WorldWideScience

Sample records for insulin resistance resulting

  1. Insulin Resistance

    DEFF Research Database (Denmark)

    Jensen, Benjamin Anderschou Holbech

    Insulin resistance (IR) is escalating with alarming pace and is no longer restricted to westernized countries. As a forerunner for some of the most serious threats to human health including metabolic syndrome, cardiovascular diseases, and type 2-diabetes, the need for new treatment modalities...... interventions. We further show that improving the inflammatory toning, using fish oil as fat source, protects mice against diet induced obesity and -inflammation while preserving insulin sensitivity, even in the absence of free fatty acid receptor 4. Conversely, HFD-induced intestinal dysbiosis is associated...

  2. Impaired translocation of GLUT4 results in insulin resistance of atrophic soleus muscle.

    Science.gov (United States)

    Xu, Peng-Tao; Song, Zhen; Zhang, Wen-Cheng; Jiao, Bo; Yu, Zhi-Bin

    2015-01-01

    Whether or not the atrophic skeletal muscle induces insulin resistance and its mechanisms are not resolved now. The antigravity soleus muscle showed a progressive atrophy in 1-week, 2-week, and 4-week tail-suspended rats. Hyperinsulinemic-euglycemic clamp showed that the steady-state glucose infusion rate was lower in 4-week tail-suspended rats than that in the control rats. The glucose uptake rates under insulin- or contraction-stimulation were significantly decreased in 4-week unloaded soleus muscle. The key protein expressions of IRS-1, PI3K, and Akt on the insulin-dependent pathway and of AMPK, ERK, and p38 on the insulin-independent pathway were unchanged in unloaded soleus muscle. The unchanged phosphorylation of Akt and p38 suggested that the activity of two signal pathways was not altered in unloaded soleus muscle. The AS160 and GLUT4 expression on the common downstream pathway also was not changed in unloaded soleus muscle. But the GLUT4 translocation to sarcolemma was inhibited during insulin stimulation in unloaded soleus muscle. The above results suggest that hindlimb unloading in tail-suspended rat induces atrophy in antigravity soleus muscle. The impaired GLUT4 translocation to sarcolemma under insulin stimulation may mediate insulin resistance in unloaded soleus muscle and further affect the insulin sensitivity of whole body in tail-suspended rats.

  3. Impaired Translocation of GLUT4 Results in Insulin Resistance of Atrophic Soleus Muscle

    Directory of Open Access Journals (Sweden)

    Peng-Tao Xu

    2015-01-01

    Full Text Available Whether or not the atrophic skeletal muscle induces insulin resistance and its mechanisms are not resolved now. The antigravity soleus muscle showed a progressive atrophy in 1-week, 2-week, and 4-week tail-suspended rats. Hyperinsulinemic-euglycemic clamp showed that the steady-state glucose infusion rate was lower in 4-week tail-suspended rats than that in the control rats. The glucose uptake rates under insulin- or contraction-stimulation were significantly decreased in 4-week unloaded soleus muscle. The key protein expressions of IRS-1, PI3K, and Akt on the insulin-dependent pathway and of AMPK, ERK, and p38 on the insulin-independent pathway were unchanged in unloaded soleus muscle. The unchanged phosphorylation of Akt and p38 suggested that the activity of two signal pathways was not altered in unloaded soleus muscle. The AS160 and GLUT4 expression on the common downstream pathway also was not changed in unloaded soleus muscle. But the GLUT4 translocation to sarcolemma was inhibited during insulin stimulation in unloaded soleus muscle. The above results suggest that hindlimb unloading in tail-suspended rat induces atrophy in antigravity soleus muscle. The impaired GLUT4 translocation to sarcolemma under insulin stimulation may mediate insulin resistance in unloaded soleus muscle and further affect the insulin sensitivity of whole body in tail-suspended rats.

  4. Insulin Resistance of Puberty.

    Science.gov (United States)

    Kelsey, Megan M; Zeitler, Philip S

    2016-07-01

    Puberty is a time of considerable metabolic and hormonal change. Notably, puberty is associated with a marked decrease in insulin sensitivity, on par with that seen during pregnancy. In otherwise healthy youth, there is a nadir in insulin sensitivity in mid-puberty, and then it recovers at puberty completion. However, there is evidence that insulin resistance (IR) does not resolve in youth who are obese going into puberty and may result in increased cardiometabolic risk. Little is known about the underlying pathophysiology of IR in puberty, and how it might contribute to increased disease risk (e.g., type 2 diabetes). In this review, we have outlined what is known about the IR in puberty in terms of pattern, potential underlying mechanisms and other mediating factors. We also outline other potentially related metabolic changes that occur during puberty, and effects of underlying insulin resistant states (e.g., obesity) on pubertal changes in insulin sensitivity.

  5. Insulin Resistance and Prediabetes

    Science.gov (United States)

    ... Your Baby is Born Monogenic Diabetes Insulin Resistance & Prediabetes Insulin resistance and prediabetes occur when your body ... will stay in the healthy range. What is prediabetes? Prediabetes means your blood glucose levels are higher ...

  6. Glycosphingolipids and insulin resistance

    NARCIS (Netherlands)

    Langeveld, Mirjam; Aerts, Johannes M. F. G.

    2009-01-01

    Obesity is associated with an increased risk for insulin resistance, a state characterized by impaired responsiveness of liver, muscle and adipose tissue to insulin. One class of lipids involved in the development of insulin resistance are the (glyco)sphingolipids. Ceramide, the most simple

  7. Insulin resistance and risk of venous thromboembolism : results of a population-based cohort study

    NARCIS (Netherlands)

    Van Schouwenburg, I. M.; Mahmoodi, B. K.; Veeger, N. J. G. M.; Bakker, S. J. L.; Kluin-Nelemans, H. C.; Meijer, K.; Gansevoort, R. T.

    Background: Obesity is an established risk factor for venous thromboembolism (VTE), but it is uncertain how this is mediated. Insulin resistance has a central role in the pathophysiology of the metabolic effects of obesity. Objective: We aimed to investigate whether insulin resistance is a risk

  8. TLR4 and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Jane J. Kim

    2010-01-01

    Full Text Available Chronic inflammation is a key feature of insulin resistance and obesity. Toll-Like Receptor 4 (TLR4, involved in modulating innate immunity, is an important mediator of insulin resistance and its comorbidities. TLR4 contributes to the development of insulin resistance and inflammation through its activation by elevated exogenous ligands (e.g., dietary fatty acids and enteric lipopolysaccharide and endogenous ligands (e.g., free fatty acids which are elevated in obese states. TLR4, expressed in insulin target tissues, activates proinflammatory kinases JNK, IKK, and p38 that impair insulin signal transduction directly through inhibitory phosphorylation of insulin receptor substrate (IRS on serine residues. TLR4 activation also leads to increased transcription of pro-inflammatory genes, resulting in elevation of cytokine, chemokine, reactive oxygen species, and eicosanoid levels that promote further insulin-desensitization within the target cell itself and in other cells via paracrine and systemic effects. Increased understanding of cell type-specific TLR4-mediated effects on insulin action present the opportunity and challenge of developing related therapeutic approaches for improving insulin sensitivity while preserving innate immunity.

  9. Apolipoprotein C3 deficiency results in diet-induced obesity and aggravated insulin resistance in mice

    NARCIS (Netherlands)

    Duivenvoorden, Ilse; Teusink, Bas; Rensen, Patrick C.; Romijn, Johannes A.; Havekes, Louis M.; Voshol, Peter J.

    2005-01-01

    Our aim was to study whether the absence of apolipoprotein (apo) C3, a strong inhibitor of lipoprotein lipase (LPL), accelerates the development of obesity and consequently insulin resistance. Apoc3(-/-) mice and wild-type littermates were fed a high-fat (46 energy %) diet for 20 weeks. After 20

  10. Insulin resistance in dairy cows.

    Science.gov (United States)

    De Koster, Jenne D; Opsomer, Geert

    2013-07-01

    Glucose is the molecule that drives milk production, and insulin plays a pivotal role in the glucose metabolism of dairy cows. The effect of insulin on the glucose metabolism is regulated by the secretion of insulin by the pancreas and the insulin sensitivity of the skeletal muscles, the adipose tissue, and the liver. Insulin resistance may develop as part of physiologic (pregnancy and lactation) and pathologic processes, which may manifest as decreased insulin sensitivity or decreased insulin responsiveness. A good knowledge of the normal physiology of insulin is needed to measure the in vivo insulin resistance of dairy cows. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Insulin resistance in therapeutic clinic

    Directory of Open Access Journals (Sweden)

    Anna V. Pashentseva

    2017-09-01

    Full Text Available Today an obesity became the global epidemic striking both children, and adults and represents one of the most important problems of health care worldwide. Excess accumulation of fatty tissue is resulted by insulin resistance and a compensatory hyperinsulinaemia which are the main predictors of development of a diabetes mellitus type 2. Insulin resistance is also one of key links of a pathogenesis of such diseases as cardiovascular pathology, not-alcoholic fatty liver disease, a polycystic ovary syndrome, gestational diabetes and many others. Depression of sensitivity of tissues to insulin can be physiological reaction of an organism to stress factors and pathological process. The endogenic reasons also take part in development of insulin resistance besides factors of the external environment. The role of genetic predisposition, a subclinical inflammation of fatty tissue, thyroid hormones, adipokines and vitamin D in formation of this pathological process is studied. As insulin resistance takes part in a pathogenesis of various diseases, methods of its diagnostics and correction are of great importance in therapeutic practice. At purpose of treatment it is worth giving preference to the drugs which are positively influencing sensitivity of tissues to insulin.

  12. Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse

    Science.gov (United States)

    Ning, Jie; Hong, Tao; Yang, Xuefeng; Mei, Shuang; Liu, Zhenqi; Liu, Hui-Yu

    2011-01-01

    The primary player that induces insulin resistance has not been established. Here, we studied whether or not fat can cause insulin resistance in the presence of insulin deficiency. Our results showed that high-fat diet (HFD) induced insulin resistance in C57BL/6 (B6) mice. The HFD-induced insulin resistance was prevented largely by the streptozotocin (STZ)-induced moderate insulin deficiency. The STZ-induced insulin deficiency prevented the HFD-induced ectopic fat accumulation and oxidative stress in liver and gastrocnemius. The STZ-induced insulin deficiency prevented the HFD- or insulin-induced increase in hepatic expression of long-chain acyl-CoA synthetases (ACSL), which are necessary for fatty acid activation. HFD increased mitochondrial contents of long-chain acyl-CoAs, whereas it decreased mitochondrial ADP/ATP ratio, and these HFD-induced changes were prevented by the STZ-induced insulin deficiency. In cultured hepatocytes, we observed that expressions of ACSL1 and -5 were stimulated by insulin signaling. Results in cultured cells also showed that blunting insulin signaling by the PI3K inhibitor LY-294002 prevented fat accumulation, oxidative stress, and insulin resistance induced by the prolonged exposure to either insulin or oleate plus sera that normally contain insulin. Finally, knockdown of the insulin receptor prevented the oxidative stress and insulin resistance induced by the prolonged exposure to insulin or oleate plus sera. Together, our results show that insulin and insulin signaling are required for fat induction of insulin resistance in mice and cultured mouse hepatocytes. PMID:21586696

  13. Mechanisms of insulin resistance in obesity

    Science.gov (United States)

    Ye, Jianping

    2014-01-01

    Obesity increases the risk for type 2 diabetes through induction of insulin resistance. Treatment of type 2 diabetes has been limited by little translational knowledge of insulin resistance although there have been several well-documented hypotheses for insulin resistance. In those hypotheses, inflammation, mitochondrial dysfunction, hyperinsulinemia and lipotoxicity have been the major concepts and have received a lot of attention. Oxidative stress, endoplasmic reticulum (ER) stress, genetic background, aging, fatty liver, hypoxia and lipodystrophy are active subjects in the study of these concepts. However, none of those concepts or views has led to an effective therapy for type 2 diabetes. The reason is that there has been no consensus for a unifying mechanism of insulin resistance. In this review article, literature is critically analyzed and reinterpreted for a new energy-based concept of insulin resistance, in which insulin resistance is a result of energy surplus in cells. The energy surplus signal is mediated by ATP and sensed by adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Decreasing ATP level by suppression of production or stimulation of utilization is a promising approach in the treatment of insulin resistance. In support, many of existing insulin sensitizing medicines inhibit ATP production in mitochondria. The effective therapies such as weight loss, exercise, and caloric restriction all reduce ATP in insulin sensitive cells. This new concept provides a unifying cellular and molecular mechanism of insulin resistance in obesity, which may apply to insulin resistance in aging and lipodystrophy. PMID:23471659

  14. Hyperandrogenemia Induced by Letrozole Treatment of Pubertal Female Mice Results in Hyperinsulinemia Prior to Weight Gain and Insulin Resistance.

    Science.gov (United States)

    Skarra, Danalea V; Hernández-Carretero, Angelina; Rivera, Alissa J; Anvar, Arya R; Thackray, Varykina G

    2017-09-01

    Women with polycystic ovary syndrome (PCOS) diagnosed with hyperandrogenism and ovulatory dysfunction have an increased risk of developing metabolic disorders, including type 2 diabetes and cardiovascular disease. We previously developed a model that uses letrozole to elevate endogenous testosterone levels in female mice. This model has hallmarks of PCOS, including hyperandrogenism, anovulation, and polycystic ovaries, as well as increased abdominal adiposity and glucose intolerance. In the current study, we further characterized the metabolic dysfunction that occurs after letrozole treatment to determine whether this model represents a PCOS-like metabolic phenotype. We focused on whether letrozole treatment results in altered pancreatic or liver function as well as insulin resistance. We also investigated whether hyperinsulinemia occurs secondary to weight gain and insulin resistance in this model or if it can occur independently. Our study demonstrated that letrozole-treated mice developed hyperinsulinemia after 1 week of treatment and without evidence of insulin resistance. After 2 weeks of letrozole treatment, mice became significantly heavier than placebo mice, demonstrating that weight gain was not required to develop hyperinsulinemia. After 5 weeks of letrozole treatment, mice exhibited blunted glucose-stimulated insulin secretion, insulin resistance, and impaired insulin-induced phosphorylation of AKT in skeletal muscle. Moreover, letrozole-treated mice exhibited dyslipidemia after 5 weeks of treatment but no evidence of hepatic disease. Our study demonstrated that the letrozole-induced PCOS mouse model exhibits multiple features of the metabolic dysregulation observed in obese, hyperandrogenic women with PCOS. This model will be useful for mechanistic studies investigating how hyperandrogenemia affects metabolism in females. Copyright © 2017 Endocrine Society.

  15. Pathogenesis of Insulin Resistance in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Muhammad A. Abdul-Ghani

    2010-01-01

    Full Text Available Insulin resistance in skeletal muscle is manifested by decreased insulin-stimulated glucose uptake and results from impaired insulin signaling and multiple post-receptor intracellular defects including impaired glucose transport, glucose phosphorylation, and reduced glucose oxidation and glycogen synthesis. Insulin resistance is a core defect in type 2 diabetes, it is also associated with obesity and the metabolic syndrome. Dysregulation of fatty acid metabolism plays a pivotal role in the pathogenesis of insulin resistance in skeletal muscle. Recent studies have reported a mitochondrial defect in oxidative phosphorylation in skeletal muscle in variety of insulin resistant states. In this review, we summarize the cellular and molecular defects that contribute to the development of insulin resistance in skeletal muscle.

  16. Associations between depressive symptoms and insulin resistance

    DEFF Research Database (Denmark)

    Adriaanse, M C; Dekker, J M; Nijpels, G

    2006-01-01

    AIMS/HYPOTHESIS: The association between depression and insulin resistance has been investigated in only a few studies, with contradictory results reported. The aim of this study was to determine whether the association between symptoms of depression and insulin resistance varies across glucose...... established type 2 diabetes mellitus. Main outcome measures were insulin resistance defined by the homeostasis model assessment for insulin resistance (HOMA-IR) and symptoms of depression using the Centre for Epidemiologic Studies Depression Scale (CES-D). RESULTS: In the total sample, we found a weak.......942). The association between depressive symptoms and insulin resistance was similar for men and women. CONCLUSIONS/INTERPRETATION: We found only weak associations between depressive symptoms and insulin resistance, which did not differ among different glucose metabolism subgroups or between men and women....

  17. Adipokines and Hepatic Insulin Resistance

    Science.gov (United States)

    Hassan, Waseem

    2013-01-01

    Obesity is a major risk factor for insulin resistance and type 2 diabetes. Adipose tissue is now considered to be an active endocrine organ that secretes various adipokines such as adiponectin, leptin, resistin, tumour necrosis factor-α, and interleukin-6. Recent studies have shown that these factors might provide a molecular link between increased adiposity and impaired insulin sensitivity. Since hepatic insulin resistance plays the key role in the whole body insulin resistance, clarification of the regulatory processes about hepatic insulin resistance by adipokines in rodents and human would seem essential in order to understand the mechanism of type 2 diabetes and for developing novel therapeutic strategies to treat it. PMID:23762871

  18. Nutritional Modulation of Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Martin O. Weickert

    2012-01-01

    Full Text Available Insulin resistance has been proposed as the strongest single predictor for the development of Type 2 Diabetes (T2DM. Chronic oversupply of energy from food, together with inadequate physical activity, have been recognized as the most relevant factors leading to overweight, abdominal adiposity, insulin resistance, and finally T2DM. Conversely, energy reduced diets almost invariably to facilitate weight loss and reduce abdominal fat mass and insulin resistance. However, sustained weight loss is generally difficult to achieve, and distinct metabolic characteristics in patients with T2DM further compromise success. Therefore, investigating the effects of modulating the macronutrient composition of isoenergetic diets is an interesting concept that may lead to additional important insights. Metabolic effects of various different dietary concepts and strategies have been claimed, but results from randomized controlled studies and particularly from longer-term-controlled interventions in humans are often lacking. However, some of these concepts are supported by recent research, at least in animal models and short-term studies in humans. This paper provides an update of the current literature regarding the role of nutrition in the modulation of insulin resistance, which includes the discussion of weight-loss-independent metabolic effects of commonly used dietary concepts.

  19. Insulin Resistance in Alzheimer's Disease

    Science.gov (United States)

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  20. Insulin resistance and chronic inflammation

    Directory of Open Access Journals (Sweden)

    Natalia Matulewicz

    2016-12-01

    Full Text Available Insulin resistance is a condition of reduced biological response to insulin. Growing evidence indicates the role of the chronic low-grade inflammatory response in the pathogenesis of insulin resistance. Adipose tissue in obesity is characterized by increased lipolysis with the excessive release of free fatty acids, and is also a source of proinflammatory cytokines. Both these factors may inhibit insulin action. Proinflammatory cytokines exert their effect by stimulating major inflammatory NFκB and JNK pathways within the cells. Inflammatory processes in other insulin responsive tissues may also play a role in inducing insulin resistance. This paper is an overview of the chronic low-grade inflammation in adipose tissue, skeletal muscle, liver and endothelial cells during the development of insulin resistance.

  1. Molecular mechanism of insulin resistance

    Indian Academy of Sciences (India)

    Free fatty acids are known to play a key role in promoting loss of insulin sensitivity, thereby causing insulin resistance and type 2 diabetes. However, the underlying mechanism involved is still unclear. In searching for the cause of the mechanism, it has been found that palmitate inhibits insulin receptor (IR) gene expression, ...

  2. Selective Insulin Resistance in Adipocytes*

    Science.gov (United States)

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H.; Fazakerley, Daniel J.; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C.; Coster, Adelle C. F.; Stöckli, Jacqueline; James, David E.

    2015-01-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. PMID:25720492

  3. Microvascular Recruitment in Insulin Resistance

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker

    the resonating sound from the microbubbles in the systemic circulation were recorded for determination of microvascular recruitment in designated muscle segments. Results showed that microvascular recruitment increased with insulin stimulation by ~30% in rats and ~40% in humans (study I). Furthermore......, it was observed that muscle contractions increased muscle perfusion rapidly by 3-4 fold and by 1-2 fold compared to basal and insulin, respectively, in both rat and human skeletal muscle (study I). The real-time contrast-enhanced ultrasound method was applied to investigate the vaso-active effect of the incretin...... hormone glucagon-like-peptide-1 (GLP-1) in the microcirculation. Glucagon-like-peptide-1 analogs are drugs used for treatments of insulin resistance and type 2 diabetes but the vascular effects of GLP-1 in vivo are elusive. Here it was shown that GLP-1 rapidly increased the microvascular recruitment...

  4. Insulin resistance: definition and consequences.

    Science.gov (United States)

    Lebovitz, H E

    2001-01-01

    Insulin resistance is defined clinically as the inability of a known quantity of exogenous or endogenous insulin to increase glucose uptake and utilization in an individual as much as it does in a normal population. Insulin action is the consequence of insulin binding to its plasma membrane receptor and is transmitted through the cell by a series of protein-protein interactions. Two major cascades of protein-protein interactions mediate intracellular insulin action: one pathway is involved in regulating intermediary metabolism and the other plays a role in controlling growth processes and mitoses. The regulation of these two distinct pathways can be dissociated. Indeed, some data suggest that the pathway regulating intermediary metabolism is diminished in type 2 diabetes while that regulating growth processes and mitoses is normal.--Several mechanisms have been proposed as possible causes underlying the development of insulin resistance and the insulin resistance syndrome. These include: (1) genetic abnormalities of one or more proteins of the insulin action cascade (2) fetal malnutrition (3) increases in visceral adiposity. Insulin resistance occurs as part of a cluster of cardiovascular-metabolic abnormalities commonly referred to as "The Insulin Resistance Syndrome" or "The Metabolic Syndrome". This cluster of abnormalities may lead to the development of type 2 diabetes, accelerated atherosclerosis, hypertension or polycystic ovarian syndrome depending on the genetic background of the individual developing the insulin resistance.--In this context, we need to consider whether insulin resistance should be defined as a disease entity which needs to be diagnosed and treated with specific drugs to improve insulin action.

  5. The evolutionary benefit of insulin resistance

    NARCIS (Netherlands)

    Soeters, Maarten R.; Soeters, Peter B.

    2012-01-01

    Insulin resistance is perceived as deleterious, associated with conditions as the metabolic syndrome, type 2 diabetes mellitus and critical illness. However, insulin resistance is evolutionarily well preserved and its persistence suggests that it benefits survival. Insulin resistance is important in

  6. Progranulin causes adipose insulin resistance via increased autophagy resulting from activated oxidative stress and endoplasmic reticulum stress.

    Science.gov (United States)

    Guo, Qinyue; Xu, Lin; Li, Huixia; Sun, Hongzhi; Liu, Jiali; Wu, Shufang; Zhou, Bo

    2017-01-31

    Progranulin (PGRN) has recently emerged as an important regulator for insulin resistance. However, the direct effect of progranulin in adipose insulin resistance associated with the autophagy mechanism is not fully understood. In the present study, progranulin was administered to 3T3-L1 adipocytes and C57BL/6 J mice with/without specific inhibitors of oxidative stress and endoplasmic reticulum stress, and metabolic parameters, oxidative stress, endoplasmic reticulum stress and autophagy markers were assessed. Progranulin treatment increased iNOS expression, NO synthesis and ROS generation, and elevated protein expressions of CHOP, GRP78 and the phosphorylation of PERK, and caused a significant increase in Atg7 and LC3-II protein expression and a decreased p62 expression, and decreased insulin-stimulated tyrosine phosphorylation of IRS-1 and glucose uptake, demonstrating that progranulin activated oxidative stress and ER stress, elevated autophagy and induced insulin insensitivity in adipocytes and adipose tissue of mice. Interestingly, inhibition of iNOS and ER stress both reversed progranulin-induced stress response and increased autophagy, protecting against insulin resistance in adipocytes. Furthermore, the administration of the ER stress inhibitor 4-phenyl butyric acid reversed the negative effect of progranulin in vivo. Our findings showed the clinical potential of the novel adipokine progranulin in the regulation of insulin resistance, suggesting that progranulin might mediate adipose insulin resistance, at least in part, by inducing autophagy via activated oxidative stress and ER stress.

  7. Insulin Resistance and Mitochondrial Dysfunction.

    Science.gov (United States)

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  8. Paediatrics, insulin resistance and the kidney.

    Science.gov (United States)

    Marlais, Matko; Coward, Richard J

    2015-08-01

    Systemic insulin resistance is becoming more prevalent in the young due to modern lifestyles predisposing to the metabolic syndrome and obesity. There is also evidence that there are critical insulin-resistant phases for the developing child, including puberty, and that renal disease per se causes systemic insulin resistance. This review considers the factors that render children insulin resistant, as well as the accumulating evidence that the kidney is an insulin-responsive organ and could be affected by insulin resistance.

  9. Loss of renal SNX5 results in impaired IDE activity and insulin resistance in mice.

    Science.gov (United States)

    Li, Fengmin; Yang, Jian; Villar, Van Anthony M; Asico, Laureano D; Ma, Xiaobo; Armando, Ines; Sanada, Hironobu; Yoneda, Minoru; Felder, Robin A; Jose, Pedro A; Wang, Xiaoyan

    2018-03-01

    We hypothesised that renal sorting nexin 5 (SNX5) regulates the insulin-degrading enzyme (IDE) and, thus, circulating insulin levels. We therefore studied the dynamic interaction between SNX5 and IDE in human renal proximal tubule cells (hRPTCs), as well as in rat and mouse kidneys. The regulation of IDE by SNX5 expressed in the kidney was studied in vitro and in vivo. Snx5 or mock siRNA was added to immortalised hRPTCs (passage <20) in culture or selectively infused, via osmotic mini-pump, into the remnant kidney of uninephrectomised mice and rats. SNX5 co-localised with IDE at the plasma membrane and perinuclear area of hRPTCs and in the brush border membrane of proximal tubules of human, rat, and mouse kidneys. Insulin increased the co-localisation and co-immunoprecipitation of SNX5 and IDE in hRPTCs. Silencing SNX5 in hRPTCs decreased IDE expression and activity. Renal-selective silencing of Snx5 (SNX5 protein: 100 ± 25 vs 29 ± 10, p < 0.05 [% of control]) in C57Bl/6J mice decreased IDE protein (100 ± 13 vs 57 ± 6, p < 0.05 [% of control]) and urinary insulin excretion, impaired the responses to insulin and glucose, and increased blood insulin and glucose levels. Spontaneously hypertensive rats (SHRs) had increased blood insulin and glucose levels and decreased renal SNX5 (100 ± 27 vs 29 ± 6, p < 0.05 [% of control]) and IDE (100 ± 5 vs 75 ± 4, p < 0.05 [% of control]) proteins, compared with normotensive Wistar-Kyoto (WKY) rats. Kidney Snx5-depleted WKY rats also had increased blood insulin and glucose levels. The expression of SNX5 and IDE was decreased in RPTCs from SHRs and hypertensive humans compared with cells from normotensive volunteers, indicating a common cause for hyperinsulinaemia and hypertension. Renal SNX5 positively regulates IDE expression and function. This study is the first to demonstrate the novel and crucial role of renal SNX5 in insulin and glucose metabolism.

  10. Insulin resistance in obese children and adolescents

    Directory of Open Access Journals (Sweden)

    Monica Cristina dos Santos Romualdo

    2014-11-01

    Conclusion: The results confirmed that insulin resistance is present in many obese children and adolescents, and that this condition is associated with alterations that represent an increased risk for developing metabolic disorders in adulthood.

  11. Insulin resistance and maximal oxygen uptake

    DEFF Research Database (Denmark)

    Seibaek, Marie; Vestergaard, Henrik; Burchardt, Hans

    2003-01-01

    BACKGROUND: Type 2 diabetes, coronary atherosclerosis, and physical fitness all correlate with insulin resistance, but the relative importance of each component is unknown. HYPOTHESIS: This study was undertaken to determine the relationship between insulin resistance, maximal oxygen uptake......, and the presence of either diabetes or ischemic heart disease. METHODS: The study population comprised 33 patients with and without diabetes and ischemic heart disease. Insulin resistance was measured by a hyperinsulinemic euglycemic clamp; maximal oxygen uptake was measured during a bicycle exercise test. RESULTS......: There was a strong correlation between maximal oxygen uptake and insulin-stimulated glucose uptake (r = 0.7, p = 0.001), and maximal oxygen uptake was the only factor of importance for determining insulin sensitivity in a model, which also included the presence of diabetes and ischemic heart disease. CONCLUSION...

  12. Pregestational diabetes with extreme insulin resistance: use of U-500 insulin in pregnancy.

    Science.gov (United States)

    Zuckerwise, Lisa C; Werner, Erika F; Pettker, Christian M; McMahon-Brown, Erin K; Thung, Stephen F; Han, Christina S

    2012-08-01

    Increased insulin requirements in pregnancy can hinder attainment of glycemic control in diabetic patients. U-500 insulin is a concentrated form of regular insulin that can be a valuable tool in the treatment of patients with severe insulin resistance. A 24-year-old woman with pregestational diabetes mellitus experienced increasing insulin requirements during pregnancy, peaking at 650 units daily. The frequent, large-volume injections of standard-concentration insulin were poorly tolerated by the patient and resulted in nonadherence. She subsequently achieved glycemic control on thrice-daily U-500 insulin. Pregnancy exacerbates insulin resistance in diabetic patients, and these patients may require high doses of insulin. U-500 insulin is an effective alternative for patients with severe insulin resistance and should be considered for pregnant women with difficulty achieving glycemic control.

  13. Insulin resistance alters islet morphology in nondiabetic humans

    DEFF Research Database (Denmark)

    Mezza, Teresa; Muscogiuri, Giovanna; Sorice, Gian Pio

    2014-01-01

    Type 2 diabetes is characterized by poor glucose uptake in metabolic tissues and manifests when insulin secretion fails to cope with worsening insulin resistance. In addition to its effects on skeletal muscle, liver, and adipose tissue metabolism, it is evident that insulin resistance also affects...... pancreatic β-cells. To directly examine the alterations that occur in islet morphology as part of an adaptive mechanism to insulin resistance, we evaluated pancreas samples obtained during pancreatoduodenectomy from nondiabetic subjects who were insulin-resistant or insulin-sensitive. We also compared...... insulin sensitivity, insulin secretion, and incretin levels between the two groups. We report an increased islet size and an elevated number of β- and α-cells that resulted in an altered β-cell-to-α-cell area in the insulin- resistant group. Our data in this series of studies suggest that neogenesis from...

  14. Immunohistochemical expression of insulin, glucagon, and somatostatin in pancreatic islets of horses with and without insulin resistance.

    Science.gov (United States)

    Newkirk, Kim M; Ehrensing, Gordon; Odoi, Agricola; Boston, Raymond C; Frank, Nicholas

    2018-02-01

    OBJECTIVE To assess insulin, glucagon, and somatostatin expression within pancreatic islets of horses with and without insulin resistance. ANIMALS 10 insulin-resistant horses and 13 insulin-sensitive horses. PROCEDURES For each horse, food was withheld for at least 10 hours before a blood sample was collected for determination of serum insulin concentration. Horses with a serum insulin concentration horses with a serum insulin concentration > 20 μU/mL underwent a frequently sampled IV glucose tolerance test to determine sensitivity to insulin by minimal model analysis. Horses with a sensitivity to insulin horses were euthanized with a barbiturate overdose, and pancreatic specimens were harvested and immunohistochemically stained for determination of insulin, glucagon, and somatostatin expression in pancreatic islets. Islet hormone expression was compared between insulin-resistant and insulin-sensitive horses. RESULTS Cells expressing insulin, glucagon, and somatostatin made up approximately 62%, 12%, and 7%, respectively, of pancreatic islet cells in insulin-resistant horses and 64%, 18%, and 9%, respectively, of pancreatic islet cells in insulin-sensitive horses. Expression of insulin and somatostatin did not differ between insulin-resistant and insulin-sensitive horses, but the median percentage of glucagon-expressing cells in the islets of insulin-resistant horses was significantly less than that in insulin-sensitive horses. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that, in insulin-resistant horses, insulin secretion was not increased but glucagon production might be downregulated as a compensatory response to hyperinsulinemia.

  15. Tau hyperphosphorylation induces oligomeric insulin accumulation and insulin resistance in neurons.

    Science.gov (United States)

    Rodriguez-Rodriguez, Patricia; Sandebring-Matton, Anna; Merino-Serrais, Paula; Parrado-Fernandez, Cristina; Rabano, Alberto; Winblad, Bengt; Ávila, Jesús; Ferrer, Isidre; Cedazo-Minguez, Angel

    2017-12-01

    Insulin signalling deficiencies and insulin resistance have been directly linked to the progression of neurodegenerative disorders like Alzheimer's disease. However, to date little is known about the underlying molecular mechanisms or insulin state and distribution in the brain under pathological conditions. Here, we report that insulin is accumulated and retained as oligomers in hyperphosphorylated tau-bearing neurons in Alzheimer's disease and in several of the most prevalent human tauopathies. The intraneuronal accumulation of insulin is directly dependent on tau hyperphosphorylation, and follows the tauopathy progression. Furthermore, cells accumulating insulin show signs of insulin resistance and decreased insulin receptor levels. These results suggest that insulin retention in hyperphosphorylated tau-bearing neurons is a causative factor for the insulin resistance observed in tauopathies, and describe a novel neuropathological concept with important therapeutic implications. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Molecular Mechanisms of Insulin Resistance in Chronic Kidney Disease

    Science.gov (United States)

    Thomas, Sandhya S.; Zhang, Liping; Mitch, William E.

    2015-01-01

    Insulin resistance refers to reduced sensitivity of organs to insulin-initiated biologic processes that result in metabolic defects. Insulin resistance is common in patients with end-stage renal disease but also occurs in patients with chronic kidney disease (CKD), even when the serum creatinine is minimally increased. Following insulin binding to its receptor, auto-phosphorylation of the insulin receptor is followed by kinase reactions that phosphorylate insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase (PI3K) and Akt. In fact, low levels of Akt phosphorylation (p-Akt) identifies the presence of the insulin resistance that leads to metabolic defects in insulin-initiated metabolism of glucose, lipids and muscle proteins. Besides CKD, other complex conditions (e.g., inflammation, oxidative stress, metabolic acidosis, aging and excess angiotensin II) reduce p-Akt resulting in insulin resistance. Insulin resistance in each of these conditions is due to activation of different, E3 ubiquitin ligases which specifically conjugate ubiquitin to IRS-1 marking it for degradation in the ubiquitin-proteasome system (UPS). Consequently, IRS-1 degradation suppresses insulin-induced intracellular signaling, causing insulin resistance. Understanding mechanisms of insulin resistance could lead to therapeutic strategies that improve the metabolism of patients with CKD. PMID:26444029

  17. Pathophysiological mechanisms of insulin resistance

    NARCIS (Netherlands)

    Brands, M.

    2013-01-01

    In this thesis we studied pathophysiological mechanisms of insulin resistance in different conditions in humans, i.e. in obesity, during lipid infusions, after hypercaloric feeding, and glucocorticoid treatment. We focused on 3 important hypotheses that are suggested to be implicated in the

  18. Obesity genes and insulin resistance.

    Science.gov (United States)

    Belkina, Anna C; Denis, Gerald V

    2010-10-01

    The exploding prevalence of insulin resistance and Type 2 diabetes (T2D) linked to obesity has become an alarming public health concern. Worldwide, approximately 171 million people suffer from obesity-induced diabetes and public health authorities expect this situation to deteriorate rapidly. An interesting clinical population of 'metabolically healthy but obese' (MHO) cases is relatively protected from T2D and its associated cardiovascular risk. The molecular basis for this protection is not well understood but is likely to involve reduced inflammatory responses. The inflammatory cells and pathways that respond to overnutrition are the primary subject matter for this review. The chance discovery of a genetic mutation in the Brd2 gene, which is located in the class II major histocompatibility complex and makes mice enormously fat but protects them from diabetes, offers revolutionary new insights into the cellular mechanisms that link obesity to insulin resistance and T2D. These Brd2-hypomorphic mice have reduced inflammation in fat that is normally associated with insulin resistance, and resemble MHO patients, suggesting novel therapeutic pathways for obese patients at risk for T2D. Deeper understanding of the functional links between genes that control inflammatory responses to diet-induced obesity is crucial to the development of therapies for obese, insulin-resistant patients.

  19. Molecular mechanism of insulin resistance

    Indian Academy of Sciences (India)

    PRAKASH

    incidence of insulin resistance and type 2 diabetes is ..... 10% SDS-PAGE and then subjected to Western blot analysis with anti-pPDK1, pAkt/Akt or anti-pPKCε antibodies (1:1000). ... in humans, where qualitative and quantitative abnormalities.

  20. Insulin resistance in obese children and adolescents.

    Science.gov (United States)

    Romualdo, Monica Cristina dos Santos; Nóbrega, Fernando José de; Escrivão, Maria Arlete Meil Schimith

    2014-01-01

    To evaluate the presence of insulin resistance and its association with other metabolic abnormalities in obese children and adolescents. Retrospective study of 220 children and adolescents aged 5-14 years. Anthropometric measurements were performed (weight, height, and waist circumference) and clinical (gender, age, pubertal stage, and degree of obesity) and biochemical (glucose, insulin, total cholesterol, and fractions, triglycerides) data were analyzed. Insulin resistance was identified by the homeostasis model assessment for insulin resistance (HOMA-IR) index. The analysis of the differences between the variables of interest and the HOMA-IR quartiles was performed by ANOVA or Kruskal-Wallis tests. Insulin resistance was diagnosed in 33.20% of the sample. It was associated with low levels of high-density lipoprotein cholesterol (HDL-C; p=0.044), waist circumference measurement (p=0.030), and the set of clinical and metabolic (p=0.000) alterations. Insulin-resistant individuals had higher mean age (p=0.000), body mass index (BMI; p=0.000), abdominal circumference (p=0.000), median triglycerides (p=0.001), total cholesterol (p≤0.042), and low-density lipoprotein cholesterol (LDL-C; p≤0.027); and lower HDL-C levels (p=0.005). There was an increase in mean BMI (p=0.000), abdominal circumference (p=0.000), and median triglycerides (p=0.002) as the values of HOMA -IR increased, with the exception of HDL-C, which decreased (p=0.001). Those with the highest number of simultaneous alterations were between the second and third quartiles of the HOMA-IR index (p=0.000). The results confirmed that insulin resistance is present in many obese children and adolescents, and that this condition is associated with alterations that represent an increased risk for developing metabolic disorders in adulthood. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  1. Insulin resistance in obesity can be reliably identified from fasting plasma insulin

    NARCIS (Netherlands)

    ter Horst, K. W.; Gilijamse, P. W.; Koopman, K. E.; de Weijer, B. A.; Brands, M.; Kootte, R. S.; Romijn, J. A.; Ackermans, M. T.; Nieuwdorp, M.; Soeters, M. R.; Serlie, M. J.

    2015-01-01

    Insulin resistance is the major contributor to cardiometabolic complications of obesity. We aimed to (1) establish cutoff points for insulin resistance from euglycemic hyperinsulinemic clamps (EHCs), (2) identify insulin-resistant obese subjects and (3) predict insulin resistance from routinely

  2. Tobacco Use, Insulin Resistance, and Risk of Type 2 Diabetes: Results from the Multi-Ethnic Study of Atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Rachel J Keith

    Full Text Available Tobacco use is associated with insulin resistance and incident diabetes. Given the racial/ethnic differences in smoking patterns and incident type 2 diabetes our objective was to evaluate the association between tobacco use and insulin resistance (IR as well as incident type 2 diabetes mellitus in a contemporary multiethnic cohort.We studied 5,931 Multi- Ethnic Study of Atherosclerosis (MESA participants who at baseline were free of type 2 diabetes (fasting glucose ≥7.0 mmol/l (126 mg/dl and/or use of insulin or oral hypoglycemic medications categorized by self-reported tobacco status and reclassified by urinary cotinine (available in 58% of participants as never, current or former tobacco users. The association between tobacco use, IR (fasting plasma glucose, insulin, and the homeostatic model assessment of insulin resistance (HOMA-IR and incident diabetes over 10 years was evaluated using multivariable linear regression and Cox proportional hazards models, respectively. Mean age of the participants was 62 (±10 years, 46% were male, 41% Caucasian, 12% Chinese, 26% African American and 21% Hispanic/Latino. IR biomarkers did not significantly differ between current, former, and never cigarette users (P >0.10 but showed limited unadjusted differences for users of cigar, pipe and smokeless tobacco (All P <0.05. Fully adjusted models showed no association between dose or intensity of tobacco exposure and any index of IR. When stratified into participants that quit smoking vs. those who continued smoking during the 10-year study there was no difference in serum glucose levels or frequency of diabetes. In fully adjusted models, there was no significant difference in diabetes risk between former or current cigarette smokers compared to never smokers [HR (95% CI 1.02 (0.77,1.37 and 0.81 (0.52,1.26 respectively].In a contemporary multi-ethnic cohort, there was no independent association between tobacco use and IR or incident type 2 diabetes. The role

  3. Insulin resistance and bone: a biological partnership.

    Science.gov (United States)

    Conte, Caterina; Epstein, Solomon; Napoli, Nicola

    2018-04-01

    Despite a clear association between type 2 diabetes (T2D) and fracture risk, the pathogenesis of bone fragility in T2D has not been clearly elucidated. Insulin resistance is the primary defect in T2D. Insulin signalling regulates both bone formation and bone resorption, but whether insulin resistance can affect bone has not been established. On the other hand, evidence exists that bone might play a role in the regulation of glucose metabolism. This article reviews the available experimental and clinical evidence on the interplay between bone and insulin resistance. Interestingly, a bilateral relationship between bone and insulin resistance seems to exist that unites them in a biological partnership.

  4. Markers of insulin resistance and sedentary lifestyle are predictors of preeclampsia in women with adverse obstetric results.

    Science.gov (United States)

    Hoirisch-Clapauch, S; Benchimol-Barbosa, P R

    2011-12-01

    Some thrombophilias and severe preeclampsia may increase the risk for preterm deliveries and fetal death due to placental insufficiency. Our objective was to evaluate clinical and laboratory data as predictors of preeclampsia in a population of mothers with 3rd trimester fetal losses or preterm deliveries. In a longitudinal retrospective study, 54 consecutive women (age range: 16 to 39 years) with normotensive pregnancies were compared to 79 consecutive women with preeclampsia (age range: 16 to 43 years). Weight accrual rate (WAR) was arbitrarily defined as weight gain from age 18 years to the beginning of pregnancy divided by elapsed years. Independent predictors of preeclampsia were past history of oligomenorrhea, WAR >0.8 kg/years, pre-pregnancy or 1st trimester triglyceridemia >150 mg/dL, and elevated acanthosis nigricans in the neck. In a multivariate logistic regression model, two or more predictors conferred an odds ratio of 15 (95%CI [5.9-37]; P < 0.001) to develop preeclampsia (85% specificity, 73% sensitivity, c-statistic of 81 ± 4%; P < 0.0001). Clinical markers related to insulin resistance and sedentary lifestyles are strong independent predictors of preeclampsia in mothers with 3rd trimester fetal losses or preterm deliveries due to placental insufficiency. Women at risk for preeclampsia in this particular population might benefit from measures focused on overcoming insulin resistance.

  5. Streptozotocin diabetes and insulin resistance impairment of ...

    African Journals Online (AJOL)

    ... insulin resistance impairment of spermatogenesis in adult rat testis: Central Vs local ... Summary: Mammalian reproduction is dynamically regulated by the pituitary ... Group 3 > Streptozotocin-insulin treated group; received a single dose IP ...

  6. Peripheral nervous system insulin resistance in ob/ob mice

    Science.gov (United States)

    2013-01-01

    Background A reduction in peripheral nervous system (PNS) insulin signaling is a proposed mechanism that may contribute to sensory neuron dysfunction and diabetic neuropathy. Neuronal insulin resistance is associated with several neurological disorders and recent evidence has indicated that dorsal root ganglion (DRG) neurons in primary culture display altered insulin signaling, yet in vivo results are lacking. Here, experiments were performed to test the hypothesis that the PNS of insulin-resistant mice displays altered insulin signal transduction in vivo. For these studies, nondiabetic control and type 2 diabetic ob/ob mice were challenged with an intrathecal injection of insulin or insulin-like growth factor 1 (IGF-1) and downstream signaling was evaluated in the DRG and sciatic nerve using Western blot analysis. Results The results indicate that insulin signaling abnormalities documented in other “insulin sensitive” tissues (i.e. muscle, fat, liver) of ob/ob mice are also present in the PNS. A robust increase in Akt activation was observed with insulin and IGF-1 stimulation in nondiabetic mice in both the sciatic nerve and DRG; however this response was blunted in both tissues from ob/ob mice. The results also suggest that upregulated JNK activation and reduced insulin receptor expression could be contributory mechanisms of PNS insulin resistance within sensory neurons. Conclusions These findings contribute to the growing body of evidence that alterations in insulin signaling occur in the PNS and may be a key factor in the pathogenesis of diabetic neuropathy. PMID:24252636

  7. Retinol binding protein 4, obesity, and insulin resistance in adolescents

    Directory of Open Access Journals (Sweden)

    Ronaldi Noor

    2017-02-01

    Full Text Available Background Obesity is a global problem. Even in poor and developing countries, obesity has reached alarming levels. In childhood, obesity may lead to insulin resistance. Retinol binding protein (RBP4, secreted primarily by liver and adipose tissues, was recently proposed as a link between obesity and insulin resistance. The role of RBP4 in pediatric obesity and its relationship with insulin resistance have not been well elucidated. Objective To compare RBP4 levels in obese and lean adolescents and to assess for a relationship between RBP4 levels and insulin resistance. Method This cross-sectional study was conducted in three senior high schools in Padang, West Sumatera, Indonesia. Subjects were adolescents aged 14-18 years, who were obese or normal weight (n=56. We measured subjects’ body mass index (BMI and serum RBP4 concentrations. Insulin resistance was assessed using the homeostasis model assessment of insulin resistance (HOMA-IR index. Results Similar RBP4 levels were found in the obese and normoweight groups (P>0.05. Higher RBP4 levels were found in the insulin resistant compared to the non-insulin resistant group, but the difference was not significant (P > 0.05. Conclusion There is no significant difference in mean RBP4 levels in obese adolescents compared to normoweight adolescents. Nor are mean RBP4 levels significantly different between obese adolescents with and without insulin resistance.

  8. Adipokines mediate inflammation and insulin resistance

    Directory of Open Access Journals (Sweden)

    Jeffrey E. Pessin

    2013-06-01

    Full Text Available For many years, adipose tissue was considered as an inert energy storage organ that accumulates and stores triacylglycerols during energy excess and releases fatty acids in times of systemic energy need. However, over the last two decades adipose tissue depots have been established as highly active endocrine and metabolically important organs that modulate energy expenditure and glucose homeostasis. In rodents, brown adipose tissue plays an essential role in non-shivering thermogenesis and in energy dissipation that can serve to protect against diet-induced obesity. White adipose tissue collectively referred too as either subcutaneous or visceral adipose tissue is responsible for the secretion of an array of signaling molecules, termed adipokines. These adipokines function as classic circulating hormones to communicate with other organs including brain, liver, muscle, the immune system and adipose tissue itself. The dysregulation of adipokines has been implicated in obesity, type 2 diabetes and cardiovascular disease. Recently, inflammatory responses in adipose tissue have been shown as a major mechanism to induce peripheral tissue insulin resistance. Although leptin and adiponectin regulate feeding behavior and energy expenditure, these adipokines are also involved in the regulation of inflammatory responses. Adipose tissue secrete various pro- and anti-inflammatory adipokines to modulate inflammation and insulin resistance. In obese humans and rodent models, the expression of pro-inflammatory adipokines is enhanced to induce insulin resistance. Collectively, these findings have suggested that obesity-induced insulin resistance may result, at least in part, from an imbalance in the expression of pro- and anti-inflammatory adipokines. Thus we will review the recent progress regarding the physiological and molecular functions of adipokines in the obesity-induced inflammation and insulin resistance with perspectives on future directions.

  9. Serum Insulin, Glucose, Indices of Insulin Resistance, and Risk of Lung Cancer.

    Science.gov (United States)

    Argirion, Ilona; Weinstein, Stephanie J; Männistö, Satu; Albanes, Demetrius; Mondul, Alison M

    2017-10-01

    Background: Although insulin may increase the risk of some cancers, few studies have examined fasting serum insulin and lung cancer risk. Methods: We examined serum insulin, glucose, and indices of insulin resistance [insulin:glucose molar ratio and homeostasis model assessment of insulin resistance (HOMA-IR)] and lung cancer risk using a case-cohort study within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study of Finnish men. A total of 196 cases and 395 subcohort members were included. Insulin and glucose were measured in fasting serum collected 5 to 12 years before diagnosis. Cox proportional hazards models were utilized to estimate the relative risk of lung cancer. Results: The average time between blood collection and lung cancer was 9.6 years. Fasting serum insulin levels were 8.7% higher in subcohort members than cases. After multivariable adjustment, men in the fourth quartile of insulin had a significantly higher risk of lung cancer than those in the first quartile [HR = 2.10; 95% confidence interval (CI), 1.12-3.94]. A similar relationship was seen with HOMA-IR (HR = 1.83; 95% CI, 0.99-3.38). Risk was not strongly associated with glucose or the insulin:glucose molar ratio ( P trend = 0.55 and P trend = 0.27, respectively). Conclusions: Higher fasting serum insulin concentrations, as well as the presence of insulin resistance, appear to be associated with an elevated risk of lung cancer development. Impact: Although insulin is hypothesized to increase risk of some cancers, insulin and lung cancer remain understudied. Higher insulin levels and insulin resistance were associated with increased lung cancer risk. Although smoking cessation is the best method of lung cancer prevention, other lifestyle changes that affect insulin concentrations and sensitivity may reduce lung cancer risk. Cancer Epidemiol Biomarkers Prev; 26(10); 1519-24. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Molecular Mechanisms of Insulin Resistance Development

    Directory of Open Access Journals (Sweden)

    Vsevolod Arsen'evich Tkachuk

    2014-05-01

    Full Text Available Insulin resistance (IR is a phenomenon associated with an impaired ability of insulin to stimulate glucose uptake by target cells and to reduce the blood glucose level. A response increase in insulin secretion by the pancreas and hyperinsulinemia are compensatory reactions of the body. The development of IR leads to the inability of target cells to respond to insulin that results in developing type 2 diabetes mellitus (T2DM and metabolic syndrome. For this reason, the metabolic syndrome is defined in practice as a combination of IR with one or more pathologies such as T2DM, arterial hypertension, dyslipidemia, abdominal obesity, non-alcoholic fatty liver disease, and some others. However, a combination of high blood glucose and insulin levels always serves as its physiological criterion.IR should be considered as a systemic failure of the endocrine regulation in the body. Physiological causes of IR are diverse. The main ones are nutritional overload and accumulation of certain lipids and their metabolites in cells, low physical activity, chronic inflammation and stress of various nature, including oxidative and endoplasmic reticulum stress (impairment of damaged protein degradation in the cell. Recent studies have demonstrated that these physiological mechanisms likely act through a single intracellular scenario. This is the impairment of signal transduction from the insulin receptor to its targets via the negative feedback mechanism in intracellular insulin-dependent signaling cascades.This review describes the physiological and intracellular mechanisms of insulin action and focuses on their abnormalities upon IR development. Finally, feasible trends in early molecular diagnosis and therapy of IR are discussed.

  11. MODELS OF INSULIN RESISTANCE AND HEART FAILURE

    Science.gov (United States)

    Velez, Mauricio; Kohli, Smita; Sabbah, Hani N.

    2013-01-01

    The incidence of heart failure (HF) and diabetes mellitus is rapidly increasing and is associated with poor prognosis. In spite of the advances in therapy, HF remains a major health problem with high morbidity and mortality. When HF and diabetes coexist, clinical outcomes are significantly worse. The relationship between these two conditions has been studied in various experimental models. However, the mechanisms for this interrelationship are complex, incompletely understood, and have become a matter of considerable clinical and research interest. There are only few animal models that manifest both HF and diabetes. However, the translation of results from these models to human disease is limited and new models are needed to expand our current understanding of this clinical interaction. In this review, we discuss mechanisms of insulin signaling and insulin resistance, the clinical association between insulin resistance and HF and its proposed pathophysiologic mechanisms. Finally, we discuss available animal models of insulin resistance and HF and propose requirements for future new models. PMID:23456447

  12. Fatty Acids, Obesity and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Peter Arner

    2015-04-01

    Full Text Available Objective: Although elevated free fatty acid (FFA levels in obesity have been considered to be of importance for insulin resistance, a recent meta-analysis suggested normal FFA levels in obese subjects. We investigated fasting circulating FFA and glycerol levels in a large cohort of non-obese and obese subjects. Methods: Subjects recruited for a study on obesity genetics were investigated in the morning after an overnight fast (n = 3,888. Serum FFA (n = 3,306, plasma glycerol (n = 3,776, and insulin sensitivity index (HOMA-IR,n = 3,469 were determined. Obesity was defined as BMI ≥ 30 kg/m2 and insulin resistance as HOMA-IR ≥ 2.21. Results: In obese subjects, circulating FFA and glycerol levels were higher than in non-obese individuals (by 26% and 47%, respectively; both p Conclusion: Circulating FFA and glycerol levels are markedly elevated in obesity but only marginally influenced by insulin resistance and type 2 diabetes. Whether these differences persist during diurnal variations in circulating FFA/glycerol, remains to be established.

  13. Metabolic syndrome and insulin resistance in obese adolescents

    Directory of Open Access Journals (Sweden)

    Amanda Oliva Gobato

    2014-03-01

    Full Text Available Objective: To verify the prevalence of metabolic syndrome and insulin resistance in obese adolescents and its relationship with different body composition indicators. Methods: A cross-sectional study comprising 79 adolescents aged ten to 18 years old. The assessed body composition indicators were: body mass index (BMI, body fat percentage, abdominal circumference, and subcutaneous fat. The metabolic syndrome was diagnosed according to the criteria proposed by Cook et al. The insulin resistance was determined by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR index for values above 3.16. The analysis of ROC curves was used to assess the BMI and the abdominal circumference, aiming to identify the subjects with metabolic syndrome and insulin resistance. The cutoff point corresponded to the percentage above the reference value used to diagnose obesity. Results: The metabolic syndrome was diagnosed in 45.5% of the patients and insulin resistance, in 29.1%. Insulin resistance showed association with HDL-cholesterol (p=0.032 and with metabolic syndrome (p=0.006. All body composition indicators were correlated with insulin resistance (p<0.01. In relation to the cutoff point evaluation, the values of 23.5 and 36.3% above the BMI reference point allowed the identification of insulin resistance and metabolic syndrome. The best cutoff point for abdominal circumference to identify insulin resistance was 40%. Conclusions: All body composition indicators, HDL-cholesterol and metabolic syndrome showed correlation with insulin resistance. The BMI was the most effective anthropometric indicator to identify insulin resistance.

  14. Selective Insulin Resistance in the Kidney

    Science.gov (United States)

    Horita, Shoko; Nakamura, Motonobu; Suzuki, Masashi; Satoh, Nobuhiko; Suzuki, Atsushi; Seki, George

    2016-01-01

    Insulin resistance has been characterized as attenuation of insulin sensitivity at target organs and tissues, such as muscle and fat tissues and the liver. The insulin signaling cascade is divided into major pathways such as the PI3K/Akt pathway and the MAPK/MEK pathway. In insulin resistance, however, these pathways are not equally impaired. For example, in the liver, inhibition of gluconeogenesis by the insulin receptor substrate (IRS) 2 pathway is impaired, while lipogenesis by the IRS1 pathway is preserved, thus causing hyperglycemia and hyperlipidemia. It has been recently suggested that selective impairment of insulin signaling cascades in insulin resistance also occurs in the kidney. In the renal proximal tubule, insulin signaling via IRS1 is inhibited, while insulin signaling via IRS2 is preserved. Insulin signaling via IRS2 continues to stimulate sodium reabsorption in the proximal tubule and causes sodium retention, edema, and hypertension. IRS1 signaling deficiency in the proximal tubule may impair IRS1-mediated inhibition of gluconeogenesis, which could induce hyperglycemia by preserving glucose production. In the glomerulus, the impairment of IRS1 signaling deteriorates the structure and function of podocyte and endothelial cells, possibly causing diabetic nephropathy. This paper mainly describes selective insulin resistance in the kidney, focusing on the proximal tubule. PMID:27247938

  15. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance.

    Science.gov (United States)

    Højlund, Kurt

    2014-07-01

    synthesis was at least equally strong. Moreover, we found a correlation between plasma adiponectin and insulin activation of GS. This result is supported by a number of recent studies of animal models and muscle cell lines, which have shown that adiponectin augments insulin action on enzymes in the insulin signaling cascade. In contrast, we observed no differences in the abundance or activity of AMPK in obesity, type 2 diabetes, PCOS or inherited insulin resistance. This indicates that reduced insulin sensitivity in these conditions is not mediated via abnormal AMPK activity. The results from these studies demonstrate that the well-established abnormalities in insulin action on glucose uptake and glycogen synthesis are reflected by defects in insulin signaling to these cellular processes in type 2 diabetes, obesity, and PCOS, and as expected also in inherited insulin resistance caused by a mutation in INSR. In common metabolic disorders, low plasma adiponectin may contribute to insulin resistance and defects in insulin signaling, whereas in inherited insulin resistance a normal plasma adiponectin and reduced insulin clearance could contribute to maintain a sufficient activation of the insulin signaling cascade. The insight gained from these studies have improved our understanding of the molecular mechanisms underlying insulin resistance in skeletal muscle of humans, and can form the basis for further studies, which can lead to the development of treatment that more directly targets insulin resistance, and hence reduce the risk of type 2 diabetes and cardiovascular disease.

  16. Insulin resistance, insulin sensitization and inflammation in polycystic ovarian syndrome

    Directory of Open Access Journals (Sweden)

    Dhindsa G

    2004-04-01

    Full Text Available It is estimated that 5-10% of women of reproductive age have polycystic ovarian syndrome (PCOS. While insulin resistance is not part of the diagnostic criteria for PCOS, its importance in the pathogenesis of PCOS cannot be denied. PCOS is associated with insulin resistance independent of total or fat-free body mass. Post-receptor defects in the action of insulin have been described in PCOS which are similar to those found in obesity and type 2 diabetes. Treatment with insulin sensitizers, metformin and thiazolidinediones, improve both metabolic and hormonal patterns and also improve ovulation in PCOS. Recent studies have shown that PCOS women have higher circulating levels of inflammatory mediators like C-reactive protein, tumour necrosis factor- , tissue plasminogen activator and plasminogen activator inhibitor-1 (PAI-1 . It is possible that the beneficial effect of insulin sensitizers in PCOS may be partly due to a decrease in inflammation.

  17. Genetics Home Reference: type A insulin resistance syndrome

    Science.gov (United States)

    ... Conditions Type A insulin resistance syndrome Type A insulin resistance syndrome Printable PDF Open All Close All Enable ... view the expand/collapse boxes. Description Type A insulin resistance syndrome is a rare disorder characterized by severe ...

  18. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    International Nuclear Information System (INIS)

    Naidoo, C.

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, 125 I-insulin binding to the solubilized erythrocyte membrane receptor and 125 I-insulin binding to fibroblasts in culture

  19. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, C

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, /sup 125/I-insulin binding to the solubilized erythrocyte membrane receptor and /sup 125/I-insulin binding to fibroblasts in culture.

  20. Relationship between insulin resistance and plasma endothelin in hypertension patients

    International Nuclear Information System (INIS)

    Duan Yongqiang; Wang Zuobing; Yu Hui; Cao Wei; Wang Jing; Li Xiaoqin

    2011-01-01

    To explore the relationship between plasma endothelin and hypertension insulin resistance, and the improvement of insulin resistance in hypertension patients treated with captopril and l-amlodipine, 25 patients with primary hypertension and impaired glucose tolerance were selected and treated by captopril and l-amlodipine. Systolic pressure, diastolic pressure, fasting blood glucose, insulin and insulin antibody were measured before and after treatment and compared with healthy controls. The results showed that the plasma ET-1 level in hypertension group was significantly higher than that of healthy controls (P<0.01), and he plasma ET-1 level was positively correlated with FPG, FINS, Anti-INS, HOMA-IR. The systolic pressure, diastolic pressure, fasting blood glucose, insulin, insulin antibody and insulin resistance index in hypertension patients were decreased significantly after treatment (P<0.05). There is a good correlation between endothelin and insulin resistance index in hypertension patients. Captopril and l-amlodipine had obvious improvement effect on insulin resistance in hypertension patients. (authors)

  1. Ghrelin- and GH-induced insulin resistance

    DEFF Research Database (Denmark)

    Vestergaard, Esben Thyssen; Krag, Morten B; Poulsen, Morten M

    2013-01-01

    Supraphysiological levels of ghrelin and GH induce insulin resistance. Serum levels of retinol-binding protein-4 (RBP4) correlate inversely with insulin sensitivity in patients with type 2 diabetes. We aimed to determine whether ghrelin and GH affect RBP4 levels in human subjects.......Supraphysiological levels of ghrelin and GH induce insulin resistance. Serum levels of retinol-binding protein-4 (RBP4) correlate inversely with insulin sensitivity in patients with type 2 diabetes. We aimed to determine whether ghrelin and GH affect RBP4 levels in human subjects....

  2. Persistent Organic Pollutant Exposure Leads to Insulin Resistance Syndrome

    DEFF Research Database (Denmark)

    Ruzzin, Jérôme; Petersen, Rasmus; Meugnier, Emmanuelle

    2010-01-01

    BACKGROUND: The incidence of the insulin resistance syndrome has increased at an alarming rate worldwide creating a serious challenge to public health care in the 21st century. Recently, epidemiological studies have associated the prevalence of type 2 diabetes with elevated body burdens...... of persistent organic pollutants (POPs). However, experimental evidence demonstrating a causal link between POPs and the development of insulin resistance is lacking. OBJECTIVE: We investigated whether exposure to POPs contributes to insulin resistance and metabolic disorders. METHODS: Wistar rats were exposed...... salmon oil. We measured body weight, whole-body insulin sensitivity, POP accumulation, lipid and glucose homeostasis, gene expression and performed microarray analysis. RESULTS: Adult male rats exposed to crude, but not refined, salmon oil developed insulin resistance, abdominal obesity...

  3. Postreceptor defects causing insulin resistance in normoinsulinemic non-insulin-dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Bolinder, J.; Ostman, J.; Arner, P.

    1982-01-01

    The mechanisms of the diminished hypoglycemic response to insulin in non-insulin-dependent diabetes mellitus (NIDDM) with normal levels of circulating plasma insulin were investigated. Specific binding of mono- 125 I (Tyr A14)-insulin to isolated adipocytes and effects of insulin (5--10,000 microunits/ml) on glucose oxidation and lipolysis were determined simultaneously in subcutaneous adipose tissue of seven healthy subjects of normal weight and seven untreated NIDDM patients with normal plasma insulin levels. The two groups were matched for age, sex, and body weight. Insulin binding, measured in terms of receptor number and affinity, was normal in NIDDM, the total number of receptors averaging 350,000 per cell. Neither sensitivity nor the maximum antilipolytic effect of insulin was altered in NIDDM patients as compared with control subjects; the insulin concentration producing half the maximum effect (ED50) was 10 microunits/ml. As regards the effect of insulin on glucose oxidation, for the control subjects ED50 was 30 microunits/ml, whereas in NIDDM patients, insulin exerted no stimulatory effect. The results obtained suggest that the effect of insulin on glucose utilization in normoinsulinemic NIDDM may be diminished in spite of normal insulin binding to receptors. The resistance may be due solely to postreceptor defects, and does not involve antilipolysis

  4. Insulin resistance in porphyria cutanea tarda.

    Science.gov (United States)

    Calcinaro, F; Basta, G; Lisi, P; Cruciani, C; Pietropaolo, M; Santeusanio, F; Falorni, A; Calafiore, R

    1989-06-01

    It has been reported that patients with porphyria cutanea tarda (PCT) develop carbohydrate (CHO) intolerance and manifest diabetes melitus (DM) more frequently than the normal population. In order to verify whether this is due to insulin resistance we studied 5 patients with PCT and 5 normal subjects matched for age, sex and weight. In all the patients an evaluation consisted of the glycemic curve and insulin response to an iv glucose tolerance test (IVGTT: 0.33 g/kg) as well as of an evaluation of the circulating monocyte insulin receptors. Blood samples were drawn in the basal state to measure plasma levels of NEFA, glycerol, and intermediate metabolites. The patients with PCT showed normal glucose tolerance which was obtained, however, at the expense of the elevated insulin levels: therefore a condition of insulin resistance was demonstrated in these subjects. An involvement of the lipid metabolism, observed by the raised levels of plasma NEFA and glycerol, was also evident. The insulin binding to circulating monocytes was reduced but not enough to justify the degree of insulin resistance observed. Therefore, it could be hypothesized, in agreement with similar studies, that a postreceptor defect is responsible for the insulin-resistance observed in patients with PCT and that the reduction of insulin receptors is determined by the down regulation in response to elevated insulinemic levels. An alteration of the porphyrin metabolism might be responsible for this disorder.

  5. Selective insulin resistance in hepatocyte senescence

    International Nuclear Information System (INIS)

    Aravinthan, Aloysious; Challis, Benjamin; Shannon, Nicholas; Hoare, Matthew; Heaney, Judith; Alexander, Graeme J.M.

    2015-01-01

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied in three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance

  6. Selective insulin resistance in hepatocyte senescence

    Energy Technology Data Exchange (ETDEWEB)

    Aravinthan, Aloysious [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Challis, Benjamin [Institute of Metabolic Sciences, University of Cambridge, Cambridge (United Kingdom); Shannon, Nicholas [Cancer Research UK Cambridge Institute, Cambridge (United Kingdom); Hoare, Matthew [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Cancer Research UK Cambridge Institute, Cambridge (United Kingdom); Heaney, Judith [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Foundation for Liver Research, Institute of Hepatology, London (United Kingdom); Alexander, Graeme J.M., E-mail: gja1000@doctors.org.uk [Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge (United Kingdom)

    2015-02-01

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied in three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance.

  7. Tau deletion promotes brain insulin resistance.

    Science.gov (United States)

    Marciniak, Elodie; Leboucher, Antoine; Caron, Emilie; Ahmed, Tariq; Tailleux, Anne; Dumont, Julie; Issad, Tarik; Gerhardt, Ellen; Pagesy, Patrick; Vileno, Margaux; Bournonville, Clément; Hamdane, Malika; Bantubungi, Kadiombo; Lancel, Steve; Demeyer, Dominique; Eddarkaoui, Sabiha; Vallez, Emmanuelle; Vieau, Didier; Humez, Sandrine; Faivre, Emilie; Grenier-Boley, Benjamin; Outeiro, Tiago F; Staels, Bart; Amouyel, Philippe; Balschun, Detlef; Buee, Luc; Blum, David

    2017-08-07

    The molecular pathways underlying tau pathology-induced synaptic/cognitive deficits and neurodegeneration are poorly understood. One prevalent hypothesis is that hyperphosphorylation, misfolding, and fibrillization of tau impair synaptic plasticity and cause degeneration. However, tau pathology may also result in the loss of specific physiological tau functions, which are largely unknown but could contribute to neuronal dysfunction. In the present study, we uncovered a novel function of tau in its ability to regulate brain insulin signaling. We found that tau deletion leads to an impaired hippocampal response to insulin, caused by altered IRS-1 and PTEN (phosphatase and tensin homologue on chromosome 10) activities. Our data also demonstrate that tau knockout mice exhibit an impaired hypothalamic anorexigenic effect of insulin that is associated with energy metabolism alterations. Consistently, we found that tau haplotypes are associated with glycemic traits in humans. The present data have far-reaching clinical implications and raise the hypothesis that pathophysiological tau loss-of-function favors brain insulin resistance, which is instrumental for cognitive and metabolic impairments in Alzheimer's disease patients. © 2017 Marciniak et al.

  8. The origins and drivers of insulin resistance.

    Science.gov (United States)

    Johnson, Andrew M F; Olefsky, Jerrold M

    2013-02-14

    Obesity-induced insulin resistance is the major determinant of metabolic syndrome, which precedes the development of type 2 diabetes mellitus and is thus the driving force behind the emerging diabetes epidemic. The precise causes of insulin resistance are varied, and the relative importance of each is a matter of ongoing research. Here, we offer a Perspective on the heterogeneous etiology of insulin resistance, focusing in particular on the role of inflammation, lipid metabolism, and the gastrointestinal microbiota. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Insulin resistance and improvements in signal transduction.

    Science.gov (United States)

    Musi, Nicolas; Goodyear, Laurie J

    2006-02-01

    Type 2 diabetes and obesity are common metabolic disorders characterized by resistance to the actions of insulin to stimulate skeletal muscle glucose disposal. Insulin-resistant muscle has defects at several steps of the insulin-signaling pathway, including decreases in insulin-stimulated insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation, and phosphatidylinositol 3-kinase (PI 3-kinase) activation. One approach to increase muscle glucose disposal is to reverse/improve these insulin-signaling defects. Weight loss and thiazolidinediones (TZDs) improve glucose disposal, in part, by increasing insulin-stimulated insulin receptor and IRS-1 tyrosine phosphorylation and PI 3-kinase activity. In contrast, physical training and metformin improve whole-body glucose disposal but have minimal effects on proximal insulin-signaling steps. A novel approach to reverse insulin resistance involves inhibition of the stress-activated protein kinase Jun N-terminal kinase (JNK) and the protein tyrosine phosphatases (PTPs). A different strategy to increase muscle glucose disposal is by stimulating insulin-independent glucose transport. AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge and becomes activated in situations of energy consumption, such as muscle contraction. Several studies have shown that pharmacologic activation of AMPK increases glucose transport in muscle, independent of the actions of insulin. AMPK activation is also involved in the mechanism of action of metformin and adiponectin. Moreover, in the hypothalamus, AMPK regulates appetite and body weight. The effect of AMPK to stimulate muscle glucose disposal and to control appetite makes it an important pharmacologic target for the treatment of type 2 diabetes and obesity.

  10. Role of mitochondrial function in insulin resistance

    NARCIS (Netherlands)

    Brands, Myrte; Verhoeven, Arthur J.; Serlie, Mireille J.

    2012-01-01

    The obesity pandemic increases the prevalence of type 2 diabetes (DM2).DM2 develops when pancreatic β-cells fail and cannot compensate for the decrease in insulin sensitivity. How excessive caloric intake and weight gain cause insulin resistance has not completely been elucidated.Skeletal muscle is

  11. Patients with psoriasis are insulin resistant

    DEFF Research Database (Denmark)

    Gyldenløve, Mette; Storgaard, Heidi; Holst, Jens Juul

    2015-01-01

    BACKGROUND: Patients with psoriasis have increased risk of type 2 diabetes. The pathophysiology is largely unknown, but it is hypothesized that systemic inflammation causes insulin resistance. Insulin sensitivity has only been sparsely investigated in patients with psoriasis, and previous studies...... with healthy control subjects. This supports that psoriasis may be a prediabetic condition....

  12. Exploring pathway interactions in insulin resistant mouse liver

    NARCIS (Netherlands)

    Kelder, T.; Eijssen, L.; Kleemann, R.; Erk, M. van; Kooistra, T.; Evelo, C.

    2011-01-01

    Background: Complex phenotypes such as insulin resistance involve different biological pathways that may interact and influence each other. Interpretation of related experimental data would be facilitated by identifying relevant pathway interactions in the context of the dataset.Results: We

  13. Insulin resistance in Nigerians with essential hypertension | Akande ...

    African Journals Online (AJOL)

    Homeostasis model assessment (HOMA) was used to determine insulin resistance (IR). Results: The hypertensive subjects had significantly higher fasting insulin and HOMA-IR compared with normotensives (p =0.02 and 0.04) respectively. There were significant correlations between HOMA-IR, BMI, waist and hip ...

  14. A novel surrogate index for hepatic insulin resistance.

    LENUS (Irish Health Repository)

    Vangipurapu, J

    2011-03-01

    In epidemiological and genetic studies surrogate indices are needed to investigate insulin resistance in different insulin-sensitive tissues. Our objective was to develop a surrogate index for hepatic insulin resistance.

  15. Maternal vitamin D deficiency during pregnancy results in insulin resistance in rat offspring, which is associated with inflammation and Iκbα methylation.

    Science.gov (United States)

    Zhang, Huaqi; Chu, Xia; Huang, Yifan; Li, Gang; Wang, Yuxia; Li, Ying; Sun, Changhao

    2014-10-01

    We aimed to investigate the impact of maternal vitamin D deficiency during pregnancy on insulin resistance in male offspring and examine its mechanism. Pregnant Sprague-Dawley rats were maintained on a vitamin-D-free diet with ultraviolet-free light during pregnancy (early-VDD group). Insulin resistance in the male offspring was assessed by HOMA-IR, OGTT and euglycaemic clamp. NEFA, oxidative stress and inflammation levels were estimated as risk factors for insulin resistance. DNA methylation was examined by bisulfate sequencing PCR analysis. Luciferase reporter assay was performed to validate the effect of DNA methylation. The offspring in the early-VDD group had significantly higher fasting insulin and HOMA-IR levels, markedly reduced glucose tolerance and significantly lower tissue sensitivity to exogenous insulin at 16 weeks (all p insulin resistance in the offspring, which is associated with persistently increased inflammation. Persistently decreased Iκbα expression, potentially caused by changes in Iκbα methylation, plays an important role in persistent inflammation.

  16. Autophagy downregulation contributes to insulin resistance mediated injury in insulin receptor knockout podocytes in vitro

    Directory of Open Access Journals (Sweden)

    Ying Xu

    2016-04-01

    Full Text Available It is unknown whether autophagy activity is altered in insulin resistant podocytes and whether autophagy could be a therapeutic target for diabetic nephropathy (DN. Here we used shRNA transfection to knockdown the insulin receptor (IR gene in cultured human immortalized podocytes as an in vitro insulin resistant model. Autophagy related proteins LC3, Beclin, and p62 as well as nephrin, a podocyte injury marker, were assessed using western blot and immunofluorescence staining. Our results show that autophagy is suppressed when podocytes lose insulin sensitivity and that treatment of rapamycin, an mTOR specific inhibitor, could attenuate insulin resistance induced podocytes injury via autophagy activation. The present study deepens our understanding of the role of autophagy in the pathogenesis of DN.

  17. Insulin resistance in Nigerians with essential hypertension

    African Journals Online (AJOL)

    EB

    2013-09-03

    Sep 3, 2013 ... Keywords: Hypertension, Insulin resistance, Homeostasis model assessment ... worldwide and its prevalence is predicted to increase by 60% by 2025, when a ... model is derived from a mathematical assessment .... Drug type.

  18. Coffee Consumption Attenuates Insulin Resistance and Glucose ...

    African Journals Online (AJOL)

    olayemitoyin

    Alzheimer's disease (CBS 2012), dementia (Health news 2012) and ... the effects of coffee on insulin resistance and glucose tolerance as ..... mortality among patients with type 2 diabetes. ... transporter family: Structure, function and tissue-.

  19. Adipose Tissue Insulin Resistance in Gestational Diabetes.

    Science.gov (United States)

    Tumurbaatar, Batbayar; Poole, Aaron T; Olson, Gayle; Makhlouf, Michel; Sallam, Hanaa S; Thukuntla, Shwetha; Kankanala, Sucharitha; Ekhaese, Obos; Gomez, Guillermo; Chandalia, Manisha; Abate, Nicola

    2017-03-01

    Gestational diabetes mellitus (GDM) is a metabolic disorder characterized by insulin resistance (IR) and altered glucose-lipid metabolism. We propose that ectonucleotide pyrophosphate phosphodiesterase-1 (ENPP1), a protein known to induce adipocyte IR, is a determinant of GDM. Our objective was to study ENPP1 expression in adipose tissue (AT) of obese pregnant women with or without GDM, as well as glucose tolerance in pregnant transgenic (Tg) mice with AT-specific overexpression of human ENPP1. AT biopsies and blood were collected from body mass index-matched obese pregnant women non-GDM (n = 6), GDM (n = 7), and nonpregnant controls (n = 6) undergoing cesarian section or elective surgeries, respectively. We measured the following: (1) Expression of key molecules involved in insulin signaling and glucose-lipid metabolism in AT; (2) Plasma glucose and insulin levels and calculation of homeostasis model assessment of IR (HOMA-IR); (3) Intraperitoneal glucose tolerance test in AtENPP1 Tg pregnant mice. We found that: (1) Obese GDM patients have higher AT ENPP1 expression than obese non-GDM patients, or controls (P = 0.01-ANOVA). (2) ENPP1 expression level correlated negatively with glucose transporter 4 (GLUT4) and positively with insulin receptor substrate-1 (IRS-1) serine phosphorylation, and to other adipocyte functional proteins involved in glucose and lipid metabolism (P Pregnant AT ENPP1 Tg mice showed higher plasma glucose than wild type animals (P = 0.046-t test on area under curve [AUC] glucose ). Our results provide evidence of a causative link between ENPP1 and alterations in insulin signaling, glucose uptake, and lipid metabolism in subcutaneous abdominal AT of GDM, which may mediate IR and hyperglycemia in GDM.

  20. Fasting insulin has a stronger association with an adverse cardiometabolic risk profile than insulin resistance: the RISC study

    DEFF Research Database (Denmark)

    de Rooij, Susanne R; Dekker, Jacqueline M; Kozakova, Michaela

    2009-01-01

    OBJECTIVE: Fasting insulin concentrations are often used as a surrogate measure of insulin resistance. We investigated the relative contributions of fasting insulin and insulin resistance to cardiometabolic risk and preclinical atherosclerosis. DESIGN AND METHODS: The Relationship between Insulin...... of the metabolic syndrome in 1177 participants. Carotid artery intima media thickness (IMT) was measured by ultrasound to assess preclinical atherosclerosis. RESULTS: Fasting insulin was correlated with all elements of the metabolic syndrome. Insulin sensitivity (M/I) was correlated with most elements. The odds...... ratio for the metabolic syndrome of those in the highest quartile of fasting insulin compared with those in the lower quartiles was 5.4 (95% confidence interval (CI) 2.8-10.3, adjusted for insulin sensitivity) in men and 5.1 (2.6-9.9) in women. The odds ratio for metabolic syndrome of those with insulin...

  1. Metabolic Profiles in Obese Children and Adolescents with Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Marko Kostovski

    2018-03-01

    CONCLUSION: Higher percentage of insulin-resistant participants was of female gender and was adolescents. In general, insulin resistant obese children and adolescents tend to have a worse metabolic profile in comparison to individuals without insulin resistance. It is of note that the highest insulin resistance was also linked with the highest concentrations of triglycerides.

  2. Short-term vitamin E treatment impairs reactive oxygen species signaling required for adipose tissue expansion, resulting in fatty liver and insulin resistance in obese mice.

    Directory of Open Access Journals (Sweden)

    Martin Alcala

    Full Text Available The use of antioxidant therapy in the treatment of oxidative stress-related diseases such as cardiovascular disease, diabetes or obesity remains controversial. Our aim is to demonstrate that antioxidant supplementation may promote negative effects if used before the establishment of oxidative stress due to a reduced ROS generation under physiological levels, in a mice model of obesity.C57BL/6J mice were fed with a high-fat diet for 14 weeks, with (OE group or without (O group vitamin E supplementation.O mice developed a mild degree of obesity, which was not enough to induce metabolic alterations or oxidative stress. These animals exhibited a healthy expansion of retroperitoneal white adipose tissue (rpWAT and the liver showed no signs of lipotoxicity. Interestingly, despite achieving a similar body weight, OE mice were insulin resistant. In the rpWAT they presented a reduced generation of ROS, even below physiological levels (C: 1651.0 ± 212.0; O: 3113 ± 284.7; OE: 917.6 ±104.4 RFU/mg protein. C vs OE p< 0.01. ROS decay may impair their action as second messengers, which could account for the reduced adipocyte differentiation, lipid transport and adipogenesis compared to the O group. Together, these processes limited the expansion of this fat pad and as a consequence, lipid flux shifted towards the liver, causing steatosis and hepatomegaly, which may contribute to the marked insulin resistance.This study provides in vivo evidence for the role of ROS as second messengers in adipogenesis, lipid metabolism and insulin signaling. Reducing ROS generation below physiological levels when the oxidative process has not yet been established may be the cause of the controversial results obtained by antioxidant therapy.

  3. Fasting insulin, insulin resistance and risk of hypertension in the general population: A meta-analysis.

    Science.gov (United States)

    Wang, Feng; Han, Lili; Hu, Dayi

    2017-01-01

    Studies on the association of fasting insulin concentrations or insulin resistance with subsequent risk of hypertension have yielded conflicting results. To quantitatively assess the association of fasting insulin concentrations or homeostasis model assessment insulin resistance (HOMA-IR) with incident hypertension in a general population by performing a meta-analysis. We searched the PubMed and Embase databases until August 31, 2016 for prospective observational studies investigating the elevated fasting insulin concentrations or HOMA-IR with subsequent risk of hypertension in the general population. Pooled risk ratio (RR) and 95% confidence interval (CI) of hypertension was calculated for the highest versus the lowest category of fasting insulin or HOMA-IR. Eleven studies involving 10,230 hypertension cases were identified from 55,059 participants. Meta-analysis showed that the pooled adjusted RR of hypertension was 1.54 (95% CI 1.34-1.76) for fasting insulin concentrations and 1.43 (95% CI 1.27-1.62) for HOMA-IR comparing the highest to the lowest category. Subgroup analysis results showed that the association of fasting insulin concentrations with subsequent risk of hypertension seemed more pronounced in women (RR 2.07; 95% CI 1.19-3.60) than in men (RR 1.48; 95% CI 1.17-1.88). This meta-analysis suggests that elevated fasting insulin concentrations or insulin resistance as estimated by homeostasis model assessment is independently associated with an exacerbated risk of hypertension in the general population. Early intervention of hyperinsulinemia or insulin resistance may help clinicians to identify the high risk of hypertensive population. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Fructose, insulin resistance, and metabolic dyslipidemia

    Directory of Open Access Journals (Sweden)

    Adeli Khosrow

    2005-02-01

    Full Text Available Abstract Obesity and type 2 diabetes are occurring at epidemic rates in the United States and many parts of the world. The "obesity epidemic" appears to have emerged largely from changes in our diet and reduced physical activity. An important but not well-appreciated dietary change has been the substantial increase in the amount of dietary fructose consumption from high intake of sucrose and high fructose corn syrup, a common sweetener used in the food industry. A high flux of fructose to the liver, the main organ capable of metabolizing this simple carbohydrate, perturbs glucose metabolism and glucose uptake pathways, and leads to a significantly enhanced rate of de novo lipogenesis and triglyceride (TG synthesis, driven by the high flux of glycerol and acyl portions of TG molecules from fructose catabolism. These metabolic disturbances appear to underlie the induction of insulin resistance commonly observed with high fructose feeding in both humans and animal models. Fructose-induced insulin resistant states are commonly characterized by a profound metabolic dyslipidemia, which appears to result from hepatic and intestinal overproduction of atherogenic lipoprotein particles. Thus, emerging evidence from recent epidemiological and biochemical studies clearly suggests that the high dietary intake of fructose has rapidly become an important causative factor in the development of the metabolic syndrome. There is an urgent need for increased public awareness of the risks associated with high fructose consumption and greater efforts should be made to curb the supplementation of packaged foods with high fructose additives. The present review will discuss the trends in fructose consumption, the metabolic consequences of increased fructose intake, and the molecular mechanisms leading to fructose-induced lipogenesis, insulin resistance and metabolic dyslipidemia.

  5. Insulin resistance: vascular function and exercise

    Directory of Open Access Journals (Sweden)

    Moon-Hyon Hwang

    2016-09-01

    Full Text Available Insulin resistance associated with metabolic syndrome and Type 2 diabetes mellitus is an epidemic metabolic disorder, which increases the risk of cardiovascular complications. Impaired vascular endothelial function is an early marker for atherosclerosis, which causes cardiovascular complications. Both experimental and clinical studies indicate that endothelial dysfunction in vasculatures occurs with insulin resistance. The associated physiological mechanisms are not fully appreciated yet, however, it seems that augmented oxidative stress, a physiological imbalance between oxidants and antioxidants, in vascular cells is a possible mechanism involved in various vascular beds with insulin resistance and hyperglycemia. Regardless of the inclusion of resistance exercise, aerobic exercise seems to be beneficial for vascular endothelial function in both large conduit and small resistance vessels in both clinical and experimental studies with insulin resistance. In clinical cases, aerobic exercise over 8 weeks with higher intensity seems more beneficial than the cases with shorter duration and lower intensity. However, more studies are needed in the future to elucidate the physiological mechanisms by which vascular endothelial function is impaired in insulin resistance and improved with aerobic exercise.

  6. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    International Nuclear Information System (INIS)

    Watanabe, Tomoyuki; Saotome, Masao; Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi; Funaki, Makoto; Hayashi, Hideharu

    2014-01-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ m ) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H 2 O 2 ), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ m depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H 2 O 2 -induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ m depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin-resistance. • Inhibition of DRP or ROS

  7. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tomoyuki [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Saotome, Masao, E-mail: msaotome@hama-med.ac.jp [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Funaki, Makoto [Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503 (Japan); Hayashi, Hideharu [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan)

    2014-05-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin-resistance

  8. Xylitol prevents NEFA-induced insulin resistance in rats

    Science.gov (United States)

    Kishore, P.; Kehlenbrink, S.; Hu, M.; Zhang, K.; Gutierrez-Juarez, R.; Koppaka, S.; El-Maghrabi, M. R.

    2013-01-01

    Aims/hypothesis Increased NEFA levels, characteristic of type 2 diabetes mellitus, contribute to skeletal muscle insulin resistance. While NEFA-induced insulin resistance was formerly attributed to decreased glycolysis, it is likely that glucose transport is the rate-limiting defect. Recently, the plant-derived sugar alcohol xylitol has been shown to have favourable metabolic effects in various animal models. Furthermore, its derivative xylulose 5-phosphate may prevent NEFA-induced suppression of glycolysis. We therefore examined whether and how xylitol might prevent NEFA-induced insulin resistance. Methods We examined the ability of xylitol to prevent NEFA-induced insulin resistance. Sustained ~1.5-fold elevations in NEFA levels were induced with Intralipid/heparin infusions during 5 h euglycaemic–hyperinsulinaemic clamp studies in 24 conscious non-diabetic Sprague-Dawley rats, with or without infusion of xylitol. Results Intralipid infusion reduced peripheral glucose uptake by ~25%, predominantly through suppression of glycogen synthesis. Co-infusion of xylitol prevented the NEFA-induced decreases in both glucose uptake and glycogen synthesis. Although glycolysis was increased by xylitol infusion alone, there was minimal NEFA-induced suppression of glycolysis, which was not affected by co-infusion of xylitol. Conclusions/interpretation We conclude that xylitol prevented NEFA-induced insulin resistance, with favourable effects on glycogen synthesis accompanying the improved insulin-mediated glucose uptake. This suggests that this pentose sweetener has beneficial insulin-sensitising effects. PMID:22460760

  9. Estradiol Protects Proopiomelanocortin Neurons Against Insulin Resistance.

    Science.gov (United States)

    Qiu, Jian; Bosch, Martha A; Meza, Cecilia; Navarro, Uyen-Vy; Nestor, Casey C; Wagner, Edward J; Rønnekleiv, Oline K; Kelly, Martin J

    2018-02-01

    Insulin resistance is at the core of the metabolic syndrome, and men exhibit a higher incidence of metabolic syndrome than women in early adult life, but this sex advantage diminishes sharply when women reach the postmenopausal state. Because 17β-estradiol (E2) augments the excitability of the anorexigenic proopiomelanocortin (POMC) neurons, we investigated the neuroprotective effects of E2 against insulin resistance in POMC neurons from diet-induced obese (DIO) female and male mice. The efficacy of insulin to activate canonical transient receptor potential 5 (TRPC5) channels and depolarize POMC neurons was significantly reduced in DIO male mice but not in DIO female mice. However, the insulin response in POMC neurons was abrogated in ovariectomized DIO females but restored with E2 replacement. E2 increased T-type calcium channel Cav3.1 messenger RNA (mRNA) expression and whole-cell currents but downregulated stromal-interaction molecule 1 mRNA, which rendered POMC neurons more excitable and responsive to insulin-mediated TRPC5 channel activation. Moreover, E2 prevented the increase in suppressor of cytokine signaling-3 mRNA expression with DIO as seen in DIO males. As proof of principle, insulin [intracerebroventricular injection into the third ventricle (ICV)] decreased food intake and increased metabolism in female but not male guinea pigs fed a high-fat diet. The uncoupling of the insulin receptor from its downstream effector system was corroborated by the reduced expression of phosphorylated protein kinase B in the arcuate nucleus of male but not female guinea pigs following insulin. Therefore, E2 protects female POMC neurons from insulin resistance by enhancing POMC neuronal excitability and the coupling of insulin receptor to TRPC5 channel activation. Copyright © 2018 Endocrine Society.

  10. Lipid metabolism disturbances contribute to insulin resistance and decrease insulin sensitivity by malathion exposure in Wistar rat.

    Science.gov (United States)

    Lasram, Mohamed Montassar; Bouzid, Kahena; Douib, Ines Bini; Annabi, Alya; El Elj, Naziha; El Fazaa, Saloua; Abdelmoula, Jaouida; Gharbi, Najoua

    2015-04-01

    Several studies showed that organophosphorus pesticides disturb glucose homeostasis and can increase incidence of metabolic disorders and diabetes via insulin resistance. The current study investigates the influence of malathion on glucose metabolism regulation, in vivo, during subchronic exposure. Malathion was administered orally (200 mg/kg), once a day for 28 consecutive days. Plasma glucose, insulin and Glycated hemoglobin levels were significantly increased while hepatic glycogen content was decreased in intoxicated animals compared with the control group. Furthermore, there was a significant disturbance of lipid content in subchronic treated and post-treated rats deprived of malathion for one month. In addition, we used the homeostasis model assessment (HOMA) to assess insulin resistance (HOMA-IR) and pancreatic β-cell function (HOMA-β). Our results show that malathion increases insulin resistance biomarkers and decreases insulin sensitivity indices. Statistical analysis demonstrates that there was a positive and strong significant correlation between insulin level and insulin resistance indices, HOMA-IR, HOMA-β. Similarly, a negative and significant correlation was also found between insulin level and insulin sensitivity indices. For the first time, we demonstrate that malathion induces insulin resistance in vivo using homeostasis model assessment and these changes were detectable one month after the end of exposure. To explain insulin resistance induced by malathion we focus on lipid metabolism disturbances and their interaction with many proteins involved in insulin signaling pathways.

  11. Prenatal exposure to lipopolysaccharide combined with pre- and postnatal high-fat diet result in lowered blood pressure and insulin resistance in offspring rats.

    Science.gov (United States)

    Hao, Xue-Qin; Du, Jing-Xia; Li, Yan; Li, Meng; Zhang, Shou-Yan

    2014-01-01

    Adult metabolic syndrome may in part have origins in fetal or early life. This study was designed to explore the effect of prenatal exposure to lipopolysaccharide and high-fat diet on metabolic syndrome in offspring rats. 32 pregnant rats were randomly divided into four groups, including Control group; LPS group (pregnant rats were injected with LPS 0.4 mg/kg intraperitoneally on the 8(th), 10(th) and 12(th) day of pregnancy); High-fat group (maternal rats had high-fat diet during pregnancy and lactation period, and their pups also had high-fat diet up to the third month of life); LPS + High-fat group (rats were exposed to the identical experimental scheme with LPS group and High-fat group). Blood pressure elevated in LPS group and High-fat group, reduced in LPS+High-fat group, accompanied by the increase of serum leptin level in LPS and High-fat group and increase of serum IL-6, TNF-a in High-fat group; both serum insulin and cholesterol increased in High-fat and LPS+High-fat group, as well as insulin in LPS group. HOMA-IR value increased in LPS, High-fat and LPS+High-fat group, and QUICKI decreased in these groups; H-E staining showed morphologically pathological changes in thoracic aorta and liver tissue in the three groups. Increased serum alanine and aspartate aminotransferase suggest impaired liver function in LPS+High-fat group. Prenatal exposure to lipopolysaccharide combined with pre- and postnatal high-fat diet result in lowered blood pressure, insulin resistance and impaired liver function in three-month old offspring rats. The lowered blood pressure might benefit from the predictive adaptive response to prenatal inflammation.

  12. Higher fetal insulin resistance in Chinese pregnant women with gestational diabetes mellitus and correlation with maternal insulin resistance.

    Directory of Open Access Journals (Sweden)

    Qiuwei Wang

    Full Text Available OBJECTIVE: The aim of this study was to determine the effect of gestational diabetes mellitus (GDM on fetal insulin resistance or β-cell function in Chinese pregnant women with GDM. MEASUREMENTS: Maternal fasting blood and venous cord blood samples (reflecting fetal condition were collected in 65 well-controlled Chinese GDM mothers (only given dietary intervention and 83 control subjects. The insulin, glucose and proinsulin concentrations of both maternal and cord blood samples were measured, and the homeostasis model assessment of insulin resistance (HOMA-IR and the proinsulin-to-insulin ratios (an indicator of fetal β-cell function were calculated in maternal and cord blood respectively. RESULTS: Both maternal and fetal levels of insulin, proinsulin and HOMA-IR but not proinsulin-to-insulin ratios were significantly higher in the GDM group than in the control group (maternal insulin, 24.8 vs. 15.4 µU/mL, P = 0.004, proinsulin, 23.3 vs. 16.2 pmol/L, P = 0.005, and HOMA-IR, 5.5 vs. 3.5, P = 0.041, respectively; fetal: insulin, 15.1 vs. 7.9 µU/mL, P<0.001, proinsulin, 25.8 vs. 15.1 pmol/L, P = 0.015, and HOMA-IR, 2.8 vs. 1.4, P = 0.017, respectively. Fetal HOMA-IR but not proinsulin-to-insulin ratios was significantly correlated to maternal HOMA-IR (r = 0.307, P = 0.019, in the pregnant women with GDM. CONCLUSIONS: Fetal insulin resistance was higher in Chinese pregnant women with GDM than control subjects, and correlated with maternal insulin resistance.

  13. Skeletal Muscle Insulin Resistance in Endocrine Disease

    Directory of Open Access Journals (Sweden)

    Melpomeni Peppa

    2010-01-01

    Full Text Available We summarize the existing literature data concerning the involvement of skeletal muscle (SM in whole body glucose homeostasis and the contribution of SM insulin resistance (IR to the metabolic derangements observed in several endocrine disorders, including polycystic ovary syndrome (PCOS, adrenal disorders and thyroid function abnormalities. IR in PCOS is associated with a unique postbinding defect in insulin receptor signaling in general and in SM in particular, due to a complex interaction between genetic and environmental factors. Adrenal hormone excess is also associated with disrupted insulin action in peripheral tissues, such as SM. Furthermore, both hyper- and hypothyroidism are thought to be insulin resistant states, due to insulin receptor and postreceptor defects. Further studies are definitely needed in order to unravel the underlying pathogenetic mechanisms. In summary, the principal mechanisms involved in muscle IR in the endocrine diseases reviewed herein include abnormal phosphorylation of insulin signaling proteins, altered muscle fiber composition, reduced transcapillary insulin delivery, decreased glycogen synthesis, and impaired mitochondrial oxidative metabolism.

  14. Molecular mechanisms of insulin resistance

    African Journals Online (AJOL)

    Review Article. ,. Molecular ... This review discusses recent advances in understanding of the structure and ... insulin action from receptor to the alteration of blood glucose. Hence, in ... the first protein to have its amino acid sequence determined;2 ... an integral membrane glycoprotein composed of two subunits, a and 13 ...

  15. Effect of cigarette smoking on insulin resistance risk.

    Science.gov (United States)

    Haj Mouhamed, D; Ezzaher, A; Neffati, F; Douki, W; Gaha, L; Najjar, M F

    2016-02-01

    Smoking is one of the main risk factors for cardiovascular disease (CVD). The mechanism(s) of the effects of smoking on CVD are not clearly understood; however, a number of atherogenic characteristics, such as insulin resistance have been reported. We aim to investigate the effects of cigarette smoking on insulin resistance and to determine the correlation between this parameter with smoking status characteristics. This study was conducted on 138 non-smokers and 162 smokers aged respectively 35.6±16.0 and 38.5±21.9 years. All subjects are not diabetic. Fasting glucose was determined by enzymatic methods and insulin by chemiluminescence method. Insulin resistance (IR) was estimated using the Homeostasis Model of Assessment equation: HOMA-IR=[fasting insulin (mU/L)×fasting glucose (mmol/L)]/22.5. IR was defined as the upper quartile of HOMA-IR. Values above 2.5 were taken as abnormal and reflect insulin resistance. Compared to non-smokers, smokers had significantly higher levels of fasting glucose, fasting insulin and HOMA-IR index. These associations remained significant after adjustment for confounding factors (age, gender, BMI and alcohol consumption). A statistically significant association was noted between the smoking status parameters, including both the number of cigarettes smoked/day and the duration of smoking, and fasting insulin levels as well for HOMA-IR index. Among smokers, we noted a positive correlation between HOMA-IR index and both plasma thiocyanates and urinary cotinine. Our results show that smokers have a high risk to developing an insulin resistance and hyperinsulinemia, compared with a matched group of non-smokers, and may help to explain the high risk of cardiovascular diseases in smokers. Copyright © 2015. Published by Elsevier SAS.

  16. Whole-blood viscosity and the insulin-resistance syndrome.

    Science.gov (United States)

    Høieggen, A; Fossum, E; Moan, A; Enger, E; Kjeldsen, S E

    1998-02-01

    In a previous study we found that elevated blood viscosity was linked to the insulin resistance syndrome, and we proposed that high blood viscosity may increase insulin resistance. That study was based on calculated viscosity. To determine whether directly measured whole-blood viscosity was related to the insulin-resistance syndrome in the same way as calculated viscosity had been found to be. Healthy young men were examined with the hyperinsulinemic isoglycemic glucose clamp technique, and we related insulin sensitivity (glucose disposal rate) to other metabolic parameters and to blood viscosity. We established a technique for direct measurement of whole-blood viscosity. There were statistically significant negative correlations between glucose disposal rate and whole-blood viscosity at low and high shear rates (r = -0.41, P = 0.007 for both, n = 42). Whole-blood viscosity was correlated positively (n = 15) to serum triglyceride (r = 0.54, P = 0.04) and total cholesterol (r = 0.52, P = 0.05), and negatively with high-density lipoprotein cholesterol (r = -0.53, P = 0.04) concentrations. Insulin sensitivity index was correlated positively to high-density lipoprotein cholesterol (r = 0.54, P = 0.04) and negatively to serum triglyceride (r = -0.69, P = 0.005) and to total cholesterol (r = -0.81, P = 0.0003) concentrations. The present results demonstrate for the first time that there is a negative relationship between directly measured whole-blood viscosity and insulin sensitivity as a part of the insulin-resistance syndrome. Whole-blood viscosity contributes to the total peripheral resistance, and these results support the hypothesis that insulin resistance has a hemodynamic basis.

  17. Reduction of insulinotropic properties of GLP-1 and GIP after glucocorticoid-induced insulin resistance

    DEFF Research Database (Denmark)

    Eriksen, Marie; Jensen, David H; Tribler, Siri

    2015-01-01

    . In addition, first-phase insulin responses were determined at 7 mmol/l and 15 mmol/l and second-phase insulin responses at 7 mmol/l. RESULTS: After dexamethasone treatment, all 19 participants had increased insulin resistance (HOMA-IR and insulin sensitivity index [M/I] values) and 2 h plasma glucose...

  18. Mechanism of insulin resistance in normal pregnancy.

    Science.gov (United States)

    Hodson, K; Man, C Dalla; Smith, F E; Thelwall, P E; Cobelli, C; Robson, S C; Taylor, R

    2013-08-01

    Normal pregnancy is associated with insulin resistance although the mechanism is not understood. Increased intramyocellular lipid is closely associated with the insulin resistance of type 2 diabetes and obesity, and the aim of this study was to determine whether this was so for the physiological insulin resistance of pregnancy. Eleven primiparous healthy pregnant women (age: 27-39 years, body mass index 24.0±3.1 kg/m2) and no personal or family history of diabetes underwent magnetic resonance studies to quantify intramyocellular lipid, plasma lipid fractions, and insulin sensitivity. The meal-related insulin sensitivity index was considerably lower in pregnancy (45.6±9.9 vs. 193.0±26.1; 10(-4) dl/kg/min per pmol/l, p=0.0002). Fasting plasma triglyceride levels were elevated 3-fold during pregnancy (2.3±0.2 vs. 0.8±0.1 mmol/l, pinsulin resistance is distinct from that underlying type 2 diabetes. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Homeostatic model assessment for insulin resistance (homa-ir): a better marker for evaluating insulin resistance than fasting insulin in women with polycystic ovarian syndrome

    International Nuclear Information System (INIS)

    Majid, H.; Khan, A.H.; Masood, Q.

    2017-01-01

    To assess the utility of HOMA-IR in assessing insulin resistance in patients with polycystic ovary syndrome (PCOS) and compare it with fasting insulin for assessing insulin resistance (IR). Study Design: Observational study. Place and Duration of Study: Section of Clinical Chemistry, Department of Pathology and Laboratory Medicine, The Aga Khan University Hospital, Karachi, from January 2009 to September 2012. Methodology: Medical chart review of all women diagnosed with PCOS was performed. Of the 400 PCOS women reviewed, 91 met the inclusion criteria. Insulin resistance was assessed by calculating HOMA-IR using the formula (fasting glucose x fasting insulin)/405, taking normal value =12 micro IU/ml. Results: A total of 91 premenopausal women diagnosed with PCOS were included. Mean age was 30 +-5.5 years. Mean HOMA-IR of women was 3.1 +-1.7, respectively with IR in 69% (n=63) women, while hyperinsulinemia was present in 60% (n=55) women (fasting Insulin 18.5 +-5.8 micro IU/ml). Hyperandrogenism was present in 53.8% (n=49), whereas 38.5% (n=35) women had primary infertility or subfertility, while 65.9% (n=60) had menstrual irregularities; and higher frequencies were observed in women with IR. Eight subjects with IR and endocrine abnormalities were missed by fasting insulin. Conclusion: Insulin resistance is common in PCOS and it is likely a pathogenic factor for development of PCOS. HOMA-IR model performed better than hyperinsulinemia alone for diagnosing IR. (author)

  20. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance

    DEFF Research Database (Denmark)

    Højlund, Kurt

    2014-01-01

    . These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes...... described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance....... Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin...

  1. Molecular mechanisms of insulin resistance | Pillay | South African ...

    African Journals Online (AJOL)

    This review discusses recent advances in understanding of the structure and function of the insulin receptor and insulin action, and how these relate to the clinical aspects of insulin resistance associated with non-insulin-dependent diabetes and other disorders. Improved understanding of the molecular basis of insulin ...

  2. Inverse association between insulin resistance and gait speed in nondiabetic older men: results from the U.S. National Health and Nutrition Examination Survey (NHANES 1999-2002

    Directory of Open Access Journals (Sweden)

    Yu Yau-Hua

    2009-11-01

    Full Text Available Abstract Background Recent studies have revealed the associations between insulin resistance (IR and geriatric conditions such as frailty and cognitive impairment. However, little is known about the relation of IR to physical impairment and limitation in the aging process, eg. slow gait speed and poor muscle strength. The aim of this study is to determine the effect of IR in performance-based physical function, specifically gait speed and leg strength, among nondiabetic older adults. Methods Cross-sectional data were from the population-based National Health and Nutrition Examination Survey (1999-2002. A total of 1168 nondiabetic adults (≥ 50 years with nonmissing values in fasting measures of insulin and glucose, habitual gait speed (HGS, and leg strength were analyzed. IR was assessed by homeostasis model assessment (HOMA-IR, whereas HGS and peak leg strength by the 20-foot timed walk test and an isokinetic dynamometer, respectively. We used multiple linear regression to examine the association between IR and performance-based physical function. Results IR was inversely associated with gait speed among the men. After adjusting demographics, body mass index, alcohol consumption, smoking status, chronic co-morbidities, and markers of nutrition and cardiovascular risk, each increment of 1 standard deviation in the HOMA-IR level was associated with a 0.04 m/sec decrease (p = 0.003 in the HGS in men. We did not find such association among the women. The IR-HGS association was not changed after further adjustment of leg strength. Last, HOMA-IR was not demonstrated in association with peak leg strength. Conclusion IR is inversely associated with HGS among older men without diabetes. The results suggest that IR, an important indicator of gait function among men, could be further investigated as an intervenable target to prevent walking limitation.

  3. Association of insulin resistance with obesity in children

    International Nuclear Information System (INIS)

    Siddiqui, S.A.; Bashir, S.; Shabbir, I.; Sherwani, M.K.; Aasim, M.

    2011-01-01

    Background: Insulin resistance is the primary metabolic disorder associated with obesity. Little is known about its role as a determinant of the metabolic syndrome in obese children. Objectives: To assess the association of insulin resistance with metabolic syndrome in obese and non obese children. Study type and settings: Cross sectional analytical study conducted among children of ten Municipal Corporation high schools of Data Ganj Buksh Town Lahore. Subjects and Methods: A total of 46 obese and 49 non obese children with consent were recruited for the study. Fasting blood glucose, serum insulin, high density lipoprotein in cholesterol, triglycerides, cholesterol, non HDL-cholesterol LDL-cholesterol were measured using standard methods. Data were analyzed by using statistical software SPSS-Version 15. Results: A total of 95 children 49 obese and 46 non obese were recruited for the study. A significant association of serum triglyceride(p<0.001), high density lipoprotein cholesterol(p<0.001), fasting blood glucose(p<0.001), and insulin levels (p<0.001) , was seen between the two groups. For each component of metabolic syndrome, when insulin resistance increased so did odds ratios for cardio metabolic risk factors. Conclusions: Insulin resistance was seen in 34.7% children. Metabolic syndrome was found in 31.6% children reflecting that obese children are at high risk for metabolic syndrome and have low HDL-cholesterol and high triglycerides levels. (author)

  4. Explaining psychological insulin resistance in adults with non-insulin-treated type 2 diabetes

    DEFF Research Database (Denmark)

    Holmes-Truscott, Elizabeth; Skinner, Timothy Chas; Pouwer, F

    2016-01-01

    to the model. CONCLUSIONS: Psychological insulin resistance may reflect broader distress about diabetes and concerns about its treatment but not general beliefs about medicines, depression or anxiety. Reducing diabetes distress and current treatment concerns may improve attitudes towards insulin as a potential......AIMS: To investigate the contribution of general and diabetes-specific emotional wellbeing and beliefs about medicines in the prediction of insulin therapy appraisals in adults with non-insulin-treated type 2 diabetes. METHODS: The sample included Diabetes MILES-Australia cross-sectional survey...... diabetes medications (BMQ Specific); negative insulin therapy appraisals (ITAS); depression (PHQ-9); anxiety (GAD-7), and diabetes distress (DDS-17). Factors associated with ITAS Negative scores were examined using hierarchical multiple regressions. RESULTS: Twenty-two percent of the variance in ITAS...

  5. Insulin-mediated increases in renal plasma flow are impaired in insulin-resistant normal subjects

    NARCIS (Netherlands)

    ter Maaten, JC; Bakker, SJL; Serne, EH; Moshage, HJ; Gans, ROB

    2000-01-01

    Background Impaired vasodilatation in skeletal muscle is a possible mechanism linking insulin resistance to blood pressure regulation. Increased renal vascular resistance has been demonstrated in the offspring of essential hypertensives. We assessed whether insulin-mediated renal vasodilatation is

  6. Hippocampal insulin resistance and cognitive dysfunction

    NARCIS (Netherlands)

    Biessels, Geert Jan; Reagan, Lawrence P.

    2015-01-01

    Clinical studies suggest a link between type 2 diabetes mellitus (T2DM) and insulin resistance (IR) and cognitive dysfunction, but there are significant gaps in our knowledge of the mechanisms underlying this relationship. Animal models of IR help to bridge these gaps and point to hippocampal IR as

  7. Mitochondrial adaptations in insulin resistant muscle

    NARCIS (Netherlands)

    Broek, van den N.M.A.

    2010-01-01

    Diabetes has reached epidemic proportions worldwide. Type 2 diabetes (T2D) accounts for about 90% of all diabetes cases and is characterized by insulin resistance (IR) in major metabolic tissues. The dramatic rise in T2D is associated with the increased occurrence of obesity and excessive ectopic

  8. Insulin resistance induced by antiretroviral drugs: Current ...

    African Journals Online (AJOL)

    Treatment with highly active antiretroviral therapy (HAART) has improved the prognosis of patients with AIDS, but it has also increased the incidence of various metabolic disorders, in particular insulin resistance accompanied by dyslipidaemia, hyperglycaemia and lipodystrophy. This is often accompanied by frank type 2 ...

  9. Absence of down-regulation of the insulin receptor by insulin. A possible mechanism of insulin resistance in the rat.

    OpenAIRE

    Walker, A P; Flint, D J

    1983-01-01

    Insulin resistance occurs in rat adipocytes during pregnancy and lactation despite increased or normal insulin binding respectively; this suggests that a post-receptor defect exists. The possibility has been examined that, although insulin binding occurs normally, internalization of insulin or its receptor may be impaired in these states. Insulin produced a dose-dependent reduction in the number of insulin receptors on adipocytes from virgin rats maintained in culture medium, probably due to ...

  10. Endothelin-1 exacerbates development of hypertension and atherosclerosis in modest insulin resistant syndrome

    International Nuclear Information System (INIS)

    Lin, Yan-Jie; Juan, Chi-Chang; Kwok, Ching-Fai; Hsu, Yung-Pei; Shih, Kuang-Chung; Chen, Chin-Chang; Ho, Low-Tone

    2015-01-01

    Endothelin-1 (ET-1) is known as potent vasoconstrictor, by virtue of its mitogenic effects, and may deteriorate the process of hypertension and atherosclerosis by aggravating hyperplasia and migration in VSMCs. Our previous study demonstrated that insulin infusion caused sequential induction of hyperinsulinemia, hyperendothelinemia, insulin resistance, and then hypertension in rats. However, the underlying mechanism of ET-1 interfere insulin signaling in VSMCs remains unclear. To characterize insulin signaling during modest insulin resistant syndrome, we established and monitored rats by feeding high fructose-diet (HFD) until high blood pressure and modest insulin resistance occurred. To explore the role of ET-1/ET A R during insulin resistance, ET A R expression, ET-1 binding, and insulin signaling were investigated in the HFD-fed rats and cultured A-10 VSMCs. Results showed that high blood pressure, tunica medial wall thickening, plasma ET-1 and insulin, and accompanied with modest insulin resistance without overweight and hyperglycemia occurred in early-stage HFD-fed rats. In the endothelium-denuded aorta from HFD-fed rats, ET A R expression, but not ET B R, and ET-1 binding in aorta were increased. Moreover, decreasing of insulin-induced Akt phosphorylation and increasing of insulin-induced ERK phosphorylation were observed in aorta during modest insulin resistance. Interestingly, in ET-1 pretreated VSMCs, the increment of insulin-induced Akt phosphorylation was decreased whereas the increment of insulin-induced ERK phosphorylation was increased. In addition, insulin potentiated ET-1-induced VSMCs migration and proliferation due to increasing ET-1 binding. ETAR antagonist reversed effects of ET-1 on insulin-induced signaling and VSMCs migration and proliferation. In summary, modest insulin resistance syndrome accompanied with hyperinsulinemia leading to the potentiation on ET-1-induced actions in aortic VSMCs. ET-1 via ET A R pathway suppressed insulin

  11. Assesment of propolis supplementation on insulin resistance in diabetic patients

    Directory of Open Access Journals (Sweden)

    nazli samadi

    2017-05-01

    Full Text Available Introduction: Diabetes mellitus is a common endocrine disease . The number of people with diabetes over the last twenty years has doubled . Asia as a result of rapid economic growth , as the center of the epidemic in the world . Iran is among the countries with a high prevalence of diabetes mellitus . Use of medicinal plants as adjunctive therapy along with medication always been original . In recent years the tendency of patients to alternative therapies and traditional medicine has increased. Methods : Among patients referred to clinics of University of Medical Sciences, Yazd, Iran , 67 people were selected and randomly divided into two groups,intervention or placebo. Patients in the intervention group received 3 tablets of 300 mg bee propolis and in the control group received placebo . The study lasted 12 weeks . Serum insulin and insulin resistance index were evaluated at the beginning and end of the study. Results: 57 patients completed the study . The average demographic characteristics , anthropometric indices , serum insulin and insulin resistance index at the beginning and end of the study between the two groups showed no significant difference. Conclusion : In this study , supplementation with bee propolis for 12 weeks , on the serum insulin and indices of insulin resistance in patients with type II diabetes is not effective . Further studies are needed to make a final decision.

  12. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    International Nuclear Information System (INIS)

    Permana, Paska A.; Menge, Christopher; Reaven, Peter D.

    2006-01-01

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-κB) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-κB inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity

  13. Mutations in Mll2, an H3K4 Methyltransferase, Result in Insulin Resistance and Impaired Glucose Tolerance in Mice

    Science.gov (United States)

    Schröter, David; Matthews, Helen C.; Bogani, Debora; Moir, Lee; Long, Anna; Church, Christopher; Hugill, Alison; Anstee, Quentin M.; Goldin, Rob; Thursz, Mark; Hollfelder, Florian; Cox, Roger D.

    2013-01-01

    We employed a random mutagenesis approach to identify novel monogenic determinants of type 2 diabetes. Here we show that haplo-insufficiency of the histone methyltransferase myeloid-lineage leukemia (Mll2/Wbp7) gene causes type 2 diabetes in the mouse. We have shown that mice heterozygous for two separate mutations in the SET domain of Mll2 or heterozygous Mll2 knockout mice were hyperglycaemic, hyperinsulinaemic and developed non-alcoholic fatty liver disease. Consistent with previous Mll2 knockout studies, mice homozygous for either ENU mutation (or compound heterozygotes) died during embryonic development at 9.5–14.5 days post coitum. Heterozygous deletion of Mll2 induced in the adult mouse results in a normal phenotype suggesting that changes in chromatin methylation during development result in the adult phenotype. Mll2 has been shown to regulate a small subset of genes, a number of which Neurod1, Enpp1, Slc27a2, and Plcxd1 are downregulated in adult mutant mice. Our results demonstrate that histone H3K4 methyltransferase Mll2 is a component of the genetic regulation necessary for glucose homeostasis, resulting in a specific disease pattern linking chromatin modification with causes and progression of type 2 diabetes, providing a basis for its further understanding at the molecular level. PMID:23826075

  14. Mutations in Mll2, an H3K4 methyltransferase, result in insulin resistance and impaired glucose tolerance in mice.

    Directory of Open Access Journals (Sweden)

    Michelle Goldsworthy

    Full Text Available We employed a random mutagenesis approach to identify novel monogenic determinants of type 2 diabetes. Here we show that haplo-insufficiency of the histone methyltransferase myeloid-lineage leukemia (Mll2/Wbp7 gene causes type 2 diabetes in the mouse. We have shown that mice heterozygous for two separate mutations in the SET domain of Mll2 or heterozygous Mll2 knockout mice were hyperglycaemic, hyperinsulinaemic and developed non-alcoholic fatty liver disease. Consistent with previous Mll2 knockout studies, mice homozygous for either ENU mutation (or compound heterozygotes died during embryonic development at 9.5-14.5 days post coitum. Heterozygous deletion of Mll2 induced in the adult mouse results in a normal phenotype suggesting that changes in chromatin methylation during development result in the adult phenotype. Mll2 has been shown to regulate a small subset of genes, a number of which Neurod1, Enpp1, Slc27a2, and Plcxd1 are downregulated in adult mutant mice. Our results demonstrate that histone H3K4 methyltransferase Mll2 is a component of the genetic regulation necessary for glucose homeostasis, resulting in a specific disease pattern linking chromatin modification with causes and progression of type 2 diabetes, providing a basis for its further understanding at the molecular level.

  15. Insulin resistance and glucose levels in subjects with subclinical hypothyroidism

    International Nuclear Information System (INIS)

    Kahn, S.H.; Fazal, N.; Yasir, M.; Asif, N.; Rafi, T.

    2017-01-01

    To compare insulin resistance and glycemic indicators among subjects with euthyroidism and subclinical hypothyroidism. Study Design: Comparative cross-sectional study. Place and Duration of Study: Department of Pathology and Medicine, PNS Hafeez, Islamabad, in collaboration with the Department of Chemical Pathology and Endocrinology at the Armed Forces Institute of Pathology (AFIP), Rawalpindi, from December 2015 to September 2016. Methodology: Subjects referred for executive screening of apparently healthy population (without any known history of diabetes, hypertension, heart disease or other chronic ailments), were included. Subjects were grouped as euthyroidism and subclinical hypothyroidism. Results: Median (IQR) insulin resistance indices including fasting insulin and Homeostasis Model Assessment for Insulin Resistance in subjects with group-1 (n=176, 87%, Thyroid Stimulating Hormone: 0.5 - 3.5 mIU/L) and group-2 (n=26, 13%, Thyroid Stimulating Hormone: 3.51 - 15 mIU/L) were 7.6 (6.70) vs. 11.4 (13.72, p=0.040) and 1.77 (1.79) vs. 2.8 (3.07, p=0.071). The median differences for fasting plasma glucose were 5.0 (1.0) in group-1 vs. 5.0 (1.47) for Group-2 [p=0.618], and glycated hemoglobin was 5.60 (1.1) vs. 5.60 (1.7, p=0.824). Homeostasis Model Assessment for beta sensitivity index in paradox showed slightly higher values for group-2 [median (IQR) 86.67 (92.94)] than group-1 [111.6 (189.64, p= 0.040)]. Conclusion: Measures of insulin resistance including Homeostasis Model Assessment for Insulin Resistance and fasting insulin levels were significantly different between subjects with euthyroidism and having subclinical hypothyroidism. (author)

  16. Beneficial effects of viscous dietary fiber from Konjac-mannan in subjects with the insulin resistance syndrome: results of a controlled metabolic trial.

    Science.gov (United States)

    Vuksan, V; Sievenpiper, J L; Owen, R; Swilley, J A; Spadafora, P; Jenkins, D J; Vidgen, E; Brighenti, F; Josse, R G; Leiter, L A; Xu, Z; Novokmet, R

    2000-01-01

    Dietary fiber has recently received recognition for reducing the risk of developing diabetes and heart disease. The implication is that it may have therapeutic benefit in prediabetic metabolic conditions. To test this hypothesis, we investigated the effect of supplementing a high-carbohydrate diet with fiber from Konjac-mannan (KJM) on metabolic control in subjects with the insulin resistance syndrome. We screened 278 free-living subjects between the ages of 45 and 65 years from the Canadian-Maltese Diabetes Study. A total of 11 (age 55+/-4 years, BMI 28+/-1.5 kg/m2) were recruited who satisfied the inclusion criteria: impaired glucose tolerance, reduced HDL cholesterol, elevated serum triglycerides, and moderate hypertension. After an 8-week baseline, they were randomly assigned to take either KJM fiber-enriched test biscuits (0.5 g of glucomannan per 100 kcal of dietary intake or 8-13 g/day) or wheat bran fiber (WB) control biscuits for two 3-week treatment periods separated by a 2-week washout. The diets were isoenergetic, metabolically controlled, and conformed to National Cholesterol Education Program Step 2 guidelines. Serum lipids, glycemic control, and blood pressure were the outcome measures. Decreases in serum cholesterol (total, 12.4+/-3.1%, PFasting blood glucose, insulin, triglycerides, HDL cholesterol, and body weight remained unchanged. A diet rich in high-viscosity KJM improves glycemic control and lipid profile, suggesting a therapeutic potential in the treatment of the insulin resistance syndrome.

  17. Blueberries? Impact on Insulin Resistance and Glucose Intolerance

    OpenAIRE

    Stull, April J.

    2016-01-01

    Blueberries are a rich source of polyphenols, which include anthocyanin bioactive compounds. Epidemiological evidence indicates that incorporating blueberries into the diet may lower the risk of developing type 2 diabetes (T2DM). These findings are supported by pre-clinical and clinical studies that have shown improvements in insulin resistance (i.e., increased insulin sensitivity) after obese and insulin-resistant rodents or humans consumed blueberries. Insulin resistance was assessed by hom...

  18. Insulin resistance and polycystic ovary syndrome.

    Science.gov (United States)

    Galluzzo, Aldo; Amato, Marco Calogero; Giordano, Carla

    2008-09-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in humans, affecting approximately 7-8% of women of reproductive age. Despite the criteria adopted, PCOS is considered to be a predominantly hyperandrogenetic syndrome and the evaluation of metabolic parameters and insulin sensitivity is not mandatory. Most women with PCOS also exhibit features of the metabolic syndrome, including insulin resistance, obesity and dyslipidaemia. While the association with type 2 diabetes is well established, whether the incidence of cardiovascular disease is increased in women with PCOS remains unclear. Acknowledging the strong impact of insulin-resistance in the genesis of PCOS could be helpful not only to make the diagnosis more robust, but also for conferring better cardiovascular risk prevention. Several current studies support a strong recommendation that women with PCOS should undergo comprehensive evaluation for the metabolic syndrome and recognized cardiovascular risk factors, and receive appropriate treatment as needed. Lifestyle modifications remain the first-line therapy for all obese women with PCOS. However, many of these women do not lose weight easily. Insulin-sensitizing drugs are discussed as a promising and unique therapeutic option for the chronic treatment of PCOS.

  19. The establishment of insulin resistance model in FL83B and L6 cell

    Science.gov (United States)

    Liu, Lanlan; Han, Jizhong; Li, Haoran; Liu, Mengmeng; Zeng, Bin

    2017-10-01

    The insulin resistance models of mouse liver epithelial and rat myoblasts cells were induced by three kinds of inducers: dexamethasone, high insulin and high glucose. The purpose is to select the optimal insulin resistance model, to provide a simple and reliable TR cell model for the study of the pathogenesis of TR and the improvement of TR drugs and functional foods. The MTT method is used for toxicity screening of three compounds, selecting security and suitable concentration. We performed a Glucose oxidase peroxidase (GOD-POD) method involving FL83B and L6 cell with dexamethasone, high insulin and high glucose-induced insulin resistance. Results suggested that FL83B cells with dexamethasone-induced (0.25uM) were established insulin resistance and L6 cells with high-glucose (30mM) and dexamethasone-induced (0.25uM) were established insulin resistance.

  20. Insulin resistance in polycystic ovary syndrome

    OpenAIRE

    Hutchison, Samantha Kate

    2017-01-01

    Polycystic ovary syndrome (PCOS) affects 8-18% of women, presenting a major public health and economic burden. Women with PCOS have insulin resistance (IR) independent of obesity. IR has an integral aetiological role in the reproductive and metabolic consequences of PCOS including obesity, type 2 diabetes (diabetes) and cardiovascular risk factors. Excess weight exacerbates IR and increases PCOS severity. PCOS combined with obesity presents a useful model to study IR before confounding hyperg...

  1. Mitochondrial adaptations in insulin resistant muscle

    OpenAIRE

    Broek, van den, N.M.A.

    2010-01-01

    Diabetes has reached epidemic proportions worldwide. Type 2 diabetes (T2D) accounts for about 90% of all diabetes cases and is characterized by insulin resistance (IR) in major metabolic tissues. The dramatic rise in T2D is associated with the increased occurrence of obesity and excessive ectopic lipid accumulation, in particular in skeletal muscle, due to excessive caloric intake and decreased physical activity. However, the exact processes leading to IR remain unresolved. One of the leading...

  2. Insulin receptor internalization defect in an insulin-resistant mouse melanoma cell line

    International Nuclear Information System (INIS)

    Androlewicz, M.J.; Straus, D.S.; Brandenburg, D.F.

    1989-01-01

    Previous studies from this laboratory demonstrated that the PG19 mouse melanoma cell line does not exhibit a biological response to insulin, whereas melanoma x mouse embryo fibroblast hybrids do respond to insulin. To investigate the molecular basis of the insulin resistance of the PG19 melanoma cells, insulin receptors from the insulin-resistant melanoma cells and insulin-sensitive fibroblast x melanoma hybrid cells were analyzed by the technique of photoaffinity labeling using the photoprobe 125 I-NAPA-DP-insulin. Photolabeled insulin receptors from the two cell types have identical molecular weights as determined by SDS gel electrophoresis under reducing and nonreducing conditions, indicating that the receptors on the two cell lines are structurally similar. Insulin receptor internalization studies revealed that the hybrid cells internalize receptors to a high degree at 37 degree C, whereas the melanoma cells internalize receptors to a very low degree or not at all. The correlation between ability to internalize insulin receptors and sensitivity to insulin action in this system suggests that uptake of the insulin-receptor complex may be required for insulin action in these cells. Insulin receptors from the two cell lines autophosphorylate in a similar insulin-dependent manner both in vitro and in intact cells, indicating that insulin receptors on the melanoma and hybrid cells have functional tyrosine protein kinase activity. Therefore, the block in insulin action in the PG19 melanoma cells appears to reside at a step beyond insulin-stimulated receptor autophosphorylation

  3. Studies of insulin resistance in congenital generalized lipodystrophy

    DEFF Research Database (Denmark)

    Søvik, O; Vestergaard, H; Trygstad, O

    1996-01-01

    suppressed lipid oxidation in the controls. It is concluded that patients with congenital generalized lipodystrophy may present severe insulin resistance with regard to hepatic glucose production as well as muscle glycogen synthesis and lipid oxidation. The results suggest a postreceptor defect in the action......, immunoreactive protein and mRNA levels. The patients had fasting hyperinsulinaemia, and the rate of total glucose disposal was severely impaired, primarily due to a decreased non-oxidative glucose metabolism. In the patient studied with muscle biopsy, the expected activation of glycogen synthase by insulin did...... not occur. In both patients there was severely increased hepatic glucose output in the basal state, suggesting a failure of insulin to suppress hepatic gluconeogenesis. During insulin infusion a substantially elevated rate of lipid oxidation remained in the patients, in contrast to the almost completely...

  4. Fucosterol activates the insulin signaling pathway in insulin resistant HepG2 cells via inhibiting PTP1B.

    Science.gov (United States)

    Jung, Hyun Ah; Bhakta, Himanshu Kumar; Min, Byung-Sun; Choi, Jae Sue

    2016-10-01

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. This study investigated the modulatory effects of fucosterol on the insulin signaling pathway in insulin-resistant HepG2 cells by inhibiting protein tyrosine phosphatase 1B (PTP1B). In addition, molecular docking simulation studies were performed to predict binding energies, the specific binding site of fucosterol to PTP1B, and to identify interacting residues using Autodock 4.2 software. Glucose uptake was determined using a fluorescent D-glucose analogue and the glucose tracer 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose, and the signaling pathway was detected by Western blot analysis. We found that fucosterol enhanced insulin-provoked glucose uptake and conjointly decreased PTP1B expression level in insulin-resistant HepG2 cells. Moreover, fucosterol significantly reduced insulin-stimulated serine (Ser307) phosphorylation of insulin receptor substrate 1 (IRS1) and increased phosphorylation of Akt, phosphatidylinositol-3-kinase, and extracellular signal- regulated kinase 1 at concentrations of 12.5, 25, and 50 µM in insulin-resistant HepG2 cells. Fucosterol inhibited caspase-3 activation and nuclear factor kappa B in insulin-resistant hepatocytes. These results suggest that fucosterol stimulates glucose uptake and improves insulin resistance by downregulating expression of PTP1B and activating the insulin signaling pathway. Thus, fucosterol has potential for development as an anti-diabetic agent.

  5. Insulin Resistance Induced by Short term Fructose Feeding may not ...

    African Journals Online (AJOL)

    Fructose feeding causes insulin resistance and invariably Non-Insulin Dependent Diabetes Mellitus (NIDDM) in rats and genetically predisposed humans. The effect of insulin resistance induced by short term fructose feeding on fertility in female rats was investigated using the following parameters: oestrous phase and ...

  6. Insulin resistance in obesity can be reliably identified from fasting plasma insulin.

    Science.gov (United States)

    ter Horst, K W; Gilijamse, P W; Koopman, K E; de Weijer, B A; Brands, M; Kootte, R S; Romijn, J A; Ackermans, M T; Nieuwdorp, M; Soeters, M R; Serlie, M J

    2015-12-01

    Insulin resistance is the major contributor to cardiometabolic complications of obesity. We aimed to (1) establish cutoff points for insulin resistance from euglycemic hyperinsulinemic clamps (EHCs), (2) identify insulin-resistant obese subjects and (3) predict insulin resistance from routinely measured variables. We assembled data from non-obese (n=112) and obese (n=100) men who underwent two-step EHCs using [6,6-(2)H2]glucose as tracer (insulin infusion dose 20 and 60 mU m(-2) min(-1), respectively). Reference ranges for hepatic and peripheral insulin sensitivity were calculated from healthy non-obese men. Based on these reference values, obese men with preserved insulin sensitivity or insulin resistance were identified. Cutoff points for insulin-mediated suppression of endogenous glucose production (EGP) and insulin-stimulated glucose disappearance rate (Rd) were 46.5% and 37.3 μmol kg(-)(1) min(-)(1), respectively. Most obese men (78%) had EGP suppression within the reference range, whereas only 12% of obese men had Rd within the reference range. Obese men with Rd obese men in age, body mass index (BMI), body composition, fasting glucose or cholesterol, but did have higher fasting insulin (110±49 vs 63±29 pmol l(-1), Pobese men could be identified with good sensitivity (80%) and specificity (75%) from fasting insulin >74 pmol l(-1). Most obese men have hepatic insulin sensitivity within the range of non-obese controls, but below-normal peripheral insulin sensitivity, that is, insulin resistance. Fasting insulin (>74 pmol l(-1) with current insulin immunoassay) may be used for identification of insulin-resistant (or metabolically unhealthy) obese men in research and clinical settings.

  7. A short leucocyte telomere length is associated with development of insulin resistance

    DEFF Research Database (Denmark)

    Verhulst, Simon; Dalgård, Christine; Labat, Carlos

    2016-01-01

    AIMS/HYPOTHESIS: A number of studies have shown that leucocyte telomere length (LTL) is inversely associated with insulin resistance and type 2 diabetes mellitus. The aim of the present longitudinal cohort study, utilising a twin design, was to assess whether shorter LTL predicts insulin resistance...... and insulin resistance over an average of 12 years were performed in a subset of the Registry consisting of 338 (184 monozygotic and 154 dizygotic) same-sex twin pairs. RESULTS: Age at baseline examination was 37.4 ± 9.6 (mean ± SD) years. Baseline insulin resistance was not associated with age......-dependent changes in LTL (attrition) over the follow-up period, whereas baseline LTL was associated with changes in insulin resistance during this period. The shorter the LTL at baseline, the more pronounced was the increase in insulin resistance over the follow-up period (p 

  8. PEDF-induced alteration of metabolism leading to insulin resistance.

    Science.gov (United States)

    Carnagarin, Revathy; Dharmarajan, Arunasalam M; Dass, Crispin R

    2015-02-05

    Pigment epithelium-derived factor (PEDF) is an anti-angiogenic, immunomodulatory, and neurotrophic serine protease inhibitor protein. PEDF is evolving as a novel metabolic regulatory protein that plays a causal role in insulin resistance. Insulin resistance is the central pathogenesis of metabolic disorders such as obesity, type 2 diabetes mellitus, polycystic ovarian disease, and metabolic syndrome, and PEDF is associated with them. The current evidence suggests that PEDF administration to animals induces insulin resistance, whereas neutralisation improves insulin sensitivity. Inflammation, lipolytic free fatty acid mobilisation, and mitochondrial dysfunction are the proposed mechanism of PEDF-mediated insulin resistance. This review summarises the probable mechanisms adopted by PEDF to induce insulin resistance, and identifies PEDF as a potential therapeutic target in ameliorating insulin resistance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. A common variation of the PTEN gene is associated with peripheral insulin resistance

    DEFF Research Database (Denmark)

    Grinder-Hansen, L; Ribel-Madsen, R; Wojtaszewski, Jørgen

    2016-01-01

    . RESULTS: The minor G allele of PTEN rs11202614 was associated with elevated fasting plasma insulin levels and a decreased peripheral glucose disposal rate, but not with the hepatic insulin resistance index or insulin secretion measured as the first-phase insulin response and disposition index. The single...... nucleotide polymorphism was not associated with either PI3K or Akt activities. CONCLUSION: A common PTEN variation is associated with peripheral insulin resistance and subsequent risk of developing T2D. However, the association with insulin resistance is not explained by decreased proximal insulin signalling......AIM: Phosphatase and tensin homologue (PTEN) reduces insulin sensitivity by inhibiting the phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homologue (Akt) pathway. This study investigated how a common single nucleotide polymorphism near PTEN, previously associated...

  10. Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin resistant phenotypes

    DEFF Research Database (Denmark)

    Malin, Steven K; Haus, Jacob M; Solomon, Thomas

    2013-01-01

    Impaired fasting glucose (IFG) blunts the reversal of impaired glucose tolerance (IGT) after exercise training. Metabolic inflexibility has been implicated in the etiology of insulin resistance, however, the efficacy of exercise on peripheral and hepatic insulin sensitivity or substrate utilizati...

  11. Role of PTEN in TNFα induced insulin resistance

    International Nuclear Information System (INIS)

    Bulger, David A.; Conley, Jermaine; Conner, Spencer H.; Majumdar, Gipsy; Solomon, Solomon S.

    2015-01-01

    Aims/hypothesis: PTEN may play a reversible role in TNFα induced insulin resistance, which has been linked to obesity-associated insulin resistance (IR). Methods: Western blots for PTEN and p-Akt were performed on H-411E liver cells incubated with insulin, TNFα, and in selected experiments VO-OHpic vanadium complex in the presence and absence of PTEN siRNA. Total PTEN was compared to β-actin loading control and p-Akt was compared to total Akt. Results: Western blot and Real Time RT-PCR experiments showed increased PTEN after TNFα treatment (p = 0.04); slightly decreased PTEN after insulin treatment; and slightly increased PTEN after insulin + TNFα treatment. PTEN siRNA markedly inhibited the TNFα-induced increase in PTEN (p < 0.01) without significantly changing the p-Akt levels. The vanadium complex, exhibiting insulin-like effects, also significantly prevented the TNFα-induced increase in PTEN. Combining insulin and VO-OHpic was additive, providing both proof of concept and insight into mechanism. Discussion: The PTEN increase due to TNFα treatment was reversible by both PTEN siRNA knockdown and VO-OHpic treatment. Thus, PTEN is identified as a potential new therapeutic target for reducing IR in Type 2 DM. - Highlights: • TNFα treatment induced a significant increase in PTEN in H-411E liver cells. • PTEN siRNA knockdown prevented this effect. • VO-OHpic (vanadium complex) treatment, like insulin, decreased PTEN protein levels. • Thus, PTEN is identified as a potential therapeutic target in DM Type 2

  12. Role of PTEN in TNFα induced insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Bulger, David A. [Departments of Medicine and Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104 (United States); Wellcome Trust Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ (United Kingdom); National Institute of Diabetes & Digestive & Kidney Disease, National Institutes of Health, Bethesda, MD 20892 (United States); Conley, Jermaine [Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104 (United States); Conner, Spencer H.; Majumdar, Gipsy [Departments of Medicine and Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104 (United States); Solomon, Solomon S., E-mail: ssolomon@uthsc.edu [Departments of Medicine and Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104 (United States)

    2015-06-05

    Aims/hypothesis: PTEN may play a reversible role in TNFα induced insulin resistance, which has been linked to obesity-associated insulin resistance (IR). Methods: Western blots for PTEN and p-Akt were performed on H-411E liver cells incubated with insulin, TNFα, and in selected experiments VO-OHpic vanadium complex in the presence and absence of PTEN siRNA. Total PTEN was compared to β-actin loading control and p-Akt was compared to total Akt. Results: Western blot and Real Time RT-PCR experiments showed increased PTEN after TNFα treatment (p = 0.04); slightly decreased PTEN after insulin treatment; and slightly increased PTEN after insulin + TNFα treatment. PTEN siRNA markedly inhibited the TNFα-induced increase in PTEN (p < 0.01) without significantly changing the p-Akt levels. The vanadium complex, exhibiting insulin-like effects, also significantly prevented the TNFα-induced increase in PTEN. Combining insulin and VO-OHpic was additive, providing both proof of concept and insight into mechanism. Discussion: The PTEN increase due to TNFα treatment was reversible by both PTEN siRNA knockdown and VO-OHpic treatment. Thus, PTEN is identified as a potential new therapeutic target for reducing IR in Type 2 DM. - Highlights: • TNFα treatment induced a significant increase in PTEN in H-411E liver cells. • PTEN siRNA knockdown prevented this effect. • VO-OHpic (vanadium complex) treatment, like insulin, decreased PTEN protein levels. • Thus, PTEN is identified as a potential therapeutic target in DM Type 2.

  13. Relationship of serum resistin with insulin resistance and obesity

    International Nuclear Information System (INIS)

    Zaidi, S.I.Z.

    2015-01-01

    Background: Adipokines have been implicated in the modulation of insulin sensitivity and glucose tolerance and have thus gained importance in the study of Type 2 diabetes mellitus (T2DM). Resistin, a unique signalling molecule, is being proposed as a significant factor in the pathogenesis of obesity-related insulin resistance. However, its relevance to human diabetes mellitus remains uncertain and controversial. This study was therefore planned to compare and correlate the potential role of resistin in obese patients with T2DM and obese non-diabetic controls and also to evaluate the correlation between resistin and marker of obesity and glycaemic parameters. Method: Fasting serum resistin, glucose and insulin were measured in forty obese diabetics (mean±SD BMI 35±5 kg/m2) and forty obese non-diabetics (mean±SD BMI 33±3 kg/m2). Insulin resistance was assessed using the HOMA-IR formula derived from fasting insulin and glucose levels. Results: Serum resistin levels (38±8 ng/ml) were significantly higher in type 2 diabetic patients as compared with the controls. Fasting blood glucose (164±46 mg/dl), serum insulin (37±7 μU/ml) and insulin resistance (19±8), were considerably higher among the studied diabetics than in the controls. Pearson's correlation analysis revealed positive correlation between serum resistin and BMI (p=0.001) and HOMA-IR (p=0.561) in diabetic subjects. Similarly, a correlation also existed between serum resistin and BMI (p=0.016) and HOMA-IR (p=0.307) in control obese subjects. However, it was highly significant in diabetics as compared to non-diabetic controls. Conclusion: A significant BMI-dependent association exists between resistin and insulin resistance in patients with T2DM. It appears that resistin may play a role in the pathogenesis of obesity and insulin resistance and that both of these may contribute to the development of T2DM. (author)

  14. Does the active use of nutrition labeling reduce the risk of diabetes mellitus? Results of insulin resistance using Korean National Health and Nutrition Examination Survey.

    Science.gov (United States)

    Han, Kyu-Tae; Kim, Seung Ju; Kim, Dong Jun; Kim, Sun Jung

    2018-05-29

    In 1995, nutrition labeling became mandatory in South Korea. These regulations help consumers make reasonable choices when purchasing food based on nutritional value by providing the nutritional properties of processed foods. We investigated the association between perceptions about nutrition labeling and insulin resistance (IR) in people with no diagnosis of diabetes mellitus (DM). This study used data from the sixth Korea National Health and Nutrition Examination Survey (KNHANES VI-3 in 2015, n=2931). We used multiple regression analysis to investigate the relationship between perceptions about nutrition labeling and the homeostatic model assessment for insulin resistance (HOMA-IR). 75.2% of participants were aware of nutrition labeling and 24.8% of participants checked nutrition labeling and actively used the information. "Actively checked and used the nutrition labeling" was inversely associated with HOMA-IR scores (check nutrition facts and make labeling-dependent purchase decisions: β=-0.108, p=0.0164). These associations were more significant in people who were obese or paid more attention to their health. High levels of perceptions about nutrition labeling and active use of such information could have positive effects on reducing IR and preventing DM. Therefore, it is necessary to improve public perception for effective implementation of healthcare programs. Copyright © 2018 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  15. Central nervous insulin resistance: a promising target in the treatment of metabolic and cognitive disorders?

    Science.gov (United States)

    Hallschmid, M; Schultes, B

    2009-11-01

    Research on functions and signalling pathways of insulin has traditionally focused on peripheral tissues such as muscle, fat and liver, while the brain was commonly believed to be insensitive to the effects of this hormone secreted by pancreatic beta cells. However, since the discovery some 30 years ago that insulin receptors are ubiquitously found in the central nervous system, an ever-growing research effort has conclusively shown that circulating insulin accesses the brain, which itself does not synthesise insulin, and exerts pivotal functions in central nervous networks. As an adiposity signal reflecting the amount of body fat, insulin provides direct negative feedback to hypothalamic nuclei that control whole-body energy and glucose homeostasis. Moreover, insulin affects distinct cognitive processes, e.g. by triggering the formation of psychological memory contents. Accordingly, metabolic and cognitive disorders such as obesity, type 2 diabetes mellitus and Alzheimer's disease are associated with resistance of central nervous structures to the effects of insulin, which may derive from genetic polymorphisms as well as from long-term exposure to excess amounts of circulating insulin due to peripheral insulin resistance. Thus, overcoming central nervous insulin resistance, e.g. by pharmacological interventions, appears to be an attractive strategy in the treatment and prevention of these disorders. Enhancement of central nervous insulin signalling by administration of intranasal insulin, insulin analogues and insulin sensitisers in basic research approaches has yielded encouraging results that bode well for the successful translation of these effects into future clinical practice.

  16. Insulin-stimulated glucose uptake in healthy and insulin-resistant skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul S

    2016-01-01

    transporter protein 4 (GLUT4) to the plasma membrane which leads to facilitated diffusion of glucose into the cell. Understanding the precise signaling events guiding insulin-stimulated glucose uptake is pivotal, because impairment in these signaling events leads to development of insulin resistance and type...... 2 diabetes. This review summarizes current understanding of insulin signaling pathways mediating glucose uptake in healthy and insulin-resistant skeletal muscle....

  17. Effects of intranasal insulin on endogenous glucose production in insulin-resistant men.

    Science.gov (United States)

    Xiao, Changting; Dash, Satya; Stahel, Priska; Lewis, Gary F

    2018-03-14

    The effects of intranasal insulin on the regulation of endogenous glucose production (EGP) in individuals with insulin resistance were assessed in a single-blind, crossover study. Overweight or obese insulin-resistant men (n = 7; body mass index 35.4 ± 4.4 kg/m 2 , homeostatic model assessment of insulin resistance 5.6 ± 1.6) received intranasal spray of either 40 IU insulin lispro or placebo in 2 randomized visits. Acute systemic spillover of intranasal insulin into the circulation was matched with a 30-minute intravenous infusion of insulin lispro in the nasal placebo arm. EGP was assessed under conditions of a pancreatic clamp with a primed, constant infusion of glucose tracer. Under these experimental conditions, compared with placebo, intranasal administration of insulin did not significantly affect plasma glucose concentrations, EGP or glucose disposal in overweight/obese, insulin-resistant men, in contrast to our previous study, in which an equivalent dose of intranasal insulin significantly suppressed EGP in lean, insulin-sensitive men. Insulin resistance is probably associated with impairment in centrally mediated insulin suppression of EGP. © 2018 John Wiley & Sons Ltd.

  18. Adipocytokine Associations with Insulin Resistance in British South Asians

    Directory of Open Access Journals (Sweden)

    D. R. Webb

    2013-01-01

    Full Text Available Aims. Adipocytokines are implicated in the pathogenesis of type 2 diabetes and may represent identifiable precursors of metabolic disease within high-risk groups. We investigated adiponectin, leptin, and TNF-α and assessed the contribution of these molecules to insulin resistance in south Asians. Hypothesis. South Asians have adverse adipocytokine profiles which associate with an HOMA-derived insulin resistance phenotype. Methods. We measured adipocytokine concentrations in south Asians with newly diagnosed impaired glucose tolerance or Type 2 Diabetes Mellitus in a case-control study. 158 (48.5% males volunteers aged 25–75 years with risk factors for diabetes but no known vascular or metabolic disease provided serum samples for ELISA and bioplex assays. Results. Total adiponectin concentration progressively decreased across the glucose spectrum in both sexes. A reciprocal trend in leptin concentration was observed only in south Asian men. Adiponectin but not leptin independently associated with HOMA-derived insulin resistance after logistic multivariate regression. Conclusion. Diasporic south Asian populations have an adverse adipocytokine profile which deteriorates further with glucose dysregulation. Insulin resistance is inversely associated with adiponectin independent of BMI and waist circumference in south Asians, implying that adipocytokine interplay contributes to the pathogenesis of metabolic disease in this group.

  19. The role of endoplasmic reticulum stress in hippocampal insulin resistance.

    Science.gov (United States)

    Sims-Robinson, Catrina; Bakeman, Anna; Glasser, Rebecca; Boggs, Janet; Pacut, Crystal; Feldman, Eva L

    2016-03-01

    Metabolic syndrome, which includes hypertension, hyperglycemia, obesity, insulin resistance, and dyslipidemia, has a negative impact on cognitive health. Endoplasmic reticulum (ER) stress is activated during metabolic syndrome, however it is not known which factor associated with metabolic syndrome contributes to this stress. ER stress has been reported to play a role in the development of insulin resistance in peripheral tissues. The role of ER stress in the development of insulin resistance in hippocampal neurons is not known. In the current study, we investigated ER stress in the hippocampus of 3 different mouse models of metabolic syndrome: the C57BL6 mouse on a high fat (HF) diet; apolipoprotein E, leptin, and apolipoprotein B-48 deficient (ApoE 3KO) mice; and the low density lipoprotein receptor, leptin, and apolipoprotein B-48 deficient (LDLR 3KO) mice. We demonstrate that ER stress is activated in the hippocampus of HF mice, and for the first time, in ApoE 3KO mice, but not LDLR 3KO mice. The HF and ApoE 3KO mice are hyperglycemic; however, the LDLR 3KO mice have normal glycemia. This suggests that hyperglycemia may play a role in the activation of ER stress in the hippocampus. Similarly, we also demonstrate that impaired insulin signaling is only present in the HF and ApoE 3KO mice, which suggests that ER stress may play a role in insulin resistance in the hippocampus. To confirm this we pharmacologically induced ER stress with thapsigargin in human hippocampal neurons. We demonstrate for the first time that thapsigargin leads to ER stress and impaired insulin signaling in human hippocampal neurons. Our results may provide a potential mechanism that links metabolic syndrome and cognitive health. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle

    Science.gov (United States)

    Richey, Joyce M.; Castro, Ana Valeria B.; Broussard, Josiane L.; Ionut, Viorica; Bergman, Richard N.

    2015-01-01

    Elevated plasma free fatty acids (FFA) induce insulin resistance in skeletal muscle. Previously, we have shown that experimental insulin resistance induced by lipid infusion prevents the dispersion of insulin through the muscle, and we hypothesized that this would lead to an impairment of insulin moving from the plasma to the muscle interstitium. Thus, we infused lipid into our anesthetized canine model and measured the appearance of insulin in the lymph as a means to sample muscle interstitium under hyperinsulinemic euglycemic clamp conditions. Although lipid infusion lowered the glucose infusion rate and induced both peripheral and hepatic insulin resistance, we were unable to detect an impairment of insulin access to the lymph. Interestingly, despite a significant, 10-fold increase in plasma FFA, we detected little to no increase in free fatty acids or triglycerides in the lymph after lipid infusion. Thus, we conclude that experimental insulin resistance induced by lipid infusion does not reduce insulin access to skeletal muscle under clamp conditions. This would suggest that the peripheral insulin resistance is likely due to reduced cellular sensitivity to insulin in this model, and yet we did not detect a change in the tissue microenvironment that could contribute to cellular insulin resistance. PMID:25852002

  1. Anaesthesia generates neuronal insulin resistance by inducing hypothermia

    Directory of Open Access Journals (Sweden)

    Sutherland Calum

    2008-10-01

    Full Text Available Abstract Background Anaesthesia is commonly employed prior to surgical investigations and to permit icv injections in rodents. Indeed it is standard practise in many studies examining the subsequent actions of hormones and growth factors on the brain. Recent evidence that the basal activity of specific intracellular signalling proteins can be affected by anaesthesia prompted us to examine the effect of anaesthesia not only on the basal activity but also the insulin sensitivity of the major insulin signalling pathways. Results We find that urethane- and ketamine-induced anaesthesia results in rapid activation of the phosphatidylinositol (PI 3-kinase-protein kinase B (PKB signalling pathway in the brain, increases tau phosphorylation while at the same time reducing basal activity of the Ras-ERK pathway. Subsequent injection of insulin does not alter the activity of either the PI 3-kinase or ERK signalling pathways, indicating a degree of neuronal molecular insulin resistance. However, if body temperature is maintained during anaesthesia then there is no alteration in the basal activity of these signalling molecules. Subsequent response of both pathways to insulin injection is restored. Conclusion The data is consistent with a hypothermia related alteration in neuronal signalling following anaesthesia, and emphasises the importance of maintaining the body temperature of rodents when monitoring insulin (or growth factor/neurotrophic agent action in the brain of anesthetised rodents.

  2. Mechanism by which arylamine N-acetyltransferase 1 ablation causes insulin resistance in mice

    DEFF Research Database (Denmark)

    Camporez, João Paulo; Wang, Yongliang; Faarkrog, Kasper

    2017-01-01

    A single-nucleotide polymorphism in the human arylamine N-acetyltransferase 2 (Nat2) gene has recently been identified as associated with insulin resistance in humans. To understand the cellular and molecular mechanisms by which alterations in Nat2 activity might cause insulin resistance, we...... examined murine ortholog Nat1 knockout (KO) mice. Nat1 KO mice manifested whole-body insulin resistance, which could be attributed to reduced muscle, liver, and adipose tissue insulin sensitivity. Hepatic and muscle insulin resistance were associated with marked increases in both liver and muscle...... adipose tissue, and hepatocytes. Taken together, these studies demonstrate that Nat1 deletion promotes reduced mitochondrial activity and is associated with ectopic lipid-induced insulin resistance. These results provide a potential genetic link among mitochondrial dysfunction with increased ectopic lipid...

  3. Insulin resistance and serum parameters of iron status in type 2 diabetics

    International Nuclear Information System (INIS)

    Zafar, U.

    2011-01-01

    Background: Type 2 diabetes mellitus (T2DM) is a predominant public health concern worldwide, accounting for 90% of the cases of diabetes globally. Pathogenesis of T2DM involves insulin resistance, defective insulin secretion and increased glucose production by the liver. Subclinical haemochromatosis has been considered as one of the probable causes of insulin resistance and diabetes mellitus. The aim of this study was to determine and correlate insulin resistance and serum parameters of iron status (serum ferritin and transferrin saturation) in type 2 diabetics. Methods: It was a correlational study. This study was conducted on sixty male patients with type 2 diabetes mellitus. Fasting blood sample was taken from each subject and analysed for glucose, haemoglobin, insulin, iron, Total Iron Binding Capacity (TIBC) and ferritin. Insulin resistance was determined by HOMA-IR index. Transferrin saturation was calculated from serum iron and TIBC. Data was analysed using SPSS-17. Results: There was significant positive correlation between insulin resistance and transferrin saturation, but there was no significant correlation of insulin resistance with blood haemoglobin, serum iron and serum ferritin in type 2 diabetics. Conclusion: Correlation between insulin resistance and transferrin saturation reveals that iron has negative impact on insulin sensitivity in type 2 diabetics. (author)

  4. Insulin-resistance and lipids metabolism in women at menopause

    Directory of Open Access Journals (Sweden)

    Marina Dmitrуina Gresko

    2018-01-01

    Full Text Available The article describes lipid metabolism in women during premenopausal and considered their relationship with the level of insulin sensitivity and abdominal obesity. Examined 20 women aged 46-48 years, with fixed transition to pre-menopause on the bases of menstrual cycle dysfunction or amenorrhea during a year as well as a decrease of visualized follicular reserve according to the results of ultrasonic examination of the organs of the small pelvis, were involved into investigation. Body mass increase with abdominal obese formation and disorders of the lipid metabolism against a background of insulin resistance is observed in women during pre-menopause against a background of sexual hormones deficiency.

  5. Fructose induced neurogenic hypertension mediated by overactivation of p38 MAPK to impair insulin signaling transduction caused central insulin resistance.

    Science.gov (United States)

    Cheng, Pei-Wen; Lin, Yu-Te; Ho, Wen-Yu; Lu, Pei-Jung; Chen, Hsin-Hung; Lai, Chi-Cheng; Sun, Gwo-Ching; Yeh, Tung-Chen; Hsiao, Michael; Tseng, Ching-Jiunn; Liu, Chun-Peng

    2017-11-01

    Type 2 diabetes are at a high risk of complications related to hypertension, and reports have indicated that insulin levels may be associated with blood pressure (BP). Fructose intake has recently been reported to promote insulin resistance and superoxide formation. The aim of this study is to investigate whether fructose intake can enhance superoxide generation and impair insulin signaling in the NTS and subsequently elevate BP in rats with fructose-induced hypertension. Treatment with fructose for 4 weeks increased the BP, serum fasting insulin, glucose, homeostatic model assessment-insulin resistance, and triglyceride levels and reduced the serum direct high-density lipoprotein level in the fructose group. The Tempol treatment recovered the fructose-induced decrease in nitric oxide production in the NTS. Immunoblotting and immunofluorescence analyses further showed that fructose increased the p38- and fructose-induced phosphorylation of insulin receptor substrate 1 (IRS1 S307 ) and suppressed Akt S473 and neuronal nitric oxide synthase phosphorylation. Similarly, fructose was able to impair insulin sensitivity and increase insulin levels in the NTS. Fructose intake also increased the production of superoxide in the NTS. The results of this study suggest that fructose might induce central insulin resistance and elevate BP by enhancing superoxide production and activating p38 phosphorylation in the NTS. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Acanthosis nigricans: a flag for insulin resistance

    African Journals Online (AJOL)

    2013-11-04

    Nov 4, 2013 ... Outcome measures: OGTT, fasting serum insulin and HOMA IR were the outcome measures studied. Results: This cross-sectional study revealed that 94 subjects with acanthosis nigricans (31.34%) had IR. Grades III and IV, and textures II and III, were more predictive of IR. Acanthosis nigricans grading was ...

  7. Persistence of insulin resistance in polycystic ovarian disease after inhibition of ovarian steroid secretion.

    Science.gov (United States)

    Geffner, M E; Kaplan, S A; Bersch, N; Golde, D W; Landaw, E M; Chang, R J

    1986-03-01

    Six nonobese women with polycystic ovarian disease (PCOD) showed significant hyperinsulinemia, compared with controls after oral glucose (P less than 0.05). As an indicator of insulin sensitivity, in vitro proliferation of erythrocyte progenitor cells of PCOD subjects exposed to physiologic concentrations of insulin was significantly blunted (P less than 0.001). Monocyte insulin receptor binding was not impaired in the PCOD subjects. Three of the PCOD patients were treated with a long-acting gonadotropin-releasing hormone agonist for 6 months, which resulted in marked suppression of ovarian androgen secretion but no demonstrable changes in in vivo or in vitro indicators of insulin resistance. Thus insulin resistance in PCOD subjects appears to be unrelated to ovarian hyperandrogenism (or acanthosis or obesity). Although certain tissues are insulin-resistant in PCOD patients, the ovary may remain sensitive and overproduce androgens in response to high circulating insulin levels.

  8. Serum acylated ghrelin is negatively correlated with the insulin resistance in the CODING study.

    Directory of Open Access Journals (Sweden)

    Peyvand Amini

    Full Text Available Ghrelin is a 28-amino acid orexigenic peptide synthesized mainly in the stomach. Acute administration of ghrelin has been found to decrease insulin secretion. However, little data is available regarding whether ghrelin contributes to the long-term regulation of insulin resistance at the population level. The aim of this study is to investigate the association between circulating ghrelin and insulin resistance in a large population based study.A total of 2082 CODING study (Complex Diseases in the Newfoundland population: Environment and Genetics subjects were assessed. Subjects were of at least third generation Newfoundland descent, between the ages of 20 and 79 years, and had no serious metabolic, cardiovascular, or endocrine diseases. Ghrelin was measured with an Enzyme Immunoassay method. Insulin and fasting glucose were measured by Immulite 2500 autoanalyzer and Lx20 clinical chemistry analyzer, respectively. Homeostatic Model Assessment of β cell function (HOMA-β and Insulin Resistance (HOMA-IR and Quantitative Insulin-sensitivity Check Index (QUICKI were used for measurement of insulin resistance.Partial correlation analyses showed a significant negative correlation between circulating ghrelin and insulin level and insulin resistance in the entire cohort and also in men and women separately. The aforementioned correlation was independent of age, percentage of trunk fat and HDL-cholesterol. According to menopausal status, only pre-menopausal women revealed negative correlations.Our results suggest that except for postmenopausal women, high circulating ghrelin level is associated with lower insulin resistance in the general population.

  9. Molecular Mechanisms of Chromium in Alleviating Insulin Resistance

    Science.gov (United States)

    Hua, Yinan; Clark, Suzanne; Ren, Jun; Sreejayan, Nair

    2011-01-01

    Type 2 diabetes is often associated with obesity, dyslipidemia, and cardiovascular anomalies and is a major health problem approaching global epidemic proportions. Insulin resistance, a prediabetic condition, precedes the onset of frank type 2 diabetes and offers potential avenues for early intervention to treat the disease. Although lifestyle modifications and exercise can reduce the incidence of diabetes, compliance has proved to be difficult, warranting pharmacological interventions. However, most of the currently available drugs that improve insulin sensitivity have adverse effects. Therefore, attractive strategies to alleviate insulin resistance include dietary supplements. One such supplement is chromium, which has been shown reduce insulin resistance in some, but not all, studies. Furthermore, the molecular mechanisms of chromium in alleviating insulin resistance remain elusive. This review examines emerging reports on the effect of chromium, as well as molecular and cellular mechanisms by which chromium may provide beneficial effects in alleviating insulin resistance. PMID:22423897

  10. Role of sialic acid in insulin action and the insulin resistance of diabetes mellitus

    International Nuclear Information System (INIS)

    Salhanick, A.I.; Amatruda, J.M.

    1988-01-01

    Adipocytes treated with neuraminidase show markedly reduced responsiveness to insulin without any alteration in insulin binding. In addition, several studies have separately demonstrated both insulin resistance and decreases in membrane sialic acid content and associated biosynthetic enzymes in diabetes mellitus. In the present study, the authors investigated the role that sialic acid residues may play in insulin action and in the hepatic insulin resistance associated with nonketotic diabetes. Primary cultures of hepatocytes from normal rats treated with neuraminidase demonstrated a dose-dependent decrease in insulin-stimulated lipogenesis. At a concentration of neuraminidase that decreases insulin action by 50%, 23% of total cellular sialic acid content was released. Neuraminidase-releasable sialic acid was significantly decreased in hepatocytes from diabetic rats and this was associated with significant insulin resistance. Treatment of hepatocytes from diabetic rats with cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NANA) enhanced insulin responsiveness 39%. The enhanced insulin responsiveness induced by CMP-NANA was blocked by cytidine 5'-monophosphate (CMP) suggesting that the CMP-NANA effect was catalyzed by a cell surface sialyl-transferase. CMP reduced neuraminidase-releasable [ 14 C]sialic acid incorporation into hepatocytes by 43%. The data demonstrate a role for cell surface sialic acid residues in hepatic insulin action and support a role for decreased cell surface sialic acid residues in the insulin resistance of diabetes mellitus

  11. Acceptance of insulin therapy: a long shot? Psychological insulin resistance in primary care

    NARCIS (Netherlands)

    Woudenberg, Y. J. C.; Lucas, C.; Latour, C.; Scholte Op Reimer, W. J. M.

    2012-01-01

    Diabet. Med. 29, 796802 (2012) Abstract Aim To explore which factors are associated with psychological insulin resistance in insulin-naive patients with Type 2 diabetes in primary care. Methods A sample of 101 insulin-naive patients with Type 2 diabetes completed self-administered questionnaires

  12. Insulin resistance in brain and possible therapeutic approaches.

    Science.gov (United States)

    Cetinkalp, Sevki; Simsir, Ilgin Y; Ertek, Sibel

    2014-01-01

    Although the brain has long been considered an insulin-independent organ, recent research has shown that insulin has significant effects on the brain, where it plays a role in maintaining glucose and energy homeostasis. To avoid peripheral insulin resistance, the brain may act via hypoinsulinemic responses, maintaining glucose metabolism and insulin sensitivity within its own confines; however, brain insulin resistance may develop due to environmental factors. Insulin has two important functions in the brain: controlling food intake and regulating cognitive functions, particularly memory. Notably, defects in insulin signaling in the brain may contribute to neurodegenerative disorders. Insulin resistance may damage the cognitive system and lead to dementia states. Furthermore, inflammatory processes in the hypothalamus, where insulin receptors are expressed at high density, impair local signaling systems and cause glucose and energy metabolism disorders. Excessive caloric intake and high-fat diets initiate insulin and leptin resistance by inducing mitochondrial dysfunction and endoplasmic reticulum stress in the hypothalamus. This may lead to obesity and diabetes mellitus (DM). Exercise can enhance brain and hypothalamic insulin sensitivity, but it is the option least preferred and/or continuously practiced by the general population. Pharmacological treatments that increase brain and hypothalamic insulin sensitivity may provide new insights into the prevention of dementia disorders, obesity, and type 2 DM in the future.

  13. Acute pain induces insulin resistance in humans

    DEFF Research Database (Denmark)

    Greisen, J.; Juhl, C.B.; Grøfte, Thorbjørn

    2001-01-01

    Background: Painful trauma results in a disturbed metabolic state with impaired insulin sensitivity, which is related to the magnitude of the trauma. The authors explored whether pain per se influences hepatic and extrahepatic actions of insulin. Methods: Ten healthy male volunteers underwent two...... randomly sequenced hyperinsulinemic–euglycemic (insulin infusion rate, 0.6 mU · kg-1 · min-1 for 180 min) clamp studies 4 weeks apart. Self-controlled painful electrical stimulation was applied to the abdominal skin for 30 min, to a pain intensity of 8 on a visual analog scale of 0–10, just before...... the clamp procedure (study P). In the other study, no pain was inflicted (study C). Results: Pain reduced whole-body insulin-stimulated glucose uptake from 6.37 ± 1.87 mg · kg-1 · min-1 (mean ± SD) in study C to 4.97 ± 1.38 mg · kg-1 · min-1 in study P (P

  14. Association Between Insulin Resistance and Bone Structure in Nondiabetic Postmenopausal Women

    DEFF Research Database (Denmark)

    Shanbhogue, Vikram V; Finkelstein, Joel S; Bouxsein, Mary L

    2016-01-01

    computed tomography was used to assess bone density and microstructure at the distal radius and tibia. Fasting insulin and glucose was measured and insulin resistance was estimated using homeostasis model assessment of insulin resistance (HOMA-IR) with higher values indicating greater insulin resistance....... RESULTS: There was a negative association between HOMA-IR and bone size and a positive association between HOMA-IR and total vBMD, trabecular vBMD, trabecular thickness and cortical thickness at the radius and tibia. These relationships remained even after adjusting for body weight and other potential...

  15. Familial hyperinsulinemia associated with secretion of an abnormal insulin, and coexistence of insulin resistance in the propositus.

    Science.gov (United States)

    Vinik, A I; Seino, S; Funakoshi, A; Schwartz, J; Matsumoto, M; Schteingart, D E; Fu, Z Z; Tsai, S T

    1986-04-01

    A 45-yr-old muscular nonobese white man who had a 9-yr history of syncopal episodes was studied on several occasions between April 1979 and August 1984. Fasting glucose concentrations ranged between 74-115 mg/dl, and those of insulin ranged between 14-64 microU/ml. Reactive hypoglycemia 3-4 h after ingestion of glucose occurred in the first 2 yr. Glucose tolerance was impaired in 1979, from February 1982 through September 1983, and again in August 1984. The maximum plasma insulin response to glucose ranged between 475-1630 microU/ml. When studied in November 1982, insulin (0.1 U/kg) caused a fall in blood glucose concentration of only 25% (normal, greater than 50%), and maximal glucose utilization during the euglycemic hyperinsulinemic clamp was 7.5 mg/kg . min (normal, greater than 12 mg/kg . min). Plasma counterregulatory hormone concentrations were normal, and antibodies to insulin and the insulin receptor were absent. Binding of exogenous insulin to the patient's cellular receptors (monocytes, red blood cells, and skin fibroblasts) was normal. Insulin was purified from plasma by immunoaffinity and molecular sieve chromatography and was found to elute later than human insulin on reversed phase high performance liquid chromatography. It was more hydrophobic than normal human insulin and had only 10% of the activity of normal insulin in terms of ability to bind to and stimulate glucose metabolism in isolated rat adipocytes. The abnormal insulin was identified in two of three sons and a sister, but not in the mother, brother, or niece. Sensitivity to insulin was normal in the two sons who had abnormal insulin. These results suggest that in this family the abnormal insulin was due to a biosynthetic defect, inherited as an autosomal dominant trait. The hyperinsulinemia was not associated with diabetes in family members who had no insulin resistance.

  16. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses

    Science.gov (United States)

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-01-01

    Abstract Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague–Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by ∼60%. However, supplementing gAd fully rescued insulin’s microvascular action and significantly improved the metabolic responses to insulin in HFD male rats and these actions were abolished by inhibition of either AMPK or nitric oxide production. We conclude that HFD induces vascular adiponectin and insulin resistance but gAd administration can restore vascular insulin responses and improve insulin’s metabolic action via an AMPK- and nitric oxide-dependent mechanism in male rats. Key points Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle

  17. Alleviation of insulin resistance and liver damage by oral administration of Imm124-E is mediated by increased Tregs and associated with increased serum GLP-1 and adiponectin: results of a phase I/II clinical trial in NASH

    Directory of Open Access Journals (Sweden)

    Mizrahi M

    2012-12-01

    Full Text Available Meir Mizrahi,1 Yehudit Shabat,1 Ami Ben Ya'acov,1 Gadi Lalazar,1 Tomer Adar,1 Victor Wong,2 Brian Muller,2 Grant Rawlin,2 Yaron Ilan11Liver Unit, Hebrew University-Hadassah Medical Center, Jerusalem, Israel; 2Immuron Limited, North Melbourne, AustraliaBackground: Nonalcoholic steatohepatitis (NASH is considered to be part of the nonalcoholic fatty liver disorders and its incidence is increasing. Imm124-E (Immuron Ltd, Melbourne, Australia, containing hyperimmune bovine colostrum, has been shown to exert an immunomodulatory effect and to alleviate target organ damage in animal models of NASH. The aim of our study was to determine the safety and efficacy of oral administration of Imm124-E to patients with insulin resistance and NASH.Methods: In an open-label trial, ten patients with biopsy-proven NASH and insulin resistance were orally treated with Imm124-E for 30 days.Results: Oral administration of Imm124-E was safe, and no side effects were noted. Alleviation of insulin resistance was reflected by significantly improved hemoglobin A1c (HbA1c values in all ten treated patients. For between five and eight responders, the following effects were noted: a decrease in fasting glucose levels; improved oral glucose tolerance test (OGGT and homeostatic model assessment insulin resistance (HOMA scores; and alleviation in lipid profile. These effects were accompanied by increased serum levels of glucagon-like peptide 1 (GLP-1, adiponectin and T regulatory cells.Conclusion: Hyperimmune colostrum alleviates NASH.Keywords: NASH, anti-LPS, diabetes, adipokines, regulatory T cells

  18. Visceral adiposity, insulin resistance and cancer risk

    LENUS (Irish Health Repository)

    Donohoe, Claire L

    2011-06-22

    Abstract Background There is a well established link between obesity and cancer. Emerging research is characterising this relationship further and delineating the specific role of excess visceral adiposity, as opposed to simple obesity, in promoting tumorigenesis. This review summarises the evidence from an epidemiological and pathophysiological perspective. Methods Relevant medical literature was identified from searches of PubMed and references cited in appropriate articles identified. Selection of articles was based on peer review, journal and relevance. Results Numerous epidemiological studies consistently identify increased risk of developing carcinoma in the obese. Adipose tissue, particularly viscerally located fat, is metabolically active and exerts systemic endocrine effects. Putative pathophysiological mechanisms linking obesity and carcinogenesis include the paracrine effects of adipose tissue and systemic alterations associated with obesity. Systemic changes in the obese state include chronic inflammation and alterations in adipokines and sex steroids. Insulin and the insulin-like growth factor axis influence tumorigenesis and also have a complex relationship with adiposity. There is evidence to suggest that insulin and the IGF axis play an important role in mediating obesity associated malignancy. Conclusions There is much evidence to support a role for obesity in cancer progression, however further research is warranted to determine the specific effect of excess visceral adipose tissue on tumorigenesis. Investigation of the potential mechanisms underpinning the association, including the role of insulin and the IGF axis, will improve understanding of the obesity and cancer link and may uncover targets for intervention.

  19. Effect of thiazolidinedione treatment on resistin levels in insulin resistant sprague dawley rats

    International Nuclear Information System (INIS)

    Yousaf, I.; Hameed, W.; Rajput, T.A.

    2015-01-01

    Insulin resistance is manifested by decreased effect of fixed quantity of insulin on glucose metabolism leading to type 2 diabetes mellitus. Visceral obesity has been positively correlated with insulin resistance but its mechanism is not fully defined. Insulin resistance may be the consequence of adipocytokines including visfatin and resistin. This study was designed to see the effect of thiazolidinediones on levels of resistin in insulin resistant rats. Methods: Ninety Sprague Dawley rats were randomly divided into three groups. Group I served as control. Rats in Group II and III were made insulin resistant diabetics. Group III was treated with rosiglitazone after development of diabetes. Plasma glucose, serum triglycerides, HDL, TG:HDL ratio and serum resistin levels were analysed. Results: Body weight and plasma glucose were significantly increased (p<0.05) along with TG:HDL ratio (p<0.05) in group II and group III at the end of 4th week. Serum resistin levels also increased significantly (p<0.05) in group II and III at the end of 4th week. Treatment of group III with rosiglitazone led to improvement in insulin resistance with decrease in serum resistin levels (p<0.05). Conclusion: Increased serum resistin level indicates insulin resistance and impending hyperglycaemia. Thiazolidinediones augment sensitivity of insulin to restore normoglycaemia by decreasing serum resistin level. (author)

  20. Treatment of severe insulin resistance in pregnancy with 500 units per milliliter of concentrated insulin.

    Science.gov (United States)

    Mendez-Figueroa, Hector; Maggio, Lindsay; Dahlke, Joshua D; Daley, Julie; Lopes, Vrishali V; Coustan, Donald R; Rouse, Dwight J

    2013-07-01

    To evaluate glycemic control and pregnancy outcomes among pregnant women with severe insulin resistance treated with 500 units/mL concentrated insulin. Retrospective analysis of gravid women with severe insulin resistance (need for greater than 100 units of insulin per injection or greater than 200 units/d) treated with either 500 units/mL concentrated insulin or conventional insulin therapy. We performed a two-part analysis: 1) between gravid women treated with and without 500 units/mL concentrated insulin; and 2) among gravid women treated with 500 units/mL concentrated insulin, comparing glycemic control before and after its initiation. Seventy-three pregnant women with severe insulin resistance were treated with 500 units/mL concentrated insulin and 78 with conventional insulin regimens. Patients treated with 500 units/mL concentrated insulin were older and more likely to have type 2 diabetes mellitus. Average body mass index was comparable between both groups (38.6 compared with 40.4, P=.11) as were obstetric and perinatal outcomes and glycemic control during the last week of gestation. Within the 500 units/mL concentrated insulin cohort, after initiation of this medication, fasting and postprandial blood glucose concentrations improved. However, the rates of blood glucose values less than 60 mg/dL and less than 50 mg/dL were higher in the 500 units/mL concentrated insulin group after initiation than before, 4.8% compared with 2.0% (Pinsulin in severely obese insulin-resistant pregnant women confers similar glycemic control compared with traditional insulin regimens but may increase the risk of hypoglycemia. II.

  1. Insulin resistance in drug naive patients with multiple sclerosis

    OpenAIRE

    Kostić Smiljana; Kolić Ivana; Raičević Ranko; Stojanović Zvezdana; Kostić Dejan; Dinčić Evica

    2017-01-01

    Background/Aim. Due to the fact that there is a relatively small number of data related to systemic insulin abnormalities in the multiple sclerosis (MS), the main objective of our study was to determine whether a dysbalance of glucose and insulin metabolism exist in patients with natural course of MS. Our hypothesis was that the metabolic disorder that characterizes state of the insulin resistance (IR) and reduced insulin sensitivity (IS) in untreated patie...

  2. Blueberries’ Impact on Insulin Resistance and Glucose Intolerance

    Directory of Open Access Journals (Sweden)

    April J. Stull

    2016-11-01

    Full Text Available Blueberries are a rich source of polyphenols, which include anthocyanin bioactive compounds. Epidemiological evidence indicates that incorporating blueberries into the diet may lower the risk of developing type 2 diabetes (T2DM. These findings are supported by pre-clinical and clinical studies that have shown improvements in insulin resistance (i.e., increased insulin sensitivity after obese and insulin-resistant rodents or humans consumed blueberries. Insulin resistance was assessed by homeostatic model assessment-estimated insulin resistance (HOMA-IR, insulin tolerance tests, and hyperinsulinemic-euglycemic clamps. Additionally, the improvements in glucose tolerance after blueberry consumption were assessed by glucose tolerance tests. However, firm conclusions regarding the anti-diabetic effect of blueberries cannot be drawn due to the small number of existing clinical studies. Although the current evidence is promising, more long-term, randomized, and placebo-controlled trials are needed to establish the role of blueberries in preventing or delaying T2DM.

  3. Integrating Mechanisms for Insulin Resistance: Common Threads and Missing Links

    Science.gov (United States)

    Samuel, Varman T.; Shulman, Gerald I.

    2012-01-01

    Insulin resistance is a complex metabolic disorder that defies a single etiological pathway. Accumulation of ectopic lipid metabolites, activation of the unfolded protein response (UPR) pathway and innate immune pathways have all been implicated in the pathogenesis of insulin resistance. However, these pathways are also closely linked to changes in fatty acid uptake, lipogenesis, and energy expenditure that can impact ectopic lipid deposition. Ultimately, accumulation of specific lipid metabolites (diacylglycerols and/or ceramides) in liver and skeletal muscle, may be a common pathway leading to impaired insulin signaling and insulin resistance. PMID:22385956

  4. Genetic markers of insulin resistance in gestational diabetes

    Directory of Open Access Journals (Sweden)

    Tatiana Vasil'evna Sebko

    2009-12-01

    Full Text Available Aim. To search for genetic markers of insulin resistance and impaired insulin secretion in pregnant women with gestational diabetes mellitus (GDM. Materials and methods. A total of 100 healthy pregnant women and 185 patients with GDM were available for examination. 80 patients developedGDM during current pregnancy, in 105 it was diagnosed 4-19 years ago. 25 of the 105 GDM patients had a history of type 2 DM. The following parameterswere measured: beta-cell secretory activity (proinsulin, ITI, C-peptide, total cholesterol (CH, HDL and LDL CH, triglycerides, HbA1c,fasting glycemia. Molecular-genetic DNA testing using PCR included studies of KCNJ 11, TCF7L2, PPARG2, ADIPOQ, ADIPOR1, ADIPOR2gene polymorphism. These genes were chosen based on the published data associating them with disturbed insulin secretion and sensitivity in DM2patient. Results. Pregnant women with GDM and obesity showed elevated IRI and leptin levels compared with controls. This rise was accompanied bymarked insulin resistance in 75% of these patients. In 50% of the healthy women proinsulin and insulin secretion decreased. Obesity in pregnantpatients was associated with significant elevation of proinsulin, IRI, and C-peptyide levels and GDM with Lys/Lys genotype of polymorphous markerGlu23k of KCNJ11 gene, pro and ala allele of polymorphous marker A219T of ADIPOR2 gene. These associations suggest specific genetic featuresof GDM related to impaired insulin secretion and sensitivity. Conclusion. Studies of common genetic nature of GDM and DM2 permit to identify risk groups at the preclinical stage, plan prevention and treatmentof these disorders.

  5. Status of serum adiponectin related to insulin resistance in prediabetics

    International Nuclear Information System (INIS)

    Ahsan, S.; Ahmed, S.D.H.; Nauman, K

    2014-01-01

    Obejctive: To find the status of serum adiponectin in individuals progressing towards Type 2 diabetes mellitus and compare it with normal glucose tolerant subjects to determine the stage where alteration of adiponectin occurred. Methods: The cross-sectional study was carried out at the Department of Biochemistry, Jinnah Postgraduate Medical Centre, Karachi, during January to August 2008. Subjects were invited through various diabetes screening camps. A total of 608 subjects >30 years of age without prior history of diabetes were screened through fasting plasma glucose and 2-hour oral glucose tolerance test. Forty randomly selected pre-diabetic subjects and 40 age and gender-matched subjects were included in the study. Anthropometric measurements were done. Serum insulin and adiponectin were estimated by enzyme-linked immunosorbent assay. Homeostasis model assessment of insulin resistance (HOMA-IR) was used to calculate insulin resistance mathematically. Result: Mean fasting and two-hour plasma glucose, body mass index, waist, hip circumference and blood pressure were significantly raised in pre-diabetics compared to those with normal glucose tolerance. Adiponectin was significantly decreased, while insulin and HOMA-IR were raised significantly in the pre-diabetics. Adiponectin showed significant negative correlation with body mass index (r=-0.31, p=0.005), fasting plasma glucose (r=-0.24, p= 0.032), 2-hour plasma glucose (r=-0.42, p<0.0001)), insulin (r-0.43, p<0.0001) and HOMA-IR (r= -0.43, p<0.0001) and remained significant after adjustment of body mass index, gender and insulin level in pre-diabetics. Conclusion: Adiponectin estimation may help in earlier identification of impending diabetes. However, casual link between adiponectin and pre-diabetes remained unexplored due to the study design and small sample size that warrants longitudinal large-scale studies. (author)

  6. The sites and mechanisms of postoperative insulin resistance

    OpenAIRE

    Nygren, Jonas

    1997-01-01

    The Sites and Mechanisms of Postoperative InsulinResistance by Jonas Nygren, M.D. Departments of Surgery and Endocrinology and Diabetes, Karolinska Hospital and Institute, SE-171 76, Stockholm, Sweden In Sweden with nine million inhabitants, 450,000 operations(outpatients excluded) are performed every year resulting in2,250,000 treatment days in hospital. Surgical operations are part ofthe treatment for 44% of all patients admitted to hospital careoccupying 24% of all ...

  7. Effects of turtle oil on insulin sensitivity and glucose metabolism in insulin resistant cell model

    International Nuclear Information System (INIS)

    Bai Jing; Tian Yaping; Guo Duo

    2007-01-01

    To evaluate the effects of turtle oil on insulin sensitivity and glucose metabolism in an insulin-resistant (IR) cell model which was established by the way of high concentration of insulin induction with HepG 2 cell in vitro culture. The IR cells were treated by turtle oil, the glucose consumption and 3 H-D-glucose incorporation rate in IR cells were detected by the way of glucose oxidase and 3 H-D-glucose incorporation assay respectively. The state of cell proliferation was tested by MTT method. The results showed that the incorporation rate of 3 H-D-glucose in IR cells was significantly lower than that in the control cells(P 3 H-D-glucose incorporation rate in either IR cells or control cells was increased with the increase of insulin concentration. Moreover, the 3 H-D-glucose incorporation rate of IR cells increased slower than that of control cells. The MTT assay showed that turtle oil can promote the proliferation of IR cell and control cell. The glucose uptake and glucose consumption in IR cell which treated with turtle oil was significantly increase than that in the control cells (P<0.05). Turtle oil can improve the insulin sensitivity and glucose metabolism in the IR cell model. (authors)

  8. Mild Caloric Restriction Decreases Insulin Requirements in Patients With Type 2 Diabetes and Severe Insulin Resistance.

    Science.gov (United States)

    Meehan, Cristina Adelia; Cochran, Elaine; Mattingly, Megan; Gorden, Phillip; Brown, Rebecca J

    2015-07-01

    Type 2 diabetes (T2D) affects ~10% of the US population, a subset of whom have severe insulin resistance (SIR) (>200 units/d). Treatment of these patients with high-dose insulin presents logistical and compliance challenges. We hypothesized that mild caloric restriction would reduce insulin requirements in patients with T2D and SIR.This was a retrospective study at the National Institutes of Health Clinical Center. Inclusion criteria were as follows: T2D, and insulin dose >200 units/d or >2 units/kg/d. The intervention consisted of mild caloric restriction during a 3 to 6-day hospitalization. The major outcomes were change in insulin dose and blood glucose from admission to discharge.Ten patients met inclusion criteria. Baseline glycated hemoglobin A1c was 10.0 ± 1.6% and body mass index 38.8 ± 9.0 kg/m. Food intake was restricted from 2210 ± 371 kcal/d preadmission to 1810 ± 202 during the hospital stay (16.5% reduction). Insulin dose decreased from 486 ± 291 units/d preadmission to 223 ± 127 at discharge (44% reduction, P = 0.0025). Blood sugars decreased nonsignificantly in the fasting state (from 184 ± 85 to 141 ± 42, P = 0.20), before lunch (239 ± 68 to 180 ± 76, P = 0.057), and at bedtime (212 ± 95 to 176 ± 48, P = 0.19), and significantly decreased before dinner (222 ± 92 to 162 ± 70, P = 0.016).Mild caloric restriction, an accessible and affordable intervention, substantially reduced insulin doses in patients with T2D and SIR. Further studies are needed to determine if the intervention and results are sustainable outside of a hospital setting.

  9. Preliminary evidence for obesity-associated insulin resistance in adolescents without elevations of inflammatory cytokines

    Directory of Open Access Journals (Sweden)

    Cohen Jessica I

    2012-06-01

    Full Text Available Abstract Background To ascertain whether the associations between obesity, inflammation, and insulin resistance established in human adult studies are found among adolescents. Methods We contrasted 36 obese and 24 lean youth on fasting glucose, insulin levels, lipid profile, hemoglobin A1C, markers of hepatic function, white blood cell count, C-reactive protein (CRP and fibrinogen levels. The cytokines IL-6, TNF-α, IFN-γ, IL-10 and IL-4 and the adipokines leptin, resistin, and adiponectin were also compared between the two groups. The fasting glucose and insulin values were used to estimate the degree of insulin resistance with the homeostatic model assessment of insulin resistance (HOMA-IR. T-tests and correlations were run to examine group differences and associations between groups. In addition, regression analyses were used to ascertain whether the markers of inflammation were predictive of the degree of insulin resistance. Results Although obese adolescents had clear evidence of insulin resistance, only CRP, fibrinogen and leptin were elevated; there were no group differences in pro- or anti-inflammatory cytokines nor adiponectin and resistin. Anthropometric measures of obesity and level of insulin resistance were highly correlated to the acute phase reactants CRP and fibrinogen; however, the degree of insulin resistance was not predicted by the pro- or anti-inflammatory cytokine markers. Obese adolescents had higher white blood cell counts. In addition they had higher circulating alanine aminotransferase concentrations and lower circulating albumin and total protein than lean adolescents, possibly as a result of hepatocyte damage from fatty liver. Conclusion Unlike rodent or adult studies, we found that wide-spread systemic inflammation is not necessarily associated with insulin resistance among adolescents. This finding does not support the current paradigm that the associations between obesity and insulin resistance are, to a

  10. Insulin resistance and atherosclerosis : the role of visceral fat

    NARCIS (Netherlands)

    Gast, K.B.

    2016-01-01

    The main objective of this thesis was to unravel relationships between obesity, insulin resistance, hyperglycemia, and atherosclerosis. It is well-established that patients with type 2 diabetes have a 2- to 3-fold increased risk of cardiovascular disease. We investigated whether insulin resistance

  11. Method for preventing and/or treating insulin resistance

    NARCIS (Netherlands)

    Nieuwdorp, M.; Vos, de W.M.

    2013-01-01

    The present invention describes use of Eubacterium hallii et rel. and/or Alcaligenes faecalis et rel., as well as pharmaceutical, food, or feed compositions comprising these bacteria, as a medicament, in particular for preventing and/or treating insulin resistance and/or insulin resistance-related

  12. Whole-Body and Hepatic Insulin Resistance in Obese Children

    Science.gov (United States)

    Ibarra-Reynoso, Lorena del Rocío; Pisarchyk, Liudmila; Pérez-Luque, Elva Leticia; Garay-Sevilla, Ma. Eugenia; Malacara, Juan Manuel

    2014-01-01

    Background Insulin resistance may be assessed as whole body or hepatic. Objective To study factors associated with both types of insulin resistance. Methods Cross-sectional study of 182 obese children. Somatometric measurements were registered, and the following three adiposity indexes were compared: BMI, waist-to-height ratio and visceral adiposity. Whole-body insulin resistance was evaluated using HOMA-IR, with 2.5 as the cut-off point. Hepatic insulin resistance was considered for IGFBP-1 level quartiles 1 to 3 (HOMA-IR was negatively associated with IGFBP-1 and positively associated with BMI, triglycerides, leptin and mother's BMI. Girls had increased HOMA-IR. IGFBP-1 was negatively associated with waist-to-height ratio, age, leptin, HOMA-IR and IGF-I. We did not find HOMA-IR or IGFBP-1 associated with fatty liver. Conclusion In school-aged children, BMI is the best metric to predict whole-body insulin resistance, and waist-to-height ratio is the best predictor of hepatic insulin resistance, indicating that central obesity is important for hepatic insulin resistance. The reciprocal negative association of IGFBP-1 and HOMA-IR may represent a strong interaction of the physiological processes of both whole-body and hepatic insulin resistance. PMID:25411786

  13. Insulin Resistance and Cancer Risk: An Overview of the Pathogenetic Mechanisms

    Directory of Open Access Journals (Sweden)

    Biagio Arcidiacono

    2012-01-01

    Full Text Available Insulin resistance is common in individuals with obesity or type 2 diabetes (T2D, in which circulating insulin levels are frequently increased. Recent epidemiological and clinical evidence points to a link between insulin resistance and cancer. The mechanisms for this association are unknown, but hyperinsulinaemia (a hallmark of insulin resistance and the increase in bioavailable insulin-like growth factor I (IGF-I appear to have a role in tumor initiation and progression in insulin-resistant patients. Insulin and IGF-I inhibit the hepatic synthesis of sex-hormone binding globulin (SHBG, whereas both hormones stimulate the ovarian synthesis of sex steroids, whose effects, in breast epithelium and endometrium, can promote cellular proliferation and inhibit apoptosis. Furthermore, an increased risk of cancer among insulin-resistant patients can be due to overproduction of reactive oxygen species (ROS that can damage DNA contributing to mutagenesis and carcinogenesis. On the other hand, it is possible that the abundance of inflammatory cells in adipose tissue of obese and diabetic patients may promote systemic inflammation which can result in a protumorigenic environment. Here, we summarize recent progress on insulin resistance and cancer, focusing on various implicated mechanisms that have been described recently, and discuss how these mechanisms may contribute to cancer initiation and progression.

  14. Microbial Regulation of Glucose Metabolism and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Silke Crommen

    2017-12-01

    Full Text Available Type 2 diabetes is a combined disease, resulting from a hyperglycemia and peripheral and hepatic insulin resistance. Recent data suggest that the gut microbiota is involved in diabetes development, altering metabolic processes including glucose and fatty acid metabolism. Thus, type 2 diabetes patients show a microbial dysbiosis, with reduced butyrate-producing bacteria and elevated potential pathogens compared to metabolically healthy individuals. Furthermore, probiotics are a known tool to modulate the microbiota, having a therapeutic potential. Current literature will be discussed to elucidate the complex interaction of gut microbiota, intestinal permeability and inflammation leading to peripheral and hepatic insulin resistance. Therefore, this review aims to generate a deeper understanding of the underlying mechanism of potential microbial strains, which can be used as probiotics.

  15. Relationship between insulin resistance and tissue blood flow in preeclampsia.

    Science.gov (United States)

    Anim-Nyame, Nick; Gamble, John; Sooranna, Suren R; Johnson, Mark R; Steer, Philip J

    2015-05-01

    Preeclampsia is characterized by generalized endothelial dysfunction and impaired maternal tissue perfusion, and insulin resistance is a prominent feature of this disease. The aim of this study was to test the hypothesis that insulin resistance in preeclampsia is related to the reduced resting tissue blood flow. We used venous occlusion plethysmography to compare the resting calf muscle blood flow (measured as QaU) in 20 nulliparous women with preeclampsia and 20 normal pregnant controls matched for maternal age, gestational age, parity and BMI during the third trimester. Fasting blood samples were obtained to measure the plasma concentrations of insulin and glucose, and to calculate the fasting insulin resistance index (FIRI), a measure of insulin resistance in both groups of women. Calf blood flow was significantly reduced in the preeclampsia group (1.93 ± 0.86 QaU), compared with normal pregnant controls (3.94 ± 1.1 QaU, P insulin concentrations and Insulin Resistance Index were significantly higher in preeclampsia compared with normal pregnancy (P insulin concentrations (r = -0.57, P = 0.008) and FIRI (r = -0.59, P = 0.006) in preeclampsia, but not in normal pregnancy. These findings support our hypothesis and raise the possibility that reduced tissue blood flow may a play a role in the increased insulin resistance seen in preeclampsia.

  16. Brain natriuretic peptide and insulin resistance in older adults.

    Science.gov (United States)

    Kim, F; Biggs, M L; Kizer, J R; Brutsaert, E F; de Filippi, C; Newman, A B; Kronmal, R A; Tracy, R P; Gottdiener, J S; Djoussé, L; de Boer, I H; Psaty, B M; Siscovick, D S; Mukamal, K J

    2017-02-01

    Higher levels of brain natriuretic peptide (BNP) have been associated with a decreased risk of diabetes in adults, but whether BNP is related to insulin resistance in older adults has not been established. N-terminal of the pro hormone brain natriuretic peptide (NT-pro BNP) was measured among Cardiovascular Health Study participants at the 1989-1990, 1992-1993 and 1996-1997 examinations. We calculated measures of insulin resistance [homeostatic model assessment of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), Gutt index, Matsuda index] from fasting and 2-h concentrations of glucose and insulin among 3318 individuals with at least one measure of NT-proBNP and free of heart failure, coronary heart disease and chronic kidney disease, and not taking diabetes medication. We used generalized estimating equations to assess the cross-sectional association of NT-proBNP with measures of insulin resistance. Instrumental variable analysis with an allele score derived from nine genetic variants (single nucleotide polymorphisms) within or near the NPPA and NPPB loci was used to estimate an un-confounded association of NT-proBNP levels on insulin resistance. Lower NT-proBNP levels were associated with higher insulin resistance even after adjustment for BMI, waist circumference and other risk factors (P insulin resistance (P = 0.38; P = 0.01 for comparison with the association of measured levels of NT-proBNP). In older adults, lower NT-proBNP is associated with higher insulin resistance, even after adjustment for traditional risk factors. Because related genetic variants were not associated with insulin resistance, the causal nature of this association will require future study. © 2016 Diabetes UK.

  17. Detecting insulin resistance in polycystic ovary syndrome: purposes and pitfalls.

    Science.gov (United States)

    Legro, Richard S; Castracane, V Daniel; Kauffman, Robert P

    2004-02-01

    Approximately 50% to 70% of all women with polycystic ovary syndrome (PCOS) have some degree of insulin resistance, and this hormone insensitivity probably contributes to the hyperandrogenism that is responsible for the signs and symptoms of PCOS. Although uncertainty exists, early detection and treatment of insulin resistance in this population could ultimately reduce the incidence or severity of diabetes mellitus, dyslipidemia, hypertension, and cardiovascular disease. Even if that proves to be the case, there are still several problems with our current approach to insulin sensitivity assessment in PCOS, including the apparent lack of consensus on what defines PCOS and "normal" insulin sensitivity, ethnic and genetic variability, the presence of other factors contributing to insulin resistance such as obesity, stress, and aging, and concern about whether simplified models of insulin sensitivity have the precision to predict treatment needs, responses, and future morbidity. Although the hyperinsulinemic-euglycemic clamp technique is the gold standard for measuring insulin sensitivity, it is too expensive, time-consuming, and labor-intensive to be of practical use in an office setting. Homeostatic measurements (fasting glucose/insulin ratio or homeostatic model assessment [HOMA] value) and minimal model tests (particularly the oral glucose tolerance test [OGTT]) represent the easiest office-based assessments of insulin resistance in the PCOS patient. The OGTT is probably the best simple, office-based method to assess women with PCOS because it provides information about both insulin resistance and glucose intolerance. The diagnosis of glucose intolerance holds greater prognostic and treatment implications. All obese women with PCOS should be screened for the presence of insulin resistance by looking for other stigmata of the insulin resistance syndrome such as hypertension, dyslipidemia, central obesity, and glucose intolerance.

  18. Familial short fifth metacarpals and insulin resistance

    International Nuclear Information System (INIS)

    Hyari, Muwafag; Hamamy, Hanan; Barham, Muries; Ajlouni, Kamel; Al-Hadidy, Azmy

    2006-01-01

    Very few reports on the phenotype of short fifth metacarpals have been published in the medical literature. We report a Jordanian family in which three sisters aged 15, 13 and 8 years revealed bilateral shortening of the fifth fingers and radiological shortening of the fifth metacarpals. The father had unilateral short fifth metacarpal. The elder two sisters, their father as well as their brother and another sister manifested insulin resistance. Spherocytosis was diagnosed in one of the girls and her father. The parents are non-consanguineous. This constellation of findings has not been previously reported and could point to the presence of two disorders segregating in the family or to a novel syndrome with autosomal dominant inheritance and variable expressivity. (orig.)

  19. Insulin resistance in human subjects having impaired glucose regulation

    International Nuclear Information System (INIS)

    Khan, S.H.; Khan, F.A.; Ijaz, A.

    2007-01-01

    To determine insulin resistance in human subjects having impaired glucose regulation (IGR) by Homeostasis Model Assessment for Insulin Resistance (HOMA-IR). A total of 100 subjects with impaired glucose regulation were selected for evaluation of metabolic syndrome as per the criteria of National Cholesterol Education Program, Adult Treatment Panel III (NCEP, ATP III), along with 47 healthy age and gender-matched controls. Physical examination to determine blood pressure and waist circumference was carried out and so was sampling for plasma glucose, serum triglycerides, HDL-cholesterol and insulin. Insulin resistance was calculated by the HOMA-IR. Finally, subjects with and without metabolic syndrome were compared with controls (n=47), using one-way ANOVA for studying insulin resistance between groups, with Tukey's post-hoc comparison. The frequency of finding metabolic syndrome in cases of IGR remained 47%. The insulin resistance demonstrated stepwise worsening from control population (mean=1.54, 95 % CI: 1.77 - 2.37) to subjects suffering from only IGR (mean=2.07, 95 % CI: 1.77- 2.37) to metabolic syndrome (mean=2.67, 95 %, CI: 2.34 - 3.00) (p < 0.001). Patients with impaired glucose regulation may have significant insulin resistance. It is, thus, recommended that a vigorous search be made to measure insulin resistance in all cases diagnosed to have impaired glucose regulation. (author)

  20. Methods for quantifying adipose tissue insulin resistance in overweight/obese humans.

    Science.gov (United States)

    Ter Horst, K W; van Galen, K A; Gilijamse, P W; Hartstra, A V; de Groot, P F; van der Valk, F M; Ackermans, M T; Nieuwdorp, M; Romijn, J A; Serlie, M J

    2017-08-01

    Insulin resistance of adipose tissue is an important feature of obesity-related metabolic disease. However, assessment of lipolysis in humans requires labor-intensive and expensive methods, and there is limited validation of simplified measurement methods. We aimed to validate simplified methods for the quantification of adipose tissue insulin resistance against the assessment of insulin sensitivity of lipolysis suppression during hyperinsulinemic-euglycemic clamp studies. We assessed the insulin-mediated suppression of lipolysis by tracer-dilution of [1,1,2,3,3- 2 H 5 ]glycerol during hyperinsulinemic-euglycemic clamp studies in 125 overweight or obese adults (85 men, 40 women; age 50±11 years; body mass index 38±7 kg m -2 ). Seven indices of adipose tissue insulin resistance were validated against the reference measurement method. Low-dose insulin infusion resulted in suppression of the glycerol rate of appearance ranging from 4% (most resistant) to 85% (most sensitive), indicating a good range of adipose tissue insulin sensitivity in the study population. The reference method correlated with (1) insulin-mediated suppression of plasma glycerol concentrations (r=0.960, PInsulin Resistance (Adipo-IR) index (fasting plasma insulin-NEFA product; r=-0.526, Pinsulin-glycerol product (r=-0.467, PInsulin Resistance Index (fasting plasma insulin-basal lipolysis product; r=0.460, PInsulin Sensitivity Check Index (QUICKI)-NEFA index (r=0.621, Pinsulin resistance (area under the curve ⩾0.801, Pinsulin sensitivity (that is, the antilipolytic action of insulin) can be reliably quantified in overweight and obese humans by simplified index methods. The sensitivity and specificity of the Adipo-IR index and the fasting plasma insulin-glycerol product, combined with their simplicity and acceptable agreement, suggest that these may be most useful in clinical practice.

  1. Deletion of skeletal muscle SOCS3 prevents insulin resistance in obesity

    DEFF Research Database (Denmark)

    Beck Jørgensen, Sebastian; O'Neill, Hayley M; Sylow, Lykke

    2013-01-01

    Obesity is associated with chronic low-grade inflammation that contributes to defects in energy metabolism and insulin resistance. Suppressor of cytokine signaling (SOCS)-3 expression is increased in skeletal muscle of obese humans. SOCS3 inhibits leptin signaling in the hypothalamus and insulin...... of hyperinsulinemia and insulin resistance because of enhanced skeletal muscle insulin receptor substrate 1 (IRS1) and Akt phosphorylation that resulted in increased skeletal muscle glucose uptake. These data indicate that skeletal muscle SOCS3 does not play a critical role in regulating muscle development or energy...... expenditure, but it is an important contributing factor for inhibiting insulin sensitivity in obesity. Therapies aimed at inhibiting SOCS3 in skeletal muscle may be effective in reversing obesity-related glucose intolerance and insulin resistance....

  2. Implication of low level inflammation in the insulin resistance of adipose tissue at late pregnancy.

    Science.gov (United States)

    de Castro, J; Sevillano, J; Marciniak, J; Rodriguez, R; González-Martín, C; Viana, M; Eun-suk, O H; de Mouzon, S Hauguel; Herrera, E; Ramos, M P

    2011-11-01

    Insulin resistance is a characteristic of late pregnancy, and adipose tissue is one of the tissues that most actively contributes to the reduced maternal insulin sensitivity. There is evidence that pregnancy is a condition of moderate inflammation, although the physiological role of this low-grade inflammation remains unclear. The present study was designed to validate whether low-grade inflammation plays a role in the development of insulin resistance in adipose tissue during late pregnancy. To this end, we analyzed proinflammatory adipokines and kinases in lumbar adipose tissue of nonpregnant and late pregnant rats at d 18 and 20 of gestation. We found that circulating and tissue levels of adipokines, such as IL-1β, plasminogen activator inhibitor-1, and TNF-α, were increased at late pregnancy, which correlated with insulin resistance. The observed increase in adipokines coincided with an enhanced activation of p38 MAPK in adipose tissue. Treatment of pregnant rats with the p38 MAPK inhibitor SB 202190 increased insulin-stimulated tyrosine phosphorylation of the insulin receptor (IR) and IR substrate-1 in adipose tissue, which was paralleled by a reduction of IR substrate-1 serine phosphorylation and an enhancement of the metabolic actions of insulin. These results indicate that activation of p38 MAPK in adipose tissue contributes to adipose tissue insulin resistance at late pregnancy. Furthermore, the results of the present study support the hypothesis that physiological low-grade inflammation in the maternal organism is relevant to the development of pregnancy-associated insulin resistance.

  3. Edible Bird’s Nest Prevents High Fat Diet-Induced Insulin Resistance in Rats

    Directory of Open Access Journals (Sweden)

    Zhang Yida

    2015-01-01

    Full Text Available Edible bird’s nest (EBN is used traditionally in many parts of Asia to improve wellbeing, but there are limited studies on its efficacy. We explored the potential use of EBN for prevention of high fat diet- (HFD- induced insulin resistance in rats. HFD was given to rats with or without simvastatin or EBN for 12 weeks. During the intervention period, weight measurements were recorded weekly. Blood samples were collected at the end of the intervention and oral glucose tolerance test conducted, after which the rats were sacrificed and their liver and adipose tissues collected for further studies. Serum adiponectin, leptin, F2-isoprostane, insulin, and lipid profile were estimated, and homeostatic model assessment of insulin resistance computed. Effects of the different interventions on transcriptional regulation of insulin signaling genes were also evaluated. The results showed that HFD worsened metabolic indices and induced insulin resistance partly through transcriptional regulation of the insulin signaling genes. Additionally, simvastatin was able to prevent hypercholesterolemia but promoted insulin resistance similar to HFD. EBN, on the other hand, prevented the worsening of metabolic indices and transcriptional changes in insulin signaling genes due to HFD. The results suggest that EBN may be used as functional food to prevent insulin resistance.

  4. Effect of cholecalciferol and levo carnitine on plasma glucose, plasma insulin and insulin resistance in type 2 diabetic rats

    International Nuclear Information System (INIS)

    Anwar, M. K.; Hussain, M. M.; Khan, M. A.; Ahmad, T.

    2013-01-01

    Objective: To compare the effects of combined and individual supplementation of cholecalciferol and levo carnitine on plasma glucose, plasma insulin and insulin resistance in type 2 diabetic rats. Methods: The randomised controlled trial was conducted at the Department of Physiology, Army Medical College, Rawalpindi, between October 2010 and April 2011. It comprised 80 healthy Sprague Dawley rats who were divided into four groups (n = 20 each). Rats were fed high-fat diet for 2 weeks followed by an intraperitoneal injection of streptozocin to induce type 2 diabetes mellitus. Group I served as diabetic control; group II was given cholecalciferol; group III; levo carnitine; and group IV was administered cholecalciferol and levo carnitine together. After 6 days of supplementation, terminal intracardiac blood extraction was done and samples were analysed for fasting plasma glucose and plasma insulin. Insulin resistance was calculated by homeostatic model assessment for insulin resistance. SPSS 17.0 was used for statistical analysis. Results: Fasting plasma glucose levels were significantly decreased (p <0.001) in the combined supplementation group compared to the diabetic control and individual supplementation groups. Combined supplementation showed a significant increase in fasting plasma insulin levels when compared with diabetic control and levo carnitine groups (p <0.001), and the effect of combined supplementation on ameliorating insulin resistance was significantly better (p <0.001) as compared to the individual supplementation of cholecalciferol and levo carnitine. Conclusions: The combined supplementation of cholecalciferol and levo carnitine for 6 days markedly improved the glycaemic control, insulin secretion and insulin resistance in type 2 diabetic rats on high-fat diet. A prolonged supplementation by both the compounds along with caloric restriction may yield a more promising outcome. (author)

  5. In nondiabetic, human immunodeficiency virus-infected patients with lipodystrophy, hepatic insulin extraction and posthepatic insulin clearance rate are decreased in proportion to insulin resistance

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Hansen, Birgitte R

    2005-01-01

    In healthy, nondiabetic individuals with insulin resistance, fasting insulin is inversely correlated to the posthepatic insulin clearance rate (MCRi) and the hepatic insulin extraction (HEXi). We investigated whether similar early mechanisms to facilitate glucose homeostasis exist in nondiabetic...... endogenous insulin secretion, which was estimated by deconvolution of C-peptide concentrations. Hepatic extraction of insulin was calculated as 1 minus the ratio of fasting posthepatic insulin delivery rate to fasting endogenous insulin secretion rate. Compared with controls, LIPO displayed increased fasting...... insulin (130%, P Hepatic extraction of insulin was similar between groups (LIPO, 55%; controls, 57%; P > .8). In LIPO, HEXi and MCRi correlated inversely with fasting insulin (r = -0.56, P

  6. Insulin Sensitivity Determines Effects of Insulin and Meal Ingestion on Systemic Vascular Resistance in Healthy Subjects.

    Science.gov (United States)

    Woerdeman, Jorn; Meijer, Rick I; Eringa, Etto C; Hoekstra, Trynke; Smulders, Yvo M; Serné, Erik H

    2016-01-01

    In addition to insulin's metabolic actions, insulin can dilate arterioles which increase blood flow to metabolically active tissues. This effect is blunted in insulin-resistant subjects. Insulin's effect on SVR, determined by resistance arterioles, has, however, rarely been examined directly. We determined the effects of both hyperinsulinemia and a mixed meal on SVR and its relationship with insulin sensitivity. Thirty-seven lean and obese women underwent a hyperinsulinemic-euglycemic clamp, and 24 obese volunteers underwent a mixed-meal test. SVR was assessed using CPP before and during hyperinsulinemia as well as before and 60 and 120 minutes after a meal. SVR decreased significantly during hyperinsulinemia (-13%; p Insulin decreased SVR more strongly in insulin-sensitive individuals (standardized β: -0.44; p = 0.01). In addition, SVR at 60 minutes after meal ingestion was inversely related to the Matsuda index (β: -0.39; p = 0.04) and the change in postprandial SVR was directly related to postprandial glycemia (β: 0.53; p insulin resistance. This suggests that resistance to insulin-induced vasodilatation contributes to regulation of vascular resistance. © 2015 John Wiley & Sons Ltd.

  7. Insulin resistance is associated with the aggressiveness of pancreatic ductal carcinoma.

    Science.gov (United States)

    Dugnani, Erica; Balzano, Gianpaolo; Pasquale, Valentina; Scavini, Marina; Aleotti, Francesca; Liberati, Daniela; Di Terlizzi, Gaetano; Gandolfi, Alessandra; Petrella, Giovanna; Reni, Michele; Doglioni, Claudio; Bosi, Emanuele; Falconi, Massimo; Piemonti, Lorenzo

    2016-12-01

    To study whether insulin resistance accelerates the development and/or the progression of pancreatic adenocarcinoma (PDAC), we hypothesized that patients with insulin resistance, compared with those without insulin resistance, show: (1) a younger age and more advanced PDAC stage at diagnosis and (2) a shorter disease-free and overall survival after PDAC diagnosis. Prospective observational study of patients admitted to a referral center for pancreatic disease. Insulin resistance was defined as a HOMA-IR value greater than the 66th percentile value of the patients included in this study. Survival was estimated according to Kaplan-Meier and by Cox regression. Of 296 patients with PDAC, 99 (33 %) met criteria for being classified as insulin resistant at diagnosis. Median follow-up time after diagnosis was 5.27 ± 0.23 years. Patients with insulin resistance received a diagnosis of PDAC at a similar age compared to patients without insulin resistance (67.1 ± 9 vs. 66.8 ± 10 years, p = 0.68), but were more likely to have a cancer stage ≥3 (23.2 vs. 14.2 %, p = 0.053) and a residual disease after surgery (R1 56.4 vs. 38 %; p = 0.007). The median overall survival was 1.3 ± 0.14 and 1.79 ± 0.11 years for the patients with and without insulin resistance, respectively (p = 0.016). Results did not change when patients with diabetes at PDAC diagnosis were excluded from the analysis. Multivariate analysis showed that insulin resistance was independently associated with overall survival. Insulin resistance is associated with the aggressiveness of PDAC.

  8. Obesity, insulin resistance, and type 1 diabetes mellitus.

    Science.gov (United States)

    Polsky, Sarit; Ellis, Samuel L

    2015-08-01

    To summarize recent studies about obesity, insulin resistance, and type 1 diabetes mellitus (T1DM). Overweight and obesity continue to be prevalent among individuals with T1DM. Obesity rates appear to have reached a plateau among children with T1DM in some parts of the world. The risk for development of T1DM is increased by obesity and may occur at an earlier age among obese individuals with a predisposition. Obesity increases the risk for comorbidities among individuals with T1DM, especially metabolic syndrome, and microvascular and macrovascular diseases. Metformin, glucagon-like peptide-1 agonist therapy, sodium glucose cotransporter-2 inhibitor therapy, and bariatric surgery may be beneficial therapies for glucose control, comorbidity management, and obesity among adults with T1DM. Insulin resistance may be improved among obese individuals with T1DM by biguanides (metformin) and glucagon-like peptide-1 agonists (exenatide). We review the last 18 months of literature on obesity, insulin resistance, and T1DM to highlight new epidemiologic results and treatments.

  9. [Concept Analysis for Psychological Insulin Resistance in Korean People with Diabetes].

    Science.gov (United States)

    Song, Youngshin

    2016-06-01

    The purpose of this study was to define the concept for psychological insulin resistance in the Korean population with diabetes. The Hybrid model was used to perform the concept analysis of psychological insulin resistance. Results from both the theoretical review with 26 studies and a field study including 19 participants with diabetes were included in final process. The preceding factors of psychological insulin resistance were uncontrolled blood glucose and change in daily life. The concept of psychological insulin resistance was found to have three categories with 8 attributes such as emotional factors (negative feeling), cognitive factors (low awareness and knowledge, low confidence for self-injection) and supportive factors (economic burden, dependency life, embarrassing, feeling about supporters, feeling of trust in, vs mistrust of health care providers). The 8 attributes included 30 indicators. The psychological insulin resistance of population with diabetes in Korea was defined as a complex phenomenon associated with insulin therapy that can be affected by emotional factors, cognitive factors, and supportive relational factors. Based on the results, a tool for measuring psychological insulin resistance of Koreans with diabetes and effective programs for enhancing insulin adherence should be developed in future studies.

  10. Insulin resistance and mitochondrial function in skeletal muscle

    DEFF Research Database (Denmark)

    Dela, Flemming; Helge, Jørn Wulff

    2013-01-01

    are used in the attempt to resolve the mechanisms of insulin resistance. In this context, a dysfunction of mitochondria in the skeletal muscle has been suggested to play a pivotal role. It has been postulated that a decrease in the content of mitochondria in the skeletal muscle can explain the insulin...... resistance. Complementary to this also specific defects of components in the respiratory chain in the mitochondria have been suggested to play a role in insulin resistance. A key element in these mechanistic suggestions is inability to handle substrate fluxes and subsequently an accumulation of ectopic...... intramyocellular lipids, interfering with insulin signaling. In this review we will present the prevailing view-points and argue for the unlikelihood of this scenario being instrumental in human insulin resistance. This article is part of a Directed Issue entitled: Bioenergetic dysfunction....

  11. Higher fetal insulin resistance in Chinese pregnant women with gestational diabetes mellitus and correlation with maternal insulin resistance.

    Science.gov (United States)

    Wang, Qiuwei; Huang, Ruiping; Yu, Bin; Cao, Fang; Wang, Huiyan; Zhang, Ming; Wang, Xinhong; Zhang, Bin; Zhou, Hong; Zhu, Ziqiang

    2013-01-01

    The aim of this study was to determine the effect of gestational diabetes mellitus (GDM) on fetal insulin resistance or β-cell function in Chinese pregnant women with GDM. Maternal fasting blood and venous cord blood samples (reflecting fetal condition) were collected in 65 well-controlled Chinese GDM mothers (only given dietary intervention) and 83 control subjects. The insulin, glucose and proinsulin concentrations of both maternal and cord blood samples were measured, and the homeostasis model assessment of insulin resistance (HOMA-IR) and the proinsulin-to-insulin ratios (an indicator of fetal β-cell function) were calculated in maternal and cord blood respectively. Both maternal and fetal levels of insulin, proinsulin and HOMA-IR but not proinsulin-to-insulin ratios were significantly higher in the GDM group than in the control group (maternal insulin, 24.8 vs. 15.4 µU/mL, P = 0.004, proinsulin, 23.3 vs. 16.2 pmol/L, P = 0.005, and HOMA-IR, 5.5 vs. 3.5, P = 0.041, respectively; fetal: insulin, 15.1 vs. 7.9 µU/mL, Pinsulin ratios was significantly correlated to maternal HOMA-IR (r = 0.307, P = 0.019), in the pregnant women with GDM. Fetal insulin resistance was higher in Chinese pregnant women with GDM than control subjects, and correlated with maternal insulin resistance.

  12. Heart Rate Variability, Insulin Resistance, and Insulin Sensitivity in Japanese Adults: The Toon Health Study

    Directory of Open Access Journals (Sweden)

    Isao Saito

    2015-09-01

    Full Text Available Background: Although impaired cardiac autonomic function is associated with an increased risk of type 2 diabetes in Caucasians, evidence in Asian populations with a lower body mass index is limited. Methods: Between 2009–2012, the Toon Health Study recruited 1899 individuals aged 30–79 years who were not taking medication for diabetes. A 75-g oral glucose tolerance test was used to diagnose type 2 diabetes, and fasting and 2-h-postload glucose and insulin concentrations were measured. We assessed the homeostasis model assessment index for insulin resistance (HOMA-IR and Gutt’s insulin sensitivity index (ISI. Pulse was recorded for 5 min, and time-domain heart rate variability (HRV indices were calculated: the standard deviation of normal-to-normal intervals (SDNN and the root mean square of successive difference (RMSSD. Power spectral analysis provided frequency domain measures of HRV: high frequency (HF power, low frequency (LF power, and the LF:HF ratio. Results: Multivariate-adjusted logistic regression models showed decreased SDNN, RMSSD, and HF, and increased LF:HF ratio were associated significantly with increased HOMA-IR and decreased ISI. When stratified by overweight status, the association of RMSSD, HF, and LF:HF ratio with decreased ISI was also apparent in non-overweight individuals. The interaction between LF:HF ratio and decreased ISI in overweight individuals was significant, with the odds ratio for decreased ISI in the highest quartile of LF:HF ratio in non-overweight individuals being 2.09 (95% confidence interval, 1.41–3.10. Conclusions: Reduced HRV was associated with insulin resistance and lower insulin sensitivity. Decreased ISI was linked with parasympathetic dysfunction, primarily in non-overweight individuals.

  13. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance.

    Science.gov (United States)

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol; Kim, Sung-Hoon

    2013-05-01

    The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p insulin secretion status than the 3-hour abnormal levels group. Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance.

  14. Alternative translation initiation of Caveolin-2 desensitizes insulin signaling through dephosphorylation of insulin receptor by PTP1B and causes insulin resistance.

    Science.gov (United States)

    Kwon, Hayeong; Jang, Donghwan; Choi, Moonjeong; Lee, Jaewoong; Jeong, Kyuho; Pak, Yunbae

    2018-06-01

    Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2β isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2β-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2β is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. In nondiabetic, human immunodeficiency virus-infected patients with lipodystrophy, hepatic insulin extraction and posthepatic insulin clearance rate are decreased in proportion to insulin resistance

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Hansen, Birgitte R

    2005-01-01

    In healthy, nondiabetic individuals with insulin resistance, fasting insulin is inversely correlated to the posthepatic insulin clearance rate (MCRi) and the hepatic insulin extraction (HEXi). We investigated whether similar early mechanisms to facilitate glucose homeostasis exist in nondiabetic...... > .1). Our data suggest that HEXi and MCRi are decreased in proportion to the degree of insulin resistance in nondiabetic HIV-infected patients with lipodystrophy....... insulin clearance rate was estimated as the ratio of posthepatic insulin appearance rate to steady-state plasma insulin concentration during a euglycemic hyperinsulinemic clamp (40 mU.m-2 .min-1). Posthepatic insulin appearance rate during the clamp was calculated, taking into account the remnant...

  16. Endothelin-1 exacerbates development of hypertension and atherosclerosis in modest insulin resistant syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yan-Jie [Institute of Physiology, National Yang-Ming University, Taipei, Taiwan (China); Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan (China); Juan, Chi-Chang [Institute of Physiology, National Yang-Ming University, Taipei, Taiwan (China); Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Kwok, Ching-Fai [Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Hsu, Yung-Pei [Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan (China); Shih, Kuang-Chung [Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Chen, Chin-Chang [Institute of Physiology, National Yang-Ming University, Taipei, Taiwan (China); Ho, Low-Tone, E-mail: ltho@vghtpe.gov.tw [Institute of Physiology, National Yang-Ming University, Taipei, Taiwan (China); Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (China); Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan (China)

    2015-05-08

    Endothelin-1 (ET-1) is known as potent vasoconstrictor, by virtue of its mitogenic effects, and may deteriorate the process of hypertension and atherosclerosis by aggravating hyperplasia and migration in VSMCs. Our previous study demonstrated that insulin infusion caused sequential induction of hyperinsulinemia, hyperendothelinemia, insulin resistance, and then hypertension in rats. However, the underlying mechanism of ET-1 interfere insulin signaling in VSMCs remains unclear. To characterize insulin signaling during modest insulin resistant syndrome, we established and monitored rats by feeding high fructose-diet (HFD) until high blood pressure and modest insulin resistance occurred. To explore the role of ET-1/ET{sub A}R during insulin resistance, ET{sub A}R expression, ET-1 binding, and insulin signaling were investigated in the HFD-fed rats and cultured A-10 VSMCs. Results showed that high blood pressure, tunica medial wall thickening, plasma ET-1 and insulin, and accompanied with modest insulin resistance without overweight and hyperglycemia occurred in early-stage HFD-fed rats. In the endothelium-denuded aorta from HFD-fed rats, ET{sub A}R expression, but not ET{sub B}R, and ET-1 binding in aorta were increased. Moreover, decreasing of insulin-induced Akt phosphorylation and increasing of insulin-induced ERK phosphorylation were observed in aorta during modest insulin resistance. Interestingly, in ET-1 pretreated VSMCs, the increment of insulin-induced Akt phosphorylation was decreased whereas the increment of insulin-induced ERK phosphorylation was increased. In addition, insulin potentiated ET-1-induced VSMCs migration and proliferation due to increasing ET-1 binding. ETAR antagonist reversed effects of ET-1 on insulin-induced signaling and VSMCs migration and proliferation. In summary, modest insulin resistance syndrome accompanied with hyperinsulinemia leading to the potentiation on ET-1-induced actions in aortic VSMCs. ET-1 via ET{sub A}R pathway

  17. Osteocalcin improves insulin resistance and inflammation in obese mice: Participation of white adipose tissue and bone.

    Science.gov (United States)

    Guedes, J A C; Esteves, J V; Morais, M R; Zorn, T M; Furuya, D T

    2017-11-26

    The discovery of osteocalcin, a protein synthetized by osteoblasts, as a hormone that has positive effects on insulin resistance, contributed to support the concept of bone as an endocrine organ. However, very little is known about the molecular pathways involved in osteocalcin improved-insulin resistance. The present study aimed to investigate the mechanisms of action of osteocalcin on insulin resistance and inflammation in obese mice and 3T3-L1 adipocytes. Lean control, saline-treated obese and uncarboxylated osteocalcin (uOC)-treated obese mice were subjected to insulin tolerance test in vivo. Blood was collect for biochemical/metabolic profile analysis; and, skeletal muscle, white adipose tissue (WAT) and bone were collected for protein (Western blotting) and mRNA (RT-qPCR) analysis. uOC effects on insulin resistance and inflammation were also investigated in 3T3-L1 adipocytes challenged with tumor necrosis factor. Osteocalcin treatment improved in vivo insulin resistance in obese mice. In WAT, osteocalcin had positive effects such as (1) WAT weight reduction; (2) upregulation of glucose transporter (GLUT) 4 protein and its mRNA (Slc2a4); (3) improved insulin-induced AKT phosphorylation; (4) downregulation of several genes involved in inflammation and inflammassome transcriptional machinery, and (5) reduction of the density of macrophage in crown-like structures (histomorphometrical analysis). Notably, in 3T3-L1 adipocytes, osteocalcin restored Slc2a4/GLUT4 content and reduced the expression of inflammatory genes after TNF-a challenge; moreover, osteocalcin treatment increased AKT phosphorylation induced by insulin. Finally, it was observed that in bone, osteocalcin improves insulin resistance by increasing insulin-induced AKT phosphorylation and reducing the expression of genes involved in bone insulin resistance, resulting in increased secretion of uncarboxylated osteocalcin in circulation. We provided some mechanisms of action for osteocalcin in the

  18. [Insulin resistance--a physiopathological condition with numerous sequelae: non-insulin-dependent diabetes mellitus (NIDDM), android obesity, essential hypertension, dyslipidemia and atherosclerosis].

    Science.gov (United States)

    Pedersen, O

    1992-05-11

    Recent research has demonstrated that reduced insulin-stimulated glucose metabolism in skeletal muscle (insulin resistance) and hyperinsulinism are common features in widespread diseases such as essential hypertension, android obesity, non-insulin dependent diabetes mellitus, dyslipidemia (in the form of raised serum triglyceride and reduced serum high-density lipoprotein (HDL) cholesterol) and arteriosclerosis. Simultaneously, investigations in a comprehensive group of healthy middle-aged men have revealed insulin resistance in one fourth. On the basis of these observations, a working hypothesis is suggested which postulates that genetic abnormalities in one or more of the candidate genes in the modes of action of insulin occur in a great proportion of the population. These may result in insulin resistance (primary genetic insulin resistance). Primary insulin resistance may be potentiated by a series of circumstances such as ageing, high-fat diet, lack of physical activity, hormonal and metabolic abnormalities or drugs (secondary insulin resistance). As a consequence of the reduced effect of insulin on muscle tissue, compensatory hyperinsulinism develops. Depending on the remaining vulnerability of the individual the hyperinsulinism is presumed to result in development of one or more phenotypes. For example if the beta-cells of the pancreas are unable to secrete sufficient insulin to compensate the insulin resistance on account of genetic defects, glucose intolerance will develop. In a similar manner, hyperinsulinism in insulin-resistant individuals who are predisposed to essential hypertension is presumed to reveal genetic defects in the blood pressure regulating mechanisms and thus contribute to development of the disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Insulin and GLP-1 infusions demonstrate the onset of adipose-specific insulin resistance in a large fasting mammal: potential glucogenic role for GLP-1.

    Science.gov (United States)

    Viscarra, Jose A; Rodriguez, Ruben; Vazquez-Medina, Jose Pablo; Lee, Andrew; Tift, Michael S; Tavoni, Stephen K; Crocker, Daniel E; Ortiz, Rudy M

    2013-08-01

    Prolonged food deprivation increases lipid oxidation and utilization, which may contribute to the onset of the insulin resistance associated with fasting. Because insulin resistance promotes the preservation of glucose and oxidation of fat, it has been suggested to be an adaptive response to food deprivation. However, fasting mammals exhibit hypoinsulinemia, suggesting that the insulin resistance-like conditions they experience may actually result from reduced pancreatic sensitivity to glucose/capacity to secrete insulin. To determine whether fasting results in insulin resistance or in pancreatic dysfunction, we infused early- and late-fasted seals (naturally adapted to prolonged fasting) with insulin (0.065 U/kg), and a separate group of late-fasted seals with low (10 pM/kg) or high (100 pM/kg) dosages of glucagon-like peptide-1 (GLP-1) immediately following a glucose bolus (0.5g/kg), and measured the systemic and cellular responses. Because GLP-1 facilitates glucose-stimulated insulin secretion, these infusions provide a method to assess pancreatic insulin-secreting capacity. Insulin infusions increased the phosphorylation of insulin receptor and Akt in adipose and muscle of early and late fasted seals; however the timing of the signaling response was blunted in adipose of late fasted seals. Despite the dose-dependent increases in insulin and increased glucose clearance (high dose), both GLP-1 dosages produced increases in plasma cortisol and glucagon, which may have contributed to the glucogenic role of GLP-1. Results suggest that fasting induces adipose-specific insulin resistance in elephant seal pups, while maintaining skeletal muscle insulin sensitivity, and therefore suggests that the onset of insulin resistance in fasting mammals is an evolved response to cope with prolonged food deprivation.

  20. Insulin induces a shift in lipid and primary carbon metabolites in a model of fasting-induced insulin resistance

    Science.gov (United States)

    Olmstead, Keedrian I.; La Frano, Michael R.; Fahrmann, Johannes; Grapov, Dmitry; Viscarra, Jose A.; Newman, John W.; Fiehn, Oliver; Crocker, Daniel E.; Filipp, Fabian V.; Ortiz, Rudy M.

    2017-01-01

    Introduction Prolonged fasting in northern elephant seals (NES) is characterized by a reliance on lipid metabolism, conservation of protein, and reduced plasma insulin. During early fasting, glucose infusion previously reduced plasma free fatty acids (FFA); however, during late-fasting, it induced an atypical elevation in FFA despite comparable increases in insulin during both periods suggestive of a dynamic shift in tissue responsiveness to glucose-stimulated insulin secretion. Objective To better assess the contribution of insulin to this fasting-associated shift in substrate metabolism. Methods We compared the responses of plasma metabolites (amino acids (AA), FFA, endocannabinoids (EC), and primary carbon metabolites (PCM)) to an insulin infusion (65 mU/kg) in early- and late-fasted NES pups (n = 5/group). Plasma samples were collected prior to infusion (T0) and at 10, 30, 60, and 120 min post-infusion, and underwent untargeted and targeted metabolomics analyses utilizing a variety of GC-MS and LC-MS technologies. Results In early fasting, the majority (72%) of metabolite trajectories return to baseline levels within 2 h, but not in late fasting indicative of an increase in tissue sensitivity to insulin. In late-fasting, increases in FFA and ketone pools, coupled with decreases in AA and PCM, indicate a shift toward lipolysis, beta-oxidation, ketone metabolism, and decreased protein catabolism. Conversely, insulin increased PCM AUC in late fasting suggesting that gluconeogenic pathways are activated. Insulin also decreased FFA AUC between early and late fasting suggesting that insulin suppresses triglyceride hydrolysis. Conclusion Naturally adapted tolerance to prolonged fasting in these mammals is likely accomplished by suppressing insulin levels and activity, providing novel insight on the evolution of insulin during a condition of temporary, reversible insulin resistance. PMID:28757815

  1. Related Factors of Insulin Resistance in Korean Children: Adiposity and Maternal Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Kang-Sook Lee

    2011-12-01

    Full Text Available Increased adiposity and unhealthy lifestyle augment the risk for type 2 diabetes in children with familial predisposition. Insulin resistance (IR is an excellent clinical marker for identifying children at high risk for type 2 diabetes. This study was conducted to investigate parental, physiological, behavioral and socio-economic factors related to IR in Korean children. This study is a cross-sectional study using data from 111 children aged 7 years and their parents. Homeostasis model assessment of insulin resistance (HOMA-IR was calculated using fasting glucose and insulin level as a marker of IR. All children’s adiposity indices (r = 0.309–0.318, all P-value = 0.001 and maternal levels of fasting insulin (r = 0.285, P-value = 0.003 and HOMA-IR (r = 0.290, P-value = 0.002 were positively correlated with children’s HOMA-IR level. There was no statistical difference of children’s HOMA-IR level according to children’s lifestyle habits and socioeconomic status of families. An increase of 1 percentage point in body fat was related to 2.7% increase in children’s HOMA-IR (P-value < 0.001 and an increase of 1% of maternal level of HOMA-IR was related to 0.2% increase in children’s HOMA-IR (P-value = 0.002. This study shows that children’s adiposity and maternal IR are positively associated with children’s IR.

  2. [Insulin resistance in the pathogenesis of polycystic ovarian disease (PCOD)].

    Science.gov (United States)

    Jakowicki, J

    1994-10-01

    In polycystic ovarian disease there is a strong association between hyperinsulinemia and hyperandrogenism but not with obesity alone. The magnitude of peripheral insulin resistance is similar to that seen in non-insulin-dependent diabetes mellitus. Mild hyperinsulinemia in PCOD patients is not impair the carbohydrate metabolism. The elimination of the cause of hyperandrogenism by bilateral oophorectomy, long-acting Gn-RH agonist or antiandrogen cyproterone acetate did not improve the associated insulin resistance. In opposition to insulin resistance in the tissues responsible for metabolism of carbohydrate, the ovary remains sensitive to the effects of pancreatic hormone. Presumably this mechanism involved the interaction with IGF-I receptors to stimulate thecal and stromal androgen production. Insulin may sensitize the stroma to the stimulatory effect of LH. In the mechanism of follicular arrest take part increased level of binding proteins for IGF-I, mainly IGFBP 2, -4 and 5 inhibit FSH and IGF-I action.

  3. Skeletal muscle inflammation and insulin resistance in obesity

    Science.gov (United States)

    Wu, Huaizhu; Ballantyne, Christie M.

    2017-01-01

    Obesity is associated with chronic inflammation, which contributes to insulin resistance and type 2 diabetes mellitus. Under normal conditions, skeletal muscle is responsible for the majority of insulin-stimulated whole-body glucose disposal; thus, dysregulation of skeletal muscle metabolism can strongly influence whole-body glucose homeostasis and insulin sensitivity. Increasing evidence suggests that inflammation occurs in skeletal muscle in obesity and is mainly manifested by increased immune cell infiltration and proinflammatory activation in intermyocellular and perimuscular adipose tissue. By secreting proinflammatory molecules, immune cells may induce myocyte inflammation, adversely regulate myocyte metabolism, and contribute to insulin resistance via paracrine effects. Increased influx of fatty acids and inflammatory molecules from other tissues, particularly visceral adipose tissue, can also induce muscle inflammation and negatively regulate myocyte metabolism, leading to insulin resistance. PMID:28045398

  4. The Association Between IGF-I and Insulin Resistance

    DEFF Research Database (Denmark)

    Friedrich, Nele; Thuesen, Betina; Jørgensen, Torben

    2012-01-01

    OBJECTIVEIGF-I has an almost 50% amino acid sequence homology with insulin and elicits nearly the same hypoglycemic response. Studies showed that low and high IGF-I levels are related to impaired glucose tolerance and to a higher risk of type 2 diabetes. The aim of the current study was to evaluate...... the association between IGF-I level and insulin resistance in a Danish general population.RESEARCH DESIGN AND METHODSIncluded were 3,354 adults, aged 19-72 years, from the cross-sectional Health2006 study. The homeostasis model assessment of insulin resistance (HOMA-IR) was used as the index to estimate insulin...... with intermediate (Q3) IGF-I levels. These associations remained statistically significant after the exclusion of subjects with type 2 diabetes and by using the updated computer HOMA2-IR model.CONCLUSIONSLow- and high-normal IGF-I levels are both related to insulin resistance. The biological mechanism...

  5. Periparturient dairy cows do not exhibit hepatic insulin resistance, yet adipose-specific insulin resistance occurs in cows prone to high weight loss.

    Science.gov (United States)

    Zachut, M; Honig, H; Striem, S; Zick, Y; Boura-Halfon, S; Moallem, U

    2013-09-01

    The periparturient period in dairy cows is associated with alterations in insulin action in peripheral tissues; however, the molecular mechanism underlying this process is not completely understood. The objective was to examine the response to a glucose tolerance test (GTT) and to analyze insulin signaling in liver and adipose tissues in pre- and postpartum dairy cows. Liver and adipose tissue biopsies were taken before and after GTT, at 17d prepartum and again at 3 to 5d postpartum from 8 high-yielding Israeli Holstein dairy cows. Glucose clearance rate after GTT was similar pre- and postpartum. Basal insulin concentrations and the insulin response to GTT were approximately 4-fold higher prepartum than postpartum. In accordance, phosphorylation of the hepatic insulin receptor after GTT was higher prepartum than postpartum. Across periods, a positive correlation was observed between the basal and peak plasma insulin and phosphorylated insulin receptor after GTT in the liver. Hepatic phosphorylation of protein kinase B after GTT was elevated pre- and postpartum. Conversely, in adipose tissue, phosphorylation of protein kinase B after GTT pre- and postpartum was increased only in 4 out of 8 cows that lost less body weight postpartum. Our results demonstrate that hepatic insulin signaling is regulated by plasma insulin concentrations as part of the homeorhetic adjustments toward calving, and do not support a model of hepatic insulin resistance in periparturient cows. Nevertheless, we suggest that specific insulin resistance in adipose tissue occurs pre- and postpartum only in cows prone to high weight loss. The different responses among these cows imply that genetic background may affect insulin responsiveness in adipose tissue pre- and postpartum. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Insulin resistance in drug naive patients with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Kostić Smiljana

    2017-01-01

    Full Text Available Background/Aim. Due to the fact that there is a relatively small number of data related to systemic insulin abnormalities in the multiple sclerosis (MS, the main objective of our study was to determine whether a dysbalance of glucose and insulin metabolism exist in patients with natural course of MS. Our hypothesis was that the metabolic disorder that characterizes state of the insulin resistance (IR and reduced insulin sensitivity (IS in untreated patients with MS could play a role in disease progression and degree of functional disability. Methods. The study included 31 patients with relapsing-remitting (RR MS and 14 healthy controls from the same geographic area matched by age, ethnicity and number of smokers. The glucose tolerance, IS, and IR were examined using an oral glucose tolerance test (OGTT and using basal plasma glucose and insulin levels. The functional disability and disease progression were evaluated by the Expanded Disability Status Scale (EDSS and Multiple Sclerosis Severity Score (MSSS. Results. The MS patients tolerated glucose equally well as the healthy controls. Basal concentrations of insulin were significantly higher in the MS group (p < 0.05, as well as insulin plasma level 30 min after oral glucose load (p < 0.01. The patients with MS had significantly higher values of homeostasis model assessment indexes of IR (HOMA-IR (p = 0.027; p = 0.028. The percentage of IS (HOMA2 %S and whole body IS index (ISI Matsuda showed significantly lower values in the MS patients than in the controls (p = 0.005; p = 0.001. The insulinogenic index in the first 30 min of OGTT was significantly higher in MS patients (p = 0.005. The measures of functional disability and MS progression did not correlate significantly with the investigated parameters of IR and IS indexes. Conclusion. This study demonstrates for the first time the existence of hyperinsulinemia, reduced insulin sensitivity and normal glucose tolerance that indicate the initial

  7. Exposures to arsenite and methylarsonite produce insulin resistance and impair insulin-dependent glycogen metabolism in hepatocytes.

    Science.gov (United States)

    Zhang, Chongben; Fennel, Emily M J; Douillet, Christelle; Stýblo, Miroslav

    2017-12-01

    Environmental exposure to inorganic arsenic (iAs) has been shown to disturb glucose homeostasis, leading to diabetes. Previous laboratory studies have suggested several mechanisms that may underlie the diabetogenic effects of iAs exposure, including (i) inhibition of insulin signaling (leading to insulin resistance) in glucose metabolizing peripheral tissues, (ii) inhibition of insulin secretion by pancreatic β cells, and (iii) dysregulation of the methylation or expression of genes involved in maintenance of glucose or insulin metabolism and function. Published studies have also shown that acute or chronic iAs exposures may result in depletion of hepatic glycogen stores. However, effects of iAs on pathways and mechanisms that regulate glycogen metabolism in the liver have never been studied. The present study examined glycogen metabolism in primary murine hepatocytes exposed in vitro to arsenite (iAs 3+ ) or its methylated metabolite, methylarsonite (MAs 3+ ). The results show that 4-h exposures to iAs 3+ and MAs 3+ at concentrations as low as 0.5 and 0.2 µM, respectively, decreased glycogen content in insulin-stimulated hepatocytes by inhibiting insulin-dependent activation of glycogen synthase (GS) and by inducing activity of glycogen phosphorylase (GP). Further investigation revealed that both iAs 3+ and MAs 3+ inhibit insulin-dependent phosphorylation of protein kinase B/Akt, one of the mechanisms involved in the regulation of GS and GP by insulin. Thus, inhibition of insulin signaling (i.e., insulin resistance) is likely responsible for the dysregulation of glycogen metabolism in hepatocytes exposed to iAs 3+ and MAs 3+ . This study provides novel information about the mechanisms by which iAs exposure impairs glucose homeostasis, pointing to hepatic metabolism of glycogen as one of the targets.

  8. Intermittent hypoxia increases insulin resistance in genetically obese mice.

    Science.gov (United States)

    Polotsky, Vsevolod Y; Li, Jianguo; Punjabi, Naresh M; Rubin, Arnon E; Smith, Philip L; Schwartz, Alan R; O'Donnell, Christopher P

    2003-10-01

    Obstructive sleep apnoea, a syndrome that leads to recurrent intermittent hypoxia, is associated with insulin resistance in obese individuals, but the mechanisms underlying this association remain unknown. We utilized a mouse model to examine the effects of intermittent hypoxia on insulin resistance in lean C57BL/6J mice and leptin-deficient obese (C57BL/6J-Lepob) mice. In lean mice, exposure to intermittent hypoxia for 5 days (short term) resulted in a decrease in fasting blood glucose levels (from 173 +/- 11 mg dl-1 on day 0 to 138 +/- 10 mg dl-1 on day 5, P obese mice, short-term intermittent hypoxia led to a decrease in blood glucose levels accompanied by a 607 +/- 136 % (P intermittent hypoxia was completely abolished by prior leptin infusion. Obese mice exposed to intermittent hypoxia for 12 weeks (long term) developed a time-dependent increase in fasting serum insulin levels (from 3.6 +/- 1.1 ng ml-1 at baseline to 9.8 +/- 1.8 ng ml-1 at week 12, P intermittent hypoxia is dependent on the disruption of leptin pathways.

  9. The study of Insulin Resistance in the Off Springs of Diabetics and Non Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Ganesh Manoorkar

    2017-12-01

    Full Text Available Introduction: Insulin resistance is one of the main cause in the pathogenesis of the development of type- 2 diabetes mellitus. Elevated insulin levels and insulin resistance may be present several years prior to the development of hyperglycaemia. Hence the diagnosis of insulin resistance at the initial stages in risk group people could be used as an effective measure to prevent type 2 diabetes mellitus and its outcome, including reduction in morbidity and mortality. Though type 2 diabetes mellitus has multifactorial aetiology, genetic factor plays an important role in the development of diabetes mellitus. So we have tried to establish relation between genetic factor and insulin resistance by studying the insulin resistance in off springs of diabetics and non diabetics patients. Aims and objectives: Estimation of insulin levels in the off springs (non diabetics of diabetics and non diabetics patients. Comparision of insulin resistance in the off springs (non diabetics of diabetics and non diabetics. To find the relation between insulin resistance and genetic factor. Material and method: This study was carried out in the department of Biochemistry Grant Government Medical College Mumbai. Total 100 non diabetic people were included in the study of age above 30 years. These are divided into two groups as- Group-I includes 50 off springs (Ist degree relatives of non diabetic people. Group-II includes 50 off springs (Ist degree relatives of diabetic people. The fasting plasma glucose and serum insulin levels are estimated in the above two groups. The insulin resistance was calculated by using HOMA-IR model. Result: Fasting plasma glucose, serum insulin level and insulin resistance is significantly increased in group-II people as compared to group-I people. Conclusion: There is a strong relation between genetic factor and insulin resistance which exist prior to the development of diabetes mellitus. The people of group-II are susceptible for the

  10. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    Science.gov (United States)

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  11. Radiation resistivity of frozen insulin solutions and suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Soboleva, N N; Ivanova, A I; Talrose, V L; Trofimov, V I; Fedotov, V P [AN SSSR, Moscow. Inst. Fizicheskoj Khimii; Research Institute for Biological Testing of Chemicals, Moscow (USSR); Institute of Experimental Endocrinology and Hormon Chemistry, Moscow (USSR))

    1981-10-01

    The effect of great increase in radiation resistance of insulin solutions and suspensions after irradiation at low temperatures in the frozen state was observed by absorption spectrophotometry, paper chromatography and biological analysis. The data obtained suggest irradiation of frozen insulin solutions and suspensions as a method for its sterilization.

  12. Cognitively impaired elderly exhibit insulin resistance and no memory improvement with infused insulin.

    Science.gov (United States)

    Morris, Jill K; Vidoni, Eric D; Mahnken, Jonathan D; Montgomery, Robert N; Johnson, David K; Thyfault, John P; Burns, Jeffrey M

    2016-03-01

    Insulin resistance is a risk factor for Alzheimer's disease (AD), although its role in AD etiology is unclear. We assessed insulin resistance using fasting and insulin-stimulated measures in 51 elderly subjects with no dementia (ND; n = 37) and with cognitive impairment (CI; n = 14). CI subjects exhibited either mild CI or AD. Fasting insulin resistance was measured using the homeostatic model assessment of insulin resistance (HOMA-IR). Insulin-stimulated glucose disposal was assessed using the hyperinsulinemic-euglycemic clamp to calculate glucose disposal rate into lean mass, the primary site of insulin-stimulated glucose disposal. Because insulin crosses the blood-brain barrier, we also assessed whether insulin infusion would improve verbal episodic memory compared to baseline. Different but equivalent versions of cognitive tests were administered in counterbalanced order in the basal and insulin-stimulated state. Groups did not differ in age or body mass index. Cognitively impaired subjects exhibited greater insulin resistance as measured at fasting (HOMA-IR; ND: 1.09 [1.1] vs. CI: 2.01 [2.3], p = 0.028) and during the hyperinsulinemic clamp (glucose disposal rate into lean mass; ND: 9.9 (4.5) vs. AD 7.2 (3.2), p = 0.040). Cognitively impaired subjects also exhibited higher fasting insulin compared to ND subjects, (CI: 8.7 [7.8] vs. ND: 4.2 [3.8] μU/mL; p = 0.023) and higher fasting amylin (CI: 24.1 [39.1] vs. 8.37 [14.2]; p = 0.050) with no difference in fasting glucose. Insulin infusion elicited a detrimental effect on one test of verbal episodic memory (Free and Cued Selective Reminding Test) in both groups (p insulin resistance was observed in cognitively impaired subjects compared to ND controls, insulin infusion did not improve memory. Furthermore, a significant correlation between HOMA-IR and glucose disposal rate was present only in ND (p = 0.0002) but not in cognitively impaired (p = 0.884) subjects, indicating potentially important

  13. Insulin resistance for glucose metabolism in disused soleus muscle of mice

    Science.gov (United States)

    Seider, M. J.; Nicholson, W. F.; Booth, F. W.

    1981-01-01

    Results of this study on mice provide the first direct evidence of insulin resistance for glucose metabolism in skeletal muscle that has undergone a previous period of reduced muscle usage. This lack of responsiveness to insulin developed in one day and in the presence of hypoinsulinemia. Future studies will utilize the model of hindlimb immobilization to determine the causes of these changes.

  14. The Comparison of Two Methods of Exercise (intense interval training and concurrent resistance- endurance training on Fasting Sugar, Insulin and Insulin Resistance in Women with Mellitus Diabetes

    Directory of Open Access Journals (Sweden)

    F Bazyar

    2016-05-01

    Full Text Available Background & aim: Exercise is an important component of health and an integral approach to the management of diabetes mellitus. The purpose of this study was to compare the effects of intense interval training and concurrent resistance- endurance training on fasting sugar, insulin and insulin resistance in women with mellitus diabetes.   Methods: Fifty-two overweight female diabetic type 2 patients (aged 45-60 years old with fasting blood glucose≥ 126 mg/dl were selected to participate in the present study. Participants were assigned to intense interval training group (N=17, concurrent resistance- endurance training group (N=17 and control group (N=18. The exercises incorporated 10 weeks of concurrent resistance- endurance training and intense interval training. Fasting blood sugar, serum insulin concentrations levels were measured. Concurrent training group trained eight weeks, three times a week of endurance training at 60% of maximum heart rate (MHR and two resistance training sessions per week with 70% of one repetition maximum (1-RM. Intense interval training group trained for eight weeks, three sessions per week for 4 to 10 repeats Wingate test on the ergometer 30s performed with maximum effort. The control group did no systematic exercise. At the end of experiment 42 subjects were succeed and completed the study period, and 10 subjects were removed due to illness and absence in the exercise sessions. Fasting blood sugar and insulin levels 24 hours before and 48 hours after the last training session was measured.   Results: The findings indicated that in periodic fasting, the blood sugar in intensive training group had a marked decrease (p= 0.000 however, the fasting blood sugar of exercise and power stamina groups reduced significantly (p=0.062. The results showed no significant difference between the groups (171/0 p =0.171. Fasting insulin (p <0.001 and insulin resistance (0001/0 = p=0.001 in periodic intensive training group were

  15. The etiology of oxidative stress in insulin resistance

    Directory of Open Access Journals (Sweden)

    Samantha Hurrle

    2017-10-01

    Full Text Available Insulin resistance is a prevalent syndrome in developed as well as developing countries. It is the predisposing factor for type 2 diabetes mellitus, the most common end stage development of metabolic syndrome in the United States. Previously, studies investigating type 2 diabetes have focused on beta cell dysfunction in the pancreas and insulin resistance, and developing ways to correct these dysfunctions. However, in recent years, there has been a profound interest in the role that oxidative stress in the peripheral tissues plays to induce insulin resistance. The objective of this review is to focus on the mechanism of oxidative species generation and its direct correlation to insulin resistance, to discuss the role of obesity in the pathophysiology of this phenomenon, and to explore the potential of antioxidants as treatments for metabolic dysfunction.

  16. Prevalence of the insulin resistance syndrome in obesity

    OpenAIRE

    Viner, R; Segal, T; Lichtarowicz-Kryn..., E; Hindmarsh, P

    2005-01-01

    Aims: To assess prevalence of the insulin resistance syndrome (IRS: obesity, abnormal glucose homoeostasis, dyslipidaemia, and hypertension) in obese UK children and adolescents of different ethnicities and to assess whether fasting data is sufficient to identify IRS in childhood obesity.

  17. Diagnostic criteria for sarcopenia relate differently to insulin resistance

    NARCIS (Netherlands)

    Bijlsma, A.Y.; Meskers, C.G.M.; van Heemst, D.; Westendorp, R.G.J.; Craen, A.J.M.; Maier, A.B.

    2013-01-01

    Skeletal muscle is important in insulinstimulated glucose uptake. Sarcopenia is, therefore, a possible risk factor for insulin resistance. Currently, different diagnostic criteria for sarcopenia include low muscle mass, muscle strength, and walking speed. We assessed these muscle characteristics in

  18. Observations on the presence of insulin resistance in patients with essential hypertension and coronary heart disease

    International Nuclear Information System (INIS)

    Zhu Mei; Wu Guo

    2006-01-01

    Objective: To investigate the presence of insulin resistance in patients with essential hypertension (EH) and coronary heart disease (CHD). Methods: Fasting and 2h post oral 75g glucose blood sugar (with oxidase method), insulin and C-peptide (with RIA) levels were examined in 52 patients with EH, 40 patients with CHD and 35 controls. Results: The fasting and 2h post o- ral glucose serum levels of glucose, insulin and C-peptide in the patients were significantly higher than those in the controls (P < 0.01), suggesting presence of impaired glucose tolerance and insulin resistance. Conclusion: Impaired glucose tolerance due to insulin resistance was demonstrated in the studied patients with EH or CHD. (authors)

  19. GCKR variants increase triglycerides while protecting from insulin resistance in Chinese children.

    Science.gov (United States)

    Shen, Yue; Wu, Lijun; Xi, Bo; Liu, Xin; Zhao, Xiaoyuan; Cheng, Hong; Hou, Dongqing; Wang, Xingyu; Mi, Jie

    2013-01-01

    Variants in gene encoding glucokinase regulator protein (GCKR) were found to have converse effects on triglycerides and glucose metabolic traits. We aimed to investigate the influence of GCKR variants for triglycerides and glucose metabolic traits in Chinese children and adults. We genotyped two GCKR variants rs1260326 and rs1260333 in children and adults, and analyzed the association between two variants and triglycerides, glucose, insulin and HOMA-IR using linear regression model, and estimated the effect on insulin resistance using logistic regression model. Rs1260326 and rs1260333 associated with increased triglycerides in children and adults (ptriglycerides in Chinese children and adults. Triglycerides-increasing alleles of GCKR variants reduce insulin and HOMA-IR index, and protect from insulin resistance in children. Our results suggested GCKR has an effect on development of insulin resistance in Chinese children.

  20. Biochemical adaptations of mammalian hibernation: exploring squirrels as a perspective model for naturally induced reversible insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C-W.; Biggar, K.K.; Storey, K.B. [Carleton University, Department of Biology, Institute of Biochemistry, Ottawa, ON (Canada)

    2013-01-28

    An important disease among human metabolic disorders is type 2 diabetes mellitus. This disorder involves multiple physiological defects that result from high blood glucose content and eventually lead to the onset of insulin resistance. The combination of insulin resistance, increased glucose production, and decreased insulin secretion creates a diabetic metabolic environment that leads to a lifetime of management. Appropriate models are critical for the success of research. As such, a unique model providing insight into the mechanisms of reversible insulin resistance is mammalian hibernation. Hibernators, such as ground squirrels and bats, are excellent examples of animals exhibiting reversible insulin resistance, for which a rapid increase in body weight is required prior to entry into dormancy. Hibernator studies have shown differential regulation of specific molecular pathways involved in reversible resistance to insulin. The present review focuses on this growing area of research and the molecular mechanisms that regulate glucose homeostasis, and explores the roles of the Akt signaling pathway during hibernation. Here, we propose a link between hibernation, a well-documented response to periods of environmental stress, and reversible insulin resistance, potentially facilitated by key alterations in the Akt signaling network, PPAR-γ/PGC-1α regulation, and non-coding RNA expression. Coincidentally, many of the same pathways are frequently found to be dysregulated during insulin resistance in human type 2 diabetes. Hence, the molecular networks that may regulate reversible insulin resistance in hibernating mammals represent a novel approach by providing insight into medical treatment of insulin resistance in humans.

  1. Biochemical adaptations of mammalian hibernation: exploring squirrels as a perspective model for naturally induced reversible insulin resistance

    International Nuclear Information System (INIS)

    Wu, C-W.; Biggar, K.K.; Storey, K.B.

    2013-01-01

    An important disease among human metabolic disorders is type 2 diabetes mellitus. This disorder involves multiple physiological defects that result from high blood glucose content and eventually lead to the onset of insulin resistance. The combination of insulin resistance, increased glucose production, and decreased insulin secretion creates a diabetic metabolic environment that leads to a lifetime of management. Appropriate models are critical for the success of research. As such, a unique model providing insight into the mechanisms of reversible insulin resistance is mammalian hibernation. Hibernators, such as ground squirrels and bats, are excellent examples of animals exhibiting reversible insulin resistance, for which a rapid increase in body weight is required prior to entry into dormancy. Hibernator studies have shown differential regulation of specific molecular pathways involved in reversible resistance to insulin. The present review focuses on this growing area of research and the molecular mechanisms that regulate glucose homeostasis, and explores the roles of the Akt signaling pathway during hibernation. Here, we propose a link between hibernation, a well-documented response to periods of environmental stress, and reversible insulin resistance, potentially facilitated by key alterations in the Akt signaling network, PPAR-γ/PGC-1α regulation, and non-coding RNA expression. Coincidentally, many of the same pathways are frequently found to be dysregulated during insulin resistance in human type 2 diabetes. Hence, the molecular networks that may regulate reversible insulin resistance in hibernating mammals represent a novel approach by providing insight into medical treatment of insulin resistance in humans

  2. Insulin resistance and exercise tolerance in heart failure patients

    DEFF Research Database (Denmark)

    Snoer, Martin; Monk-Hansen, Tea; Olsen, Rasmus Huan

    2012-01-01

    Insulin resistance has been linked to exercise intolerance in heart failure patients. The aim of this study was to assess the potential role of coronary flow reserve (CFR), endothelial function and arterial stiffness in explaining this linkage.......Insulin resistance has been linked to exercise intolerance in heart failure patients. The aim of this study was to assess the potential role of coronary flow reserve (CFR), endothelial function and arterial stiffness in explaining this linkage....

  3. RELATIONSHIP BETWEEN URIC ACID METABOLISM AND INSULIN RESISTANCE

    OpenAIRE

    辻本, 伸宏; 金内, 雅夫; 尾崎, 博基; 藤田, 泰三; 中嶋, 民夫; 土肥, 和紘

    1998-01-01

    To investigate the relationship between uric acid (UA) metabolism and insulin resistance, serum creatinine concentration (Scr), serum UA concentration (SuA) and the urinary excretion of creatinine and UA were determined in 25 non-diabetic patients. Creatinine clearance (Ccr) and UA clearance/creatinine clearance ratio (CuA/Ccr) were also calculated. Insulin resistance was evaluated by the euglycemic glucose clamp tech- nique and expressed as the mean value of the glucose infusion rate (M-valu...

  4. Exogenous thyroxine improves glucose intolerance in insulin-resistant rats.

    Science.gov (United States)

    Vazquez-Anaya, Guillermo; Martinez, Bridget; Soñanez-Organis, José G; Nakano, Daisuke; Nishiyama, Akira; Ortiz, Rudy M

    2017-03-01

    Both hypothyroidism and hyperthyroidism are associated with glucose intolerance, calling into question the contribution of thyroid hormones (TH) on glucose regulation. TH analogues and derivatives may be effective treatment options for glucose intolerance and insulin resistance (IR), but their potential glucoregulatory effects during conditions of impaired metabolism are not well described. To assess the effects of thyroxine (T 4 ) on glucose intolerance in a model of insulin resistance, an oral glucose tolerance test (oGTT) was performed on three groups of rats (n = 8): (1) lean, Long Evans Tokushima Otsuka (LETO), (2) obese, Otsuka Long Evans Tokushima Fatty (OLETF) and (3) OLETF + T 4 (8.0 µg/100 g BM/day × 5 weeks). T 4 attenuated glucose intolerance by 15% and decreased IR index (IRI) by 34% in T 4 -treated OLETF compared to untreated OLETF despite a 31% decrease in muscle Glut4 mRNA expression. T 4 increased the mRNA expressions of muscle monocarboxylate transporter 10 (Mct10), deiodinase type 2 (Di2), sirtuin 1 (Sirt1) and uncoupling protein 2 (Ucp2) by 1.8-, 2.2-, 2.7- and 1.4-fold, respectively, compared to OLETF. Activation of AMP-activated protein kinase (AMPK) and insulin receptor were not significantly altered suggesting that the improvements in glucose intolerance and IR were independent of enhanced insulin-mediated signaling. The results suggest that T 4 treatment increased the influx of T 4 in skeletal muscle and, with an increase of DI2, increased the availability of the biologically active T 3 to upregulate key factors such SIRT1 and UCP2 involved in cellular metabolism and glucose homeostasis. © 2017 Society for Endocrinology.

  5. Vitamin D and insulin resistance in postmenopausal Indian women

    Directory of Open Access Journals (Sweden)

    Niti Agarwal

    2014-01-01

    Full Text Available Purpose: The purpose of this study is to investigate the association of the serum 25-hydroxyvitamin D (25-OHD level with markers of insulin resistance (IR in postmenopausal Indian women. Materials and Methods: This was a cross-sectional study, conducted at a Tertiary Care Hospital in New Delhi, India. Seventy one postmenopausal women (mean age 56.3 ± 7.6 years were enrolled. Exclusion criteria were known or newly detected diabetics, subjects with chronic renal failure, chronic liver disease or any other chronic inflammatory condition, chronic smokers and chronic alcoholics. Serum calcium (and albumin for calculating corrected calcium, phosphorus, alkaline phosphatase and 25-OHD were measured as parameters of calcium homeostasis. Fasting blood glucose (FBG, systolic and diastolic blood pressures, body mass index (BMI, fasting serum insulin, calculated glucose insulin ratio (GIR, and homeostatic model assessment of insulin resistance (HOMA-IR were studied as parameters of IR. Data was then analyzed for statistical significance. Results: The mean serum 25-OHD level was 12.73 ± 7.63 ng/ml. The mean BMI was 27.78 ± 5.37 kg/m 2 . The mean calculated GIR was 13.14 ± 9.39 and HOMA-IR was 2.31 ± 1.70. Serum 25-OHD was inversely correlated with BMI (correlation coefficient −0.234, P value 0.050 and with HOMA-IR (correlation coefficient −0.237, P value 0.047. However, when 25-OHD was adjusted for BMI the correlation between 25-OHD and HOMA-IR lost its significance. No correlation was found between serum 25-OHD and any other parameters of IR studied. Conclusions: There is a significant negative linear correlation between 25-OHD and BMI. The significant negative linear correlation between 25-OHD and HOMA-IR was confounded by BMI. There is no correlation between 25-OHD and parameters of IR.

  6. Insulin Resistance Induced by Hyperinsulinemia Coincides with a Persistent Alteration at the Insulin Receptor Tyrosine Kinase Domain

    Science.gov (United States)

    Catalano, Karyn J.; Maddux, Betty A.; Szary, Jaroslaw; Youngren, Jack F.; Goldfine, Ira D.; Schaufele, Fred

    2014-01-01

    Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR) activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK) domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered ‘insulin refractory’ IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated) levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based ‘memory’ of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states. PMID:25259572

  7. Insulin resistance induced by hyperinsulinemia coincides with a persistent alteration at the insulin receptor tyrosine kinase domain.

    Directory of Open Access Journals (Sweden)

    Karyn J Catalano

    Full Text Available Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered 'insulin refractory' IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based 'memory' of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states.

  8. The association between TNF-α and insulin resistance in euglycemic women.

    LENUS (Irish Health Repository)

    Walsh, Jennifer M

    2013-10-01

    Chronic low levels of inflammation have links to obesity, diabetes and insulin resistance. We sought to assess the relationship between cytokine tumor necrosis factor (TNF-α) and insulin resistance in a healthy, euglycemic population. This is a prospective study of 574 non-diabetic mother and infant pairs. Maternal body mass index (BMI), TNF-α, glucose and insulin were measured in early pregnancy and at 28 weeks. Insulin resistance was calculated by HOMA index. At delivery birthweight was recorded and cord blood analysed for fetal C-peptide and TNF-α. In a multivariate model, maternal TNF-α in early pregnancy was predicted by maternal insulin resistance at the same time-point, (β=0.54, p<0.01), and maternal TNF-α at 28 weeks was predicted by maternal insulin resistance in early pregnancy (β=0.24, p<0.01) and at 28 weeks (β=0.39, p<0.01). These results, in a large cohort of healthy, non-diabetic women have shown that insulin resistance, even at levels below those diagnostic of gestational diabetes, is associated with maternal and fetal inflammatory response. These findings have important implications for defining the pathways of fetal programming of later metabolic syndrome and childhood obesity.

  9. Relationship between Serum Lipoprotein Ratios and Insulin Resistance in Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Shou-Kui Xiang

    2012-01-01

    Full Text Available Objective. To investigate the association between serum lipoprotein ratios and insulin resistance in women with polycystic ovarian syndrome (PCOS. Methods. 105 PCOS patients and 109 controls were randomly enrolled in the study. Serum levels of luteinizing hormone (LH, follicle-stimulating hormone (FSH, estradiol (E2, total testosterone (T, fasting glucose (FBG, fasting insulin (FINS, serum triglycerides (TG, total cholesterol (TC, high-density lipoprotein (HDL-C, and low-density lipoprotein (LDL-C levels were checked, and then TG/HDL-C ratio, TC/HDL-C, ratio and LDL-C/HDL-C ratio were calculated. The homeostasis model assessment of insulin resistance (HOMA-IR was used to calculate the insulin resistance. Results. All lipoprotein ratios were significantly higher in PCOS patients as compared to healthy controls (<0.05. TG/HDL-C ratio, TC/HDL-C ratio, and LDL-C/HDL-C ratio were significantly correlated with HOMA-IR (<0.05. The ROC curve demonstrated that TC/HDL-C ratio had higher sensitivity and specificity in diagnosing PCOS with insulin resistance. Conclusion. This study demonstrates that serum lipoprotein ratio significantly correlates with insulin resistance and can be used as the marker of insulin resistance in PCOS patients.

  10. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver.

    Science.gov (United States)

    Monetti, Mara; Levin, Malin C; Watt, Matthew J; Sajan, Mini P; Marmor, Stephen; Hubbard, Brian K; Stevens, Robert D; Bain, James R; Newgard, Christopher B; Farese, Robert V; Hevener, Andrea L; Farese, Robert V

    2007-07-01

    Hepatic steatosis, the accumulation of lipids in the liver, is widely believed to result in insulin resistance. To test the causal relationship between hepatic steatosis and insulin resistance, we generated mice that overexpress acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2), which catalyzes the final step of triacylglycerol (TG) biosynthesis, in the liver (Liv-DGAT2 mice). Liv-DGAT2 mice developed hepatic steatosis, with increased amounts of TG, diacylglycerol, ceramides, and unsaturated long-chain fatty acyl-CoAs in the liver. However, they had no abnormalities in plasma glucose and insulin levels, glucose and insulin tolerance, rates of glucose infusion and hepatic glucose production during hyperinsulinemic-euglycemic clamp studies, or activities of insulin-stimulated signaling proteins in the liver. DGAT1 overexpression in the liver also failed to induce glucose or insulin intolerance. Our results indicate that DGAT-mediated lipid accumulation in the liver is insufficient to cause insulin resistance and show that hepatic steatosis can occur independently of insulin resistance.

  11. Fine-mapping diabetes-related traits, including insulin resistance, in heterogeneous stock rats

    Science.gov (United States)

    Holl, Katie L.; Oreper, Daniel; Xie, Yuying; Tsaih, Shirng-Wern; Valdar, William

    2012-01-01

    Type 2 diabetes (T2D) is a disease of relative insulin deficiency resulting from both insulin resistance and beta cell failure. We have previously used heterogeneous stock (HS) rats to fine-map a locus for glucose tolerance. We show here that glucose intolerance in the founder strains of the HS colony is mediated by different mechanisms: insulin resistance in WKY and an insulin secretion defect in ACI, and we demonstrate a high degree of variability for measures of insulin resistance and insulin secretion in HS rats. As such, our goal was to use HS rats to fine-map several diabetes-related traits within a region on rat chromosome 1. We measured blood glucose and plasma insulin levels after a glucose tolerance test in 782 male HS rats. Using 97 SSLP markers, we genotyped a 68 Mb region on rat chromosome 1 previously implicated in glucose and insulin regulation. We used linkage disequilibrium mapping by mixed model regression with inferred descent to identify a region from 198.85 to 205.9 that contains one or more quantitative trait loci (QTL) for fasting insulin and a measure of insulin resistance, the quantitative insulin sensitivity check index. This region also encompasses loci identified for fasting glucose and Insulin_AUC (area under the curve). A separate <3 Mb QTL was identified for body weight. Using a novel penalized regression method we then estimated effects of alternative haplotype pairings under each locus. These studies highlight the utility of HS rats for fine-mapping genetic loci involved in the underlying causes of T2D. PMID:22947656

  12. Acupuncture Alters Expression of Insulin Signaling Related Molecules and Improves Insulin Resistance in OLETF Rats

    Directory of Open Access Journals (Sweden)

    Xin-Yu Huang

    2016-01-01

    Full Text Available To determine effect of acupuncture on insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF rats and to evaluate expression of insulin signaling components. Rats were divided into three groups: Sprague-Dawley (SD rats, OLETF rats, and acupuncture+OLETF rats. Acupuncture was subcutaneously applied to Neiguan (PC6, Zusanli (ST36, and Sanyinjiao (SP6; in contrast, acupuncture to Shenshu (BL23 was administered perpendicularly. For Neiguan (PC6 and Zusanli (ST36, needles were connected to an electroacupuncture (EA apparatus. Fasting blood glucose (FPG was measured by glucose oxidase method. Plasma fasting insulin (FINS and serum C peptide (C-P were determined by ELISA. Protein and mRNA expressions of insulin signaling molecules were determined by Western blot and real-time RT-PCR, respectively. OLETF rats exhibit increased levels of FPG, FINS, C-P, and homeostasis model assessment-estimated insulin resistance (HOMA-IR, which were effectively decreased by acupuncture treatment. mRNA expressions of several insulin signaling related molecules IRS1, IRS2, Akt2, aPKCζ, and GLUT4 were decreased in OLETF rats compared to SD controls. Expression of these molecules was restored back to normal levels upon acupuncture administration. PI3K-p85α was increased in OLETF rats; this increase was also reversed by acupuncture treatment. Acupuncture improves insulin resistance in OLETF rats, possibly via regulating expression of key insulin signaling related molecules.

  13. Psychological insulin resistance in type 2 diabetes patients regarding oral antidiabetes treatment, subcutaneous insulin injections, or inhaled insulin.

    Science.gov (United States)

    Petrak, Frank; Herpertz, Stephan; Stridde, Elmar; Pfützner, Andreas

    2013-08-01

    "Psychological insulin resistance" (PIR) is an obstacle to insulin treatment in type 2 diabetes, and patients' expectations regarding alternative ways of insulin delivery are poorly understood. PIR and beliefs regarding treatment alternatives were analyzed in patients with type 2 diabetes (n=532; mean glycated hemoglobin, 68±12 mmol/mol [8.34±1.5%]) comparing oral antidiabetes treatment, subcutaneous insulin injections, or inhaled insulin. Questionnaires were used to assess barriers to insulin treatment (BIT), generic and diabetes-specific quality of life (Short Form 36 and Problem Areas in Diabetes, German version), diabetes knowledge, locus of control (Questionnaire for the Assessment of Diabetes-Specific Locus of Control, in German), coping styles (Freiburg Questionnaire of Illness Coping, 15-Items Short Form), self-esteem (Rosenberg Self-Esteem Scale, German version), and mental disorders (Patient Health Questionnaire, German version). Patients discussed treatment optimization options with a physician and were asked to make a choice about future diabetes therapy options in a two-step treatment choice scenario. Step 1 included oral antidiabetes drugs or subcutaneous insulin injection (SCI). Step 2 included an additional treatment alternative of inhaled insulin (INH). Subgroups were analyzed according to their treatment choice. Most patients perceived their own diabetes-related behavior as active, problem-focused, internally controlled, and oriented toward their doctors' recommendations, although their diabetes knowledge was limited. In Step 1, rejection of the recommended insulin was 82%, and in Step 2, it was 57%. Fear of hypoglycemia was the most important barrier to insulin treatment. Patients choosing INH (versus SCI) scored higher regarding fear of injection, expected hardship from insulin therapy, and BIT-Sumscore. The acceptance of insulin is very low in type 2 diabetes patients. The option to inhale insulin increases the acceptability for some but

  14. Polycystic ovary morphology is associated with insulin resistance in women with polycystic ovary syndrome.

    Science.gov (United States)

    Hong, So-Hyeon; Sung, Yeon-Ah; Hong, Young Sun; Jeong, Kyungah; Chung, Hyewon; Lee, Hyejin

    2017-10-01

    Polycystic ovary syndrome (PCOS) is a heterogeneous disorder characterized by chronic anovulation, hyperandrogenism, polycystic ovary morphology (PCOM) and metabolic disturbances including insulin resistance and type 2 diabetes mellitus. Although insulin resistance could be associated with PCOM, recent studies have shown controversial results. The aim of this study was to determine the relationship between PCOM and insulin resistance. This was a cross-sectional clinical study. A total of 679 women with PCOS who were diagnosed using the National Institute of Child Health and Human Disease (NICHD) criteria and 272 control women were analysed. We measured fasting glucose and insulin levels, 75 g oral glucose tolerance test-derived glucose and insulin levels, testosterone levels, ovarian volume and follicle number. Polycystic ovary morphology was described in 543 women (80.0%) with PCOS. Women with PCOS had significantly higher 2 hours postload glucose, fasting and 2 hours postload insulin levels, ovarian volume, ovarian follicle numbers and lower insulin sensitivity compared with those of the controls (all P<.01). In women with PCOS, ovarian volume and ovarian follicle number were negatively associated with the quantitative insulin sensitivity check index after adjusting for age, body mass index and total testosterone; however, this association was not observed in the controls. In the logistic regression analysis, increased ovarian follicle number was associated with decreased insulin sensitivity in women with PCOS. In PCOS, enlarged ovarian volume and follicle excess were associated with insulin resistance, and the number of ovarian follicles could be a predictor of insulin resistance. © 2017 John Wiley & Sons Ltd.

  15. Insulin Resistance and Risk of Cardiovascular Disease in Postmenopausal Women

    DEFF Research Database (Denmark)

    Schmiegelow, Michelle D; Hedlin, Haley; Stefanick, Marcia L

    2015-01-01

    BACKGROUND: Insulin resistance is associated with diabetes mellitus, but it is uncertain whether it improves cardiovascular disease (CVD) risk prediction beyond traditional cardiovascular risk factors. METHODS AND RESULTS: We identified 15,288 women from the Women's Health Initiative Biomarkers....../HDL-C, or impaired fasting glucose (serum glucose ≥110 mg/dL) to traditional risk factors in separate Cox multivariable analyses and assessed risk discrimination and reclassification. The study end point was major CVD events (nonfatal and fatal coronary heart disease and ischemic stroke) within 10 years, which...

  16. Curcumin reverses the depressive-like behavior and insulin resistance induced by chronic mild stress.

    Science.gov (United States)

    Shen, Ji-Duo; Wei, Yu; Li, Yu-Jie; Qiao, Jing-Yi; Li, Yu-Cheng

    2017-08-01

    Increasing evidence has demonstrated that patients with depression have a higher risk of developing type 2 diabetes. Insulin resistance has been identified as the key mechanism linking depression and diabetes. The present study established a rat model of depression complicated by insulin resistance using a 12-week exposure to chronic mild stress (CMS) and investigated the therapeutic effects of curcumin. Sucrose intake tests were used to evaluate depressive-like behaviors, and oral glucose tolerance tests (OGTT) and intraperitoneal insulin tolerance tests (IPITT) were performed to evaluate insulin sensitivity. Serum parameters were detected using commercial kits. Real-time quantitative PCR was used to examine mRNA expression. CMS rats exhibited reduced sucrose consumption, increased serum glucose, insulin, triglyceride (TG), low density lipoprotein-cholesterol (LDL-C), non-esterified fatty acid (NEFA), glucagon, leptin, and corticosterone levels, as well as impaired insulin sensitivity. Curcumin upregulated the phosphorylation of insulin receptor substrate (IRS)-1 and protein kinase B (Akt) in the liver, enhanced insulin sensitivity, and reversed the metabolic abnormalities and depressive-like behaviors mentioned above. Moreover, curcumin increased the hepatic glycogen content by inhibiting glycogen synthase kinase (GSK)-3β and prevented gluconeogenesis by inhibiting phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase). These results suggest that curcumin not only exerted antidepressant-like effects, but also reversed the insulin resistance and metabolic abnormalities induced by CMS. These data may provide evidence to support the potential use of curcumin against depression and/or metabolic disorders.

  17. The Role of PTP1B O-GlcNAcylation in Hepatic Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Yun Zhao

    2015-09-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B, which can directly dephosphorylate both the insulin receptor and insulin receptor substrate 1 (IRS-1, thereby terminating insulin signaling, reportedly plays an important role in insulin resistance. Accumulating evidence has demonstrated that O-GlcNAc modification regulates functions of several important components of insulin signal pathway. In this study, we identified that PTP1B is modified by O-GlcNAcylation at three O-GlcNAc sites (Ser104, Ser201, and Ser386. Palmitate acid (PA impaired the insulin signaling, indicated by decreased phosphorylation of both serine/threonine-protein kinase B (Akt and glycogen synthase kinase 3 beta (GSK3β following insulin administration, and upregulated PTP1B O-GlcNAcylation in HepG2 cells. Compared with the wild-type, intervention PTP1B O-GlcNAcylation by site-directed gene mutation inhibited PTP1B phosphatase activity, resulted in a higher level of phosphorylated Akt and GSK3β, recovered insulin sensitivity, and improved lipid deposition in HepG2 cells. Taken together, our research showed that O-GlcNAcylation of PTP1B can influence insulin signal transduction by modulating its own phosphatase activity, which participates in the process of hepatic insulin resistance.

  18. Evidence for altered transport of insulin across the blood-brain barrier in insulin-resistant humans.

    Science.gov (United States)

    Heni, Martin; Schöpfer, Patricia; Peter, Andreas; Sartorius, Tina; Fritsche, Andreas; Synofzik, Matthis; Häring, Hans-Ulrich; Maetzler, Walter; Hennige, Anita M

    2014-08-01

    Eating behavior, body weight regulation, peripheral glucose metabolism, and cognitive function depend on adequate insulin action in the brain, and recent studies in humans suggested that impaired insulin action in the brain emerges upon fat intake, obesity, and genetic variants. As insulin enters into the brain in a receptor-mediated fashion, we hypothesized that whole-body insulin sensitivity might affect the transport of insulin into the brain and contribute to the aversive effect of insulin resistance in the central nervous system. In this study, we aimed to determine the ratio of insulin in the cerebrospinal fluid and serum to whole-body insulin sensitivity. Healthy human subjects participated in an oral glucose tolerance test to determine whole-body insulin sensitivity and underwent lumbar puncture. Blood and CSF concentrations of insulin were significantly correlated. The CSF/serum ratio for insulin was significantly associated with whole body insulin sensitivity with reduced insulin transported into the CSF in insulin-resistant subjects. Together, our data suggest that transport of insulin into the CSF relates to peripheral insulin sensitivity and impairs insulin action in the brain. This underlines the need for sensitizing measures in insulin-resistant subjects.

  19. Childhood obesity and insulin resistance: how should it be managed?

    Science.gov (United States)

    Ho, Mandy; Garnett, Sarah P; Baur, Louise A

    2014-12-01

    Concomitant with the rise in global pediatric obesity in the past decades, there has been a significant increase in the number of children and adolescents with clinical signs of insulin resistance. Given insulin resistance is the important link between obesity and the associated metabolic abnormalities and cardiovascular risk, clinicians should be aware of high risk groups and treatment options. As there is no universally accepted biochemical definition of insulin resistance in children and adolescents, identification and diagnosis of insulin resistance usually relies on clinical features such as acanthosis nigricans, polycystic ovary syndrome, hypertension, dyslipidemia, and nonalcoholic fatty liver disease. Treatment for reducing insulin resistance and other obesity-associated comorbidities should focus on changes in health behaviors to achieve effective weight management. Lifestyle interventions incorporating dietary change, increased physical activity, and decreased sedentary behaviors, with the involvement of family and adoption of a developmentally appropriate approach, should be used as the first line treatment. Current evidence suggests that the primary objective of dietary interventions should be to reduce total energy intake and a combination of aerobic and resistance training should be encouraged. Metformin can be used in conjunction with a lifestyle intervention program in obese adolescents with clinical insulin resistance to achieve weight loss and to improve insulin sensitivity. Ongoing evaluation and research are required to explore optimal protocol and long-term effectiveness of lifestyle interventions, as well as to determine whether the improvements in insulin sensitivity induced by lifestyle interventions and weight loss will lead to a clinical benefit including reduced cardiovascular morbidity and mortality.

  20. Association of serum sparc with insulin resistance in type-2 diabetes mellitus

    International Nuclear Information System (INIS)

    Nadeem, K.; Ahmed, U.; Arif, H.

    2017-01-01

    Objective: To determine the association of serum SPARC with insulin resistance in type-2 diabetes. Study Design: Descriptive study. Place and Duration of Study: Physiology department and CREAM lab, Army medical college, Rawalpindi, in collaboration with Military Hospital Rawalpindi, from Feb 2016 to Oct 2016. Material and Methods: Sixty individuals were recruited in this descriptive study. Thirty diagnosed cases of type- 2 DM were included, while thirty age and gender matched healthy individuals were included as controls through non-probability purposive sampling. Controls were labelled as group A, while cases were labelled as group B. Patients with type-1 DM, type-2 DM on insulin therapy, hyperglycemic states other than DM and inflammatory disorders were excluded from the study. Data were collected after informed and written consent. Blood samples were withdrawn under strict aseptic measures and serum was stored at -20 degree C. Serum insulin levels and serum SPARC levels were analyzed by enzyme linked immunosorbent assay (ELISA). Insulin resistance was determined using homeostasis model assessment of insulin resistance (HOMA-IR), and its value >1.5 was considered significant. Results: Fasting insulin levels were significantly higher in group B as compared with group A, supporting the diagnosis of type-2 DM. HOMA-IR values were greater than 1.5 in group B, thus establishing significant insulin resistance. Serum SPARC levels were significantly higher in group B than group A (17.7 ± 1.14 vs 8.7 ± 1.08 ng/ml) with p-value<0.001. Serum SPARC levels showed positive correlation with fasting insulin levels and HOMA-IR values. Conclusion: Our study showed a positive correlation between serum SPARC levels and insulin resistance, which indicates that SPARC plays an important role in the development of insulin resistance in type-2 diabetes mellitus. (author)

  1. The gut microbiota, obesity and insulin resistance.

    Science.gov (United States)

    Shen, Jian; Obin, Martin S; Zhao, Liping

    2013-02-01

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflammation and insulin resistance. In this review we discuss molecular and cell biological mechanisms by which the microbiota participate in host functions that impact the development and maintenance of the obese state, including host ingestive behavior, energy harvest, energy expenditure and fat storage. We additionally explore the diverse signaling pathways that regulate gut permeability and bacterial translocation to the host and how these are altered in the obese state to promote the systemic inflammation ("metabolic endotoxemia") that is a hallmark of obesity and its complications. Fundamental to our discussions is the concept of "crosstalk", i.e., the biochemical exchange between host and microbiota that maintains the metabolic health of the superorganism and whose dysregulation is a hallmark of the obese state. Differences in community composition, functional genes and metabolic activities of the gut microbiota appear to distinguish lean vs obese individuals, suggesting that gut 'dysbiosis' contributes to the development of obesity and/or its complications. The current challenge is to determine the relative importance of obesity-associated compositional and functional changes in the microbiota and to identify the relevant taxa and functional gene modules that promote leanness and metabolic health. As diet appears to play a predominant role in shaping the microbiota and promoting obesity-associated dysbiosis, parallel initiatives are required to elucidate dietary patterns and diet components (e.g., prebiotics, probiotics) that promote healthy gut microbiota. How the microbiota promotes human health and disease is a rich area of investigation that is likely to generate

  2. Retinol-Binding Protein 4 and Insulin Resistance in Polycystic Ovary Syndrome

    OpenAIRE

    Hutchison, Samantha K.; Harrison, Cheryce; Stepto, Nigel; Meyer, Caroline; Teede, Helena J.

    2008-01-01

    OBJECTIVE?Polycystic ovary syndrome (PCOS) is an insulin-resistant state with insulin resistance being an established therapeutic target; however, measurement of insulin resistance remains challenging. We aimed to 1) determine serum retinol-binding protein 4 (RBP4) levels (purported to reflect insulin resistance) in women with PCOS and control subjects, 2) examine the relationship of RBP4 to conventional markers of insulin resistance, and 3) examine RBP4 changes with interventions modulating ...

  3. Role of nutrition in preventing insulin resistance in children.

    Science.gov (United States)

    Blasetti, Annalisa; Franchini, Simone; Comegna, Laura; Prezioso, Giovanni; Chiarelli, Francesco

    2016-03-01

    Nutrition during prenatal, early postnatal and pubertal period is crucial for the development of insulin resistance and its consequences. During prenatal period fetal environment and nutrition seems to interfere with metabolism programming later in life. The type of dietary carbohydrates, glycemic index, protein, fat and micronutrient content in maternal nutrition could influence insulin sensitivity in the newborn. The effects of lactation on metabolism and nutritional behavior later in life have been studied. Dietary habits and quality of diet during puberty could prevent the onset of a pathological insulin resistance through an adequate distribution of macro- and micronutrients, a diet rich in fibers and vegetables and poor in saturated fats, proteins and sugars. We want to overview the latest evidences on the risk of insulin resistance later in life due to both nutritional behaviors and components during the aforementioned periods of life, following a chronological outline from fetal development to adolescence.

  4. Dnmt3a is an epigenetic mediator of adipose insulin resistance

    DEFF Research Database (Denmark)

    You, Dongjoo; Nilsson, Emma; Tenen, Danielle E.

    2017-01-01

    Insulin resistance results from an intricate interaction between genetic make-up and environment, and thus may be orchestrated by epigenetic mechanisms like DNA methylation. Here, we demonstrate that DNA methyltransferase 3a (Dnmt3a) is both necessary and sufficient to mediate insulin resistance...... in cultured mouse and human adipocytes. Furthermore, adipose-specific Dnmt3a knock-out mice are protected from diet-induced insulin resistance and glucose intolerance without accompanying changes in adiposity. Unbiased gene profiling studies revealed Fgf21 as a key negatively regulated Dnmt3a target gene...... in adipocytes with concordant changes in DNA methylation at the Fgf21 promoter region. Consistent with this, Fgf21 can rescue Dnmt3a-mediated insulin resistance, and DNA methylation at the FGF21 locus was elevated in human subjects with diabetes and correlated negatively with expression of FGF21 in human...

  5. 92 INSULIN RESISTANCE: CAUSES AND METABOLIC ...

    African Journals Online (AJOL)

    drclement

    2009-12-01

    Dec 1, 2009 ... Edo State Institute of Technology and Management. Usen, Edo State ... type 2 diabetes mellitus. The cause of the vast ... Insulin (molecular mass 6000D) consists of 51 amino acids .... Experimental Biology and. Medicine 2004 ...

  6. Postmenopausal hypertension, abdominal obesity, apolipoprotein and insulin resistance.

    Science.gov (United States)

    Ben Ali, Samir; Belfki-Benali, Hanen; Ahmed, Decy Ben; Haddad, Najet; Jmal, Awatef; Abdennebi, Monia; Romdhane, Habiba Ben

    This study aimed to evaluate the association of abdominal obesity, apolipoprotein and insulin resistance (IR) with the risk of hypertension in postmenopausal women. We analyzed a total of 242 women aged between 35 and 70 years. Blood pressure (BP), anthropometric indices, lipid profile, fasting glucose, insulin, C-reactive protein (CRP) and apolipoprotein concentrations were measured. Homeostasis model assessment (HOMA) was used to assess IR. Hypertension was defined as a systolic BP (SBP) ≥140 mmHg and/or diastolic BP (DBP) ≥90 mmHg or current treatment with antihypertensive drugs. Women with hypertension showed significantly higher mean values of age, SBP and DBP, waist circumference (WC), fasting plasma glucose (FPG), insulin, HOMAIR and the apolipoprotein B (apoB). When analyses were done according to the menopausal status, higher prevalence of hypertension was observed in postmenopausal women (72.8% vs. 26.0%, p menopause (p = 0.008) were significantly associated with higher risk for hypertension. These results suggest that changes in WC, apoB and IR accompanying menopause lead to a greater prevalence of hypertension in postmenopausal women.

  7. Dietary Anthocyanins and Insulin Resistance: When Food Becomes a Medicine.

    Science.gov (United States)

    Belwal, Tarun; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad; Habtemariam, Solomon

    2017-10-12

    Insulin resistance is an abnormal physiological state that occurs when insulin from pancreatic β-cells is unable to trigger a signal transduction pathway in target organs such as the liver, muscles and adipose tissues. The loss of insulin sensitivity is generally associated with persistent hyperglycemia (diabetes), hyperinsulinemia, fatty acids and/or lipid dysregulation which are often prevalent under obesity conditions. Hence, insulin sensitizers are one class of drugs currently employed to treat diabetes and associated metabolic disorders. A number of natural products that act through multiple mechanisms have also been identified to enhance insulin sensitivity in target organs. One group of such compounds that gained interest in recent years are the dietary anthocyanins. Data from their in vitro, in vivo and clinical studies are scrutinized in this communication to show their potential health benefit through ameliorating insulin resistance. Specific mechanism of action ranging from targeting specific signal transduction receptors/enzymes to the general antioxidant and anti-inflammatory mechanisms of insulin resistance are presented.

  8. Efficacy of 2-hour post glucose insulin levels in predicting insulin resistance in polycystic ovarian syndrome with infertility

    Directory of Open Access Journals (Sweden)

    Pikee Saxena

    2011-01-01

    Full Text Available Background : Insulin resistance (IR is central to the pathogenesis of polycystic ovarian syndrome (PCOS, but tests for determining IR are elaborate, tedious and expensive. Aims : To evaluate if "2-hour post-glucose insulin level" is an effective indicator of IR and can aid in diagnosing IR in infertile PCOS women. Settings and Design : Observational study at infertility clinic of a tertiary care center. Materials and Methods : 50 infertile women with PCOS and 20 females with tubal/male factor infertility were evaluated for the presence of IR, as defined by the fasting/2-hour post-glucose insulin levels cutoffs of >25/>41 μU/mL, respectively. The clinical, metabolic and endocrinologic profile was determined in both the groups. Statistical Analysis : Statistical analysis was performed using SPSS (Chicago, IL, USA. Results : Body mass index, post load glucose, insulin, glucose/insulin ratio, area under curve (AUC of glucose and insulin and insulinogenic index were significantly lower in the controls as compared to the PCOS group. "2-hour post-glucose insulin levels" were elevated in 88% of PCOS individuals but were normal in all females not suffering from PCOS. These levels significantly correlated with AUC of glucose and insulin, and insulinogenic index and inversely correlated with 2-hour glucose to insulin ratio (r=0.827, 0.749 and −0.732, respectively. Conclusions : "2-hour post-glucose insulin levels" appears to be a good indicator of IR. It can be a useful tool, especially in low resource setting where a single sample can confirm the diagnosis, thus reducing cost and repeat visits.

  9. Association between omentin levels and insulin resistance in pregnancy.

    Science.gov (United States)

    Aktas, G; Alcelik, A; Ozlu, T; Tosun, M; Tekce, B K; Savli, H; Tekce, H; Dikbas, O

    2014-03-01

    Omentin is a new adipokine secreted mainly from visceral adipose tissue. Serum omentin is found to be reduced in patients with impaired glucose tolerance, type 2 diabetes mellitus, obesity and insulin resistant states. Despite the fact that pregnancy is also characterized with hyperinsulinemia, literature is lacking about data of omentin levels and its association with insulin resistance in pregnant women. We aimed to evaluate the association of omentin levels and insulin resistance in pregnant women and to compare these levels with those of non-pregnant, non-diabetic women. Uncomplicated pregnant women who admit to our outpatient clinics for routine follow-up were included in the study group. Non-pregnant women without diabetes mellitus were served as control group. Fasting glucose, insulin, omentin levels and HOMA IR were recorded. SPSS 15.0 for Windows was used for statistical analysis. There were 36 pregnant women in the study group and 37 healthy, non-pregnant women in the control group. Serum omentin and fasting glucose levels were significantly decreased and fasting insulin was significantly increased in the study group compared to control group. Omentin might be an indicator of insulin resistance in pregnant women. Larger prospective studies are needed to claim whether omentin can have a clinical use for diagnosis of gestational diabetes mellitus. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  10. New measure of insulin sensitivity predicts cardiovascular disease better than HOMA estimated insulin resistance.

    Directory of Open Access Journals (Sweden)

    Kavita Venkataraman

    Full Text Available CONTEXT: Accurate assessment of insulin sensitivity may better identify individuals at increased risk of cardio-metabolic diseases. OBJECTIVES: To examine whether a combination of anthropometric, biochemical and imaging measures can better estimate insulin sensitivity index (ISI and provide improved prediction of cardio-metabolic risk, in comparison to HOMA-IR. DESIGN AND PARTICIPANTS: Healthy male volunteers (96 Chinese, 80 Malay, 77 Indian, 21 to 40 years, body mass index 18-30 kg/m(2. Predicted ISI (ISI-cal was generated using 45 randomly selected Chinese through stepwise multiple linear regression, and validated in the rest using non-parametric correlation (Kendall's tau τ. In an independent longitudinal cohort, ISI-cal and HOMA-IR were compared for prediction of diabetes and cardiovascular disease (CVD, using ROC curves. SETTING: The study was conducted in a university academic medical centre. OUTCOME MEASURES: ISI measured by hyperinsulinemic euglycemic glucose clamp, along with anthropometric measurements, biochemical assessment and imaging; incident diabetes and CVD. RESULTS: A combination of fasting insulin, serum triglycerides and waist-to-hip ratio (WHR provided the best estimate of clamp-derived ISI (adjusted R(2 0.58 versus 0.32 HOMA-IR. In an independent cohort, ROC areas under the curve were 0.77±0.02 ISI-cal versus 0.76±0.02 HOMA-IR (p>0.05 for incident diabetes, and 0.74±0.03 ISI-cal versus 0.61±0.03 HOMA-IR (p<0.001 for incident CVD. ISI-cal also had greater sensitivity than defined metabolic syndrome in predicting CVD, with a four-fold increase in the risk of CVD independent of metabolic syndrome. CONCLUSIONS: Triglycerides and WHR, combined with fasting insulin levels, provide a better estimate of current insulin resistance state and improved identification of individuals with future risk of CVD, compared to HOMA-IR. This may be useful for estimating insulin sensitivity and cardio-metabolic risk in clinical and

  11. Limitations of insulin resistance assessment in polycystic ovary syndrome

    Science.gov (United States)

    Lewandowski, Krzysztof C; Płusajska, Justyna; Horzelski, Wojciech; Bieniek, Ewa; Lewiński, Andrzej

    2018-01-01

    Background Though insulin resistance (IR) is common in polycystic ovary syndrome (PCOS), there is no agreement as to what surrogate method of assessment of IR is most reliable. Subjects and methods In 478 women with PCOS, we compared methods based on fasting insulin and either fasting glucose (HOMA-IR and QUICKI) or triglycerides (McAuley Index) with IR indices derived from glucose and insulin during OGTT (Belfiore, Matsuda and Stumvoll indices). Results There was a strong correlation between IR indices derived from fasting values HOMA-IR/QUICKI, r = −0.999, HOMA-IR/McAuley index, r = −0.849 and between all OGTT-derived IR indices (e.g. r = −0.876, for IRI/Matsuda, r = −0.808, for IRI/Stumvoll, and r = 0.947, for Matsuda/Stumvoll index, P IR indices derived from fasting vs OGTT-derived variables, ranging from r = −0.881 (HOMA-IR/Matsuda), through r = 0.58, or r = −0.58 (IRI/HOMA-IR, IRI/QUICKI, respectively) to r = 0.41 (QUICKI/Stumvoll), and r = 0.386 for QUICKI/Matsuda indices. Detailed comparison between HOMA-IR and IRI revealed that concordance between HOMA and IRI was poor for HOMA-IR/IRI values above 75th and 90th percentile. For instance, only 53% (70/132) women with HOMA-IR >75th percentile had IRI value also above 75th percentile. There was a significant, but weak correlation of all IR indices with testosterone concentrations. Conclusions Significant number of women with PCOS can be classified as being either insulin sensitive or insulin resistant depending on the method applied, as correlation between various IR indices is highly variable. Clinical application of surrogate indices for assessment of IR in PCOS must be therefore viewed with an extreme caution. PMID:29436386

  12. Relationship between blood pressure and insulin resistance in patients with gestational diabetes

    International Nuclear Information System (INIS)

    Kan Shujuan; Zhang Sujuan

    2008-01-01

    Objective: To study the relationship existe between blood pressure level and degree of insulin resistance in patients with gestational diabetes. Methods: Ninety-five cases of gestational diabetes were diagnosed among 350 pregnant women. Of them, 55 were found to be hypertensive and 40 were normotensive. Fasting, 1,2, 3h post-prandial (75g glucose) blood sugar (with peroxidase method) levels and fasting insulin (with RIA) levels were measured in these patients and 85 normal pregnant women (as control). Results: Fasting, 1, 2, 3h post 75g glucose blood sugar and fasting insulin levels in the 55 hypertensive diabetics were significantly higher than those in the normotensives and controls (P<0.05). The calculated insulin sensitivity indices were significantly lower (P also < 0.05). Conclusion: A higher insulin resistance existed in hypertensive gestational diabetics which might be a risk factor of developing hypertension. (authors)

  13. Carnitine acetyltransferase: A new player in skeletal muscle insulin resistance?

    Directory of Open Access Journals (Sweden)

    Sofia Mikkelsen Berg

    2017-03-01

    Full Text Available Carnitine acetyltransferase (CRAT deficiency has previously been shown to result in muscle insulin resistance due to accumulation of long-chain acylcarnitines. However, differences in the acylcarnitine profile and/or changes in gene expression and protein abundance of CRAT in myotubes obtained from obese patients with type 2 diabetes mellitus (T2DM and glucose-tolerant obese and lean controls remain unclear. The objective of the study was to examine whether myotubes from obese patients with T2DM express differences in gene expression and protein abundance of CRAT and in acylcarnitine species pre-cultured under glucose and insulin concentrations similar to those observed in healthy individuals in the over-night fasted, resting state. Primary myotubes obtained from obese persons with or without T2DM and lean controls (n=9 in each group were cultivated and harvested for LC-MS-based profiling of acylcarnitines. The mRNA expression and protein abundance of CRAT were determined by qPCR and Western Blotting, respectively. Our results suggest that the mRNA levels and protein abundance of CRAT were similar between groups. Of the 14 different acylcarnitine species measured by LC-MS, the levels of palmitoylcarnitine (C16 and octadecanoylcarnitine (C18 were slightly reduced in myotubes derived from T2DM patients (p<0.05 compared to glucose-tolerant obese and lean controls. This suggests that the CRAT function is not the major contributor to primary insulin resistance in cultured myotubes obtained from obese T2DM patients.

  14. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats

    Directory of Open Access Journals (Sweden)

    Iagher Fabiola

    2011-04-01

    Full Text Available Abstract Background Obesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats. Methods Monosodium glutamate (MSG (4 mg/g body weight was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C, coconut fat-treated normal weight group (CO, fish oil-treated normal weight group (FO, obese control group (Ob, coconut fat-treated obese group (ObCO and fish oil-treated obese group (ObFO. Obese insulin-resistant rats were supplemented with fish oil or coconut fat (1 g/kg/day for 4 weeks. Insulin sensitivity, fasting blood biochemicals parameters, and skeletal muscle glucose metabolism were analyzed. Results Obese animals (Ob presented higher Index Lee and 2.5 fold epididymal and retroperitoneal adipose tissue than C. Insulin sensitivity test (Kitt showed that fish oil supplementation was able to maintain insulin sensitivity of obese rats (ObFO similar to C. There were no changes in glucose and HDL-cholesterol levels amongst groups. Yet, ObFO revealed lower levels of total cholesterol (TC; 30% and triacylglycerol (TG; 33% compared to Ob. Finally, since exposed to insulin, ObFO skeletal muscle revealed an increase of 10% in lactate production, 38% in glycogen synthesis and 39% in oxidation of glucose compared to Ob. Conclusions Low dose of fish oil supplementation (1 g/kg/day was able to reduce TC and TG levels, in addition to improved systemic and muscle insulin sensitivity. These results lend credence to the benefits of n-3 fatty acids upon the deleterious effects of insulin resistance mechanisms.

  15. Homeostatic Model Assessment for Insulin Resistance (HOMA-IR): A Better Marker for Evaluating Insulin Resistance Than Fasting Insulin in Women with Polycystic Ovarian Syndrome.

    Science.gov (United States)

    Majid, Hafsa; Masood, Qamar; Khan, Aysha Habib

    2017-03-01

    To assess the utility of HOMA-IR in assessing insulin resistance in patients with polycystic ovary syndrome (PCOS) and compare it with fasting insulin for assessing insulin resistance (IR). Observational study. Section of Clinical Chemistry, Department of Pathology and Laboratory Medicine, The Aga Khan University Hospital, Karachi, from January 2009 to September 2012. Medical chart review of all women diagnosed with PCOS was performed. Of the 400 PCOS women reviewed, 91 met the inclusion criteria. Insulin resistance was assessed by calculating HOMA-IR using the formula (fasting glucose x fasting insulin)/405, taking normal value HOMA-IR of women was 3.1 ±1.7, respectively with IR in 69% (n=63) women, while hyperinsulinemia was present in 60% (n=55) women (fasting Insulin 18.5 ±5.8 µIU/ml). Hyperandrogenism was present in 53.8% (n=49), whereas 38.5% (n=35) women had primary infertility or subfertility, while 65.9% (n=60) had menstrual irregularities; and higher frequencies were observed in women with IR. Eight subjects with IR and endocrine abnormalities were missed by fasting insulin. Insulin resistance is common in PCOS and it is likely a pathogenic factor for development of PCOS. HOMAIR model performed better than hyperinsulinemia alone for diagnosing IR.

  16. Cutaneous microvascular perfusion responses to insulin iontophoresis are differentially affected by insulin resistance after spinal cord injury.

    Science.gov (United States)

    La Fountaine, Michael F; Cirnigliaro, Christopher M; Azarelo, Frank; Hobson, Joshua C; Tascione, Oriana; Swonger, Kirsten N; Dyson-Hudson, Trevor; Bauman, William A

    2017-09-01

    What is the central question of this study? What impact does insulin resistance have on cutaneous perfusion responses to insulin iontophoresis in vascular beds with markedly reduced or functionally ablated sympathetic nervous system vasomotor function resulting from spinal cord injury? What is the main finding and its importance? Persons with spinal cord injury have sublesional microvascular endothelial dysfunction, as indicated by a blunted cutaneous perfusion response to acetylcholine iontophoresis, and the presence of insulin resistance has a further confounding effect on endothelium-mediated changes to cutaneous perfusion in the lower extremities. Endothelium-mediated mechanisms that regulate skin blood flow might play an integral role in optimizing skin perfusion in vascular beds with sympathetic nervous system vasomotor impairment, such as in spinal cord injury (SCI). Insulin is a vasoactive hormone and second messenger of nitric oxide that facilitates endothelium-mediated dilatation. The effects of insulin resistance (IR) on sublesional cutaneous perfusion responses to insulin provocation have yet to be described in persons with SCI. Persons with SCI and an able-bodied (AB) cohort were divided into subgroups based upon fasting plasma insulin concentration cut-offs for IR (≥13.13 mIU ml -1 ) or insulin sensitivity (IS; insulin, acetylcholine or placebo iontophoresis in the lower extremities; BPU responses were log 10 transformed to facilitate comparisons, and the net insulin response (NetIns) BPU response was calculated (insulin minus placebo BPU response). The NetIns was significantly greater in both IS groups compared with their corresponding IR group. The acetylcholine-mediated BPU responses in the SCI subgroups were significantly lower than those in the ABIS group. The proportional BPU responses of NetIns to acetylcholine in the IS cohorts (i.e. ABIS and SCIS) were significantly greater (P < 0.05) than that of each IR subgroup. The presence of IR

  17. Does cardiorespiratory fitness modify the association between birth weight and insulin resistance in adult life?

    Directory of Open Access Journals (Sweden)

    Tomoko Aoyama

    Full Text Available OBJECTIVE: Lower birth weight is associated with higher insulin resistance in later life. The aim of this study was to determine whether cardiorespiratory fitness modifies the association of birth weight with insulin resistance in adults. METHODS: The subjects were 379 Japanese individuals (137 males, 242 females aged 20-64 years born after 1943. Insulin resistance was assessed using a homeostasis model assessment of insulin resistance (HOMA-IR, which is calculated from fasting blood glucose and insulin levels. Cardiorespiratory fitness (maximal oxygen uptake, VO2max was assessed by a maximal graded exercise test on a cycle ergometer. Birth weight was reported according to the Maternal and Child Health Handbook records or the subject's or his/her mother's memory. RESULTS: The multiple linear regression analysis revealed that birth weight was inversely associated with HOMA-IR (β = -0.141, p = 0.003, even after adjustment for gender, age, current body mass index, mean blood pressure, triglycerides, HDL cholesterol, and smoking status. Further adjustments for VO2max made little difference in the relationship between birth weight and HOMA-IR (β = -0.148, p = 0.001, although VO2max (β = -0.376, p<0.001 was a stronger predictor of HOMA-IR than birth weight. CONCLUSIONS: The results showed that the association of lower birth weight with higher insulin resistance was little modified by cardiorespiratory fitness in adult life. However, cardiorespiratory fitness was found to be a stronger predictor of insulin resistance than was birth weight, suggesting that increasing cardiorespiratory fitness may have a much more important role in preventing insulin resistance than an individual's low birth weight.

  18. Cardiac Development and Transcription Factors: Insulin Signalling, Insulin Resistance, and Intrauterine Nutritional Programming of Cardiovascular Disease

    Science.gov (United States)

    Govindsamy, Annelene; Naidoo, Strinivasen

    2018-01-01

    Programming with an insult or stimulus during critical developmental life stages shapes metabolic disease through divergent mechanisms. Cardiovascular disease increasingly contributes to global morbidity and mortality, and the heart as an insulin-sensitive organ may become insulin resistant, which manifests as micro- and/or macrovascular complications due to diabetic complications. Cardiogenesis is a sequential process during which the heart develops into a mature organ and is regulated by several cardiac-specific transcription factors. Disrupted cardiac insulin signalling contributes to cardiac insulin resistance. Intrauterine under- or overnutrition alters offspring cardiac structure and function, notably cardiac hypertrophy, systolic and diastolic dysfunction, and hypertension that precede the onset of cardiovascular disease. Optimal intrauterine nutrition and oxygen saturation are required for normal cardiac development in offspring and the maintenance of their cardiovascular physiology. PMID:29484207

  19. Effects of glucose, insulin, and insulin resistance on cerebral 18F-FDG distribution in cognitively normal older subjects

    Science.gov (United States)

    Onishi, Airin; Fujiwara, Yoshinori; Ishiwata, Kiichi; Ishii, Kenji

    2017-01-01

    Background Increasing plasma glucose levels and insulin resistance can alter the distribution pattern of fluorine-18-labeled fluorodeoxyglucose (18F-FDG) in the brain and relatively reduce 18F-FDG uptake in Alzheimer's disease (AD)-related hypometabolic regions, leading to the appearance of an AD-like pattern. However, its relationship with plasma insulin levels is unclear. We aimed to compare the effects of plasma glucose levels, plasma insulin levels and insulin resistance on the appearance of the AD-like pattern in 18F-FDG images. Methods Fifty-nine cognitively normal older subjects (age = 75.7 ± 6.4 years) underwent 18F-FDG positron emission tomography along with measurement of plasma glucose and insulin levels. As an index of insulin resistance, the Homeostasis model assessment of Insulin Resistance (HOMA-IR) was calculated. Results Plasma glucose levels, plasma insulin levels, and HOMA-IR were 102.2 ± 8.1 mg/dL, 4.1 ± 1.9 μU/mL, and 1.0 ± 0.5, respectively. Whole-brain voxelwise analysis showed a negative correlation of 18F-FDG uptake with plasma glucose levels in the precuneus and lateral parietotemporal regions (cluster-corrected p < 0.05), and no correlation with plasma insulin levels or HOMA-IR. In the significant cluster, 18F-FDG uptake decreased by approximately 4–5% when plasma glucose levels increased by 20 mg/dL. In the precuneus region, volume-of-interest analysis confirmed a negative correlation of 18F-FDG uptake with plasma glucose levels (r = -0.376, p = 0.002), and no correlation with plasma insulin levels (r = 0.156, p = 0.12) or HOMA-IR (r = 0.096, p = 0.24). Conclusion This study suggests that, of the three parameters, plasma glucose levels have the greatest effect on the appearance of the AD-like pattern in 18F-FDG images. PMID:28715453

  20. Peripheral insulin resistance and impaired insulin signaling contribute to abnormal glucose metabolism in preterm baboons.

    Science.gov (United States)

    Blanco, Cynthia L; McGill-Vargas, Lisa L; Gastaldelli, Amalia; Seidner, Steven R; McCurnin, Donald C; Leland, Michelle M; Anzueto, Diana G; Johnson, Marney C; Liang, Hanyu; DeFronzo, Ralph A; Musi, Nicolas

    2015-03-01

    Premature infants develop hyperglycemia shortly after birth, increasing their morbidity and death. Surviving infants have increased incidence of diabetes as young adults. Our understanding of the biological basis for the insulin resistance of prematurity and developmental regulation of glucose production remains fragmentary. The objective of this study was to examine maturational differences in insulin sensitivity and the insulin-signaling pathway in skeletal muscle and adipose tissue of 30 neonatal baboons using the euglycemic hyperinsulinemic clamp. Preterm baboons (67% gestation) had reduced peripheral insulin sensitivity shortly after birth (M value 12.5 ± 1.5 vs 21.8 ± 4.4 mg/kg · min in term baboons) and at 2 weeks of age (M value 12.8 ± 2.6 vs 16.3 ± 4.2, respectively). Insulin increased Akt phosphorylation, but these responses were significantly lower in preterm baboons during the first week of life (3.2-fold vs 9.8-fold). Preterm baboons had lower glucose transporter-1 protein content throughout the first 2 weeks of life (8%-12% of term). In preterm baboons, serum free fatty acids (FFAs) did not decrease in response to insulin, whereas FFAs decreased by greater than 80% in term baboons; the impaired suppression of FFAs in the preterm animals was paired with a decreased glucose transporter-4 protein content in adipose tissue. In conclusion, peripheral insulin resistance and impaired non-insulin-dependent glucose uptake play an important role in hyperglycemia of prematurity. Impaired insulin signaling (reduced Akt) contributes to the defect in insulin-stimulated glucose disposal. Counterregulatory hormones are not major contributors.

  1. Hypolactasia is associated with insulin resistance in nonalcoholic steatohepatitis

    Science.gov (United States)

    de Campos Mazo, Daniel Ferraz; Mattar, Rejane; Stefano, José Tadeu; da Silva-Etto, Joyce Matie Kinoshita; Diniz, Márcio Augusto; Duarte, Sebastião Mauro Bezerra; Rabelo, Fabíola; Lima, Rodrigo Vieira Costa; de Campos, Priscila Brizolla; Carrilho, Flair José; Oliveira, Claudia P

    2016-01-01

    AIM To assess lactase gene (LCT)-13910C>T polymorphisms in Brazilian non-alcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) patients in comparison with healthy controls. METHODS This was a transverse observational clinical study with NAFLD patients who were followed at the Hepatology Outpatient Unit of the Hospital das Clínicas, São Paulo, Brazil. The polymorphism of lactase non-persistence/lactase persistence (LCT-13910C>T) was examined by PCR-restriction fragment length polymorphism technique in 102 liver biopsy-proven NAFLD patients (steatosis in 9 and NASH in 93) and compared to those of 501 unrelated healthy volunteers. Anthropometric, clinical, biochemical and liver histology data were analyzed. Continuous variables were compared using the t or Mann-Whitney tests, and categorical data were compared with the Fisher’s exact test. Univariate logistic regression and multivariate logistic regression adjusted for gender and age were performed. RESULTS No differences in the LCT-13910 genotype frequencies were noted between the NAFLD patients (66.67% of the patients with steatosis were CC, 33.33% were CT, and none were TT; 55.91% of the patients with NASH were CC, 39.78% were CT, and 4.3% were TT; P = 0.941) and the healthy controls (59.12% were CC, 35.67% were CT, and 5.21% were TT) or between the steatosis and NASH patients. That is, the distribution of the lactase non-persistence/lactase persistence polymorphism (LCT-13910C>T) in the patients with NAFLD was equal to that in the general population. In the NASH patients, the univariate analysis revealed that the lactase non-persistence (low lactase activity or hypolactasia) phenotype was associated with higher insulin levels (23.47 ± 15.94 μU/mL vs 15.8 ± 8.33 μU/mL, P = 0.027) and a higher frequency of insulin resistance (91.84% vs 72.22%, P = 0.02) compared with the lactase persistence phenotype. There were no associations between the LCT genotypes and diabetes (P = 0

  2. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats.

    Science.gov (United States)

    Yamazaki, Ricardo K; Brito, Gleisson A P; Coelho, Isabela; Pequitto, Danielle C T; Yamaguchi, Adriana A; Borghetti, Gina; Schiessel, Dalton Luiz; Kryczyk, Marcelo; Machado, Juliano; Rocha, Ricelli E R; Aikawa, Julia; Iagher, Fabiola; Naliwaiko, Katya; Tanhoffer, Ricardo A; Nunes, Everson A; Fernandes, Luiz Claudio

    2011-04-28

    Obesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats. Monosodium glutamate (MSG) (4 mg/g body weight) was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C), coconut fat-treated normal weight group (CO), fish oil-treated normal weight group (FO), obese control group (Ob), coconut fat-treated obese group (ObCO) and fish oil-treated obese group (ObFO). Obese insulin-resistant rats were supplemented with fish oil or coconut fat (1 g/kg/day) for 4 weeks. Insulin sensitivity, fasting blood biochemicals parameters, and skeletal muscle glucose metabolism were analyzed. Obese animals (Ob) presented higher Index Lee and 2.5 fold epididymal and retroperitoneal adipose tissue than C. Insulin sensitivity test (Kitt) showed that fish oil supplementation was able to maintain insulin sensitivity of obese rats (ObFO) similar to C. There were no changes in glucose and HDL-cholesterol levels amongst groups. Yet, ObFO revealed lower levels of total cholesterol (TC; 30%) and triacylglycerol (TG; 33%) compared to Ob. Finally, since exposed to insulin, ObFO skeletal muscle revealed an increase of 10% in lactate production, 38% in glycogen synthesis and 39% in oxidation of glucose compared to Ob. Low dose of fish oil supplementation (1 g/kg/day) was able to reduce TC and TG levels, in addition to improved systemic and muscle insulin sensitivity. These results lend credence to the benefits of n-3 fatty acids upon the deleterious effects of insulin resistance mechanisms.

  3. Intramuscular Lipid Metabolism in the Insulin Resistance of Smoking

    OpenAIRE

    Bergman, Bryan C.; Perreault, Leigh; Hunerdosse, Devon M.; Koehler, Mary C.; Samek, Ali M.; Eckel, Robert H.

    2009-01-01

    OBJECTIVE Smoking decreases insulin action and increases the risk of type 2 diabetes in humans. Mechanisms responsible for smoking-induced insulin resistance are unclear. We hypothesized smokers would have increased intramuscular triglyceride (IMTG) and diacylglycerol (DAG) concentration and decreased fractional synthesis rate (FSR) compared with nonsmokers. RESEARCH DESIGN AND METHODS Nonsmokers (n = 18, aged 20 ± 0.5 years, BMI 22 ± 0.4 kg/m2, body fat 20 ± 2%, 0 cigarettes per day) and smo...

  4. Relationship between increased serum tumor necrosis factor levels and insulin resistance in patients with essential hypertension

    International Nuclear Information System (INIS)

    Wang Weimin; Li Jinliang; Huang Yongqiang

    2010-01-01

    Objective: To investigate the relationship between serum tumor necrosis factor-α (TNF-α) levels and insulin resistance (IR) in patients with essential by pertension. Methods: Serum TNF-α and free insulin (fINS)levels were measured with RIA in 41 patients with essential hypertension and 38 controls. Insulin resistance was calculated with insulin resistance index (HOMA-IR). Results: The serum TNF-α levels were significantly higher in patients with essential hypertension than those in the controls (P<0.001). The HOMA-IR was also significantly higher in hypertension group than that in controls (P<0.001). Serum TNF-α levels was positively correlated with BMI, HOMA-IR and SBP both in hypertension group and control group (P<0.05). Conclusion: Serum TNF-α level was increased in hypertensive patients and positively correlated with obesity and IR. (authors)

  5. Relationship among resistance to the insulin and obesity in Zacatecas population

    International Nuclear Information System (INIS)

    Zapata R, P. G.; Badillo A, V.

    2012-10-01

    The Zacatecas State (Mexico) occupies the second national place in obesity, although the adults have a bigger incidence every time exist more minors that present this problem which can facilitate other illnesses like diabetes and hypertension. The first resistance references to the insulin were made by Himsworth in 1936, when he referred to insulin-resistant and insulin-sensitive diabetics. The resistance to the insulin, as event pathogen primary in the diabetes mellitus type 2 is derived of the obesity, what implies a subnormal biological response to the actions of the hormone in the carbohydrates, proteins and lipids metabolism. In this work was carried out a study of insulin levels for the Radioimmunoassay method in 40 patients with evident obesity and 8 patients with normal weight in order to evaluate these levels according to their age and abdominal circumference. Three correlations were made for both groups (obese and normal), the first correlation indicates the size of the waist with the insulin quantity, according to the arrangements that shows the correlation is bigger in all; what means that there is a great dependence among the size of the waist and the insulin quantity that contain. The second correlation is the age with the insulin that although is small, indicates that the age does not important for the insulin quantity that is secreted. The third and last realized correlation was of the age with the waist, and according to the results correlation also exists, but this is not significant as the first correlation. Therefore is considered existent the relationship between obesity and resistance to the insulin. (Author)

  6. Mechanisms linking brain insulin resistance to Alzheimer's disease

    Science.gov (United States)

    Matioli, Maria Niures P.S.; Nitrini, Ricardo

    2015-01-01

    Several studies have indicated that Diabetes Mellitus (DM) can increase the risk of developing Alzheimer's disease (AD). This review briefly describes current concepts in mechanisms linking DM and insulin resistance/deficiency to AD. Insulin/insulin-like growth factor (IGF) resistance can contribute to neurodegeneration by several mechanisms which involve: energy and metabolism deficits, impairment of Glucose transporter-4 function, oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, accumulation of AGEs, ROS and RNS with increased production of neuro-inflammation and activation of pro-apoptosis cascade. Impairment in insulin receptor function and increased expression and activation of insulin-degrading enzyme (IDE) have also been described. These processes compromise neuronal and glial function, with a reduction in neurotransmitter homeostasis. Insulin/IGF resistance causes the accumulation of AβPP-Aβ oligomeric fibrils or insoluble larger aggregated fibrils in the form of plaques that are neurotoxic. Additionally, there is production and accumulation of hyper-phosphorylated insoluble fibrillar tau which can exacerbate cytoskeletal collapse and synaptic disconnection. PMID:29213950

  7. Midkine, a potential link between obesity and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Nengguang Fan

    Full Text Available Obesity is associated with increased production of inflammatory mediators in adipose tissue, which contributes to chronic inflammation and insulin resistance. Midkine (MK is a heparin-binding growth factor with potent proinflammatory activities. We aimed to test whether MK is associated with obesity and has a role in insulin resistance. It was found that MK was expressed in adipocytes and regulated by inflammatory modulators (TNF-α and rosiglitazone. In addition, a significant increase in MK levels was observed in adipose tissue of obese ob/ob mice as well as in serum of overweight/obese subjects when compared with their respective controls. In vitro studies further revealed that MK impaired insulin signaling in 3T3-L1 adipocytes, as indicated by reduced phosphorylation of Akt and IRS-1 and decreased translocation of glucose transporter 4 (GLUT4 to the plasma membrane in response to insulin stimulation. Moreover, MK activated the STAT3-suppressor of cytokine signaling 3 (SOCS3 pathway in adipocytes. Thus, MK is a novel adipocyte-secreted factor associated with obesity and inhibition of insulin signaling in adipocytes. It may provide a potential link between obesity and insulin resistance.

  8. Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance.

    Science.gov (United States)

    Arai, Chikako; Arai, Norie; Mizote, Akiko; Kohno, Keizo; Iwaki, Kanso; Hanaya, Toshiharu; Arai, Shigeyuki; Ushio, Simpei; Fukuda, Shigeharu

    2010-12-01

    Trehalose has been shown to evoke lower insulin secretion than glucose in oral saccharide tolerance tests in humans. Given this hypoinsulinemic effect of trehalose, we hypothesized that trehalose suppresses adipocyte hypertrophy by reducing storage of triglyceride and mitigates insulin resistance in mice fed a high-fat diet (HFD). Mice were fed an HFD and given drinking water containing 2.5% saccharide (glucose [Glc], trehalose [Tre], maltose [Mal], high-fructose corn syrup, or fructose [Fru]) ad libitum. After 7 weeks of HFD and saccharide intake, fasting serum insulin levels in the Tre/HFD group were significantly lower than in the Mal/HFD and Glc/HFD groups (P fructose corn syrup/HFD, or Fru/HFD group. Analysis of gene expression in mesenteric adipocytes showed that no statistically significant difference in the expression of monocyte chemoattractant protein-1 (MCP-1) messenger RNA (mRNA) was observed between the Tre/HFD group and the distilled water/standard diet group, whereas a significant increase in the MCP-1 mRNA expression was observed in the Glc/HFD, Mal/HFD, Fru/HFD, and distilled water/HFD groups. Thus, our data indicate that trehalose prevents adipocyte hypertrophy and mitigates insulin resistance in HFD-fed mice by reducing insulin secretion and down-regulating mRNA expression of MCP-1. These findings further suggest that trehalose is a functional saccharide that mitigates insulin resistance. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Mechanisms linking brain insulin resistance to Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Maria Niures P.S. Matioli

    Full Text Available Several studies have indicated that Diabetes Mellitus (DM can increase the risk of developing Alzheimer's disease (AD. This review briefly describes current concepts in mechanisms linking DM and insulin resistance/deficiency to AD. Insulin/insulin-like growth factor (IGF resistance can contribute to neurodegeneration by several mechanisms which involve: energy and metabolism deficits, impairment of Glucose transporter-4 function, oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, accumulation of AGEs, ROS and RNS with increased production of neuro-inflammation and activation of pro-apoptosis cascade. Impairment in insulin receptor function and increased expression and activation of insulin-degrading enzyme (IDE have also been described. These processes compromise neuronal and glial function, with a reduction in neurotransmitter homeostasis. Insulin/IGF resistance causes the accumulation of AβPP-Aβ oligomeric fibrils or insoluble larger aggregated fibrils in the form of plaques that are neurotoxic. Additionally, there is production and accumulation of hyper-phosphorylated insoluble fibrillar tau which can exacerbate cytoskeletal collapse and synaptic disconnection.

  10. Insulin resistance in uremia: Insulin receptor kinase activity in liver and muscle from chronic uremic rats

    International Nuclear Information System (INIS)

    Cecchin, F.; Ittoop, O.; Sinha, M.K.; Caro, J.F.

    1988-01-01

    The authors have studied the structure and function of the partially purified insulin receptors from liver and skeletal muscle in a rat model of severe chronic uremia. 125 I-insulin binding was higher in the liver from uremic rats when compared with ad libitum- and pair-fed controls. Furthermore, the ability of insulin to stimulate the autophosphorylation of the β-subunit and insulin receptor kinase activity using Glu 80 , Tyr 20 as exogenous phosphoacceptor was increased in the liver of the uremic animals. The structural characteristics of the receptors, as determined by electrophoretic mobilities of affinity labeled α-subunit and the phosphorylated β-subunit, were normal in uremia. 125 I-insulin binding and insulin receptor kinase activity were similar in the skeletal muscle from uremic and pair- and ad libitum-fed animals. Thus the data are supportive of the hypothesis that in liver and muscle of chronic uremic rats, insulin resistance is due to a defect(s) distal to the insulin receptor kinase

  11. Sex differences in insulin resistance in GABAB1 knockout mice.

    Science.gov (United States)

    Bonaventura, M M; Rodriguez, D; Ferreira, M L; Crivello, M; Repetto, E M; Bettler, B; Libertun, C; Lux-Lantos, V A

    2013-02-27

    We have previously demonstrated that the absence of functional GABA B receptors (GABABRs) disturbs glucose homeostasis in GABAB1KO mice. The aim of this work was to extend our studies of these alterations in GABAB1KO mice and investigate the sexual differences therein. Male and female, GABAB1KO and WT mice were used. Glucose and insulin tolerance tests (GTT and ITT), and insulin and glucagon secretion tests (IST and GST) were performed. Blood glucose, serum insulin and hyperglycemic hormones were determined, and HOMA-IR calculated. Skeletal muscle insulin receptor β subunit (IRβ), insulin receptor substrates 1/2 (IRS1, IRS2) and hexokinase-II levels were determined by Western blot. Skeletal muscle insulin sensitivity was assessed by in vivo insulin-induced Akt phosphorylation (Western blot). Food intake and hypothalamic NPY mRNA expression (by qPCR) were also evaluated. Fasted insulin and HOMA-IR were augmented in GABAB1KO males, with no alterations in females. Areas under the curve (AUC) for GTT and ITT were increased in GABAB1KO mice of both genders, indicating compromised insulin sensitivity. No genotype differences were observed in IST, GST or in IRβ, IRS1, IRS2 and hexokinase-II expression. Akt activation was severely impaired in GABAB1KO males while no alterations were observed in females. GABAB1KO mice showed increased food intake and NPY expression. Glucose metabolism and energy balance disruptions were more pronounced in GABAB1KO males, which develop peripheral insulin resistance probably due to augmented insulin secretion. Metabolic alterations in females were milder and possibly due to previously described reproductive disorders, such as persistent estrus. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Associations of hyperglycemia and insulin resistance with biomarkers of endothelial dysfunction in Hispanic/Latino youths: Results from the Hispanic Community Children's Health Study/Study of Latino Youth (SOL Youth).

    Science.gov (United States)

    Parrinello, Christina M; Hua, Simin; Carnethon, Mercedes R; Gallo, Linda C; Hudson, Barry I; Goldberg, Ronald B; Delamater, Alan M; Kaplan, Robert C; Isasi, Carmen R

    2017-05-01

    We hypothesized that Hispanic/Latino youth at high risk for diabetes would have elevated biomarkers of endothelial dysfunction. Among 1316 children 8-16years old from the Study of Latino Youth (SOL Youth), we used Poisson regression to obtain prevalence ratios (PRs) and 95% CIs for the cross-sectional association of quartiles of fasting glucose, HbA1c, and insulin resistance with E-selectin and plasminogen activator inhibitor-1 (PAI-1) levels above the median (≥48.1 and ≥2.02ng/mL, respectively). Levels of E-selectin and PAI-1 were higher in children who were obese or had higher levels of hs-CRP (p<0.05). Insulin resistance was independently associated with higher levels of PAI-1 (adjusted PR and 95% CI for the highest versus lowest quartile (Q4 vs Q1): 2.25 [1.64, 3.09]). We found stronger evidence of associations of insulin resistance with higher levels of PAI-1 among boys as compared with girls (p-interaction = 0.10). Insulin resistance was associated with endothelial dysfunction, as measured by higher levels of PAI-1, in Hispanic/Latino youth. These biomarkers may be useful in risk stratification and prediction of diabetes and cardiovascular disease in high-risk youth. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Vitamin C deficiency aggravates tumor necrosis factor α-induced insulin resistance.

    Science.gov (United States)

    Qing, Zhou; Xiao-Hui, Wu; Xi-Mei, Wu; Chao-Chun, Zou

    2018-06-15

    Chronic low-grade inflammation plays a major role in the development of insulin resistance. The potential role and underlying mechanism of vitamin C, an antioxidant and anti-inflammatory agent, was investigated in tumor necrosis factor-α (TNF-α)-induced insulin resistance. Gulonolactone oxidase knockout (Gulo -/- ) mice genetically unable to synthesize vitamin C were used to induce insulin resistance by continuously pumping small doses of TNF-α for seven days, and human liver hepatocellular carcinoma cells (HepG2 cells) were used to induce insulin resistance by treatment with TNF-α. Vitamin C deficiency aggravated TNF-α-induced insulin resistance in Gulo -/- mice, resulting in worse glucose tolerance test (GTT) results, higher fasting plasma insulin level, and the inactivation of the protein kinase B (AKT)/glycogen synthase kinase-3β (GSK3β) pathway in the liver. Vitamin C deficiency also worsened liver lipid accumulation and inflammation in TNF-α-treated Gulo -/- mice. In HepG2 cells, vitamin C reversed the TNF-α-induced reduction of glucose uptake and glycogen synthesis, which were mediated by increasing GLUT2 levels and the activation of the insulin receptor substrate (IRS-1)/AKT/GSK3β pathway. Furthermore, vitamin C inhibited the TNF-α-induced activation of not only the mitogen-activated protein kinase (MAPKs), but also nuclear factor-kappa B (NF-κB) signaling. Taken together, vitamin C is essential for preventing and improving insulin resistance, and the supplementing with vitamin C may be an effective therapeutic intervention for metabolic disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Validation of insulin resistance indexes in a stable renal transplant population

    NARCIS (Netherlands)

    Oterdoom, Leendert H.; de Vries, Aiko P. J.; van Son, Willem J.; Homan van der Heide, Jaap J.; Ploeg, Rutger J.; Gansevoort, Ron T.; de Jong, Paul E.; Gans, Rijk O. B.; Bakker, Stephan J. L.

    2005-01-01

    The purpose of this study was to investigate the validity of established insulin resistance indexes, based on fasting blood parameters, in a stable renal transplant population. Fasting insulin, homeostasis model assessment (HOMA), the quantitative insulin sensitivity check index (QUICKI), and

  15. Validation of insulin resistance indexes in a stable renal transplant population

    NARCIS (Netherlands)

    Oterdoom, LH; De Vries, APJ; Van Son, WJ; Van Der Heide, JJH; Ploeg, RJ; Gansevoort, RT; De Jong, PE; Gans, ROB; Bakker, SJL

    2005-01-01

    OBJECTIVE - The purpose of this study was to investigate the validity of established insulin resistance indexes, based on fasting blood parameters, in a stable renal transplant population. RESEARCH DESIGN AND METHODS - Fasting insulin, homeostasis model assessment (HOMA), the quantitative insulin

  16. Higher Fetal Insulin Resistance in Chinese Pregnant Women with Gestational Diabetes Mellitus and Correlation with Maternal Insulin Resistance

    OpenAIRE

    Wang, Qiuwei; Huang, Ruiping; Yu, Bin; Cao, Fang; Wang, Huiyan; Zhang, Ming; Wang, Xinhong; Zhang, Bin; Zhou, Hong; Zhu, Ziqiang

    2013-01-01

    OBJECTIVE: The aim of this study was to determine the effect of gestational diabetes mellitus (GDM) on fetal insulin resistance or β-cell function in Chinese pregnant women with GDM. MEASUREMENTS: Maternal fasting blood and venous cord blood samples (reflecting fetal condition) were collected in 65 well-controlled Chinese GDM mothers (only given dietary intervention) and 83 control subjects. The insulin, glucose and proinsulin concentrations of both maternal and cord blood samples were measur...

  17. Acute insulin resistance stimulates and insulin sensitization attenuates vascular smooth muscle cell migration and proliferation.

    Science.gov (United States)

    Cersosimo, Eugenio; Xu, Xiaojing; Upala, Sikarin; Triplitt, Curtis; Musi, Nicolas

    2014-08-01

    Differential activation/deactivation of insulin signaling, PI-3K and MAP-K pathways by high glucose and palmitate, with/out the insulin sensitizer pioglitazone (PIO), have been previously shown in vascular smooth muscle cells (VSMCs). To determine the biological impact of these molecular changes, we examined VSMC migration and proliferation ("M"&"P") patterns in similar conditions. VSMCs from healthy human coronary arteries were incubated in growth medium and "M"&"P" were analyzed after exposure to high glucose (25 mmol/L) ± palmitate (200 μmol/L) and ± PIO (8 μmol/L) for 5 h. "M"&"P" were assessed by: (1) polycarbonate membrane barrier with chemo-attractants and extended cell protrusions quantified by optical density (OD595 nm); (2) % change in radius area (2D Assay) using inverted microscopy images; and (3) cell viability assay expressed as cell absorbance (ABS) in media. "M" in 25 mmol/L glucose media increased by ~25% from baseline and % change in radius area rose from ~20% to ~30%. The addition of PIO was accompanied by a significant decrease in "M" from 0.25 ± 0.02 to 0.19 ± 0.02; a comparable decline from 0.25 ± 0.02 to 0.18 ± 0.02 was also seen with 25 mmol/L of glucose +200 μmol/L of palmitate. When PIO was coincubated with high glucose plus palmitate there was a 50% reduction in % change in radius. A ~10% increase in ABS, reflecting augmented "P" in media with 25 mmol/L glucose versus control was documented. The addition of PIO reduced ABS from 0.208 ± 0.03 to 0.183 ± 0.06. Both high glucose and palmitate showed ABS of ~0.140 ± 0.02, which decreased with PIO to ~0.120 ± 0.02, indicating "P" was reduced. These results confirm that high glucose and palmitate stimulate VSMCs migration and proliferation in vitro, which is attenuated by coincubation with the insulin sensitizer PIO. Although, we cannot ascertain whether these functional changes are coincident with the activation/deactivation of signal molecules, our findings are consistent with the

  18. Polychlorinated biphenyls exposure-induced insulin resistance is mediated by lipid droplet enlargement through Fsp27.

    Science.gov (United States)

    Kim, Hye Young; Kwon, Woo Young; Kim, Yeon A; Oh, Yoo Jin; Yoo, Seung Hee; Lee, Mi Hwa; Bae, Ju Yong; Kim, Jong-Min; Yoo, Young Hyun

    2017-06-01

    Although epidemiological and experimental studies demonstrated that polychlorinated biphenyls (PCBs) lead to insulin resistance, the mechanism underlying PCBs-induced insulin resistance has remained unsolved. In this study, we examined in vitro and in vivo effects of PCB-118 (dioxin-like PCB) and PCB-138 (non-dioxin-like PCB) on adipocyte differentiation, lipid droplet growth, and insulin action. 3T3-L1 adipocytes were incubated with PCB-118 or PCB-138 during adipocyte differentiation. For in vivo studies, C57BL/6 mice were administered PCB-118 or PCB-138 (37.5 mg/kg) by intraperitoneal injection and we examined adiposity and whole-body insulin action. PCB-118 and PCB-138 significantly promoted adipocyte differentiation and increased the lipid droplet (LD) size in 3T3-L1 adipocytes. In mice, both PCBs increased adipose mass and adipocyte size. Furthermore, both PCBs induced insulin resistance in vitro and in vivo. Expression of fat-specific protein 27 (Fsp27), which is localized to LD contact sites, was increased in PCB-treated 3T3-L1 adipocytes and mice. Depletion of Fsp27 by siRNA resulted in the inhibition of LD enlargement and attenuation of insulin resistance in PCB-treated 3T3-L1 adipocytes. An anti-diabetic drug, metformin, attenuated insulin resistance in PCB-treated 3T3-L1 adipocytes through the reduced expression of Fsp27 protein and LD size. This study suggests that PCB exposure-induced insulin resistance is mediated by LD enlargement through Fsp27.

  19. Insulin resistance is not conserved in myotubes established from women with PCOS.

    Directory of Open Access Journals (Sweden)

    Mette Eriksen

    2010-12-01

    Full Text Available Polycystic ovary syndrome (PCOS is the most common endocrine disorder among premenopausal women, who often develop insulin resistance. We tested the hypothesis that insulin resistance in skeletal muscle of patients with polycystic ovary syndrome (PCOS is an intrinsic defect, by investigating the metabolic characteristics and gene expression of in vitro differentiated myotubes established from well characterized PCOS subjects.Using radiotracer techniques, RT-PCR and enzyme kinetic analysis we examined myotubes established from PCOS subjects with or without pioglitazone treatment, versus healthy control subjects who had been extensively metabolically characterized in vivo. Results. Myotubes established from PCOS and matched control subjects comprehensively expressed all insulin-sensitive biomarkers; glucose uptake and oxidation, glycogen synthesis and lipid uptake. There were no significant differences between groups either at baseline or during acute insulin stimulation, although in vivo skeletal muscle was insulin resistant. In particular, we found no evidence for defects in insulin-stimulated glycogen synthase activity between groups. Myotubes established from PCOS patients with or without pioglitazone treatment also showed no significant differences between groups, neither at baseline nor during acute insulin stimulation, although in vivo pioglitazone treatment significantly improved insulin sensitivity. Consistently, the myotube cultures failed to show differences in mRNA levels of genes previously demonstrated to differ in PCOS patients with or without pioglitazone treatment (PLEK, SLC22A16, and TTBK.These results suggest that the mechanisms governing insulin resistance in skeletal muscle of PCOS patients in vivo are not primary, but rather adaptive.ClinicalTrials.gov NCT00145340.

  20. Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice.

    Directory of Open Access Journals (Sweden)

    Andréa M Caricilli

    2011-12-01

    Full Text Available Environmental factors and host genetics interact to control the gut microbiota, which may have a role in the development of obesity and insulin resistance. TLR2-deficient mice, under germ-free conditions, are protected from diet-induced insulin resistance. It is possible that the presence of gut microbiota could reverse the phenotype of an animal, inducing insulin resistance in an animal genetically determined to have increased insulin sensitivity, such as the TLR2 KO mice. In the present study, we investigated the influence of gut microbiota on metabolic parameters, glucose tolerance, insulin sensitivity, and signaling of TLR2-deficient mice. We investigated the gut microbiota (by metagenomics, the metabolic characteristics, and insulin signaling in TLR2 knockout (KO mice in a non-germ free facility. Results showed that the loss of TLR2 in conventionalized mice results in a phenotype reminiscent of metabolic syndrome, characterized by differences in the gut microbiota, with a 3-fold increase in Firmicutes and a slight increase in Bacteroidetes compared with controls. These changes in gut microbiota were accompanied by an increase in LPS absorption, subclinical inflammation, insulin resistance, glucose intolerance, and later, obesity. In addition, this sequence of events was reproduced in WT mice by microbiota transplantation and was also reversed by antibiotics. At the molecular level the mechanism was unique, with activation of TLR4 associated with ER stress and JNK activation, but no activation of the IKKβ-IκB-NFκB pathway. Our data also showed that in TLR2 KO mice there was a reduction in regulatory T cell in visceral fat, suggesting that this modulation may also contribute to the insulin resistance of these animals. Our results emphasize the role of microbiota in the complex network of molecular and cellular interactions that link genotype to phenotype and have potential implications for common human disorders involving obesity, diabetes

  1. Mangiferin ameliorates insulin resistance by inhibiting inflammation and regulatiing adipokine expression in adipocytes under hypoxic condition.

    Science.gov (United States)

    Yang, Chao-Qiang; Xu, Jing-Hua; Yan, Dan-Dan; Liu, Bao-Lin; Liu, Kang; Huang, Fang

    2017-09-01

    Adipose tissue hypoxia has been recognized as the initiation of insulin resistance syndromes. The aim of the present study was to investigate the effects of mangiferin on the insulin signaling pathway and explore whether mangiferin could ameliorate insulin resistance caused by hypoxia in adipose tissue. Differentiated 3T3-L1 adipocytes were incubated under normal and hypoxic conditions, respectively. Protein expressions were analyzed by Western blotting. Inflammatory cytokines and HIF-1-dependent genes were tested by ELISA and q-PCR, respectively. The glucose uptake was detected by fluorescence microscopy. HIF-1α was abundantly expressed during 8 h of hypoxic incubation. Inflammatory reaction was activated by up-regulated NF-κB phosphorylation and released cytokines like IL-6 and TNF-α. Glucose uptake was inhibited and insulin signaling pathway was damaged as well. Mangiferin substantially inhibited the expression of HIF-1α. Lactate acid and lipolysis, products released by glycometabolism and lipolysis, were also inhibited. The expression of inflammatory cytokines was significantly reduced and the damaged insulin signaling pathway was restored to proper functional level. The glucose uptake of hypoxic adipocytes was promoted and the dysfunction of adipocytes was relieved. These results showed that mangiferin could not only improve the damaged insulin signaling pathway in hypoxic adipocytes, but also ameliorate inflammatory reaction and insulin resistance caused by hypoxia. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  2. Evaluation of chronic kidney disease patients for insulin resistance in tertiary care hospital

    International Nuclear Information System (INIS)

    Tahir, S.; Hayat, A.; Khan, S.A.; Ahmad, T.M.; Majeed, N.

    2018-01-01

    Objective: To evaluate the patients of chronic kidney disease for insulin resistance. Study Design: Cross sectional observational study. Place and Duration of Study: The study was conducted in the chemical pathology department of Army Medical College/Military Hospital Rawalpindi, from Nov 2016 to Apr 2017. Material and Methods: Fifty patients were recruited for this study with deranged renal functions and/or having any structural renal abnormality for more than 3 months. These patients did not have any history of diabetes and dialysis. Fifty ages matched healthy individuals were included as controls. Renal function tests, lipid profile, complete blood count, fasting plasma glucose and serum insulin levels were performed in all subjects. Insulin resistance was calculated by using homeostatic model for assessment of insulin resistance (HOMA-IR). Results of this study were analyzed on SPSS version 23. Results: Fasting insulin levels were much higher in the patient with chronic kidney disease as compared to controls (p-value=0.001). HOMA-IR in cases was also significantly higher. Statistical comparison of lipid profile showed significant difference of only triglycerides level. Conclusion: HOMA-IR is markedly raised in the patients of chronic kidney disease. This indicates a significant association of chronic kidney disease with insulin resistance. (author)

  3. How does brain insulin resistance develop in Alzheimer's disease?

    Science.gov (United States)

    De Felice, Fernanda G; Lourenco, Mychael V; Ferreira, Sergio T

    2014-02-01

    Compelling preclinical and clinical evidence supports a pathophysiological connection between Alzheimer's disease (AD) and diabetes. Altered metabolism, inflammation, and insulin resistance are key pathological features of both diseases. For many years, it was generally considered that the brain was insensitive to insulin, but it is now accepted that this hormone has central neuromodulatory functions, including roles in learning and memory, that are impaired in AD. However, until recently, the molecular mechanisms accounting for brain insulin resistance in AD have remained elusive. Here, we review recent evidence that sheds light on how brain insulin dysfunction is initiated at a molecular level and why abnormal insulin signaling culminates in synaptic failure and memory decline. We also discuss the cellular basis underlying the beneficial effects of stimulation of brain insulin signaling on cognition. Discoveries summarized here provide pathophysiological background for identification of novel molecular targets and for development of alternative therapeutic approaches in AD. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  4. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    Energy Technology Data Exchange (ETDEWEB)

    Vikram, Ajit [Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab 160 062 (India); Jena, Gopabandhu, E-mail: gbjena@gmail.com [Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab 160 062 (India)

    2010-07-23

    Research highlights: {yields}Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. {yields}Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. {yields}Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. {yields}Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia ({approx}18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPAR{gamma}) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 {+-} 16.32 vs. 126.37 {+-} 27.07 mg/dl) and glucose intolerance ({approx}78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  5. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    International Nuclear Information System (INIS)

    Vikram, Ajit; Jena, Gopabandhu

    2010-01-01

    Research highlights: →Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. →Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. →Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. →Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia (∼18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPARγ) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 ± 16.32 vs. 126.37 ± 27.07 mg/dl) and glucose intolerance (∼78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  6. Increased CD19+CD24+CD27+ B regulatory cells are associated with insulin resistance in patients with type I Hashimoto's thyroiditis.

    Science.gov (United States)

    Yang, Min; Du, Changji; Wang, Yinping; Liu, Jun

    2017-06-01

    Hashimoto's thyroiditis (HT) is characterized by dysregulated immune responses and is commonly associated with insulin resistance. However, the mechanism of insulin resistance in HT remains to be fully elucidated. The aim of the present study was to investigate the correlation between the percentage of B regulatory lymphocytes (Bregs) and insulin resistance in patients with HT but with normal thyroid function (type I). A total of 59 patients with type I HT and 38 healthy volunteers were enrolled in the study. An oral glucose tolerance test was performed to measure insulin secretion and assess β‑cell functions. Flow cytometry was performed to examine the percentages of lymphocyte populations. The patients with HT exhibited normal fasting and postprandial glucose and fasting insulin secretion, but increased secretion of early‑phase and total insulin. The patients with HT also had insufficient β‑cell compensation for insulin resistance, indicated by a reduced disposition index, in the fasting state. An elevation in the percentage of CD19+CD24+CD27+ Bregs was also observed, which correlated positively with insulin secretion and insulin resistance in the fasting state. The patients with type I HT had postprandial insulin resistance and insufficient β‑cell compensation for fasting insulin resistance. Therefore, the increase in CD19+CD24+CD27+ Bregs was closely associated with fasting insulin secretion. These results provide novel insight into the mechanism of insulin resistance in HT.

  7. Insulin resistance, insulin response, and obesity as indicators of metabolic risk

    DEFF Research Database (Denmark)

    Ferrannini, Ele; Balkau, Beverley; Coppack, Simon W

    2007-01-01

    CONTEXT: Insulin resistance (IR) and obesity, especially abdominal obesity, are regarded as central pathophysiological features of a cluster of cardiovascular risk factors (CVRFs), but their relative roles remain undefined. Moreover, the differential impact of IR viz. insulin response has not been...... evaluated. OBJECTIVE: The objective of this study was to dissect out the impact of obesity, abdominal obesity, and IR/insulin response on CVRF. DESIGN: This was a cross-sectional study. SETTING: The study was conducted at 21 research centers in Europe. SUBJECTS: The study included a cohort of 1308......-cholesterol, and lower high-density lipoprotein-cholesterol, and insulin response to higher heart rate, blood pressure and fasting glucose, and the same dyslipidemic profile as IR (P

  8. Investigation of pancreas indocrine function in order to reveal subclinical insulin resistence in women with acne

    OpenAIRE

    Filippova, T.; Rudykh, N.; Shevchuk, A.

    2008-01-01

    Changed glycemic curves and indices of insulin resistance, the increase of insulin basal level in comparison with healthy persons, presence of antibodies to insulin antigen, decrease of level sex hormone bilding globulin were revealed in patients with acne. It can be considered as sign of formation of subclinical insulin resistance.

  9. Dietary patterns and the insulin resistance phenotype among non-diabetic adults

    Science.gov (United States)

    Background: Information on the relation between dietary patterns derived by cluster analysis and insulin resistance is scarce. Objective: To compare insulin resistance phenotypes, including waist circumference, body mass index, fasting and 2-hour post-challenge insulin, insulin sensitivity index (I...

  10. Inverse association between soya food consumption and insulin resistance in Japanese adults.

    Science.gov (United States)

    Nakamoto, Mariko; Uemura, Hirokazu; Sakai, Tohru; Katsuura-Kamano, Sakurako; Yamaguchi, Miwa; Hiyoshi, Mineyoshi; Arisawa, Kokichi

    2015-08-01

    The purpose of the present study was to examine the association between soya food consumption and insulin resistance using baseline data of the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study in Tokushima, Japan. This cross-sectional study included 1274 subjects, aged 34-70 years at baseline, living in Tokushima Prefecture between 2008 and 2013. Fasting blood samples were collected and information on lifestyle characteristics including soya food intake and medical history were obtained using a structured self-administered questionnaire. The homeostasis model assessment of insulin resistance (HOMA-IR) was measured and those with HOMA-IR ≥ 2.5 were defined as having insulin resistance. Multiple logistic regression models were used to analyse the association between soya product intake and the prevalence of insulin resistance. Rural communities located in Tokushima Prefecture, Japan, between 2008 and 2013. A total of 1148 adults (565 men and 583 women), aged 34-70 years. The frequency of intake of miso soup, total non-fried soya products and total soya products showed significant inverse dose-response relationships with insulin resistance, after adjustments for potential confounders. When soya product intake was calculated as soya protein and isoflavone, the odds ratios of insulin resistance decreased significantly as the estimated intake of soya protein increased. Furthermore, significant inverse dose-response relationships were observed for total non-fried soya products and total soya products, after adjustment for total vegetable or total fibre consumption. The present results indicate that the intake of soya products and non-fried soya products is associated with reduced insulin resistance in the Japanese population.

  11. Achieving ADA/ISPAD clinical guideline goals is associated with higher insulin sensitivity and cardiopulmonary fitness in adolescents with type 1 diabetes: Results from RESistance to InSulin in Type 1 ANd Type 2 diabetes (RESISTANT) and Effects of MEtformin on CardiovasculaR Function in AdoLescents with Type 1 Diabetes (EMERALD) Studies.

    Science.gov (United States)

    Bjornstad, Petter; Cree-Green, Melanie; Baumgartner, Amy; Coe, Gregory; Reyes, Yesenia Garcia; Schäfer, Michal; Pyle, Laura; Regensteiner, Judith G; Reusch, Jane Eb; Nadeau, Kristen J

    2018-05-01

    Most youth with type 1 diabetes do not meet the American Diabetes Association (ADA) and International Society for Pediatric and Adolescent Diabetes (ISPAD) targets for hemoglobin A1c (HbA1c), blood pressure (BP), lipids, and body mass index (BMI). We hypothesized that ISPAD/ADA goal achievement would be associated with better insulin sensitivity (IS) and cardiopulmonary fitness. IS was quantified as glucose infusion rate (GIR) from a hyperinsulinemic-euglycemic clamp in youth with type 1 diabetes from the RESistance to InSulin in Type 1 ANd Type 2 diabetes (RESISTANT) (n = 86) and Effects of MEtformin on CardiovasculaR Function in AdoLescents with Type 1 Diabetes (EMERALD) (n = 41) cohorts (n = 127; age 15.7 ± 2.2 years, 52% girls). Cardiopulmonary fitness was measured as peak oxygen consumption (VO 2 peak/kg) during upright (RESISTANT) or supine (EMERALD) cycle ergometry and were stratified by cycle type. Goal achievement was defined as HbA1c 35 mg/dL, triglycerides ADA/ISPAD goal achievement was associated with greater IS and cardiopulmonary fitness. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Liraglutide increases FGF-21 activity and insulin sensitivity in high fat diet and adiponectin knockdown induced insulin resistance.

    Directory of Open Access Journals (Sweden)

    Mengliu Yang

    Full Text Available BACKGROUND: Liraglutide is a glucagon-like peptide-1 analogue that stimulates insulin secretion and improves β-cell function. However, it is not clear whether liraglutide achieves its glucose lowering effect only by its known effects or whether other as yet unknown mechanisms are involved. The aim of this study was to examine the effects of liraglutide on Fibroblast growth factor-21 (FGF-21 activity in High-fat diet (HFD fed ApoE(-/- mice with adiponectin (Acrp30 knockdown. METHOD: HFD-fed ApoE(-/- mice were treated with adenovirus vectors expressing shAcrp30 to produce insulin resistance. Hyperinsulinemic-euglycemic clamp studies were performed to evaluate insulin sensitivity of the mouse model. QRT-PCR and Western blot were used to measure the mRNA and protein expression of the target genes. RESULTS: The combination of HFD, ApoE deficiency, and hypoadiponectinemia resulted in an additive effect on insulin resistance. FGF-21 mRNA expressions in both liver and adipose tissues were significantly increased while FGF-21 receptor 1 (FGFR-1 and β-Klotho mRNA levels in adipose tissue, as well as FGFR-1-3 and β-Klotho mRNA levels in liver were significantly decreased in this model. Liraglutide treatment markedly improved insulin resistance and increased FGF-21 expression in liver and FGFR-3 in adipose tissue, restored β-Klotho mRNA expression in adipose tissue as well as FGFR-1-3, β-Klotho levels and phosphorylation of FGFR1 up to the levels observed in control mice in liver. Liraglutide treatment also further increased FGF-21 proteins in liver and plasma. In addition, as shown by hyperinsulinemic-euglycemic clamp, liraglutide treatment also markedly improved glucose metabolism and insulin sensitivity in these animals. CONCLUSION: These findings demonstrate an additive effect of HFD, ApoE deficiency, and adiponectin knockdown on insulin resistance and unveil that the regulation of glucose metabolism and insulin sensitivity by liraglutide may be

  13. Effects of pomegranate seed oil followed by resistance exercise on insulin resistance and lipid profile in non-athletic men

    Directory of Open Access Journals (Sweden)

    Fereshteh Shahidi

    2017-08-01

    Full Text Available Background: Although some studies have reported the health-related benefits for the pomegranate seed oil (PSO, there is not enough information on its combined effect with exercise. Therefore, in this study the effect of supplementation with pomegranate seed oil followed by resistance exercise on insulin resistance and lipid profile was considered in non-athletes men. Materials and Methods: In this semi-experimental double-blind randomized study non-athletic male (n=14 were divided into two groups: Exercise+Supplementation (n=7 and Exercise +Placebo (n=7. Both groups performed resistance training for 4 weeks (3 sessions per week. The experimental group consumed 2 capsules of pomegranate seed oil (400 mg and the control group received 2 placebo capsules daily. Glucose, fasting insulin, total cholesterol, triglycerides, LDL-C, HDL-C, were measured at the beginning and end of the study. Insulin resistance was estimated using homeostasis formula (HOMA-IR. Results: While the average concentration of HDL-C in Supplement+Exercise group was significantly increased compared to pre-test, no significant increase was seen compared to Placebo + Exercise group (P<0.05. Between and within group comparison for the changes in total cholesterol, triglycerides, LDL-C, glucose, fasting insulin and insulin resistance was not significant. Conclusion: According to the results, it can be concluded that 4 weeks of resistance training followed by PSO supplementation, except for HDL-C, has no significant effect on the other lipid profiles and insulin resistance in healthy non-athlete men.

  14. Biomarkers for insulin resistance and inflammation and the risk for all-cause dementia and alzheimer disease: results from the Framingham Heart Study.

    Science.gov (United States)

    van Himbergen, Thomas M; Beiser, Alexa S; Ai, Masumi; Seshadri, Sudha; Otokozawa, Seiko; Au, Rhoda; Thongtang, Nuntakorn; Wolf, Philip A; Schaefer, Ernst J

    2012-05-01

    To investigate the contribution of biomarkers of glucose homeostasis (adiponectin, glucose, glycated albumin, and insulin levels) and inflammation (high-sensitivity C-reactive protein and lipoprotein-associated phospholipase A(2) levels) to the risk of developing Alzheimer disease (AD) and all-cause dementia. Prospective cohort study. Dementia-free Framingham Heart Study participants had sera measured for these biomarkers at the 19th biennial examination (1985-1988) and were followed up prospectively for the development of AD and all-cause dementia. Eight hundred forty (541 women, median age of 76 years) subjects participated in the study. We used sex-pooled and sex-specific multivariable Cox proportional hazards models adjusted for age, education, body mass index, recent change in weight, APOE ε4 allele status, and plasma docosahexaenoic acid levels to determine association of these biomarkers with the development of all-cause dementia and AD. Over a mean follow-up period of 13 years, 159 persons developed dementia (including 125 with AD). After adjustment for other risk factors, only adiponectin in women was associated with an increased risk of all-cause dementia (hazard ratio [HR], 1.29; 95% confidence interval [CI], 1.00-1.66; P=.054) and AD (HR, 1.33; 95% CI, 1.00-1.76; P=.050) per 1-SD increase in adiponectin level. Women with baseline adiponectin values more than the median had a higher risk of all-cause dementia (HR, 1.63; 95% CI, 1.03-2.56; P=.04) and AD (HR, 1.87; 95% CI, 1.13-3.10; P=.01) as compared with those with values less than the median. In women, increased plasma adiponectin levels are an independent risk factor for the development of both all-cause dementia and AD.

  15. Early insulin resistance in severe trauma without head injury as outcome predictor? A prospective, monocentric pilot study

    Directory of Open Access Journals (Sweden)

    Bonizzoli Manuela

    2012-10-01

    Full Text Available Abstract Background Hyperglycemia following major trauma is a well know phenomenon related to stress-induced systemic reaction. Reports on glucose level management in patients with head trauma have been published, but the development of insulin resistance in trauma patients without head injury has not been extensively studied. The aim of this study was therefore to investigate the prognostic role of acute insulin-resistance, assessed by the HOMA model, in patients with severe trauma without head injury. Methods All patients consecutively admitted to the Intensive Care Unit (ICU of a tertiary referral center (Careggi Teaching Hospital, Florence, IT for major trauma without head injury (Jan-Dec 2010 were enrolled. Patients with a previous diagnosis of diabetes mellitus requiring insulin therapy or metabolism alteration were excluded from the analysis. Patients were divided into “insulin resistant” and “non-insulin resistant” based on the Homeostasis Model Assessment index (HOMA IR. Results are expressed as medians. Results Out of 175 trauma patients admitted to the ICU during the study period, a total of 54 patients without head trauma were considered for the study, 37 of whom met the inclusion criteria. In total, 23 patients (62.2% resulted insulin resistant, whereas 14 patients (37.8% were non-insulin resistant. Groups were comparable in demographic, clinical/laboratory characteristics, and severity of injury. Insulin resistant patients had a significantly higher BMI (P=0.0416, C-reactive protein (P=0.0265, and leukocytes count (0.0301, compared to non-insulin resistant patients. Also ICU length of stay was longer in insulin resistant patients (P=0.0381. Conclusions Our data suggest that admission insulin resistance might be used as an early outcome predictor.

  16. Linking mitochondrial bioenergetics to insulin resistance via redox biology

    Science.gov (United States)

    Fisher-Wellman, Kelsey H.; Neufer, P. Darrell

    2012-01-01

    Chronic overnutrition and physical inactivity are major risk factors for insulin resistance and type 2 diabetes. Recent research indicates that overnutrition generates an increase in hydrogen peroxide (H2O2) emission from mitochondria, serving as a release valve to relieve the reducing pressure created by fuel overload, as well as a primary signal to ultimately decrease insulin sensitivity. H2O2 is a major input to cellular redox circuits that link to cysteine residues throughout the entire proteome to regulate cell function. Here we review the principles of mitochondrial bioenergetics and redox systems biology and offer new insight as to how H2O2 emission may be linked via redox biology to the etiology of insulin resistance. PMID:22305519

  17. Molecular aspects of glucose homeostasis in skeletal muscle--A focus on the molecular mechanisms of insulin resistance.

    Science.gov (United States)

    Carnagarin, Revathy; Dharmarajan, Arun M; Dass, Crispin R

    2015-12-05

    Among all the varied actions of insulin, regulation of glucose homeostasis is the most critical and intensively studied. With the availability of glucose from nutrient metabolism, insulin action in muscle results in increased glucose disposal via uptake from the circulation and storage of excess, thereby maintaining euglycemia. This major action of insulin is executed by redistribution of the glucose transporter protein, GLUT4 from intracellular storage sites to the plasma membrane and storage of glucose in the form of glycogen which also involves modulation of actin dynamics that govern trafficking of all the signal proteins of insulin signal transduction. The cellular mechanisms responsible for these trafficking events and the defects associated with insulin resistance are largely enigmatic, and this review provides a consolidated overview of the various molecular mechanisms involved in insulin-dependent glucose homeostasis in skeletal muscle, as insulin resistance at this major peripheral site impacts whole body glucose homeostasis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Novel adiponectin-resistin (AR and insulin resistance (IRAR indexes are useful integrated diagnostic biomarkers for insulin resistance, type 2 diabetes and metabolic syndrome: a case control study

    Directory of Open Access Journals (Sweden)

    Muniandy Sekaran

    2011-01-01

    Full Text Available Abstract Background Adiponectin and resistin are adipokines which modulate insulin action, energy, glucose and lipid homeostasis. Meta-analyses showed that hypoadiponectinemia and hyperresistinemia are strongly associated with increased risk of insulin resistance, type 2 diabetes (T2DM, metabolic syndrome (MS and cardiovascular disease. The aim of this study was to propose a novel adiponectin-resistin (AR index by taking into account both adiponectin and resistin levels to povide a better indicator of the metabolic homeostasis and metabolic disorders. In addition, a novel insulin resistance (IRAR index was proposed by integration of the AR index into an existing insulin resistance index to provide an improved diagnostic biomarker of insulin sensitivity. Methods In this case control study, anthropometric clinical and metabolic parameters including fasting serum total adiponectin and resistin levels were determined in 809 Malaysian men (208 controls, 174 MS without T2DM, 171 T2DM without MS, 256 T2DM with MS whose ages ranged between 40-70 years old. Significant differences in continuous variables among subject groups were confirmed by ANCOVA or MANCOVA test using 1,000 stratified bootstrap samples with bias corrected and accelerated (BCa 95% CI. Spearman's rho rank correlation test was used to test the correlation between two variables. Results The AR index was formulated as 1+log10(R0-log10(A0. The AR index was more strongly associated with increased risk of T2DM and MS than hypoadiponectinemia and hyperresistinemia alone. The AR index was more strongly correlated with the insulin resistance indexes and key metabolic endpoints of T2DM and MS than adiponectin and resistin levels alone. The AR index was also correlated with a higher number of MS components than adiponectin and resistin levels alone. The IRAR index was formulated as log10(I0G0+log10(I0G0log10(R0/A0. The normal reference range of the IRAR index for insulin sensitive individuals was

  19. Insulin receptor degradation is accelerated in cultured lymphocytes from patients with genetic syndromes of extreme insulin resistance

    International Nuclear Information System (INIS)

    McElduff, A.; Hedo, J.A.; Taylor, S.I.; Roth, J.; Gorden, P.

    1984-01-01

    The insulin receptor degradation rate was examined in B lymphocytes that were obtained from peripheral blood of normal subjects and patients with several syndromes of extreme insulin resistance. The insulin receptors were surface labeled using Na 125 I/lactoperoxidase and the cells were returned to incubate in growth media. After varying periods of incubation, aliquots of cells were solubilized and the cell content of labeled receptor subunits were measured by immunoprecipitation with anti-receptor antibodies and NaDodSO4/polyacrylamide gel electrophoresis. In cell lines from four patients in whom the number of insulin receptors was reduced by greater than 90%, the rate of receptor loss was greater than normal (t1/2 equals 3.8 +/- 0.9 h vs. 6.5 +/- 1.2 h; mean +/- SD, P less than 0.01). However, a similar acceleration in receptor degradation was seen in cells from five patients with extreme insulin resistance but low-normal insulin receptor concentration (t1/2 equals 4.4 +/- 0.9 h). Thus, all the patients with genetic syndromes of insulin resistance had accelerated receptor degradation, regardless of their receptor concentration. By contrast, insulin receptors on cultured lymphocytes that were obtained from patients with extreme insulin resistance secondary to autoantibodies to the insulin receptor had normal receptor degradation (t1/2 equals 6.1 +/- 1.9 h). We conclude that (a) accelerated insulin receptor degradation is an additional feature of cells from patients with genetic forms of insulin resistance; (b) that accelerated insulin receptor degradation may explain the low-normal receptor concentrations that were seen in some patients with extreme insulin resistance; and (c) that accelerated degradation does not explain the decreased receptor concentration in patients with very low insulin receptor binding and, therefore, by inference, a defect in receptor synthesis must be present in this subgroup

  20. Insulin resistance and postreceptor changes of liver metabolism in fat-fed mice

    DEFF Research Database (Denmark)

    Hedeskov, Carl Jørgen; Capito, Kirsten; Hansen, Svend Erik

    1992-01-01

    Medicinsk biokemi, animal diabetes, insulin resistance, postreceptor defects, liver metabolism, high-fat diet......Medicinsk biokemi, animal diabetes, insulin resistance, postreceptor defects, liver metabolism, high-fat diet...

  1. Cancer-drug induced insulin resistance : Innocent bystander or unusual suspect

    NARCIS (Netherlands)

    Ariaans, G.; de Jong, S.; Gietema, J. A.; Lefrandt, J. D.; de Vries, E. G. E.; Jalving, M.

    Epidemiological and experimental evidence strongly suggests an association between type 2 diabetes mellitus and cancer. Insulin resistance, causing hyperinsulinaemia and eventually hyperglycaemia, appears to increase cancer incidence and disease progression. In addition, insulin resistance seems to

  2. Abdominal adiposity largely explains associations between insulin resistance, hyperglycemia and subclinical atherosclerosis: the NEO study

    NARCIS (Netherlands)

    Gast, K.B.; Smit, J.W.A.; Heijer, M. den; Middeldorp, S.; Rippe, R.C.; Cessie, S. le; Koning, E.J. de; Jukema, J.W.; Rabelink, T.J.; Roos, A. de; Rosendaal, F.R.; Mutsert, R. de; Assendelft, P.; et al.,

    2013-01-01

    OBJECTIVE: The relative importance of insulin resistance and hyperglycemia to the development of atherosclerosis remains unclear. Furthermore, adiposity may be responsible for observed associations. Our aim was to study the relative contributions of adiposity, insulin resistance and hyperglycemia to

  3. Abdominal adiposity largely explains associations between insulin resistance, hyperglycemia and subclinical atherosclerosis: the NEO study

    NARCIS (Netherlands)

    Gast, Karin B.; Smit, Johannes W. A.; den Heijer, Martin; Middeldorp, Saskia; Rippe, Ralph C. A.; le Cessie, Saskia; de Koning, Eelco J. P.; Jukema, J. W.; Rabelink, Ton J.; de Roos, Albert; Rosendaal, Frits R.; de Mutsert, Renée; Rosendaal, F. R.; de Mutsert, R.; Rabelink, T. J.; Smit, J. W. A.; Romijn, J. A.; Rabe, K. F.; de Roos, A.; le Cessie, S.; Hiemstra, P. S.; Kloppenburg, M.; Huizinga, T. W. J.; Pijl, H.; Tamsma, J. T.; de Koning, E. J. P.; Assendelft, W. J. J.; Reitsma, P. H.; van Dijk, K. Willems; de Vries, A. P. J.; Lamb, H. J.; Jazet, I. M.; Dekkers, O. M.; Biermasz, N. R.; Cobbaert, C. M.; Heijer, M. den; Dekker, J. M.; Penninx, B. W.

    2013-01-01

    The relative importance of insulin resistance and hyperglycemia to the development of atherosclerosis remains unclear. Furthermore, adiposity may be responsible for observed associations. Our aim was to study the relative contributions of adiposity, insulin resistance and hyperglycemia to

  4. The role of dietary fat in obesity-induced insulin resistance.

    Science.gov (United States)

    Lackey, Denise E; Lazaro, Raul G; Li, Pingping; Johnson, Andrew; Hernandez-Carretero, Angelina; Weber, Natalie; Vorobyova, Ivetta; Tsukomoto, Hidekazu; Osborn, Olivia

    2016-12-01

    Consumption of excess calories results in obesity and insulin resistance and has been intensively studied in mice and humans. The objective of this study was to determine the specific contribution of dietary fat rather than total caloric intake to the development of obesity-associated insulin resistance. We used an intragastric feeding method to overfeed excess calories from a low-fat diet (and an isocalorically matched high-fat diet) through a surgically implanted gastric feeding tube to generate obesity in wild-type mice followed by hyperinsulinemic-euglycemic clamp studies to assess the development of insulin resistance. We show that overfeeding a low-fat diet results in levels of obesity similar to high-fat diet feeding in mice. However, despite a similar body weight, obese high-fat diet-fed mice are more insulin resistant than mice fed an isocaloric low-fat diet. Therefore, increased proportion of calories from dietary fat further potentiates insulin resistance in the obese state. Furthermore, crossover diet studies revealed that reduction in dietary fat composition improves glucose tolerance in obesity. In the context of the current obesity and diabetes epidemic, it is particularly important to fully understand the role of dietary macronutrients in the potentiation and amelioration of disease. Copyright © 2016 the American Physiological Society.

  5. Intestine-targeted DGAT1 inhibition improves obesity and insulin resistance without skin aberrations in mice.

    Directory of Open Access Journals (Sweden)

    Naoto Tsuda

    Full Text Available OBJECTIVE: Diacylglycerol O-acyltransferase 1 (DGAT1 catalyzes the final committed step in triglyceride biosynthesis. DGAT1 null mice are known to be resistant to diet-induced obesity, and more insulin sensitive relative to the wild-type; however, the mice exhibit abnormalities in the skin. This work determined whether the intestine-targeted DGAT1 inhibitor could improve obesity and insulin resistance without skin aberrations in mice. DESIGN AND METHODS: We synthesized 2 DGAT1 inhibitors: Compound A, described in the patent application from the Japan Tobacco, and Compound B (A-922500, reported by Abbott Laboratories. Both compounds were evaluated for inhibitory activities against DGAT1 enzymes and effects on the skin in mice in vivo. Compound B was further investigated for effects on obesity and insulin resistance in diet-induced-obese (DIO mice. RESULTS: The 2 compounds comparably inhibited the DGAT1 enzyme activity and the cellular triglyceride synthesis in vitro, while they showed different distribution patterns in mice in vivo. Compound A, which distributed systemically, caused skin aberrations, while Compound B, which preferentially distributed to the intestine, improved obesity and insulin resistance without skin aberrations in DIO mice. CONCLUSIONS: Our results suggest that the intestine is the key tissue in which DGAT1 plays a role in promoting obesity and insulin resistance.

  6. Skeletal muscle lipid metabolism in exercise and insulin resistance

    DEFF Research Database (Denmark)

    Kiens, Bente

    2006-01-01

    Lipids as fuel for energy provision originate from different sources: albumin-bound long-chain fatty acids (LCFA) in the blood plasma, circulating very-low-density lipoproteins-triacylglycerols (VLDL-TG), fatty acids from triacylglycerol located in the muscle cell (IMTG), and possibly fatty acids...... of insulin resistance in skeletal muscle, including possible molecular mechanisms involved, is discussed....

  7. Complement activation, endothelial dysfunction, insulin resistance and chronic heart failure

    DEFF Research Database (Denmark)

    Bjerre, M.; Kistorp, C.; Hansen, T.K.

    2010-01-01

    CRP), endothelial activation (soluble E-selectin, sEsel)), endothelial damage/dysfunction (von Willebrand factor, vWf) and insulin resistance (IR) and prognosis in CHF remains unknown. Design. We investigated the association(s) between plasma sMAC, hsCRP, sEsel, vWf and IR (assessed by homeostatic model assessment...

  8. Associations of erythrocyte fatty acid patterns with insulin resistance

    Science.gov (United States)

    Background: Synergistic and/or additive effects on cardiometabolic risk may be missed by examining individual fatty acids (FA). A pattern analysis may be a more useful approach. As well, it remains unclear whether erythrocyte fatty acid composition relates to insulin resistance among Hispanic/Latino...

  9. Insulin resistance, metabolic syndrome, and lipids in African women

    African Journals Online (AJOL)

    2016-01-27

    Jan 27, 2016 ... high‑density lipoprotein (TG/HDL), total cholesterol (TC)/HDL, and atherogenic index of ... Key words: Insulin resistance, metabolic syndrome, triglycerides, women ... been reported that a TG/HDL ratio of >3.0 is predictive of.

  10. Physical Training Improves Insulin Resistance Syndrome Markers in Obese Adolescents.

    Science.gov (United States)

    Kang, Hyun-Sik; Gutin, Bernard; Barbeau, Paule; Owens, Scott; Lemmon, Christian R.; Allison, Jerry; Litaker, Mark S.; Le, Ngoc-Anh

    2002-01-01

    Tested the hypothesis that physical training (PT), especially high-intensity PT, would favorably affect components of the insulin resistance syndrome (IRS) in obese adolescents. Data on teens randomized into lifestyle education (LSE) alone, LSE plus moderate -intensity PT, and LSE plus high-intensity PT indicated that PT, especially high-intensity…

  11. Alloxan-induced and Insulin-resistant Diabetes Mellitus affect ...

    African Journals Online (AJOL)

    The purpose of this study was to determine the effects of diabetes mellitus and insulin resistance on semen parameters, histology of reproductive organs and serum concentrations of testosterone and luteinizing hormone (LH). Male Sprague-Dawley rats weighing 180 - 200g were made diabetic by intravenous injection of ...

  12. Acanthosis nigricans: A flag for insulin resistance | Venkatswami ...

    African Journals Online (AJOL)

    Objectives: Acanthosis nigricans refers to the velvety, black hyperpigmentation seen in the flexures. It is a cutaneous marker for insulin resistance (IR), some metabolic disorders and rarely malignancy. When secondary to IR, it is asymptomatic, except for the hyperpigmentation. The neck is the most accessible and easiest to ...

  13. Evidence to Support a Putative Role for Insulin Resistance in ...

    African Journals Online (AJOL)

    Introduction: The primary cause of morbidity and mortality in the renal patient is a cardiovascular event. Insulin resistance (IR) contributes to this event by increasing cardiovascular disease (CVD) and accelerating rates of decline in kidney function. Here we review the historical background of IR in patients with chronic ...

  14. Assessing Psychological Insulin Resistance in Type 2 Diabetes

    DEFF Research Database (Denmark)

    Holmes-Truscott, Elizabeth; Pouwer, F; Speight, Jane

    2017-01-01

    PURPOSE OF REVIEW: This study aims to examine the operationalisation of 'psychological insulin resistance' (PIR) among people with type 2 diabetes and to identify and critique relevant measures. RECENT FINDINGS: PIR has been operationalised as (1) the assessment of attitudes or beliefs about...

  15. Neuroendocrinology of insulin resistance : metabolic and endocrine aspects of adiposity

    NARCIS (Netherlands)

    van Dijk, G; de Vries, K; Benthem, L; Nyakas, C; Buwalda, B; Scheurink, AJW

    2003-01-01

    Abdominal obesity is a major risk factor to attract the insulin resistance syndrome. It is proposed that abdominal obesity exposes the liver to elevated levels of free fatty acids, which activate a neuroendocrine reflex, leading to increased circulating levels of glucocorticoids. Besides directly

  16. Dopamine D2 receptors in the pathophysiology of insulin resistance

    NARCIS (Netherlands)

    Leeuw van Weenen, Judith Elisabeth de

    2011-01-01

    Extensive literature links the dopamine receptor D2 to insulin resistance and diabetes mellitus type 2. However, many aspects of the functional relationship remain unclear. In this thesis we focused on unraveling the characteristics of the interplay between dopamine D2 receptors and glucose

  17. Berberine improves insulin resistance induced by high fat diet in rats

    International Nuclear Information System (INIS)

    Zhou Libin; Yang Ying; Shang Wenbin; Li Fengying; Tang Jinfeng; Wang Xiao; Liu Shangquan; Yuan Guoyue; Chen Mingdao

    2005-01-01

    Objective: To observe the effect of berberine on insulin resistance induced by high fat diet in rats. Methods: Normal male SD rats (8 weeks old) were divided into two groups taking either normal chow (NC, n=9) or high fat diet (HF, n=20). After fourteen weeks, HF rats were divided into two groups. Ten rats continued to take high fat diet. Another ten rats took additional berberine gavage (HF+B, 150mg/kg weight once a day). Six weeks later, oral glucose tolerance test and insulin tolerance test were performed for estimating insulin sensitivity. Results: The body weight, liver weight and epididyaml fat pads weight of HF group were significantly higher than those of HF+B group and NC group (all P<0.01). Fasting plasma glucose, insulin and plasma glucose, insulin 2h after taking glucose in HF+B rats were significantly lower than those in HF rats (all P<0.01). Plasma glucose and insulin levels at all time points in HF rats were significantly higher than those in NC rats. Homa-IR of HF group was markedly higher than that of HF+B group (P<0.01). The glucose-lowering effects after the administration of insuin (0.5u/kg intrapenitoneally) at all time points in HF+B rats were stronger than those in HF rats with 23% and 7% reduction at 15min respectively. Conclusion: Long term high fat diet resulted in insulin resistance. Berberine was able to reverse insulin resistance through promoting peripheral tissue up taking of glucose and decreasing insulin, which would be quite ideal for the intervention of IGT. (authors)

  18. Is Insulin Resistance an Intrinsic Defect in Asian Polycystic Ovary Syndrome?

    OpenAIRE

    Lee, Hyejin; Oh, Jee-Young; Sung, Yeon-Ah; Chung, Hyewon

    2013-01-01

    Purpose Approximately 50% to 70% of women with polycystic ovary syndrome (PCOS) have some degree of insulin resistance, and obesity is known to worsen insulin resistance. Many metabolic consequences of PCOS are similar to those of obesity; therefore, defining the cause of insulin resistance in women can be difficult. Our objective was to clarify the factors contributing to insulin resistance in PCOS. Materials and Methods We consecutively recruited 144 women with PCOS [age: 26?5 yr, body mass...

  19. Determination of Insulin Resistance and Beta Cell Function in Healthy Obese and Non-obese Individuals

    International Nuclear Information System (INIS)

    Kazmi, A.; Sattar, A.; Tariq, K. M.; Najamussahar; Hashim, R.; Almani, M. I.

    2013-01-01

    Objective: To determine insulin resistance and beta cell function in healthy obese and nonobese individuals of the local population. Study Design: Case control study. Place and Duration of Study: AFIP Rawalpindi in collaboration with department of medicine military hospital(MH) Rawalpindi, from Aug 2008 to Mar 2009. Methods: Eighty obese(n=40) and non-obese(n=40) subjects were selected by non-probability convenience sampling. Plasma insulin, glucose, and serum total cholestrol were estimated in fasting state. Insulin resistance was calculated by HOMA-IR and beta cell function by HOMA- equation. Results: Significant differences were observed between obese and non-obese individuals regarding insulin resistance, beta cell function, and BMI and serum total cholesterol. Mean insulin resistance in obese group was found to be 11.1 +- 5.1(range 7.0-16.2) and in non-obese group it was 0.9+-0.4 (range 0.5-1.3). This difference was highly significant (p=0.001). There was a highly significant difference between the two groups in term of beta cell function with mean rank 60.1 for obese group and 20.9 non obese groups (Asym sig. 2 tailed 0.000). Also the correlation (r = 0.064) between insulin resistance and beta cell function in obese group is highly significant (p = 0.000). Mean serum leptin levels were lower (6.3 ng/ml) in non-obese, and high (57.2 ng/ml) in the obese group. Conclusions: Insulin resistance is found higher in obese individuals. Beta cell function is significantly different between obese and non-obese groups. (author)

  20. Association Between Insulin Resistance and Bone Structure in Nondiabetic Postmenopausal Women

    Science.gov (United States)

    Finkelstein, Joel S.; Bouxsein, Mary L.; Yu, Elaine W.

    2016-01-01

    Context: The clinical consequences of insulin resistance and hyperinsulinemia on bone remain largely unknown. Objective: The objective of the study was to evaluate the effect of insulin resistance on peripheral bone geometry, volumetric bone mineral density (vBMD), bone microarchitecture, and estimated bone strength. Design, Setting, and Participants: This cross-sectional study included 146 postmenopausal, nondiabetic Caucasian women (mean age 60.3 ± 2.7 y) who were participating in the Study of Women's Health Across the Nation. Interventions: There were no interventions. Main Outcome Measures: High-resolution peripheral quantitative computed tomography was used to assess bone density and microstructure at the distal radius and tibia. Fasting insulin and glucose were measured and insulin resistance was estimated using homeostasis model assessment of insulin resistance (HOMA-IR), with higher values indicating greater insulin resistance. Results: There was a negative association between HOMA-IR and bone size and a positive association between HOMA-IR and total vBMD, trabecular vBMD, trabecular thickness, and cortical thickness at the radius and tibia. These relationships remained, even after adjusting for body weight and other potential covariates (eg, time since menopause, cigarette smoking, physical activity, prior use of osteoporosis medications or glucocorticoids). Conclusions: In nondiabetic, postmenopausal women, insulin resistance was associated with smaller bone size, greater volumetric bone mineral density, and generally favorable bone microarchitecture at weight-bearing and nonweight-bearing skeletal sites. These associations were independent of body weight and other potential covariates, suggesting that hyperinsulinemia directly affects bone structure independent of obesity and may explain, in part, the higher trabecular bone density and favorable trabecular microarchitecture seen in individuals with type 2 diabetes mellitus. PMID:27243136

  1. Eosinophil inversely associates with type 2 diabetes and insulin resistance in Chinese adults.

    Directory of Open Access Journals (Sweden)

    Liying Zhu

    Full Text Available CONTEXT: Limited population-based study focused on relationship between eosinophil and type 2 diabetes (T2D. OBJECTIVES: We aimed to evaluate the relationship between peripheral eosinophil percentage and glucose metabolism and insulin resistance in a large sample size of Chinese population aged 40 and older. DESIGN AND METHODS: A cross-sectional study was performed among 9,111 Chinese adults including 3,561 men and 5,550 women. The glucose metabolism status was confirmed by 75-g oral glucose tolerance test. Homeostasis model assessment of insulin resistance index and serum insulin levels were used to evaluate insulin resistance. Homeostasis model assessment-B was used to evaluate β cell function. RESULTS: The average age of participants was 58.5 years. The prevalence of T2D decreased across the tertiles of eosinophil percentage (21.3%, 18.2% and 16.9%, P<0.0001. Each one tertile increase of eosinophil percentage inversely associated with risk of T2D when referred not only to normal glucose tolerance (NGT (odds ratio (OR 0.81, 95% CI 0.76-0.87, P< 0.0001, but also to impaired glucose regulation (OR 0.89, 95% CI 0.83-0.97, P = 0.006, respectively, after adjustment for the confounding factors. Compared with the first tertile, the third tertile of eosinophil percentage associated with a 23% decrease of insulin resistance in NGT participants after full adjustments (P = 0.005. Each 1-standard deviation of increment of eosinophil percentage associated with a 37% decrease of insulin resistance (P = 0.005. CONCLUSIONS: Higher peripheral eosinophil percentage was associated with decreased risk of T2D. The inverse relation to insulin resistance was detected in NGT participants.

  2. Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin-resistant phenotypes.

    Science.gov (United States)

    Malin, Steven K; Haus, Jacob M; Solomon, Thomas P J; Blaszczak, Alecia; Kashyap, Sangeeta R; Kirwan, John P

    2013-11-15

    Impaired fasting glucose (IFG) blunts the reversal of impaired glucose tolerance (IGT) after exercise training. Metabolic inflexibility has been implicated in the etiology of insulin resistance; however, the efficacy of exercise on peripheral and hepatic insulin sensitivity or substrate utilization in adults with IFG, IGT, or IFG + IGT is unknown. Twenty-four older (66.7 ± 0.8 yr) obese (34.2 ± 0.9 kg/m(2)) adults were categorized as IFG (n = 8), IGT (n = 8), or IFG + IGT (n = 8) according to a 75-g oral glucose tolerance test (OGTT). Subjects underwent 12-wk of exercise (60 min/day for 5 days/wk at ∼85% HRmax) and were instructed to maintain a eucaloric diet. A euglycemic hyperinsulinemic clamp (40 mU·m(2)·min(-1)) with [6,6-(2)H]glucose was used to determine peripheral and hepatic insulin sensitivity. Nonoxidative glucose disposal and metabolic flexibility [insulin-stimulated respiratory quotient (RQ) minus fasting RQ] were also assessed. Glucose incremental area under the curve (iAUCOGTT) was calculated from the OGTT. Exercise increased clamp-derived peripheral and hepatic insulin sensitivity more in adults with IFG or IGT alone than with IFG + IGT (P work is required to assess the molecular mechanism(s) by which chronic hyperglycemia modifies insulin sensitivity following exercise training.

  3. Metabolic consequences of obesity and insulin resistance in polycystic ovary syndrome: diagnostic and methodological challenges.

    Science.gov (United States)

    Jeanes, Yvonne M; Reeves, Sue

    2017-06-01

    Women with polycystic ovary syndrome (PCOS) have a considerable risk of metabolic dysfunction. This review aims to present contemporary knowledge on obesity, insulin resistance and PCOS with emphasis on the diagnostic and methodological challenges encountered in research and clinical practice. Variable diagnostic criteria for PCOS and associated phenotypes are frequently published. Targeted searches were conducted to identify all available data concerning the association of obesity and insulin resistance with PCOS up to September 2016. Articles were considered if they were peer reviewed, in English and included women with PCOS. Obesity is more prevalent in women with PCOS, but studies rarely reported accurate assessments of adiposity, nor split the study population by PCOS phenotypes. Many women with PCOS have insulin resistance, though there is considerable variation reported in part due to not distinguishing subgroups known to have an impact on insulin resistance as well as limited methodology to measure insulin resistance. Inflammatory markers are positively correlated with androgen levels, but detailed interactions need to be identified. Weight management is the primary therapy; specific advice to reduce the glycaemic load of the diet and reduce the intake of pro-inflammatory SFA and advanced glycation endproducts have provided promising results. It is important that women with PCOS are educated about their increased risk of metabolic complications in order to make timely and appropriate lifestyle modifications. Furthermore, well-designed robust studies are needed to evaluate the mechanisms behind the improvements observed with dietary interventions.

  4. Crif1 Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice

    Science.gov (United States)

    Ryu, Min Jeong; Kim, Soung Jung; Kim, Yong Kyung; Choi, Min Jeong; Tadi, Surendar; Lee, Min Hee; Lee, Seong Eun; Chung, Hyo Kyun; Jung, Saet Byel; Kim, Hyun-Jin; Jo, Young Suk; Kim, Koon Soon; Lee, Sang-Hee; Kim, Jin Man; Kweon, Gi Ryang; Park, Ki Cheol; Lee, Jung Uee; Kong, Young Yun; Lee, Chul-Ho; Chung, Jongkyeong; Shong, Minho

    2013-01-01

    Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance. PMID:23516375

  5. Traumatic brain injury and obesity induce persistent central insulin resistance.

    Science.gov (United States)

    Karelina, Kate; Sarac, Benjamin; Freeman, Lindsey M; Gaier, Kristopher R; Weil, Zachary M

    2016-04-01

    Traumatic brain injury (TBI)-induced impairments in cerebral energy metabolism impede tissue repair and contribute to delayed functional recovery. Moreover, the transient alteration in brain glucose utilization corresponds to a period of increased vulnerability to the negative effects of a subsequent TBI. In order to better understand the factors contributing to TBI-induced central metabolic dysfunction, we examined the effect of single and repeated TBIs on brain insulin signalling. Here we show that TBI induced acute brain insulin resistance, which resolved within 7 days following a single injury but persisted until 28 days following repeated injuries. Obesity, which causes brain insulin resistance and neuroinflammation, exacerbated the consequences of TBI. Obese mice that underwent a TBI exhibited a prolonged reduction of Akt (also known as protein kinase B) signalling, exacerbated neuroinflammation (microglial activation), learning and memory deficits, and anxiety-like behaviours. Taken together, the transient changes in brain insulin sensitivity following TBI suggest a reduced capacity of the injured brain to respond to the neuroprotective and anti-inflammatory actions of insulin and Akt signalling, and thus may be a contributing factor for the damaging neuroinflammation and long-lasting deficits that occur following TBI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Association of Insulin Resistance and Hematologic Parameters: Study of a Middle-aged and Elderly Chinese Population in Taiwan

    Directory of Open Access Journals (Sweden)

    Liang-Kung Chen

    2006-06-01

    Conclusion: Elevated WBC count but not RBC count was significantly associated with insulin resistance and glycemic metabolism. The relationship between platelet count and insulin resistance deserves further investigations.

  7. Evaluation of organ-specific glucose metabolism by 18F-FDG in insulin receptor substrate-1 (IRS-1) knockout mice as a model of insulin resistance

    International Nuclear Information System (INIS)

    Cheng, Chao; Nakamura, Akinobu; Minamimoto, Ryogo; Shinoda, Kazuaki; Tateishi, Ukihide; Terauchi, Yasuo; Inoue, Tomio; Goto, Atsuhi; Kadowaki, Takashi

    2011-01-01

    Insulin resistance (IR) is a physiological condition in which the body produces insulin but does not result in a sufficient biological effect. Insulin resistance is usually asymptomatic but is associated with health problems and is a factor in the metabolic syndrome. The aim of the present study is to clarify organ-specific insulin resistance in normal daily conditions using [ 18 F]-2-fluoro-2-deoxy-D-glucose ([ 18 F]-FDG). The biodistribution of [ 18 F]-FDG was examined in insulin receptor substrate-1 (IRS-1) knockout mice, an animal model of skeletal muscle insulin resistance, and C57BL/6J (wild-type) mice with and without insulin loading. Mice received 0.5 MBq of [ 18 F]-FDG injected into the tail vein, immediately followed by nothing (control cohorts) or an intraperitoneal injection of 1.5 mU/g body weight of human insulin as an insulin loading test. Blood glucose concentrations for all of the experimental animals were assessed at 0, 20, 40, and 60 min post-injection. The mice were subsequently killed, and tissue was collected for evaluation of [ 18 F]-FDG biodistribution. The radioactivity of each organ was measured using a gamma counter. In the absence of insulin, the blood glucose concentrations of wild-type mice (132±26 mg/dl) and IRS-1 knockout mice (134±18 mg/dl) were not significantly different. Blood glucose concentrations decreased following insulin administration, with lower concentrations in wild-type mice than in knockout mice at 20, 40, and 60 min. A statistically significant difference in [ 18 F]-FDG uptake between wild-type mice and IRS-1 knockout mice was confirmed in the heart, abdominal muscle, and femoral muscle. With insulin loading, [ 18 F]-FDG uptake in the heart, back muscle, and abdominal muscle was significantly increased compared to without insulin loading in both wild-type mice and knockout mice. Our results showed that IR significantly affected [ 18 F]-FDG uptake in the heart in normal daily conditions. IR was associated with

  8. Hepatic Proteomic Analysis Revealed Altered Metabolic Pathways in Insulin Resistant Akt1+/-/Akt2-/-Mice

    Science.gov (United States)

    Pedersen, Brian A; Wang, Weiwen; Taylor, Jared F; Khattab, Omar S; Chen, Yu-Han; Edwards, Robert A; Yazdi, Puya G; Wang, Ping H

    2015-01-01

    Objective The aim of this study was to identify liver proteome changes in a mouse model of severe insulin resistance and markedly decreased leptin levels. Methods Two-dimensional differential gel electrophoresis was utilized to identify liver proteome changes in AKT1+/-/AKT2-/- mice. Proteins with altered levels were identified with tandem mass spectrometry. Ingenuity Pathway analysis was performed for the interpretation of the biological significance of the observed proteomic changes. Results 11 proteins were identified from 2 biological replicates to be differentially expressed by a ratio of at least 1.3 between age-matched insulin resistant (Akt1+/-/Akt2-/-) and wild type mice. Albumin and mitochondrial ornithine aminotransferase were detected from multiple spots, which suggest post-translational modifications. Enzymes of the urea cycle were common members of top regulated pathways. Conclusion Our results help to unveil the regulation of the liver proteome underlying altered metabolism in an animal model of severe insulin resistance. PMID:26455965

  9. The Effect of Different Doses of Vitamin D Supplementation on Insulin Resistance in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Rastegar Hoseini

    2016-04-01

    Full Text Available Background and Aim: Type 2 diabetes mellitus (T2DM and vitamin D deficiency are both too common during menopause. Since the effect of different doses of vitamin D supplements on blood sugar, insulin concentration  and insulin resistance are unknown, the present study aimed at investigating the effects of different doses of the vitamin D supplements on visceral fat, blood sugar, insulin concentration,  and insulin resistance in ovariectomized rats. Materials and Methods: In this randomized experimental study, 32 female Wistar rats were divided into 4 equal groups  as follows: three groups . that received vitamin D supplements (high, moderate, and low dose and one control group. After 8 weeks of different doses of vitamin D supplementation plasma concentration of glucose, insulin and HOMA-IR were measured  in the three groups. The obtained data  was statistically analyzed by means of dependent t-test and ANOVA . at the significance level of P<0.05. Results: After a period of eight-week  intervention, body weight, BMI, waist circumference, visceral fat, insulin, blood glucose and HOMA-IR at high, moderate, and low doses of vitamin D supplementation were significantly lower than those in the control group (P<0.05. High dose of vitamin D compared with moderate and low doses significantly caused reduction in insulin, blood glucose, and HOMA-IR (P<0.001 for all three variables. Conclusion: The findings of the current study showed that a high dose of vitamin D causes significant improvements in FPG, insulin, and insulin resistance  evaluated by HOMA-IR. It was also found that adding vitamin D supplements can improve glucose control in menopause model of rats.

  10. Are hypertriglyceridemia and low HDL causal factors in the development of insulin resistance?

    NARCIS (Netherlands)

    Li, Naishi; Fu, Jingyuan; Koonen, Debby P.; Kuivenhoven, Jan Albert; Snieder, Harold; Hofker, Marten H.

    Insulin resistance often occurs with dyslipidemia as part of the metabolic syndrome and the current dominant paradigm is that insulin resistance leads to dyslipidemia. However, dyslipidemia may also cause insulin resistance; this was postulated 30 years ago, but has never been substantiated.

  11. A novel botanical formula prevents diabetes by improving insulin resistance.

    Science.gov (United States)

    Kan, Juntao; Velliquette, Rodney A; Grann, Kerry; Burns, Charlie R; Scholten, Jeff; Tian, Feng; Zhang, Qi; Gui, Min

    2017-07-05

    Type 2 diabetes mellitus (T2DM) is a major risk factor for cardiovascular disease, and the prevalence has increased significantly in recent decades to epidemic proportions in China. Individually, fenugreek (Trigonella foenum graecum) seed, mulberry (Morus alba L.) leaf and American ginseng (Panax quinquefolius) root can improve glycemia in various animal models and humans with impaired glucose metabolism and T2DM. The aim of this study was to design an optimized botanical formula containing these herbal extracts as a nutritional strategy for the prevention of insulin resistance and T2DM. Cell-free α-amylase and α-glucosidase enzyme assays were used to determine inhibitory potential of extracts. Glucose uptake was examined in differentiated human adipocytes using radiolabeled 2-deoxyglucose. Male Sprague Dawley rats were divided and glycemia balanced into 5 groups: two controls (naïve and model) and three doses of the botanical test formula containing standardized fenugreek seed, mulberry leaf and American ginseng extracts (42.33, 84.66 and 169.33 mg/kg BW). Insulin resistance and T2DM was induced by feeding animals a high fat diet and with an alloxan injection. Glucose tolerance was examined by measuring serum glucose levels following an oral glucose load. Fenugreek seed and mulberry leaf dose dependently inhibited α-amylase (IC50 = 73.2 μg/mL) and α-glucosidase (IC50 = 111.8 ng/mL), respectively. All three botanical extracts improved insulin sensitivity and glucose uptake in human adipocytes, which lead to the design of an optimized botanical test formula. In a rat model of insulin resistance and T2DM, the optimized botanical test formula improved fasting serum glucose levels, fasting insulin resistance and the development of impaired glucose tolerance. The reduction in epididymal adipose tissue GLUT4 and PDK1 expression induced by high fat diet and alloxan was blunted by the botanical test formula. A novel botanical formula containing standardized

  12. Influence of Gut Microbiota on Subclinical Inflammation and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Bruno Melo Carvalho

    2013-01-01

    Full Text Available Obesity is the main condition that is correlated with the appearance of insulin resistance, which is the major link among its comorbidities, such as type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular and neurodegenerative diseases, and several types of cancer. Obesity affects a large number of individuals worldwide; it degrades human health and quality of life. Here, we review the role of the gut microbiota in the pathophysiology of obesity and type 2 diabetes, which is promoted by a bacterial diversity shift mediated by overnutrition. Whole bacteria, their products, and metabolites undergo increased translocation through the gut epithelium to the circulation due to degraded tight junctions and the consequent increase in intestinal permeability that culminates in inflammation and insulin resistance. Several strategies focusing on modulation of the gut microbiota (antibiotics, probiotics, and prebiotics are being experimentally employed in metabolic derangement in order to reduce intestinal permeability, increase the production of short chain fatty acids and anorectic gut hormones, and promote insulin sensitivity to counteract the inflammatory status and insulin resistance found in obese individuals.

  13. Association of fasting glucagon and proinsulin concentrations with insulin resistance

    DEFF Research Database (Denmark)

    Ferrannini, E; Muscelli, E; Natali, A

    2007-01-01

    AIMS/HYPOTHESIS: Hyperproinsulinaemia and relative hyperglucagonaemia are features of type 2 diabetes. We hypothesised that raised fasting glucagon and proinsulin concentrations may be associated with insulin resistance (IR) in non-diabetic individuals. METHODS: We measured IR [by a euglycaemic......, controlling for known determinants of insulin sensitivity (i.e. sex, age, BMI and glucose tolerance) as well as factors potentially affecting glucagon and proinsulin (i.e. fasting plasma glucose and C-peptide concentrations), glucagon and proinsulin were still positively associated, and adiponectin...

  14. Nutrient Excess in AMPK Downregulation and Insulin Resistance

    OpenAIRE

    Coughlan, Kimberly A.; Valentine, Rudy J.; Ruderman, Neil B.; Saha, Asish K.

    2013-01-01

    It is well established that chronic exposure to excess nutrients leads to insulin resistance (IR) in skeletal muscle. Since skeletal muscle is responsible for 70-80% of insulin-stimulated glucose uptake, skeletal muscle IR is a key pathological component of type 2 diabetes (T2D). Recent evidence suggests that inhibition of the nutrient-sensing enzyme AMP-activated protein kinase (AMPK) is an early event in the development of IR in response to high glucose, branched chain amino acids (BCAA), o...

  15. Study on the phenomenon of insulin resistance (IR) in patients with acute cerebral infarction

    International Nuclear Information System (INIS)

    Chen Xinhua; Wang Genfa; Yu Lihua

    2007-01-01

    Objective: To investigate the presence of insulin resistance (IR) in patients with cerebral infarction and the indication for insulin therapy. Methods: Fasting blood glucose (FPG) (with biochemistry), fasting serum insulin (FINS) and cortisol (with RIA) levels were measured in 50 patients with cerebral infarction and 80 controls. Insulin sensitivity index (ISI) was calculated and correlation with the score of neurologic impairment as well as the size of lesion was studied. Results: FPG, FINS and cortisol levels in the patients were significantly higher than those in the controls (P<0.001 ) while the ISI was significantly lower (P <0.001 ) than that in the controls. Levels of there parameters were significantly higher in patients with moderate-severe lesions than those in patients with only mild lesion (P<0.001, P<0.01, P<0.05 respectively). ISI was negatively correlated to the size of infarction (r=-0.313, P<0.05) and also to the score of neurologic impairment (r=-0.317, P<0.05). The mortality and morbidity in the moderate severe group were naturally higher than those in the mild group. Conclusion: Insulin resistance does exist during the acute stage of cerebral infarction. Degree of hyperinsulinaemia and severity of the resistance are related to the course and prognosis of the disease process. Insulin therapy should be considered in those patients with hyperglycemia. (authors)

  16. Association between insulin resistance and c-reactive protein among Peruvian adults

    Directory of Open Access Journals (Sweden)

    Gelaye Bizu

    2010-05-01

    Full Text Available Abstract Objective Insulin resistance (IR, a reduced physiological response of peripheral tissues to the action of insulin, is one of the major causes of type 2 diabetes. We sought to evaluate the relationship between serum C-reactive protein (CRP, a marker of systemic inflammation, and prevalence of IR among Peruvian adults. Methods This population based study of 1,525 individuals (569 men and 956 women; mean age 39 years old was conducted among residents in Lima and Callao, Peru. Fasting plasma glucose, insulin, and CRP concentrations were measured using standard approaches. Insulin resistance was assessed using the homeostasis model (HOMA-IR. Categories of CRP were defined by the following tertiles: 2.53 mg/l. Logistic regression procedures were employed to estimate odds ratios (OR and 95% confidence intervals (CI. Results Elevated CRP were significantly associated with increased mean fasting insulin and mean HOMA-IR concentrations (p 2.53 mg/l (upper tertile had a 2.18-fold increased risk of IR (OR = 2.18 95% CI 1.51-3.16 as compared with those in the lowest tertile ( Conclusion Our observations among Peruvians suggest that chronic systemic inflammation, as evidenced by elevated CRP, may be of etiologic importance in insulin resistance and diabetes.

  17. Celastrol Protects against Antimycin A-Induced Insulin Resistance in Human Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    Mohamad Hafizi Abu Bakar

    2015-05-01

    Full Text Available Mitochondrial dysfunction and inflammation are widely accepted as key hallmarks of obesity-induced skeletal muscle insulin resistance. The aim of the present study was to evaluate the functional roles of an anti-inflammatory compound, celastrol, in mitochondrial dysfunction and insulin resistance induced by antimycin A (AMA in human skeletal muscle cells. We found that celastrol treatment improved insulin-stimulated glucose uptake activity of AMA-treated cells, apparently via PI3K/Akt pathways, with significant enhancement of mitochondrial activities. Furthermore, celastrol prevented increased levels of cellular oxidative damage where the production of several pro-inflammatory cytokines in cultures cells was greatly reduced. Celastrol significantly increased protein phosphorylation of insulin signaling cascades with amplified expression of AMPK protein and attenuated NF-κB and PKC θ activation in human skeletal muscle treated with AMA. The improvement of insulin signaling pathways by celastrol was also accompanied by augmented GLUT4 protein expression. Taken together, these results suggest that celastrol may be advocated for use as a potential therapeutic molecule to protect against mitochondrial dysfunction-induced insulin resistance in human skeletal muscle cells.

  18. Vitamin D Deficiency in Obese Children and Its Relationship to Insulin Resistance and Adipokines

    Directory of Open Access Journals (Sweden)

    Christian L. Roth

    2011-01-01

    Full Text Available Low-serum concentrations of 25-hydroxyvitamin D [25(OHD] are associated with insulin resistance in adults. Less data are available in pediatric populations. Serum 25(OHD serum concentrations were assessed in 125 obese and 31 nonobese children (age 11.9±2.7 y, range 6–16 y, 49% male living in Bonn, Germany. The relationship between 25(OHD, measured by liquid chromatography-tandem mass spectrometry, and measures of insulin sensitivity and adipokines adiponectin and resistin were analyzed. Seventy-six % of subjects were 25(OHD deficient (<20 ng/mL. Higher insulin, homeostasis model assessment-insulin resistance (HOMA-IR r=−0.269, P=0.023, and hemoglobin A1c (HbA1c as well as lower quantitative insulin-sensitivity check index (QUICKI r=0.264, P=0.030 values were found in obese children with lower 25(OHD concentrations even after adjustment for gender, age, and body mass index. Furthermore, 25(OHD correlated significantly with adiponectin, but not with resistin. Our results suggest that hypovitaminosis D is a risk factor for developing insulin resistance independent of adiposity.

  19. Down-regulation of the miR-543 alleviates insulin resistance through targeting the SIRT1.

    Science.gov (United States)

    Hu, Xiaojing; Chi, Liyi; Zhang, Wentao; Bai, Tiao; Zhao, Wei; Feng, Zhanbin; Tian, Hongyan

    2015-12-25

    Insulin resistance plays an important role in the development of hypertension, which is seriously detrimental to human health. Recently, Sirtuin-1 (SIRT1) has been found to participate in regulation of insulin resistance. Therefore, further studies focused on the SIRT1 regulators might provide a potential approach for combating insulin resistance and hypertension. Interestingly, in this study, we found that SIRT1 was the target gene of the miR-543 by the Dual-Luciferase Reporter Assay. Moreover, the miR-543 expression notably increased in the insulin-resistant HepG2 cells induced by TNF-α. Further analysis showed that the overexpression of the miR-543 lowered the SIRT1 mRNA and protein levels, resulting in the insulin resistance in the HepG2 cells; the inhibition of miR-543, however, enhanced the mRNA and protein expression of the SIRT1, and alleviated the insulin resistance. Furthermore, the SIRT1 overexpression abrogated the effect of miR-543 on insulin resistance. In addition, the overexpression of the miR-543 by the lentivirus-mediated gene transfer markedly impaired the insulin signaling assessed by the Western blot analysis of the glycogen synthesis and the phosphorylation of Akt and GSK3β. In summary, our study suggested that the downregulation of the miR-543 could alleviate the insulin resistance via the modulation of the SIRT1 expression, which might be a potential new strategy for treating insulin resistance and a promising therapeutic method for hypertension. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells.

    Science.gov (United States)

    Najem, Dema; Bamji-Mirza, Michelle; Yang, Ze; Zhang, Wandong

    2016-06-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) toxicity, tau pathology, insulin resistance, neuroinflammation, and dysregulation of cholesterol homeostasis, all of which play roles in neurodegeneration. Insulin has polytrophic effects on neurons and may be at the center of these pathophysiological changes. In this study, we investigated possible relationships among insulin signaling and cholesterol biosynthesis, along with the effects of Aβ42 on these pathways in vitro. We found that neuroblastoma 2a (N2a) cells transfected with the human gene encoding amyloid-β protein precursor (AβPP) (N2a-AβPP) produced Aβ and exhibited insulin resistance by reduced p-Akt and a suppressed cholesterol-synthesis pathway following insulin treatment, and by increased phosphorylation of insulin receptor subunit-1 at serine 612 (p-IRS-S612) as compared to parental N2a cells. Treatment of human neuroblastoma SH-SY5Y cells with Aβ42 also increased p-IRS-S612, suggesting that Aβ42 is responsible for insulin resistance. The insulin resistance was alleviated when N2a-AβPP cells were treated with higher insulin concentrations. Insulin increased Aβ release from N2a-AβPP cells, by which it may promote Aβ clearance. Insulin increased cholesterol-synthesis gene expression in SH-SY5Y and N2a cells, including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) through sterol-regulatory element-binding protein-2 (SREBP2). While Aβ42-treated SH-SY5Y cells exhibited increased HMGCR expression and c-Jun phosphorylation as pro-inflammatory responses, they also showed down-regulation of neuro-protective/anti-inflammatory DHCR24. These results suggest that Aβ42 may cause insulin resistance, activate JNK for c-Jun phosphorylation, and lead to dysregulation of cholesterol homeostasis, and that enhancing insulin signaling may relieve the insulin-resistant phenotype and the dysregulated cholesterol-synthesis pathway to promote A

  1. Glucose but not insulin or insulin resistance is associated with memory performance in middle-aged non-diabetic women: a cross sectional study.

    Science.gov (United States)

    Backeström, Anna; Eriksson, Sture; Nilsson, Lars-Göran; Olsson, Tommy; Rolandsson, Olov

    2015-01-01

    Elevated concentrations of plasma glucose appear to play a role in memory impairment, and it has been suggested that insulin might also have a negative effect on cognitive function. Our aim was to study whether glucose, insulin or insulin resistance are associated with episodic or semantic memory in a non-diabetic and non-demented population. We linked and matched two population-based data sets identifying 291 participants (127 men and 164 women, mean age of 50.7 ± 8.0 years). Episodic and semantic memory functions were tested, and fasting plasma insulin, fasting plasma glucose, and 2-hour glucose were analysed along with other potential influencing factors on memory function. Since men and women display different results on memory functions they were analysed separately. Insulin resistance was calculated using the HOMA-IR method. A higher fasting plasma glucose concentration was associated with lower episodic memory in women (r = -0.08, 95% CI -0.14; -0.01), but not in men. Plasma insulin levels and insulin resistance were not associated with episodic or semantic memory in women or in men after adjustments for age, fasting glucose, 2-hour glucose, BMI, education, smoking, cardiovascular disease, hypertension, cholesterol, and physical activity. This indicates that fasting glucose but not insulin, might have impact on episodic memory in middle-aged women.

  2. Effects of niacin supplementation on the insulin resistance in Holstein cows during early lactation

    OpenAIRE

    Talija Hristovska; Marko R. Cincović; Branislava Belić; Dragica Stojanović; Milanka Jezdimirović; Radojica Đoković; Bojan Toholj

    2017-01-01

    Insulin resistance in early lactation includes low glucose concentration, low insulin release and responsiveness and high lipolysis. Niacin is important antilipolytic agent and leads to increase glucose and insulin concentration. The objectives of this study were to determine the influence of niacin on the insulin resistance in cows during early lactation using the difference of value and regression analysis between blood non-esterified fatty acid (NEFA), glucose and insulin concentrations, r...

  3. miRNA Signatures of Insulin Resistance in Obesity.

    Science.gov (United States)

    Jones, Angela; Danielson, Kirsty M; Benton, Miles C; Ziegler, Olivia; Shah, Ravi; Stubbs, Richard S; Das, Saumya; Macartney-Coxson, Donia

    2017-10-01

    Extracellular microRNAs (miRNAs) represent functional biomarkers for obesity and related disorders; this study investigated plasma miRNAs in insulin resistance phenotypes in obesity. One hundred seventy-five miRNAs were analyzed in females with obesity (insulin sensitivity, n = 11; insulin resistance, n = 19; type 2 diabetes, n = 15) and without obesity (n = 12). Correlations between miRNA level and clinical parameters and levels of 15 miRNAs in a murine obesity model were investigated. One hundred six miRNAs were significantly (adjusted P ≤ 0.05) different between controls and at least one obesity phenotype, including miRNAs with the following attributes: previously reported roles in obesity and altered circulating levels (e.g., miR-122, miR-192); known roles in obesity but no reported changes in circulating levels (e.g., miR-378a); and no current reported role in, or association with, obesity (e.g., miR-28-5p, miR-374b, miR-32). The miRNAs in the latter group were found to be associated with extracellular vesicles. Forty-eight miRNAs showed significant correlations with clinical parameters; stepwise regression retained let-7b, miR-144-5p, miR-34a, and miR-532-5p in a model predictive of insulin resistance (R 2  = 0.57, P = 7.5 × 10 -8 ). Both miR-378a and miR-122 were perturbed in metabolically relevant tissues in a murine model of obesity. This study expands on the role of extracellular miRNAs in insulin-resistant phenotypes of obesity and identifies candidate miRNAs not previously associated with obesity. © 2017 The Obesity Society.

  4. Adherence to a low-fat vs. low-carbohydrate diet differs by insulin resistance status.

    Science.gov (United States)

    McClain, A D; Otten, J J; Hekler, E B; Gardner, C D

    2013-01-01

    Previous research shows diminished weight loss success in insulin-resistant (IR) women assigned to a low-fat (LF) diet compared to those assigned to a low-carbohydrate (LC) diet. These secondary analyses examined the relationship between insulin-resistance status and dietary adherence to either a LF-diet or LC-diet among 81 free-living, overweight/obese women [age = 41.9 ± 5.7 years; body mass index (BMI) = 32.6 ± 3.6 kg/m(2)]. This study found differential adherence by insulin-resistance status only to a LF-diet, not a LC-diet. IR participants were less likely to adhere and lose weight on a LF-diet compared to insulin-sensitive (IS) participants assigned to the same diet. There were no significant differences between IR and IS participants assigned to LC-diet in relative adherence or weight loss. These results suggest that insulin resistance status may affect dietary adherence to weight loss diets, resulting in higher recidivism and diminished weight loss success of IR participants advised to follow LF-diets for weight loss. © 2012 Blackwell Publishing Ltd.

  5. Insulin induces a shift in lipid and primary carbon metabolites in a model of fasting-induced insulin resistance

    Science.gov (United States)

    Peripheral insulin resistance shifts metabolic fuel use away from carbohydrates, and towards lipids, and is most commonly associated with Type 2 diabetes mellitus. However, regulated insulin resistance is an evolved mechanism to preserve glucose for the brain in conditions of high demand or carbohy...

  6. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity

    Science.gov (United States)

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W.; Barrett, Eugene J.; Cao, Wenhong

    2015-01-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. PMID:26265791

  7. In vivo assessment of cardiac insulin resistance by nuclear probes using an iodinated tracer of glucose transport

    International Nuclear Information System (INIS)

    Briat, Arnaud; Slimani, Lotfi; Perret, Pascale; Villemain, Daniele; Fagret, Daniel; Ghezzi, Catherine; Halimi, Serge; Demongeot, Jacques

    2007-01-01

    Insulin resistance, implying depressed cellular sensitivity to insulin, is a risk factor for type 2 diabetes and cardiovascular disease. This study is the first step towards the development of a technique of insulin resistance measurement in humans with a new tracer of glucose transport, [ 123 I]6-deoxy-6-iodo-D-glucose (6DIG). We investigated 6DIG kinetics in anaesthetised control rats and in three models of insulin-resistant rats: fructose fed, Zucker and ZDF. The study of myocardial 6DIG activity was performed under two conditions: first, 6DIG was injected under the baseline condition and then it was injected after a bolus injection of insulin. After each injection, radioactivity was measured over 45 min by external detection via NaI probes, in the heart and blood. A tri-compartment model was developed to obtain fractional transfer coefficients of 6DIG from the blood to the heart. These coefficients were significantly increased with insulin in control rats and did not change significantly in insulin-resistant rats. The ratio of the coefficient obtained under insulin to that obtained under basal conditions gave an index of cardiac insulin resistance for each animal. The mean values of these ratios were significantly lower in insulin-resistant than in control rats: 1.16 ± 0.06 vs 2.28 ± 0.18 (p < 0.001) for the fructose-fed group, 0.92 ± 0.05 vs 1.62 ± 0.25 (p < 0.01) for the Zucker group and 1.34 ± 0.06 vs 2.01 ± 0.26 (p < 0.05) for the ZDF group. These results show that 6DIG could be a useful tracer to image cardiac insulin resistance. (orig.)

  8. In vivo assessment of cardiac insulin resistance by nuclear probes using an iodinated tracer of glucose transport

    Energy Technology Data Exchange (ETDEWEB)

    Briat, Arnaud; Slimani, Lotfi; Perret, Pascale; Villemain, Daniele; Fagret, Daniel; Ghezzi, Catherine [INSERM, E0340, Radiopharmaceutiques Biocliniques, Grenoble (France); Univ Grenoble, Grenoble (France); Halimi, Serge [Univ Grenoble, Grenoble (France); Hopital Michallon, Service de Diabetologie, CHRU Grenoble, Grenoble (France); Demongeot, Jacques [Univ Grenoble, Grenoble (France); CNRS, UMR 5525, Grenoble (France)

    2007-11-15

    Insulin resistance, implying depressed cellular sensitivity to insulin, is a risk factor for type 2 diabetes and cardiovascular disease. This study is the first step towards the development of a technique of insulin resistance measurement in humans with a new tracer of glucose transport, [{sup 123}I]6-deoxy-6-iodo-D-glucose (6DIG). We investigated 6DIG kinetics in anaesthetised control rats and in three models of insulin-resistant rats: fructose fed, Zucker and ZDF. The study of myocardial 6DIG activity was performed under two conditions: first, 6DIG was injected under the baseline condition and then it was injected after a bolus injection of insulin. After each injection, radioactivity was measured over 45 min by external detection via NaI probes, in the heart and blood. A tri-compartment model was developed to obtain fractional transfer coefficients of 6DIG from the blood to the heart. These coefficients were significantly increased with insulin in control rats and did not change significantly in insulin-resistant rats. The ratio of the coefficient obtained under insulin to that obtained under basal conditions gave an index of cardiac insulin resistance for each animal. The mean values of these ratios were significantly lower in insulin-resistant than in control rats: 1.16 {+-} 0.06 vs 2.28 {+-} 0.18 (p < 0.001) for the fructose-fed group, 0.92 {+-} 0.05 vs 1.62 {+-} 0.25 (p < 0.01) for the Zucker group and 1.34 {+-} 0.06 vs 2.01 {+-} 0.26 (p < 0.05) for the ZDF group. These results show that 6DIG could be a useful tracer to image cardiac insulin resistance. (orig.)

  9. Lifestyle-induced metabolic inflexibility and accelerated ageing syndrome: insulin resistance, friend or foe?

    Directory of Open Access Journals (Sweden)

    Bell Jimmy D

    2009-04-01

    Full Text Available Abstract The metabolic syndrome may have its origins in thriftiness, insulin resistance and one of the most ancient of all signalling systems, redox. Thriftiness results from an evolutionarily-driven propensity to minimise energy expenditure. This has to be balanced with the need to resist the oxidative stress from cellular signalling and pathogen resistance, giving rise to something we call 'redox-thriftiness'. This is based on the notion that mitochondria may be able to both amplify membrane-derived redox growth signals as well as negatively regulate them, resulting in an increased ATP/ROS ratio. We suggest that 'redox-thriftiness' leads to insulin resistance, which has the effect of both protecting the individual cell from excessive growth/inflammatory stress, while ensuring energy is channelled to the brain, the immune system, and for storage. We also suggest that fine tuning of redox-thriftiness is achieved by hormetic (mild stress signals that stimulate mitochondrial biogenesis and resistance to oxidative stress, which improves metabolic flexibility. However, in a non-hormetic environment with excessive calories, the protective nature of this system may lead to escalating insulin resistance and rising oxidative stress due to metabolic inflexibility and mitochondrial overload. Thus, the mitochondrially-associated resistance to oxidative stress (and metabolic flexibility may determine insulin resistance. Genetically and environmentally determined mitochondrial function may define a 'tipping point' where protective insulin resistance tips over to inflammatory insulin resistance. Many hormetic factors may induce mild mitochondrial stress and biogenesis, including exercise, fasting, temperature extremes, unsaturated fats, polyphenols, alcohol, and even metformin and statins. Without hormesis, a proposed redox-thriftiness tipping point might lead to a feed forward insulin resistance cycle in the presence of excess calories. We therefore suggest

  10. Dietary glycemic index, glycemic load, fiber, simple sugars, and insulin resistance - The Inter99 study

    DEFF Research Database (Denmark)

    Lau, Cathrine; Pedersen, Oluf; Færch, Kristine

    2005-01-01

    , and insulin resistance was estimated using the homeostasis model assessment of insulin resistance (HOMA-IR). Multiple regressions were performed with HOMA-IR as the dependent variable and carbohydrate-related factors as explanatory variables. All models were adjusted for age, sex, smoking, physical activity......, total energy intake, BMI, and waist circumference. RESULTS - intake of lactose was positively associated with HOMA-IR (P < 0.0001), whereas daily glycemic load and intake of glucose, fructose, dietary fiber, total carbohydrate, fruit, and vegetables were inversely associated with HOMA-IR (P < 0...

  11. Gender differences in factors influencing insulin resistance in elderly hyperlipemic non-diabetic subjects

    Directory of Open Access Journals (Sweden)

    Hrebícek Jirí

    2002-10-01

    Full Text Available Abstract Background The increase in the prevalence of insulin resistance-related metabolic syndrome, a disorder that greatly increases the risk of diabetes, heart attack and stroke, is alarming. One of the most frequent and early symptoms of metabolic syndrome is hypertriglyceridemia. We examined the gender differences between various metabolic factors related to insulin resistance in elderly non-diabetic men and postmenopausal women of comparable age suffering from hypertriglyceridemia, and compared them with healthy subjects of equal age. Results The indexes of insulin resistance HOMA IR and QUICKI were significantly higher in both hyperlipemic men and women than in controls; 95% confidence limits of hyperlipemic subjects did not overlap with controls. In both normolipemic and hyperlipemic men and women serum leptin correlated significantly with insulin resistance, while HDL-cholesterol correlated inversely with HOMA-IR only in women (both normo- and hyperlipemic, and serum tumor necrosis factor α (TNFα only in hyperlipemic women. According to results of multiple regression analysis with HOMA-IR as a dependent variable, leptin played a significant role in determining insulin resistance in both genders, but – aside from leptin – triglycerides, TNFα and decreased HDL-cholesterol were significant determinants in women, while body mass index and decreased HDL-cholesterol were significant determinants in men. The coefficient of determination (R2 of HOMA IR by above mentioned metabolic variables was in women above 60%, in men only about 40%. Conclusion The significant role of serum leptin in determination of insulin resistance in both elderly men and postmenopausal women of equal age was confirmed. However, the study also revealed significant gender differences : in women a strong influence of triglycerides, TNFα and decreased HDL-cholesterol, in men only a mild role of BMI and decreased HDL-cholesterol.

  12. Exercise Protects Against Defective Insulin Signaling and Insulin Resistance of Glucose Transport in Skeletal Muscle of Angiotensin II-Infused Rat

    Directory of Open Access Journals (Sweden)

    Juthamard Surapongchai

    2018-04-01

    Full Text Available Objectives: The present study investigated the impact of voluntary exercise on insulin-stimulated glucose transport and the protein expression and phosphorylation status of the signaling molecules known to be involved in the glucose transport process in the soleus muscle as well as other cardiometabolic risks in a rat model with insulin resistance syndrome induced by chronic angiotensin II (ANGII infusion.Materials and Methods: Male Sprague-Dawley rats were assigned to sedentary or voluntary wheel running (VWR groups. Following a 6-week period, rats in each group were subdivided and subcutaneously administered either normal saline or ANGII at 100 ng/kg/min for 14 days. Blood pressure, glucose tolerance, insulin-stimulated glucose transport and signaling proteins, including insulin receptor (IR, insulin receptor substrate 1 (IRS-1, Akt, Akt substrate of 160 kDa (AS160, AMPKα, c-Jun NH2-terminal kinase (JNK, p38 MAPK, angiotensin converting enzyme (ACE, ANGII type 1 receptor (AT1R, ACE2, Mas receptor (MasR and oxidative stress marker in the soleus muscle, were evaluated.Results: Exercise protected against the insulin resistance of glucose transport and defective insulin signaling molecules in the soleus muscle; this effect was associated with a significant increase in AMPK Thr172 (43% and decreases in oxidative stress marker (31% and insulin-induced p38 MAPK Thr180/Tyr182 (45% and SAPK/JNK Thr183/Tyr185 (25%, without significant changes in expression of AT1R, AT2R, ACE, ACE2, and MasR when compared to the sedentary rats given ANGII infusion. At the systemic level, VWR significantly decreased body weight, fat weight, and systolic blood pressure as well as improved serum lipid profiles.Conclusion: Voluntary exercise can alleviate insulin resistance of glucose transport and impaired insulin signaling molecules in the soleus muscle and improve whole-body insulin sensitivity in rats chronically administered with ANGII.

  13. Effects of niacin supplementation on the insulin resistance in Holstein cows during early lactation

    Directory of Open Access Journals (Sweden)

    Talija Hristovska

    2017-01-01

    Full Text Available Insulin resistance in early lactation includes low glucose concentration, low insulin release and responsiveness and high lipolysis. Niacin is important antilipolytic agent and leads to increase glucose and insulin concentration. The objectives of this study were to determine the influence of niacin on the insulin resistance in cows during early lactation using the difference of value and regression analysis between blood non-esterified fatty acid (NEFA, glucose and insulin concentrations, revised quantitative insulin sensitivity check index and glucose-to-insulin ratio. Niacin supplementation led to a decrease of NEFA concentration and an increase of glucose and insulin concentrations during the first three weeks after calving. Cows in the niacin group which were more resistant to insulin showed higher concentrations of non-esterified fatty acid in comparison with more sensitive cows from the same group, but still lower than the control. The regression analyses suggest the following characteristics of cows supplemented with niacin in comparison with the control group: the insulin response to glucose was more intense; the antilipolytic effect of insulin was lower; insulin efficiency expressed as glucose-to-insulin ratio increase with a decrease in NEFA. The metabolic changes due to niacin supplementation showed a dual influence on the insulin resistance in dairy cows during early lactation: decreased NEFA concentrations led to a decrease in the insulin resistance (due to an increase in insulin efficiency and insulin sensitivity index, but increased concentrations of insulin and glucose possibly caused an increase in the insulin resistance in dairy cows (due to lower insulin sensitivity index and possibly lower antilipolytic effects of insulin.

  14. Icodextrine and insulin resistance in continuous ambulatory peritoneal dialysis patients.

    Science.gov (United States)

    Canbakan, Mustafa; Sahin, Gülizar Manga

    2007-01-01

    Insulin resistance is commonly observed in uremic patients. Glucose-based peritoneal dialysis solutions have long-term metabolic complications like hyperinsulinemia, hyperlipidemia, and obesity. The purpose of this study was to examine the insulin resistance in patients undergoing continuous ambulatory peritoneal dialysis (CAPD) with standard glucose and icodextrin containing solutions. The entire non diabetic CAPD patients of our center were studied: forty-four patients in all who were on CAPD treatment for 36.2 +/- 23.7 months. Twenty-seven of them (11 male and 16 female) with a mean age of 46 +/- 16 years were treated with standard glucose solutions (glucose group). The other 17 patients (10 male and 7 female) with a mean age of 49 +/- 16 years were treated with standard glucose solutions during the day and icodextrin dwell during the night, for a median of 12 +/- 6.3 months (icodextrin group). Morning fasting serum insulin levels were 20.59 +/- 17.86 in the glucose group and 10.15 +/- 6.87 in the icodextrin group (p = 0.0001). Homeostasis Model Assessment Method scores of the glucose group were significantly higher (4.8+/-4.1 vs 2.3+/- 1.7; p = 0.025) than the icodextrin group. A significant positive correlation of HOMA score with insulin, fasting plasma glucose, and triglyceride levels were found in HOMA (IR+) patients. Twenty patients of the icodextrin group (74%) and 15 patients of the glucose group (88%) were hypertensive, but there was no statistically significant difference between the two groups (p = 0.13). The groups showed no significant differences for body mass index and serum levels of glucose, total cholesterol, LDL cholesterol, VLDL cholesterol, HDL cholesterol, triglyceride, intact parathyroid hormone (iPTH), and fibrinogen. In conclusion, the use of icodextrin in the long nighttime dwell can reduce serum insulin levels and increase insulin sensitivity in CAPD patients.

  15. Curcumin and insulin resistance-Molecular targets and clinical evidences.

    Science.gov (United States)

    Jiménez-Osorio, Angélica Saraí; Monroy, Adriana; Alavez, Silvestre

    2016-11-12

    Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), the main component of the Indian spice turmeric, has been used in traditional medicine to improve diabetes and its comorbidities. Since the last two decades, scientific research has shown that in addition to its antioxidant properties, curcumin could also work as protein homeostasis regulator and it is able to modulate other intracellular pathways. Curcumin supplementation has been proposed to improve insulin resistance (IR) through the activation of the insulin receptor and its downstream pathways in several experimental models, pointing out that its clinical use may be a good and innocuous strategy to improve IR-related diseases. IR is associated with many diseases and syndromes like carbohydrate intolerance, diabetes, metabolic syndrome, and cardiovascular disease. Therefore, it is imperative to identify safe therapeutic interventions aimed to reduce side effects that could lead the patient to leave the treatment. To date, many clinical trials have been carried out using turmeric and curcumin to improve metabolic syndrome, carbohydrate intolerance, diabetes, and obesity in individuals with IR. Results so far are inconclusive because dose, time of treatment, and type of curcumin can change the study outcome significantly. However, there is some clinical evidence suggesting a beneficial effect of curcumin on IR. In this review, we discuss the factors that could influence curcumin effects in clinical trials aimed to improve IR and related diseases, and the conclusions that can be drawn from results obtained so far. © 2016 BioFactors, 42(6):561-580, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  16. Analysis of IRS-1-mediated phosphatidylinositol 3-kinase activation in the adipose tissue of polycystic ovary syndrome patients complicated with insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Yongli, Chu [Yantai Yuhuangding Hospital, Yantai (China). Dept. of Obstetrics and Gynecology; Hongyu, Qiu; Yongyu, Sun; Min, Li; Hongfa, Li

    2004-04-01

    Objective: To investigate the insulin receptor substance-1 (IRS-1)-mediated phosphatidylinositol-3 (PI-3) kinase activity in adipose tissue of polycystic ovary syndrome (PCOS) patients, and to explore molecular mechanisms of insulin resistance of PCOS. Methods: Blood and adipose tissue samples from patients with PCOS with insulin resistance (n=19), PCOS without insulin resistance (n=10) and controls (n=15) were collected. Serum luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T) were measured by chemiluminescence assay. Fasting insulin (FIN) was measured by radioimmunoassay. Fasting plasma glucose (FPG) was measured by oxidase assay. Insulin resistance index (IR) was calculated using homeostasis model assessment (HOMA) to analyze the relationship between these markers and insulin resistance. The tyrosine phosphorylation of IRS-1 was measured by immunoprecipitation and enhanced chemiluminescent immunoblotting technique. PI-3 kinase activity was detected by immunoprecipitation, thin-layer chromatography and gamma scintillation counting. The results were analyzed by statistical methods. Results: 1) The levels of serum LH, LH/FSH, T, FIN and HOMA-IR in PCOS without insulin resistance were significantly higher than those of control group (all P<0.05); the levels of serum LH, LH/FSH, T, FIN and HOMA-IR in PCOS with insulin resistance were significantly higher than those of PCOS without insulin resistance (all P<0.05). 2) The tyrosine phosphorylation analysis of IRS-1 showed that IRS-1 tyrosine phosphorylation was significantly decreased in PCOS with insulin resistance compared to that of PCOS without insulin resistance and control groups (P<0.01). 3) PI-3 kinase activity was significantly decreased (P<0.01) and negatively correlated with HOMA-IR. Conclusion: In consequence of the weaker signal caused by the change of upper stream signal molecule IRS-1 tyrosine phosphorylation, PI-3 kinase activity decreased, it affects the insulin signal

  17. Analysis of IRS-1-mediated phosphatidylinositol 3-kinase activation in the adipose tissue of polycystic ovary syndrome patients complicated with insulin resistance

    International Nuclear Information System (INIS)

    Chu Yongli; Qiu Hongyu; Sun Yongyu; Li Min; Li Hongfa

    2004-01-01

    Objective: To investigate the insulin receptor substance-1 (IRS-1)-mediated phosphatidylinositol-3 (PI-3) kinase activity in adipose tissue of polycystic ovary syndrome (PCOS) patients, and to explore molecular mechanisms of insulin resistance of PCOS. Methods: Blood and adipose tissue samples from patients with PCOS with insulin resistance (n=19), PCOS without insulin resistance (n=10) and controls (n=15) were collected. Serum luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T) were measured by chemiluminescence assay. Fasting insulin (FIN) was measured by radioimmunoassay. Fasting plasma glucose (FPG) was measured by oxidase assay. Insulin resistance index (IR) was calculated using homeostasis model assessment (HOMA) to analyze the relationship between these markers and insulin resistance. The tyrosine phosphorylation of IRS-1 was measured by immunoprecipitation and enhanced chemiluminescent immunoblotting technique. PI-3 kinase activity was detected by immunoprecipitation, thin-layer chromatography and gamma scintillation counting. The results were analyzed by statistical methods. Results: 1) The levels of serum LH, LH/FSH, T, FIN and HOMA-IR in PCOS without insulin resistance were significantly higher than those of control group (all P<0.05); the levels of serum LH, LH/FSH, T, FIN and HOMA-IR in PCOS with insulin resistance were significantly higher than those of PCOS without insulin resistance (all P<0.05). 2) The tyrosine phosphorylation analysis of IRS-1 showed that IRS-1 tyrosine phosphorylation was significantly decreased in PCOS with insulin resistance compared to that of PCOS without insulin resistance and control groups (P<0.01). 3) PI-3 kinase activity was significantly decreased (P<0.01) and negatively correlated with HOMA-IR. Conclusion: In consequence of the weaker signal caused by the change of upper stream signal molecule IRS-1 tyrosine phosphorylation, PI-3 kinase activity decreased, it affects the insulin signal

  18. Should insulin resistance be screened in lean hirsute women?

    Science.gov (United States)

    Arduc, Ayse; Sarıcam, Orkun; Dogan, Bercem Aycicek; Tuna, Mazhar Muslum; Tutuncu, Yasemin Ates; Isik, Serhat; Berker, Dilek; Sennaroglu, Engin; Guler, Serdar

    2015-04-01

    The role of insulin resistance (IR) is well-documented in obese women with polycystic ovary syndrome (PCOS). Controversies exist concerning the presence of IR in idiopathic hirsutism (IH) or if it is a manifestation of high body mass index (BMI). We aimed to investigate the presence/absence of IR in lean hirsute women. One-hundred fifty-one lean women with hirsutism [96 PCOS (group 1) and 55 IH (group 2)] and 58 age-and BMI-matched healthy controls (group 3) were recruited in the study (mean age 25.21 ± 6.1 versus 26.26 ± 4.6years; BMI 21.79 ± 1.7 versus 22.02 ± 2.2 kg/m(2), respectively). Significantly higher insulin and HOMA-IR, and significantly lower fasting glucose insulin ratio (FGIR), quantitative insulin sensitivity check index (QUICKI), reciprocal insulin, and Raynaud index were detected in groups 1 and 2 than in group 3 (p  2, FGIR lean hirsute women regardless of they having PCOS or IH. IR may contribute to aetiopathogenesis of IH, or may cause some metabolic abnormalities in these patients.

  19. Fatty acid metabolism, energy expenditure and insulin resistance in muscle.

    Science.gov (United States)

    Turner, Nigel; Cooney, Gregory J; Kraegen, Edward W; Bruce, Clinton R

    2014-02-01

    Fatty acids (FAs) are essential elements of all cells and have significant roles as energy substrates, components of cellular structure and signalling molecules. The storage of excess energy intake as fat in adipose tissue is an evolutionary advantage aimed at protecting against starvation, but in much of today's world, humans are faced with an unlimited availability of food, and the excessive accumulation of fat is now a major risk for human health, especially the development of type 2 diabetes (T2D). Since the first recognition of the association between fat accumulation, reduced insulin action and increased risk of T2D, several mechanisms have been proposed to link excess FA availability to reduced insulin action, with some of them being competing or contradictory. This review summarises the evidence for these mechanisms in the context of excess dietary FAs generating insulin resistance in muscle, the major tissue involved in insulin-stimulated disposal of blood glucose. It also outlines potential problems with models and measurements that may hinder as well as help improve our understanding of the links between FAs and insulin action.

  20. Antibody-Mediated Extreme Insulin Resistance: A Report of Three Cases.

    Science.gov (United States)

    Kim, Han Na; Fesseha, Betiel; Anzaldi, Laura; Tsao, Allison; Galiatsatos, Panagis; Sidhaye, Aniket

    2018-01-01

    Type 2 diabetes mellitus is characterized by relative insulin deficiency and insulin resistance. Features suggesting severe insulin resistance include acanthosis nigricans, hyperandrogenism, weight loss, and recurrent hospital admissions for diabetic ketoacidosis. In rare circumstances, hyperglycemia persists despite administration of massive doses of insulin. In these cases, it is important to consider autoimmune etiologies for insulin resistance, such as type B insulin resistance and insulin antibody-mediated extreme insulin resistance, which carry high morbidity and mortality if untreated. Encouragingly, immunomodulatory regimens have recently been published that induce remission at high rates. We describe 3 cases of extreme insulin resistance mediated by anti-insulin receptor autoantibodies or insulin autoantibodies. All cases were effectively treated with an immunomodulatory regimen. Although cases of extreme insulin resistance are rare, it is important to be aware of autoimmune causes, recognize suggestive signs and symptoms, and pursue appropriate diagnostic evaluation. Prompt treatment with immunomodulators is key to restoring euglycemia in patients with autoimmune etiologies of insulin resistance. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Disruption of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Integrity Contributes to Muscle Insulin Resistance in Mice and Humans.

    Science.gov (United States)

    Tubbs, Emily; Chanon, Stéphanie; Robert, Maud; Bendridi, Nadia; Bidaux, Gabriel; Chauvin, Marie-Agnès; Ji-Cao, Jingwei; Durand, Christine; Gauvrit-Ramette, Daphné; Vidal, Hubert; Lefai, Etienne; Rieusset, Jennifer

    2018-04-01

    Modifications of the interactions between endoplasmic reticulum (ER) and mitochondria, defined as mitochondria-associated membranes (MAMs), were recently shown to be involved in the control of hepatic insulin action and glucose homeostasis, but with conflicting results. Whereas skeletal muscle is the primary site of insulin-mediated glucose uptake and the main target for alterations in insulin-resistant states, the relevance of MAM integrity in muscle insulin resistance is unknown. Deciphering the importance of MAMs on muscle insulin signaling could help to clarify this controversy. Here, we show in skeletal muscle of different mice models of obesity and type 2 diabetes (T2D) a marked disruption of ER-mitochondria interactions as an early event preceding mitochondrial dysfunction and insulin resistance. Furthermore, in human myotubes, palmitate-induced insulin resistance is associated with a reduction of structural and functional ER-mitochondria interactions. Importantly, experimental increase of ER-mitochondria contacts in human myotubes prevents palmitate-induced alterations of insulin signaling and action, whereas disruption of MAM integrity alters the action of the hormone. Lastly, we found an association between altered insulin signaling and ER-mitochondria interactions in human myotubes from obese subjects with or without T2D compared with healthy lean subjects. Collectively, our data reveal a new role of MAM integrity in insulin action of skeletal muscle and highlight MAM disruption as an essential subcellular alteration associated with muscle insulin resistance in mice and humans. Therefore, reduced ER-mitochondria coupling could be a common alteration of several insulin-sensitive tissues playing a key role in altered glucose homeostasis in the context of obesity and T2D. © 2018 by the American Diabetes Association.

  2. Prevalence of impaired glucose tolerance and insulin resistance among obese children and adolescents

    Directory of Open Access Journals (Sweden)

    Robabeh Ghergherechi

    2010-07-01

    Full Text Available Robabeh Ghergherechi1, Ali Tabrizi21Department of Pediatrics Endocrinology, Tabriz University of Medical Sciences, Tabriz, Iran; 2Students’ Research Committee, Tabriz University of Medical Sciences, Tabriz, IranPurpose: Obesity is one of the most important nutritional disorders in the world which has an obvious relationship with the incidence of metabolic diseases. Obesity prevalence has increased among children and adolescents during recent decades, leading to a rise in Type 2 diabetes mellitus (DM II prevalence in these two age brackets. Hence, the aim of this study was to assess impaired glucose tolerance and insulin resistance, and gather metabolic findings in obese children and adolescents.Methods and materials: We studied 110 obese children and adolescents (body mass index > 95th percentile for age and gender 4–18 years of age referred to the endocrine clinic of the Children’s Hospital at Tabriz University in a descriptive cross-sectional study. ­Fasting glucose, insulin, and lipid profile in all subjects were determined. Oral glucose tolerance test after eating 75 g/kg glucose was performed. Homeostatic model assessment was used to ­estimate insulin resistance.Results: Impaired glucose tolerance and insulin resistance prevalence in 68 obese adolescents was 14.7% and 31.8%, respectively. Impaired glucose tolerance and insulin resistance was not seen in 23.8% of 42 obese children. No case of DM II was seen. There was a significant statistical difference in glucose (P = 0.003 and insulin (P < 0.001 level at minute 120 in individuals with impaired glucose tolerance compared to obese children and adolescents without impaired glucose tolerance. Rate of insulin resistance in patients with impaired glucose tolerance was greater and had a significant statistical difference (P = 0.03.Conclusion: Obesity has a close relationship with increased risk of impaired glucose tolerance and insulin resistance in children and adolescents. Oral glucose

  3. Lipid induced insulin resistance affects women less than men and is not accompanied by inflammation or impaired proximal insulin signaling

    DEFF Research Database (Denmark)

    Høeg, Louise D; Sjøberg, Kim Anker; Jeppesen, Jacob

    2011-01-01

    than men. We therefore hypothesized that women would be less prone to lipid induced insulin resistance. Research and design methods: Insulin sensitivity of whole body and leg glucose disposal was studied in 16 young well matched healthy men and women infused with intralipid or saline for 7h. Muscle...... ratio was decreased by intralipid. Conclusion: Intralipid infusion causes less insulin resistance of muscle glucose uptake in women than in men. This insulin resistance is not due to decreased canonical insulin signaling, accumulation of lipid intermediates, inflammation or direct inhibition of glucose......AbstractObjective: We have previously shown that overnight fasted women have higher insulin stimulated whole body and leg glucose uptake despite a higher intramyocellular triacylglycerol concentration than men. Women also express higher muscle mRNA levels of proteins related to lipid metabolism...

  4. Increased interaction with insulin receptor substrate 1, a novel abnormality in insulin resistance and type 2 diabetes

    DEFF Research Database (Denmark)

    Caruso, Michael; Ma, Danjun; Msallaty, Zaher

    2014-01-01

    Insulin receptor substrate 1 (IRS1) is a key mediator of insulin signal transduction. Perturbations involving IRS1 complexes may lead to the development of insulin resistance and type 2 diabetes (T2D). Surprisingly little is known about the proteins that interact with IRS1 in humans under health...... in obesity and T2D in humans, provides new insights into the molecular mechanism of insulin resistance and identifies new targets for T2D drug development....... and disease conditions. We used a proteomic approach to assess IRS1 interaction partners in skeletal muscle from lean healthy control subjects (LCs), obese insulin-resistant nondiabetic control subjects (OCs), and participants with T2D before and after insulin infusion. We identified 113 novel endogenous IRS1...

  5. Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice.

    Science.gov (United States)

    Irimia, Jose M; Meyer, Catalina M; Segvich, Dyann M; Surendran, Sneha; DePaoli-Roach, Anna A; Morral, Nuria; Roach, Peter J

    2017-06-23

    Disruption of the Gys2 gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect. Phosphorylation of components of the hepatic insulin-signaling pathway, namely IRS1, Akt, and GSK3, was decreased in LGSKO mice. Moreover, insulin stimulation of their phosphorylation was significantly suppressed, both temporally and in an insulin dose response. Phosphorylation of the insulin-regulated transcription factor FoxO1 was somewhat reduced and insulin treatment did not elicit normal translocation of FoxO1 out of the nucleus. Fat overaccumulated in LGSKO livers, showing an aberrant distribution in the acinus, an increase not explained by a reduction in hepatic triglyceride export. Rather, when administered orally to fasted mice, glucose was directed toward hepatic lipogenesis as judged by the activity, protein levels, and expression of several fatty acid synthesis genes, namely, acetyl-CoA carboxylase, fatty acid synthase, SREBP1c, chREBP, glucokinase, and pyruvate kinase. Furthermore, using cultured primary hepatocytes, we found that lipogenesis was increased by 40% in LGSKO cells compared with controls. Of note, the hepatic insulin resistance was not associated with increased levels of pro-inflammatory markers. Our results suggest that loss of liver glycogen synthesis diverts glucose toward fat synthesis, correlating with impaired hepatic insulin signaling and glucose disposal. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects.

    Science.gov (United States)

    Reyna, Sara M; Ghosh, Sangeeta; Tantiwong, Puntip; Meka, C S Reddy; Eagan, Phyllis; Jenkinson, Christopher P; Cersosimo, Eugenio; Defronzo, Ralph A; Coletta, Dawn K; Sriwijitkamol, Apiradee; Musi, Nicolas

    2008-10-01

    OBJECTIVE- Tall-like receptor (TLR)4 has been implicated in the pathogenesis of free fatty acid (FFA)-induced insulin resistance by activating inflammatory pathways, including inhibitor of kappaB (IkappaB)/nuclear factor kappaB (NFkappaB). However, it is not known whether insulin-resistant subjects have abnormal TLR4 signaling. We examined whether insulin-resistant subjects have abnormal TLR4 expression and TLR4-driven (IkappaB/NFkappaB) signaling in skeletal muscle. RESEARCH DESIGN AND METHODS- TLR4 gene expression and protein content were measured in muscle biopsies in 7 lean, 8 obese, and 14 type 2 diabetic subjects. A primary human myotube culture system was used to examine whether FFAs stimulate IkappaB/NFkappaB via TLR4 and whether FFAs increase TLR4 expression/content in muscle. RESULTS- Obese and type 2 diabetic subjects had significantly elevated TLR4 gene expression and protein content in muscle. TLR4 muscle protein content correlated with the severity of insulin resistance. Obese and type 2 diabetic subjects also had lower IkappaBalpha content, an indication of elevated IkappaB/NFkappaB signaling. The increase in TLR4 and NFkappaB signaling was accompanied by elevated expression of the NFkappaB-regulated genes interleukin (IL)-6 and superoxide dismutase (SOD)2. In primary human myotubes, acute palmitate treatment stimulated IkappaB/NFkappaB, and blockade of TLR4 prevented the ability of palmitate to stimulate the IkappaB/NFkappaB pathway. Increased TLR4 content and gene expression observed in muscle from insulin-resistant subjects were reproduced by treating myotubes from lean, normal-glucose-tolerant subjects with palmitate. Palmitate also increased IL-6 and SOD2 gene expression, and this effect was prevented by inhibiting NFkappaB. CONCLUSIONS- Abnormal TLR4 expression and signaling, possibly caused by elevated plasma FFA levels, may contribute to the pathogenesis of insulin resistance in humans.

  7. Peripheral insulin resistance in ILK-depleted mice by reduction of GLUT4 expression.

    Science.gov (United States)

    Hatem-Vaquero, Marco; Griera, Mercedes; García-Jerez, Andrea; Luengo, Alicia; Álvarez, Julia; Rubio, José A; Calleros, Laura; Rodríguez-Puyol, Diego; Rodríguez-Puyol, Manuel; De Frutos, Sergio

    2017-08-01

    The development of insulin resistance is characterized by the impairment of glucose uptake mediated by glucose transporter 4 (GLUT4). Extracellular matrix changes are induced when the metabolic dysregulation is sustained. The present work was devoted to analyze the possible link between the extracellular-to-intracellular mediator integrin-linked kinase (ILK) and the peripheral tissue modification that leads to glucose homeostasis impairment. Mice with general depletion of ILK in adulthood (cKD-ILK) maintained in a chow diet exhibited increased glycemia and insulinemia concurrently with a reduction of the expression and membrane presence of GLUT4 in the insulin-sensitive peripheral tissues compared with their wild-type littermates (WT). Tolerance tests and insulin sensitivity indexes confirmed the insulin resistance in cKD-ILK, suggesting a similar stage to prediabetes in humans. Under randomly fed conditions, no differences between cKD-ILK and WT were observed in the expression of insulin receptor (IR-B) and its substrate IRS-1 expressions. The IR-B isoform phosphorylated at tyrosines 1150/1151 was increased, but the AKT phosphorylation in serine 473 was reduced in cKD-ILK tissues. Similarly, ILK-blocked myotubes reduced their GLUT4 promoter activity and GLUT4 expression levels. On the other hand, the glucose uptake capacity in response to exogenous insulin was impaired when ILK was blocked in vivo and in vitro , although IR/IRS/AKT phosphorylation states were increased but not different between groups. We conclude that ILK depletion modifies the transcription of GLUT4, which results in reduced peripheral insulin sensitivity and glucose uptake, suggesting ILK as a molecular target and a prognostic biomarker of insulin resistance. © 2017 Society for Endocrinology.

  8. Exposure of Pregnant Mice to Triclosan Causes Insulin Resistance via Thyroxine Reduction.

    Science.gov (United States)

    Hua, Xu; Cao, Xin-Yuan; Wang, Xiao-Li; Sun, Peng; Chen, Ling

    2017-11-01

    Exposure to triclosan (TCS), an antibacterial agent, during pregnancy is associated with hypothyroxinemia and decreases in placental glucose transporter expression and activity. The objective of this study was to investigate the influence of TCS on glucose homeostasis and insulin sensitivity in gestational mice (G-mice) and nongestational female mice (Ng-mice) as a control. Herein, we show that the exposure of G-mice to TCS (8 mg/kg) from gestational day (GD) 5 to GD17 significantly increased their levels of fasting plasma glucose and serum insulin, and insulin content in pancreatic β-cells with reduced homeostasis model assessment (HOMA)-β index and increased HOMA-IR index. Area under curve (AUC) of glucose and insulin tolerance tests in TCS (8 mg/kg)-treated G-mice were markedly larger than controls. When compared with controls, TCS (8 mg/kg)-treated G-mice showed a significant decrease in the levels of thyroxine and triiodothyroninelevels, PPARγ and glucose transporter 4 (GLUT4) expression, and Akt phosphorylation in adipose tissue and muscle. Replacement of L-thyroxine in TCS (8 mg/kg)-treated G-mice corrected their insulin resistance and recovered the levels of insulin, PPARγ and GLUT4 expression, and Akt phosphorylation. Activation of PPARγ by administration of rosiglitazone recovered the decrease in Akt phosphorylation, but not GLUT4 expression. Although exposure to TCS (8 mg/kg) in Ng-mice reduced thyroid hormones levels, it did not cause the insulin resistance or affect PPARγ and GLUT4 expression, and Akt phosphorylation. The findings indicate that the exposure of gestational mice to TCS (≥8 mg/kg) results in insulin resistance via thyroid hormones reduction. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Rosiglitazone treatment of patients with extreme insulin resistance and diabetes mellitus due to insulin receptor mutations has no effects on glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Vestergaard, H; Lund, S; Pedersen, O

    2001-01-01

    Rosiglitazone, a thiazolidinedione (TZD), increases insulin sensitivity by reducing levels of plasma NEFA, triglycerides (TG), glucose and serum insulin. Rosiglitazone treatment decreases insulin resistance in type 2 diabetic patients, but no data exist concerning rosiglitazone treatment...

  10. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice

    Science.gov (United States)

    Tanigaki, Keiji; Chambliss, Ken L.; Yuhanna, Ivan S.; Sacharidou, Anastasia; Ahmed, Mohamed; Atochin, Dmitriy N.; Huang, Paul L.

    2016-01-01

    Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis. PMID:27207525

  11. Peroxynitrite mediates muscle insulin resistance in mice via nitration of IRβ/IRS-1 and Akt

    International Nuclear Information System (INIS)

    Zhou Jun; Huang Kaixun

    2009-01-01

    Accumulating evidence suggests that peroxynitrite (ONOO - ) is involved in the pathogenesis of insulin resistance. In the current study, we investigated whether insulin resistance in vivo could be mediated by nitration of proteins involved in the early steps of the insulin signal transduction pathway. Exogenous peroxynitrite donated by 3-morpholinosydnonimine hydrochloride (SIN-1) induced in vivo nitration of the insulin receptor β subunit (IRβ), insulin receptor substrate (IRS)-1, and protein kinase B/Akt (Akt) in skeletal muscle of mice and dramatically reduced whole-body insulin sensitivity and muscle insulin signaling. Moreover, in high-fat diet (HFD)-fed insulin-resistant mice, we observed enhanced nitration of IRβ and IRS-1 in skeletal muscle, in parallel with impaired whole-body insulin sensitivity and muscle insulin signaling. Reversal of nitration of these proteins by treatment with the peroxynitrite decomposition catalyst FeTPPS yielded an improvement in whole-body insulin sensitivity and muscle insulin signaling in HFD-fed mice. Taken together, these findings provide new mechanistic insights for the involvement of peroxynitrite in the development of insulin resistance and suggest that nitration of proteins involved in the early steps of insulin signal transduction is a novel molecular mechanism of HFD-induced muscle insulin resistance.

  12. [Factors associated with insulin resistence in rural populations].

    Science.gov (United States)

    Mendes, Larissa Loures; Gazzinelli, Andréa; Velásquez-Meléndez, Gustavo

    2009-04-01

    This study explores the relations of anthropometric, body composition assessments, biochemical and hemodynamic parameters with insulin resistance in two rural communities. Sample was composed by adults aged 18 or older, both sexes. Participants were excluded if pregnant and diabetic. Data collection included demographic lifestyle, hemodynamic, anthropometric and biochemical variables. From the 567 subjects, 50.4% were men and 49.6%, women. Most of the sample was non-white (75.7%), lived with partner (69.3%) and had low educational level. Overweight and obesity prevalences were 17.4% and 5.5%, respectively. Multivariate analysis found risk factors associated to insulin resistance for non-diabetic adults with low income and educational level: overweight, obesity, elevated waist-to-hip ratio, C-reactive protein and skin color.

  13. Resistance training, insulin sensitivity and muscle function in the elderly

    DEFF Research Database (Denmark)

    Dela, Flemming; Kjaer, Michael

    2006-01-01

    Ageing is associated with a loss in both muscle mass and in the metabolic quality of skeletal muscle. This leads to sarcopenia and reduced daily function, as well as to an increased risk for development of insulin resistance and type 2 diabetes. A major part, but not all, of these changes......, and likewise to improve muscle strength in both elderly healthy individuals and in elderly individuals with chronic disease. The increased strength is coupled to improved function and a decreased risk for fall injuries and fractures. Elderly individuals have preserved the capacity to improve muscle strength...... are associated with an age-related decrease in the physical activity level and can be counteracted by increased physical activity of a resistive nature. Strength training has been shown to improve insulin-stimulated glucose uptake in both healthy elderly individuals and patients with manifest diabetes...

  14. Lipid and insulin infusion-induced skeletal muscle insulin resistance is likely due to metabolic feedback and not changes in IRS-1, Akt, or AS160 phosphorylation.

    Science.gov (United States)

    Hoy, Andrew J; Brandon, Amanda E; Turner, Nigel; Watt, Matthew J; Bruce, Clinton R; Cooney, Gregory J; Kraegen, Edward W

    2009-07-01

    Type 2 diabetes is characterized by hyperlipidemia, hyperinsulinemia, and insulin resistance. The aim of this study was to investigate whether acute hyperlipidemia-induced insulin resistance in the presence of hyperinsulinemia was due to defective insulin signaling. Hyperinsulinemia (approximately 300 mU/l) with hyperlipidemia or glycerol (control) was produced in cannulated male Wistar rats for 0.5, 1 h, 3 h, or 5 h. The glucose infusion rate required to maintain euglycemia was significantly reduced by 3 h with lipid infusion and was further reduced after 5 h of infusion, with no difference in plasma insulin levels, indicating development of insulin resistance. Consistent with this finding, in vivo skeletal muscle glucose uptake (31%, P muscle diacylglyceride and ceramide content over the same time course. However, there was an increase in cumulative exposure to long-chain acyl-CoA (70%) with lipid infusion. Interestingly, although muscle pyruvate dehydrogenase kinase 4 protein content was decreased in hyperinsulinemic glycerol-infused rats, this decrease was blunted in muscle from hyperinsulinemic lipid-infused rats. Decreased pyruvate dehydrogenase complex activity was also observed in lipid- and insulin-infused animals (43%). Overall, these results suggest that acute reductions in muscle glucose metabolism in rats with hyperlipidemia and hyperinsulinemia are more likely a result of substrate competition than a significant early defect in insulin action or signaling.

  15. Tartary buckwheat flavonoids ameliorate high fructose-induced insulin resistance and oxidative stress associated with the insulin signaling and Nrf2/HO-1 pathways in mice.

    Science.gov (United States)

    Hu, Yuanyuan; Hou, Zuoxu; Yi, Ruokun; Wang, Zhongming; Sun, Peng; Li, Guijie; Zhao, Xin; Wang, Qiang

    2017-08-01

    The present study was conducted to explore the effects of a purified tartary buckwheat flavonoid fraction (TBF) on insulin resistance and hepatic oxidative stress in mice fed high fructose in drinking water (20%) for 8 weeks. The results indicated that continuous administration of TBF dose-dependently improved the insulin sensitivity and glucose intolerance in high fructose-fed mice. TBF treatment also reversed the reduced level of insulin action on the phosphorylation of insulin receptor substrate-1 (IRS-1), protein kinase B (Akt) and phosphatidylinositol 3-kinase (PI3K), as well as the translocation of glucose transporter type 4 (GLUT4) in the insulin-resistant liver. Furthermore, TBF was found to exert high antioxidant capacity as it acts as a shield against oxidative stress induced by high fructose by restoring the antioxidant status, and modulating nuclear factor E2 related factor 2 (Nrf2) translocation to the nucleus with subsequently up-regulated antioxidative enzyme protein expression. Histopathological examinations revealed that impaired pancreatic/hepatic tissues were effectively restored in high fructose-fed mice following TBF treatment. Our results show that TBF intake is effective in preventing the conversion of high fructose-induced insulin resistance and hepatic oxidative stress in mice by improving the insulin signaling molecules and the Nrf2 signal pathway in the liver.

  16. Gender difference and relationship of insulin resistance with microalbuminuria type-2 diabetes

    International Nuclear Information System (INIS)

    Ahmed, S.; Ahmad, A.

    2010-01-01

    To determine the relationship of insulin resistance with microalbuminuria in patients of type-2 Diabetes mellitus and observe gender difference if any. Study Design: A cross-sectional study. Place and Duration of Study: Diabetes Clinic of Combined Military Hospital, Malir Cantt, from April to August 2007. Methodology: One hundred and fifty five patients of type-2 Diabetes mellitus were included in the study who had either microalbuminuria or normo albuminuria. Body mass index, waist circumference and blood pressure were recorded. Fasting venous blood sample was collected for plasma glucose (FPG), serum insulin, total and HDL cholesterol, triglycerides, creatinine and HbA1c. Urine albumin excretion was determined using urine albumin to creatinine ratio. Insulin resistance was calculated from fasting plasma glucose and serum insulin levels, using homeostatic model assessment of insulin resistance (HOMA-IR). Correlation and association testing was carried out with significance at p < 0.05. Results: Microalbuminuria was found to be significantly correlated with HOMA-IR (r = 0.33, p < 0.001), serum insulin (r = 0.28, p = < 0.001), body mass index (r = 0.18, p = 0.02) and waist circumference (r = 0.21, p = 0.008). This correlation was more significant in women (n = 85, r = 0.48, p = < 0.0001) as compared to men (n = 70, r = 0.14, p = 0.12). The correlation between HOMA-IR and urine albumin excretion remained highly significant (p = 0.001) after controlling for gender, age, duration of diabetes, waist circumference, hypertension, triglycerides and HbA1c. Conclusion: Urinary albumin excretion in patients of type-2 diabetes is strongly associated with insulin resistance and related cardiovascular risk factors. This association appears to be stronger in women than the men, in our population. (author)

  17. Relationship between insulin resistance and plasma vitamin D in adults

    Directory of Open Access Journals (Sweden)

    Badawi A

    2014-07-01

    Full Text Available Alaa Badawi,1 Suzan Sayegh,2 Eman Sadoun,3 Mohamed Al-Thani,2 Paul Arora,4 Pierre S Haddad51Office of Biotechnology, Genomics and Population Health, Public Health Agency of Canada, Toronto, ON, Canada; 2Department of Public Health, 3Clinical Research Division, Supreme Council of Health, Doha, Qatar; 4Dalla Lana School of Public Health, University of Toronto, ON, Canada; 5Department of Pharmacology, Faculty of Medicine, University of Montreal, Montreal, QC, CanadaAbstract: A recent relationship between vitamin D deficiency and the risk of type 2 diabetes mellitus (T2DM and insulin resistance has been established through several studies. Research suggests a correlation between serum vitamin D and glycemic status measures. The aim of this study was to investigate the relationship between the plasma vitamin D levels (25[OH]D and the factors linked to insulin resistance in a representative sample of Canadians ranging in age from 16–79 years. Data were used from the Canadian Health Measures Survey where direct measures of health and wellness were reported from 1,928 subjects. These data were gathered from March 2007–February 2009 at 15 sites selected through a multistage sampling strategy. An inverse relationship between insulin resistance and plasma vitamin D level in both men and women was observed. This study provides additional evidence for the role of vitamin D in T2DM. If causally associated, the supplementation of vitamin D may help in preventing insulin resistance and subsequent T2DM.Keywords: HOMA-IR, plasma 25(OHD, diabetes

  18. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Casablanca cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Ahmed Farouqi

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Casablanca, Morocco. Results: A total of 495 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 231, insulin detemir (n = 151, insulin aspart (n = 19, basal insulin plus insulin aspart (n = 53 and other insulin combinations (n = 41. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 10.2% and insulin user (mean HbA 1 c: 9.4% groups. After 24 weeks of treatment, both groups showed improvement in HbA 1 c (insulin naïve: −2.3%, insulin users: −1.8%. Major hypoglycaemia was observed in the insulin naïve group after 24 weeks. SADRs were reported in 1.2% of insulin naïve and 2.1% of insulin user groups. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  19. Deepure Tea Improves High Fat Diet-Induced Insulin Resistance and Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Jing-Na Deng

    2015-01-01

    Full Text Available This study was to explore the protective effects of Deepure tea against insulin resistance and hepatic steatosis and elucidate the potential underlying molecular mechanisms. C57BL/6 mice were fed with a high fat diet (HFD for 8 weeks to induce the metabolic syndrome. In the Deepure tea group, HFD mice were administrated with Deepure tea at 160 mg/kg/day by gavage for 14 days. The mice in HFD group received water in the same way over the same period. The age-matched C57BL/6 mice fed with standard chow were used as normal control. Compared to the mice in HFD group, mice that received Deepure tea showed significantly reduced plasma insulin and improved insulin sensitivity. Deepure tea increased the expression of insulin receptor substrate 2 (IRS-2, which plays an important role in hepatic insulin signaling pathway. Deepure tea also led to a decrease in hepatic fatty acid synthesis and lipid accumulation, which were mediated by the downregulation of sterol regulatory element binding protein 1c (SREBP-1c, fatty acid synthesis (FAS, and acetyl-CoA carboxylase (ACC proteins that are involved in liver lipogenesis. These results suggest that Deepure tea may be effective for protecting against insulin resistance and hepatic steatosis via modulating IRS-2 and downstream signaling SREBP-1c, FAS, and ACC.

  20. Low Prevalence of Insulin Resistance among Iranian Patients with Chronic Hepatitis C Virus Infection: A Case-Control Study.

    Science.gov (United States)

    Eshraghian, Kavous; Lankarani, Kamran B; Fattahi, Mohammad Reza; Esmailnejad, Atefeh; Peymani, Payam

    2017-07-14

    Association between chronic hepatitis C virus (CHC) infection and type 2 diabetes mellitus has been challenging in recent decades. Despite of extensive research in this area, there is no general agreement on the direct effect of HCV infection on insulin resistance. The study was performed in 52 CHC patients (mean age = 39.48) and 52 and sex‑matched healthy Iranian controls, referred to the Hepatitis Clinic, Department of Gastroenterohepatology, Shiraz University of medical sciences, Shiraz, Iran, from 2012 to 2015. Fasting blood glucose level, fasting insulin level and insulin resistance defined as a homeostasis model assessment of insulin resistance (HOMA-IR) index were determined and compared between two groups. Insulin resistance was present in 26.9% of CHC patients and 34.62% of healthy controls. Mean HOMA index was 1.93 in patients and 2.18 in controls. There were no statistically significant differences between patient and control groups with regard to fasting insulin level, fasting blood glucose, HOMA index and insulin resistance. HOMA index and fasting insulin level were significantly higher in IR CHC patients relative to IR controls. Fasting blood glucose was also significantly higher in controls younger than 40 years. Results obtained in this study showed that chronic hepatitis C cannot be considered as a risk factor for insulin resistance and diabetes in Iranian population. However, regular screening for insulin resistance is recommended in CHC patients with age ≥ 40 years and fasting blood glucose ≥ 100 mg/dl. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Insulin Resistance and Alzheimer’s Disease: Bioenergetic Linkages

    Directory of Open Access Journals (Sweden)

    Bryan J. Neth

    2017-10-01

    Full Text Available Metabolic dysfunction is a well-established feature of Alzheimer’s disease (AD, evidenced by brain glucose hypometabolism that can be observed potentially decades prior to the development of AD symptoms. Furthermore, there is mounting support for an association between metabolic disease and the development of AD and related dementias. Individuals with insulin resistance, type 2 diabetes mellitus (T2D, hyperlipidemia, obesity, or other metabolic disease may have increased risk for the development of AD and similar conditions, such as vascular dementia. This association may in part be due to the systemic mitochondrial dysfunction that is common to these pathologies. Accumulating evidence suggests that mitochondrial dysfunction is a significant feature of AD and may play a fundamental role in its pathogenesis. In fact, aging itself presents a unique challenge due to inherent mitochondrial dysfunction and prevalence of chronic metabolic disease. Despite the progress made in understanding the pathogenesis of AD and in the development of potential therapies, at present we remain without a disease-modifying treatment. In this review, we will discuss insulin resistance as a contributing factor to the pathogenesis of AD, as well as the metabolic and bioenergetic disruptions linking insulin resistance and AD. We will also focus on potential neuroimaging tools for the study of the metabolic dysfunction commonly seen in AD with hopes of developing therapeutic and preventative targets.

  2. Insulin Resistance and Increased Muscle Cytokine Levels in Patients With Mitochondrial Myopathy

    DEFF Research Database (Denmark)

    Rue, Nana; Vissing, John; Galbo, Henrik

    2014-01-01

    CONTEXT: Mitochondrial dysfunction has been proposed to cause insulin resistance and that might stimulate cytokine production. OBJECTIVE: The objective of the study was to elucidate the association between mitochondrial myopathy, insulin sensitivity, and cytokine levels in muscle. DESIGN......: The intervention included a 120-minute hyperinsulinemic, euglycemic clamp. Another morning, microdialysis of both vastus lateralis muscles for 4 hours, including one-legged, knee extension exercise for 30 minutes, was performed. MAIN OUTCOME MEASURES: Glucose infusion rate during 90-120 minutes of insulin infusion...... was measured. Cytokine concentrations in dialysate were also measured. RESULTS: Muscle strength, percentage fat mass, and creatine kinase in plasma did not differ between groups. The maximal oxygen uptake was 21 ± 3 (SE) (P) and 36 ± 3(C) mL/kg·min (2P insulin, C-peptide, and glucagon were higher...

  3. Homeostatic Model Assessment-Insulin Resistance (HOMA-IR 2) in Mild Subclinical Hypothyroid Subjects.

    Science.gov (United States)

    Sengupta, Shreejita; Jaseem, T; Ambalavanan, Jayachidambaram; Hegde, Anupama

    2018-04-01

    Despite various studies with conflicting results, the effect of thyroid hormones on lipids and insulin levels in dysthyroidism is of great interest. This case control study was aimed to perceive the existence of IR and dyslipidemia in mild subclinical hypothyroid subjects (TSH ≤ 9.9 µIU/ml) as compared to their age and gender matched euthyroid controls. Basic demographic information like height, weight was recorded. Serum samples of all the subjects were assayed for thyroid profile, lipid profile, blood glucose, HbA1C and insulin. BMI and insulin resistance was calculated. Compared to controls patients with mild subclinical hypothyroidism demonstrated hyperinsulinemia and dyslipidemia observed by the higher LDL cholesterol. A significantly positive correlation was observed for HOMA-IR with TSH and LDL cholesterol. Hence, even in the mild subclinical hypothyroid state assessment of thyroid function should be combined with estimation of plasma glucose, insulin and serum lipids to monitor and prevent its associated effects.

  4. Dwarfism and insulin resistance in male offspring caused by α1-adrenergic antagonism during pregnancy

    Directory of Open Access Journals (Sweden)

    Rebecca Oelkrug

    2017-10-01

    Conclusions: Our results demonstrate that maternal α1-adrenergic blockade can constitute an epigenetic cause for dwarfism and insulin resistance. The findings are of immediate clinical relevance as combined α/β-adrenergic blockers are first-line treatment of maternal hypertension.

  5. Bimodal effect on pancreatic β-cells of secretory products from normal or insulin-resistant human skeletal muscle

    DEFF Research Database (Denmark)

    Bouzakri, Karim; Plomgaard, Peter; Berney, Thierry

    2011-01-01

    Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells.......Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells....

  6. High-Intensity Interval Training Attenuates Insulin Resistance Induced by Sleep Deprivation in Healthy Males.

    Science.gov (United States)

    de Souza, Jorge F T; Dáttilo, Murilo; de Mello, Marco T; Tufik, Sergio; Antunes, Hanna K M

    2017-01-01

    Introduction: Sleep deprivation can impair several physiological systems and recently, new evidence has pointed to the relationship between a lack of sleep and carbohydrate metabolism, consequently resulting in insulin resistance. To minimize this effect, High-Intensity Interval Training (HIIT) is emerging as a potential strategy. Objective: The aim of this study was to investigate the effects of HIIT on insulin resistance induced by sleep deprivation. Method: Eleven healthy male volunteers were recruited, aged 18-35 years, who declared taking 7-8 h sleep per night. All volunteers were submitted to four different conditions: a single night of regular sleep (RS condition), 24 h of total sleep deprivation ( SD condition), HIIT training followed by regular sleep (HIIT+RS condition), and HIIT training followed by 24 h of total sleep deprivation (HIIT+ SD condition). They performed six training sessions over 2 weeks and each session consisted of 8-12 × 60 s intervals at 100% of peak power output. In each experimental condition, tests for glucose, insulin, cortisol, free fatty acids, and insulin sensitivity, measured by oral glucose tolerance test (OGTT), were performed. Results: Sleep deprivation increased glycaemia and insulin levels, as well as the area under the curve. Furthermore, an increase in free fatty acids concentrations and basal metabolism was observed. There were no differences in the concentrations of cortisol. However, HIIT before 24 h of sleep deprivation attenuated the increase of glucose, insulin, and free fatty acids. Conclusion: Twenty-four hours of sleep deprivation resulted in acute insulin resistance. However, HIIT is an effective strategy to minimize the deleterious effects promoted by this condition.

  7. High-Intensity Interval Training Attenuates Insulin Resistance Induced by Sleep Deprivation in Healthy Males

    Directory of Open Access Journals (Sweden)

    Jorge F. T. de Souza

    2017-12-01

    Full Text Available Introduction: Sleep deprivation can impair several physiological systems and recently, new evidence has pointed to the relationship between a lack of sleep and carbohydrate metabolism, consequently resulting in insulin resistance. To minimize this effect, High-Intensity Interval Training (HIIT is emerging as a potential strategy.Objective: The aim of this study was to investigate the effects of HIIT on insulin resistance induced by sleep deprivation.Method: Eleven healthy male volunteers were recruited, aged 18–35 years, who declared taking 7–8 h sleep per night. All volunteers were submitted to four different conditions: a single night of regular sleep (RS condition, 24 h of total sleep deprivation (SD condition, HIIT training followed by regular sleep (HIIT+RS condition, and HIIT training followed by 24 h of total sleep deprivation (HIIT+SD condition. They performed six training sessions over 2 weeks and each session consisted of 8–12 × 60 s intervals at 100% of peak power output. In each experimental condition, tests for glucose, insulin, cortisol, free fatty acids, and insulin sensitivity, measured by oral glucose tolerance test (OGTT, were performed.Results: Sleep deprivation increased glycaemia and insulin levels, as well as the area under the curve. Furthermore, an increase in free fatty acids concentrations and basal metabolism was observed. There were no differences in the concentrations of cortisol. However, HIIT before 24 h of sleep deprivation attenuated the increase of glucose, insulin, and free fatty acids.Conclusion: Twenty-four hours of sleep deprivation resulted in acute insulin resistance. However, HIIT is an effective strategy to minimize the deleterious effects promoted by this condition.

  8. High-Intensity Interval Training Attenuates Insulin Resistance Induced by Sleep Deprivation in Healthy Males

    Science.gov (United States)

    de Souza, Jorge F. T.; Dáttilo, Murilo; de Mello, Marco T.; Tufik, Sergio; Antunes, Hanna K. M.

    2017-01-01

    Introduction: Sleep deprivation can impair several physiological systems and recently, new evidence has pointed to the relationship between a lack of sleep and carbohydrate metabolism, consequently resulting in insulin resistance. To minimize this effect, High-Intensity Interval Training (HIIT) is emerging as a potential strategy. Objective: The aim of this study was to investigate the effects of HIIT on insulin resistance induced by sleep deprivation. Method: Eleven healthy male volunteers were recruited, aged 18–35 years, who declared taking 7–8 h sleep per night. All volunteers were submitted to four different conditions: a single night of regular sleep (RS condition), 24 h of total sleep deprivation (SD condition), HIIT training followed by regular sleep (HIIT+RS condition), and HIIT training followed by 24 h of total sleep deprivation (HIIT+SD condition). They performed six training sessions over 2 weeks and each session consisted of 8–12 × 60 s intervals at 100% of peak power output. In each experimental condition, tests for glucose, insulin, cortisol, free fatty acids, and insulin sensitivity, measured by oral glucose tolerance test (OGTT), were performed. Results: Sleep deprivation increased glycaemia and insulin levels, as well as the area under the curve. Furthermore, an increase in free fatty acids concentrations and basal metabolism was observed. There were no differences in the concentrations of cortisol. However, HIIT before 24 h of sleep deprivation attenuated the increase of glucose, insulin, and free fatty acids. Conclusion: Twenty-four hours of sleep deprivation resulted in acute insulin resistance. However, HIIT is an effective strategy to minimize the deleterious effects promoted by this condition. PMID:29270126

  9. Obesity, ectopic lipids, and insulin resistance : Tissue-specific defects in nutrient handling

    NARCIS (Netherlands)

    ter Horst, K.W.

    2017-01-01

    This thesis described studies on the clinical, nutritional, and molecular aspects of insulin resistance in human obesity. We investigated methods for the identification of insulin resistance in high-risk patients and studied the nutritional and molecular mechanisms that may contribute to insulin

  10. Pregnancy-induced insulin resistance in liver and skeletal muscles of the conscious rabbit

    International Nuclear Information System (INIS)

    Hauguel, S.; Gilbert, M.; Girard, J.

    1987-01-01

    Insulin sensitivity of maternal nonuterine tissues (liver and skeletal muscles) has been investigated in the conscious rabbit during late gestation (24 and 30 days). The specific effect of insulin on glucose production and utilization was evaluated with the hyperinsulinemic euglycemic clamp technique using two types of labelled microspheres ( 57 Co and 113 Sn). The net balance of glucose across the hindlimb muscles was studied by means of the Fick principle in basal and insulin stimulated conditions (clamp study). The results show that an insulin-resistant state developed between days 24 and 30 of gestation in the rabbit and involves both glucose producing (liver) and utilizing (muscles) tissues. On day 30 of gestation, muscle glucose uptake was not significantly stimulated at a plasma insulin concentration of 700 μU/ml determined by radioimmunoassay, whereas it was stimulated by 30-40% in nonpregnant and 24 day pregnant rabbits. At similar plasma insulin concentration, endogenous glucose production was suppressed by 85% in both nonpregnant and 24 day pregnant rabbits, whereas it was decreased by only 30% in 30 day pregnant rabbits. The present data suggest that hindlimb muscles of late pregnant rabbits are able to reduce their insulin-induced glucose utilization. This could contribute to meet the glucose requirements of pregnant uterus in late gestation

  11. Circulating ApoJ is closely associated with insulin resistance in human subjects.

    Science.gov (United States)

    Seo, Ji A; Kang, Min-Cheol; Ciaraldi, Theodore P; Kim, Sang Soo; Park, Kyong Soo; Choe, Charles; Hwang, Won Min; Lim, Dong Mee; Farr, Olivia; Mantzoros, Christos; Henry, Robert R; Kim, Young-Bum

    2018-01-01

    Insulin resistance is a major risk factor for type 2 diabetes. ApolipoproteinJ (ApoJ) has been implicated in altered pathophysiologic states including cardiovascular and Alzheimer's disease. However, the function of ApoJ in regulation of glucose homeostasis remains unclear. This study sought to determine whether serum ApoJ levels are associated with insulin resistance in human subjects and if they change after interventions that improve insulin sensitivity. Serum ApoJ levels and insulin resistance status were assessed in nondiabetic (ND) and type 2 diabetic (T2D) subjects. The impacts of rosiglitazone or metformin therapy on serum ApoJ levels and glucose disposal rate (GDR) during a hyperinsulinemic/euglycemic clamp were evaluated in a separate cohort of T2D subjects. Total ApoJ protein or that associated with the HDL and LDL fractions was measured by immunoblotting or ELISA. Fasting serum ApoJ levels were greatly elevated in T2D subjects (ND vs T2D; 100±8.3 vs. 150.6±8.5AU, Pinsulin, HOMA-IR, and BMI. ApoJ levels were significantly and independently associated with HOMA-IR, even after adjustment for age, sex, and BMI. Rosiglitazone treatment in T2D subjects resulted in a reduction in serum ApoJ levels (before vs. after treatment; 100±13.9 vs. 77±15.2AU, P=0.015), whereas metformin had no effect on ApoJ levels. The change in ApoJ levels during treatment was inversely associated with the change in GDR. Interestingly, ApoJ content in the LDL fraction was inversely associated with HOMA-IR. Serum ApoJ levels are closely correlated with the magnitude of insulin resistance regardless of obesity, and decrease along with improvement of insulin resistance in response only to rosiglitazone in type 2 diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Insulin resistance, hepatic lipid and adipose tissue distribution in HIV infected men

    Science.gov (United States)

    He, Qing; Engelson, Ellen S.; Ionescu, Gabriel; Glesby, Marshall J.; Albu, Jeanine B.; Kotler, Donald P.

    2010-01-01

    Background A large proportion of HIV-infected subjects on antiretroviral medication develop insulin resistance, especially in the context of fat redistribution. This study investigates the interrelationships among fat distribution, hepatic lipid content, and insulin resistance in HIV-infected men. Design and methods We performed a cross-sectional analysis of baseline data from twenty-three HIV-infected participants in 3 prospective clinical studies. Magnetic resonance spectroscopy was applied to quantify hepatic lipid concentrations. Magnetic resonance imaging was used to quantify whole body adipose tissue compartments, i.e., subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) volumes as well as inter-muscular adipose tissue (IMAT) subcompartment, and omental-mesenteric adipose tissue (OMAT) and retroperitoneal adipose tissue (RPAT) subcompartments of VAT. Homeostasis model for assessment of insulin resistance (HOMA-IR) was calculated from fasting glucose and insulin concentrations. Results Hepatic lipid content correlated significantly with total VAT (r=0.62, p=0.0014) but not with SAT (r=0.053, p=0.81). In univariate analysis, hepatic lipid content was associated with the OMAT (r=0.67, p=0.0004) and RPAT (r=0.53, p=0.009) subcompartments; HOMA-IR correlated with both VAT and hepatic lipid contents (r=0.61, p=0.057 and 0.68, p=0.0012, respectively). In stepwise linear regression models, hepatic lipid had the strongest associations with OMAT and with HOMA-IR. Conclusion Hepatic lipid content is associated with VAT volume, especially the omental-mesenteric subcompartment, in HIV-infected men. Hepatic lipid content is associated with insulin resistance in HIV-infected men. Hepatic lipid content might mediate the relationship between VAT and insulin resistance among treated, HIV-infected men. PMID:18572755

  13. Sex differences in the association between dietary restraint, insulin resistance and obesity.

    Science.gov (United States)

    Jastreboff, Ania M; Gaiser, Edward C; Gu, Peihua; Sinha, Rajita

    2014-04-01

    Restrained food consumption may alter metabolic function and contribute to eventual weight gain; however, sex differences in these relationships have not been assessed. The objective of this study was to examine the relationship between restrained eating and insulin resistance and the influence of body mass index and sex on this relationship in a large community sample of both men and women. We hypothesized that restrained eating would be related to insulin resistance and this relationship would be influenced by sex and body mass index. In this cross-sectional, observational study, we studied 487 individuals from the community (men N = 222, women N = 265), who ranged from lean (body mass index 18.5-24.9 kg/m(2), N = 173), overweight (body mass index 25-29.9 kg/m(2), N = 159) to obese (body mass index >30 kg/m(2), N = 155) weight categories. We assessed restrained eating using the Dutch Eating Behavior Questionnaire and obtained fasting morning plasma insulin and glucose on all subjects. In men, but not in women, restrained eating was related to homeostatic model assessment of insulin resistance (HOMA-IR) (p < 0.0001). Furthermore, HOMA-IR was significantly higher in men who were high- versus low-restrained eaters (p = 0.0006). This study is the first to report sex differences with regard to the relationship between restrained eating and insulin resistance. Our results suggest that high restrained eating is associated with insulin resistance in men but not in women. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Childhood craniopharyngioma: greater hypothalamic involvement before surgery is associated with higher homeostasis model insulin resistance index

    Science.gov (United States)

    Trivin, Christine; Busiah, Kanetee; Mahlaoui, Nizar; Recasens, Christophe; Souberbielle, Jean-Claude; Zerah, Michel; Sainte-Rose, Christian; Brauner, Raja

    2009-01-01

    Background Obesity seems to be linked to the hypothalamic involvement in craniopharyngioma. We evaluated the pre-surgery relationship between the degree of this involvement on magnetic resonance imaging and insulin resistance, as evaluated by the homeostasis model insulin resistance index (HOMA). As insulin-like growth factor 1, leptin, soluble leptin receptor (sOB-R) and ghrelin may also be involved, we compared their plasma concentrations and their link to weight change. Methods 27 children with craniopharyngioma were classified as either grade 0 (n = 7, no hypothalamic involvement), grade 1 (n = 8, compression without involvement), or grade 2 (n = 12, severe involvement). Results Despite having similar body mass indexes (BMI), the grade 2 patients had higher glucose, insulin and HOMA before surgery than the grade 0 (P = 0.02, craniopharyngioma before surgery seems to determine the degree of insulin resistance, regardless of the BMI. The pre-surgery HOMA values were correlated with the post-surgery weight gain. This suggests that obesity should be prevented by reducing inn secretion in those cases with hypothalamic involvement. PMID:19341477

  15. Possible Involvement of Insulin Resistance in the Progression of Cancer Cachexia in Mice.

    Science.gov (United States)

    Ohsawa, Masahiro; Murakami, Tomoyasu; Kume, Kazuhiko

    2016-01-01

    Malnutrition is a common problem among cancer patients, affecting up to 85% of patients with certain cancers. In severe cases, malnutrition can progress to cachexia, a specific form of malnutrition characterized by loss of lean body mass and muscle wasting. Although this muscle wasting might be a product of enhanced protein degradation, the precise mechanisms of cancer cachexia are not fully elucidated. Based on basic and clinical research, glucose intolerance and insulin resistance have been postulated to be associated with cancer cachexia. Since insulin in the skeletal muscle inhibits protein degradation and promotes protein synthesis, insulin resistance could be a possible cause of cancer cachexia. Therefore, we investigated the involvement of insulin resistance in the development of cancer cachexia in tumor-bearing mice. The signaling protein in the insulin cascade was attenuated in the skeletal muscle and hypothalamus from tumor-bearing mice. We identified Chrysanthemum morifolium RAMAT., known as Kikuka, as a peroxisome proliferator-activated receptor γ (PPARγ) ligand. Treatment with Kikuka attenuates the skeletal muscle changes in tumor-bearing mice. These results suggest that this natural PPARγ activator might be an attractive candidate for the treatment of cancer cachexia. In the symposium, we presented the PPARγ activator-induced improvement of cancer cachexia.

  16. Childhood craniopharyngioma: greater hypothalamic involvement before surgery is associated with higher homeostasis model insulin resistance index

    Directory of Open Access Journals (Sweden)

    Sainte-Rose Christian

    2009-04-01

    Full Text Available Abstract Background Obesity seems to be linked to the hypothalamic involvement in craniopharyngioma. We evaluated the pre-surgery relationship between the degree of this involvement on magnetic resonance imaging and insulin resistance, as evaluated by the homeostasis model insulin resistance index (HOMA. As insulin-like growth factor 1, leptin, soluble leptin receptor (sOB-R and ghrelin may also be involved, we compared their plasma concentrations and their link to weight change. Methods 27 children with craniopharyngioma were classified as either grade 0 (n = 7, no hypothalamic involvement, grade 1 (n = 8, compression without involvement, or grade 2 (n = 12, severe involvement. Results Despite having similar body mass indexes (BMI, the grade 2 patients had higher glucose, insulin and HOMA before surgery than the grade 0 (P = 0.02, The data for the whole population before and 6–18 months after surgery showed increases in BMI (P Conclusion The hypothalamic involvement by the craniopharyngioma before surgery seems to determine the degree of insulin resistance, regardless of the BMI. The pre-surgery HOMA values were correlated with the post-surgery weight gain. This suggests that obesity should be prevented by reducing inn secretion in those cases with hypothalamic involvement.

  17. Associations of Insulin Resistance and Glycemia With Liver Enzymes in Hispanic/Latino Youths: Results From the Hispanic Community Children's Health Study/Study of Latino Youth (SOL Youth).

    Science.gov (United States)

    Parrinello, Christina M; Rudolph, Bryan J; Lazo, Mariana; Gallo, Linda C; Thyagarajan, Bharat; Cotler, Scott J; Qi, Qibin; Seeherunvong, Tossaporn; Vidot, Denise C; Strickler, Howard D; Kaplan, Robert C; Isasi, Carmen R

    2017-11-03

    Associations of insulin resistance and hyperglycemia with a panel of liver enzymes have not been well studied in a young, heterogenous Hispanic/Latino population. We aimed to assess the associations of insulin resistance and glycemia with nonalcoholic fatty liver disease (NAFLD), as measured by liver enzymes and the pediatric NAFLD fibrosis index (PNFI), and whether these associations are modified by body mass index and mediated by inflammation or endothelial dysfunction. We conducted a cross-sectional study of 1317 boys and girls aged 8 to 16 years from the Hispanic Community Children's Health Study/Study of Latino Youth. We used Poisson regression to assess the associations of fasting glucose, hemoglobin A1c, and homeostasis model assessment of insulin resistance (HOMA-IR) with elevated alanine aminotransferase (ALT) (>25 U/L in boys, >22 U/L in girls), aspartate aminotransferase (AST) (≥37 U/L), gamma-glutamyl transpeptidase (GGT) (≥17 U/L), and PNFI (≥9; a function of age, waist circumference, and triglyceride level). HOMA-IR was associated with elevated ALT, AST, GGT, and PNFI [prevalence ratios (95% confidence intervals) for each 1-unit increase in the natural log of HOMA-IR: 1.99 (1.40-2.81), 2.15 (1.12-4.12), 1.70 (1.26-2.30), and 1.98 (1.43-2.74), respectively]. Associations were observed in overweight/obese children, but not in normal weight children (P-interaction=0.04 for AST and P-interaction=0.07 for GGT). After further adjustment for adiponectin, high-sensitivity C-reactive protein, e-selectin, and PAI-1, associations of HOMA-IR with liver enzymes and PNFI were attenuated, but remained statistically significant for AST and PNFI. Insulin resistance was associated with NAFLD in overweight/obese Hispanic/Latino youth, and this association may be partially mediated by inflammation and endothelial dysfunction.

  18. Hepatic Insulin Resistance and Altered Gluconeogenic Pathway in Premature Baboons.

    Science.gov (United States)

    McGill-Vargas, Lisa; Gastaldelli, Amalia; Liang, Hanyu; Anzueto Guerra, Diana; Johnson-Pais, Teresa; Seidner, Steven; McCurnin, Donald; Muscogiuri, Giovanna; DeFronzo, Ralph; Musi, Nicolas; Blanco, Cynthia

    2017-05-01

    Premature infants have altered glucose regulation early in life and increased risk for diabetes in adulthood. Although prematurity leads to an increased risk of diabetes and metabolic syndrome in adult life, the role of hepatic glucose regulation and adaptation to an early extrauterine environment in preterm infants remain unknown. The purpose of this study was to investigate developmental differences in glucose metabolism, hepatic protein content, and gene expression of key insulin-signaling/gluconeogenic molecules. Fetal baboons were delivered at 67%, 75%, and term gestational age and euthanized at birth. Neonatal baboons were delivered prematurely (67% gestation), survived for two weeks, and compared with similar postnatal term animals and underwent serial hyperinsulinemic-euglycemic clamp studies. Premature baboons had decreased endogenous glucose production (EGP) compared with term animals. Consistent with these results, the gluconeogenic molecule, phosphoenolpyruvate carboxykinase messenger RNA, was decreased in preterm baboons compared with terms. Hepatic insulin signaling was altered by preterm birth as evidenced by decreased insulin receptor-β, p85 subunit of phosphoinositide 3-kinase, phosphorylated insulin receptor substrate 1, and Akt-1 under insulin-stimulated conditions. Furthermore, preterm baboons failed to have the normal increase in glycogen synthase kinase-α from fetal to postnatal life. The blunted responses in hepatic insulin signaling may contribute to the hyperglycemia of prematurity, while impaired EGP leads to hypoglycemia of prematurity. Copyright © 2017 Endocrine Society.

  19. Effect of Omega-3 Fatty Acids Treatment on Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Mogoş Tiberius

    2014-12-01

    Full Text Available Background and aims: Insulin resistance (IR is a common pathogenic factor of several diseases: diabetes mellitus, the metabolic syndrome, arterial hypertension, atherosclerosis, dyslipidemia, etc. There are many therapeutic factors involved in decreasing IR. Among them we mention metformin, pioglitazone, physical activity, weight loss, diet, etc. In the last decade, there are more observations of the influence of polyunsaturated fatty acids on IR. The most powerful seem to be omega-3 fatty acids. In our study, we wanted to asses if the administration of omega-3 fatty acids is involved in modifying IR. Materials and methods: We evaluated 126 diabetic patients with IR from January 2011 until July 2014. The study was open-label and non-randomized. For the determination of IR we used the HOMA-IR method. Results: For both males and females there was a regression of HOMA-IR during the 4 weeks of treatment with omega-3 and also after 2 weeks after stopping the administration of these fatty acids. The decrease of HOMA-IR was statistically significant (p<0.05. The statistic result observed in the next 2 weeks after stopping administration of omega-3 was also significant (p<0.05.

  20. Sex Differences in the Association between Level of Childhood Interleukin-6 and Insulin Resistance in Adolescence

    DEFF Research Database (Denmark)

    Bugge, Anna; El-Naaman, Bianca; G McMurray, Robert

    2012-01-01

    followed for 4 years. Anthropometrics and VO(2peak) were measured. Fasting blood samples were analyzed for IL-6, insulin, and glucose. Homeostasis model assessment (HOMA-IR) was used as a measure of insulin resistance. Results. For girls but not boys, levels of IL-6 at age 9 yrs correlated with HOMA-IR...... at age 13 yrs: r = 0.223, P = 0.008. Girls with IL-6 levels within the highest quartile at age 9 yrs had an odds ratio of 3.68 (CI = 1.58-8.57) being in the highest quartile of HOMA-IR four years later. Conclusion. In this cohort, IL-6 levels in childhood were related to insulin resistance in adolescence...

  1. Effect of insulin resistance on intracellular signal transduction of vessels in diabetic

    International Nuclear Information System (INIS)

    Cen Rongguang; Wei Shaoying; Mo Xingju

    2003-01-01

    To investigate the relationship between the insulin resistance (IR) and the intracellular signal transduction of vessels, changes in fasting blood glucose (FBG), fasting insulin (FINS), triglyceride (TG), total cholesterol (TC), inositol triphosphate (IP 3 ), protein kinase C(PKC) and intracellular total calcium concentration in 31 diabetic patients were compared with those of 39 normal controls. The levels of FBG, FINS, TG and TC in diabetic patients were significantly higher than those of normal controls (P 3 and PKC in diabetic patients were significantly lower than those of normal controls (P<0.01). The results suggest that there is a causal relation between insulin resistance and abnormalities of cellular calcium metabolism and intracellular signal transduction of vessels

  2. Nutrient sensing and insulin signaling in neuropeptide-expressing immortalized, hypothalamic neurons: A cellular model of insulin resistance.

    Science.gov (United States)

    Fick, Laura J; Belsham, Denise D

    2010-08-15

    Obesity and type 2 diabetes mellitus represent a significant global health crisis. These two interrelated diseases are typified by perturbed insulin signaling in the hypothalamus. Using novel hypothalamic cell lines, we have begun to elucidate the molecular and intracellular mechanisms involved in the hypothalamic control of energy homeostasis and insulin resistance. In this review, we present evidence of insulin and glucose signaling pathways that lead to changes in neuropeptide gene expression. We have identified some of the molecular mechanisms involved in the control of de novo hypothalamic insulin mRNA expression. And finally, we have defined key mechanisms involved in the etiology of cellular insulin resistance in hypothalamic neurons that may play a fundamental role in cases of high levels of insulin or saturated fatty acids, often linked to the exacerbation of obesity and diabetes.

  3. Grizzly bears exhibit augmented insulin sensitivity while obese prior to a reversible insulin resistance during hibernation.

    Science.gov (United States)

    Nelson, O Lynne; Jansen, Heiko T; Galbreath, Elizabeth; Morgenstern, Kurt; Gehring, Jamie Lauren; Rigano, Kimberly Scott; Lee, Jae; Gong, Jianhua; Shaywitz, Adam J; Vella, Chantal A; Robbins, Charles T; Corbit, Kevin C

    2014-08-05

    The confluence of obesity and diabetes as a worldwide epidemic necessitates the discovery of new therapies. Success in this endeavor requires translatable preclinical studies, which traditionally employ rodent models. As an alternative approach, we explored hibernation where obesity is a natural adaptation to survive months of fasting. Here we report that grizzly bears exhibit seasonal tripartite insulin responsiveness such that obese animals augment insulin sensitivity but only weeks later enter hibernation-specific insulin resistance (IR) and subsequently reinitiate responsiveness upon awakening. Preparation for hibernation is characterized by adiposity coupled to increased insulin sensitivity via modified PTEN/AKT signaling specifically in adipose tissue, suggesting a state of "healthy" obesity analogous to humans with PTEN haploinsufficiency. Collectively, we show that bears reversibly cope with homeostatic perturbations considered detrimental to humans and describe a mechanism whereby IR functions not as a late-stage metabolic adaptation to obesity, but rather a gatekeeper of the fed-fasting transition. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Relationships between endothelin and insulin receptor of red blood cell and insulin resistance in patients with hypertension

    International Nuclear Information System (INIS)

    Tong Qian; Zheng Yang; Xu Hui

    2004-01-01

    Objective: To find the relationships between endothelin (ET) and insulin resistance (IR) and insulin receptor (INSR) in patients with essential hypertension. Methods: Forty patients including 20 cases of essential hypertension disease (EHD) and 20 health persons were divided into experimental group and control group. Blood glucose, serum insulin, ET and the number of erythrocyte INSR in all patients during fasting condition were detected by radioimmunoassay and radiometric analysis. Results: Both insulin sensitivity index (ISI) and the number of INSR in EHD group were much less than that of control group, on the contrary, ET level of EHD group was significantly higher than that of control group (P<0.05). Statistical analysis demonstrated a negative correlation between ET and ISI and INSR number existed in EHD group. Conclusion: IR is a common phenomenon in patient with EHD and possibly due to decrease of INSR number. The ET levels are higher in patients with EHD than that in health people and correlate with INSR, and the change of INSR number is the possible mediator for their relationship

  5. Effects of Hormone Replacement Therapy on Insulin Resistance in Postmenopausal Diabetic Women

    Directory of Open Access Journals (Sweden)

    Iskra Bitoska

    2016-02-01

    CONCLUSION: HRT was associated with statistically signifficant increase of insulin sensitivity. Larger clinical trials will be necessary to understand whether HRT may improve insulin resistance and glucose homeostasis in women with diabetes, especially when given shortly after entering menopause.

  6. Aldehyde Dehydrogenase-2 (ALDH2) Ameliorates Chronic Alcohol Ingestion-Induced Myocardial Insulin Resistance and Endoplasmic Reticulum Stress

    OpenAIRE

    Li, Shi-Yan; Gilbert, Sara A.B.; Li, Qun; Ren, Jun

    2009-01-01

    Chronic alcohol intake leads to insulin resistance and alcoholic cardiomyopathy, which appears to be a result of the complex interaction between genes and environment. This study was designed to examine the impact of aldehyde dehydrogenase-2 (ALDH2) transgenic overexpression on alcohol-induced insulin resistance and myocardial injury. ALDH2 transgenic mice were produced using chicken β-actin promoter. Wild-type FVB and ALDH2 mice were fed a 4% alcohol or control diet for 12 wks. Cell shorteni...

  7. High Dietary Magnesium Intake Is Associated with Low Insulin Resistance in the Newfoundland Population

    Science.gov (United States)

    Shea, Jennifer; Wadden, Danny; Gulliver, Wayne; Randell, Edward; Vasdev, Sudesh; Sun, Guang

    2013-01-01

    Background Magnesium plays a role in glucose and insulin homeostasis and evidence suggests that magnesium intake is associated with insulin resistance (IR). However, data is inconsistent and most studies have not adequately controlled for critical confounding factors. Objective The study investigated the association between magnesium intake and IR in normal-weight (NW), overweight (OW) and obese (OB) along with pre- and post- menopausal women. Design A total of 2295 subjects (590 men and 1705 women) were recruited from the CODING study. Dietary magnesium intake was computed from the Willett Food Frequency Questionnaire (FFQ). Adiposity (NW, OW and OB) was classified by body fat percentage (%BF) measured by Dual-energy X-ray absorptiometry according to the Bray criteria. Multiple regression analyses were used to test adiposity-specific associations of dietary magnesium intake on insulin resistance adjusting for caloric intake, physical activity, medication use and menopausal status. Results Subjects with the highest intakes of dietary magnesium had the lowest levels of circulating insulin, HOMA-IR, and HOMA-ß and subjects with the lowest intake of dietary magnesium had the highest levels of these measures, suggesting a dose effect. Multiple regression analysis revealed a strong inverse association between dietary magnesium with IR. In addition, adiposity and menopausal status were found to be critical factors revealing that the association between dietary magnesium and IR was stronger in OW and OB along with Pre-menopausal women. Conclusion The results of this study indicate that higher dietary magnesium intake is strongly associated with the attenuation of insulin resistance and is more beneficial for overweight and obese individuals in the general population and pre-menopausal women. Moreover, the inverse correlation between insulin resistance and dietary magnesium intake is stronger when adjusting for %BF than BMI. PMID:23472169

  8. Bariatric surgery in morbidly obese insulin resistant humans normalises insulin signalling but not insulin-stimulated glucose disposal.

    Directory of Open Access Journals (Sweden)

    Mimi Z Chen

    Full Text Available Weight-loss after bariatric surgery improves insulin sensitivity, but the underlying molecular mechanism is not clear. To ascertain the effect of bariatric surgery on insulin signalling, we examined glucose disposal and Akt activation in morbidly obese volunteers before and after Roux-en-Y gastric bypass surgery (RYGB, and compared this to lean volunteers.The hyperinsulinaemic euglycaemic clamp, at five infusion rates, was used to determine glucose disposal rates (GDR in eight morbidly obese (body mass index, BMI=47.3 ± 2.2 kg/m(2 patients, before and after RYGB, and in eight lean volunteers (BMI=20.7 ± 0.7 kg/m2. Biopsies of brachioradialis muscle, taken at fasting and insulin concentrations that induced half-maximal (GDR50 and maximal (GDR100 GDR in each subject, were used to examine the phosphorylation of Akt-Thr308, Akt-473, and pras40, in vivo biomarkers for Akt activity.Pre-operatively, insulin-stimulated GDR was lower in the obese compared to the lean individuals (P<0.001. Weight-loss of 29.9 ± 4 kg after surgery significantly improved GDR50 (P=0.004 but not GDR100 (P=0.3. These subjects still remained significantly more insulin resistant than the lean individuals (p<0.001. Weight loss increased insulin-stimulated skeletal muscle Akt-Thr308 and Akt-Ser473 phosphorylation, P=0.02 and P=0.03 respectively (MANCOVA, and Akt activity towards the substrate PRAS40 (P=0.003, MANCOVA, and in contrast to GDR, were fully normalised after the surgery (obese vs lean, P=0.6, P=0.35, P=0.46, respectively.Our data show that although Akt activity substantially improved after surgery, it did not lead to a full restoration of insulin-stimulated glucose disposal. This suggests that a major defect downstream of, or parallel to, Akt signalling remains after significant weight-loss.

  9. Mechanisms for greater insulin-stimulated glucose uptake in normal and insulin-resistant skeletal muscle after acute exercise

    Science.gov (United States)

    2015-01-01

    Enhanced skeletal muscle and whole body insulin sensitivity can persist for up to 24–48 h after one exercise session. This review focuses on potential mechanisms for greater postexercise and insulin-stimulated glucose uptake (ISGU) by muscle in individuals with normal or reduced insulin sensitivity. A model is proposed for the processes underlying this improvement; i.e., triggers initiate events that activate subsequent memory elements, which store information that is relayed to mediators, which translate memory into action by controlling an end effector that directly executes increased insulin-stimulated glucose transport. Several candidates are potential triggers or memory elements, but none have been conclusively verified. Regarding potential mediators in both normal and insulin-resistant individuals, elevated postexercise ISGU with a physiological insulin dose coincides with greater Akt substrate of 160 kDa (AS160) phosphorylation without improved proximal insulin signaling at steps from insulin receptor binding to Akt activity. Causality remains to be established between greater AS160 phosphorylation and improved ISGU. The end effector for normal individuals is increased GLUT4 translocation, but this remains untested for insulin-resistant individuals postexercise. Following exercise, insulin-resistant individuals can attain ISGU values similar to nonexercising healthy controls, but after a comparable exercise protocol performed by both groups, ISGU for the insulin-resistant group has been consistently reported to be below postexercise values for the healthy group. Further research is required to fully understand the mechanisms underlying the improved postexercise ISGU in individuals with normal or subnormal insulin sensitivity and to explain the disparity between these groups after similar exercise. PMID:26487009

  10. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice

    International Nuclear Information System (INIS)

    Liu, Zhi-Qin; Liu, Ting; Chen, Chuan; Li, Ming-Yan; Wang, Zi-Yu; Chen, Ruo-song; Wei, Gui-xiang; Wang, Xiao-yi; Luo, Du-Qiang

    2015-01-01

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathways, and its increased activity and expression are implicated in the pathogenesis of insulin resistance. Therefore, the inhibition of PTP1B is anticipated to become a potential therapeutic strategy to treat T2DM. Fumosorinone (FU), a new natural product isolated from insect fungi Isaria fumosorosea, was found to inhibit PTP1B activity in our previous study. Herein, the effects of FU on insulin resistance and mechanism in vitro and in vivo were investigated. FU increased the insulin-provoked glucose uptake in insulin-resistant HepG2 cells, and also reduced blood glucose and lipid levels of type 2 diabetic KKAy mice. FU decreased the expression of PTP1B both in insulin-resistant HepG2 cells and in liver tissues of diabetic KKAy mice. Furthermore, FU increased the phosphorylation of IRβ, IRS-2, Akt, GSK3β and Erk1/2 in insulin-resistant HepG2 cells, as well as the phosphorylation of IRβ, IRS-2, Akt in liver tissues of diabetic KKAy mice. These results showed that FU increased glucose uptake and improved insulin resistance by down-regulating the expression of PTP1B and activating the insulin signaling pathway, suggesting that it may possess antidiabetic properties. - Highlights: • Fumosorinone is a new PTP1B inhibitor isolated from insect pathogenic fungi. • Fumosorinone attenuated the insulin resistance both in vitro and in vivo. • Fumosorinone decreased the expression of PTP1B both in vitro and in vivo. • Fumosorinone activated the insulin signaling pathway both in vitro and in vivo

  11. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhi-Qin [College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002 (China); College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002 (China); Liu, Ting; Chen, Chuan [College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002 (China); Li, Ming-Yan; Wang, Zi-Yu; Chen, Ruo-song; Wei, Gui-xiang; Wang, Xiao-yi [College of Pharmaceutical Sciences, key laboratory of pharmaceutical quality control of Hebei province, Hebei University, Baoding 071002 (China); Luo, Du-Qiang, E-mail: duqiangluo999@126.com [College of Life Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002 (China)

    2015-05-15

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathways, and its increased activity and expression are implicated in the pathogenesis of insulin resistance. Therefore, the inhibition of PTP1B is anticipated to become a potential therapeutic strategy to treat T2DM. Fumosorinone (FU), a new natural product isolated from insect fungi Isaria fumosorosea, was found to inhibit PTP1B activity in our previous study. Herein, the effects of FU on insulin resistance and mechanism in vitro and in vivo were investigated. FU increased the insulin-provoked glucose uptake in insulin-resistant HepG2 cells, and also reduced blood glucose and lipid levels of type 2 diabetic KKAy mice. FU decreased the expression of PTP1B both in insulin-resistant HepG2 cells and in liver tissues of diabetic KKAy mice. Furthermore, FU increased the phosphorylation of IRβ, IRS-2, Akt, GSK3β and Erk1/2 in insulin-resistant HepG2 cells, as well as the phosphorylation of IRβ, IRS-2, Akt in liver tissues of diabetic KKAy mice. These results showed that FU increased glucose uptake and improved insulin resistance by down-regulating the expression of PTP1B and activating the insulin signaling pathway, suggesting that it may possess antidiabetic properties. - Highlights: • Fumosorinone is a new PTP1B inhibitor isolated from insect pathogenic fungi. • Fumosorinone attenuated the insulin resistance both in vitro and in vivo. • Fumosorinone decreased the expression of PTP1B both in vitro and in vivo. • Fumosorinone activated the insulin signaling pathway both in vitro and in vivo.

  12. Monomeric tartrate resistant acid phosphatase induces insulin sensitive obesity.

    Directory of Open Access Journals (Sweden)

    Pernilla Lång

    2008-03-01

    Full Text Available Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer.Using mice over expressing TRAP, we show that over-expression of monomeric, but not the dimeric form in adipose tissue leads to early onset spontaneous hyperplastic obesity i.e. many small fat cells. In vitro, recombinant monomeric, but not proteolytically processed TRAP induced proliferation and differentiation of mouse and human adipocyte precursor cells. In humans, monomeric TRAP was highly expressed in the adipose tissue of obese individuals. In both the mouse model and in the obese humans the source of TRAP in adipose tissue was macrophages. In addition, the obese TRAP over expressing mice exhibited signs of a low-grade inflammatory reaction in adipose tissue without evidence of abnormal adipocyte lipolysis, lipogenesis or insulin sensitivity.Monomeric TRAP, most likely secreted from adipose tissue macrophages, induces hyperplastic obesity with normal adipocyte lipid metabolism and insulin sensitivity.

  13. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism

    OpenAIRE

    Yoon, Mee-Sup

    2016-01-01

    Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs) belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or...

  14. Novel and Reversible Mechanisms of Smoking-Induced Insulin Resistance in Humans

    OpenAIRE

    Bergman, Bryan C.; Perreault, Leigh; Hunerdosse, Devon; Kerege, Anna; Playdon, Mary; Samek, Ali M.; Eckel, Robert H.

    2012-01-01

    Smoking is the most common cause of preventable morbidity and mortality in the United States, in part because it is an independent risk factor for the development of insulin resistance and type 2 diabetes. However, mechanisms responsible for smoking-induced insulin resistance are unclear. In this study, we found smokers were less insulin sensitive compared with controls, which increased after either 1 or 2 weeks of smoking cessation. Improvements in insulin sensitivity after smoking cessation...

  15. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults.

    Science.gov (United States)

    Kullmann, Stephanie; Heni, Martin; Veit, Ralf; Scheffler, Klaus; Machann, Jürgen; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert

    2015-06-01

    Impaired brain insulin action has been linked to obesity, type 2 diabetes, and neurodegenerative diseases. To date, the central nervous effects of insulin in obese humans still remain ill defined, and no study thus far has evaluated the specific brain areas affected by insulin resistance. In 25 healthy lean and 23 overweight/obese participants, we performed magnetic resonance imaging to measure cerebral blood flow (CBF) before and 15 and 30 min after application of intranasal insulin or placebo. Additionally, participants explicitly rated pictures of high-caloric savory and sweet food 60 min after the spray for wanting and liking. In response to insulin compared with placebo, we found a significant CBF decrease in the hypothalamus in both lean and overweight/obese participants. The magnitude of this response correlated with visceral adipose tissue independent of other fat compartments. Furthermore, we observed a differential response in the lean compared with the overweight/obese group in the prefrontal cortex, resulting in an insulin-induced CBF reduction in lean participants only. This prefrontal cortex response significantly correlated with peripheral insulin sensitivity and eating behavior measures such as disinhibition and food craving. Behaviorally, we were able to observe a significant reduction for the wanting of sweet foods after insulin application in lean men only. Brain insulin action was selectively impaired in the prefrontal cortex in overweight and obese adults and in the hypothalamus in participants with high visceral adipose tissue, potentially promoting an altered homeostatic set point and reduced inhibitory control contributing to overeating behavior. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  16. Voluntary wheel running selectively augments insulin-stimulated vasodilation in arterioles from white skeletal muscle of insulin-resistant rats.

    Science.gov (United States)

    Mikus, Catherine R; Roseguini, Bruno T; Uptergrove, Grace M; Morris, E Matthew; Rector, Randy Scott; Libla, Jessica L; Oberlin, Douglas J; Borengasser, Sarah J; Taylor, Angelina M; Ibdah, Jamal A; Laughlin, Maurice Harold; Thyfault, John P

    2012-11-01

    Exercise (RUN) prevents declines in insulin-mediated vasodilation, an important component of insulin-mediated glucose disposal, in rats prone to obesity and insulin resistance. Determine whether RUN (1) improves insulin-stimulated vasodilation after insulin resistance has been established, and (2) differentially affects arterioles from red and white muscle. Insulin signaling and vasoreactivity to insulin (1-1000 μIU/mL) were assessed in 2A from the Gw and Gr of SED OLETF rats at 12 and 20 weeks of age (SED12, SED20) and those undergoing RUN (RUN20) or caloric restriction (CR20; to match body weight of RUN) from 12 to 20 weeks. Glucose and insulin responses to i.p. glucose were reduced in RUN20, elevated in SED20 (p RUN20 (p RUN selectively improved insulin-mediated vasodilation in Gw 2As, in part through attenuated ET-1 sensitivity/production, an adaptation that was independent of changes in adiposity and may contribute to enhanced insulin-stimulated glucose disposal. © 2012 John Wiley & Sons Ltd.

  17. Adipocytokines and insulin resistance across various degrees of glucose tolerance in pregnancy.

    Science.gov (United States)

    Skvarca, A; Tomazic, M; Krhin, B; Blagus, R; Janez, A

    2012-01-01

    Gestational diabetes mellitus is characterized by progressive insulin resistance. Adipocytokines are thought to be associated with insulin resistance. This cross-sectional study evaluated the associations between serum concentrations of several adipocytokines and insulin resistance at different stages of glucose tolerance in pregnancy, using the homeostasis model assessment of insulin resistance (HOMA-IR) as a reference. According to oral glucose tolerance test results, 74 pregnant women were divided into three groups: normal glucose tolerance (n = 25); intermediate glucose tolerance (n = 19); gestational diabetes mellitus (n = 30). Adiponectin, leptin, resistin, visfatin and retinol-binding protein 4 (RBP4) concentrations were measured using enzyme-linked immuno sorbent assays. Groups were comparable regarding age, week of gestation and body mass index before gestation. There were statistically significant between-group differences in HOMA-IR, but no significant differences regarding serum adipocytokine concentrations. Adipo nectin, leptin, resistin, visfatin and RBP4 were not associated with the degree of glucose tolerance in pregnancy. Concentrations of these adipocytokines are not sufficiently sensitive to replace HOMA- IR in pregnancy.

  18. The T-allele of TCF7L2 rs7903146 associates with a reduced compensation of insulin secretion for insulin resistance induced by 9 days of bed rest

    DEFF Research Database (Denmark)

    Alibegovic, Amra C; Sonne, Mette P; Højbjerre, Lise

    2010-01-01

    of FPIR in response to insulin resistance induced by bed rest was lower in carriers of the T-allele (P hepatic insulin resistance......OBJECTIVE: The aim of this study was to determine whether the type 2 diabetes-associated T-allele of transcription factor 7-like 2 (TCF7L2) rs7903146 associates with impaired insulin secretion to compensate for insulin resistance induced by bed rest. RESEARCH DESIGN AND METHODS: A total of 38....... The genetic analyses were done assuming a dominant model of inheritance. RESULTS: The first-phase insulin response (FPIR) was significantly lower in carriers of the T-allele compared with carriers of the CC genotype before bed rest, with and without correction for insulin resistance. The incremental rise...

  19. Low cardiorespiratory fitness in people at risk for type 2 diabetes: early marker for insulin resistance

    Directory of Open Access Journals (Sweden)

    Leite Silmara AO

    2009-09-01

    Full Text Available Abstract Purpose There is a significant association between insulin resistance and low cardiorespiratory fitness in nondiabetic subjects. In a population with risk factors for type 2 diabetes (T2DM, before they are insulin resistant, we investigated low exercise capacity (VO2max as an early marker of impaired insulin sensitivity in order to determine earlier interventions to prevent development of insulin resistance syndrome (IRS and T2DM. Methods Cross-sectional analyses of data on 369 (78 men and 291 women people at risk for IRS and T2DM, aged 45.6 +/- 10 years (20-65 years old from the Community Diabetes Prevention Project in Minnesota were carried out. The cardiorespiratory fitness (VO2max by respiratory gas exchange and bicycle ergometer were measured in our at risk non insulin resistant population and compared with a control group living in the same geographic area. Both groups were equally sedentary, matched for age, gender and BMI. Results The most prevalent abnormality in the study population was markedly low VO2max when compared with general work site screening control group, (n = 177; 137F; 40 M, mean age 40 ± 11 years; BMI = 27.8 ± 6.1 kg/m2. Individuals at risk for IRS and T2DM had a VO2max (22 ± 6 ml/kg/min 15% lower than the control group VO2max (26 ± 9 ml/kg/min (p 2max was inversely correlated with HOMA-IR (r = -0.30, p Conclusions Decreased VO2max is correlated with impaired insulin sensitivity and was the most prevalent abnormality in a population at risk for IRS and T2DM but without overt disease. This raises the possibility that decreased VO2 max is among the earliest indicators of IRS and T2DM therefore, an important risk factor for disease progression.

  20. Circulating 25-hydroxyvitamin D and insulin resistance in older adults: The Cardiovascular Health Study

    Science.gov (United States)

    Danziger, John; Biggs, Mary L.; Niemi, Matt; Ix, Joachim H.; Kizer, Jorge R.; Djoussé, Luc; de Boer, Ian H.; Siscovick, David S.; Kestenbaum, Bryan; Mukamal, Kenneth J.

    2014-01-01

    Background Despite extensive study, the role of vitamin D in insulin resistance and secretion remains unclear. Objective To examine the cross-sectional and longitudinal relationships between 25-hydroxyvitamin D (25(OH)D) concentrations and indices of insulin resistance and secretion in older adults. Methods and Results Among 2134 participants of the Cardiovascular Health Study who were free from cardiovascular disease, we measured serum 25(OH)D concentrations in samples collected in 1992–1993. We examined insulin resistance and secretion using Homeostasis Model Assessment (HOMA) estimates cross-sectionally and among 1469 participants who had repeated HOMA measures four years later (1996–1997). In cross-sectional analysis, each 10 ng/mL increment in 25(OH)D concentration was associated with a 0.09 lower adjusted HOMA-IR [95%CI (−0.17, −0.02), p=0.01]. However, baseline 25(OH)D concentrations were not associated with change in HOMA-IR over 4 years of follow up (p=0.48). 25(OH)D concentrations were not associated with insulin secretion, as determined by HOMA-β, in either cross-sectional or longitudinal analysis. Conclusions Circulating 25(OH)D concentrations are associated with lower insulin resistance in cross-sectional but not longitudinal analyses. Whether this reflects residual confounding in cross-sectional analyses or the short-term nature of the relationship between vitamin D and insulin sensitivity will require trials with repeated measures of these factors. PMID:23987236

  1. Temporal Relationship Between Hyperuricemia and Insulin Resistance and Its Impact on Future Risk of Hypertension.

    Science.gov (United States)

    Han, Tianshu; Lan, Li; Qu, Rongge; Xu, Qian; Jiang, Ruyue; Na, Lixin; Sun, Changhao

    2017-10-01

    Although hyperuricemia and insulin resistance significantly correlated, their temporal sequence and how the sequence influence on future risk of hypertension are largely unknown. This study assessed temporal relationship between uric acid and insulin resistance and its impact on future risk of hypertension by examining a longitudinal cohort including 8543 subjects aged 20 to 74 years from China, with an average follow-up of 5.3 years. Measurements of fasting uric acid, as well as fasting and 2-hour serum glucose and insulin, were obtained at baseline and follow-up. Indicators of hepatic and peripheral insulin resistance were calculated. Cross-lagged panel and mediation analysis were used to examine the temporal relationship between uric acid and insulin resistance and its impact on follow-up hypertension. After adjusting for covariates, the cross-lagged path coefficients ( β 1 values) from baseline uric acid to follow-up insulin resistance indices were significantly greater than path coefficients ( β 2 values) from baseline insulin resistance indices to follow-up uric acid ( β 1 =0.110 versus β 2 =0.017; P hypertensive group were significantly greater than that in the normotensive group ( P hypertension, and the mediation effect of peripheral insulin resistance was significantly greater than that of hepatic insulin resistance (31.3% versus 13.2%; P hypertension than hepatic insulin resistance does. © 2017 American Heart Association, Inc.

  2. Role of reduced insulin-stimulated bone blood flow in the pathogenesis of metabolic insulin resistance and diabetic bone fragility.

    Science.gov (United States)

    Hinton, Pamela S

    2016-08-01

    Worldwide, 387 million adults live with type 2 diabetes (T2D) and an additional 205 million cases are projected by 2035. Because T2D has numerous complications, there is significant morbidity and mortality associated with the disease. Identification of early events in the pathogenesis of insulin resistance and T2D might lead to more effective treatments that would mitigate health and monetary costs. Here, we present our hypothesis that impaired bone blood flow is an early event in the pathogenesis of whole-body metabolic insulin resistance that ultimately leads to T2D. Two recent developments in different fields form the basis for this hypothesis. First, reduced vascular function has been identified as an early event in the development of T2D. In particular, before the onset of tissue or whole body metabolic insulin resistance, insulin-stimulated, endothelium-mediated skeletal muscle blood flow is impaired. Insulin resistance of the vascular endothelium reduces delivery of insulin and glucose to skeletal muscle, which leads to tissue and whole-body metabolic insulin resistance. Second is the paradigm-shifting discovery that the skeleton has an endocrine function that is essential for maintenance of whole-body glucose homeostasis. Specifically, in response to insulin signaling, osteoblasts secret osteocalcin, which stimulates pancreatic insulin production and enhances insulin sensitivity in skeletal muscle, adipose, and liver. Furthermore, the skeleton is not metabolically inert, but contributes to whole-body glucose utilization, consuming 20% that of skeletal muscle and 50% that of white adipose tissue. Without insulin signaling or without osteocalcin activity, experimental animals become hyperglycemic and insulin resistant. Currently, it is not known if insulin-stimulated, endothelium-mediated blood flow to bone plays a role in the development of whole body metabolic insulin resistance. We hypothesize that it is a key, early event. Microvascular dysfunction is a

  3. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-θ subcellular localization in rodents

    Science.gov (United States)

    Benoit, Stephen C.; Kemp, Christopher J.; Elias, Carol F.; Abplanalp, William; Herman, James P.; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G.; Holland, William L.; Clegg, Deborah J.

    2009-01-01

    Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-θ, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-θ was expressed in discrete neuronal populations of the arcuate nucleus, specifically the neuropeptide Y/agouti-related protein neurons and the dorsal medial nucleus in the hypothalamus. CNS exposure to palmitic acid via direct infusion or by oral gavage increased the localization of PKC-θ to cell membranes in the hypothalamus, which was associated with impaired hypothalamic insulin and leptin signaling. This finding was specific for palmitic acid, as the monounsaturated fatty acid, oleic acid, neither increased membrane localization of PKC-θ nor induced insulin resistance. Finally, arcuate-specific knockdown of PKC-θ attenuated diet-induced obesity and improved insulin signaling. These results suggest that many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-θ activation, resulting in reduced insulin activity. PMID:19726875

  4. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents.

    Science.gov (United States)

    Benoit, Stephen C; Kemp, Christopher J; Elias, Carol F; Abplanalp, William; Herman, James P; Migrenne, Stephanie; Lefevre, Anne-Laure; Cruciani-Guglielmacci, Céline; Magnan, Christophe; Yu, Fang; Niswender, Kevin; Irani, Boman G; Holland, William L; Clegg, Deborah J

    2009-09-01

    Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-theta, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybridization and immunohistochemistry, we found that PKC-theta was expressed in discrete neuronal populations of the arcuate nucleus, specifically the neuropeptide Y/agouti-related protein neurons and the dorsal medial nucleus in the hypothalamus. CNS exposure to palmitic acid via direct infusion or by oral gavage increased the localization of PKC-theta to cell membranes in the hypothalamus, which was associated with impaired hypothalamic insulin and leptin signaling. This finding was specific for palmitic acid, as the monounsaturated fatty acid, oleic acid, neither increased membrane localization of PKC-theta nor induced insulin resistance. Finally, arcuate-specific knockdown of PKC-theta attenuated diet-induced obesity and improved insulin signaling. These results suggest that many of the deleterious effects of high-fat diets, specifically those enriched with palmitic acid, are CNS mediated via PKC-theta activation, resulting in reduced insulin activity.

  5. Differential insulin and steroidogenic signaling in insulin resistant and non-insulin resistant human luteinized granulosa cells-A study in PCOS patients.

    Science.gov (United States)

    Belani, Muskaan; Deo, Abhilash; Shah, Preeti; Banker, Manish; Singal, Pawan; Gupta, Sarita

    2018-04-01

    Insulin resistance (IR) is one of the significant aberrations in polycystic ovarian syndrome (PCOS), however is only observed in 70%-80% of obese PCOS and 20%-25% of lean PCOS. Hyperinsulinemia accompanies PCOS-IR along with hyperandrogenemia against normal insulin and androgen levels in PCOS-non insulin resistance (NIR). This could possibly be due to defects in the downstream signaling pathways. The study thus aims to unravel insulin and steroidogenic signaling pathways in luteinized granulosa cells isolated from PCOS-IR and NIR vs matched controls. Luteinized granulosa cells from 30 controls and 39 PCOS were classified for IR based on a novel method of down regulation of protein expression of insulin receptor-β (INSR- β) as shown in our previous paper. We evaluated expression of molecules involved in insulin, steroidogenic signaling and lipid metabolism in luteinized granulosa cells followed by analysis of estradiol, progesterone and testosterone in follicular fluid. Protein expression of INSR- β, pIRS (ser 307), PI(3)K, PKC-ζ, pAkt, ERK1/2, pP38MAPK and gene expression of IGF showed differential expression in the two groups. Increased protein expression of PPAR-γ was accompanied by up regulation in SREBP1c, FAS, CPT-1 and ACC-1 genes in PCOS-IR group. Expression of StAR, CYP19A1, 17 β- HSD and 3 β- HSD demonstrated significant decrease along with increase in CYP11A1, FSH-R and LH-R in both the groups. Follicular fluid testosterone increased and progesterone decreased in PCOS-IR group. This study shows how candidate molecules that were differentially expressed, aid in designing targeted therapy against the two phenotypes of PCOS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Central insulin-like growth factor-1 (IGF-1) restores whole-body insulin action in a model of age-related insulin resistance and IGF-1 decline.

    Science.gov (United States)

    Huffman, Derek M; Farias Quipildor, Gabriela; Mao, Kai; Zhang, Xueying; Wan, Junxiang; Apontes, Pasha; Cohen, Pinchas; Barzilai, Nir

    2016-02-01

    Low insulin-like growth factor-1 (IGF-1) signaling is associated with improved longevity, but is paradoxically linked with several age-related diseases in humans. Insulin-like growth factor-1 has proven to be particularly beneficial to the brain, where it confers protection against features of neuronal and cognitive decline. While aging is characterized by central insulin resistance in the face of hyperinsulinemia, the somatotropic axis markedly declines in older humans. Thus, we hypothesized that increasing IGF-1 in the brain may prove to be a novel therapeutic alternative to overcome central insulin resistance and restore whole-body insulin action in aging. Utilizing hyperinsulinemic-euglycemic clamps, we show that old insulin-resistant rats with age-related declines in IGF-1 level demonstrate markedly improved whole-body insulin action, when treated with central IGF-1, as compared to central vehicle or insulin (P IGF-1, but not insulin, suppressed hepatic glucose production and increased glucose disposal rates in aging rats (P IGF-1 action in the brain and periphery provides a 'balance' between its beneficial and detrimental actions. Therefore, we propose that strategies aimed at 'tipping the balance' of IGF-1 action centrally are the optimal approach to achieve healthy aging and longevity in humans. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  7. Insulin resistance and circadian rhythm of cardiac autonomic modulation

    Directory of Open Access Journals (Sweden)

    Cai Jianwen

    2010-12-01

    Full Text Available Abstract Background Insulin resistance (IR has been associated with cardiovascular diseases (CVD. Heart rate variability (HRV, an index of cardiac autonomic modulation (CAM, is also associated with CVD mortality and CVD morbidity. Currently, there are limited data about the impairment of IR on the circadian pattern of CAM. Therefore, we conducted this investigation to exam the association between IR and the circadian oscillations of CAM in a community-dwelling middle-aged sample. Method Homeostasis models of IR (HOMA-IR, insulin, and glucose were used to assess IR. CAM was measured by HRV analysis from a 24-hour electrocardiogram. Two stage modeling was used in the analysis. In stage one, for each individual we fit a cosine periodic model based on the 48 segments of HRV data. We obtained three individual-level cosine parameters that quantity the circadian pattern: mean (M, measures the overall average of a HRV index; amplitude (Â, measures the amplitude of the oscillation of a HRV index; and acrophase time (θ, measures the timing of the highest oscillation. At the second stage, we used a random-effects-meta-analysis to summarize the effects of IR variables on the three circadian parameters of HRV indices obtained in stage one of the analysis. Results In persons without type diabetes, the multivariate adjusted β (SE of log HOMA-IR and M variable for HRV were -0.251 (0.093, -0.245 (0.078, -0.19 (0.06, -4.89 (1.76, -3.35 (1.31, and 2.14 (0.995, for log HF, log LF, log VLF, SDNN, RMSSD and HR, respectively (all P Conclusion Elevated IR, among non-diabetics significantly impairs the overall mean levels of CAM. However, the  or θ of CAM were not significantly affected by IR, suggesting that the circadian mechanisms of CAM are not impaired. However, among persons with type 2 diabetes, a group clinically has more severe form of IR, the adverse effects of increased IR on all three HRV circadian parameters are much larger.

  8. Association of hepatitis C virus with insulin resistance: evidences from animal studies and clinical studies.

    Science.gov (United States)

    Badar, Sadaf; Khubaib, Bushra; Idrees, Muhammad; Hussain, Abrar; Awan, Zunaira; Butt, Sadia; Afzal, Samia; Akram, Madeeha; Fatima, Zareen; Aftab, Mahwish; Saleem, Sana; Munir, Sara; Rauff, Bisma; Naudhani, Mahrukh; Ali, Liaquat; Ali, Muhammaad; Rehman, Irshadul

    2012-01-01

    HCV infection is strongly associated with development of insulin resistance and type-2 diabetes, however molecular mechanism of these associations is not known. The aim of this review was to conduct a comprehensive literature search to understand the nature of the association between hepatitis C virus (HCV) infection and insulin resistance (IR). We also explored the role of HCV core protein and NS5a in modulating the course of the insulin-signaling pathway. We searched Directory of Open Access Journals (DOAJ) Google Scholar, Pubmed (NLM), LISTA (EBSCO), Web of Science (TS and PakMediNet). Emerging evidence suggests an association between HCV infection and carotid/coronary vascular disease. IR appears to be a dominant underlying cause of accelerated atherosclerosis in patients with chronic hepatitis C (CHC). HCV can induce IR directly through the stimulation of SOCS3 and PPA2, and both of these molecules have been shown to inhibit interferon-α signaling. Improvement of insulin sensitivity may increase the response rate to antiviral treatment and prevent IR complications, including vascular diseases. The results of several clinical trials that have used insulin sensitizers (metformin and PPAR-γ agonists) have been inconclusive. Beside the association between HCV and IR, the published data also have showed the possible association of HCV core and NS5A protein with IR.

  9. Cardiac Insulin Resistance and MicroRNA Modulators

    Directory of Open Access Journals (Sweden)

    Lakshmi Pulakat

    2012-01-01

    Full Text Available Cardiac insulin resistance is a metabolic and functional disorder that is often associated with obesity and/or the cardiorenal metabolic syndrome (CRS, and this disorder may be accentuated by chronic alcohol consumption. In conditions of over-nutrition, increased insulin (INS and angiotensin II (Ang II activate mammalian target for rapamycin (mTOR/p70 S6 kinase (S6K1 signaling, whereas chronic alcohol consumption inhibits mTOR/S6K1 activation in cardiac tissue. Although excessive activation of mTOR/S6K1 induces cardiac INS resistance via serine phosphorylation of INS receptor substrates (IRS-1/2, it also renders cardioprotection via increased Ang II receptor 2 (AT2R upregulation and adaptive hypertrophy. In the INS-resistant and hyperinsulinemic Zucker obese (ZO rat, a rodent model for CRS, activation of mTOR/S6K1signaling in cardiac tissue is regulated by protective feed-back mechanisms involving mTOR↔AT2R signaling loop and profile changes of microRNA that target S6K1. Such regulation may play a role in attenuating progressive heart failure. Conversely, alcohol-mediated inhibition of mTOR/S6K1, down-regulation of INS receptor and growth-inhibitory mir-200 family, and upregulation of mir-212 that promotes fetal gene program may exacerbate CRS-related cardiomyopathy.

  10. Effects of soybean oligosaccharides on antioxidant enzyme activities and insulin resistance in pregnant women with gestational diabetes mellitus.

    Science.gov (United States)

    Fei, Bei-bei; Ling, Li; Hua, Chen; Ren, Shu-yan

    2014-09-01

    The effects of soybean oligosaccharides (SBOS) on antioxidant enzyme activities and insulin resistance in pregnant women with gestational diabetes mellitus (GDM) were investigated. Ninety-seven pregnant women with GDM were randomly divided into two groups, the control group (51 cases) and the SBOS group (46 cases). Before the group separation, the blood sugar level in patients was maintained stable by regular diet and insulin treatment. The control group was continued with the insulin treatment, while the SBOS group was treated with the combination of insulin and SBOS. Results showed that SBOS were able to reduce oxidative stress and alleviate insulin resistance in pregnant women with GDM, which indicates that SBOS may play an important role in the control of GDM complications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A Role for IR-β in the Free Fatty Acid Mediated Development of Hepatic Insulin Resistance?

    Directory of Open Access Journals (Sweden)

    Arthur G. Cox

    2009-10-01

    Full Text Available Several studies have been conducted to elucidate the role of free fatty acids (FFAs in the pathogenesis of type 2 diabetes, but the exact molecular mechanism by which FFAs alter glucose metabolism in the liver is still not completely understood.1-4 In a recent publication, Ragheb and co-workers have examined the effect of free fatty acid (FFA treatment on insulin signaling and insulin resistance by using immunoprecipitation and immunoblotting to study the effect of high concentrations of insulin and FFAs on insulin receptor-beta (IR-β and downstream elements in the PI3K pathway using the fructose-fed hamster model.5 Their results clearly show that free fatty acids have an insignificant effect on IR-β and supports previous findings that FFAs lead to insulin resistance in the liver via the PKC-NFĸB pathway.2,3

  12. Adipose Expression of Tumor Necrosis Factor-α: Direct Role in Obesity-Linked Insulin Resistance

    Science.gov (United States)

    Hotamisligil, Gokhan S.; Shargill, Narinder S.; Spiegelman, Bruce M.

    1993-01-01

    Tumor necrosis factor-α (TNF-α) has been shown to have certain catabolic effects on fat cells and whole animals. An induction of TNF-α messenger RNA expression was observed in adipose tissue from four different rodent models of obesity and diabetes. TNF-α protein was also elevated locally and systemically. Neutralization of TNF-α in obese fa/fa rats caused a significant increase in the peripheral uptake of glucose in response to insulin. These results indicate a role for TNF-α in obesity and particularly in the insulin resistance and diabetes that often accompany obesity.

  13. Effects of aging and insulin resistant states on protein anabolic responses in older adults.

    Science.gov (United States)

    Morais, Jose A; Jacob, Kathryn Wright; Chevalier, Stéphanie

    2018-07-15

    Insulin is the principal postprandial anabolic hormone and resistance to its action could contribute to sarcopenia. We developed different types of hyperinsulinemic clamp protocols to measure simultaneously glucose and protein metabolism in insulin resistant states (older adults, obesity, diabetes, etc.). To define effects of healthy aging in response to insulin, we employed the hyperinsulinemic, euglycemic and isoaminoacidemic (HYPER-1) clamp. The net whole-body anabolic (protein balance) response to hyperinsulinemia was lower in the elderly vs young (p = 0.007) and was highly correlated with the clamp glucose rate of disposal (r = 0.671, p anabolism compared with young ones. As most of the anabolism occurs during feeding, we studied the fed-state metabolic responses with aging using the hyperinsulinemic, hyperglycemic and hyperaminoacidemic clamp, including muscle biopsies. Older women showed comparable whole-body protein anabolic responses and stimulation of mixed-muscle protein synthesis by feeding to the young. The responses of skeletal muscle insulin signaling through the Akt-mTORC1 pathway were also unaltered, and therefore consistent with muscle protein synthesis results. Given that type 2 diabetes infers insulin resistance of protein metabolism with aging, we studied 10 healthy, 8 obese, and 8 obese type 2 diabetic elderly women using the HYPER-1 clamp. When compared to the group of young lean women to define the effects of obesity and diabetes with aging, whole-body change in net protein balance with hyperinsulinemia was similarly blunted in obese and diabetic older women. However, only elderly obese women with diabetes had lower net balance than lean older women. We conclude that with usual aging, the blunted whole-body anabolic response in elderly subjects is mediated by the failure of insulin to stimulate protein synthesis to the same extent as in the young, especially in men. This blunted response can be overcome at the whole-body and muscle

  14. Intrauterine insulin resistance in fetuses of overweight mothers.

    Science.gov (United States)

    Liu, Bin; Xu, Yun; Liang, Jian-Ming; Voss, Courtney; Xiao, Huan-Yu; Sheng, Wei-Yang; Sun, Yan-Hong; Wang, Zi-Lian

    2013-01-01

    To investigate the relationship between maternal overweight and fetal insulin resistance. Nineteen overweight and 30 lean pregnant women were recruited in the present study. Maternal and fetal insulin resistance were determined by measuring sex hormone binding globulin (SHBG) concentrations in maternal venous or umbilical cord serum, respectively. Maternal age, gestational age, height, pre-gravidity weight, pre-partum weight, as well as fetal gender, birth weight, birth height, and head circumference were collected as clinical data. Fetuses of overweight mothers had larger birth weight (3.58±0.55kg vs 3.32±0.42, adjusted P=0.006) and lower SHBG concentrations (26.64±3.65 vs 34.36±7.84, adjusted P=0.007) than those of lean mothers after values were adjusted for potential cofactors. Fetal SHBG level was negatively correlated with pre-gravidity body mass index (R=-0.392, adjusted P=0.025) and weight gain during pregnancy (R=-0.332, adjusted P=0.026) even with adjustment for potential cofactors. Among the 29 pregnant women with gestational diabetes mellitus, the overweight mothers had higher H1AC levels than their lean counterparts (6.47±0.44 vs 5.74±0.52, adjusted P=0.004). Intrauterine insulin resistance is more prominent in fetuses of overweight mothers, an effect that is decreased by weight gain control during pregnancy. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.

  15. Triglycerides and glucose index: a useful indicator of insulin resistance.

    Science.gov (United States)

    Unger, Gisela; Benozzi, Silvia Fabiana; Perruzza, Fernando; Pennacchiotti, Graciela Laura

    2014-12-01

    Insulin resistance assessment requires sophisticated methodology of difficult application. Therefore, different estimators for this condition have been suggested. The aim of this study was to evaluate the triglycerides and glucose (TyG) index as a marker of insulin resistance and to compare it to the triglycerides/HDL cholesterol ratio (TG/HDL-C), in subjects with and without metabolic syndrome (MS). An observational, cross-sectional study was conducted on 525 adults of a population from Bahia Blanca, Argentina, who were divided into two groups: with MS (n=89) and without MS (n=436). The discriminating capacities for MS of the TyG index, calculated as Ln (TG [mg/dL] x glucose [mg/dL]/2), and the TG/HDL-C ratio were evaluated. Pre-test probability for MS was 30%. The mean value of the TyG index was higher in the group with MS as compared to the group without MS and its correlation with the TG/HDL-C ratio was good. The cut-off values for MS in the overall population were 8.8 for the TyG index (sensitivity=79%, specificity=86%), and 2.4 for the TG/HDL-C ratio (sensitivity=88%, specificity=72%). The positive likelihood ratios and post-test probabilities for these parameters were 5.8 vs 3.1 and 72% vs 58% respectively. The cut-off point for the TyG index was 8.8 in men and 8.7 in women; the respective values for TG/C-HDL were 3.1 in men and 2.2 in women. The TyG index was a good discriminant of MS. Its simple calculation warrants its further study as an alternative marker of insulin resistance. Copyright © 2014 SEEN. Published by Elsevier Espana. All rights reserved.

  16. Direct Evidence that Myocardial Insulin Resistance following Myocardial Ischemia Contributes to Post-Ischemic Heart Failure

    Science.gov (United States)

    Fu, Feng; Zhao, Kun; Li, Jia; Xu, Jie; Zhang, Yuan; Liu, Chengfeng; Yang, Weidong; Gao, Chao; Li, Jun; Zhang, Haifeng; Li, Yan; Cui, Qin; Wang, Haichang; Tao, Ling; Wang, Jing; Quon, Michael J; Gao, Feng

    2015-01-01

    A close link between heart failure (HF) and systemic insulin resistance has been well documented, whereas myocardial insulin resistance and its association with HF are inadequately investigated. This study aims to determine the role of myocardial insulin resistance in ischemic HF and its underlying mechanisms. Male Sprague-Dawley rats subjected to myocardial infarction (MI) developed progressive left ventricular dilation with dysfunction and HF at 4 wk post-MI. Of note, myocardial insulin sensitivity was decreased as early as 1 wk after MI, which was accompanied by increased production of myocardial TNF-α. Overexpression of TNF-α in heart mimicked impaired insulin signaling and cardiac dysfunction leading to HF observed after MI. Treatment of rats with a specific TNF-α inhibitor improved myocardial insulin signaling post-MI. Insulin treatment given immediately following MI suppressed myocardial TNF-α production and improved cardiac insulin sensitivity and opposed cardiac dysfunction/remodeling. Moreover, tamoxifen-induced cardiomyocyte-specific insulin receptor knockout mice exhibited aggravated post-ischemic ventricular remodeling and dysfunction compared with controls. In conclusion, MI induces myocardial insulin resistance (without systemic insulin resistance) mediated partly by ischemia-induced myocardial TNF-α overproduction and promotes the development of HF. Our findings underscore the direct and essential role of myocardial insulin signaling in protection against post-ischemic HF. PMID:26659007

  17. Insulin resistance in Chinese patients with type 2 diabetes is associated with C-reactive protein independent of abdominal obesity

    Directory of Open Access Journals (Sweden)

    Feng Xiaocheng

    2010-12-01

    Full Text Available Abstract Background There is debate as to whether the association between C-reactive protein (CRP and insulin resistance is independent of body fatness, particularly central obesity. Therefore, the association among CRP, insulin resistance and obesity was analyzed in Chinese patients with type 2 diabetes. Methods The study included 520 Chinese patients diagnosed with type 2 diabetes with CRP levels not exceeding 10 mg/L. The degree of insulin resistance was determined with the homeostasis model assessment of insulin resistance (HOMA-IR. The CRP levels were categorized into quartiles from the lowest to the highest concentrations (Q1-Q4. Results Body mass index (BMI and waist circumference (WC were both higher in Q4, Q3 and Q2 than those in Q1. HOMA-IR was higher in Q2, Q3 and Q4 than that in Q1 (Q1 vs Q4, P Conclusion These findings showed that insulin resistance was associated with CRP levels independent of abdominal obesity in Chinese patients with type 2 diabetes, suggesting that abdominal obesity could only partly explain the link between subclinical inflammation and insulin resistance.

  18. Pharmacogenetics of Risperidone-Induced Insulin Resistance in Children and Adolescents with Autism Spectrum Disorder.

    Science.gov (United States)

    Sukasem, Chonlaphat; Vanwong, Natchaya; Srisawasdi, Pornpen; Ngamsamut, Nattawat; Nuntamool, Nopphadol; Hongkaew, Yaowaluck; Puangpetch, Apichaya; Chamkrachangpada, Bhunnada; Limsila, Penkhae

    2018-07-01

    The purpose of this study was to explore the association of genetic polymorphism of genes related to pharmacokinetics or pharmacodynamics with insulin resistance in children and adolescents with autism spectrum disorder (ASD) and treated with risperidone. All 89 subjects underwent measurement of fasting blood glucose and insulin levels, body-weight and height. Genotyping was performed by TaqMan real-time polymerase chain reaction (PCR) (pharmacokinetics genes: cytochrome P450 2D6 (CYP2D6) *4 (rs3892097), *5 (gene deletion), *10 (rs1065852) and *41 (rs28371725), ATP-binding cassette transporter B1 (ABCB1) 2677 G>T/A (rs2032582) and 3435C>T (rs1045642) and pharmacodynamics genes: dopamine receptor D2 (DRD2) Tag-SNP (C>T) (rs4436578), DRD2 Tag1A (C>T) (rs1800497), leptin gene (LEP) -2548G>A (rs7799039), ghrelin gene (GHRL) -604G>A (rs27647) and brain-derived neurotrophic factor (BDNF) 196G>A (rs6265)). Drug levels were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results revealed that 5 (5.62%) patients presented with hyperglycaemia. Insulin resistance was detected in 15 (16.85%) patients. Insulin resistance was associated with LEP 2548 G>A and BDNF 196 G>A polymorphism (p = 0.051 and p = 0.03). There was no association of pharmacokinetic gene polymorphisms (CYP2D6 and ABCB1) and risperidone levels with insulin resistance. Multiple regression analysis indicated that BDNF 196 G>A polymorphism was significantly associated with insulin resistance (p = 0.025). This finding suggested that BDNF 196 G>A polymorphism may be a genetic marker for predicting insulin resistance before initiating treatment in patients treated with risperidone. Because of the small sample size, further studies are needed to confirm these results. © 2018 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  19. Insulin resistance and neurodegeneration: Roles of obesity, type 2 diabetes mellitus and non-alcoholic steatohepatitis

    OpenAIRE

    de la Monte, Suzanne M; Longato, Lisa; Tong, Ming; Wands, Jack R

    2009-01-01

    Recent studies have linked obesity, type 2 diabetes mellitus (T2DM) or non-alcoholic steatohepatitis (NASH) to insulin resistance in the brain, cognitive impairment and neurodegeneration. Insulin resistance compromises cell survival, metabolism and neuronal plasticity, and increases oxidative stress, cytokine activation and apoptosis. T2DM/NASH has been demonstrated to be associated with increased ceramide generation, suggesting a mechanistic link between peripheral insulin resistance and neu...

  20. Total antioxidant and oxidant status in obese children without insulin resistance

    OpenAIRE

    Ayşegül Doğan Demir; Ufuk Erenberk; İlker Tolga Özgen; Emin Özkaya; Aysel Vahapoğlu Türkmen; M. Ruşen Dündaröz; Özcan Erel

    2014-01-01

    Objective: Oxidative stress in obese children may lead in adulthood serious conditions such as coronary heart diseases or type 2 diabetes mellitus. In childhood oxidative stress is associated with insulin resistance or extreme obesity. In this study, we aimed to evaluate oxidative stress status in moderately obese children without insulin resistance. Methods: A total of 38 obese children (21 male, 17 female) without insulin resistance, mean aged 9.4±3.8 years) and 51 normal weight children...

  1. Association between insulin resistance and plasma amino acid profile in non-diabetic Japanese subjects

    OpenAIRE

    Yamada, Chizumi; Kondo, Masumi; Kishimoto, Noriaki; Shibata, Takeo; Nagai, Yoko; Imanishi, Tadashi; Oroguchi, Takashige; Ishii, Naoaki; Nishizaki, Yasuhiro

    2015-01-01

    Aims/Introduction Elevation of the branched-chain amino acids (BCAAs), valine, leucine and isoleucine; and the aromatic amino acids, tyrosine and phenylalanine, has been observed in obesity-related insulin resistance. However, there have been few studies on Asians, who are generally less obese and less insulin-resistant than Caucasian or African-Americans. In the present study, we investigated the relationship between homeostasis model assessment of insulin resistance (HOMA-IR) and plasma ami...

  2. Serum AMH levels and insulin resistance in women with PCOS.

    Science.gov (United States)

    Sahmay, Sezai; Aydogan Mathyk, Begum; Sofiyeva, Nigar; Atakul, Nil; Azemi, Aslı; Erel, Tamer

    2018-05-01

    To compare the serum AMH levels between women with and without insulin resistance (IR) in polycystic ovary syndrome (PCOS). 293 women with PCOS according to the Rotterdam criteria were enrolled into our study. Insulin resistance was diagnosed according to the Homeostatic model assessment insulin resistant (HOMA-IR) formula and the cut-off point was set to more than 2.5. Women were grouped according to the presence of insulin resistance (IR) (HOMA-IR ≥ 2.5). Serum AMH and other hormones were compared between the IR (+) and IR (-) groups. Additionally, AMH percentiles were (75) constructed; HOMA-IR and BMI values in women with/without IR were compared in different percentiles. Further, HOMA-IR, BMI and AMH values were measured across different PCOS phenotypes. The prevalence of IR was 45%. The prevalence of IR was 57% in women with BMI ≥ 25. Serum AMH levels were not significantly different among women with and without IR. Also, HOMA-IR values were not significant among different AMH percentiles. However, in each AMH percentile BMI were found to be higher in women with IR than in women without IR. The median HOMA-IR values were the highest in women with BMI ≥ 25 in both IR (+) and IR (-) groups. No significant difference was found among PCOS phenotypes in terms of HOMA-IR and BMI. Positive correlations were found between BMI, free testosterone and HOMA-IR. However, no correlation was found between AMH and HOMA-IR. The serum AMH levels between women with IR and without IR in PCOS were not significantly different. Also, we did not reveal a correlation between serum AMH levels and IR in women with PCOS. IR was not correlated with different PCOS phenotypes either. We found a positive correlation between BMI and IR. IR should be investigated in women with PCOS having a BMI ≥ 25, independent of their phenotype or AMH levels. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Protective effects of metformin on neointima formation in insulin resistance

    Directory of Open Access Journals (Sweden)

    Yu V Pankratova

    2013-06-01

    Full Text Available Реферат по материалам статьи Lu J, Ji J, Meng H, Wang D, Jiang B, Liu L, Randell E, Adeli K, Meng QH. The protective effect and underlying mechanism of metformin on neointima formation in fructose-induced insulin resistant rats. Cardiovasc Diabetol. 2013 Apr 5;12:58. doi: 10.1186/1475-2840-12-58.

  4. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Kolkata cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Anirban Majumder

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Kolkata, India. Results: A total of 576 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 417, insulin detemir (n = 70, insulin aspart (n = 55, basal insulin plus insulin aspart (n = 19 and other insulin combinations (n = 15. At baseline, glycaemic control was poor for both insulin naïve (mean HbA 1 c: 8.3% and insulin user (mean HbA 1 c: 8.6% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −1.3%, insulin users: −1.4%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  5. Insulin resistance and associated factors: a cross-sectional study of bank employees.

    Science.gov (United States)

    Salaroli, Luciane Bresciani; Cattafesta, Monica; Molina, Maria Del Carmen Bisi; Zandonade, Eliana; Bissoli, Nazaré Souza

    2017-04-01

    Insulin resistance is characterized by the failure of target cells to respond to normal levels of circulating insulin, and this condition is related to cardiovascular disease. This study sought to evaluate the prevalence of insulin resistance and its association with markers of metabolic abnormalities and metabolic syndrome in bank employees. A cross-sectional study was performed on 498 working men and women aged ≥20 years old. The Homeostasis Model Assessment (HOMA-IR) was used to determine the presence of insulin resistance based on cut-off values of ≤2.71 for normal insulin levels and >2.71 for insulin resistance, as established for the adult Brazilian population. It was observed that the 52 (10.4%) overweight individuals with insulin resistance were 4.97 times (95%CI 1.31-18.83) more likely to have high HOMA-IR values than the normal-weight participants; among those who were obese, the likelihood increased to 17.87 (95%CI 4.36-73.21). Individuals with large waist circumferences were 3.27 times (95%CI 1.03-10.38) more likely to develop insulin resistance than those who were within normal parameters. The HOMA-IR values differed between subjects with and without metabolic syndrome, with values of 2.83±2.5 and 1.10±0.81 (p=0.001), respectively. The levels of insulin, ultrasensitive C-reactive protein and uric acid were also associated with insulin resistance. The prevalence of insulin resistance among bank employees is high, and insulin resistance is associated with and serves as a marker of metabolic syndrome. Cardiovascular disease and metabolic syndrome-associated metabolic abnormalities were observed, and insulin resistance may be a risk factor in this group of professionals.

  6. Excessive Refined Carbohydrates and Scarce Micronutrients Intakes Increase Inflammatory Mediators and Insulin Resistance in Prepubertal and Pubertal Obese Children Independently of Obesity

    Directory of Open Access Journals (Sweden)

    Mardia López-Alarcón

    2014-01-01

    Full Text Available Background. Low-grade inflammation is the link between obesity and insulin resistance. Because physiologic insulin resistance occurs at puberty, obese pubertal children are at higher risk for insulin resistance. Excessive diets in refined carbohydrates and saturated fats are risk factors for insulin resistance, but calcium, magnesium, vitamin-D, and the omega-3 fatty acids likely protect against inflammation and insulin resistance. Objective. To analyze interactions among dietary saturated fat, refined carbohydrates, calcium, magnesium, vitamin D, and omega-3 fatty acids on the risk of inflammation and insulin resistance in a sample of prepubertal and pubertal children. Methods. A sample of 229 children from Mexico City was analyzed in a cross-sectional design. Anthropometric measurements, 24 h recall questionnaires, and blood samples were obtained. Serum insulin, glucose, calcium, magnesium, 25-OHD3, C-reactive protein, leptin, adiponectin, and erythrocytes fatty acids were measured. Parametric and nonparametric statistics were used for analysis. Results. While mean macronutrients intake was excessive, micronutrients intake was deficient (P<0.01. Inflammation determinants were central obesity and magnesium-deficient diets. Determinants of insulin resistance were carbohydrates intake and circulating magnesium and adiponectin. Conclusions. Magnesium-deficient diets are determinants of inflammation, while high intake of refined carbohydrates is a risk factor for insulin resistance, independently of central adiposity.

  7. Effect of HCV on fasting glucose, fasting insulin and peripheral insulin resistance in first 5 years of infection.

    Science.gov (United States)

    Ahmed, Naeema; Rashid, Amir; Naveed, Abdul Khaliq; Bashir, Qudsia

    2016-02-01

    To assess the effects of hepatitis C virus infection in the first 5 years on fasting glucose, fasting insulin and peripheral insulin resistance. The case-control study was conducted at the Army Medical College, Rawalpindi, from December 2011 to November 2012, and comprised subjects recruited from a government hospital in Rawalpindi. The subjects included known cases of hepatitis C virus infection for at least 5 years, and normal healthy controls. Fasting blood samples of all the subjects were collected and analysed for serum fasting insulin and serum fasting glucose levels. Homeostatic model assessment-Insulin resistance was calculated SPSS 11 was used for statistical analysis. Of the 30 subjects, 20(66.6%) were cases, while 10(33.3%) were controls. Serum fasting glucose mean level in cases was 89.55±9.53 compared to 84.40±9.80 in the controls (p=0.188). The mean serum fasting insulin in controls was 7.52±3.23 and 6.79±3.30 in cases (p=0.567). Homeostatic model assessment-Insulin resistance level in controls was 1.60±0.76 and In the cases it was 1.49±0.74 (p=0.695). Peripheral insulin resistance and development of type 2 diabetes as a complication of hepatitis C virus infection was not likely at least within the first five years of infection.

  8. Obesity does not aggravate osteoporosis or osteoblastic insulin resistance in orchiectomized rats.