challenge of developing related therapeutic approaches for improving insulin sensitivity while preserving innate immunity.

  11. A novel complex of arginine-silicate improves micro- and macrovascular function and inhibits glomerular sclerosis in insulin-resistant JCR:LA-cp rats.

    Science.gov (United States)

    Proctor, S D; Kelly, S E; Russell, J C

    2005-09-01

    The metabolic syndrome, with associated vasculopathy, is a major cause of cardiovascular disease and nephropathy. Impaired nitric oxide (NO) metabolism and endothelial function is an important component of the disease process. Increasing the availability of arginine, the precursor of NO, might enhance vascular function and protect against end-stage disease. Insulin-resistant JCR:LA-cp rats were treated with arginine-silicate-inositol complex or arginine-HCl at 1.0 g kg(-1) day(-1) (expressed as arginine-HCl) from 8 to 13 weeks of age. The contractile/relaxant function of thoracic aortae and coronary arteries was assessed in vitro. Kidneys were assessed for severity of glomerular sclerosis. Arginine-silicate complex, but not arginine-HCl, normalised the hypercontractile response of the aorta to phenylephrine via an NO-dependent pathway. Coronary artery function, as indicated by reactive hyperaemia to warm ischaemia, was enhanced by both arginine compounds. In addition, the arginine-silicate complex increased coronary vasodilatation in response to bradykinin. Glomerular sclerosis was significantly reduced in rats treated with the arginine-silicate complex. Treatment with exogenous arginine, in an efficiently absorbed form, improves vascular function and reduces nephropathy in an animal model of insulin resistance and cardiovascular disease, via mechanism(s) independent of insulin concentration. Enhancement of NO metabolism through increased availability of the precursor arginine appears to offer protection against micro- and macrovascular disease associated with the metabolic syndrome and insulin resistance.

  12. The dipeptidyl peptidase-4 inhibitor teneligliptin improved endothelial dysfunction and insulin resistance in the SHR/NDmcr-cp rat model of metabolic syndrome.

    Science.gov (United States)

    Nakagami, Hironori; Pang, Zhengda; Shimosato, Takashi; Moritani, Toshinori; Kurinami, Hitomi; Koriyama, Hiroshi; Tenma, Akiko; Shimamura, Munehisa; Morishita, Ryuichi

    2014-07-01

    Diabetes mellitus, hypertension and metabolic syndrome are major risk factors for the occurrence of cardiovascular events. In this study, we used spontaneous hypertensive rat (SHR)/NDmcr-cp (cp/cp) (SHRcp) rats as a model for metabolic syndrome to examine the effects of dipeptidyl peptidase (DPP)-4 inhibition on hypertension, glucose metabolism and endothelial dysfunction. First, we confirmed that SHRcp rats showed very severe obesity, hypertension and endothelial dysfunction phenotypes from 14 to 54 weeks of age. Next, we examined whether the DPP-4 inhibitor teneligliptin (10 mg kg(-1) per day per os for 12 weeks) could modify any of these phenotypes. Treatment with teneligliptin significantly improved hyperglycemia and insulin resistance, as evidenced by an oral glucose tolerance test and homeostasis model assessment for insulin resistance, respectively. Teneligliptin showed no effects on systolic blood pressure or heart rate. In regard to endothelial function, the vasodilator response to acetylcholine was significantly impaired in SHRcp rats when compared with WKY rats. Long-term treatment with teneligliptin significantly attenuated endothelial dysfunction through the upregulation of endothelium-derived nitric oxide synthase mRNA. These results demonstrate that long-term treatment with teneligliptin significantly improved endothelial dysfunction and glucose metabolism in a rat model of metabolic syndrome, suggesting that teneligliptin treatment might be beneficial for patients with hypertension and/or diabetes.

  13. Exercise training reduces insulin resistance and upregulates the mTOR/p70S6k pathway in cardiac muscle of diet-induced obesity rats.

    Science.gov (United States)

    Medeiros, Cleber; Frederico, Marisa J; da Luz, Gabrielle; Pauli, José R; Silva, Adelino S R; Pinho, Ricardo A; Velloso, Lício A; Ropelle, Eduardo R; De Souza, Cláudio T

    2011-03-01

    Obesity and insulin resistance are rapidly expanding public health problems. These disturbances are related to many diseases, including heart pathology. Acting through the Akt/mTOR pathway, insulin has numerous and important physiological functions, such as the induction of growth and survival of many cell types and cardiac hypertrophy. However, obesity and insulin resistance can alter mTOR/p70S6k. Exercise training is known to induce this pathway, but never in the heart of diet-induced obesity subjects. To evaluate the effect of exercise training on mTOR/p70S6k in the heart of obese Wistar rats, we analyzed the effects of 12 weeks of swimming on obese rats, induced by a high-fat diet. Exercise training reduced epididymal fat, fasting serum insulin and plasma glucose disappearance. Western blot analyses showed that exercise training increased the ability of insulin to phosphorylate intracellular molecules such as Akt (2.3-fold) and Foxo1 (1.7-fold). Moreover, reduced activities and expressions of proteins, induced by the high-fat diet in rats, such as phospho-JNK (1.9-fold), NF-kB (1.6-fold) and PTP-1B (1.5-fold), were observed. Finally, exercise training increased the activities of the transduction pathways of insulin-dependent protein synthesis, as shown by increases in Raptor phosphorylation (1.7-fold), p70S6k phosphorylation (1.9-fold), and 4E-BP1 phosphorylation (1.4-fold) and a reduction in atrogin-1 expression (2.1-fold). Results demonstrate a pivotal regulatory role of exercise training on the Akt/mTOR pathway, in turn, promoting protein synthesis and antagonizing protein degradation.

  14. Persistent Organic Pollutant Exposure Leads to Insulin Resistance Syndrome

    DEFF Research Database (Denmark)

    Ruzzin, Jérôme; Petersen, Rasmus; Meugnier, Emmanuelle

    2010-01-01

    BACKGROUND: The incidence of the insulin resistance syndrome has increased at an alarming rate worldwide creating a serious challenge to public health care in the 21st century. Recently, epidemiological studies have associated the prevalence of type 2 diabetes with elevated body burdens...... of persistent organic pollutants (POPs). However, experimental evidence demonstrating a causal link between POPs and the development of insulin resistance is lacking. OBJECTIVE: We investigated whether exposure to POPs contributes to insulin resistance and metabolic disorders. METHODS: Wistar rats were exposed...... of lipid homeostasis. CONCLUSION: Our findings, for the first time, provide evidence that exposure to POPs commonly present in food chains leads to insulin resistance and associated metabolic disorders....

  15. 3,5 Diiodo-L-Thyronine (T2 Does Not Prevent Hepatic Steatosis or Insulin Resistance in Fat-Fed Sprague Dawley Rats.

    Directory of Open Access Journals (Sweden)

    Daniel F Vatner

    Full Text Available Thyroid hormone mimetics are alluring potential therapies for diseases like dyslipidemia, nonalcoholic fatty liver disease (NAFLD, and insulin resistance. Though diiodothyronines are thought inactive, pharmacologic treatment with 3,5- Diiodo-L-Thyronine (T2 reportedly reduces hepatic lipid content and improves glucose tolerance in fat-fed male rats. To test this, male Sprague Dawley rats fed a safflower-oil based high-fat diet were treated with T2 (0.25 mg/kg-d or vehicle. Neither 10 nor 30 days of T2 treatment had an effect on weight, adiposity, plasma fatty acids, or hepatic steatosis. Insulin action was quantified in vivo by a hyperinsulinemic-euglycemic clamp. T2 did not alter fasting plasma glucose or insulin concentration. Basal endogenous glucose production (EGP rate was unchanged. During the clamp, there was no difference in insulin stimulated whole body glucose disposal. Insulin suppressed EGP by 60% ± 10 in T2-treated rats as compared with 47% ± 4 suppression in the vehicle group (p = 0.32. This was associated with an improvement in hepatic insulin signaling; insulin stimulated Akt phosphorylation was ~2.5 fold greater in the T2-treated group as compared with the vehicle-treated group (p = 0.003. There was no change in expression of genes thought to mediate the effect of T2 on hepatic metabolism, including genes that regulate hepatic lipid oxidation (ppara, carnitine palmitoyltransferase 1a, genes that regulate hepatic fatty acid synthesis (srebp1c, acetyl coa carboxylase, fatty acid synthase, and genes involved in glycolysis and gluconeogenesis (L-pyruvate kinase, glucose 6 phosphatase. Therefore, in contrast with previous reports, in Sprague Dawley rats fed an unsaturated fat diet, T2 administration failed to improve NAFLD or whole body insulin sensitivity. Though there was a modest improvement in hepatic insulin signaling, this was not associated with significant differences in hepatic insulin action. Further study will be

  16. A paradox: Insulin inhibits expression and secretion of resistin which induces insulin resistance

    Institute of Scientific and Technical Information of China (English)

    Feng Liu; Mei Guo; Rong-Hua Chen; Xi-Rong Guo; Hong-Qi Fan; Jie Qiu; Bin Wang; Min Zhang; Nan Gu; Chun-Mei Zhang; Li Fei; Xiao-Qing Pan

    2008-01-01

    AIM:To confirm whether insulin regulates resistin expression and secretion during differentiation of 3T3-L1 preadipocytes and the relationship of resistin with insulin resistance both in vivo and in vitro. METHODS: Supernatant resistin was measured during differentiation of 3T3-L1 preadipocytes. L6 rat myoblasts and hepatoma cell line H4IIE were used to confirm the cellular function of resistin. Diet-induced obese rats were used as an insulin resistance model to study the relationship of resistin with insulin resistance.RESULTS: Resistin expression and secretion were enhanced during differentiation 3T3-L1 preadipocytes. This cellular differentiation stimulated resistin expression and secretion, but was suppressed by insulin. Resistin also induced insulin resistance in H4IIE hepatocytes and L6 myoblasts. In diet-induced obese rats, serum resistin levels were negatively correlated with insulin sensitivity,but not with serum insulin. CONCLUSION: Insulin can inhibit resistin expression and secretion in vitro, but insulin is not a major regulator of resistin in vivo. Fat tissue mass affects insulin sensitivity by altering the expression and secretion of resistin.

  17. Fenofibrate Therapy Restores Antioxidant Protection and Improves Myocardial Insulin Resistance in a Rat Model of Metabolic Syndrome and Myocardial Ischemia: The Role of Angiotensin II

    Directory of Open Access Journals (Sweden)

    Luz Ibarra-Lara

    2016-12-01

    Full Text Available Renin-angiotensin system (RAS activation promotes oxidative stress which increases the risk of cardiac dysfunction in metabolic syndrome (MetS and favors local insulin resistance. Fibrates regulate RAS improving MetS, type-2 diabetes and cardiovascular diseases. We studied the effect of fenofibrate treatment on the myocardic signaling pathway of Angiotensin II (Ang II/Angiotensin II type 1 receptor (AT1 and its relationship with oxidative stress and myocardial insulin resistance in MetS rats under heart ischemia. Control and MetS rats were assigned to the following groups: (a sham; (b vehicle-treated myocardial infarction (MI (MI-V; and (c fenofibrate-treated myocardial infarction (MI-F. Treatment with fenofibrate significantly reduced triglycerides, non-high density lipoprotein cholesterol (non-HDL-C, insulin levels and insulin resistance index (HOMA-IR in MetS animals. MetS and MI increased Ang II concentration and AT1 expression, favored myocardial oxidative stress (high levels of malondialdehyde, overexpression of nicotinamide adenine dinucleotide phosphate (NADPH oxidase 4 (NOX4, decreased total antioxidant capacity and diminished expression of superoxide dismutase (SOD1, SOD2 and catalase and inhibited expression of the insulin signaling cascade: phosphatidylinositol 3-kinase (PI3K/protein kinase B (PkB, also known as Akt/Glut-4/endothelial nitric oxide synthase (eNOS. In conclusion, fenofibrate treatment favors an antioxidant environment as a consequence of a reduction of the Ang II/AT1/NOX4 signaling pathway, reestablishing the cardiac insulin signaling pathway. This might optimize cardiac metabolism and improve the vasodilator function during myocardial ischemia.

  18. Fenofibrate Therapy Restores Antioxidant Protection and Improves Myocardial Insulin Resistance in a Rat Model of Metabolic Syndrome and Myocardial Ischemia: The Role of Angiotensin II.

    Science.gov (United States)

    Ibarra-Lara, Luz; Sánchez-Aguilar, María; Sánchez-Mendoza, Alicia; Del Valle-Mondragón, Leonardo; Soria-Castro, Elizabeth; Carreón-Torres, Elizabeth; Díaz-Díaz, Eulises; Vázquez-Meza, Héctor; Guarner-Lans, Verónica; Rubio-Ruiz, María Esther

    2016-12-28

    Renin-angiotensin system (RAS) activation promotes oxidative stress which increases the risk of cardiac dysfunction in metabolic syndrome (MetS) and favors local insulin resistance. Fibrates regulate RAS improving MetS, type-2 diabetes and cardiovascular diseases. We studied the effect of fenofibrate treatment on the myocardic signaling pathway of Angiotensin II (Ang II)/Angiotensin II type 1 receptor (AT1) and its relationship with oxidative stress and myocardial insulin resistance in MetS rats under heart ischemia. Control and MetS rats were assigned to the following groups: (a) sham; (b) vehicle-treated myocardial infarction (MI) (MI-V); and (c) fenofibrate-treated myocardial infarction (MI-F). Treatment with fenofibrate significantly reduced triglycerides, non-high density lipoprotein cholesterol (non-HDL-C), insulin levels and insulin resistance index (HOMA-IR) in MetS animals. MetS and MI increased Ang II concentration and AT1 expression, favored myocardial oxidative stress (high levels of malondialdehyde, overexpression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), decreased total antioxidant capacity and diminished expression of superoxide dismutase (SOD)1, SOD2 and catalase) and inhibited expression of the insulin signaling cascade: phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PkB, also known as Akt)/Glut-4/endothelial nitric oxide synthase (eNOS). In conclusion, fenofibrate treatment favors an antioxidant environment as a consequence of a reduction of the Ang II/AT1/NOX4 signaling pathway, reestablishing the cardiac insulin signaling pathway. This might optimize cardiac metabolism and improve the vasodilator function during myocardial ischemia.

  19. Bimodal effect on pancreatic β-cells of secretory products from normal or insulin-resistant human skeletal muscle

    DEFF Research Database (Denmark)

    Bouzakri, Karim; Plomgaard, Peter; Berney, Thierry;

    2011-01-01

    Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) ß-cells.......Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) ß-cells....

  20. Bimodal effect on pancreatic β-cells of secretory products from normal or insulin-resistant human skeletal muscle

    DEFF Research Database (Denmark)

    Bouzakri, Karim; Plomgaard, Peter; Berney, Thierry;

    2011-01-01

    Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells.......Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells....

  1. Rice Bran Protein Hydrolysates Improve Insulin Resistance and Decrease Pro-inflammatory Cytokine Gene Expression in Rats Fed a High Carbohydrate-High Fat Diet.

    Science.gov (United States)

    Boonloh, Kampeebhorn; Kukongviriyapan, Veerapol; Kongyingyoes, Bunkerd; Kukongviriyapan, Upa; Thawornchinsombut, Supawan; Pannangpetch, Patchareewan

    2015-08-03

    A high carbohydrate-high fat (HCHF) diet causes insulin resistance (IR) and metabolic syndrome (MS). Rice bran has been demonstrated to have anti-dyslipidemic and anti-atherogenic properties in an obese mouse model. In the present study, we investigated the beneficial effects of rice bran protein hydrolysates (RBP) in HCHF-induced MS rats. After 12 weeks on this diet, the HCHF-fed group was divided into four subgroups, which were orally administered RBP 100 or 500 mg/kg, pioglitazone 10 mg/kg, or tap water for a further 6 weeks. Compared with normal diet control group, the MS rats had elevated levels of blood glucose, lipid, insulin, and HOMA-IR. Treatment with RBP significantly alleviated all those changes and restored insulin sensitivity. Additionally, RBP treatment increased adiponectin and suppressed leptin levels. Expression of Ppar-γ mRNA in adipose tissues was significantly increased whereas expression of lipogenic genes Srebf1 and Fasn was significantly decreased. Levels of mRNA of proinflammatory cytokines, Il-6, Tnf-α, Nos-2 and Mcp-1 were significantly decreased. In conclusion, the present findings support the consumption of RBP as a functional food to improve insulin resistance and to prevent the development of metabolic syndrome.

  2. Amelioration of oxidative stress and insulin resistance by soy isoflavones (from Glycine max) in ovariectomized Wistar rats fed with high fat diet: the molecular mechanisms.

    Science.gov (United States)

    Sankar, P; Zachariah, Bobby; Vickneshwaran, V; Jacob, Sajini Elizabeth; Sridhar, M G

    2015-03-01

    Estrogen deficiency after menopause accelerates the redox imbalance and insulin signaling, leading to oxidative stress (OS) and insulin resistance (IR). The molecular mechanisms by which the loss of ovarian hormone leads to OS and IR remain unclear. In the present study we found that rats when subjected to ovariectomy (OVX) resulted in reduction of whole blood antioxidants and elevation of oxidant markers. The expression of anti-oxidant enzymes, superoxide dismutase (SOD1) and glutathione peroxidase (GPX1) was suppressed whereas the pro-oxidative enzyme NADPH oxidase (NOX4) and mitogen activated protein (MAP) kinases ERK 1/2 and p38 were increased at different tissues. Treatment with soy (SIF, 150 mg/kg BW for 12 weeks) extract markedly reversed these metabolic changes and improved OS. Ovariectomized rats also displayed glucose intolerance (GI) and IR as evident from the impaired glucose tolerance test, and reduced expression of adipose and hepatic insulin receptor beta (IRβ) and adipose tissue GLUT4. Treatment with SIF reversed the ovariectomy induced GI and IR. On the other hand, all these metabolic changes were further augmented when ovariectomy was followed by a high fat diet, and these changes were also reversed by SIF. Taken together, these findings emphasized the antioxidant property and anti-diabetic effects of soy isoflavones suggesting the use of this natural phytoestrogen as a strategy for relieving oxidative stress and insulin resistance in postmenopausal women. Copyright © 2015. Published by Elsevier Inc.

  3. MEDICA 16 inhibits hepatic acetyl-CoA carboxylase and reduces plasma triacylglycerol levels in insulin-resistant JCR: LA-cp rats.

    Science.gov (United States)

    Atkinson, Laura L; Kelly, Sandra E; Russell, James C; Bar-Tana, Jacob; Lopaschuk, Gary D

    2002-05-01

    Intracellular triacylglycerol (TG) content of liver and skeletal muscle contributes to insulin resistance, and a significant correlation exists between TG content and the development of insulin resistance. Because acetyl-CoA carboxylase (ACC) is the rate-limiting enzyme for liver fatty acid biosynthesis and a key regulator of muscle fatty acid oxidation, we examined whether ACC plays a role in the accumulation of intracellular TG. We also determined the potential role of 5'-AMP-activated protein kinase (AMPK) in this process, since it can phosphorylate and inhibit ACC activity in both liver and muscle. TG content, ACC, and AMPK were examined in the liver and skeletal muscle of insulin-resistant JCR:LA-cp rats during the time frame when insulin resistance develops. At 12 weeks of age, there was a threefold elevation in liver TG content and a sevenfold elevation in skeletal muscle TG content. Hepatic ACC activity was significantly elevated in 12-week-old JCR:LA-cp rats compared with lean age-matched controls (8.75 +/- 0.53 vs. 3.30 +/- 0.18 nmol. min(-1). mg(-1), respectively), even though AMPK activity was also increased. The observed increase in hepatic ACC activity was accompanied by a 300% increase in ACC protein expression. There were no significant differences in ACC activity, ACC protein expression, or AMPK activity in the skeletal muscle of the 12-week JCR:LA-cp rats. Treatment of 12-week JCR:LA-cp rats with MEDICA 16 (an ATP-citrate lyase inhibitor) resulted in a decrease in hepatic ACC and AMPK activities, but had no effect on skeletal muscle ACC and AMPK. Our data suggest that alterations in ACC or AMPK activity in muscle do not contribute to the development of insulin resistance. However, increased liver ACC activity in the JCR:LA-cp rat appears to contribute to the development of lipid abnormalities, although this increase does not appear to occur secondary to a decrease in AMPK activity.

  4. Pair feeding-mediated changes in metabolism: stress response and pathophysiology in insulin-resistant, atherosclerosis-prone JCR:LA-cp rats.

    Science.gov (United States)

    Russell, James C; Proctor, Spencer D; Kelly, Sandra E; Brindley, David N

    2008-06-01

    Rats of the JCR:LA-cp strain, which are homozygous for the cp gene (cp/cp), are obese, insulin-resistant, and hyperinsulinemic. They exhibit associated micro- and macrovascular disease and end-stage ischemic myocardial lesions and are highly stress sensitive. We subjected male cp/cp rats to pair feeding (providing the rats each day with the amount of food eaten by matched freely fed animals), a procedure that alters the diurnal feeding pattern, leading to a state of intermittent caloric restriction. Effects on insulin, glucose, and lipid metabolism, response to restraint stress, aortic contractile/relaxant response, and myocardial lesion frequency were investigated. Pair-fed young (12-wk-old) cp/cp rats had lower insulin and glucose levels (basal and following restraint), consistent with increased insulin sensitivity, but a greater increase in plasma nonesterified fatty acids in response to restraint. These effects were unrelated to lipolytic rates in adipose tissue but may be related to reduced fatty acid oxidation in skeletal muscle. Older (24-wk-old) pair-fed cp/cp rats had significantly reduced plasma triglyceride levels, improved micro- and macrovascular function, and reduced severity of ischemic myocardial lesions. These changes indicate a significant amelioration of end-stage disease processes in this animal model and the complexity of metabolic/physiological responses in studies involving alterations in food intake. The effects illustrate the sensitivity of the JCR:LA-cp rat, an animal model for the metabolic syndrome and associated cardiovascular disease, to the environmental and experimental milieu. Similar stress-related mechanisms may play a role in metabolically induced cardiovascular disease in susceptible human beings.

  5. Impact of L-Carnitine and Cinnamon on Insulin-Like Growth Factor-1 and Inducible Nitric Oxide Synthase Gene Expression in Heart and Brain of Insulin Resistant Rats

    Directory of Open Access Journals (Sweden)

    Mona A. Mohamed

    2010-01-01

    Full Text Available Problem statement: Evaluate the effects of daily administration of L-carnitine and cinnamon extract for two weeks on the expression of Insulin-like Growth Factor-1 (IGF-1 and inducible Nitric Oxide Synthase (iNOS genes in cardiac and brain tissues of rats with Insulin Resistance (IR. Approach: Rats were divided into 4 groups (8 animals each: Group (1 rats fed control diet (60% starch as control while groups (2, 3 and 4 fed high fructose diet (60% fructose. At the beginning of the 3rd week of feeding, rats of group (3 were treated with L-carnitine (300 mg kg-1 body weight/day, i.p. and animals of group (4 received a daily oral dose of cinnamon aqueous extract (0.5 mL rat-1. The animals were maintained in their respective groups for 4 weeks. Results: Feeding high fructose diet causes significant reduction in Insulin Receptor Substrate-1 (IRS-1 (amounted 30.65% and elevation in iNOS expression (reached 51% in the cardiac tissues as compared to control. In brain tissues, the IGF-1 mRNA was reduced in fructose loaded groups (28.81%. Administration of either L-carnitine or cinnamon extract significantly improves the expression of the cardiac studied genes but with no effects on the brain tissues. Conclusion: The present study illustrated that CE was more potent than L-carnitine in improving the IR.

  6. High fat diet induced insulin resistance and elevated retinol binding protein 4 in female rats; treatment and protection with Berberis vulgaris extract and vitamin A.

    Science.gov (United States)

    El-Sayed, Mohamed Mohammed; Ghareeb, Doaa Ahmad; Talat, Heba Allah; Sarhan, Eman Mohammed

    2013-11-01

    This research was conducted to investigate two main aims; the first aim was to find if there is a relationship between insulin resistance (IR) and retinol binding protein 4 (RBP4). The second aim was to use berberis vulgaris extract and vitamin A as protective and/or curative agents against insulin resistance. IR was developed by feeding the female rats a high fat diet (HFD) for six weeks then treating or protecting them with b. vulgaris extract (0.2 g/Kg body weight) or vitamin A (12.8μg/Kg/day) for two weeks. HFD intake elevated insulin level and RBP4 expression that associated with hyperglycemia and hyperlipidemia. Co-administration of vitamin A and B. vulgaris extracts reduced blood glucose level, insulin, body weight and RBP4 expression before, during and after HFD. Furthermore, vitamin A reduced the blood glucose, triglycerides (TG) and cholesterol levels. IR syndrome associated with the RBP 4 alteration that gives high indication about the role of RBP4 expression in the IR progression and development. Furthermore, the treatment with vitamin A and/or b. vulgaris alleviated the IR syndrome through the action on RBP4 and Insulin secretion. On the other hand, vitamin A must be avoided for the predisposed IR and prediabetic patients.

  7. Phloretin exerts hypoglycemic effect in streptozotocin-induced diabetic rats and improves insulin resistance in vitro

    Science.gov (United States)

    Shen, Xin; Zhou, Nan; Mi, Le; Hu, Zishuo; Wang, Libin; Liu, Xueying; Zhang, Shengyong

    2017-01-01

    The present study investigated the possible antiobesity and hypoglycemic effects of phloretin (Ph). In an attempt to discover the hypoglycemic effect and potential mechanism of Ph, we used the streptozotocin-induced diabetic rats and (L6) myotubes. Daily oral treatment with Ph for 4 weeks significantly (PGLUT4 were upregulated in skeletal muscle of type 2 diabetes (T2D) rats and in L6 myotubes by Ph. The immunofluorescence studies confirmed that Ph improved the translocation of GLUT4 in L6 myotubes. Ph exerted hypoglycemic effects in vivo and in vitro, hence it may play an important role in the management of diabetes. PMID:28223777

  8. Hyperandrogenism and Insulin Resistance, Not Changes in Body Weight, Mediate the Development of Endothelial Dysfunction in a Female Rat Model of Polycystic Ovary Syndrome (PCOS).

    Science.gov (United States)

    Hurliman, Amanda; Keller Brown, Jennifer; Maille, Nicole; Mandala, Maurizio; Casson, Peter; Osol, George

    2015-11-01

    This study was designed to differentiate the contributions of hyperandrogenism, insulin resistance (IR), and body weight to the development of endothelial dysfunction in polycystic ovary syndrome and determine the effectiveness of insulin sensitization and antiandrogenic therapy after the establishment of vascular and metabolic dysfunction using a rat model of polycystic ovary syndrome. We hypothesized that the observed endothelial dysfunction was a direct steroidal effect, as opposed to changes in insulin sensitivity or body weight. Prepubertal female rats were randomized to the implantation of a pellet containing DHT or sham procedure. In phase 1, DHT-exposed animals were randomized to pair feeding to prevent weight gain or metformin, an insulin-sensitizing agent, from 5 to 14 weeks. In phase 2, DHT-exposed animals were randomized to treatment with metformin or flutamide, a nonsteroidal androgen receptor blocker from 12 to 16 weeks. Endothelial function was assessed by the vasodilatory response of preconstricted arteries to acetylcholine. Serum steroid levels were analyzed in phase 1 animals. Fasting blood glucose and plasma insulin were analyzed and homeostasis model assessment index calculated in all animals. Our data confirm the presence of endothelial dysfunction as well as increased body weight, hypertension, hyperinsulinemia, and greater IR among DHT-treated animals. Even when normal weight was maintained through pair feeding, endothelial dysfunction, hyperinsulinemia, and IR still developed. Furthermore, despite weight gain, treatment with metformin and flutamide improved insulin sensitivity and blood pressure and restored normal endothelial function. Therefore, the observed endothelial dysfunction is most likely a direct result of hyperandrogenism-induced reductions in insulin sensitivity, as opposed to weight gain.

  9. Maternal Moderate Physical Training during Pregnancy Attenuates the Effects of a Low-Protein Diet on the Impaired Secretion of Insulin in Rats: Potential Role for Compensation of Insulin Resistance and Preventing Gestational Diabetes Mellitus

    Science.gov (United States)

    Leandro, Carol Góis; Fidalgo, Marco; Bento-Santos, Adriano; Falcão-Tebas, Filippe; Vasconcelos, Diogo; Manhães-de-Castro, Raul; Carpinelli, Angelo Rafael; Hirabara, Sandro Massao; Curi, Rui

    2012-01-01

    The effects of pregestational and gestational low-to-moderate physical training on insulin secretion in undernourished mothers were evaluated. Virgin female Wistar rats were divided into four groups as follows: control (C, n = 5); trained (T, n = 5); low-protein diet (LP, n = 5); trained with a low-protein diet (T + LP, n = 5). Trained rats ran on a treadmill over a period of 4 weeks before mate (5 days week−1 and 60 min day−1, at 65% of VO2max). At pregnancy, the intensity and duration of the exercise were reduced. Low-protein groups were provided with an 8% casein diet, and controls were provided with a 17% casein diet. At third day after delivery, mothers and pups were killed and islets were isolated by collagenase digestion of pancreas and incubated for a further 1 h with medium containing 5.6 or 16.7 mM glucose. T mothers showed increased insulin secretion by isolated islets incubated with 16.7 mM glucose, whereas LP group showed reduced secretion of insulin by isolated islets when compared with both C and LP + T groups. Physical training before and during pregnancy attenuated the effects of a low-protein diet on the secretion of insulin, suggesting a potential role for compensation of insulin resistance and preventing gestational diabetes mellitus. PMID:22927722

  10. Maternal Moderate Physical Training during Pregnancy Attenuates the Effects of a Low-Protein Diet on the Impaired Secretion of Insulin in Rats: Potential Role for Compensation of Insulin Resistance and Preventing Gestational Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Carol Góis Leandro

    2012-01-01

    Full Text Available The effects of pregestational and gestational low-to-moderate physical training on insulin secretion in undernourished mothers were evaluated. Virgin female Wistar rats were divided into four groups as follows: control (C, n=5; trained (T, n=5; low-protein diet (LP, n=5; trained with a low-protein diet (T + LP, n=5. Trained rats ran on a treadmill over a period of 4 weeks before mate (5 days week−1 and 60 min day−1, at 65% of VO2max. At pregnancy, the intensity and duration of the exercise were reduced. Low-protein groups were provided with an 8% casein diet, and controls were provided with a 17% casein diet. At third day after delivery, mothers and pups were killed and islets were isolated by collagenase digestion of pancreas and incubated for a further 1 h with medium containing 5.6 or 16.7 mM glucose. T mothers showed increased insulin secretion by isolated islets incubated with 16.7 mM glucose, whereas LP group showed reduced secretion of insulin by isolated islets when compared with both C and LP + T groups. Physical training before and during pregnancy attenuated the effects of a low-protein diet on the secretion of insulin, suggesting a potential role for compensation of insulin resistance and preventing gestational diabetes mellitus.

  11. The effect of N-stearoylethanolamine on cholesterol content, fatty acid composition and protein carbonylation level in rats with alimentary obesity-induced insulin resistance

    Directory of Open Access Journals (Sweden)

    O. V. Onopchenko

    2014-12-01

    Full Text Available The effect of N-stearoylethanolamine (NSE on liver free fatty acid composition, cholesterol content and carbonylated protein level in rats with obesity-induced insulin resistance (IR was studied in the work. The experimental insulin resistance was induced by prolonged high fat diet (58% of energy derived from fat for 6 months combined with one injection of low-dose (15 mg/kg of streptozotocin. The lipid assay showed a rise in liver free cholesterol content and a significant reduction in cholesterol esters level. Analyzing liver fatty acid composition, a decrease in polyunsaturated of fatty acid (PUFA level and an increase in monounsaturated fatty acid (MUFA content was found. Fatty acid imbalance with high content of MUFA was associated with elevated level of protein carbonylation. The NSE administration (50 mg/kg of body weight for 2 weeks decreased free cholesterol content, increased cholesterol esters level and reduced free oleic fatty acid content in the liver of rats with IR. The effect of NSE on lipid imbalance led to a decrease in protein carbonylation level that may result in improvement of transmembrane protein function under obesity-induced insulin resistance state.

  12. Dietary fish oil reverse epididymal tissue adiposity, cell hypertrophy and insulin resistance in dyslipemic sucrose fed rat model small star, filled.

    Science.gov (United States)

    Soria, Ana; Chicco, Adriana; Eugenia D'Alessandro, María; Rossi, Andrea; Lombardo, Yolanda B.

    2002-04-01

    The present work was designed to assess the possible benefits of (7% w/w) dietary fish oil in reversing the morphological and metabolic changes present in the adipose tissue of rats fed an SRD for a long time. With this purpose, in the epididymal fat tissue, we investigated the effect of dietary fish oil upon: i) the number, size and distribution of cells, ii) the basal and stimulated lipolysis, iii) the lipoprotein lipase (LPL) and the glucose 6-phosphate dehydrogenase activities, and iv) the antilipolytic action of insulin. The study was conducted on rats fed an SRD during 120 days with fish oil being isocaloric substituted for corn oil for 90-120 days in half the animals. Permanent hypertriglyceridemia, insulin resistance and abnormal glucose homeostasis were present in the rats before the source of fat in the diet was replaced. The major new findings of this study are the following: i) Dietary fish oil markedly reduced the fat pads mass, the hypertrophy of fat cells and improved the altered cell size distribution. ii) The presence of fish oil in the diet corrected the inhibitory effect of high sucrose diet upon the antilipolytic action of insulin, reduced the "in vitro" enhanced basal lipolysis and normalized isoproterenol-stimulated lipolysis. Fat pads lipoprotein lipase activity decreased reaching values similar to those observed in age-matched controls fed a control diet (CD). These effects were not accompanied by any change in rat body weight. All these data suggest that the dyslipemic rats fed a moderate amount of dietary fish oil constitute a useful animal model to study diet-regulated insulin action.

  13. PI3K-GLUT4 Signal Pathway Associated with Effects of EX-B3 Electroacupuncture on Hyperglycemia and Insulin Resistance of T2DM Rats

    Science.gov (United States)

    2016-01-01

    Objectives. To explore electroacupuncture's (EA's) effects on fasting blood glucose (FBG) and insulin resistance of type 2 diabetic mellitus (T2DM) model rats and give a possible explanation for the effects. Method. It takes high fat diet and intraperitoneal injection of streptozotocin (STZ, 30 mg/kg) for model preparation. Model rats were randomly divided into T2DM Model group, EA weiwanxiashu (EX-B3) group, and sham EA group (n = 12/group). EA (2 Hz continuous wave, 2 mA, 20 min/day, 6 days/week, 4 weeks) was applied as intervention. FBG, area under curve (AUC) of oral glucose tolerance test (OGTT), insulin resistance index (HOMA-IR), pancreatic B cell function index (HOMA-B), skeletal muscle phosphorylated phosphatidylinositol-3-kinase (PI3K), glucose transporter 4 (GLUT4), and membrane GLUT4 protein expression were measured. Results. EA weiwanxiashu (EX-B3) can greatly upregulate model rat's significantly reduced skeletal muscle PI3K (Y607) and membrane GLUT4 protein expression (P < 0.01), effectively reducing model rats' FBG and AUC of OGTT (P < 0.01). The effects are far superior to sham EA group. Conclusion. EA weiwanxiashu (EX-B3) can upregulate skeletal muscle phosphorylated PI3K protein expression, to stimulate membrane translocation of GLUT4 and thereby increase skeletal muscle glucose intake to treat T2DM. PMID:27656242

  14. Insulin action and insulin resistance in vascular endothelium.

    Science.gov (United States)

    Muniyappa, Ranganath; Quon, Michael J

    2007-07-01

    Vasodilator actions of insulin are mediated by phosphatidylinositol 3-kinase dependent insulin signaling pathways in endothelium, which stimulate production of nitric oxide. Insulin-stimulated nitric oxide mediates capillary recruitment, vasodilation, increased blood flow, and subsequent augmentation of glucose disposal in skeletal muscle. Distinct mitogen-activated protein kinase dependent insulin signaling pathways regulate secretion of the vasoconstrictor endothelin-1 from endothelium. These vascular actions of insulin contribute to the coupling of metabolic and hemodynamic homeostasis that occurs under healthy conditions. Insulin resistance is characterized by pathway-specific impairment in phosphatidylinositol 3-kinase dependent signaling in both metabolic and vascular insulin target tissues. Here we discuss consequences of pathway-specific insulin resistance in endothelium and therapeutic interventions targeting this selective impairment. Shared causal factors such as glucotoxicity, lipotoxicity, and inflammation selectively impair phosphatidylinositol 3-kinase dependent insulin signaling pathways, creating reciprocal relationships between insulin resistance and endothelial dysfunction. Diet, exercise, cardiovascular drugs, and insulin sensitizers simultaneously modulate phosphatidylinositol 3-kinase and mitogen-activated protein kinase dependent pathways, improving metabolic and vascular actions of insulin. Pathway-specific impairment in insulin action contributes to reciprocal relationships between endothelial dysfunction and insulin resistance, fostering clustering of metabolic and cardiovascular diseases in insulin-resistant states. Therapeutic interventions that target this selective impairment often simultaneously improve both metabolic and vascular function.

  15. Acyl-CoA binding protein expression is fiber type- specific and elevated in muscles from the obese insulin-resistant Zucker rat.

    Science.gov (United States)

    Franch, Jesper; Knudsen, Jens; Ellis, Bronwyn A; Pedersen, Preben K; Cooney, Gregory J; Jensen, Jørgen

    2002-02-01

    Accumulation of acyl-CoA is hypothesized to be involved in development of insulin resistance. Acyl-CoA binds to acyl-CoA binding protein (ACBP) with high affinity, and therefore knowledge about ACBP concentration is important for interpreting acyl-CoA data. In the present study, we used a sandwich enzyme-linked immunosorbent assay to quantify ACBP concentration in different muscle fiber types. Furthermore, ACBP concentration was compared in muscles from lean and obese Zucker rats. Expression of ACBP was highest in the slow-twitch oxidative soleus muscle and lowest in the fast-twitch glycolytic white gastrocnemius (0.46 +/- 0.02 and 0.16 +/- 0.005 microg/mg protein, respectively). Expression of ACBP was soleus > red gastrocnemius > extensor digitorum longus > white gastrocnemius. Similar fiber type differences were found for carnitine palmitoyl transferase (CPT)-1, and a correlation was observed between ACBP and CPT-1. Muscles from obese Zucker rats had twice the triglyceride content, had approximately twice the long-chain acyl CoA content, and were severely insulin resistant. ACBP concentration was approximately 30% higher in all muscles from obese rats. Activities of CPT-1 and 3-hydroxy-acyl-CoA dehydrogenase were increased in muscles from obese rats, whereas citrate synthase activity was similar. In conclusion, ACBP expression is fiber type-specific with the highest concentration in oxidative muscles and the lowest in glycolytic muscles. The 90% increase in the concentration of acyl-CoA in obese Zucker muscle compared with only a 30% increase in the concentration of ACBP supports the hypothesis that an increased concentration of free acyl-CoA is involved in the development of insulin resistance.

  16. Ectopic UCP1 Overexpression in White Adipose Tissue Improves Insulin Sensitivity in Lou/C Rats, a Model of Obesity Resistance.

    Science.gov (United States)

    Poher, Anne-Laure; Veyrat-Durebex, Christelle; Altirriba, Jordi; Montet, Xavier; Colin, Didier J; Caillon, Aurélie; Lyautey, Jacqueline; Rohner-Jeanrenaud, Françoise

    2015-11-01

    Brown adipose tissue (BAT), characterized by the presence of uncoupling protein 1 (UCP1), has been described as metabolically active in humans. Lou/C rats, originating from the Wistar strain, are resistant to obesity. We previously demonstrated that Lou/C animals express UCP1 in beige adipocytes in inguinal white adipose tissue (iWAT), suggesting a role of this protein in processes such as the control of body weight and the observed improved insulin sensitivity. A β3 adrenergic agonist was administered for 2 weeks in Wistar and Lou/C rats to activate UCP1 and delineate its metabolic impact. The treatment brought about decreases in fat mass and improvements in insulin sensitivity in both groups. In BAT, UCP1 expression increased similarly in response to the treatment in the two groups. However, the intervention induced the appearance of beige cells in iWAT, associated with a marked increase in UCP1 expression, in Lou/C rats only. This increase was correlated with a markedly enhanced glucose uptake measured during euglycemic-hyperinsulinemic clamps, suggesting a role of beige cells in this process. Activation of UCP1 in ectopic tissues, such as beige cells in iWAT, may be an interesting therapeutic approach to prevent body weight gain, decrease fat mass, and improve insulin sensitivity.

  17. Improvement of Liquid Fructose-Induced Adipose Tissue Insulin Resistance by Ginger Treatment in Rats Is Associated with Suppression of Adipose Macrophage-Related Proinflammatory Cytokines

    Directory of Open Access Journals (Sweden)

    Jianwei Wang

    2013-01-01

    Full Text Available Adipose tissue insulin resistance (Adipo-IR results in excessive release of free fatty acids from adipose tissue, which plays a key role in the development of “lipotoxicity.” Therefore, amelioration of Adipo-IR may benefit the treatment of other metabolic abnormalities. Here we found that treatment with the alcoholic extract of ginger (50 mg/kg/day, by oral gavage for five weeks attenuated liquid fructose-induced hyperinsulinemia and an increase in the homeostasis model assessment of insulin resistance (HOMA-IR index in rats. More importantly, ginger reversed the increases in the Adipo-IR index and plasma nonesterified fatty acid concentrations during the oral glucose tolerance test assessment. Adipose gene/protein expression profiles revealed that ginger treatment suppressed CD68 and F4/80, two important macrophage accumulation markers. Consistently, the macrophage-associated cytokines tissue necrosis factor alpha and interleukin-6 were also downregulated. In contrast, insulin receptor substrate (IRS-1, but not IRS-2, was upregulated. Moreover, monocyte chemotactic protein (MCP-1 and its receptor chemokine (C-C motif receptor-2 were also suppressed. Thus these results suggest that amelioration of fructose-induced Adipo-IR by ginger treatment in rats is associated with suppression of adipose macrophage-related proinflammatory cytokines.

  18. A novel insulin sensitizer (S15511) enhances insulin-stimulated glucose uptake in rat skeletal muscles.

    Science.gov (United States)

    Jessen, N; Selmer Buhl, E; Pold, R; Schmitz, O; Lund, S

    2008-04-01

    Type 2 diabetes is preceded by the presence of skeletal muscle insulin resistance, and drugs that increase insulin sensitivity in skeletal muscle prevent the disease. S15511 is an original compound with demonstrated effects on insulin sensitivity in animal models of insulin resistance. However, the mechanisms behind the insulin-sensitizing effect of S15511 are unknown. The aim of our study was to explore whether S15511 improves insulin sensitivity in skeletal muscles. Insulin sensitivity was assessed in skeletal muscles from S15511-treated rats by measuring intracellular insulin-signaling activity and insulin-stimulated glucose transport in isolated muscles. In addition, GLUT4 expression and glycogen levels were assessed after treatment. S15511 treatment was associated with an increase in insulin-stimulated glucose transport in type IIb fibers, while type I fibers were unaffected. The enhanced glucose transport was mirrored by a fiber type-specific increase in GLUT4 expression, while no improvement in insulin-signaling activity was observed. S15511 is a novel insulin sensitizer that is capable of improving glucose homeostasis in nondiabetic rats. The compound enhances skeletal muscle insulin sensitivity and specifically targets type IIb muscle fibers by increasing GLUT4 expression. Together these data show S15511 to be a potentially promising new drug in the treatment and prevention of type 2 diabetes.

  19. AT1 receptor blockade attenuates insulin resistance and myocardial remodeling in rats with diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Silvio A Oliveira-Junior

    Full Text Available BACKGROUND: Although obesity has been associated with metabolic and cardiac disturbances, the carrier mechanisms for these responses are poorly understood. This study analyzed whether angiotensin II blockade attenuates metabolic and cardiovascular disorders in rats with diet-induced obesity. MATERIAL AND METHODS: Wistar-Kyoto (n = 40 rats were subjected to control (C; 3.2 kcal/g and hypercaloric diets (OB; 4.6 kcal/g for 30 weeks. Subsequently, rats were distributed to four groups: C, CL, OB, and OBL. L groups received Losartan (30 mg/kg/day for five weeks. After this period we performed in vivo glucose tolerance and insulin tolerance tests, and measured triacylglycerol, insulin, angiotensin-converting enzyme activity (ACE, and leptin levels. Cardiovascular analyzes included systolic blood pressure (SBP, echocardiography, myocardial morphometric study, myosin heavy chain composition, and measurements of myocardial protein levels of angiotensin, extracellular signal-regulated (ERK1/2, c-Jun amino-terminal kinases (JNK, insulin receptor subunit β (βIR, and phosphatidylinositol 3-kinase (PI3K by Western Blot. RESULTS: Glucose metabolism, insulin, lipid, and ACE activity disorders observed with obesity were minimized by Losartan. Moreover, obesity was associated with increased SBP, myocardial hypertrophy, interstitial fibrosis and improved systolic performance; these effects were also minimized with Losartan. On a molecular level, OB exhibited higher ERK, Tyr-phosphorylated βIR, and PI3K expression, and reduced myocardial angiotensin and JNK expression. ERK and JNK expression were regulated in the presence of Losartan, while angiotensin, Tyr-βRI, total and Tyr-phosphorylated PI3K expression were elevated in the OBL group. CONCLUSION: Angiotensin II blockade with Losartan attenuates obesity-induced metabolic and cardiovascular changes.

  20. Insulin resistance in liver cirrhosis.

    Science.gov (United States)

    Goral, Vedat; Atalay, Roni; Kucukoner, Mehmet; Kucukoren, Mehmet

    2010-01-01

    Liver cirrhosis is a chronic disease by degeneration, regeneration and fibrosis in the liver parenchyma, caused by many diseases. Insulin resistance can be defined as any type of decrease in the effect that may occur at the phases following insulin's secretion from beta-cells of the pancreas, where it is produced, until it has the expected effects in the target cells. The aim of the present study is to demonstrate the presence of insulin resistance in LC, which is common in our country and region, and investigate the existence of association between insulin resistance occuring in LC and cytokine levels, age, gender, CRP, Hs-CRP, Child-Pugh score and etiology of LC. A total of 79 patients with liver cirrhosis (group 1) were included in the study, and 50 subjects as controls (group 2). Of liver cirrhosis patients, 49 (62%) were male and 30 (38%) were female, with a mean age of 54.71 +/- 14.68. Of the controls, 23 (46%) were male and 27 (54%) were female, with a mean age of 41.9 +/- 11.54. Severity of cirrhosis was assessed by Modified Child-Turcoutte-Pugh score. Seven cases (8.9%) were at the Child-Pugh stage A, 35 cases (44.3%) at the Child-Pough stage B, and 37 cases (46.8%) at the Child-Pough stage C. HOMA-IR was calculated and values > 2.7 were regarded as presence of insulin resistance (HOMA-IR +). Serum glucose, albumin, bilirubin values were studied with enzymatic method (Architect C-16000); serum CRP, Hs-CRP values with nephelometric method by Beckman Coulter Image Nephelometer (immunochemistry system); insulin, C-peptide with electrochemiluminance immunological method; prothrombin time with radiation method by ACL-Advance brand device. In this study, glucose (p = 0.004), insulin (p = 0.010), C-peptide (p 0.05) levels.

  1. The effect of Liuwei Dihuang decoction on PI3K/Akt signaling pathway in liver of type 2 diabetes mellitus (T2DM) rats with insulin resistance.

    Science.gov (United States)

    Dai, Bing; Wu, Qinxuan; Zeng, Chengxi; Zhang, Jiani; Cao, Luting; Xiao, Zizeng; Yang, Menglin

    2016-11-04

    Liuwei Dihaung decoction (LWDHT) is a well-known classic traditional Chinese medicine formula, consists of six herbs including Rehmannia glutinosa Libosch.(family: Scrophulariaceae), Cornus officinalis Sieb.(family: Cornaceae), Dioscorea opposite Thunb.(family: Dioscoreaceae), Alisma orientale(G. Samuelsson) Juz (family: Alismataceae), Poria cocos (Schw.) Wolf (family: Polyporaceae) and Paeonia suffruticosa Andrews (family: Paeoniaceae). It has been used in the treatment of many types of diseases with signs of deficiency of Yin in the kidneys in China clinically. This study is aimed at investigating the effect of Liuwei dihuang decoction on PI3K/Akt signaling pathway in liver of T2DM rats with insulin resistance. T2DM model was induced in male Sprague-Dawley (SD) rats by high sugar and high fat diets combined with small dose of streptozocin (STZ) injection. The successful T2DM rats were randomly allocated three group--vehicle group, positive control group and Liuwei Dihuang decoction group. After 12-weeks treatment with distilled water, rosiglitazone and LWDHT by intragastric administration respectively, the rats were put to death in batches. The variance of fasting blood glucose (FBG) and fasting insulin (FINS) in serum were determined, the pathological changes of each rats' liver were observed by hematoxylin-eosin (HE) staining, the expression of insulin receptor substrate 2(IRS2), phosphatidylinositol 3-kinase (PI3K) and protein kinas B (Akt) involving the canonical PI3K/Akt signaling pathway were detected by Real-time fluorescent quantitative PCR (RT-PCR), and the expression level of IRS2, PI3K, Akt protein and phosphorylated IRS2, PI3K, Akt protein were evaluated by Western Blot. All the data were analyzed by SPSS 17.0. Four weeks of treatment with LWDHT could significantly decrease the level of FBG and FINS in serum, improve the cellular morphology of liver, kidney, pancreas tissue, and the expression of IRS2, PI3K, Akt mRNA and phosphorylated IRS2, PI3K, Akt

  2. Vaccenic and elaidic acid modify plasma and splenocyte membrane phospholipids and mitogen-stimulated cytokine production in obese insulin resistant JCR: LA-cp rats.

    Science.gov (United States)

    Ruth, Megan R; Wang, Ye; Yu, Howe-Ming; Goruk, Susan; Reaney, Martin J; Proctor, Spencer D; Vine, Donna F; Field, Catherine J

    2010-02-01

    This study assessed the long-term effects of dietary vaccenic acid (VA) and elaidic acid (EA) on plasma and splenocyte phospholipid (PL) composition and related changes in inflammation and splenocyte phenotypes and cytokine responses in obese/insulin resistant JCR:LA-cp rats. Relative to lean control (Ctl), obese Ctl rats had higher serum haptoglobin and impaired T-cell-stimulated cytokine responses. VA and EA diets improved T-cell-stimulated cytokine production; but, only VA normalized serum haptoglobin. However, EA- and VA-fed rats had enhanced LPS-stimulated cytokine responses. The changes elicited by VA were likely due changes in essential fatty acid composition in PL; whereas EA-induced changes may due to direct incorporation into membrane PL.

  3. Obesity, inflammation, and insulin resistance

    Directory of Open Access Journals (Sweden)

    Luana Mota Martins

    2014-12-01

    Full Text Available White adipose tissue (WAT is considered an endocrine organ. When present in excess, WAT can influence metabolism via biologically active molecules. Following unregulated production of such molecules, adipose tissue dysfunction results, contributing to complications associated with obesity. Previous studies have implicated pro- and anti-inflammatory substances in the regulation of inflammatory response and in the development of insulin resistance. In obese individuals, pro-inflammatory molecules produced by adipose tissue contribute to the development of insulin resistance and increased risk of cardiovascular disease. On the other hand, the molecules with anti-inflammatory action, that have been associated with the improvement of insulin sensitivity, have your decreased production. Imbalance of these substances contributes significantly to metabolic disorders found in obese individuals. The current review aims to provide updated information regarding the activity of biomolecules produced by WAT.

  4. Ectopic UCP1 Overexpression in White Adipose Tissue Improves Insulin Sensitivity in Lou/C Rats, a Model of Obesity Resistance

    OpenAIRE

    2015-01-01

    Brown adipose tissue (BAT), characterized by the presence of uncoupling protein 1 (UCP1), has been described as metabolically active in humans. Lou/C rats, originating from the Wistar strain, are resistant to obesity. We previously demonstrated that Lou/C animals express UCP1 in beige adipocytes in inguinal white adipose tissue (iWAT), suggesting a role of this protein in processes such as the control of body weight and the observed improved insulin sensitivity. A β3 adrenergic agonist was ad...

  5. The effect of NALP3 inflammasome pathway in visceral adipose tissue on the development of insulin resistance in catch-up growth after food restriction in rats

    Institute of Scientific and Technical Information of China (English)

    李燕

    2014-01-01

    Objective To investigate the effects of catch-up growth(CUG)on the natch domain,leucine-rich repeat and PVD-containing protein 3(NALP3)inflammasome pathway in visceral adipose tissue(VAT)and the mechanism of insulin resistance(IR)in CUG.Methods Sprague-Dawley rats were randomly divided into the normal chow(NC)and the catch-up growth group(CUG).General characteristics,glucose infusion rate60-120(GIR60-120)in hyperinsulinemic-euglycemic clamp and expression of NALP3 inflammasome,caspase1(p10)and

  6. Taurine ameliorates hyperglycemia and dyslipidemia by reducing insulin resistance and leptin level in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term diabetes

    Science.gov (United States)

    Oh, Da Hee; Kim, Jung Yeon; Lee, Bong Gn; You, Jeong Soon; Chang, Kyung Ja; Chung, Hyunju; Yoo, Myung Chul; Yang, Hyung-In; Kang, Ja-Heon; Hwang, Yoo Chul; Ahn, Kue Jeong; Chung, Ho-Yeon

    2012-01-01

    This study aimed to determine whether taurine supplementation improves metabolic disturbances and diabetic complications in an animal model for type 2 diabetes. We investigated whether taurine has therapeutic effects on glucose metabolism, lipid metabolism, and diabetic complications in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term duration of diabetes. Fourteen 50-week-old OLETF rats with chronic diabetes were fed a diet supplemented with taurine (2%) or a non-supplemented control diet for 12 weeks. Taurine reduced blood glucose levels over 12 weeks, and improved OGTT outcomes at 6 weeks after taurine supplementation, in OLETF rats. Taurine significantly reduced insulin resistance but did not improve β-cell function or islet mass. After 12 weeks, taurine significantly decreased serum levels of lipids such as triglyceride, cholesterol, high density lipoprotein cholesterol, and low density lipoprotein cholesterol. Taurine significantly reduced serum leptin, but not adiponectin levels. However, taurine had no therapeutic effect on damaged tissues. Taurine ameliorated hyperglycemia and dyslipidemia, at least in part, by improving insulin sensitivity and leptin modulation in OLETF rats with long-term diabetes. Additional study is needed to investigate whether taurine has the same beneficial effects in human diabetic patients. PMID:23114424

  7. Pathophysiological mechanisms of insulin resistance

    NARCIS (Netherlands)

    Brands, M.

    2013-01-01

    In this thesis we studied pathophysiological mechanisms of insulin resistance in different conditions in humans, i.e. in obesity, during lipid infusions, after hypercaloric feeding, and glucocorticoid treatment. We focused on 3 important hypotheses that are suggested to be implicated in the pathophy

  8. Nutritional Modulation of Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Martin O. Weickert

    2012-01-01

    Full Text Available Insulin resistance has been proposed as the strongest single predictor for the development of Type 2 Diabetes (T2DM. Chronic oversupply of energy from food, together with inadequate physical activity, have been recognized as the most relevant factors leading to overweight, abdominal adiposity, insulin resistance, and finally T2DM. Conversely, energy reduced diets almost invariably to facilitate weight loss and reduce abdominal fat mass and insulin resistance. However, sustained weight loss is generally difficult to achieve, and distinct metabolic characteristics in patients with T2DM further compromise success. Therefore, investigating the effects of modulating the macronutrient composition of isoenergetic diets is an interesting concept that may lead to additional important insights. Metabolic effects of various different dietary concepts and strategies have been claimed, but results from randomized controlled studies and particularly from longer-term-controlled interventions in humans are often lacking. However, some of these concepts are supported by recent research, at least in animal models and short-term studies in humans. This paper provides an update of the current literature regarding the role of nutrition in the modulation of insulin resistance, which includes the discussion of weight-loss-independent metabolic effects of commonly used dietary concepts.

  9. Pathophysiological mechanisms of insulin resistance

    NARCIS (Netherlands)

    Brands, M.

    2013-01-01

    In this thesis we studied pathophysiological mechanisms of insulin resistance in different conditions in humans, i.e. in obesity, during lipid infusions, after hypercaloric feeding, and glucocorticoid treatment. We focused on 3 important hypotheses that are suggested to be implicated in the pathophy

  10. Obesity genes and insulin resistance

    Science.gov (United States)

    Belkina, Anna C.; Denis, Gerald V.

    2011-01-01

    Purpose of review The exploding prevalence of insulin resistance and Type 2 diabetes (T2D) linked to obesity has become an alarming public health concern. Worldwide, approximately 171 million people suffer from obesity-induced diabetes and public health authorities expect this situation to deteriorate rapidly. An interesting clinical population of ‘metabolically healthy but obese’ (MHO) cases is relatively protected from T2D and its associated cardiovascular risk. The molecular basis for this protection is not well understood but is likely to involve reduced inflammatory responses. The inflammatory cells and pathways that respond to overnutrition are the primary subject matter for this review. Recent findings The chance discovery of a genetic mutation in the Brd2 gene, which is located in the class II major histocompatibility complex and makes mice enormously fat but protects them from diabetes, offers revolutionary new insights into the cellular mechanisms that link obesity to insulin resistance and T2D. These Brd2-hypomorphic mice have reduced inflammation in fat that is normally associated with insulin resistance, and resemble MHO patients, suggesting novel therapeutic pathways for obese patients at risk for T2D. Summary Deeper understanding of the functional links between genes that control inflammatory responses to diet-induced obesity is crucial to the development of therapies for obese, insulin-resistant patients. PMID:20585247

  11. Pathophysiological mechanisms of insulin resistance

    NARCIS (Netherlands)

    Brands, M.

    2013-01-01

    In this thesis we studied pathophysiological mechanisms of insulin resistance in different conditions in humans, i.e. in obesity, during lipid infusions, after hypercaloric feeding, and glucocorticoid treatment. We focused on 3 important hypotheses that are suggested to be implicated in the

  12. Insulin resistance and cardiovascular disease.

    Science.gov (United States)

    Egan, B M; Greene, E L; Goodfriend, T L

    2001-06-01

    Cardiovascular risk factors cluster in obese individuals. Insulin resistance emerges as a common pathogenetic denominator underlying the risk factor cluster. Defects in nonesterified fatty acids metabolism have been implicated in the abnormal lipid and glucose metabolism which characterize the cluster. Other evidence also leads to the adipocyte as an important contributor to the risk factor cluster and cardiovascular complications through effects not only on fatty acids but also on leptin, plasminogen activator inhibitor-1, and angiotensinogen, to name a few. Fatty acids are elevated among abdominally obese individuals, are more resistant to suppression by insulin, and may contribute to hypertension. Fatty acids may affect blood pressure by inhibiting endothelial nitric oxide synthase activity and impairing endothelium-dependent vasodilation. Fatty acids increase alpha1-adrenoceptor-mediated vascular reactivity and enhance the proliferation and migration of cultured vascular smooth-muscle cells. Several effects of fatty acids are mediated through oxidative stress. Fatty acids can also interact with other facets of cluster, including increased angiotensin II, to accentuate oxidative stress. Oxidative stress, in turn, is implicated in the pathogenesis of insulin resistance, hypertension, vascular remodeling, and vascular complications. A clearer delineation of the key reactive oxygen signaling pathways and the impact of various interventions on these pathways could facilitate a rationale approach to antioxidant therapy and improved outcomes among the rapidly growing number of high-risk, insulin-resistant, obese individuals.

  13. Binge Drinking Induces Whole-Body Insulin Resistance by Impairing Hypothalamic Insulin Action

    Science.gov (United States)

    Lindtner, Claudia; Scherer, Thomas; Zielinski, Elizabeth; Filatova, Nika; Fasshauer, Martin; Tonks, Nicholas K.; Puchowicz, Michelle; Buettner, Christoph

    2013-01-01

    Individuals with a history of binge drinking have an increased risk of developing the metabolic syndrome and type 2 diabetes. Whether binge drinking impairs glucose homeostasis and insulin action is unknown. To test this, we treated Sprague-Dawley rats daily with alcohol (3 g/kg) for three consecutive days to simulate human binge drinking and found that these rats developed and exhibited insulin resistance even after blood alcohol concentrations had become undetectable. The animals were resistant to insulin for up to 54 hours after the last dose of ethanol, chiefly a result of impaired hepatic and adipose tissue insulin action. Because insulin regulates hepatic glucose production and white adipose tissue lipolysis, in part through signaling in the central nervous system, we tested whether binge drinking impaired brain control of nutrient partitioning. Rats that had consumed alcohol exhibited impaired hypothalamic insulin action, defined as the ability of insulin infused into the mediobasal hypothalamus to suppress hepatic glucose production and white adipose tissue lipolysis. Insulin signaling in the hypothalamus, as assessed by insulin receptor and AKT phosphorylation, decreased after binge drinking. Quantitative polymerase chain reaction showed increased hypothalamic inflammation and expression of protein tyrosine phosphatase 1B (PTP1B), a negative regulator of insulin signaling. Intracerebroventricular infusion of CPT-157633, a small-molecule inhibitor of PTP1B, prevented binge drinking–induced glucose intolerance. These results show that, in rats, binge drinking induces systemic insulin resistance by impairing hypothalamic insulin action and that this effect can be prevented by inhibition of brain PTP1B. PMID:23363978

  14. Insulin resistance: β-arrestin development

    Institute of Scientific and Technical Information of China (English)

    Joseph T Rodgers; Pere Puigserver

    2009-01-01

    @@ Insulin resistance is simply the in-ability of insulin to elicit a physiologic response. While insulin resistance is most commonly associated with the pathogenesis of metabolic disorders such as type II diabetes and obesity, it is also a predisposing factor to a number of other diseases such as cancer and car-diovascular disease . There are just as many theories as to the cause of insulin resistance as there are insulin signal-ing molecules and it is very unclear as to which are the actual molecular mechanisms of insulin resistance in diseased states.

  15. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats.

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    Full Text Available Berberine, a major pharmacological component of the Chinese herb Coptis chinensis, which was originally used to treat bacterial diarrhea, has recently been demonstrated to be clinically effective in alleviating type 2 diabetes. In this study, we revealed that berberine effectively prevented the development of obesity and insulin resistance in high-fat diet (HFD-fed rats, which showed decreased food intake. Increases in the levels of serum lipopolysaccharide-binding protein, monocyte chemoattractant protein-1, and leptin and decrease in the serum level of adiponectin corrected for body fat in HFD-fed rats were also significantly retarded by the co-administration of berberine at 100 mg/kg body weight. Bar-coded pyrosequencing of the V3 region of 16S rRNA genes revealed a significant reduction in the gut microbiota diversity of berberine-treated rats. UniFrac principal coordinates analysis revealed a marked shift of the gut microbiota structure in berberine-treated rats away from that of the controls. Redundancy analysis identified 268 berberine-responding operational taxonomic units (OTUs, most of which were essentially eliminated, whereas a few putative short-chain fatty acid (SCFA-producing bacteria, including Blautia and Allobaculum, were selectively enriched, along with elevations of fecal SCFA concentrations. Partial least square regression models based on these 268 OTUs were established (Q(2>0.6 for predicting the adiposity index, body weight, leptin and adiponectin corrected for body fat, indicating that these discrete phylotypes might have a close association with the host metabolic phenotypes. Taken together, our findings suggest that the prevention of obesity and insulin resistance by berberine in HFD-fed rats is at least partially mediated by structural modulation of the gut microbiota, which may help to alleviate inflammation by reducing the exogenous antigen load in the host and elevating SCFA levels in the intestine.

  16. Effects of exenatide therapy on insulin resistance in the skeletal muscles of high-fat diet and low-dose streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Wu, Hui; Sui, Chunhua; Xia, Fangzhen; Zhai, Hualing; Zhang, Huixin; Xu, Hui; Weng, Pan; Lu, Yingli

    2016-01-01

    The glucagon-like peptide (GLP)-1 agonist exenatide shows the same multiple effects on glucose homeostasis as native GLP-1, which can reduce blood glucose levels in individuals with type-2 diabetes mellitus (T2DM). However, its underlying action mechanism on glucose metabolism in the skeletal muscle of T2DM cases is unknown. We investigated the effects and action mechanisms of exenatide on insulin resistance (IR) in the skeletal muscle of high-fat diet and low-dose streptozotocin-induced T2DM rats. Four groups of Sprague-Dawley rats were studied: non-T2DM (control, C); non-T2DM + exenatide (C + E); T2DM (D); and T2DM + exenatide (D + E). After eight weeks, isotope-tracer methodology was applied to measure the total rate of appearance (Ra) of glucose and glucose infusion rate (GIR) using a hyperinsulinemic-euglycemic clamp with 3-(3)H-glucose infusion. Glucose uptake in gastrocnemius muscles was determined by measuring 2-deoxy-D-(14)C-glucose radioactivity. Simultaneously, ultrastructural changes in the cells of gastrocnemius muscles were studied. In the D + E group, body weight and levels of fasting plasma glucose, triglyceride, total cholesterol, low-density lipoprotein and insulin were decreased significantly (p decreased (p muscle (0.24 ± 0.02 versus 0.17 ± 0.02 μmol/g/min) were increased markedly (p muscle of T2DM rats. These data suggest that exenatide can significantly improve insulin sensitivity in skeletal muscle by increasing glucose uptake in T2DM rats.

  17. Tissue kallikrein reverses insulin resistance and attenuates nephropathy in diabetic rats by activation of phosphatidylinositol 3-kinase/protein kinase B and adenosine 5'-monophosphate-activated protein kinase signaling pathways.

    Science.gov (United States)

    Yuan, Gang; Deng, Juanjuan; Wang, Tao; Zhao, Chunxia; Xu, Xizheng; Wang, Peihua; Voltz, James W; Edin, Matthew L; Xiao, Xiao; Chao, Lee; Chao, Julie; Zhang, Xin A; Zeldin, Darryl C; Wang, Dao Wen

    2007-05-01

    We previously reported that iv delivery of the human tissue kallikrein (HK) gene reduced blood pressure and plasma insulin levels in fructose-induced hypertensive rats with insulin resistance. In the current study, we evaluated the potential of a recombinant adeno-associated viral vector expressing the HK cDNA (rAAV-HK) as a sole, long-term therapy to correct insulin resistance and prevent renal damage in streptozotocin-induced type-2 diabetic rats. Administration of streptozotocin in conjunction with a high-fat diet induced systemic hypertension, diabetes, and renal damage in rats. Delivery of rAAV-HK resulted in a long-term reduction in blood pressure, and fasting plasma insulin was significantly lower in the rAAV-HK group than in the control group. The expression of phosphatidylinositol 3-kinase p110 catalytic subunit and the levels of phosphorylation at residue Thr-308 of Akt, insulin receptor B, and AMP-activated protein kinases were significantly decreased in organs from diabetic animals. These changes were significantly attenuated after rAAV-mediated HK gene therapy. Moreover, rAAV-HK significantly decreased urinary microalbumin excretion, improved creatinine clearance, and increased urinary osmolarity. HK gene therapy also attenuated diabetic renal damage as assessed by histology. Together, these findings demonstrate that rAAV-HK delivery can efficiently attenuate hypertension, insulin resistance, and diabetic nephropathy in streptozotocin-induced diabetic rats.

  18. Angiotensin II induces differential insulin action in rat skeletal muscle.

    Science.gov (United States)

    Surapongchai, Juthamard; Prasannarong, Mujalin; Bupha-Intr, Tepmanas; Saengsirisuwan, Vitoon

    2017-03-01

    Angiotensin II (ANGII) is reportedly involved in the development of skeletal muscle insulin resistance. The present investigation evaluated the effects of two ANGII doses on the phenotypic characteristics of insulin resistance syndrome and insulin action and signaling in rat skeletal muscle. Male Sprague-Dawley rats were infused with either saline (SHAM) or ANGII at a commonly used pressor dose (100 ng/kg/min; ANGII-100) or a higher pressor dose (500 ng/kg/min; ANGII-500) via osmotic minipumps for 14 days. We demonstrated that ANGII-100-infused rats exhibited the phenotypic features of non-obese insulin resistance syndrome, including hypertension, impaired glucose tolerance and insulin resistance of glucose uptake in the soleus muscle, whereas ANGII-500-treated rats exhibited diabetes-like symptoms, such as post-prandial hyperglycemia, impaired insulin secretion and hypertriglyceridemia. At the cellular level, insulin-stimulated glucose uptake in the soleus muscle of the ANGII-100 group was 33% lower (P study demonstrates for the first time that chronic infusion with these two pressor doses of ANGII induced differential metabolic responses at both the systemic and skeletal muscle levels.

  19. Additional effect of metformin and celecoxib against lipid dysregulation and adipose tissue inflammation in high-fat fed rats with insulin resistance and fatty liver.

    Science.gov (United States)

    Lu, Chieh-Hua; Hung, Yi-Jen; Hsieh, Po-Shiuan

    2016-10-15

    We investigated the effects of metformin and celecoxib on obesity-induced adipose tissue inflammation, insulin resistance (IR), fatty liver, and high blood pressure in high-fat (HF) fed rats. Male Sprague-Dawley rats were fed with either regular or HF diet for 8 weeks. Rats fed with regular diet were treated with vehicle for further 4 weeks. HF fed rats were divided into 6 groups, namely, vehicle, celecoxib (30mg/kg/day), metformin (300mg/kg/day), metformin (150mg/kg/day), metformin (300mg/kg/day) with celecoxib (30mg/kg/day), and metformin (150mg/kg/day) with celecoxib (15mg/kg/day) for additional 4 weeks. Increased body weight in HF fed rats was significantly reduced by metformin alone and metformin combined with celecoxib. The increases in the HOMA-IR value and the area under the curve of glucose following an oral glucose tolerance test, systolic blood pressure, and adipocyte size were significantly diminished in treated rats, especially rats undergoing combined treatment. Treatments with either celecoxib or in combination with metformin resulted in a reduction in AT macrophage infiltration and decreases in levels of adipose tissue TNF-α, MCP-1, and leptin levels in high-fat (HF) fed rats. Furthermore, the elevated hepatic triglycerides content was significantly decreased in the combined treatment group compared to that of groups of celecoxib or metformin alone. Celecoxib exerts a synergistic beneficial effect with metformin on and obesity-associated metabolic and cardiovascular disorders in high-fat fed rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effect and the probable mechanisms of silibinin in regulating insulin resistance in the liver of rats with non-alcoholic fatty liver

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jiayin; Zhi, Min; Gao, Xiang; Hu, Pinjin; Li, Chujun; Yang, Xiaobo [Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province (China)

    2013-03-15

    Our previous study has shown that reduced insulin resistance (IR) was one of the possible mechanisms for the therapeutic effect of silibinin on non-alcoholic fatty liver disease (NAFLD) in rats. In the present study, we investigated the pathways of silibinin in regulating hepatic glucose production and IR amelioration. Forty-five 4- to 6-week-old male Sprague Dawley rats were divided into a control group, an HFD group (high-fat diet for 6 weeks) and an HFD + silibinin group (high-fat diet + 0.5 mg kg{sup -1}·day{sup -1} silibinin, starting at the beginning of the protocol). Both subcutaneous and visceral fat was measured. Homeostasis model assessment-IR index (HOMA-IR), intraperitoneal glucose tolerance test and insulin tolerance test (ITT) were performed. The expression of adipose triglyceride lipase (ATGL) and of genes associated with hepatic gluconeogenesis was evaluated. Silibinin intervention significantly protected liver function, down-regulated serum fat, and improved IR, as shown by decreased HOMA-IR and increased ITT slope. Silibinin markedly prevented visceral obesity by reducing visceral fat, enhanced lipolysis by up-regulating ATGL expression and inhibited gluconeogenesis by down-regulating associated genes such as Forkhead box O1, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Silibinin was effective in ameliorating IR in NAFLD rats. Reduction of visceral obesity, enhancement of lipolysis and inhibition of gluconeogenesis might be the underlying mechanisms.

  1. Effect and the probable mechanisms of silibinin in regulating insulin resistance in the liver of rats with non-alcoholic fatty liver

    Directory of Open Access Journals (Sweden)

    Jiayin Yao

    2013-03-01

    Full Text Available Our previous study has shown that reduced insulin resistance (IR was one of the possible mechanisms for the therapeutic effect of silibinin on non-alcoholic fatty liver disease (NAFLD in rats. In the present study, we investigated the pathways of silibinin in regulating hepatic glucose production and IR amelioration. Forty-five 4- to 6-week-old male Sprague Dawley rats were divided into a control group, an HFD group (high-fat diet for 6 weeks and an HFD + silibinin group (high-fat diet + 0.5 mg kg-1·day-1 silibinin, starting at the beginning of the protocol. Both subcutaneous and visceral fat was measured. Homeostasis model assessment-IR index (HOMA-IR, intraperitoneal glucose tolerance test and insulin tolerance test (ITT were performed. The expression of adipose triglyceride lipase (ATGL and of genes associated with hepatic gluconeogenesis was evaluated. Silibinin intervention significantly protected liver function, down-regulated serum fat, and improved IR, as shown by decreased HOMA-IR and increased ITT slope. Silibinin markedly prevented visceral obesity by reducing visceral fat, enhanced lipolysis by up-regulating ATGL expression and inhibited gluconeogenesis by down-regulating associated genes such as Forkhead box O1, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Silibinin was effective in ameliorating IR in NAFLD rats. Reduction of visceral obesity, enhancement of lipolysis and inhibition of gluconeogenesis might be the underlying mechanisms.

  2. Effect and the probable mechanisms of silibinin in regulating insulin resistance in the liver of rats with non-alcoholic fatty liver

    Directory of Open Access Journals (Sweden)

    Jiayin Yao

    Full Text Available Our previous study has shown that reduced insulin resistance (IR was one of the possible mechanisms for the therapeutic effect of silibinin on non-alcoholic fatty liver disease (NAFLD in rats. In the present study, we investigated the pathways of silibinin in regulating hepatic glucose production and IR amelioration. Forty-five 4- to 6-week-old male Sprague Dawley rats were divided into a control group, an HFD group (high-fat diet for 6 weeks and an HFD + silibinin group (high-fat diet + 0.5 mg kg-1·day-1 silibinin, starting at the beginning of the protocol. Both subcutaneous and visceral fat was measured. Homeostasis model assessment-IR index (HOMA-IR, intraperitoneal glucose tolerance test and insulin tolerance test (ITT were performed. The expression of adipose triglyceride lipase (ATGL and of genes associated with hepatic gluconeogenesis was evaluated. Silibinin intervention significantly protected liver function, down-regulated serum fat, and improved IR, as shown by decreased HOMA-IR and increased ITT slope. Silibinin markedly prevented visceral obesity by reducing visceral fat, enhanced lipolysis by up-regulating ATGL expression and inhibited gluconeogenesis by down-regulating associated genes such as Forkhead box O1, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Silibinin was effective in ameliorating IR in NAFLD rats. Reduction of visceral obesity, enhancement of lipolysis and inhibition of gluconeogenesis might be the underlying mechanisms.

  3. PI3K-GLUT4 Signal Pathway Associated with Effects of EX-B3 Electroacupuncture on Hyperglycemia and Insulin Resistance of T2DM Rats

    Directory of Open Access Journals (Sweden)

    Bing-Yan Cao

    2016-01-01

    Full Text Available Objectives. To explore electroacupuncture’s (EA’s effects on fasting blood glucose (FBG and insulin resistance of type 2 diabetic mellitus (T2DM model rats and give a possible explanation for the effects. Method. It takes high fat diet and intraperitoneal injection of streptozotocin (STZ, 30 mg/kg for model preparation. Model rats were randomly divided into T2DM Model group, EA weiwanxiashu (EX-B3 group, and sham EA group (n=12/group. EA (2 Hz continuous wave, 2 mA, 20 min/day, 6 days/week, 4 weeks was applied as intervention. FBG, area under curve (AUC of oral glucose tolerance test (OGTT, insulin resistance index (HOMA-IR, pancreatic B cell function index (HOMA-B, skeletal muscle phosphorylated phosphatidylinositol-3-kinase (PI3K, glucose transporter 4 (GLUT4, and membrane GLUT4 protein expression were measured. Results. EA weiwanxiashu (EX-B3 can greatly upregulate model rat’s significantly reduced skeletal muscle PI3K (Y607 and membrane GLUT4 protein expression (P<0.01, effectively reducing model rats’ FBG and AUC of OGTT (P<0.01. The effects are far superior to sham EA group. Conclusion. EA weiwanxiashu (EX-B3 can upregulate skeletal muscle phosphorylated PI3K protein expression, to stimulate membrane translocation of GLUT4 and thereby increase skeletal muscle glucose intake to treat T2DM.

  4. Swimming Exercise Alleviated Insulin Resistance by Regulating Tripartite Motif Family Protein 72 Expression and AKT Signal Pathway in Sprague-Dawley Rats Fed with High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Jie Qi

    2016-01-01

    Full Text Available We aimed to investigate whether swimming exercise could improve insulin resistance (IR by regulating tripartite motif family protein 72 (TRIM72 expression and AKT signal pathway in rats fed with high-fat diet. Five-week-old rats were classified into 3 groups: standard diet as control (CON, high-fat diet (HFD, and HFD plus swimming exercise (Ex-HFD. After 8 weeks, glucose infusion rate (GIR, markers of oxidative stress, mRNA and protein expression of TRIM72, protein of IRS, p-AKTSer473, and AKT were determined in quadriceps muscles. Compared with HFD, the GIR, muscle SOD, and GSH-Px were significantly increased (p<0.05, resp., whereas muscle MDA and 8-OHdG levels were significantly decreased (p<0.05 and p<0.01 in Ex-HFD. Expression levels of TRIM72 mRNA and protein in muscles were significantly reduced (p<0.05 and p<0.01, whereas protein expression levels of IRS-1, p-AKTSer473, and AKT were significantly increased in Ex-HFD compared with HFD (p<0.01, p<0.01, and p<0.05. These results suggest that an 8-week swimming exercise improves HFD-induced insulin resistance maybe through a reduction of TRIM72 in skeletal muscle and enhancement of AKT signal transduction.

  5. Dietary soy protein improves adipose tissue dysfunction by modulating parameters related with oxidative stress in dyslipidemic insulin-resistant rats.

    Science.gov (United States)

    Illesca, Paola G; Álvarez, Silvina M; Selenscig, Dante A; Ferreira, María Del R; Giménez, María S; Lombardo, Yolanda B; D'Alessandro, María E

    2017-04-01

    The present study investigates the benefits of the dietary intake of soy protein on adipose tissue dysfunction in a rat model that mimics several aspects of the human metabolic syndrome. Wistar rats were fed a sucrose-rich diet (SRD) for 4 months. After that, half of the animals continued with SRD until month 8 while in the other half, casein protein was replaced by isolated soy protein for 4 months (SRD-S). A reference group consumed a control diet all the time. In adipose tissue we determined: i) the activities of antioxidant enzymes, gene expression of Mn-superoxide dismutase (SOD) and glutathione peroxidase (GPx), and glutathione redox state ii) the activity of xanthine oxidase (XO), ROS levels and the gene expression of NAD(P)H oxidase iii) the expression of the nuclear factor erythroid-2 related factor-2 (Nrf2). Besides, adiposity visceral index, insulin sensitivity, and tumor necrosis factor-α (TNF-α) in plasma were determined. Compared with the SRD-fed rats, the animals fed a SRD-S showed: activity normalization of SOD and glutathione reductase, improvement of mRNA SOD and normalization of mRNA GPx without changes in the expression of the Nrf2, and improvement of glutathione redox state. These results were accompanied by a normalization of XO activity and improvement of both the ROS production as well as TNF-α levels in plasma. Besides, adipocyte size distribution, adiposity visceral index and insulin sensitivity improved. The results suggest that soy protein can be a complementary nutrient for treating some signs of the metabolic syndrome. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Obesity, inflammation, and insulin resistance

    OpenAIRE

    Luana Mota Martins; Ana Raquel Soares de Oliveira; Kyria Jayanne Clímaco Cruz; Francisco Leonardo Torres-Leal; Dilina do Nascimento Marreiro

    2014-01-01

    White adipose tissue (WAT) is considered an endocrine organ. When present in excess, WAT can influence metabolism via biologically active molecules. Following unregulated production of such molecules, adipose tissue dysfunction results, contributing to complications associated with obesity. Previous studies have implicated pro- and anti-inflammatory substances in the regulation of inflammatory response and in the development of insulin resistance. In obese individuals, pro-inflammatory molecu...

  7. Maternal periodontal disease in rats decreases insulin sensitivity and insulin signaling in adult offspring.

    Science.gov (United States)

    Shirakashi, Daisy J; Leal, Rosana P; Colombo, Natalia H; Chiba, Fernando Y; Garbin, Cléa A S; Jardim, Elerson G; Antoniali, Cristina; Sumida, Doris H

    2013-03-01

    Periodontal disease during pregnancy has been recognized as one of the causes of preterm and low-birth-weight (PLBW) babies. Several studies have demonstrated that PLBW babies are prone to developing insulin resistance as adults. Although there is controversy over the association between periodontal disease and PLBW, the phenomenon known as programming can translate any stimulus or aggression experienced during intrauterine growth into physiologic and metabolic alterations in adulthood. The purpose of the present study is to investigate whether the offspring of rats with periodontal disease develop insulin resistance in adulthood. Ten female Wistar rats were divided into periodontal disease (PED) and control (CN) groups. All rats were mated at 7 days after induction of periodontal disease. Male offspring were divided into two groups: 1) periodontal disease offspring (PEDO; n = 24); and 2) control offspring (CNO; n = 24). Offspring body weight was measured from birth until 75 days. When the offspring reached 75 days old, the following parameters were measured: 1) plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and tumor necrosis factor-α (TNF-α); 2) insulin sensitivity (IS); and 3) insulin signal transduction (IST) in insulin-sensitive tissues. Low birth weight was not detected in the PEDO group. However, plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and TNF-α were increased and IS and IST were reduced (P PEDO group compared with the CNO group. Maternal periodontal disease may induce insulin resistance and reduce IST in adult offspring, but such alterations are not attributable to low birth weight.

  8. The retardation of vasculopathy induced by attenuation of insulin resistance in the corpulent JCR:LA-cp rat is reflected by decreased vascular smooth muscle cell proliferation in vivo.

    Science.gov (United States)

    Absher, P M; Schneider, D J; Baldor, L C; Russell, J C; Sobel, B E

    1999-04-01

    Proliferation in vivo of vascular smooth muscle cells occurs early in the course of atherosclerosis. Cultured smooth muscle cells (SMCs) explanted from aortas of JCR:LA-cp corpulent rats known to exhibit metabolic derangements and insulin resistance typical of type II diabetes early in life and to develop atherosclerosis later in life exhibit increased proliferation compared with SMCs from lean, normal rats. Vascular smooth muscle proliferation in vitro was found to be positively and significantly correlated with plasma insulin levels in vivo. Proliferation of aortic SMCs from JCR:LA-cp cp/cp corpulent rats cultured in vitro exhibited increased proliferation in the presence of exogenous insulin. Exercise and diet, selected as interventions designed to ameliorate the insulin resistance and hyperinsulinemia in the JCR:LA-cp cp/cp rat, effectively lowered blood insulin levels and decreased subsequent proliferation in vitro of aortic SMCs explanted from these animals. The results indicate that assessment of proliferation of vascular smooth muscle cells ex vivo may provide insight into the presence and severity of atherogenicity in association with insulin resistance in diverse species under diverse circumstances. Accordingly, with appropriate controls, it may be possible to use SMC proliferation ex vivo as a marker of the extent to which an intervention such as administration of insulin sensitizers to experimental animals and human subjects results in a change in behavior of vessel wall elements potentially indicative of amelioration of atherogenicity and detectable as judged from reduced proliferative rates of the cells ex vivo when they have been harvested from vessels exposed to a milieu in which insulin resistance has been attenuated.

  9. Polyphenolic enriched extract of Cassia glauca Lamk, improves streptozotocin-induced type-1 diabetes linked with partial insulin resistance in rats.

    Science.gov (United States)

    Veerapur, V P; Pratap, V; Thippeswamy, B S; Marietta, P; Bansal, Punit; Kulkarni, P V; Kulkarni, V H

    2017-02-23

    Traditionally Cassia glauca (CG) has been used to treat diabetes. The study was undertaken to evaluate anti-diabetic and antioxidant activity of polyphenolic enriched extract of CG in standardized streptozotocin (STZ)-induced diabetic rats. The effect of ethanol (CGE) and water (CGW) extracts of CG (200 and 400mg/kg) treatment were evaluated in STZ (50mg/kg, iv) induced diabetic rats. On 10(th) day, oral glucose tolerance test and degree of insulin resistance was calculated. On 13(th) day, insulin tolerance test was performed to know the peripheral utilization of glucose. On 15(th) day, blood glucose, lipid profiles and endogenous antioxidant levels were estimated. In addition, the effects on oral glucose/sucrose tolerance test in normal rats. Further, HPLC fingerprinting profile of CGE and simultaneous quantification of biomarkers were carried out. Supplementation with CGE and CGW significantly reduced STZ-induced deleterious effects and improved glucose tolerance, and insulin tolerance. In addition, supplementation also decreased oxidative stress by improving endogenous antioxidant levels. Furthermore, administration significantly improves sucrose tolerance suggesting that extract possess inhibition of α-glucosidase enzyme. Further, HPLC studies revealed that CGE contains three bioactive polyphenolic compounds viz., rutin (0.10±0.01mg/g), luteolin-7-glucoside (0.06±0.01mg/g) and isorhoifolin (0.7±0.05mg/g). Observed beneficial outcome of CG might be attributed to the presence of polyphenolic compounds and mediated by interacting with multiple targets of diabetes and oxidative stress. Taken together, this study provided the scientific evidence for the traditional use of CG. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  10. Effects of D-Pinitol on Insulin Resistance through the PI3K/Akt Signaling Pathway in Type 2 Diabetes Mellitus Rats.

    Science.gov (United States)

    Gao, Yunfeng; Zhang, Mengna; Wu, Tianchen; Xu, Mengying; Cai, Haonan; Zhang, Zesheng

    2015-07-08

    D-pinitol, a compound isolated from Pinaceae and Leguminosae plants, has been reported to possess insulin-like properties. Although the hypoglycemic activity of D-pinitol was recognized in recent years, the molecular mechanism of D-pinitol in the treatment of diabetes mellitus remains unclear. In this investigation, a model of type 2 diabetes mellitus (T2DM) with insulin resistance was established by feeding a high-fat diet (HFD) and injecting streptozocin (STZ) to Sprague-Dawley (SD) rats, targeting the exploration of more details of the mechanism in the therapy of T2DM. D-pinitol was administrated to the diabetic rats as two doses [30, 60 mg/(kg·body weight·day)]. The level of fasting blood glucose (FBG) was decreased 12.63% in the high-dosage group, and the ability of oral glucose tolerance was improved in D-pinitol-treated groups. The biochemical indices revealed that D-pinitol had a positive effect on hypoglycemic activity. Western boltting suggested that D-pinitol could promote the expression of the phosphatidylinositol-3-kinase (PI3K) p85, PI3Kp110, as well as the downstream target protein kinase B/Akt (at Ser473). Besides, D-pinitol inhibited the expression of glycogen synthesis kinase-3β (GSK-3β) protein and regulated the expression of glycogen synthesis (GS) protein and then accelerated the glycogen synthesis. Above all, D-pinitol played a positive role in regulating insulin-mediated glucose uptake in the liver through translocation and activation of the PI3K/Akt signaling pathway in T2DM rats.

  11. Mechanisms of insulin resistance in obesity

    Science.gov (United States)

    Ye, Jianping

    2014-01-01

    Obesity increases the risk for type 2 diabetes through induction of insulin resistance. Treatment of type 2 diabetes has been limited by little translational knowledge of insulin resistance although there have been several well-documented hypotheses for insulin resistance. In those hypotheses, inflammation, mitochondrial dysfunction, hyperinsulinemia and lipotoxicity have been the major concepts and have received a lot of attention. Oxidative stress, endoplasmic reticulum (ER) stress, genetic background, aging, fatty liver, hypoxia and lipodystrophy are active subjects in the study of these concepts. However, none of those concepts or views has led to an effective therapy for type 2 diabetes. The reason is that there has been no consensus for a unifying mechanism of insulin resistance. In this review article, literature is critically analyzed and reinterpreted for a new energy-based concept of insulin resistance, in which insulin resistance is a result of energy surplus in cells. The energy surplus signal is mediated by ATP and sensed by adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Decreasing ATP level by suppression of production or stimulation of utilization is a promising approach in the treatment of insulin resistance. In support, many of existing insulin sensitizing medicines inhibit ATP production in mitochondria. The effective therapies such as weight loss, exercise, and caloric restriction all reduce ATP in insulin sensitive cells. This new concept provides a unifying cellular and molecular mechanism of insulin resistance in obesity, which may apply to insulin resistance in aging and lipodystrophy. PMID:23471659

  12. Mechanisms of insulin resistance in obesity.

    Science.gov (United States)

    Ye, Jianping

    2013-03-01

    Obesity increases the risk for type 2 diabetes through induction of insulin resistance. Treatment of type 2 diabetes has been limited by little translational knowledge of insulin resistance although there have been several well-documented hypotheses for insulin resistance. In those hypotheses, inflammation, mitochondrial dysfunction, hyperinsulinemia and lipotoxicity have been the major concepts and have received a lot of attention. Oxidative stress, endoplasmic reticulum (ER) stress, genetic background, aging, fatty liver, hypoxia and lipodystrophy are active subjects in the study of these concepts. However, none of those concepts or views has led to an effective therapy for type 2 diabetes. The reason is that there has been no consensus for a unifying mechanism of insulin resistance. In this review article, literature is critically analyzed and reinterpreted for a new energy-based concept of insulin resistance, in which insulin resistance is a result of energy surplus in cells. The energy surplus signal is mediated by ATP and sensed by adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Decreasing ATP level by suppression of production or stimulation of utilization is a promising approach in the treatment of insulin resistance. In support, many of existing insulin sensitizing medicines inhibit ATP production in mitochondria. The effective therapies such as weight loss, exercise, and caloric restriction all reduce ATP in insulin sensitive cells. This new concept provides a unifying cellular and molecular mechanism of insulin resistance in obesity, which may apply to insulin resistance in aging and lipodystrophy.

  13. Cis-9, trans-11 and trans-10, cis-12 CLA mixture does not change body composition, induces insulin resistance and increases serum HDL cholesterol level in rats.

    Science.gov (United States)

    de Almeida, Mariana Macedo; de Souza, Yamara Oliveira; Dutra Luquetti, Sheila Cristina Potente; Sabarense, Céphora Maria; do Amaral Corrêa, José Otávio; da Conceição, Ellen Paula Santos; Lisboa, Patrícia Cristina; de Moura, Egberto Gaspar; Andrade Soares, Sara Malaguti; Moura Gualberto, Ana Cristina; Gameiro, Jacy; da Gama, Marco Antônio Sundfeld; Ferraz Lopes, Fernando César; González Garcia, Raúl Marcel

    2015-01-01

    Synthetic supplements of conjugated linoleic acid (CLA) containing 50:50 mixture of cis-9, trans-11 and trans-10, cis-12 CLA isomers have been commercialized in some places for reducing body fat. However the safety of this CLA mixture is controversial and in some countries the CLA usage as food supplement is not authorized. Changes in insulinemic control and serum lipids profile are potential negative effects related to consumption of CLA mixture. The present study aimed to evaluate the effects of a diet containing mixture of cis-9, trans-11 and trans-10, cis-12 CLA on prevention of obesity risk as well as on potential side effects such as insulin resistance and dyslipidemia in Wistar rats. Thirty male Wistar rats were randomly assigned to the following dietary treatments (n=10/group), for 60 days: Normolipidic Control (NC), diet containing 4.0% soybean oil (SO); High Fat-Control (HF-C), diet containing 24.0% SO; High Fat-synthetic CLA (HF-CLA), diet containing 1.5% of an isomeric CLA mixture (Luta-CLA 60) and 22.5% SO. Luta-CLA 60 (BASF) contained nearly 60% of CLA (cis-9, trans-11 and trans-10, cis-12 CLA at 50:50 ratio). The HF-CLA diet contained 0.3% of each CLA isomer. HF-CLA diet had no effect on dietary intake and body composition. HF-CLA-fed rats had lower levels of PPARγ protein in retroperitoneal adipose tissue, hyperinsulinemia compared to HF-C-fed rats, hyperglycemia compared to NC-fed rats while no differences in glycemia were observed between NC and HF-C groups, increased HOMA index and higher levels of serum HDL cholesterol. Thus, feeding rats with a high fat diet containing equal parts of cis-9, trans-11 and trans-10, cis-12 CLA isomers had no effect on body composition and induced insulin resistance. Despite HF-CLA-fed rats had increased serum HDL cholesterol levels, caution should be taken before synthetic supplements containing cis-9, trans-11 and trans-10, cis-12 CLA are recommended as a nutritional strategy for weight management.

  14. Transgenerational inheritance of the insulin-resistant phenotype in embryo-transferred intrauterine growth-restricted adult female rat offspring.

    Science.gov (United States)

    Thamotharan, Manikkavasagar; Garg, Meena; Oak, Shilpa; Rogers, Lisa M; Pan, Gerald; Sangiorgi, Frank; Lee, Paul W N; Devaskar, Sherin U

    2007-05-01

    To determine mechanisms underlying the transgenerational presence of metabolic perturbations in the intrauterine growth-restricted second-generation adult females (F2 IUGR) despite normalizing the in utero metabolic environment, we examined in vivo glucose kinetics and in vitro skeletal muscle postinsulin receptor signaling after embryo transfer of first generation (F1 IUGR) to control maternal environment. Female F2 rats, procreated by F1 pre- and postnatally nutrient- and growth-restricted (IUGR) mothers but embryo transferred to gestate in control mothers, were compared with similarly gestating age- and sex-matched control (CON) F2 progeny. Although there were no differences in birth weight or postnatal growth patterns, the F2 IUGR had increased hepatic weight, fasting hyperglycemia, hyperinsulinemia, and unsuppressed hepatic glucose production, with no change in glucose futile cycling or clearance, compared with F2 CON. These hormonal and metabolic aberrations were associated with increased skeletal muscle total GLUT4 and pAkt concentrations but decreased plasma membrane-associated GLUT4, total pPKCzeta, and PKCzeta enzyme activity, with no change in total SHP2 and PTP1B concentrations in IUGR F2 compared with F2 CON. We conclude that transgenerational presence of aberrant glucose/insulin metabolism and skeletal muscle insulin signaling of the adult F2 IUGR female offspring is independent of the immediate intrauterine environment, supporting nutritionally induced heritable mechanisms contributing to the epidemic of type 2 diabetes mellitus.

  15. Glucose and lipid metabolism in insulin resistance : an experimental study in fat cells

    OpenAIRE

    Burén, Jonas

    2003-01-01

    Type 2 diabetes is usually caused by a combination of pancreatic β-cell failure and insulin resistance in target tissues like liver, muscle and fat. Insulin resistance is characterised by an impaired effect of insulin to reduce hepatic glucose production and to promote glucose uptake in peripheral tissues. The focus of this study was to further elucidate cellular mechanisms for insulin resistance that may be of relevance for type 2 diabetes in humans. We used rat and human adipocytes as an es...

  16. [The effect of N-stearoylethanolamine on the activity of antioxidant enzymes, content of lipid peroxidation products and nitric oxide in the blood plasma and liver of rats with induced insulin-resistance].

    Science.gov (United States)

    Onopchenko, O V; Kosiakova, H V; Horid'ko, T M; Berdyshev, A H; Mehed', O F; Hula, N M

    2013-01-01

    The influence of N-stearoylethanolamine (NSE) on the content of lipid peroxidation products, activity of antioxidant enzymes and the nitric oxide level in the liver and blood plasma of rats with insulin-resistance (IR) state was investigated. IR state was induced in rats by prolonged high-fat diet (58% of energy derived from fat) for 6 months combined with one injection of streptozotocin (15 mg/kg of body weight). The existence of IR state was estimated by results of glucoso-tolerance test and blood plasma insulin content. The level of lipid peroxides products was shown to be higher in the liver of insulin resistant animals as a result of reduced superoxide dismutase and catalase activity, however, glutathione peroxidase activity was increased. The increase of nitric-oxide content in the liver and blood plasma of high-fat diet rats compared with healthy control animals was also observed. The administration of the NSE suspension per os in a dose of 50 mg/kg during 2 weeks to the rats with induced insulin-resistance state contributed to the increase of superoxide dismutase, catalase and glutathione peroxidase activity. In consequence of antioxidant enzymes activation the intensity of POL process was decreased. The NSE administration caused normalization of nitric oxide level, restoring pro-/antioxidant balance in the liver and blood plasma of rats with IR state. In conclusion, the NSE administration to the rats with insulin-resistance state restored pro-/antioxidant balance and enhanced the content of nitric oxide, therefore, improving insulin sensitivity.

  17. Maternal and postweaning folic acid supplementation interact to influence body weight, insulin resistance, and food intake regulatory gene expression in rat offspring in a sex-specific manner.

    Science.gov (United States)

    Huot, Pedro S P; Ly, Anna; Szeto, Ignatius M Y; Reza-López, Sandra A; Cho, Daniel; Kim, Young-In; Anderson, G Harvey

    2016-04-01

    Maternal intake of multivitamins or folic acid above the basal dietary requirement alters the growth and metabolic trajectory of rat offspring. We hypothesized that a modest increase in the folic acid content of maternal diets would alter the offspring's metabolic phenotype, and that these effects could be corrected by matching the folic acid content of the offspring's diet with that of the maternal diet. Female Sprague-Dawley rats were placed on a control or a 2.5× folic acid-supplemented diet prior to mating and during pregnancy and lactation. At weaning, pups from each maternal diet group were randomized to the control or to the 2.5× folic acid-supplemented diet for 25 weeks. Male pups from dams fed the folic acid-supplemented diet were 3.7% heavier than those from control-fed dams and had lower mRNA expression for leptin receptor Obrb isoform (Lepr) (11%) and Agouti-related protein (Agrp) (14%). In contrast, female pups from folic acid-supplemented dams were 5% lighter than those from control-fed dams and had lower proopiomelanocortin (Pomc) (42%), Lepr (32%), and Agrp (13%), but higher neuropeptide Y (Npy) (18%) mRNA expression. Folic acid supplementation ameliorated the alterations induced by maternal folic acid supplementation in male pups and led to the lowest insulin resistance, but the effects were smaller in female pups and led to the highest insulin resistance. In conclusion, maternal folic acid supplementation at 2.5× the control level was associated with alterations in body weight and hypothalamic gene expression in rat offspring in a sex-specific manner, and some of these effects were attenuated by postweaning folic acid supplementation.

  18. Pathogenesis of Insulin Resistance in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Muhammad A. Abdul-Ghani

    2010-01-01

    Full Text Available Insulin resistance in skeletal muscle is manifested by decreased insulin-stimulated glucose uptake and results from impaired insulin signaling and multiple post-receptor intracellular defects including impaired glucose transport, glucose phosphorylation, and reduced glucose oxidation and glycogen synthesis. Insulin resistance is a core defect in type 2 diabetes, it is also associated with obesity and the metabolic syndrome. Dysregulation of fatty acid metabolism plays a pivotal role in the pathogenesis of insulin resistance in skeletal muscle. Recent studies have reported a mitochondrial defect in oxidative phosphorylation in skeletal muscle in variety of insulin resistant states. In this review, we summarize the cellular and molecular defects that contribute to the development of insulin resistance in skeletal muscle.

  19. Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse

    Science.gov (United States)

    Ning, Jie; Hong, Tao; Yang, Xuefeng; Mei, Shuang; Liu, Zhenqi; Liu, Hui-Yu

    2011-01-01

    The primary player that induces insulin resistance has not been established. Here, we studied whether or not fat can cause insulin resistance in the presence of insulin deficiency. Our results showed that high-fat diet (HFD) induced insulin resistance in C57BL/6 (B6) mice. The HFD-induced insulin resistance was prevented largely by the streptozotocin (STZ)-induced moderate insulin deficiency. The STZ-induced insulin deficiency prevented the HFD-induced ectopic fat accumulation and oxidative stress in liver and gastrocnemius. The STZ-induced insulin deficiency prevented the HFD- or insulin-induced increase in hepatic expression of long-chain acyl-CoA synthetases (ACSL), which are necessary for fatty acid activation. HFD increased mitochondrial contents of long-chain acyl-CoAs, whereas it decreased mitochondrial ADP/ATP ratio, and these HFD-induced changes were prevented by the STZ-induced insulin deficiency. In cultured hepatocytes, we observed that expressions of ACSL1 and -5 were stimulated by insulin signaling. Results in cultured cells also showed that blunting insulin signaling by the PI3K inhibitor LY-294002 prevented fat accumulation, oxidative stress, and insulin resistance induced by the prolonged exposure to either insulin or oleate plus sera that normally contain insulin. Finally, knockdown of the insulin receptor prevented the oxidative stress and insulin resistance induced by the prolonged exposure to insulin or oleate plus sera. Together, our results show that insulin and insulin signaling are required for fat induction of insulin resistance in mice and cultured mouse hepatocytes. PMID:21586696

  20. Insulin Resistance and Skin Diseases

    Directory of Open Access Journals (Sweden)

    Maddalena Napolitano

    2015-01-01

    Full Text Available In medical practice, almost every clinician may encounter patients with skin disease. However, it is not always easy for physicians of all specialties to face the daily task of determining the nature and clinical implication of dermatologic manifestations. Are they confined to the skin, representing a pure dermatologic event? Or are they also markers of internal conditions relating to the patient’s overall health? In this review, we will discuss the principal cutaneous conditions which have been linked to metabolic alterations. Particularly, since insulin has an important role in homeostasis and physiology of the skin, we will focus on the relationships between insulin resistance (IR and skin diseases, analyzing strongly IR-associated conditions such as acanthosis nigricans, acne, and psoriasis, without neglecting emerging and potential scenarios as the ones represented by hidradenitis suppurativa, androgenetic alopecia, and hirsutism.

  1. Associations between depressive symptoms and insulin resistance

    DEFF Research Database (Denmark)

    Adriaanse, M C; Dekker, J M; Nijpels, G

    2006-01-01

    AIMS/HYPOTHESIS: The association between depression and insulin resistance has been investigated in only a few studies, with contradictory results reported. The aim of this study was to determine whether the association between symptoms of depression and insulin resistance varies across glucose...... established type 2 diabetes mellitus. Main outcome measures were insulin resistance defined by the homeostasis model assessment for insulin resistance (HOMA-IR) and symptoms of depression using the Centre for Epidemiologic Studies Depression Scale (CES-D). RESULTS: In the total sample, we found a weak.......942). The association between depressive symptoms and insulin resistance was similar for men and women. CONCLUSIONS/INTERPRETATION: We found only weak associations between depressive symptoms and insulin resistance, which did not differ among different glucose metabolism subgroups or between men and women....

  2. Insulin resistance in women with hirsutism

    OpenAIRE

    Cebeci, Filiz; Onsun, Nahide; Mert, Meral

    2012-01-01

    Introduction There are still not enough data showing whether patients with idiopathic hirsutism (IH) also have insulin resistance. The association between polycystic ovary syndrome (PCOS) and insulin resistance is well documented in the literature, but the Rotterdam Consensus has concluded that principally obese women with PCOS should be screened for the metabolic syndrome. We intended to investigate the presence/absence of insulin resistance in non-obese women with hirsutism. Material and me...

  3. Insulin Resistance: From Theory To Practice

    Directory of Open Access Journals (Sweden)

    Srinivas Kakkilaya Bevinje

    2006-07-01

    Full Text Available Insulin resistance is at the core of the well recognised metabolic syndrome and possibly many other ailments commonly seen in the modern society. While the quantification of insulin resistance remains a difficult task, the problems associated with it are increasing in epidemic proportions. Need of the hour therefore is to develop concise dietary and pharmacological guidelines for for prevention and management of insulin resistance

  4. Ingestion of carbohydrate-rich supplements during gestation programs insulin and leptin resistance but not body weight gain in adult rat offspring

    Directory of Open Access Journals (Sweden)

    Bernard eBeck

    2012-06-01

    Full Text Available Prenatal nutritional conditions can predispose to development of obesity and metabolic syndrome in adulthood. Gestation with its important hormonal status modification is a period of changes in usual feeding habits with pulses or avoidance for certain categories of food. We tried to mimic in an animal model some changes in food consumption patterns observed in pregnant women. For this purpose, Long-Evans female rats were fed during the dark period, their usual pre-gestational food quantity, and were allowed to complete their intake with either a control (Cr, high-fat (HF, or high-carbohydrate (HC diet available ad libitum during the light period. Dams fed a control diet ad libitum (Ca served as controls. Body weight and composition, food intake, and metabolic hormones (insulin, leptin were recorded in male offspring until 20 weeks after birth. Cr and HC females ate less than Ca females ( -16%; p<0.001 and their offspring presented a weight deficit from birth until 6 (HC group and 10 (Cr group weeks of age (p<0.05 or less. Plasma leptin corresponded to low body weight in Cr offspring, but was increased in HC offspring that in addition, had increased plasma insulin, blood glucose and subcutaneous adipose tissue mass. HF dams ate more than Ca dams (+13%;p<0.001, but plasma leptin and insulin were similar in their offspring. Hypothalamic Ob-Rb expression was increased in Cr, HC and HF offspring (+33-100% vs. Ca; p<0.05 or less. HC supplement ingestion during gestation leads therefore to insulin and leptin resistance in adult offspring independently of lower birth weight. These hormonal changes characterize obesity-prone animals. We therefore suggest to be heedful of the carbohydrate content in the diet during the last weeks (or months preceding delivery to limit development of later metabolic disorders in offspring.

  5. Novel CoQ10 antidiabetic mechanisms underlie its positive effect: modulation of insulin and adiponectine receptors, Tyrosine kinase, PI3K, glucose transporters, sRAGE and visfatin in insulin resistant/diabetic rats.

    Directory of Open Access Journals (Sweden)

    Mohamed M Amin

    Full Text Available As a nutritional supplement, coenzyme Q10 (CoQ10 was tested previously in several models of diabetes and/or insulin resistance (IR; however, its exact mechanisms have not been profoundly explicated. Hence, the objective of this work is to verify some of the possible mechanisms that underlie its therapeutic efficacy. Moreover, the study aimed to assess the potential modulatory effect of CoQ10 on the antidiabetic action of glimebiride. An insulin resistance/type 2 diabetic model was adopted, in which rats were fed high fat/high fructose diet (HFFD for 6 weeks followed by a single sub-diabetogenic dose of streptozotocin (35 mg/kg, i.p.. At the end of the 7(th week animals were treated with CoQ10 (20 mg/kg, p.o and/or glimebiride (0.5 mg/kg, p.o for 2 weeks. CoQ10 alone opposed the HFFD effect and increased the hepatic/muscular content/activity of tyrosine kinase (TK, phosphatidylinositol kinase (PI3K, and adiponectin receptors. Conversely, it decreased the content/activity of insulin receptor isoforms, myeloperoxidase and glucose transporters (GLUT4; 2. Besides, it lowered significantly the serum levels of glucose, insulin, fructosamine and HOMA index, improved the serum lipid panel and elevated the levels of glutathione, sRAGE and adiponectin. On the other hand, CoQ10 lowered the serum levels of malondialdehyde, visfatin, ALT and AST. Surprisingly, CoQ10 effect surpassed that of glimepiride in almost all the assessed parameters, except for glucose, fructosamine, TK, PI3K, and GLUT4. Combining CoQ10 with glimepiride enhanced the effect of the latter on the aforementioned parameters.These results provided a new insight into the possible mechanisms by which CoQ10 improves insulin sensitivity and adjusts type 2 diabetic disorder. These mechanisms involve modulation of insulin and adiponectin receptors, as well as TK, PI3K, glucose transporters, besides improving lipid profile, redox system, sRAGE, and adipocytokines. The study also points to the

  6. Chronic leucine supplementation increases body weight and insulin sensitivity in rats on high-fat diet likely by promoting insulin signaling in insulin-target tissues.

    Science.gov (United States)

    Li, Xiang; Wang, Xiaolei; Liu, Rui; Ma, Yan; Guo, Huailan; Hao, Liping; Yao, Ping; Liu, Liegang; Sun, Xiufa; He, Ka; Cao, Wenhong; Yang, Xuefeng

    2013-06-01

    This study investigated the effect of chronic leucine supplementation on insulin sensitivity and the associated mechanisms in rats on high-fat diet (HFD). Male Sprague-Dawley rats were fed either normal chow diet or HFD supplemented with 0, 1.5, 3.0, and 4.5% leucine for 24 weeks. We found that chronic leucine supplementation increased insulin sensitivity together with increased body weight in rats on HFD, but had no effect on insulin sensitivity in rats on normal chow diet. The increased insulin sensitivity by leucine supplementation was not associated with altered ectopic fat accumulation in liver and muscle, plasma levels of lipids and cytokines, but is associated with reduced oxidative stress and improved insulin signaling. Chronic leucine supplementation did not enhance insulin receptor substract-1 (IRS-1) phosphorylation on serine 302, but elevated basal IRS-1 phosphorylation on tyrosine 632 and improved insulin-stimulated protein kinase B (Akt) and mammalian target of rapamycin (mTOR) phosphorylation in liver, skeletal muscle, and adipose tissue of rats on HFD rats, indicating leucine supplementation prevented HFD-induced insulin resistance in insulin-target tissues. Chronic leucine supplementation can increase insulin sensitivity and body weight likely by reducing oxidative stress and improving insulin signaling pathway in rats on HFD. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Animal models of insulin resistance: A review.

    Science.gov (United States)

    Sah, Sangeeta Pilkhwal; Singh, Barinder; Choudhary, Supriti; Kumar, Anil

    2016-12-01

    Insulin resistance can be seen as a molecular and genetic mystery, with a role in the pathophysiology of type 2 diabetes mellitus. It is a basis for a number of chronic diseases like hypertension, dyslipidemia, glucose intolerance, coronary heart disease, cerebral vascular disease along with T2DM, thus the key is to cure and prevent insulin resistance. Critical perspicacity into the etiology of insulin resistance have been gained by the use of animal models where insulin action has been modulated by various transgenic and non-transgenic models which is not possible in human studies. The following review comprises the pathophysiology involved in insulin resistance, various factors causing insulin resistance, their screening and various genetic and non-genetic animal models highlighting the pathological and metabolic characteristics of each.

  8. Angiotensin receptor-mediated oxidative stress is associated with impaired cardiac redox signaling and mitochondrial function in insulin-resistant rats.

    Science.gov (United States)

    Vázquez-Medina, José Pablo; Popovich, Irina; Thorwald, Max A; Viscarra, Jose A; Rodriguez, Ruben; Sonanez-Organis, Jose G; Lam, Lisa; Peti-Peterdi, Janos; Nakano, Daisuke; Nishiyama, Akira; Ortiz, Rudy M

    2013-08-15

    Activation of angiotensin receptor type 1 (AT1) contributes to NADPH oxidase (Nox)-derived oxidative stress during metabolic syndrome. However, the specific role of AT1 in modulating redox signaling, mitochondrial function, and oxidative stress in the heart remains more elusive. To test the hypothesis that AT1 activation increases oxidative stress while impairing redox signaling and mitochondrial function in the heart during diet-induced insulin resistance in obese animals, Otsuka Long Evans Tokushima Fatty (OLETF) rats (n = 8/group) were treated with the AT1 blocker (ARB) olmesartan for 6 wk. Cardiac Nox2 protein expression increased 40% in OLETF compared with age-matched, lean, strain-control Long Evans Tokushima Otsuka (LETO) rats, while mRNA and protein expression of the H₂O₂-producing Nox4 increased 40-100%. ARB treatment prevented the increase in Nox2 without altering Nox4. ARB treatment also normalized the increased levels of protein and lipid oxidation (nitrotyrosine, 4-hydroxynonenal) and increased the redox-sensitive transcription factor Nrf2 by 30% and the activity of antioxidant enzymes (SOD, catalase, GPx) by 50-70%. Citrate synthase (CS) and succinate dehydrogenase (SDH) activities decreased 60-70%, whereas cardiac succinate levels decreased 35% in OLETF compared with LETO, suggesting that mitochondrial function in the heart is impaired during obesity-induced insulin resistance. ARB treatment normalized CS and SDH activities, as well as succinate levels, while increasing AMPK and normalizing Akt, suggesting that AT1 activation also impairs cellular metabolism in the diabetic heart. These data suggest that the cardiovascular complications associated with metabolic syndrome may result from AT1 receptor-mediated Nox2 activation leading to impaired redox signaling, mitochondrial activity, and dysregulation of cellular metabolism in the heart.

  9. Dietary Salba (Salvia hispanica L) seed rich in α-linolenic acid improves adipose tissue dysfunction and the altered skeletal muscle glucose and lipid metabolism in dyslipidemic insulin-resistant rats.

    Science.gov (United States)

    Oliva, M E; Ferreira, M R; Chicco, A; Lombardo, Y B

    2013-10-01

    This work reports the effect of dietary Salba (chia) seed rich in n-3 α-linolenic acid on the morphological and metabolic aspects involved in adipose tissue dysfunction and the mechanisms underlying the impaired glucose and lipid metabolism in the skeletal muscle of rats fed a sucrose-rich diet (SRD). Rats were fed a SRD for 3 months. Thereafter, half the rats continued with SRD while in the other half, corn oil (CO) was replaced by chia seed for 3 months (SRD+chia). In control group, corn starch replaced sucrose. The replacement of CO by chia seed in the SRD reduced adipocyte hypertrophy, cell volume and size distribution, improved lipogenic enzyme activities, lipolysis and the anti-lipolytic action of insulin. In the skeletal muscle lipid storage, glucose phosphorylation and oxidation were normalized. Chia seed reversed the impaired insulin stimulated glycogen synthase activity, glycogen, glucose-6-phosphate and GLUT-4 protein levels as well as insulin resistance and dyslipidemia.

  10. Perinatal exposure to germinated brown rice and its gamma amino-butyric acid-rich extract prevents high fat diet-induced insulin resistance in first generation rat offspring

    Directory of Open Access Journals (Sweden)

    Hadiza Altine Adamu

    2016-02-01

    Full Text Available Background: Evidence suggests perinatal environments influence the risk of developing insulin resistance. Objective: The present study was aimed at determining the effects of intrauterine exposure to germinated brown rice (GBR and GBR-derived gamma (γ aminobutyric acid (GABA extract on epigenetically mediated high fat diet–induced insulin resistance. Design: Pregnant Sprague Dawley rats were fed high-fat diet (HFD, HFD+GBR, or HFD+GABA throughout pregnancy until 4 weeks postdelivery. The pups were weighed weekly and maintained on normal pellet until 8 weeks postdelivery. After sacrifice, biochemical markers of obesity and insulin resistance including oral glucose tolerance test, adiponectin, leptin, and retinol binding protein-4 (RBP4 were measured. Hepatic gene expression changes and the global methylation and histone acetylation levels were also evaluated. Results: Detailed analyses revealed that mothers given GBR and GABA extract, and their offspring had increased adiponectin levels and reduced insulin, homeostasis model assessment of insulin resistance, leptin, oxidative stress, and RBP4 levels, while their hepatic mRNA levels of GLUT2 and IPF1 were increased. Furthermore, GBR and GABA extract lowered global DNA methylation levels and modulated H3 and H4 acetylation levels. Conclusions: These results showed that intrauterine exposure to GBR-influenced metabolic outcomes in offspring of rats with underlying epigenetic changes and transcriptional implications that led to improved glucose homeostasis.

  11. Dietary chia seed induced changes in hepatic transcription factors and their target lipogenic and oxidative enzyme activities in dyslipidaemic insulin-resistant rats.

    Science.gov (United States)

    Rossi, Andrea S; Oliva, Maria E; Ferreira, Maria R; Chicco, Adriana; Lombardo, Yolanda B

    2013-05-01

    The present study analyses the effect of dietary chia seed rich in n-3 α-linolenic acid on the mechanisms underlying dyslipidaemia and liver steatosis developed in rats fed a sucrose-rich diet (SRD) for either 3 weeks or 5 months. The key hepatic enzyme activities such as fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), glucose-6-phosphate dehydrogenase (G-6-PDH), carnitine palmitoyltransferase-1 (CPT-1) and fatty acid oxidase (FAO) involved in lipid metabolism and the protein mass levels of sterol regulatory element-binding protein-1 (SREBP-1) and PPARα were studied. (1) For 3 weeks, Wistar rats were fed either a SRD with 11 % of maize oil (MO) as dietary fat or a SRD in which chia seed replaced MO (SRD+Chia). (2) A second group of rats were fed a SRD for 3 months. Afterwards, half the rats continued with the SRD while for the other half, MO was replaced by chia for 2 months (SRD+Chia). In a control group, maize starch replaced sucrose. Liver TAG and the aforementioned parameters were analysed in all groups. The replacement of MO by chia in the SRD prevented (3 weeks) or improved/normalised (5 months) increases in dyslipidaemia, liver TAG, FAS, ACC and G-6-PDH activities, and increased FAO and CPT-1 activities. Protein levels of PPARα increased, and the increased mature form of SREBP-1 protein levels in the SRD was normalised by chia in both protocols (1 and 2). The present study provides new data regarding some key mechanisms related to the fate of hepatic fatty acid metabolism that seem to be involved in the effect of dietary chia seed in preventing and normalising/improving dyslipidaemia and liver steatosis in an insulin-resistant rat model.

  12. Dietary chia seed (Salvia hispanica L.) rich in alpha-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats.

    Science.gov (United States)

    Chicco, Adriana G; D'Alessandro, Maria E; Hein, Gustavo J; Oliva, Maria E; Lombardo, Yolanda B

    2009-01-01

    The present study investigates the benefits of the dietary intake of chia seed (Salvia hispanica L.) rich in alpha-linolenic acid and fibre upon dyslipidaemia and insulin resistance (IR), induced by intake of a sucrose-rich (62.5 %) diet (SRD). To achieve these goals two sets of experiments were designed: (i) to study the prevention of onset of dyslipidaemia and IR in Wistar rats fed during 3 weeks with a SRD in which chia seed was the dietary source of fat; (ii) to analyse the effectiveness of chia seed in improving or reversing the metabolic abnormalities described above. Rats were fed a SRD during 3 months; by the end of this period, stable dyslipidaemia and IR were present in the animals. From months 3-5, half the animals continued with the SRD and the other half were fed a SRD in which the source of fat was substituted by chia seed (SRD+chia). The control group received a diet in which sucrose was replaced by maize starch. The results showed that: (i) dietary chia seed prevented the onset of dyslipidaemia and IR in the rats fed the SRD for 3 weeks--glycaemia did not change; (ii) dyslipidaemia and IR in the long-term SRD-fed rats were normalised without changes in insulinaemia when chia seed provided the dietary fat during the last 2 months of the feeding period. Dietary chia seed reduced the visceral adiposity present in the SRD rats. The present study provides new data regarding the beneficial effect of chia seed upon lipid and glucose homeostasis in an experimental model of dislipidaemia and IR.

  13. Selective Insulin Resistance in the Kidney

    Science.gov (United States)

    Horita, Shoko; Nakamura, Motonobu; Suzuki, Masashi; Satoh, Nobuhiko; Suzuki, Atsushi; Seki, George

    2016-01-01

    Insulin resistance has been characterized as attenuation of insulin sensitivity at target organs and tissues, such as muscle and fat tissues and the liver. The insulin signaling cascade is divided into major pathways such as the PI3K/Akt pathway and the MAPK/MEK pathway. In insulin resistance, however, these pathways are not equally impaired. For example, in the liver, inhibition of gluconeogenesis by the insulin receptor substrate (IRS) 2 pathway is impaired, while lipogenesis by the IRS1 pathway is preserved, thus causing hyperglycemia and hyperlipidemia. It has been recently suggested that selective impairment of insulin signaling cascades in insulin resistance also occurs in the kidney. In the renal proximal tubule, insulin signaling via IRS1 is inhibited, while insulin signaling via IRS2 is preserved. Insulin signaling via IRS2 continues to stimulate sodium reabsorption in the proximal tubule and causes sodium retention, edema, and hypertension. IRS1 signaling deficiency in the proximal tubule may impair IRS1-mediated inhibition of gluconeogenesis, which could induce hyperglycemia by preserving glucose production. In the glomerulus, the impairment of IRS1 signaling deteriorates the structure and function of podocyte and endothelial cells, possibly causing diabetic nephropathy. This paper mainly describes selective insulin resistance in the kidney, focusing on the proximal tubule. PMID:27247938

  14. Angiotensin and insulin resistance: conspiracy theory.

    Science.gov (United States)

    Townsend, Raymond R

    2003-04-01

    Resistance to the metabolic effects of insulin is a contender for the short list of major cardiovascular risk factors. Since the elements of the syndrome of insulin resistance were first articulated together in 1988, numerous epidemiologic investigations and treatment endeavors have established a relationship between the metabolic disarray of impaired insulin action and cardiovascular disease. Angiotensin II, the primary effector of the renin-angiotensin system, has also achieved a place in the chronicles of cardiovascular risk factors. Conspiracy mechanisms by which angiotensin II and insulin resistance interact in the pathogenesis of cardiovascular disease are reviewed, with particular attention to recent developments in this engaging area of human research.

  15. Insulin resistance, insulin sensitization and inflammation in polycystic ovarian syndrome

    Directory of Open Access Journals (Sweden)

    Dhindsa G

    2004-04-01

    Full Text Available It is estimated that 5-10% of women of reproductive age have polycystic ovarian syndrome (PCOS. While insulin resistance is not part of the diagnostic criteria for PCOS, its importance in the pathogenesis of PCOS cannot be denied. PCOS is associated with insulin resistance independent of total or fat-free body mass. Post-receptor defects in the action of insulin have been described in PCOS which are similar to those found in obesity and type 2 diabetes. Treatment with insulin sensitizers, metformin and thiazolidinediones, improve both metabolic and hormonal patterns and also improve ovulation in PCOS. Recent studies have shown that PCOS women have higher circulating levels of inflammatory mediators like C-reactive protein, tumour necrosis factor- , tissue plasminogen activator and plasminogen activator inhibitor-1 (PAI-1 . It is possible that the beneficial effect of insulin sensitizers in PCOS may be partly due to a decrease in inflammation.

  16. Insulin and insulin mutants stimulate glucose uptake in rat adipocytes

    Institute of Scientific and Technical Information of China (English)

    姚矢音; 张新堂; 许英镐; 张信娜; 朱尚权

    1999-01-01

    A simple method to determine the in vitro biological activity of insulin by measuring glucose uptake in the rat adipocytes is presented here. In the presence of insulin, the glucose uptake is 5-6 times more than the basal control. And the uptake of D-[3-3H]-glucose is linear as the logarithm of insulin concentration from 0.2 μg/L to 1.0 μg/L. Glucose and 3-O-methyl-glucose inhibit D-[3-3H]-glucose uptake into adipocytes. By this method, the in vitro biological activity of [B2-Lys]-insulin and [B3-Lys]-insulin was measured to be 61.6% and 154% respectively, relative to that of insulin.

  17. [Insulin resistance pathogenesis in metabolic obesity].

    Science.gov (United States)

    Litvinova, L S; Kirienkova, E V; Mazunin, I O; Vasilenko, M A; Fattakhov, N S

    2015-01-01

    In this review we discuss the molecular mechanisms of insulin resistance concomitant with metabolic inflammation. We also analyze the world results of experimental and clinical studies which aimed at identifying the molecular targets for the development of new prevention and treatment of insulin resistance.

  18. Insulin resistance and maximal oxygen uptake

    DEFF Research Database (Denmark)

    Seibaek, Marie; Vestergaard, Henrik; Burchardt, Hans

    2003-01-01

    Type 2 diabetes, coronary atherosclerosis, and physical fitness all correlate with insulin resistance, but the relative importance of each component is unknown.......Type 2 diabetes, coronary atherosclerosis, and physical fitness all correlate with insulin resistance, but the relative importance of each component is unknown....

  19. Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance.

    Science.gov (United States)

    McNay, Ewan C; Ong, Cecilia T; McCrimmon, Rory J; Cresswell, James; Bogan, Jonathan S; Sherwin, Robert S

    2010-05-01

    Insulin regulates glucose uptake and storage in peripheral tissues, and has been shown to act within the hypothalamus to acutely regulate food intake and metabolism. The machinery for transduction of insulin signaling is also present in other brain areas, particularly in the hippocampus, but a physiological role for brain insulin outside the hypothalamus has not been established. Recent studies suggest that insulin may be able to modulate cognitive functions including memory. Here we report that local delivery of insulin to the rat hippocampus enhances spatial memory, in a PI-3-kinase dependent manner, and that intrahippocampal insulin also increases local glycolytic metabolism. Selective blockade of endogenous intrahippocampal insulin signaling impairs memory performance. Further, a rodent model of type 2 diabetes mellitus produced by a high-fat diet impairs basal cognitive function and attenuates both cognitive and metabolic responses to hippocampal insulin administration. Our data demonstrate that insulin is required for optimal hippocampal memory processing. Insulin resistance within the telencephalon may underlie the cognitive deficits commonly reported to accompany type 2 diabetes.

  20. Ketone esters increase brown fat in mice and overcome insulin resistance in other tissues in the rat.

    Science.gov (United States)

    Veech, Richard L

    2013-10-01

    Brown adipose tissue (BAT) is classically activated by sympathetic nervous stimulation resulting from exposure to cold. Feeding a high-fat diet also induces development of brown fat, but is decreased by caloric restriction. Blood ketone bodies, which function as alternative energy substrates to glucose, are increased during caloric restriction. Here we discuss the unexpected observation that feeding an ester of ketone bodies to the mouse, which increases blood ketone body concentrations, results in an activation of brown fat. The mechanism of this activation of brown fat is similar to that occurring from cold exposure in that cyclic adenosine monophosphate (AMP) levels are increased as are levels of the transcription factor cyclic AMP-responsive element-binding protein, which is also increased by ketone ester feeding. Other effects of feeding ketone esters, in addition to their ability to induce brown fat, are discussed such as their ability to overcome certain aspects of insulin resistance and to ameliorate the accumulation of amyloid and phosphorylated tau protein in brain, and improve cognitive function, in a triple transgenic mouse model of Alzheimer's disease. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  1. Microvascular Recruitment in Insulin Resistance

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker

    In this PhD work a new method for measuring microvascular recruitment was developed and evaluated, using continues real-time imaging of contrast enhanced ultrasound. Gas-filled microbubbles were infused intravenously and by taking advantage of the echogenic properties of the microbubbles the reso......In this PhD work a new method for measuring microvascular recruitment was developed and evaluated, using continues real-time imaging of contrast enhanced ultrasound. Gas-filled microbubbles were infused intravenously and by taking advantage of the echogenic properties of the microbubbles...... hormone glucagon-like-peptide-1 (GLP-1) in the microcirculation. Glucagon-like-peptide-1 analogs are drugs used for treatments of insulin resistance and type 2 diabetes but the vascular effects of GLP-1 in vivo are elusive. Here it was shown that GLP-1 rapidly increased the microvascular recruitment...

  2. Supplementation of Lactobacillus plantarum K68 and Fruit-Vegetable Ferment along with High Fat-Fructose Diet Attenuates Metabolic Syndrome in Rats with Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Hui-Yu Huang

    2013-01-01

    Full Text Available Lactobacillus plantarum K68 (isolated from fu-tsai and fruit-vegetable ferment (FVF have been tested for antidiabetic, anti-inflammatory, and antioxidant properties in a rat model of insulin resistance, induced by chronic high fat-fructose diet. Fifty rats were equally assigned into control (CON, high fat-fructose diet (HFFD, HFFD plus K68, HFFD plus FVF, and HFFD plus both K68 and FVF (MIX groups. Respective groups were orally administered with K68 (1×109 CFU/0.5 mL or FVF (180 mg/kg or MIX for 8 weeks. We found that HFFD-induced increased bodyweights were prevented, and progressively increased fasting blood glucose and insulin levels were reversed (P<0.01 by K68 and FVF treatments. Elevated glycated hemoglobin (HbA1c and HOMA-IR values were controlled in supplemented groups. Furthermore, dyslipidemia, characterized by elevated total cholesterol (TC, triglyceride (TG, and low-density lipoproteins (LDLs with HFFD, was significantly (P<0.01 attenuated with MIX. Elevated pro-inflammatory cytokines, interleukin-1β (IL-1β, IL-6, and tumor necrosis factor-α (TNF-α, were controlled (P<0.01 by K68, FVF, and MIX treatments. Moreover, decreased superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx activities were substantially (P<0.01 restored by all treatments. Experimental evidences demonstrate that K68 and FVF may be effective alternative medicine to prevent HFFD-induced hyperglycemia, hyperinsulinemia, and hyperlipidemia, possibly associated with anti-inflammatory and antioxidant efficacies.

  3. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity.

    Science.gov (United States)

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-12-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. © 2015 Authors; published by Portland Press Limited.

  4. [Insulin receptor expression in subcellular fractions of muscular and adipose tissue as the factor of the tissue insulin resistance development in rats under conditions of the high-energy diet].

    Science.gov (United States)

    Kondro, M M; Halenova, T I; Kuznietsova, M Iu; Savchuk, O M

    2013-01-01

    Nowadays the problem of insulin resistance, which has close cause-effect relations with obesity, diabetes mellitus type 2, metabolic syndrome, etc., is of urgent importance in medicine. We have revealed bidirectional changes of the IR content in crude membrane and cytosol of the adipose tissue cells in rats under conditions of the long-term high-energy diet. It is possible that reduction of the IR content in the adipose tissue cells has been predetermined by the disruption of lipid bilayer of adipocytes as a result of peroxidation processes activation. Increase in the IR content in the cytosol of cells of this tissue may indicate the activation of synthesis of this protein; however, it is possible that the IR translocation process disorder occurs due to the damage of plasma membrane, preventing the transfer of newly synthesized molecules of the receptor to the membrane and causing their accumulation in cytosol. The obtained results show that the tissues react to the long-term consumption of high-energy food in different ways. Thus, the content of insulin receptors in the plasma membrane of the muscle tissue cells increases, and, on the contrary, it decreases in adipose tissue cells. Such results may indicate that IR development at the late period of the experiment is likely the result of the adipose tissue cells disfunction. The obtained data may be of high significance in understanding the mechanism of the IR development under conditions of the long-term consumption of the high-energy food.

  5. LINK BETWEEN OXIDATIVE STRESS AND INSULIN RESISTANCE

    Institute of Scientific and Technical Information of China (English)

    Lan-fang Li; Jian Li

    2007-01-01

    Many studies on oxidative stress, insulin resistance, and antioxidant treatment have shown that increased oxidative stress may accelerate the development of diabetic complications through the excessive glucose and free fatty acids metabolism in diabetic and insulin-resistant states. Many pathogenic mechanisms such as insulin receptor substrate phosphorylation are involved in insulin resistance induced by oxidative stress. And antioxidant treatments can show benefits in animal models of diabetes mellitus and insulin resistance. However, negative evidence from large clinical trials suggests that new and more powerful antioxidants need to be studied to demonstrate whether antioxidants can be effective in treating diabetic complications. Furthermore, it appears that oxidative stress is only one of the factors contributing to diabetic complications. Thus, antioxidant treatment would most likely be more effective if it were coupled with other treatments for diabetic complications.

  6. Insulin resistance impairs nigrostriatal dopamine function.

    Science.gov (United States)

    Morris, J K; Bomhoff, G L; Gorres, B K; Davis, V A; Kim, J; Lee, P-P; Brooks, W M; Gerhardt, G A; Geiger, P C; Stanford, J A

    2011-09-01

    Clinical studies have indicated a link between Parkinson's disease (PD) and Type 2 Diabetes. Although preclinical studies have examined the effect of high-fat feeding on dopamine function in brain reward pathways, the effect of diet on neurotransmission in the nigrostriatal pathway, which is affected in PD and parkinsonism, is less clear. We hypothesized that a high-fat diet, which models early-stage Type 2 Diabetes, would disrupt nigrostriatal dopamine function in young adult Fischer 344 rats. Rats were fed a high fat diet (60% calories from fat) or a normal chow diet for 12 weeks. High fat-fed animals were insulin resistant compared to chow-fed controls. Potassium-evoked dopamine release and dopamine clearance were measured in the striatum using in vivo electrochemistry. Dopamine release was attenuated and dopamine clearance was diminished in the high-fat diet group compared to chow-fed rats. Magnetic resonance imaging indicated increased iron deposition in the substantia nigra of the high fat group. This finding was supported by alterations in the expression of several proteins involved in iron metabolism in the substantia nigra in this group compared to chow-fed animals. The diet-induced systemic and basal ganglia-specific changes may play a role in the observed impairment of nigrostriatal dopamine function. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Endothelin-1 exacerbates development of hypertension and atherosclerosis in modest insulin resistant syndrome.

    Science.gov (United States)

    Lin, Yan-Jie; Juan, Chi-Chang; Kwok, Ching-Fai; Hsu, Yung-Pei; Shih, Kuang-Chung; Chen, Chin-Chang; Ho, Low-Tone

    2015-05-08

    Endothelin-1 (ET-1) is known as potent vasoconstrictor, by virtue of its mitogenic effects, and may deteriorate the process of hypertension and atherosclerosis by aggravating hyperplasia and migration in VSMCs. Our previous study demonstrated that insulin infusion caused sequential induction of hyperinsulinemia, hyperendothelinemia, insulin resistance, and then hypertension in rats. However, the underlying mechanism of ET-1 interfere insulin signaling in VSMCs remains unclear. To characterize insulin signaling during modest insulin resistant syndrome, we established and monitored rats by feeding high fructose-diet (HFD) until high blood pressure and modest insulin resistance occurred. To explore the role of ET-1/ETAR during insulin resistance, ETAR expression, ET-1 binding, and insulin signaling were investigated in the HFD-fed rats and cultured A-10 VSMCs. Results showed that high blood pressure, tunica medial wall thickening, plasma ET-1 and insulin, and accompanied with modest insulin resistance without overweight and hyperglycemia occurred in early-stage HFD-fed rats. In the endothelium-denuded aorta from HFD-fed rats, ETAR expression, but not ETBR, and ET-1 binding in aorta were increased. Moreover, decreasing of insulin-induced Akt phosphorylation and increasing of insulin-induced ERK phosphorylation were observed in aorta during modest insulin resistance. Interestingly, in ET-1 pretreated VSMCs, the increment of insulin-induced Akt phosphorylation was decreased whereas the increment of insulin-induced ERK phosphorylation was increased. In addition, insulin potentiated ET-1-induced VSMCs migration and proliferation due to increasing ET-1 binding. ETAR antagonist reversed effects of ET-1 on insulin-induced signaling and VSMCs migration and proliferation. In summary, modest insulin resistance syndrome accompanied with hyperinsulinemia leading to the potentiation on ET-1-induced actions in aortic VSMCs. ET-1 via ETAR pathway suppressed insulin-induced AKT

  8. Insulin resistance in porphyria cutanea tarda.

    Science.gov (United States)

    Calcinaro, F; Basta, G; Lisi, P; Cruciani, C; Pietropaolo, M; Santeusanio, F; Falorni, A; Calafiore, R

    1989-06-01

    It has been reported that patients with porphyria cutanea tarda (PCT) develop carbohydrate (CHO) intolerance and manifest diabetes melitus (DM) more frequently than the normal population. In order to verify whether this is due to insulin resistance we studied 5 patients with PCT and 5 normal subjects matched for age, sex and weight. In all the patients an evaluation consisted of the glycemic curve and insulin response to an iv glucose tolerance test (IVGTT: 0.33 g/kg) as well as of an evaluation of the circulating monocyte insulin receptors. Blood samples were drawn in the basal state to measure plasma levels of NEFA, glycerol, and intermediate metabolites. The patients with PCT showed normal glucose tolerance which was obtained, however, at the expense of the elevated insulin levels: therefore a condition of insulin resistance was demonstrated in these subjects. An involvement of the lipid metabolism, observed by the raised levels of plasma NEFA and glycerol, was also evident. The insulin binding to circulating monocytes was reduced but not enough to justify the degree of insulin resistance observed. Therefore, it could be hypothesized, in agreement with similar studies, that a postreceptor defect is responsible for the insulin-resistance observed in patients with PCT and that the reduction of insulin receptors is determined by the down regulation in response to elevated insulinemic levels. An alteration of the porphyrin metabolism might be responsible for this disorder.

  9. Arterial retention of remnant lipoproteins ex vivo is increased in insulin resistance because of increased arterial biglycan and production of cholesterol-rich atherogenic particles that can be improved by ezetimibe in the JCR:LA-cp rat.

    Science.gov (United States)

    Mangat, Rabban; Warnakula, Samantha; Borthwick, Faye; Hassanali, Zahra; Uwiera, Richard R E; Russell, James C; Cheeseman, Christopher I; Vine, Donna F; Proctor, Spencer D

    2012-10-01

    Literature supports the "response-to-retention" hypothesis-that during insulin resistance, impaired metabolism of remnant lipoproteins can contribute to accelerated cardiovascular disease progression. We used the JCR:LA-cp rat model of metabolic syndrome (MetS) to determine the extent of arterial accumulation of intestinal-derived remnants ex vivo and potential mechanisms that contribute to exacerbated cholesterol deposition in insulin resistance. Arteries from control and MetS (insulin-resistant) JCR:LA-cp rats were perfused ex vivo with Cy5-labeled remnant lipoproteins, and their arterial retention was quantified by confocal microscopy. Arterial proteoglycans were isolated from control and MetS rats at 6, 12, and 32 weeks of age. There was a significant increase in the arterial retention of remnants and in associated cholesterol accumulation in MetS rats as compared to control rats. Mechanistic studies reveal that increased cholesterol deposition is a result of greater arterial biglycan content; longer glycosaminoglycans and increased production of cholesterol-rich intestinal-derived remnants, as compared to controls. Additionally, perfusion of vessels treated with ezetimibe, alone or in combination with simvastatin, with remnants isolated from the respective treatment group reduced ex vivo arterial retention of remnant-derived cholesterol ex vivo as compared to untreated controls. Increased progression of atherosclerotic cardiovascular disease in MetS and type 2 diabetes mellitus might be explained in part by an increase in the arterial retention of cholesterol-rich remnants. Furthermore, ezetimibe alone or in combination treatment with simvastatin could be beneficial in ameliorating atherosclerotic cardiovascular disease in insulin resistance and MetS.

  10. Insulin Expression in Rats Exposed to Cadmium

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objectives To investigate the effects of cadmium exposure on insulin expression in rats. Methods Eighteen adult SD assessed. The levels of cadmium and zinc in pancreas, blood and urine glucose, serum insulin and urine NAG (N-acyetyl-β-glucosaminidase) were determined. The gene expressions of metallothionein (MT) and insulin were also measured,and the oral glucose tolerance tests (OGTT) were carried out. Results The contents of cadmium in pancreas in cadmium-treated rats were higher than that in the control group, which was associated with slight increase of zinc in pancreas.not change significantly after cadmium administration, and the UNAG had no change in Cd-treated group. The gene expression the change of the expression of insulin, MT-Ⅰ and MT-Ⅱ genes. Cadmium can influence the biosynthesis of insulin, but does not induce the release of insulin. The dysfunction of pancreas occurs earlier than that of kidney after administration of cadmium.

  11. Green tea polyphenols improve cardiac muscle mRNA, and protein levels of signal pathways related to insulin and lipid metabolism and inflammation in insulin-resistant rats

    Science.gov (United States)

    Epidemiologic studies indicate that the consumption of green tea polyphenols (GTP) may reduce the risk of coronary artery disease. To explore the underlying mechanisms of action at the molecular level, we examined the effects of GTP on cardiac mRNA and protein levels of genes involved in insulin an...

  12. Selective insulin resistance in hepatocyte senescence

    Energy Technology Data Exchange (ETDEWEB)

    Aravinthan, Aloysious [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Challis, Benjamin [Institute of Metabolic Sciences, University of Cambridge, Cambridge (United Kingdom); Shannon, Nicholas [Cancer Research UK Cambridge Institute, Cambridge (United Kingdom); Hoare, Matthew [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Cancer Research UK Cambridge Institute, Cambridge (United Kingdom); Heaney, Judith [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Foundation for Liver Research, Institute of Hepatology, London (United Kingdom); Alexander, Graeme J.M., E-mail: gja1000@doctors.org.uk [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom)

    2015-02-01

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied in three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance.

  13. [Beyond immunopathogenesis. Insulin resistance and "epidermal dysfunction"].

    Science.gov (United States)

    Boehncke, W-H; Boehncke, S; Buerger, C

    2012-03-01

    Insulin is a central player in the regulation of metabolic as well as non-metabolic cells: inefficient signal transduction (insulin resistance) not only represents the cornerstone in the pathogenesis of type 2 diabetes mellitus, but also drives atherosclerosis through inducing endothelial dysfunction. Last but not least epidermal homeostasis depends on insulin. We summarize the effects of insulin on proliferation and differentiation of human keratinocytes as well as the relevance of cytokine-induced insulin resistance for alterations in epidermal homeostasis characteristic for psoriasis. Kinases involved in both insulin- as well as cytokine-receptor signaling represent potential targets for innovative therapeutics. Such small molecules would primarily normalize "epidermal dysfunction", thus complementing the immunomodulatory strategies of today's biologics.

  14. 自发性2型糖尿病大鼠血浆低脂联素血症导致胰岛素抵抗%Hypoadiponectinemia leads to insulin resistance in OLETF rats: a preliminary study

    Institute of Scientific and Technical Information of China (English)

    郭煜; 朱波; 李晨钟; 潘永华; 张燕; 薛耀明

    2011-01-01

    Objective To investigate the association between plasma adiponectin and insulin resistance in OLETF rats. Methods Twenty male Otsuka Long-Evans Tokushima Fatty (OLETF) rats and 10 male Long-evans Tokushima Otsuka (LETO) rats underwent oral glucose tolerance test (OGTT) at 13 and 40 weeks of age. At 8, 32 and 40 weeks of age, the rats were sacrificed to measure the blood glucose, plasma insulin and adiponectin levels, and serum levels of TG, CHOL and FFA. Results The plasma adiponectin level was significantly decreased in 8-week-old OLETF rats compared with that of LETO rats (P<0.05). The plasma insulin level, TG, CHOL, and FFA were significantly higher in OLETF rats than in LETO rats at 32 and 40 weeks of age. Conclusion A decreased plasma level of adiponectin preludes insulin resistance and is inversely correlated to insulin sensitivity. Hypoadiponectinemia may be an important reason leading to insulin resistance.%目的 观察自发性2型糖尿病大鼠血浆脂联素(APN)与胰岛素抵抗的关系.方法 自发性2型糖尿病大鼠OLETF鼠20只,同系健康对照LETO鼠10只作为正常对照组.饲养13和40周后,行口服葡萄糖耐量试验;于8、32和40周分批宰杀,检测血糖、血浆脂联素、胰岛素、血清甘油三酯、游离脂肪酸和胆固醇水平.结果 8周龄时OLETF鼠血浆APN水平显著低于LETO组(P<0.05),并进行性降低.32周龄和40周龄时OLETF组大鼠血浆胰岛素水平和甘油三酯、胆固醇、游离脂肪酸显著高于LEll0组(P<0.01).结论 OLETF鼠血浆APN水平与胰岛素抵抗显著负相关,且先于胰岛素抵抗和葡萄糖耐量受损发生;低脂联素血症可能是导致胰岛素抵抗的重要原因.

  15. Exendin-4 shows no effects on the prostatic index in high-fat-diet-fed rat with benign prostatic hyperplasia by improving insulin resistance.

    Science.gov (United States)

    Zheng, J-X; Xiao, Y-C; Hu, Y-R; Hao, M; Kuang, H-Y

    2015-03-01

    Benign prostatic hyperplasia (BPH) is a prevalent disease globally, and accumulating evidence has indicated an association between BPH, insulin resistance (IR) and diabetes. Exendin-4 is widely used in clinics, which could enhance the proliferation of pancreatic β cells. The ability of exendin-4 to promote tumorigenesis has been of concern, and whether exendin-4 would enhance the propagation of BPH is not fully understood. We aimed to determine whether glucagon-like peptide-1 receptors (GLP-1Rs) were expressed in rat prostate and to determine the effect of exendin-4 on prostate of BPH. Male Wistar rats were used and assigned to six groups: normal diet (ND), high-fat diet (HFD), HFD + exendin-4, HFD + BPH, HFD + BPH + exendin-4 and HFD + BPH + rosiglitazone group. After castration, steroids were injected subcutaneously for 4 weeks to induce BPH. Rats were kept on high-fat diet to induce IR. Treatment groups were treated with exendin-4 and rosiglitazone. Prostatic index and HOMA-IR index were used to evaluate the prostatic hyperplasia status and the degree of IR respectively. The expression of GLP-1R was indicated not only by immunohistochemistry, but also by Western blot analysis. The expression of GLP-1R was significantly higher, and HOMA-IR index and body weight significantly decreased after administration of exendin-4. However, no significant differences in the prostatic index were observed between exendin-4 treatment groups and non-exendin-4 treatment groups. Prostatic index was not influenced by exendin-4 maybe by improving IR and weight loss.

  16. A novel surrogate index for hepatic insulin resistance.

    LENUS (Irish Health Repository)

    Vangipurapu, J

    2011-03-01

    In epidemiological and genetic studies surrogate indices are needed to investigate insulin resistance in different insulin-sensitive tissues. Our objective was to develop a surrogate index for hepatic insulin resistance.

  17. Ghrelin- and GH-induced insulin resistance

    DEFF Research Database (Denmark)

    Vestergaard, Esben Thyssen; Krag, Morten B; Poulsen, Morten M

    2013-01-01

    Supraphysiological levels of ghrelin and GH induce insulin resistance. Serum levels of retinol-binding protein-4 (RBP4) correlate inversely with insulin sensitivity in patients with type 2 diabetes. We aimed to determine whether ghrelin and GH affect RBP4 levels in human subjects....

  18. Fatty Acids, Obesity and Insulin Resistance.

    Science.gov (United States)

    Arner, Peter; Rydén, Mikael

    2015-01-01

    Although elevated free fatty acid (FFA) levels in obesity have been considered to be of importance for insulin resistance, a recent meta-analysis suggested normal FFA levels in obese subjects. We investigated fasting circulating FFA and glycerol levels in a large cohort of non-obese and obese subjects. Subjects recruited for a study on obesity genetics were investigated in the morning after an overnight fast (n = 3,888). Serum FFA (n = 3,306), plasma glycerol (n = 3,776), and insulin sensitivity index (HOMA-IR,n = 3,469) were determined. Obesity was defined as BMI ≥ 30 kg/m 2 and insulin resistance as HOMA-IR ≥ 2.21. In obese subjects, circulating FFA and glycerol levels were higher than in non-obese individuals (by 26% and 47%, respectively; both p Insulin resistance and type 2 diabetes were associated with a further minor increase in FFA/glycerol among obese subjects. When comparing insulin-sensitive non-obese with insulin-sensitive or -resistant obese individuals, FFA and glycerol were 21–29% and 43–49% higher in obese individuals, respectively. Circulating FFA and glycerol levels are markedly elevated in obesity but only marginally influenced by insulin resistance and type 2 diabetes. Whether these differences persist during diurnal variations in circulating FFA/glycerol, remains to be established

  19. Mechanisms Linking Inflammation to Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Li Chen

    2015-01-01

    Full Text Available Obesity is now widespread around the world. Obesity-associated chronic low-grade inflammation is responsible for the decrease of insulin sensitivity, which makes obesity a major risk factor for insulin resistance and related diseases such as type 2 diabetes mellitus and metabolic syndromes. The state of low-grade inflammation is caused by overnutrition which leads to lipid accumulation in adipocytes. Obesity might increase the expression of some inflammatory cytokines and activate several signaling pathways, both of which are involved in the pathogenesis of insulin resistance by interfering with insulin signaling and action. It has been suggested that specific factors and signaling pathways are often correlated with each other; therefore, both of the fluctuation of cytokines and the status of relevant signaling pathways should be considered during studies analyzing inflammation-related insulin resistance. In this paper, we discuss how these factors and signaling pathways contribute to insulin resistance and the therapeutic promise targeting inflammation in insulin resistance based on the latest experimental studies.

  20. Insulin resistance in Nigerians with essential hypertension

    African Journals Online (AJOL)

    EB

    2013-09-03

    Sep 3, 2013 ... Strategies to reduce insulin resistance such as physical exercise, weight loss and a healthy diet should be included in the treatment of hypertensive ... Treatment of High Blood Pressure. Hypertension. 2003; 42: 1206-52. 12.

  1. The origins and drivers of insulin resistance

    National Research Council Canada - National Science Library

    Johnson, Andrew M F; Olefsky, Jerrold M

    2013-01-01

    Obesity-induced insulin resistance is the major determinant of metabolic syndrome, which precedes the development of type 2 diabetes mellitus and is thus the driving force behind the emerging diabetes epidemic...

  2. Direct Evidence that Myocardial Insulin Resistance following Myocardial Ischemia Contributes to Post-Ischemic Heart Failure

    Science.gov (United States)

    Fu, Feng; Zhao, Kun; Li, Jia; Xu, Jie; Zhang, Yuan; Liu, Chengfeng; Yang, Weidong; Gao, Chao; Li, Jun; Zhang, Haifeng; Li, Yan; Cui, Qin; Wang, Haichang; Tao, Ling; Wang, Jing; Quon, Michael J; Gao, Feng

    2015-01-01

    A close link between heart failure (HF) and systemic insulin resistance has been well documented, whereas myocardial insulin resistance and its association with HF are inadequately investigated. This study aims to determine the role of myocardial insulin resistance in ischemic HF and its underlying mechanisms. Male Sprague-Dawley rats subjected to myocardial infarction (MI) developed progressive left ventricular dilation with dysfunction and HF at 4 wk post-MI. Of note, myocardial insulin sensitivity was decreased as early as 1 wk after MI, which was accompanied by increased production of myocardial TNF-α. Overexpression of TNF-α in heart mimicked impaired insulin signaling and cardiac dysfunction leading to HF observed after MI. Treatment of rats with a specific TNF-α inhibitor improved myocardial insulin signaling post-MI. Insulin treatment given immediately following MI suppressed myocardial TNF-α production and improved cardiac insulin sensitivity and opposed cardiac dysfunction/remodeling. Moreover, tamoxifen-induced cardiomyocyte-specific insulin receptor knockout mice exhibited aggravated post-ischemic ventricular remodeling and dysfunction compared with controls. In conclusion, MI induces myocardial insulin resistance (without systemic insulin resistance) mediated partly by ischemia-induced myocardial TNF-α overproduction and promotes the development of HF. Our findings underscore the direct and essential role of myocardial insulin signaling in protection against post-ischemic HF. PMID:26659007

  3. Effects of tempol on endothelial and vascular dysfunctions and insulin resistance induced by a high-fat high-sucrose diet in the rat.

    Science.gov (United States)

    Bourgoin, Frédéric; Bachelard, Hélène; Badeau, Mylène; Larivière, Richard; Nadeau, André; Pitre, Maryse

    2013-07-01

    We investigated the effects of treatment with tempol (an antioxidant) on vascular and metabolic dysfunction induced by a high-fat high-sucrose (HFHS) diet. Rats were randomized to receive an HFHS or chow diet with or without tempol treatment (1.5 mmol·(kg body mass)(-1)·day(-1)) for 4 weeks. Blood pressure, heart rate, and blood flow were measured in the rats by using intravascular catheters and Doppler flow probes. Insulin sensitivity and vascular responses to insulin were assessed during a euglycemic-hyperinsulinemic clamp. In-vitro studies were performed to evaluate vascular reactivity and endothelial and inducible nitric oxide synthase (eNOS; iNOS) expression in vascular and muscle tissues. Endothelin, nitrotyrosine, and NAD(P)H oxidase expressions were determined in vascular tissues, and glucose transport activity and glucose transporter 4 (GLUT4) expression were examined in muscles. Tempol treatment was found to prevent alterations in insulin sensitivity, glucose transport activity, GLUT4 expression, and vascular reactivity, and to prevent increases in plasma insulin, blood pressure, and heart rate noted in the untreated HFHS-fed rats. These were associated with increased levels of eNOS expression in vascular and muscle tissues, but reductions in nitrotyrosine, endothelin, NAD(P)H oxidase, and iNOS expressions. Therefore, oxidative stress induced by a relatively short-term HFHS diet could contribute to the early development of vascular and metabolic abnormalities in rats.

  4. Role of Vitamin D in Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Chih-Chien Sung

    2012-01-01

    Full Text Available Vitamin D is characterized as a regulator of homeostasis of bone and mineral metabolism, but it can also provide nonskeletal actions because vitamin D receptors have been found in various tissues including the brain, prostate, breast, colon, pancreas, and immune cells. Bone metabolism, modulation of the immune response, and regulation of cell proliferation and differentiation are all biological functions of vitamin D. Vitamin D may play an important role in modifying the risk of cardiometabolic outcomes, including diabetes mellitus (DM, hypertension, and cardiovascular disease. The incidence of type 2 DM is increasing worldwide and results from a lack of insulin or inadequate insulin secretion following increases in insulin resistance. Therefore, it has been proposed that vitamin D deficiency plays an important role in insulin resistance resulting in diabetes. The potential role of vitamin D deficiency in insulin resistance has been proposed to be associated with inherited gene polymorphisms including vitamin D-binding protein, vitamin D receptor, and vitamin D 1alpha-hydroxylase gene. Other roles have been proposed to involve immunoregulatory function by activating innate and adaptive immunity and cytokine release, activating inflammation by upregulation of nuclear factor κB and inducing tumor necrosis factor α, and other molecular actions to maintain glucose homeostasis and mediate insulin sensitivity by a low calcium status, obesity, or by elevating serum levels of parathyroid hormone. These effects of vitamin D deficiency, either acting in concert or alone, all serve to increase insulin resistance. Although there is evidence to support a relationship between vitamin D status and insulin resistance, the underlying mechanism requires further exploration. The purpose of this paper was to review the current information available concerning the role of vitamin D in insulin resistance.

  5. Fasting insulin has a stronger association with an adverse cardiometabolic risk profile than insulin resistance: the RISC study

    DEFF Research Database (Denmark)

    de Rooij, Susanne R; Dekker, Jacqueline M; Kozakova, Michaela;

    2009-01-01

    OBJECTIVE: Fasting insulin concentrations are often used as a surrogate measure of insulin resistance. We investigated the relative contributions of fasting insulin and insulin resistance to cardiometabolic risk and preclinical atherosclerosis. DESIGN AND METHODS: The Relationship between Insulin...

  6. Molecular mechanisms of insulin resistance

    African Journals Online (AJOL)

    insulin action from receptor to the alteration of blood glucose. Hence, in order to ... and regulation of the insulin receptor in our efforts to unravel the cause of this ... defined mechanisms of signal transduction. Structure ..... found in muscle and fat is the most important and mediates ..... glycogen metabolism in skeletal muscle.

  7. Increased hepatic peroxisome proliferator-activated receptor coactivator-1α expression precedes the development of insulin resistance in offspring of rats from severe hyperglycemic mothers

    Institute of Scientific and Technical Information of China (English)

    MA Jing-mei; ZENG Chan-juan; ZHANG Li; SHOU Chong; YANG Hui-xia

    2012-01-01

    Background Prenatal hyperglycaemia may increase metabolic syndrome susceptibility of the offspring.An underlying component of the development of these morbidities is hepatic gluconeogenic molecular dysfunction.We hypothesized that maternal hyperglycaemia will influence her offsprings hepatic peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) expression,a key regulator of glucose production in hepatocytes.@@Method We established maternal hyperglycaemia by streptozotocin injection to induce the maternal hyperglycaemic Wistar rat model.Offspring from the severe hyperglycemia group (SDO) and control group (CO) were monitored until 180 days after birth.Blood pressure,lipid metabolism indicators and insulin resistance (IR) were measured.Hepatic PGC-1α expression was analyzed by reverse transcription polymerase chain reaction and Western blotting.mRNA expression of two key enzymes in gluconeogenesis,glucose-6-phospha-tase (G-6-Pase) and phosphoenolpyruvate carboxykinase (PEPCK),were analyzed and compared.@@Results In the SDO group,PGC-1α expression at protein and mRNA levels were increased,so were expression of G-6-Pase and PEPCK (P<0.05).The above effects were seen prior to the onset of IR.@@Conclusion The hepatic gluconeogenic molecular dysfunction may contribute to the metabolic morbidities experienced by this population.

  8. Triiodothyronine : a link between the insulin resistance syndrome and blood pressure?

    NARCIS (Netherlands)

    Bakker, SJL; ter Maaten, JC; Popp-Snijders, C; Heine, RJ; Gans, ROB

    1999-01-01

    Objective Overall obesity is associated with elevated serum triiodothyronine concentrations and insulin resistance. Oral triiodothyronine is known to induce hypertension in laboratory rats, while triiodothyronine also increases the expression of genes encoding for enzymes involved in the synthesis a

  9. Triiodothyronine : a link between the insulin resistance syndrome and blood pressure?

    NARCIS (Netherlands)

    Bakker, SJL; ter Maaten, JC; Popp-Snijders, C; Heine, RJ; Gans, ROB

    1999-01-01

    Objective Overall obesity is associated with elevated serum triiodothyronine concentrations and insulin resistance. Oral triiodothyronine is known to induce hypertension in laboratory rats, while triiodothyronine also increases the expression of genes encoding for enzymes involved in the synthesis

  10. Triiodothyronine : a link between the insulin resistance syndrome and blood pressure?

    NARCIS (Netherlands)

    Bakker, SJL; ter Maaten, JC; Popp-Snijders, C; Heine, RJ; Gans, ROB

    1999-01-01

    Objective Overall obesity is associated with elevated serum triiodothyronine concentrations and insulin resistance. Oral triiodothyronine is known to induce hypertension in laboratory rats, while triiodothyronine also increases the expression of genes encoding for enzymes involved in the synthesis a

  11. Obesity, insulin resistance, and cardiovascular disease.

    Science.gov (United States)

    Reaven, Gerald; Abbasi, Fahim; McLaughlin, Tracey

    2004-01-01

    The ability of insulin to stimulate glucose disposal varies more than six-fold in apparently healthy individuals. The one third of the population that is most insulin resistant is at greatly increased risk to develop cardiovascular disease (CVD), type 2 diabetes, hypertension, stroke, nonalcoholic fatty liver disease, polycystic ovary disease, and certain forms of cancer. Between 25-35% of the variability in insulin action is related to being overweight. The importance of the adverse effects of excess adiposity is apparent in light of the evidence that more than half of the adult population in the United States is classified as being overweight/obese, as defined by a body mass index greater than 25.0 kg/m(2). The current epidemic of overweight/obesity is most-likely related to a combination of increased caloric intake and decreased energy expenditure. In either instance, the fact that CVD risk is increased as individuals gain weight emphasizes the gravity of the health care dilemma posed by the explosive increase in the prevalence of overweight/obesity in the population at large. Given the enormity of the problem, it is necessary to differentiate between the CVD risk related to obesity per se, as distinct from the fact that the prevalence of insulin resistance and compensatory hyperinsulinemia are increased in overweight/obese individuals. Although the majority of individuals in the general population that can be considered insulin resistant are also overweight/obese, not all overweight/obese persons are insulin resistant. Furthermore, the cluster of abnormalities associated with insulin resistance - namely, glucose intolerance, hyperinsulinemia, dyslipidemia, and elevated plasma C-reactive protein concentrations -- is limited to the subset of overweight/obese individuals that are also insulin resistant. Of greater clinical relevance is the fact that significant improvement in these metabolic abnormalities following weight loss is seen only in the subset of

  12. Role of neural NO synthase (nNOS uncoupling in the dysfunctional nitrergic vasorelaxation of penile arteries from insulin-resistant obese Zucker rats.

    Directory of Open Access Journals (Sweden)

    Ana Sánchez

    Full Text Available OBJECTIVE: Erectile dysfunction (ED is considered as an early sign of vascular disease due to its high prevalence in patients with cardiovascular risk factors. Endothelial and neural dysfunction involving nitric oxide (NO are usually implicated in the pathophysiology of the diabetic ED, but the underlying mechanisms are unclear. The present study assessed the role of oxidative stress in the dysfunctional neural vasodilator responses of penile arteries in the obese Zucker rat (OZR, an experimental model of metabolic syndrome/prediabetes. METHODS AND RESULTS: Electrical field stimulation (EFS under non-adrenergic non-cholinergic (NANC conditions evoked relaxations that were significantly reduced in penile arteries of OZR compared with those of lean Zucker rats (LZR. Blockade of NO synthase (NOS inhibited neural relaxations in both LZR and OZR, while saturating concentrations of the NOS substrate L-arginine reversed the inhibition and restored relaxations in OZR to levels in arteries from LZR. nNOS expression was unchanged in arteries from OZR compared to LZR and nNOS selective inhibition decreased the EFS relaxations in LZR but not in OZR, while endothelium removal did not alter these responses in either strain. Superoxide anion production and nitro-tyrosine immunostaining were elevated in the erectile tissue from OZR. Treatment with the NADPH oxidase inhibitor apocynin or acute incubation with the NOS cofactor tetrahydrobiopterin (BH4 restored neural relaxations in OZR to levels in control arteries, while inhibition of the enzyme of BH4 synthesis GTP-cyclohydrolase (GCH reduced neural relaxations in arteries from LZR but not OZR. The NO donor SNAP induced decreases in intracellular calcium that were impaired in arteries from OZR compared to controls. CONCLUSIONS: The present study demonstrates nitrergic dysfunction and impaired neural NO signalling due to oxidative stress and nNOS uncoupling in penile arteries under conditions of insulin

  13. Effect of insulin-resistance on circulating and adipose tissue MMP-2 and MMP-9 activity in rats fed a sucrose-rich diet.

    Science.gov (United States)

    Miksztowicz, V; Morales, C; Zago, V; Friedman, S; Schreier, L; Berg, G

    2014-03-01

    Adipose tissue produces different metalloproteinases (MMPs), involved in adipogenesis and angiogenesis. Different studies have shown that in obesity the behavior of different MMPs may be altered. However there are scarce data about the effect of insulin-resistance (IR) on MMP-2 and MMP-9 activity in adipose tissue. Our aim was to determine whether sucrose induced IR modifies MMP-2 and MMP-9 behavior in expanded visceral adipose tissue and the contribution of this tissue to circulating activity of these gelatinases. Male Wistar rats were fed with standard diet (Control) or standard diet plus 30% sucrose in the drinking water throughout 12 weeks (SRD). In epididymal adipose tissue vascular density, size and adipocyte density, PPARγ expression and MMP-2 and -9 were measured. Adipose tissue from SRD presented higher adipocyte size (6.32 ± 8.71 vs 4.33 ± 2.17 × 10(3) μm(2), p = 0.001) lower adipocyte density (164 (130-173) vs 190 (170-225) number/mm(2), p = 0.046) and lower vascular density (16.2 (12.8-23.5) vs 28.1 (22.3-46.5) blood vessels/mm(2), p = 0.002) than Control. MMP-2 and MMP-9 activity was decreased in SRD (1.93 ± 0.7 vs 3.92 ± 0.9 relative units, p = 0.048 and 1.80 ± 0.8 vs 5.13 ± 1.7 relative units, p = 0.004 respectively) in accordance with lower protein expression (0.35 ± 0.20 vs 2.71 ± 0.48 relative units, p = 0.004 and 1.12 ± 0.21 vs 1.52 ± 0.05 relative units, p = 0.036 respectively). There were no differences in PPARγ expression between groups. Insulin resistance induced by SRD decreases MMP-2 and MMP-9 activity in adipose tissue which would not represent an important source for circulating MMP-2 and -9. In this state of IR, PPARγ would not be involved in the negative regulation of adipose tissue gelatinases. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Insulin resistance in the NIDDM model Psammomys obesus in the normoglycaemic, normoinsulinaemic state.

    Science.gov (United States)

    Ziv, E; Kalman, R; Hershkop, K; Barash, V; Shafrir, E; Bar-On, H

    1996-11-01

    The desert gerbil Psammomys obesus ("sand rat"), a model of nutritionally induced insulin resistance and non-insulin-dependent diabetes mellitus, was treated after weaning with exogenous insulin implants in the normoglycaemic, normoinsulinaemic state. Albino rats matched for weight and age served as high energy diet adjusted reference animals. Insulin administration, elevating the serum insulin to 6000 pmol/l resulted in only a mild reduction in blood glucose levels in Psammomys, but caused a severe, often fatal hypoglycaemia in the albino rats. The hepatic response to insulin-induced hypoglycaemia in rats involved a significant loss in glycogen and suppression of phosphoenolpyruvate carboxykinase (PEPCK) activity. In Psammomys under similar hyperinsulinaemia no appreciable changes in liver glycogen and PEPCK activity were evident, indicating that blood glucose was replenished by continuing gluconeogenesis. Euglycaemic, hyperinsulinaemic clamp caused a complete shut-down of hepatic glucose production in albino rats. However, in both diabetes-prone and diabetes-resistant Psammomys lines, mean hepatic glucose production was reduced by only 62 to 53% respectively, despite longer lasting and higher levels of hyperinsulinaemia. These results indicate that Psammomys is characterized by muscle and liver insulin resistance prior to diet-induced hyperglycaemia and hyperinsulinaemia. This is assumed to be a species feature of Psammomys, exemplifying a metabolic adjustment to survival in conditions of food scarcity of both animal and human populations. It may reflect a propensity to insulin resistance and hyperglycaemia in population groups exposed to affluent nutrition.

  15. 五味子油对2型糖尿病大鼠胰岛素抵抗的影响%Effect of Schisandrae chinenesis oil on type 2 diabetes rats with insulin resistance

    Institute of Scientific and Technical Information of China (English)

    刘馨; 刘学政; 李香华

    2012-01-01

    目的 研究五味子油对2型糖尿病胰岛素抵抗大鼠的血糖、血脂和胰岛素的影响,并初步探讨其作用机制.方法 以高糖高脂饲料联合小剂量链脲佐菌素(STZ)诱导建立2型糖尿病大鼠胰岛素抵抗模型.随机分为正常组,模型组,五味子油高(1 mg/kg)、低剂量(0.5 mg/kg)组,罗格列酮组.连续灌胃6周,测定空腹血糖(FBG)、空腹胰岛素(FINS)、甘油三酯(TG)、高密度脂蛋白(HDL)、低密度脂蛋白(LDH)、总胆固醇(TC)水平,并计算胰岛素抵抗指数(HOMA-IR).结果 五味子油可降低糖尿病大鼠FBG、TG、LDH、TC、FINS水平,升高HDL的含量,降低HOMA-IR.结论 五味子油对2型糖尿病大鼠有降低血糖调节血脂代谢紊乱,改善胰岛素抵抗的作用.%Purpose To study the effects of Schisandrae chinenesis oil on serum glucose, serum lipid and insulin in type 2 diabetes rats with insulin resistance, and to try to find out its mechanism. Methods The high-fat diet combined with low-dose STZ at the ideal interval was used to establish the experimental rat model of type 2 diabetes. Rats were randomly divided into nomal group, model group, Schisandrae chinenesis oil 1 and 0.5 mg/kg groups and rosiglitazone group. Fasting blood glucose(FBG) , fasting insulin (FINS) , triglyceride ( TG ) .high-density liporotein ( HDL ) , low-density liporotein ( LDL ) , and total cholesterol(TC) were measured after 6 weeks,and the insulin resistance index( HOMA-IR) was calculated. Results Schisandrae chinenesis oil could obviously decrease FBG,TG,LDH ,TC ,and FINS,increase HDL,and decrease HOMA-IR. Conclusion Schisandrae chinenesis oil has a treatment effect on diabetes type 2 rats with insulin resistance. It could decrease FBG and adjust metabolic disturbance, and improve insulin resistance.

  16. Insulin resistance and chronic liver disease

    Science.gov (United States)

    Kawaguchi, Takumi; Taniguchi, Eitaro; Itou, Minoru; Sakata, Masahiro; Sumie, Shuji; Sata, Michio

    2011-01-01

    Increased insulin resistance is frequently associated with chronic liver disease and is a pathophysiological feature of hepatogenous diabetes. Distinctive factors including hepatic parenchymal cell damage, portal-systemic shunting and hepatitis C virus are responsible for the development of hepatogenous insulin resistance/diabetes. Although it remains unclear whether insulin secretion from pancreatic beta cells is impaired as it is in type 2 diabetes, retinopathic and cardiovascular risk is low and major causes of death in cirrhotic patients with diabetes are liver failure, hepatocellular carcinoma and gastrointestinal hemorrhage. Hemoglobin A1c is an inaccurate marker for the assessment and management of hepatogenous diabetes. Moreover, exogenous insulin or sulfonylureas may be harmful because these agents may promote hepatocarcinogenesis. Thus, pathogenesis, cause of death, assessment and therapeutic strategy for hepatogenous insulin resistance/diabetes differ from those for lifestyle-related type 2 diabetes. In this article, we review features of insulin resistance in relationship to chronic liver disease. We also discuss the impact of anti-diabetic agents on interferon treatment and hepatocarcinogenesis. PMID:21731901

  17. Patients with psoriasis are insulin resistant

    DEFF Research Database (Denmark)

    Gyldenløve, Mette; Storgaard, Heidi; Holst, Jens Juul

    2015-01-01

    BACKGROUND: Patients with psoriasis have increased risk of type 2 diabetes. The pathophysiology is largely unknown, but it is hypothesized that systemic inflammation causes insulin resistance. Insulin sensitivity has only been sparsely investigated in patients with psoriasis, and previous studies...... have used suboptimal methodology. The hyperinsulinemic euglycemic clamp remains the gold standard for quantifying whole-body insulin sensitivity. OBJECTIVE: We sought to investigate if normal glucose-tolerant patients with psoriasis exhibit impaired insulin sensitivity. METHODS: Three....... Mean ± SEM psoriasis duration was 23 ± 3 years and Psoriasis Area and Severity Index score was 12.7 ± 1.4. Patients with psoriasis exhibited reduced insulin sensitivity compared with control subjects (median M-value 4.5 [range 1.6-14.0] vs 7.4 [range 2.1-10.8] mg/kg/min, P = .046). There were...

  18. Targeting endoplasmic reticulum stress in insulin resistance.

    Science.gov (United States)

    Salvadó, Laia; Palomer, Xavier; Barroso, Emma; Vázquez-Carrera, Manuel

    2015-08-01

    The endoplasmic reticulum (ER) is involved in the development of insulin resistance and progression to type 2 diabetes mellitus (T2DM). Disruption of ER homeostasis leads to ER stress, which activates the unfolded protein response (UPR). This response is linked to different processes involved in the development of insulin resistance (IR) and T2DM, including inflammation, lipid accumulation, insulin biosynthesis, and β-cell apoptosis. Understanding the mechanisms by which disruption of ER homeostasis leads to IR and its progression to T2DM may offer new pharmacological targets for the treatment and prevention of these diseases. Here, we examine ER stress, the UPR, and downstream pathways in insulin sensitive tissues, and in IR, and offer insights towards therapeutic strategies.

  19. Glucose-induced insulin resistance of skeletal-muscle glucose transport and uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hansen, B F; Hansen, S A

    1988-01-01

    in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure......, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation.......The ability of glucose and insulin to modify insulin-stimulated glucose transport and uptake was investigated in perfused skeletal muscle. Here we report that perfusion of isolated rat hindlimbs for 5 h with 12 mM-glucose and 20,000 microunits of insulin/ml leads to marked, rapidly developing...

  20. Insulin mediated hemodynamic responses in spontaneous hypertensive rats (SHRs): effect of chromosome 4 gene transfer.

    Science.gov (United States)

    Rao, Sumangala P; McRae, Crystal; Lapanowski, Karen; Churchill, Monique; Kurtz, Theodore W; Dunbar, Joseph C

    2003-02-01

    The spontaneous hypertensive rat (SHR) is a widely studied model of essential hypertension and has been reported to exhibit alterations in carbohydrate and lipid metabolism. Genetic linkage studies implicated that SHR carries deletion variant of Cd36 gene of chromosome 4, the gene that encodes fatty acid transporter. Thus it could be possible that primary genetic defect in SHR is compromised tissue utilization of fatty acid that would form the basis for the pathogenesis of hyperinsulinemia, insulin resistance and insulin-mediated responses. We measured both the hemodynamic and metabolic responses to insulin in SHR in comparison with the chromosome congenic spontaneous hypertensive rats (cSHRs) (rats in which piece of chromosome 4 containing wild type Cd36 was integrated into the SHR genome). A bolus infusion of insulin increased iliac conductance and decreased blood pressure in Wistar Kyoto (WKY) rats. However, in SHR insulin did not reduce blood pressure as in WKY but after about 15 min it significantly enhanced blood pressure and reduced iliac conductance. Whereas in cSHR insulin did not reduce blood pressure as in WKY rats. However, pressor responses to insulin were eliminated by chromosome 4 gene transfer. Glucose clearance was significantly slower in both SHR and cSHR. Glucose tolerance test revealed that SHR are hyperinsulinemic and insulin resistant. These findings indicate that transfer of segment of chromosome 4 from Brown Norway rats onto spontaneous hypertensive background eliminates hyperinsulinemia and pressor effects of insulin.

  1. Nonalcoholic steatohepatitis and insulin resistance in children

    Institute of Scientific and Technical Information of China (English)

    Mikage; Arata; Junya; Nakajima; Shigeo; Nishimata; Tomomi; Nagata; Hisashi; Kawashima

    2014-01-01

    Various pathological conditions can cause fatty liver in children. Nonalcoholic steatohepatitis(NASH) in children has been known since 1983. However, NASH diagnosed in childhood does not have a favorable outcome.The pathological characteristics of NASH are significantly different between children and adults. Nonalcoholic fatty liver disease(NAFLD)/NASH is accompanied by insulin resistance, which plays a pivotal role in its pathophysiology in both children and adults. In NASH,a “two-hit” model involving triglyceride accumulation(first hit) and liver damage(second hit) has been accepted. Insulin resistance was found to correlate with changes in fat levels; however, it did not correlate with fibrosis or NAFLD activity score in children. Therefore,insulin resistance may be important in the first hit.Because there is obvious familial clustering in NASH,genetic predisposition as well as environmental factors including diet might be the second hit of NAFLD/NASH.

  2. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance

    DEFF Research Database (Denmark)

    Højlund, Kurt

    2014-01-01

    . These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes...... described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance....... Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin...

  3. Chemokine Systems Link Obesity to Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Tsuguhito Ota

    2013-06-01

    Full Text Available Obesity is a state of chronic low-grade systemic inflammation. This chronic inflammation is deeply involved in insulin resistance, which is the underlying condition of type 2 diabetes and metabolic syndrome. A significant advance in our understanding of obesity-associated inflammation and insulin resistance has been recognition of the critical role of adipose tissue macrophages (ATMs. Chemokines are small proteins that direct the trafficking of immune cells to sites of inflammation. In addition, chemokines activate the production and secretion of inflammatory cytokines through specific G protein-coupled receptors. ATM accumulation through C-C motif chemokine receptor 2 and its ligand monocyte chemoattractant protein-1 is considered pivotal in the development of insulin resistance. However, chemokine systems appear to exhibit a high degree of functional redundancy. Currently, more than 50 chemokines and 18 chemokine receptors exhibiting various physiological and pathological properties have been discovered. Therefore, additional, unidentified chemokine/chemokine receptor pathways that may play significant roles in ATM recruitment and insulin sensitivity remain to be fully identified. This review focuses on some of the latest findings on chemokine systems linking obesity to inflammation and subsequent development of insulin resistance.

  4. Angiotensin receptor blockade recovers hepatic UCP2 expression and aconitase and SDH activities and ameliorates hepatic oxidative damage in insulin resistant rats.

    Science.gov (United States)

    Montez, Priscilla; Vázquez-Medina, José Pablo; Rodríguez, Rubén; Thorwald, Max A; Viscarra, José A; Lam, Lisa; Peti-Peterdi, Janos; Nakano, Daisuke; Nishiyama, Akira; Ortiz, Rudy M

    2012-12-01

    Metabolic syndrome (MetS) is commonly associated with elevated renin-angiotensin system, oxidative stress, and steatohepatitis with down-regulation of uncoupling proteins (UCPs). However, the mechanisms linking renin-angiotensin system, steatosis, and UCP2 to hepatic oxidative damage during insulin resistance are not described. To test the hypothesis that angiotensin receptor activation contributes to decreased hepatic UCP2 expression and aconitase activity and to increased oxidative damage after increased glucose intake in a model of MetS, lean and obese Long Evans rats (n = 10/group) were randomly assigned to the following groups: 1) untreated Long Evans Tokushima Otsuka (lean, strain control), 2) untreated Otsuka Long Evans Tokushima Fatty (OLETF) (MetS model), 3) OLETF + angiotensin receptor blocker (ARB) (10 mg olmesartan/kg·d × 6 wk), 4) OLETF + high glucose (HG) (5% in drinking water × 6 wk), and 5) OLETF + ARB + HG (ARB/HG × 6 wk). HG increased body mass (37%), plasma triglycerides (TGs) (35%), plasma glycerol (87%), plasma free fatty acids (28%), and hepatic nitrotyrosine (74%). ARB treatment in HG decreased body mass (12%), plasma TG (15%), plasma glycerol (23%), plasma free fatty acids (14%), and hepatic TG content (42%), suggesting that angiotensin receptor type 1 (AT1) activation and increased adiposity contribute to the development of obesity-related dyslipidemia. ARB in HG also decreased hepatic nitrotyrosine and increased hepatic UCP2 expression (59%) and aconitase activity (40%), as well as antioxidant enzyme activities (50-120%), suggesting that AT1 activation also contributes to protein oxidation, impaired lipid metabolism, and antioxidant metabolism in the liver. Thus, in addition to promoting obesity-related hypertension, AT1 activation may also impair lipid metabolism and antioxidant capacity, resulting in steatosis via decreased UCP2 and tricarboxylic acid cycle activity.

  5. Astragalus polysaccharides affect insulin resistance by regulating the hepatic SIRT1-PGC-1α/PPARα-FGF21 signaling pathway in male Sprague Dawley rats undergoing catch-up growth

    Science.gov (United States)

    GU, CHENGYING; ZENG, YIPENG; TANG, ZHAOSHENG; WANG, CHAOXUN; HE, YANJU; FENG, XINGE; ZHOU, LIGANG

    2015-01-01

    The present study investigated the effects of Astragalus polysaccharides (APS) on insulin resistance by modulation of hepatic sirtuin 1 (SIRT1)-peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC)-1α/PPARα-fibroblast growth factor (FGF)21, and glucose and lipid metabolism. Thirty male Sprague Dawley rats were divided into three groups: A normal control group, a catch-up growth group and an APS-treated (APS-G) group. The latter two groups underwent food restriction for 4 weeks, prior to being provided with a high fat diet, which was available ad libitum. The APS-G group was orally treated with APS for 8 weeks, whereas the other groups were administered saline. Body weight was measured and an oral glucose tolerance test (OGTT) was conducted after 8 weeks. The plasma glucose and insulin levels obtained from the OGTT were assayed, and hepatic morphology was observed by light and transmission electron microscopy. In addition, the mRNA expression levels of PGC-1α/PPARα, and the protein expression levels of SIRT1, FGF21 and nuclear factor-κB were quantified in the liver and serum. APS treatment suppressed abnormal glycolipid metabolism and insulin resistance following 8 weeks of catch-up growth by improving hepatic SIRT1-PPARα-FGF21 intracellular signaling and reducing chronic inflammation, and by partially attenuating hepatic steatosis. The suppressive effects of APS on liver acetylation and glycolipid metabolism-associated molecules contributed to the observed suppression of insulin resistance. However, the mechanism underlying the effects of APS on insulin resistance requires further research in order to be elucidated. Rapid and long-term treatment with APS may provide a novel, safe and effective therapeutic strategy for type 2 diabetes. PMID:26323321

  6. Insulin resistance in the elderly: The Rotterdam Study

    NARCIS (Netherlands)

    R.P. Stolk (Ronald)

    1995-01-01

    textabstractInsulin resistance is a diminished ability to keep the serum glucose low with insulin levels in the normal range. Subjects with raised insulin resistance therefore usually have increased serum insulin levels. When the B-cells of the pancreas are no longer able to produce these increased

  7. Study on mechanism of changes of catecholamine content in insulin-resistance rats%胰岛素抵抗大鼠体内儿茶酚胺含量变化机制研究

    Institute of Scientific and Technical Information of China (English)

    李姗; 丁启龙

    2009-01-01

    AIM: To observe the changes of catecholamine content in the center and periphery of insulin-resistance rats induced by high-fat diet. METHODS: The formation of insulin-resistance model was assessed with serum glucose, serum insulin, index of insulin sensitivity and index of insulin resistance. The role of mifepristone antagonizing glucocorticoid was checked by the change of serum corticosterone. The blood pressure was measured by the tail cuff method. Activities of the catecholamine sympathetic nervous in the center and periphery of insulin-resistance rats were investigated by the measurements of dopamine, adrenaline , noradrenaline in hypothalamus, brainstem, serum and adrenals. RESULTS: Administration of 8 weeks of high-fat diet induced insulin-resistance rats model with increase of systolic blood pressure and catecholamine contents in the center and periphery ( P < 0.01) . Mifepristone significantly improved blood pressure and catecholamine in the center and periphery ( P <0.05). CONCLUSION: Increased catecholamine contents in the center and periphery might be related to the changes of glucocorticoid in serum of insulin-resistance rats induced by high-fat diet.%目的:观察由高脂饲料诱导的胰岛素抵抗(IR)大鼠中枢与外周儿茶酚胺(CA)含量的变化并探讨其机制.方法:用空腹血糖、空腹血胰岛素、胰岛素敏感指数、IR指数等指标来评估IR动物模型的形成;用血清皮质酮反映IR形成过程中糖皮质激素的变化;用套尾法测量血压;用下丘脑、脑干、血清、肾上腺组织中多巴胺(DA)、肾上腺素(E)和去甲肾上腺素(NE)的变化来评价IR大鼠体内中枢与外周CA交感神经活性的变化.结果:高脂饲料喂养8周后大鼠出现IR并伴SBP升高,中枢与外周CA的含量明显升高(P<0.01);给予米非司酮和罗格列酮后血压明显改善,中枢与外周CA的含量明显下降(P<0.05).结论:高脂饲料诱发的IR状态大鼠中枢与外周CA的升高与血浆

  8. Implication of low level inflammation in the insulin resistance of adipose tissue at late pregnancy.

    Science.gov (United States)

    de Castro, J; Sevillano, J; Marciniak, J; Rodriguez, R; González-Martín, C; Viana, M; Eun-suk, O H; de Mouzon, S Hauguel; Herrera, E; Ramos, M P

    2011-11-01

    Insulin resistance is a characteristic of late pregnancy, and adipose tissue is one of the tissues that most actively contributes to the reduced maternal insulin sensitivity. There is evidence that pregnancy is a condition of moderate inflammation, although the physiological role of this low-grade inflammation remains unclear. The present study was designed to validate whether low-grade inflammation plays a role in the development of insulin resistance in adipose tissue during late pregnancy. To this end, we analyzed proinflammatory adipokines and kinases in lumbar adipose tissue of nonpregnant and late pregnant rats at d 18 and 20 of gestation. We found that circulating and tissue levels of adipokines, such as IL-1β, plasminogen activator inhibitor-1, and TNF-α, were increased at late pregnancy, which correlated with insulin resistance. The observed increase in adipokines coincided with an enhanced activation of p38 MAPK in adipose tissue. Treatment of pregnant rats with the p38 MAPK inhibitor SB 202190 increased insulin-stimulated tyrosine phosphorylation of the insulin receptor (IR) and IR substrate-1 in adipose tissue, which was paralleled by a reduction of IR substrate-1 serine phosphorylation and an enhancement of the metabolic actions of insulin. These results indicate that activation of p38 MAPK in adipose tissue contributes to adipose tissue insulin resistance at late pregnancy. Furthermore, the results of the present study support the hypothesis that physiological low-grade inflammation in the maternal organism is relevant to the development of pregnancy-associated insulin resistance.

  9. Endothelin-1 exacerbates development of hypertension and atherosclerosis in modest insulin resistant syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yan-Jie [Institute of Physiology, National Yang-Ming University, Taipei, Taiwan (China); Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan (China); Juan, Chi-Chang [Institute of Physiology, National Yang-Ming University, Taipei, Taiwan (China); Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Kwok, Ching-Fai [Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Hsu, Yung-Pei [Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan (China); Shih, Kuang-Chung [Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Chen, Chin-Chang [Institute of Physiology, National Yang-Ming University, Taipei, Taiwan (China); Ho, Low-Tone, E-mail: ltho@vghtpe.gov.tw [Institute of Physiology, National Yang-Ming University, Taipei, Taiwan (China); Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan (China)

    2015-05-08

    Endothelin-1 (ET-1) is known as potent vasoconstrictor, by virtue of its mitogenic effects, and may deteriorate the process of hypertension and atherosclerosis by aggravating hyperplasia and migration in VSMCs. Our previous study demonstrated that insulin infusion caused sequential induction of hyperinsulinemia, hyperendothelinemia, insulin resistance, and then hypertension in rats. However, the underlying mechanism of ET-1 interfere insulin signaling in VSMCs remains unclear. To characterize insulin signaling during modest insulin resistant syndrome, we established and monitored rats by feeding high fructose-diet (HFD) until high blood pressure and modest insulin resistance occurred. To explore the role of ET-1/ET{sub A}R during insulin resistance, ET{sub A}R expression, ET-1 binding, and insulin signaling were investigated in the HFD-fed rats and cultured A-10 VSMCs. Results showed that high blood pressure, tunica medial wall thickening, plasma ET-1 and insulin, and accompanied with modest insulin resistance without overweight and hyperglycemia occurred in early-stage HFD-fed rats. In the endothelium-denuded aorta from HFD-fed rats, ET{sub A}R expression, but not ET{sub B}R, and ET-1 binding in aorta were increased. Moreover, decreasing of insulin-induced Akt phosphorylation and increasing of insulin-induced ERK phosphorylation were observed in aorta during modest insulin resistance. Interestingly, in ET-1 pretreated VSMCs, the increment of insulin-induced Akt phosphorylation was decreased whereas the increment of insulin-induced ERK phosphorylation was increased. In addition, insulin potentiated ET-1-induced VSMCs migration and proliferation due to increasing ET-1 binding. ETAR antagonist reversed effects of ET-1 on insulin-induced signaling and VSMCs migration and proliferation. In summary, modest insulin resistance syndrome accompanied with hyperinsulinemia leading to the potentiation on ET-1-induced actions in aortic VSMCs. ET-1 via ET{sub A}R pathway

  10. Importance of hepatitis C virus-associated insulin resistance:Therapeutic strategies for insulin sensitization

    Institute of Scientific and Technical Information of China (English)

    Takumi; Kawaguchi; Michio; Sata

    2010-01-01

    Insulin resistance is one of the pathological features in patients with hepatitis C virus(HCV) infection.Generally,persistence of insulin resistance leads to an increase in the risk of life-threatening complications such as cardiovascular diseases.However,these complications are not major causes of death in patients with HCV-associated insulin resistance.Indeed,insulin resistance plays a crucial role in the development of various complications and events associated with HCV infection.Mounting evidence indic...

  11. Impaired translocation of GLUT4 results in insulin resistance of atrophic soleus muscle.

    Science.gov (United States)

    Xu, Peng-Tao; Song, Zhen; Zhang, Wen-Cheng; Jiao, Bo; Yu, Zhi-Bin

    2015-01-01

    Whether or not the atrophic skeletal muscle induces insulin resistance and its mechanisms are not resolved now. The antigravity soleus muscle showed a progressive atrophy in 1-week, 2-week, and 4-week tail-suspended rats. Hyperinsulinemic-euglycemic clamp showed that the steady-state glucose infusion rate was lower in 4-week tail-suspended rats than that in the control rats. The glucose uptake rates under insulin- or contraction-stimulation were significantly decreased in 4-week unloaded soleus muscle. The key protein expressions of IRS-1, PI3K, and Akt on the insulin-dependent pathway and of AMPK, ERK, and p38 on the insulin-independent pathway were unchanged in unloaded soleus muscle. The unchanged phosphorylation of Akt and p38 suggested that the activity of two signal pathways was not altered in unloaded soleus muscle. The AS160 and GLUT4 expression on the common downstream pathway also was not changed in unloaded soleus muscle. But the GLUT4 translocation to sarcolemma was inhibited during insulin stimulation in unloaded soleus muscle. The above results suggest that hindlimb unloading in tail-suspended rat induces atrophy in antigravity soleus muscle. The impaired GLUT4 translocation to sarcolemma under insulin stimulation may mediate insulin resistance in unloaded soleus muscle and further affect the insulin sensitivity of whole body in tail-suspended rats.

  12. Impaired Translocation of GLUT4 Results in Insulin Resistance of Atrophic Soleus Muscle

    Directory of Open Access Journals (Sweden)

    Peng-Tao Xu

    2015-01-01

    Full Text Available Whether or not the atrophic skeletal muscle induces insulin resistance and its mechanisms are not resolved now. The antigravity soleus muscle showed a progressive atrophy in 1-week, 2-week, and 4-week tail-suspended rats. Hyperinsulinemic-euglycemic clamp showed that the steady-state glucose infusion rate was lower in 4-week tail-suspended rats than that in the control rats. The glucose uptake rates under insulin- or contraction-stimulation were significantly decreased in 4-week unloaded soleus muscle. The key protein expressions of IRS-1, PI3K, and Akt on the insulin-dependent pathway and of AMPK, ERK, and p38 on the insulin-independent pathway were unchanged in unloaded soleus muscle. The unchanged phosphorylation of Akt and p38 suggested that the activity of two signal pathways was not altered in unloaded soleus muscle. The AS160 and GLUT4 expression on the common downstream pathway also was not changed in unloaded soleus muscle. But the GLUT4 translocation to sarcolemma was inhibited during insulin stimulation in unloaded soleus muscle. The above results suggest that hindlimb unloading in tail-suspended rat induces atrophy in antigravity soleus muscle. The impaired GLUT4 translocation to sarcolemma under insulin stimulation may mediate insulin resistance in unloaded soleus muscle and further affect the insulin sensitivity of whole body in tail-suspended rats.

  13. Molecular mechanisms of insulin resistance and associated diseases.

    Science.gov (United States)

    Mlinar, Barbara; Marc, Janja; Janez, Andrej; Pfeifer, Marija

    2007-01-01

    Insulin resistance is a state in which higher than normal concentrations of insulin are required for normal response. The most common underlying cause is central obesity, although primary insulin resistance in normal-weight individuals is also possible. Excess abdominal adipose tissue has been shown to release increased amounts of free fatty acids which directly affect insulin signalling, diminish glucose uptake in muscle, drive exaggerated triglyceride synthesis and induce gluconeogenesis in the liver. Other factors presumed to play the role in insulin resistance are tumour necrosis factor alpha, adiponectin, leptin, IL-6 and some other adipokines. Hyperinsulinaemia which accompanies insulin resistance may be implicated in the development of many pathological states, such as hypertension and hyperandrogenaemia. Insulin resistance underlies metabolic syndrome and is further associated with polycystic ovary syndrome and lipodystrophies. When beta-cells fail to secrete the excess insulin needed, diabetes mellitus type 2 emerges, which is, besides coronary heart disease, the main complication of insulin resistance and associated diseases.

  14. Epigenetic markers to further understand insulin resistance.

    Science.gov (United States)

    Ling, Charlotte; Rönn, Tina

    2016-11-01

    Epigenetic variation in human adipose tissue has been linked to type 2 diabetes and its related risk factors including age and obesity. Insulin resistance, a key risk factor for type 2 diabetes, may also be associated with altered DNA methylation in visceral and subcutaneous adipose tissue. Furthermore, linking epigenetic variation in target tissues to similar changes in blood cells may identify new blood-based biomarkers. In this issue of Diabetologia, Arner et al studied the transcriptome and methylome in subcutaneous and visceral adipose tissue of 80 obese women who were either insulin-sensitive or -resistant (DOI 10.1007/s00125-016-4074-5 ). While they found differences in gene expression between the two groups, no alterations in DNA methylation were found after correction for multiple testing. Nevertheless, based on nominal p values, their methylation data overlapped with methylation differences identified in adipose tissue of individuals with type 2 diabetes compared with healthy individuals. Differential methylation of these overlapping CpG sites may predispose to diabetes by occurring already in the insulin-resistant state. Furthermore, some methylation changes may contribute to an inflammatory process in adipose tissue since the identified CpG sites were annotated to genes encoding proteins involved in inflammation. Finally, the methylation pattern in circulating leucocytes did not mirror the adipose tissue methylome of these 80 women. Together, identifying novel molecular mechanisms contributing to insulin resistance and type 2 diabetes may help advance the search for new therapeutic alternatives.

  15. Streptozotocin diabetes and insulin resistance impairment of ...

    African Journals Online (AJOL)

    olayemitoyin

    *1. Arikawe A. P.,. 1. Oyerinde A.,. 2. Olatunji-Bello I.I., and. 3. Obika L.F.O. Department of Physiology ..... type I diabetes mellitus and that insulin resistance causes type II ..... the key enzymes of carbohydrate metabolism in hepatic and renal.

  16. Insulin resistance, steatosis and hepatitis C virus

    OpenAIRE

    Mangia, Alessandra; Ripoli, Maria

    2013-01-01

    Epidemiological studies have shown an increased occurrence of metabolic disorders such as insulin resistance (IR) and steatosis in patients with hepatitis C virus (HCV) infection. IR is believed to represent one of the central clinical features of the “metabolic syndrome” and the major pathogenetic factor for type 2 diabetes mellitus. In patients with chronic HCV hepatitis, IR may have several dangerous consequences such as accelerated progression of liver fibrosis, resistance to antiviral th...

  17. Effects of LY117018 and the estrogen analogue, 17alpha-ethinylestradiol, on vascular reactivity, platelet aggregation, and lipid metabolism in the insulin-resistant JCR:LA-cp male rat: role of nitric oxide.

    Science.gov (United States)

    Russell, J C; McKendrick, J D; Dubé, P J; Dolphin, P J; Radomski, M W

    2001-01-01

    The JCR:LA-cp rat is obese and insulin resistant and develops a major vasculopathy, with associated ischemic damage to the heart. Male rats were treated with 17alpha-ethinylestradiol (EE), LY117018, and/or the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME). LY117018 decreased plasma cholesterol esters, with a 40% reduction in total cholesterol. EE increased triglyceride levels and modestly decreased cholesterol esters. L-NAME increased blood pressure and aortic contractile sensitivity to phenylephrine and inhibited acetylcholine-induced relaxation. LY117018 decreased the force of contraction. The L-NAME-mediated increase in force of contraction and decrease in response to acetylcholine was inhibited by LY117018. L-NAME-induced hypertension was prevented by LY117018. Platelet aggregation was not different between obese and lean rats and was unaffected by L-NAME. LY117018, both in the absence and presence of L-NAME, inhibited platelet aggregation. The effects of LY117018 are apparently mediated through both NO-dependent and -independent mechanisms. The changes induced by EE and LY117018 may reflect the activation of multiple mechanisms, both estrogen receptor-dependent and -independent. The changes induced by LY117018 are significant and may prove to be cardioprotective in the presence of the insulin resistance syndrome.

  18. Effect of exercise on insulin resistance, serum leptin and diet quantity of obese rats%运动对肥胖大鼠胰岛素抵抗、血清瘦素及饮食量的影响

    Institute of Scientific and Technical Information of China (English)

    杨志民; 席莉; 宋旭

    2013-01-01

    After ten weeks' monitoring on the obese rats' dietary and swimming exercise to lose weight,the effect of exercise on the obese rats' diet quantity,insulin resistance and serum leptin index is obtained.The results show that regular exercise over an extent period of time can not only havea certain restrictive effect on the diet quantity of obese rats,but also make the insulin resistance indices and serum leptin levels of them effectively reduced.%文章通过对肥胖大鼠进行10周的饮食监测以及游泳运动减肥,观察运动对肥胖大鼠饮食量和胰岛素抵抗、血清瘦素指标的影响.研究结果表明,一定时间的有规律运动不仅能对肥胖大鼠的饮食量产生一定的抑制作用,而且使得肥胖大鼠胰岛素抵抗指数和血清瘦素水平得到了有效降低.

  19. Insulin resistance in obesity can be reliably identified from fasting plasma insulin.

    Science.gov (United States)

    ter Horst, K W; Gilijamse, P W; Koopman, K E; de Weijer, B A; Brands, M; Kootte, R S; Romijn, J A; Ackermans, M T; Nieuwdorp, M; Soeters, M R; Serlie, M J

    2015-12-01

    Insulin resistance is the major contributor to cardiometabolic complications of obesity. We aimed to (1) establish cutoff points for insulin resistance from euglycemic hyperinsulinemic clamps (EHCs), (2) identify insulin-resistant obese subjects and (3) predict insulin resistance from routinely measured variables. We assembled data from non-obese (n=112) and obese (n=100) men who underwent two-step EHCs using [6,6-(2)H2]glucose as tracer (insulin infusion dose 20 and 60 mU m(-2) min(-1), respectively). Reference ranges for hepatic and peripheral insulin sensitivity were calculated from healthy non-obese men. Based on these reference values, obese men with preserved insulin sensitivity or insulin resistance were identified. Cutoff points for insulin-mediated suppression of endogenous glucose production (EGP) and insulin-stimulated glucose disappearance rate (Rd) were 46.5% and 37.3 μmol kg(-)(1) min(-)(1), respectively. Most obese men (78%) had EGP suppression within the reference range, whereas only 12% of obese men had Rd within the reference range. Obese men with Rd insulin-sensitive obese men in age, body mass index (BMI), body composition, fasting glucose or cholesterol, but did have higher fasting insulin (110±49 vs 63±29 pmol l(-1), Pinsulin resistance (HOMA-IR) (4.5±2.2 vs 2.7±1.4, P=0.004). Insulin-resistant obese men could be identified with good sensitivity (80%) and specificity (75%) from fasting insulin >74 pmol l(-1). Most obese men have hepatic insulin sensitivity within the range of non-obese controls, but below-normal peripheral insulin sensitivity, that is, insulin resistance. Fasting insulin (>74 pmol l(-1) with current insulin immunoassay) may be used for identification of insulin-resistant (or metabolically unhealthy) obese men in research and clinical settings.

  20. Intralipid decreases apolipoprotein M levels and insulin sensitivity in rats.

    Directory of Open Access Journals (Sweden)

    Lu Zheng

    Full Text Available BACKGROUND: Apolipoprotein M (ApoM is a constituent of high-density lipoproteins (HDL. It plays a crucial role in HDL-mediated reverse cholesterol transport. Insulin resistance is associated with decreased ApoM levels. AIMS: To assess the effects of increased free fatty acids (FFAs levels after short-term Intralipid infusion on insulin sensitivity and hepatic ApoM gene expression. METHODS: Adult male Sprague-Dawley (SD rats infused with 20% Intralipid solution for 6 h. Glucose infusion rates (GIR were determined by hyperinsulinemic-euglycemic clamp during Intralipid infusion and plasma FFA levels were measured by colorimetry. Rats were sacrificed after Intralipid treatment and livers were sampled. Human embryonic kidney 293T cells were transfected with a lentivirus mediated human apoM overexpression system. Goto-Kakizaki (GK rats were injected with the lentiviral vector and insulin tolerance was assessed. Gene expression was assessed by real-time RT-PCR and PCR array. RESULTS: Intralipid increased FFAs by 17.6 folds and GIR was decreased by 27.1% compared to the control group. ApoM gene expression was decreased by 40.4% after Intralipid infusion. PPARβ/δ expression was not changed by Intralipid. Whereas the mRNA levels of Acaca, Acox1, Akt1, V-raf murine sarcoma 3611 viral oncogene homolog, G6pc, Irs2, Ldlr, Map2k1, pyruvate kinase and RBC were significantly increased in rat liver after Intralipid infusion. The Mitogen-activated protein kinase 8 (MAPK8 was significantly down-regulated in 293T cells overexpressing ApoM. Overexpression of human ApoM in GK rats could enhance the glucose-lowering effect of exogenous insulin. CONCLUSION: These results suggest that Intralipid could decrease hepatic ApoM levels. ApoM overexpression may have a potential role in improving insulin resistance in vivo and modulating apoM expression might be a future therapeutic strategy against insulin resistance in type 2 diabetes.

  1. Thiazolidinediones attenuate lipolysis and ameliorate dexamethasone-induced insulin resistance.

    Science.gov (United States)

    He, Jinhan; Xu, Chong; Kuang, Jiangying; Liu, Qinhui; Jiang, Hongfeng; Mo, Li; Geng, Bin; Xu, Guoheng

    2015-07-01

    Elevated levels of circulating free fatty acids induce insulin resistance and often occur in obese and diabetic conditions. One pharmacological basis for the antidiabetic effects of thiazolidinediones (TZDs) is that TZDs reduce levels of circulating FFAs by accelerating their uptake and reesterification from plasma into adipocytes. Here, we investigated whether TZDs affect adipose lipolysis, a process controlling triglyceride hydrolysis and FFA efflux to the bloodstream. The effects of TZDs on lipolysis were investigated in primary rat adipocytes in vitro and in rats in vivo. In rat primary adipocytes, the TZDs pioglitazone, rosiglitazone and troglitazone inhibited the lipolytic reaction dose- and time-dependently and in a post-receptor pathway by decreasing cAMP level and total lipase activity. TZDs increased the phosphorylation of Akt/protein kinase B, an action required for activating cyclic-nucleotide phosphodiesterase 3B, a major enzyme responsible for cAMP hydrolysis in adipocytes. Furthermore, rosiglitazone inhibited the lipolytic action in dexamethasone-stimulated adipocytes, thereby preventing the increased level of circulating FFAs, and ameliorated insulin resistance in vivo in dexamethasone-treated rats. TZDs may attenuate lipolysis and FFA efflux by activating Akt signaling to decrease cAMP level and hence reduce lipase activity in adipocytes. Inhibiting lipolysis and FFA efflux with TZDs could be a pharmacological basis by which TZDs antagonize diabetes, particularly in patients with hypercortisolemia or glucocorticoid challenge. Copyright © 2015. Published by Elsevier Inc.

  2. Lipid and insulin infusion-induced skeletal muscle insulin resistance is likely due to metabolic feedback and not changes in IRS-1, Akt, or AS160 phosphorylation.

    Science.gov (United States)

    Hoy, Andrew J; Brandon, Amanda E; Turner, Nigel; Watt, Matthew J; Bruce, Clinton R; Cooney, Gregory J; Kraegen, Edward W

    2009-07-01

    Type 2 diabetes is characterized by hyperlipidemia, hyperinsulinemia, and insulin resistance. The aim of this study was to investigate whether acute hyperlipidemia-induced insulin resistance in the presence of hyperinsulinemia was due to defective insulin signaling. Hyperinsulinemia (approximately 300 mU/l) with hyperlipidemia or glycerol (control) was produced in cannulated male Wistar rats for 0.5, 1 h, 3 h, or 5 h. The glucose infusion rate required to maintain euglycemia was significantly reduced by 3 h with lipid infusion and was further reduced after 5 h of infusion, with no difference in plasma insulin levels, indicating development of insulin resistance. Consistent with this finding, in vivo skeletal muscle glucose uptake (31%, P lipid infusion. Despite the development of insulin resistance, there was no difference in the phosphorylation state of multiple insulin-signaling intermediates or muscle diacylglyceride and ceramide content over the same time course. However, there was an increase in cumulative exposure to long-chain acyl-CoA (70%) with lipid infusion. Interestingly, although muscle pyruvate dehydrogenase kinase 4 protein content was decreased in hyperinsulinemic glycerol-infused rats, this decrease was blunted in muscle from hyperinsulinemic lipid-infused rats. Decreased pyruvate dehydrogenase complex activity was also observed in lipid- and insulin-infused animals (43%). Overall, these results suggest that acute reductions in muscle glucose metabolism in rats with hyperlipidemia and hyperinsulinemia are more likely a result of substrate competition than a significant early defect in insulin action or signaling.

  3. Adipokines mediate inflammation and insulin resistance

    Directory of Open Access Journals (Sweden)

    Jeffrey E. Pessin

    2013-06-01

    Full Text Available For many years, adipose tissue was considered as an inert energy storage organ that accumulates and stores triacylglycerols during energy excess and releases fatty acids in times of systemic energy need. However, over the last two decades adipose tissue depots have been established as highly active endocrine and metabolically important organs that modulate energy expenditure and glucose homeostasis. In rodents, brown adipose tissue plays an essential role in non-shivering thermogenesis and in energy dissipation that can serve to protect against diet-induced obesity. White adipose tissue collectively referred too as either subcutaneous or visceral adipose tissue is responsible for the secretion of an array of signaling molecules, termed adipokines. These adipokines function as classic circulating hormones to communicate with other organs including brain, liver, muscle, the immune system and adipose tissue itself. The dysregulation of adipokines has been implicated in obesity, type 2 diabetes and cardiovascular disease. Recently, inflammatory responses in adipose tissue have been shown as a major mechanism to induce peripheral tissue insulin resistance. Although leptin and adiponectin regulate feeding behavior and energy expenditure, these adipokines are also involved in the regulation of inflammatory responses. Adipose tissue secrete various pro- and anti-inflammatory adipokines to modulate inflammation and insulin resistance. In obese humans and rodent models, the expression of pro-inflammatory adipokines is enhanced to induce insulin resistance. Collectively, these findings have suggested that obesity-induced insulin resistance may result, at least in part, from an imbalance in the expression of pro- and anti-inflammatory adipokines. Thus we will review the recent progress regarding the physiological and molecular functions of adipokines in the obesity-induced inflammation and insulin resistance with perspectives on future directions.

  4. Advances in TCM Research of Insulin Resistance

    Institute of Scientific and Technical Information of China (English)

    尚文斌; 程海波

    2001-01-01

    @@Insulin resistance (IR) refers to subnormal response to a certain amount of insulin and is the most characteristic phenomenon in non-insulin dependent diabetes mellitus (NIDDM). It is also an element of the pathogenic mechanism shared with obesity, systemic hypertension, abnormal lipid metabolism and atherosclerosis. In recent years, studies on its treatment with traditional Chinese medicine (TCM) have gradually been carried out and the following is a report of them. Mechanisms of Diabetic IR in TCM Terms Action of insulin antagonizing hormones in peripheral tissues is one of the causes of diabetic IR. Cyclic nucleosides cAMP and cGMP, important intracellular messengers, are considered to be the second messenger of insulin, and cAMP is related to the amount of insulin receptors. Early in 1980s, some authors investigated the relationship among the symptoms of diabetes and such hormones and cAMP/cGMP ratio. Although they did not give due attention to IR, their studies provided evidences for differentiation of symptoms and signs in IR typing.

  5. Acrolein metabolites, diabetes and insulin resistance.

    Science.gov (United States)

    Feroe, Aliya G; Attanasio, Roberta; Scinicariello, Franco

    2016-07-01

    Acrolein is a dietary and environmental pollutant that has been associated in vitro to dysregulate glucose transport. We investigated the association of urinary acrolein metabolites N-acetyl-S-(3-hydroxypropyl)-l-cysteine (3-HPMA) and N-acetyl-S-(carboxyethyl)-l-cysteine (CEMA) and their molar sum (∑acrolein) with diabetes using data from investigated 2027 adults who participated in the 2005-2006 National Health and Nutrition Examination Survey (NHANES). After excluding participants taking insulin or other diabetes medication we, further, investigated the association of the compounds with insulin resistance (n=850), as a categorical outcome expressed by the homeostatic model assessment (HOMA-IR>2.6). As secondary analyses, we investigated the association of the compounds with HOMA-IR, HOMA-β, fasting insulin and fasting plasma glucose. The analyses were performed using urinary creatinine as independent variable in the models, and, as sensitivity analyses, the compounds were used as creatinine corrected variables. Diabetes as well as insulin resistance (defined as HOMA-IR>2.6) were positively associated with the 3-HPMA, CEMA and ∑Acrolein with evidence of a dose-response relationship (pCEMA compared to the lowest quartile were significantly associated with higher HOMA-IR, HOMA-β and fasting insulin with a dose-response relationship. The highest 3rd quartile of 3-HPMA and ∑Acrolein were positively and significantly associated with HOMA-IR, HOMA-β and fasting insulin. These results suggest a need of further studies to fully understand the implications of acrolein with type 2 diabetes and insulin.

  6. The Role of Interleukin-6 on Insulin Resistant in Type 2 Diabetes Mellitus Rats%白介素 6 在 2 型糖尿病大鼠胰岛素抵抗中的作用

    Institute of Scientific and Technical Information of China (English)

    陈雨; 郑少雄; 郝杰; 孟春梅

    2011-01-01

    目的:观察白介素6(IL-6)抗原及IL-6抗体对2型糖尿病(T2DM)大鼠的影响,探讨IL-6等炎症因子对糖尿病胰岛素抵抗的作用.方法:36只SD T2DM大鼠,随机分为4组:糖尿病IL-6抗原组(A组),糖尿病IL-6抗体组(B组),糖尿病对照组(C组),健康对照组(N组).测定血糖、血清胰岛素、血脂、血游离脂肪酸和肝脏胰岛素受体.结果:脂肪乳灌胃(高糖高脂饮食)7周加小剂量1次尾静脉注射链脲佐菌素(STZ)可以成功诱导SD大鼠的T2DM模型,糖尿病组较正常对照组出现明显的高胰岛素血症、胰岛素抵抗、胰岛素敏感性降低和高脂血症;IL-6抗体干预可以降低T2DM大鼠的胰岛素水平,减轻其胰岛素抵抗.结论:IL-6抗体能够改善T2DM大鼠的胰岛素抵抗状态.%Objective:To observe the influence of interleukin-6(IL-6) antigen and IL-6 antibody on type 2 diabetes mellitus rats, and to study the important role of IL-6 and other inflammation factors in the pathogenesis of diabetes. Methods: A total of 36 the type 2 diabetes mellitus SD rats were divided into four groups randomly: the diabetes mellitus IL-6 antigen group (Group A), diabetes mellitus IL-6 antibody group (Group B), diabetes mellitus control group (Group C), and normal control group (Group N). The serum insulin, lipid, free fatty acid and the insulin receptor on the liver were measured. Results: Using intragastric administration with fat milk (high-glucose-high-fat diet) plus low dose STZ by vena caudalis, the type 2 diabetes mellitus SD rat model could be induced successfully. Contrast to control group, the serum insulin levels of diabetes mellitus Group A, B and C were significant higher, the insulin sensitivity decreased and the insulin resistant increased. And IL-6 antibody could decrease insulin level and ease insulin resistant in type 2 diabetes mellitus rat. Conclusions: IL-6 antibody could ease insulin resistant in type 2 diabetes mellitus rat.

  7. Importance of hepatitis C virus-associated insulin resistance: Therapeutic strategies for insulin sensitization

    Science.gov (United States)

    Kawaguchi, Takumi; Sata, Michio

    2010-01-01

    Insulin resistance is one of the pathological features in patients with hepatitis C virus (HCV) infection. Generally, persistence of insulin resistance leads to an increase in the risk of life-threatening complications such as cardiovascular diseases. However, these complications are not major causes of death in patients with HCV-associated insulin resistance. Indeed, insulin resistance plays a crucial role in the development of various complications and events associated with HCV infection. Mounting evidence indicates that HCV-associated insulin resistance may cause (1) hepatic steatosis; (2) resistance to anti-viral treatment; (3) hepatic fibrosis and esophageal varices; (4) hepatocarcinogenesis and proliferation of hepatocellular carcinoma; and (5) extrahepatic manifestations. Thus, HCV-associated insulin resistance is a therapeutic target at any stage of HCV infection. Although the risk of insulin resistance in HCV-infected patients has been documented, therapeutic guidelines for preventing the distinctive complications of HCV-associated insulin resistance have not yet been established. In addition, mechanisms for the development of HCV-associated insulin resistance differ from lifestyle-associated insulin resistance. In order to ameliorate HCV-associated insulin resistance and its complications, the efficacy of the following interventions is discussed: a late evening snack, coffee consumption, dietary iron restriction, phlebotomy, and zinc supplements. Little is known regarding the effect of anti-diabetic agents on HCV infection, however, a possible association between use of exogenous insulin or a sulfonylurea agent and the development of HCC has recently been reported. On the other hand, insulin-sensitizing agents are reported to improve sustained virologic response rates. In this review, we summarize distinctive complications of, and therapeutic strategies for, HCV-associated insulin resistance. Furthermore, we discuss supplementation with branched

  8. Ameliorative Effect of Allopurinol on Vascular Complications of Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Hany M. El-Bassossy

    2015-01-01

    Full Text Available The aim of the current study was to evaluate the possible protective effect of allopurinol (Allo on experimentally induced insulin resistance (IR and vascular complications. Rats were divided into four groups: control, IR, allopurinol-treated IR (IR-Allo, and allopurinol-treated control (Allo. IR was induced by adding fructose and high fat, high salt diet for 12 weeks. The results showed that Allo has alleviated the increased level of TNF-α and the systolic, diastolic, mean, and notch pressure observed in IR with no change in pulse pressure. In addition, Allo decreased the heart rate in the treated group compared to IR rats. On the other hand, it has no effect on increased levels of insulin, glucose, fructosamine, or body weight gain compared to IR group, while it increased significantly the insulin level and body weight without hyperglycemia in the control group. Moreover, Allo treatment ameliorated increased level of 4HNE, Ang II, and Ang R1. In conclusion, the results of the current study show that Allo has a protective effect on vascular complications of IR which may be attributed to the effect of Allo on decreasing the TNF-α, 4HNE, Ang II, and Ang R1 as well as increasing the level of insulin secretion.

  9. 17β-Estradiol up-regulates the expression of insulin receptor-α in ovariectomized rats with insulin resistance induced by fructose%17β-雌二醇上调去卵巢胰岛素抵抗大鼠骨骼肌中胰岛素受体的表达

    Institute of Scientific and Technical Information of China (English)

    唐东华; 姚起新; 亓竹青; 王光; 周寿红

    2010-01-01

    Objective To investigate the effect of 17β-estradiol on insulin resistance and the expression of insulin receptor-α in skeletal muscle of ovariectomized rats with insulin resistance induced by high fructose.Methods Forty-eight mature female Sprague-Dawley (SD) rats were randomly divided into four groups: the normal control group (NC, n= 12) rats were fed with the normal diet for 8 weeks; the model group (M, n= 12)rats were ovariectomized and fed with the high fructose diet for 8 weeks, meanwhile the physiological-dose of 17βestradiol (30 μg · kg-1 · d-1 ) was injected subcutaneously every day; the vehicle control group (VC, n= 12) rats were ovariectomized and fed with the high fructose diet for eight weeks, meanwhile equivalent alcohol was injected subcutaneously every day. Systolic blood pressure (SBP), fasting blood sugar (FBS), and fasting serum insulin (FSI) were measured and insulin sensitivity index (ISI) was calculated. The expressions of mRNA and protein of insulin receptor-α in quadriceps femoris were measured by RT-PCR and Western-blot. Results Compared with the normal control group, SBP (P<0.05), FBS (P<0.05) and FSI (P<0.01) were increased significantly while ISI was decreased significantly (P < 0. 05) in the model group. The expressions of mRNA and protein of insulin receptor-α and phosphorylated Akt were decreased significantly in quadriceps femoris in the model group (P<0.05), compared with the normal control group. However, these effects were reversed by 17β-estradiol in the 17βestradiol replacement group. Conclusions 17β-Estradiol inhibits insulin resistance, and up-regulates the expression of insulin receptor-α and the level of phosphorylated Akt in ovariectomized rats with insulin resistance induced by high fructose diet.%目的 观察17β-雌二醇对高果糖诱导的去卵巢大鼠胰岛素抵抗和骨骼肌中胰岛素受体表达的影响.方法 48只成年雌性SD大鼠随机地分为正常对照组、模型组、17β-雌二醇

  10. Insulin resistance alters islet morphology in nondiabetic humans

    DEFF Research Database (Denmark)

    Mezza, Teresa; Muscogiuri, Giovanna; Sorice, Gian Pio

    2014-01-01

    Type 2 diabetes is characterized by poor glucose uptake in metabolic tissues and manifests when insulin secretion fails to cope with worsening insulin resistance. In addition to its effects on skeletal muscle, liver, and adipose tissue metabolism, it is evident that insulin resistance also affects...... pancreatic β-cells. To directly examine the alterations that occur in islet morphology as part of an adaptive mechanism to insulin resistance, we evaluated pancreas samples obtained during pancreatoduodenectomy from nondiabetic subjects who were insulin-resistant or insulin-sensitive. We also compared...... insulin sensitivity, insulin secretion, and incretin levels between the two groups. We report an increased islet size and an elevated number of β- and α-cells that resulted in an altered β-cell-to-α-cell area in the insulin- resistant group. Our data in this series of studies suggest that neogenesis from...

  11. Relationship between adiponectin, obesity and insulin resistance

    Directory of Open Access Journals (Sweden)

    Guilherme Ardenghi Balsan

    2015-02-01

    Full Text Available Objectives: the conditions of obesity and overweight pose a major risk for a number of comorbidities, including clinical syndromes resulting from atherosclerotic disease. Recent studies strongly indicate that adipose tissue is an active endocrine organ that secretes bioactive factors such as adipokines. Adiponectin appears to have a regulatory role in the mechanism of insulin resistance and in the development of atherosclerosis. This systematic review aims to evaluate the anti-atherogenic effects of adiponectin and its properties to improve and mimic metabolic and vascular actions of insulin and its influence on endothelial function. Methods: a qualitative, exploratory and literature review was performed in the PubMed, Portal Capes and Scielo databases using as key-words "adiponectin", "obesity", "insulin resistance", "anti-inflammatory", "therapeutic strategies" and "future prospects". Results: evidence suggests that adiponectin has anti-atherogenic properties with anti-inflammatory effects on the vascular wall. Moreover, it modifies the vascular intracellular signaling and has indirect antioxidant effects on the human myocardium. On the other hand, there are studies suggesting that increased levels of adiponectin are paradoxically associated with a worse prognosis in heart failure syndrome, although the mechanisms are not clear. Conclusion: it is not clear whether adiponectin levels have any clinical significance for risk stratification in cardiovascular disease or if they simply reflect the activation of complex underlying mechanisms. Changes in lifestyle and some drug treatments for hypertension and coronary heart disease have shown significant effect to increase adiponectin levels, and simultaneously decrease in insulin resistance and endothelial dysfunction.

  12. MODELS OF INSULIN RESISTANCE AND HEART FAILURE

    Science.gov (United States)

    Velez, Mauricio; Kohli, Smita; Sabbah, Hani N.

    2013-01-01

    The incidence of heart failure (HF) and diabetes mellitus is rapidly increasing and is associated with poor prognosis. In spite of the advances in therapy, HF remains a major health problem with high morbidity and mortality. When HF and diabetes coexist, clinical outcomes are significantly worse. The relationship between these two conditions has been studied in various experimental models. However, the mechanisms for this interrelationship are complex, incompletely understood, and have become a matter of considerable clinical and research interest. There are only few animal models that manifest both HF and diabetes. However, the translation of results from these models to human disease is limited and new models are needed to expand our current understanding of this clinical interaction. In this review, we discuss mechanisms of insulin signaling and insulin resistance, the clinical association between insulin resistance and HF and its proposed pathophysiologic mechanisms. Finally, we discuss available animal models of insulin resistance and HF and propose requirements for future new models. PMID:23456447

  13. Fatty Acids, Obesity and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Peter Arner

    2015-04-01

    Full Text Available Objective: Although elevated free fatty acid (FFA levels in obesity have been considered to be of importance for insulin resistance, a recent meta-analysis suggested normal FFA levels in obese subjects. We investigated fasting circulating FFA and glycerol levels in a large cohort of non-obese and obese subjects. Methods: Subjects recruited for a study on obesity genetics were investigated in the morning after an overnight fast (n = 3,888. Serum FFA (n = 3,306, plasma glycerol (n = 3,776, and insulin sensitivity index (HOMA-IR,n = 3,469 were determined. Obesity was defined as BMI ≥ 30 kg/m2 and insulin resistance as HOMA-IR ≥ 2.21. Results: In obese subjects, circulating FFA and glycerol levels were higher than in non-obese individuals (by 26% and 47%, respectively; both p Conclusion: Circulating FFA and glycerol levels are markedly elevated in obesity but only marginally influenced by insulin resistance and type 2 diabetes. Whether these differences persist during diurnal variations in circulating FFA/glycerol, remains to be established.

  14. A new antihypertensive drug ameliorates insulin resistance

    Institute of Scientific and Technical Information of China (English)

    Yan-xia LIU

    2012-01-01

    Insulin resistance (IR)is defined as decreased sensitivity and/or responsiveness to insulin that promote glucose disposal.A growing body of clinical and epidemiologic evidence indicates that essential hypertension and IR often coexist[1].Approximately 50 percent of patients with hypertension can be considered to have IR and hyperinsulinemia[1].This inextricable linkage between hypertension and IR has been identified to increase the prevalence of cardiovascular disease (CVD)and new onset of type Ⅱ diabetes that is the major cause of morbidity and mortality in this clinical syndrome[2].However,the driving force linking IR and hypertension remains to be fully elucidated.

  15. Excess exposure to insulin is the primary cause of insulin resistance and its associated atherosclerosis.

    Science.gov (United States)

    Cao, Wenhong; Ning, Jie; Yang, Xuefeng; Liu, Zhenqi

    2011-11-01

    The main goal of this review is to provide more specific and effective targets for prevention and treatment of insulin resistance and associated atherosclerosis. Modern technologies and medicine have vastly improved human health and prolonged the average life span of humans primarily by eliminating various premature deaths and infectious diseases. The modern technologies have also provided us abundant food and convenient transportation tools such as cars. As a result, more people are becoming overfed and sedentary. People are generally ingesting more calories than their bodies' need, leading to the so-called "positive energy imbalance", which is inseparable from the development of insulin resistance and its associated atherosclerosis. A direct consequence of insulin resistance is hyperinsulinemia. The current general view is that insulin is not functional properly in the presence of insulin resistance. Thus, the role of insulin itself in the development of insulin resistance and associated atherosclerosis has not been recognized. We have recently observed that the basal level of insulin signaling is increased in the presence of insulin resistance and hyperinsulinemia. In this review, we will explain how the increased basal insulin signaling contributes to the development of insulin resistance and associated atherosclerosis. We will first explain how insulin causes insulin resistance through two arbitrary stages (before and after the presence of obvious insulin resistance), and, then, explain how the excess exposure to insulin and the relative insulin insufficiency contributes to the atherosclerotic diseases. We propose that blockade of the excess insulin signaling is a viable approach to prevent and/or reverse insulin resistance and its associated atherosclerosis.

  16. Decreased Skin-Mediated Detoxification Contributes to Oxidative Stress and Insulin Resistance

    OpenAIRE

    Xing-Xing Liu; Chang-Bin Sun; Ting-Tong Yang; Da Li; Chun-Yan Li; Yan-Jie Tian; Ming Guo; Yu Cao; Shi-Sheng Zhou

    2012-01-01

    The skin, the body's largest organ, plays an important role in the biotransformation/detoxification and elimination of xenobiotics and endogenous toxic substances, but its role in oxidative stress and insulin resistance is unclear. We investigated the relationship between skin detoxification and oxidative stress/insulin resistance by examining burn-induced changes in nicotinamide degradation. Rats were divided into four groups: sham-operated, sham-nicotinamide, burn, and burn-nicotinamide. Ra...

  17. Decreased Skin-Mediated Detoxification Contributes to Oxidative Stress and Insulin Resistance

    OpenAIRE

    Xing-Xing Liu; Chang-Bin Sun; Ting-Tong Yang; Da Li; Chun-Yan Li; Yan-Jie Tian; Ming Guo; Yu Cao; Shi-Sheng Zhou

    2012-01-01

    The skin, the body's largest organ, plays an important role in the biotransformation/detoxification and elimination of xenobiotics and endogenous toxic substances, but its role in oxidative stress and insulin resistance is unclear. We investigated the relationship between skin detoxification and oxidative stress/insulin resistance by examining burn-induced changes in nicotinamide degradation. Rats were divided into four groups: sham-operated, sham-nicotinamide, burn, and burn-nicotinamide. Ra...

  18. 乳清蛋白通过抗氧化作用改善模型大鼠的胰岛素抵抗%Whey protein improves insulin resistance via the increase of antioxidant capacity in model rats

    Institute of Scientific and Technical Information of China (English)

    童星; 董加毅; 邬志薇; 李伟; 秦立强

    2011-01-01

    Objective To investigate the effects of whey protein on insulin resistance in model rats. Methods Insulin resistance model rats were established by feeding high-fat diet in Wistar rats. Model rats were then randomly divided into 4 groups of 10 animals each and fed on 0% whey protein ( WP) ,5% WP and 15% WP. After 8 weeks, fasting blood glucose ( FBC) .fasting plasma insulin ( FINS) were determined. Oral glucose tolerance test ( OGTT) was performed and glucose area under the curve ( AUC) was calculated. Also, plasma total anti-oxidation capacity (T-AOC) ,superoxide dismutase (SOD), reduced glutathione hormone (CSH) and malondialdehyde ( MDA ) were determined. Results Whey protein intake did not affected FBC and glucose AUC. FINS and homeostatic model assessment-insulin resistance (HOMA-IR) were significantly lower in 15% WP group than in 0% WP group. For antioxidant index, plasma level of T-AOC, SOD and GSH were significantly higher in 15% WP group than in 0% WP group (T-AOC:P<0. 01 ; SOD,GSH :P <0. 05) ; however,MDA was significantly lower in 15% WP group than in 0% WP group ( P < 0. 05). Conclusion Whey protein improves insulin resistance. This effect is related to the increase of antioxidant capacity in insulin resistance model rats.%目的 探讨乳清蛋白对胰岛素抵抗的改善作用.方法 用高脂饲料制备胰岛素抵抗模型大鼠,将模型大鼠随机分为0%乳清蛋白(WP)组、5% WP组和15% WP组,每组10只.8用后测定大鼠空腹血糖( FBG)、空腹血浆胰岛素水平(FINS),进行葡萄糖耐量试验(OGTT)并计算葡萄糖曲线下面积(AUC),部分血浆用来测定总抗氧化能力(T-AOC)、超氧化物歧化酶(SOD)、还原型谷胱甘肽(GSH)和丙二醛(MDA)等抗氧化指标.结果 摄取乳清蛋白没有改变大鼠FBG和葡萄糖AUC.15% WP组大鼠血浆FINS水平和胰岛素抵抗指数(HOMA-IR)显著低于0% WP组(P<0.05).15% WP组大鼠血浆T-AOC、SOD和GSH显著高于0% WP组(T-AOC:P<0.01;SOD

  19. 镁补充对2型糖尿病大鼠胰岛素抵抗的改善作用%Effects of Magnesium Intake on Insulin Resistance in Type 2 Diabetes Rats

    Institute of Scientific and Technical Information of China (English)

    沈晓琳; 邱霞; 丛朋地; 张静; 钟进义

    2012-01-01

    [Objective] To study the effects of magnesium intake on insulin resistance in type 2 diabetes rats. [Method] The models of type 2 diabetes rats were established by feeding with high-fat-diet and injecting streptozotocin (STZ) . Rats were randomly assigned to four groups. Diabetes control group were fed with high-fat feed only. The dosage added in high-fat feed of the high, medium, low magnesium supplementation groups were 2 000, 1 000,200 mg/kg (measured by Mg2+ ), and normal control group was fed with common diet. , and rats ate and drunk freely, and were killed after four weeks. Fasting blood glucose, insulin, total antioxidant capacity (T-AOC), maleic di- aldelyde (MDA) , pancreatic ceils proliferate activity and magnesium ion concentration were detected. [Result] Compared with model con- trol group, fasting blood glucose , insulin and MDA decreased , T-AOC and pancreatic ceils proliferate activity increased significantly in high magnesium group ( P 〈0. 05) . [Conclusion] Magnesium intake may improve insulin resistance in type 2 diabetes rats.%目的:探讨补充镁对2型糖尿病大鼠胰岛素抵抗的改善作用。方法:将高脂饲料喂养加链脲佐菌素注射诱发的糖尿病大鼠随机分为4组,糖尿病对照组和高、中、低剂量组在高脂饲料中分别加入氧化镁0、2000、1000、200mg/kg(以镁离子计),正常对照组为正常大鼠喂普通饲料。喂养4周,处死动物,检测空腹血糖、血清胰岛素、总抗氧化能力(T—AOC)、丙二醛(MDA)、胰腺细胞增殖活性和血清镁等指标。结果:与糖尿病对照组比较,高剂量组空腹血糖、血清胰岛素、MDA含量降低,总抗氧化能力和胰腺细胞增殖活性升高,差异均具有统计学意义(P〈0.05)。结论:镁补充对2型糖尿病大鼠胰岛素抵抗具有改善作用。

  20. Early Clinical Detection of Pharmacologic Response in Insulin Action in a Nondiabetic Insulin-Resistant Population

    Directory of Open Access Journals (Sweden)

    Sudha S. Shankar, MD

    2015-12-01

    Conclusions: Significant changes in insulin action across multiple insulin-sensitive tissues can be detected within 2 weeks of initiation of insulin-sensitizing therapy with pioglitazone in obese patients with nondiabetic insulin resistance. ClinicalTrials.gov identifier: NCT01115712.

  1. Effect of Fufang Zhengzhu Tiaozhi Capsules on Insulin Resistance and Insulin Signal PI-3K in Metabolic Syndrome Rats%复方贞术调脂胶囊对MS大鼠胰岛素抵抗及胰岛素信号PI-3K的影响

    Institute of Scientific and Technical Information of China (English)

    胡旭光; 郭姣; 贝伟剑; 何伟; 王槾; 刘沙沙

    2012-01-01

    Objective To observe the effect of FufangZhengzhu Tiaozhi Capsules(FTZ) on insulin resistance and insulin signal phosphatidyl inositol-3-kinase(PI-3K) in the rats with the metabolic syndrome(MS) and to explore its possible metabolism. Methods High glucose food was given to MS rats for 12 weeks. On the 5th week of modeling, the rats were given high-, medium- and low-dosage FTZ for 8 weeks. The changes of rat body weight, abdominal circumference, and the levels of fasting glucose and fasting serum insulin were measured. RT-PCR was applied,for the detection of expression levels of PI-3Kp85 subunit mRNA in the rat adipose tissue. Results Compared with MS model group, FTZ significantly reduced serum triglyceride(TG) and total cholesterol(TC) levels, fasting glucose, insulin, insulin resistance index and body weight, and significantly increased serum high -density lipopro tein cholesteral (HDL-C) level. FTZ also significantly up-regulated, the expression of PI-3Kp85 mRNA in rat adipose tissue. Conclusion FTZ can regulate lipid levels, and improve insulin resistance MS rats.Up-regulation of insulin signal PI-3K may be one of its therapeutic mechanisms for MS and insulin resistance.%目的 观察复方贞术调脂胶囊(FTZ)对代谢综合征(MS)大鼠胰岛素抵抗和胰岛素信号磷脂酰肌醇-3-激酶(PI-3K)的影响,探讨FTZ治疗MS和改善胰岛素抵抗的作用机制.方法 采用高热量饲料喂养复制MS大鼠模型,经FTZ治疗8周,测量体重、腹围、血脂、空腹血糖和胰岛素水平,RT-PCR检测脂肪组织PI-3Kp85亚基的mRNA表达水平.结果 FTZ可降低MS大鼠血清TG、TC、空腹血糖、胰岛素及胰岛素抵抗指数,升高血清HDL-C水平、减轻体重和肥胖,上调大鼠脂肪组织PI-3Kp85 mRNA的表达.结论 FTZ可调节MS大鼠糖脂水平,改善胰岛素抵抗,对MS具有防治作用.FTZ上调胰岛素信号PI-3K,可能是其治疗MS和改善胰岛素抵抗的作用机制之一.

  2. Insulin-sensitizing and cardiovascular effects of the sodium-hydrogen exchange inhibitor, cariporide, in the JCR: LA-cp rat and db/db mouse.

    Science.gov (United States)

    Russell, J C; Proctor, S D; Kelly, S E; Löhn, M; Busch, A E; Schäfer, S

    2005-12-01

    The effects of the sodium-hydrogen (Na/H) exchange inhibitor cariporide (HOE642), on insulin sensitivity and vascular function were studied in the JCR:LA-cp rat and the db/db mouse. In the insulin-resistant rat, cariporide reduced fasting insulin levels (42%, P JCR:LA-cp insulin-resistant rat, which develops advanced cardiovascular disease and ischemic myocardial lesions. It also improved vascular function in a similar mouse model of insulin resistance. These effects were markedly greater than those of ramipril.

  3. Vagotomy diminishes obesity in cafeteria rats by decreasing cholinergic potentiation of insulin release.

    Science.gov (United States)

    Balbo, Sandra Lucinei; Ribeiro, Rosane Aparecida; Mendes, Mariana Carla; Lubaczeuski, Camila; Maller, Ana Claudia Paiva Alegre; Carneiro, Everardo Magalhães; Bonfleur, Maria Lúcia

    2016-12-01

    Herein, we investigated whether subdiaphragmatic vagotomy has benefits on obesity, body glucose homeostasis, and insulin secretion in cafeteria (CAF)-obese rats. Wistar rats were fed a standard or CAF diet for 12 weeks. Subsequently, CAF rats were randomly submitted to truncal vagotomy (CAF Vag) or sham operation (CAF Sham). CAF Sham rats were hyperphagic, obese, and presented metabolic disturbances, including hyperinsulinemia, glucose intolerance, insulin resistance, hyperglycemia, and hypertriglyceridemia. Twelve weeks after vagotomy, CAF Vag rats presented reductions in body weight and perigonadal fat stores. Vagotomy did not modify glucose tolerance but normalized fed glycemia, insulinemia, and insulin sensitivity. Isolated islets from CAF Sham rats secreted more insulin in response to the cholinergic agent, carbachol, and when intracellular cyclic adenine monophosphate (cAMP) is enhanced by forskolin or 3-isobutyl-1-methylxanthine. Vagotomy decreased glucose-induced insulin release due to a reduction in the cholinergic action on β-cells. This effect also normalized islet secretion in response to cAMP. Therefore, vagotomy in rats fed on a CAF-style diet effectively decreases adiposity and restores insulin sensitivity. These effects were mainly associated with the lack of cholinergic action on the endocrine pancreas, which decreases insulinemia and may gradually reduce fat storage and improve insulin sensitivity.

  4. Vascular Stiffness in Insulin Resistance and Obesity

    Directory of Open Access Journals (Sweden)

    Guanghong eJia

    2015-08-01

    Full Text Available Obesity, insulin resistance, and type 2 diabetes are associated with a substantially increased prevalence of vascular fibrosis and stiffness, with attendant increased risk of cardiovascular and chronic kidney disease. Although the underlying mechanisms and mediators of vascular stiffness are not well understood, accumulating evidence supports the role of metabolic and immune dysregulation related to increased adiposity, activation of the renin angiotensin aldosterone system, reduced bioavailable nitric oxide, increased vascular extracellular matrix (ECM and ECM remodeling in the pathogenesis of vascular stiffness. This review will give a brief overview of the relationship between obesity, insulin resistance and increased vascular stiffness to provide a contemporary understanding of the proposed underlying mechanisms and potential therapeutic strategies.

  5. Race and the insulin resistance syndrome.

    Science.gov (United States)

    Kramer, Holly; Dugas, Lara; Rosas, Sylvia E

    2013-09-01

    Type 2 diabetes remains an important cause of morbidity and mortality. The metabolic syndrome affects 25% of the adult US population based on the Third Report of the Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults from the National Cholesterol Education Program. Knowledge on the impact of obesity on metabolic health parameters has increased greatly over the past decade. This review discusses the limitations of the National Cholesterol Education Program metabolic syndrome definition and the racial disparities in the clinical presentation of the insulin resistance syndrome. We also examine the current literature with particular emphasis on albuminuria, nonalcoholic fatty liver disease, and intramyocellular lipid content. This review explores potential environmental and genetic reasons for differences in the manifestation of insulin resistance across racial/ethnic groups and highlights several promising areas for further study.

  6. Insulin resistance (metabolic) syndrome in children.

    Science.gov (United States)

    Rosenberg, B; Moran, A; Sinaiko, A R

    2005-12-01

    The insulin resistance (metabolic) syndrome (IRS), also known as syndrome X, is characterized by a clustering of factors associated with cardiovascular risk (obesity, impaired glucose metabolism, hypertension, and dyslipidemia). As reported from the third National Health and Nutrition Examination survey, the IRS is present in approximately 24% of adults in the United States and is strongly associated with coronary heart disease, stroke, type 2 diabetes, and all-cause mortality. Of equal importance, it is now clear that the origins of the IRS extend back into childhood (the IRS is found in approximately 4-10% of children and adolescents) and that the high prevalence of adult IRS is strongly linked to the development of cardiovascular risk during childhood and tracking of the components of the IRS into adulthood. The goal of this review is to present a summary of the currently available information on the IRS in the pre-adult age group with reference to adult studies only when necessary for clarification. The review will specifically summarize insulin resistance in childhood; the important influence of obesity and, in particular, visceral fat, on insulin resistance and the IRS; differences between ethnic groups; relations to adipocytokines, inflammatory factors and oxidative stress; relations of hypertension and lipids to insulin resistance; familial factors; endocrine complications; and potential therapeutic effects from diet and physical activity. Despite the lesser amount of basic and clinical information on childhood IRS in comparison to information available from adult studies, there can now be little doubt that the adverse associations among risk factors comprising the IRS begin in childhood. The challenge is to identify etiologic relations and develop intervention strategies designed to reduce the increasing prevalence of type 2 diabetes and cardiovascular disease.

  7. Increase of insulin sensitivity in diabetic rats received Die-Huang-Wan, a herbal mixture used in Chinese traditional medicine

    Institute of Scientific and Technical Information of China (English)

    WU Yang-Chang; HSU Jen-Hao; LIU I-Min; LIOU Shorong-Shii; SU Hui-Chen; CHENG Juei-Tang

    2002-01-01

    AIM: Effects on insulin sensitivity of Die-Huang-Wan, the herbal mixture widely used to treat diabetic disorder in Chinese traditional medicine, were investigated in vivo. METHODS: The obese Zucker rats were employed as insulin-resistant animal model. Also, insulin-resistance was induced by the repeated intraperitoneal injections of long-acting human insulin at 0.5 U/kg three times daily into adult male Wistar rats. Insulin resistance was identified using the loss of tolbutamide (10 mg/kg) or electroacupuncture (EA)-induced plasma glucose lowering action. The plasma glucose concentration was examined by glucose oxidase assay. RESULTS: The plasma glucose-lowering action induced by tolbutamide was significantly enhanced in obese Zucker rats receiving the repeated administration of Die-Huang-Wan at dosage of 26 mg/kg for 3 d. Furthermore, administration of Die-Huang-Wan delayed the formation of insulin resistance in rats that were induced by the daily repeated injection of human long-acting insulin at 0.5 U/kg three times daily and identified by the loss of tolbutamide- or EA-induced hypoglycemia. In streptozotocininduced diabetic rats, oral administration of metformin at 320 mg/kg once daily made an increase of the response to exogenous short-acting human insulin 15 d later. This is consistent with the view that metformin can increase insulin sensitivity. Similar treatment with Die-Huang-Wan at an effective dose (26.0 mg/kg) also increased the plasma glucose lowering action of exogenous insulin at 10 d later. The effect of Die-Huang-Wan on insulin sensitivity seems to produce more rapidly than that of metformin. CONCLUSION: The present study found that oral administration of Die-Huang-Wan increased insulin sensitivity and delayed the development of insulin resistance in rats.

  8. Mechanism and Effect of Telmisartan on Improving Insulin Resistance in OLETF Rats%替米沙坦对改善OLETF大鼠胰岛素抵抗作用的探讨

    Institute of Scientific and Technical Information of China (English)

    赵姜; 田凤石; 雒瑢

    2012-01-01

    目的:研究血管紧张素Ⅱ1型(AT1)受体阻滞剂替米沙坦对改善OLETF大鼠胰岛素抵抗(IR)的作用.方法:OLETF大鼠47只,高脂喂养14周诱导建立IR大鼠模型并将其随机分为5组:IR对照组(IR组)、二甲双胍(MET)组、吡格列酮(P)组、替米沙坦(L)组、低剂量替米沙坦(VL)组,12只LETO大鼠为正常对照(NC)组.干预26周后测定空腹胰岛素(FINS)、游离脂肪酸(FFA)、网膜素、视黄醇结合蛋白4(RBP4)、内脂素、空腹血糖(FBG)及血脂,计算胰岛素抵抗指数(IIOMA-IR)和胰岛素敏感性指数(ISI).结果:L组较IR组的血清网膜素、ISI升高(P<0.05或P<0.01);RBP4、内脂素、FBG、HOMA-IR、TC、LDL-C和FFA降低(P<0.05或P<0.01).多元线性逐步回归分析显示网膜素、ISI是RBP4水平的影响因素;网膜素、HOMA-IR是内脂素水平的影响因素.结论:替米沙坦可能通过提高血清网膜素、降低血清RBP4和内脂素调节血脂水平,从析改善IR.%Objective:To investigate the mechanism and effect of angiotensin II type 1 (AT1) receptor blocker telmisartan in OLETF rats with insulin resistance (lR). Methods: Forty-seven male OLETF rats were fed with high-fat diet for 14 weeks to establish the insulin resistance model, and rats were randomly assigned into five groups, IR model group, metformin (MET) group, the pioglitazone (P) group, the telmisartan (L) group and low-dose telmisartan (VL) group. Twelve LETO rats fed with normal diet served as the normal control (NC) group. The serum levels of fasting insulin (FINS), free fatty acids (FFA), omentin, retinol binding protein 4 (RBP4), visfatin, plasma level of fasting blood glucose (FBG) and blood lipid were detected after 26 weeks treatment. The insulin resistance index (HOMA-IR) and insulin sensitivity index(Isl)were calculated. R9-sultS: Compared with group IR, the serum omentin and ISI were significantly higher in L group (P < 0.01 or P < 0.05), and the serum RBP4, visfatin, FBG, HOMA-IR, total

  9. The impact of insulin resistance, gender, genes, glucocorticoids and ...

    African Journals Online (AJOL)

    The impact of insulin resistance, gender, genes, glucocorticoids and ethnicity on body ... The metabolic consequences of obesity are highly dependent on body fat ... it has been suggested that insulin sensitivity at the level of the adipocyte may ...

  10. Lipid-induced insulin resistance: unravelling the mechanism

    Science.gov (United States)

    Samuel, Varman T; Petersen, Kitt Falk; Shulman, Gerald I

    2010-01-01

    Insulin resistance has long been associated with obesity. More than 40 years ago, Randle and colleagues postulated that lipids impaired insulin-stimulated glucose use by muscles through inhibition of glycolysis at key points. However, work over the past two decades has shown that lipid-induced insulin resistance in skeletal muscle stems from defects in insulin-stimulated glucose transport activity. The steatotic liver is also resistant to insulin in terms of inhibition of hepatic glucose production and stimulation of glycogen synthesis. In muscle and liver, the intracellular accumulation of lipids—namely, diacylglycerol—triggers activation of novel protein kinases C with subsequent impairments in insulin signalling. This unifying hypothesis accounts for the mechanism of insulin resistance in obesity, type 2 diabetes, lipodystrophy, and ageing; and the insulin-sensitising effects of thiazolidinediones. PMID:20609972

  11. Adrenocortical tumors and insulin resistance: What is the first step?

    Science.gov (United States)

    Altieri, Barbara; Tirabassi, Giacomo; Della Casa, Silvia; Ronchi, Cristina L; Balercia, Giancarlo; Orio, Francesco; Pontecorvi, Alfredo; Colao, Annamaria; Muscogiuri, Giovanna

    2016-06-15

    The pathogenetic mechanisms underlying the onset of adrenocortical tumors (ACTs) are still largely unknown. Recently, more attention has been paid to the role of insulin and insulin-like growth factor (IGF) system on general tumor development and progression. Increased levels of insulin, IGF-1 and IGF-2 are associated with tumor cell growth and increased risk of cancer promotion and progression in patients with type 2 diabetes. Insulin resistance and compensatory hyperinsulinemia may play a role in adrenal tumor growth through the activation of insulin and IGF-1 receptors. Interestingly, apparently non-functioning ACTs are often associated with a high prevalence of insulin resistance and metabolic syndrome. However, it is unclear if ACT develops from a primary insulin resistance and compensatory hyperinsulinemia or if insulin resistance is only secondary to the slight cortisol hypersecretion by ACT. The aim of this review is to summarize the current evidence regarding the relationship between hyperinsulinemia and adrenocortical tumors.

  12. Effect of insulin and glucose on the activity of insulin-degrading enzymes in rat liver.

    Science.gov (United States)

    Jurcovicová, J; Németh, S; Vigas, M

    1977-09-01

    The degradation of insulin by insulin protease and glutathion-insulin transhydrogenase (glutathioneproteindisulphide oxidoreductase--EC 1.8.4.2, GIT) was measured in rat liver either after replacing food and water by 15% glucose solution, or after daily insulin administration 8 U daily for 3 days or after fasting. The breakdown of radioiodinated insulin was followed by measuring the increase of TCA soluble radioactivity during incubation of cell fractions with 125I insulin at 37 degrees C. The highest GIT activity was observed in liver microsomes of rats after glucose feeding and after insulin administration, whereas enzyme activity of fasted animals did not essentially differ from corresponding values of normally fed controls. The insulin protease in cytosol of liver cells remained unchanged after these procedures. The important role of GIT in insulin degradation seems to be conclusively demonstrated.

  13. Measurement of insulin resistance in chronic kidney disease.

    Science.gov (United States)

    Pham, Hien; Utzschneider, Kristina M; de Boer, Ian H

    2011-11-01

    Insulin resistance is a known complication of end-stage renal disease that also appears to be present in earlier stages of chronic kidney disease (CKD). It is a risk factor for cardiovascular disease and an important potential therapeutic target in this population. Measurement of insulin resistance is reviewed in the context of known pathophysiologic abnormalities in CKD. Insulin resistance in CKD is due to a high prevalence of known risk factors (e.g. obesity) and to unique metabolic abnormalities. The site of insulin resistance in CKD is localized to skeletal muscle. Estimates based on fasting insulin concentration may not adequately capture insulin resistance in CKD because they largely reflect hepatic defects and because CKD impairs insulin catabolism. A variety of dynamic tests are available to directly measure insulin-mediated glucose uptake. Insulin resistance may be an important therapeutic target in CKD. Complementary methods are available to assess insulin resistance, and each method has unique advantages, disadvantages, and levels of complexity. These characteristics, and the likelihood that CKD alters the performance of some insulin resistance measurements, must be considered when designing and interpreting clinical studies.

  14. Diagnostic criteria for sarcopenia relate differently to insulin resistance

    OpenAIRE

    Bijlsma, A. Y.; Meskers, C. G. M.; van Heemst, D.; Westendorp, R. G. J.; de Craen, A. J. M.; Maier, A. B.

    2013-01-01

    Skeletal muscle is important in insulin-stimulated glucose uptake. Sarcopenia is, therefore, a possible risk factor for insulin resistance. Currently, different diagnostic criteria for sarcopenia include low muscle mass, muscle strength, and walking speed. We assessed these muscle characteristics in relation to insulin resistance in nondiabetics. This cross-sectional study included 301 nondiabetics, mean age 65.9 years. Area under curve (AUC) calculations of insulin and glucose from a 2-h ora...

  15. Effect of ethanolic extracts of Ananas comosus L. leaves on insulin sensitivity in rats and HepG2.

    Science.gov (United States)

    Xie, Weidong; Wang, Wei; Su, Hui; Xing, Dongming; Pan, Yang; Du, Lijun

    2006-08-01

    Ethanolic extracts of Ananas comosus L. leaves (AC) enriched with phenols have hypoglycemic activity in diabetic rats. Here, we investigated the effect of AC on insulin sensitivity in rats and HepG2. In high-fat diet-fed and low-dose streptozotozin-treated diabetic Wistar rats subjected to challenge with exogenous human insulin, AC treatment at an oral dose of 0.40 g/kg could significantly improve sensitivity to exogenous insulin. After a sub-acute treatment, AC also could inhibit the development of insulin resistance in high-fat diet-fed and low-dose streptozotozin-treated diabetic rats following the test of loss of tolbutamide-induced blood glucose lowering action. For intravenous insulin/glucose infusion test, high-fat diet-fed and low-dose alloxan-treated Wistar rats were associated with insulin resistance, which was improved after AC or fenofibrate treatment. AC application inhibited the development of insulin resistance in HepG2 cells. The above animal models were well developed to simulate type 2 diabetes. Taken together, our results suggest that AC may improve insulin sensitivity in type 2 diabetes and could be developed into a new potential natural product for handling of insulin resistance in diabetic patients.

  16. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle.

    Science.gov (United States)

    Kolka, Cathryn M; Richey, Joyce M; Castro, Ana Valeria B; Broussard, Josiane L; Ionut, Viorica; Bergman, Richard N

    2015-06-01

    Elevated plasma free fatty acids (FFA) induce insulin resistance in skeletal muscle. Previously, we have shown that experimental insulin resistance induced by lipid infusion prevents the dispersion of insulin through the muscle, and we hypothesized that this would lead to an impairment of insulin moving from the plasma to the muscle interstitium. Thus, we infused lipid into our anesthetized canine model and measured the appearance of insulin in the lymph as a means to sample muscle interstitium under hyperinsulinemic euglycemic clamp conditions. Although lipid infusion lowered the glucose infusion rate and induced both peripheral and hepatic insulin resistance, we were unable to detect an impairment of insulin access to the lymph. Interestingly, despite a significant, 10-fold increase in plasma FFA, we detected little to no increase in free fatty acids or triglycerides in the lymph after lipid infusion. Thus, we conclude that experimental insulin resistance induced by lipid infusion does not reduce insulin access to skeletal muscle under clamp conditions. This would suggest that the peripheral insulin resistance is likely due to reduced cellular sensitivity to insulin in this model, and yet we did not detect a change in the tissue microenvironment that could contribute to cellular insulin resistance. Copyright © 2015 the American Physiological Society.

  17. Comparison of Insulin-resistance Rat Models Induced by High-fat and High-carbohydrate Diets%不同高能饮食诱发胰岛素抵抗大鼠模型的比较

    Institute of Scientific and Technical Information of China (English)

    张涛; 刘源; 赵爽; 高青松; 王志红

    2011-01-01

    目的 分析高猪油日粮及高蔗糖日粮分别诱发胰岛素抵抗大鼠的血液生化指标差异,为此类模型的建立及实验研究提供参考.方法雄性SD大鼠随机分为3组,对照组给予普通日粮,高脂组给予高猪油含量的日粮,高糖组给予高蔗糖含量的日粮.喂养6周,每两周测定空腹血糖、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-c)、总胆固醇(TCH)、胰岛素,根据胰岛素敏感性指数(ISI)=ln1/(FPG×FINS)评定大鼠的胰岛素敏感性.结果6周后,高脂、高糖组ISI显著低于对照组(P<0.05);猪油组血清胰岛素显著高于对照组(P<0.05)、血清HDL-c显著低于对照组(P<0.05);高蔗糖组血糖、胰岛素均上升,但与对照组无统计学差异;而各组间血清总胆固醇、甘油三酯及体重无明显差异(P>0.05).结论高脂、高糖日粮均可诱发IR大鼠模型,高脂模型具有血清胰岛素显著升高、HDL-c显著降低的特点而高糖模型伴有较高的血糖、胰岛素.%Objective To measure the biochemical parameters in blood of Insulin-resistance rat model induced by high-fat and high-carbohydrate diets. Methods Male SD rats were fed on standard laboratory chow, high-fat diet or high-carbohydrate diet respectively for 6 weeks. Serum glucose ( GLU) , insulin, triglyceride (TG), total cholesterol ( TCH) and HDL-cholesterol were measured at fortnightly interval. The insulin sensitivity was estimated by ISI index, ISI = lnl/( FPG x FINS). Results Compared with control after 6 weeks, ISI index significantly decreased in both high-fat and high-carbohydrate groups ( P < 0. 05 ) , and serum insulin was significantly higher and HDL-cholesterol was significant lower in high-fat group ( P < 0. 05 ). Serum GLU and insulin in high-carbohydrate group were higher than those in other groups. However there were mild difference in TG、GLU and body weight among the three groups. Conclusion Both high-fat and high-carbohydrate diets can induce

  18. In vivo assessment of cardiac insulin resistance by nuclear probes using an iodinated tracer of glucose transport

    Energy Technology Data Exchange (ETDEWEB)

    Briat, Arnaud; Slimani, Lotfi; Perret, Pascale; Villemain, Daniele; Fagret, Daniel; Ghezzi, Catherine [INSERM, E0340, Radiopharmaceutiques Biocliniques, Grenoble (France); Univ Grenoble, Grenoble (France); Halimi, Serge [Univ Grenoble, Grenoble (France); Hopital Michallon, Service de Diabetologie, CHRU Grenoble, Grenoble (France); Demongeot, Jacques [Univ Grenoble, Grenoble (France); CNRS, UMR 5525, Grenoble (France)

    2007-11-15

    Insulin resistance, implying depressed cellular sensitivity to insulin, is a risk factor for type 2 diabetes and cardiovascular disease. This study is the first step towards the development of a technique of insulin resistance measurement in humans with a new tracer of glucose transport, [{sup 123}I]6-deoxy-6-iodo-D-glucose (6DIG). We investigated 6DIG kinetics in anaesthetised control rats and in three models of insulin-resistant rats: fructose fed, Zucker and ZDF. The study of myocardial 6DIG activity was performed under two conditions: first, 6DIG was injected under the baseline condition and then it was injected after a bolus injection of insulin. After each injection, radioactivity was measured over 45 min by external detection via NaI probes, in the heart and blood. A tri-compartment model was developed to obtain fractional transfer coefficients of 6DIG from the blood to the heart. These coefficients were significantly increased with insulin in control rats and did not change significantly in insulin-resistant rats. The ratio of the coefficient obtained under insulin to that obtained under basal conditions gave an index of cardiac insulin resistance for each animal. The mean values of these ratios were significantly lower in insulin-resistant than in control rats: 1.16 {+-} 0.06 vs 2.28 {+-} 0.18 (p < 0.001) for the fructose-fed group, 0.92 {+-} 0.05 vs 1.62 {+-} 0.25 (p < 0.01) for the Zucker group and 1.34 {+-} 0.06 vs 2.01 {+-} 0.26 (p < 0.05) for the ZDF group. These results show that 6DIG could be a useful tracer to image cardiac insulin resistance. (orig.)

  19. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance

    Science.gov (United States)

    Aroor, Annayya R.; McKarns, Susan; DeMarco, Vincent G.; Guanghong, Jia; Sowers, James R.

    2013-01-01

    Insulin resistance is a hallmark of obesity, the cardiorenal metabolic syndrome and type 2 diabetes mellitus (T2DM). The progression of insulin resistance increases the risk for cardiovascular disease (CVD). The significance of insulin resistance is underscored by the alarming rise in the prevalence of obesity and its associated comorbidities in the Unites States and worldwide over the last 40-50 years. The incidence of obesity is also on the rise in adolescents. Furthermore, premenopausal women have lower CVD risk compared to men, but this protection is lost in the setting of obesity and insulin resistance. Although systemic and cardiovascular insulin resistance are associated with impaired insulin metabolic signaling and cardiovascular dysfunction, the mechanisms underlying insulin resistance and cardiovascular dysfunction remain poorly understood. Recent studies show that insulin resistance in obesity and diabetes is linked to a metabolic inflammatory response, a state of systemic and tissue specific chronic low grade inflammation. Evidence is also emerging that there is polarization of macrophages and lymphocytes towards a pro-inflammatory phenotype that contribute to progression of insulin resistance in obesity, cardiorenal metabolic syndrome and diabetes. In this review, we provide new insights into factors, such as, the renin-angiotensin-aldosterone system, sympathetic activation and incretin modulators (e.g., DPP-4) and immune responses that mediate this inflammatory state in obesity and other conditions characterized by insulin resistance. PMID:23932846

  20. Insulin sensitivity and hemodynamic responses to insulin in Wistar-Kyoto and spontaneously hypertensive rats.

    Science.gov (United States)

    Pître, M; Nadeau, A; Bachelard, H

    1996-10-01

    The insulin-mediated vasodilator effect has been proposed as an important physiological determinant of insulin action on glucose disposal in normotensive humans. The present study was designed to further examine the acute regional hemodynamic effects of insulin in different vascular beds and to explore the relationships between insulin vascular effects and insulin sensitivity during euglycemic hyperinsulinemic clamps in conscious normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). The rats were instrumented with intravascular catheters and pulsed Doppler flow probes to measure blood pressure, heart rate, and regional blood flows. In WKY rats, the euglycemic infusion of insulin (4 and 16 mU.kg-1.min-1) causes vasodilations in renal and hindquarter vascular beds but no changes in mean blood pressure, heart rate, or superior mesenteric vascular conductance. In contrast, in SHR, the same doses of insulin produce vasoconstrictions in superior mesenteric and hindquarter vascular beds and, at high doses, increase blood pressure. Moreover, at the lower dose of insulin tested, we found a reduction in the insulin sensitivity index in the SHR compared with the WKY rats. The present findings provide further evidence for an association between insulin sensitivity and insulin-mediated hemodynamic responses.

  1. Binding of 125I-insulin to the isolated glomeruli of rat kidney.

    Science.gov (United States)

    Kurokawa, K; Silverblatt, F J; Klein, K L; Wang, M S; Lerner, R L

    1979-11-01

    To investigate a possible action of insulin on the glomerulus, the binding 125I-insulin to the isolated glomeruli prepared from rat kidney was examined. When incubated at 22 degrees C, 125I-insulin binding proceeded with time and reached a steady state at 45 min at which time nonspecific binding was less than 25% of total binding. A small fraction of 125I-insulin was degraded during incubation. This binding was specific to insulin in that it was inhibited by unlabeled porcine and beef insulins and to a lesser extent by porcine proinsulin and desalanine-desasparagine insulin, but not by glucagon, parathyroid hormone, vasopressin, calcitonin, and angiotensin II. Increasing concentrations of nonlabeled insulin displaced 125I-insulin binding in a dose-dependent fashion. Scatchard plot of the data was curvilinear consistent with either two classes of receptors with different affinities or a single class of receptors that demonstrate negative cooperativity. The addition of excess nonlabeled insulin to the glomeruli preincubated with 125I-insulin resulted in a rapid dissociation of approximately or equal to 70% of bound 125I-insulin. Insulin decreased the increments in glomerular cyclic AMP levels by epinephrine and by prostaglandin E2, but not those by histamine. These data showed the presence of specific insulin receptors in the glomeruli, and that insulin action may be, at least in part, through modulation of glomerular cyclic AMP concentrations. Such action of insulin may underlie the alteration in glomerular ultrafiltration and the glomerular ultrafiltration and the development of glomerular lesions in diabetes mellitus, a disease in which insulin deficiency or the tissue resistance to insulin exists.

  2. Insulin attenuates TNFα-induced hemopexin mRNA: An anti-inflammatory action of insulin in rat H4IIE hepatoma cells

    Directory of Open Access Journals (Sweden)

    J. Lee Franklin

    2017-03-01

    Full Text Available Proinflammatory cytokines, including TNF-α and IL-6, can contribute to insulin resistance. Conversely, insulin has some actions that can be considered anti-inflammatory. Hemopexin is a Class 2 acute phase reactant and control of its transcription is predominantly regulated by IL-6, with TNF-α and IL-1β also inducing hemopexin gene expression. Thus, we asked whether insulin could inhibit the ability of TNF-α to stimulate hemopexin mRNA expression. In cultured rat hepatoma (H4IIE cells, TNF-α significantly increased hemopexin mRNA accumulation. The TNF-α-induced increase of hemopexin mRNA was dramatically attenuated by insulin, even though TNF-α reduced peak insulin activation of ERK. Thus, even though TNF-α can contribute to insulin resistance, the residual insulin response was still able to counteract TNF-α actions.

  3. Mechanisms Involved in the Improvement of Lipotoxicity and Impaired Lipid Metabolism by Dietary α-Linolenic Acid Rich Salvia hispanica L (Salba Seed in the Heart of Dyslipemic Insulin-Resistant Rats

    Directory of Open Access Journals (Sweden)

    Agustina Creus

    2016-01-01

    Full Text Available This study explores the mechanisms underlying the altered lipid metabolism in the heart of dyslipemic insulin-resistant (IR rats fed a sucrose-rich diet (SRD and investigates if chia seeds (rich in α-linolenic acid 18:3, n-3 ALA improve/reverse cardiac lipotoxicity. Wistar rats received an SRD-diet for three months. Half of the animals continued with the SRD up to month 6. The other half was fed an SRD in which the fat source, corn oil (CO, was replaced by chia seeds from month 3 to 6 (SRD+chia. A reference group consumed a control diet (CD all the time. Triglyceride, long-chain acyl CoA (LC ACoA and diacylglycerol (DAG contents, pyruvate dehydrogenase complex (PDHc and muscle-type carnitine palmitoyltransferase 1 (M-CPT1 activities and protein mass levels of M-CPT1, membrane fatty acid transporter (FAT/CD36, peroxisome proliferator activated receptor α (PPARα and uncoupling protein 2 (UCP2 were analyzed. Results show that: (a the hearts of SRD-fed rats display lipotoxicity suggesting impaired myocardial lipid utilization; (b Compared with the SRD group, dietary chia normalizes blood pressure; reverses/improves heart lipotoxicity, glucose oxidation, the increased protein mass level of FAT/CD36, and the impaired insulin stimulated FAT/CD36 translocation to the plasma membrane. The enhanced M-CPT1 activity is markedly reduced without similar changes in protein mass. PPARα slightly decreases, while the UCP2 protein level remains unchanged in all groups. Normalization of dyslipidemia and IR by chia reduces plasma fatty acids (FAs availability, suggesting that a different milieu prevents the robust translocation of FAT/CD36. This could reduce the influx of FAs, decreasing the elevated M-CPT1 activity and lipid storage and improving glucose oxidation in cardiac muscles of SRD-fed rats.

  4. Mechanisms Involved in the Improvement of Lipotoxicity and Impaired Lipid Metabolism by Dietary α-Linolenic Acid Rich Salvia hispanica L (Salba) Seed in the Heart of Dyslipemic Insulin-Resistant Rats.

    Science.gov (United States)

    Creus, Agustina; Ferreira, María R; Oliva, María E; Lombardo, Yolanda B

    2016-01-28

    This study explores the mechanisms underlying the altered lipid metabolism in the heart of dyslipemic insulin-resistant (IR) rats fed a sucrose-rich diet (SRD) and investigates if chia seeds (rich in α-linolenic acid 18:3, n-3 ALA) improve/reverse cardiac lipotoxicity. Wistar rats received an SRD-diet for three months. Half of the animals continued with the SRD up to month 6. The other half was fed an SRD in which the fat source, corn oil (CO), was replaced by chia seeds from month 3 to 6 (SRD+chia). A reference group consumed a control diet (CD) all the time. Triglyceride, long-chain acyl CoA (LC ACoA) and diacylglycerol (DAG) contents, pyruvate dehydrogenase complex (PDHc) and muscle-type carnitine palmitoyltransferase 1 (M-CPT1) activities and protein mass levels of M-CPT1, membrane fatty acid transporter (FAT/CD36), peroxisome proliferator activated receptor α (PPARα) and uncoupling protein 2 (UCP2) were analyzed. Results show that: (a) the hearts of SRD-fed rats display lipotoxicity suggesting impaired myocardial lipid utilization; (b) Compared with the SRD group, dietary chia normalizes blood pressure; reverses/improves heart lipotoxicity, glucose oxidation, the increased protein mass level of FAT/CD36, and the impaired insulin stimulated FAT/CD36 translocation to the plasma membrane. The enhanced M-CPT1 activity is markedly reduced without similar changes in protein mass. PPARα slightly decreases, while the UCP2 protein level remains unchanged in all groups. Normalization of dyslipidemia and IR by chia reduces plasma fatty acids (FAs) availability, suggesting that a different milieu prevents the robust translocation of FAT/CD36. This could reduce the influx of FAs, decreasing the elevated M-CPT1 activity and lipid storage and improving glucose oxidation in cardiac muscles of SRD-fed rats.

  5. Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance

    DEFF Research Database (Denmark)

    Madsen, Lise; Guerre-Millo, Michéle; Flindt, Esben N

    2002-01-01

    completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA......Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration...... that a TTA-induced increase in hepatic fatty acid oxidation and ketogenesis drains fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects of TTA on fat mass accumulation and peripheral insulin sensitivity....

  6. Inflammation and insulin resistance : evolution, pathology and therapy

    OpenAIRE

    2014-01-01

    Chronic low-level subclinical inflammation is an established risk factor in the development of insulin resistance, endothelial damage and atherosclerosis. The obesity-associated insulin resistance in adipose, liver and muscle tissue is promoted by a switch in macrophage activation driven by transcription factors that play crucial roles in innate immunity. This review discusses the evolutionary link between body defense mechanisms and insulin resistance.

  7. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance

    OpenAIRE

    Aroor, Annayya R.; McKarns, Susan; DeMarco, Vincent G.; Guanghong, Jia; Sowers, James R.

    2013-01-01

    Insulin resistance is a hallmark of obesity, the cardiorenal metabolic syndrome and type 2 diabetes mellitus (T2DM). The progression of insulin resistance increases the risk for cardiovascular disease (CVD). The significance of insulin resistance is underscored by the alarming rise in the prevalence of obesity and its associated comorbidities in the Unites States and worldwide over the last 40-50 years. The incidence of obesity is also on the rise in adolescents. Furthermore, premenopausal wo...

  8. Fructose, insulin resistance, and metabolic dyslipidemia

    Directory of Open Access Journals (Sweden)

    Adeli Khosrow

    2005-02-01

    Full Text Available Abstract Obesity and type 2 diabetes are occurring at epidemic rates in the United States and many parts of the world. The "obesity epidemic" appears to have emerged largely from changes in our diet and reduced physical activity. An important but not well-appreciated dietary change has been the substantial increase in the amount of dietary fructose consumption from high intake of sucrose and high fructose corn syrup, a common sweetener used in the food industry. A high flux of fructose to the liver, the main organ capable of metabolizing this simple carbohydrate, perturbs glucose metabolism and glucose uptake pathways, and leads to a significantly enhanced rate of de novo lipogenesis and triglyceride (TG synthesis, driven by the high flux of glycerol and acyl portions of TG molecules from fructose catabolism. These metabolic disturbances appear to underlie the induction of insulin resistance commonly observed with high fructose feeding in both humans and animal models. Fructose-induced insulin resistant states are commonly characterized by a profound metabolic dyslipidemia, which appears to result from hepatic and intestinal overproduction of atherogenic lipoprotein particles. Thus, emerging evidence from recent epidemiological and biochemical studies clearly suggests that the high dietary intake of fructose has rapidly become an important causative factor in the development of the metabolic syndrome. There is an urgent need for increased public awareness of the risks associated with high fructose consumption and greater efforts should be made to curb the supplementation of packaged foods with high fructose additives. The present review will discuss the trends in fructose consumption, the metabolic consequences of increased fructose intake, and the molecular mechanisms leading to fructose-induced lipogenesis, insulin resistance and metabolic dyslipidemia.

  9. Intramyocellular lipid kinetics and insulin resistance

    OpenAIRE

    Guo ZengKui

    2007-01-01

    Abstract More than fifteen years ago it was discovered that intramyocellular triglyceride (imcTG) content in skeletal muscle is abnormally high in conditions of lipid oversupply (e.g. high fat feeding) and, later, obesity, type 2 diabetes (T2D) and other metabolic conditions. This imcTG excess is robustly associated with muscle insulin resistance (MIR). However, to date the pathways responsible for the imcTG excess and the mechanisms underlying the imcTG-MIR correlation remain unclear. A curr...

  10. Retinol binding protein 4, obesity, and insulin resistance in adolescents

    Directory of Open Access Journals (Sweden)

    Ronaldi Noor

    2017-02-01

    Full Text Available Background Obesity is a global problem. Even in poor and developing countries, obesity has reached alarming levels. In childhood, obesity may lead to insulin resistance. Retinol binding protein (RBP4, secreted primarily by liver and adipose tissues, was recently proposed as a link between obesity and insulin resistance. The role of RBP4 in pediatric obesity and its relationship with insulin resistance have not been well elucidated. Objective To compare RBP4 levels in obese and lean adolescents and to assess for a relationship between RBP4 levels and insulin resistance. Method This cross-sectional study was conducted in three senior high schools in Padang, West Sumatera, Indonesia. Subjects were adolescents aged 14-18 years, who were obese or normal weight (n=56. We measured subjects’ body mass index (BMI and serum RBP4 concentrations. Insulin resistance was assessed using the homeostasis model assessment of insulin resistance (HOMA-IR index. Results Similar RBP4 levels were found in the obese and normoweight groups (P>0.05. Higher RBP4 levels were found in the insulin resistant compared to the non-insulin resistant group, but the difference was not significant (P > 0.05. Conclusion There is no significant difference in mean RBP4 levels in obese adolescents compared to normoweight adolescents. Nor are mean RBP4 levels significantly different between obese adolescents with and without insulin resistance.

  11. Understanding insulin resistance. What are the clinical implications?

    Science.gov (United States)

    Sivitz, William I

    2004-07-01

    Insulin resistance is an important clinical issue in patients with other prominent components of metabolic syndrome, such as central adiposity and diabetes. However, its presence may be less evident in patients who are neither obese nor diabetic. Is measurement of insulin resistance important in clinical practice? How might its presence change management in individual patients? In this concise review, Dr Sivitz discusses the underlying mechanisms involved in insulin resistance, the issues surrounding assessment, and the implications for management in patients in whom insulin