WorldWideScience

Sample records for insulin receptor-related receptor

  1. Insulin receptors

    International Nuclear Information System (INIS)

    Kahn, C.R.; Harrison, L.C.

    1988-01-01

    This book contains the proceedings on insulin receptors. Part A: Methods for the study of structure and function. Topics covered include: Method for purification and labeling of insulin receptors, the insulin receptor kinase, and insulin receptors on special tissues

  2. Insulin receptor-related receptor as an extracellular pH sensor involved in the regulation of acid-base balance.

    Science.gov (United States)

    Petrenko, Alexander G; Zozulya, Sergey A; Deyev, Igor E; Eladari, Dominique

    2013-10-01

    Recent studies of insulin receptor-related receptor (IRR) revealed its unusual property to activate upon extracellular application of mildly alkaline media, pH>7.9. The activation of IRR with hydroxyl anion has typical features of ligand-receptor interaction; it is specific, dose-dependent, involves the IRR extracellular domain and is accompanied by a major conformational change. IRR is a member of the insulin receptor minifamily and has been long viewed as an orphan receptor tyrosine kinase since no peptide or protein agonist of IRR was found. In the evolution, IRR is highly conserved since its divergence from the insulin and insulin-like growth factor receptors in amphibia. The latter two cannot be activated by alkali. Another major difference between them is that unlike ubiquitously expressed insulin and insulin-like growth factor receptors, IRR is found in specific sets of cells of only some tissues, most of them being exposed to extracorporeal liquids of extreme pH. In particular, largest concentrations of IRR are in beta-intercalated cells of the kidneys. The primary physiological function of these cells is to excrete excessive alkali as bicarbonate into urine. When IRR is removed genetically, animals loose the property to excrete bicarbonate upon experimentally induced alkalosis. In this review, we will discuss the available in vitro and in vivo data that support the hypothesis of IRR role as a physiological alkali sensor that regulates acid-base balance. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    International Nuclear Information System (INIS)

    Levy, J.R.; Olefsky, J.M.

    1988-01-01

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4 0 C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37 0 C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation

  4. Site-Directed Mutagenesis of the Fibronectin Domains in Insulin Receptor-Related Receptor

    Directory of Open Access Journals (Sweden)

    Igor E. Deyev

    2017-11-01

    Full Text Available The orphan insulin receptor-related receptor (IRR, in contrast to its close homologs, the insulin receptor (IR and insulin-like growth factor receptor (IGF-IR can be activated by mildly alkaline extracellular medium. We have previously demonstrated that IRR activation is defined by its extracellular region, involves multiple domains, and shows positive cooperativity with two synergistic sites. By the analyses of point mutants and chimeras of IRR with IR in, we now address the role of the fibronectin type III (FnIII repeats in the IRR pH-sensing. The first activation site includes the intrinsically disordered subdomain ID (646–716 within the FnIII-2 domain at the C-terminus of IRR alpha subunit together with closely located residues L135, G188, R244, H318, and K319 of L1 and C domains of the second subunit. The second site involves residue T582 of FnIII-1 domain at the top of IRR lambda-shape pyramid together with M406, V407, and D408 from L2 domain within the second subunit. A possible importance of the IRR carbohydrate moiety for its activation was also assessed. IRR is normally less glycosylated than IR and IGF-IR. Swapping both FnIII-2 and FnIII-3 IRR domains with those of IR shifted beta-subunit mass from 68 kDa for IRR to about 100 kDa due to increased glycosylation and abolished the IRR pH response. However, mutations of four asparagine residues, potential glycosylation sites in chimera IRR with swapped FnIII-2/3 domains of IR, decreased the chimera glycosylation and resulted in a partial restoration of IRR pH-sensing activity, suggesting that the extensive glycosylation of FnIII-2/3 provides steric hindrance for the alkali-induced rearrangement of the IRR ectodomain.

  5. Characterization of the chicken muscle insulin receptor

    International Nuclear Information System (INIS)

    Adamo, M.; Simon, J.; Rosebrough, R.W.; McMurtry, J.P.; Steele, N.C.; LeRoith, D.

    1987-01-01

    Insulin receptors are present in chicken skeletal muscle. Crude membrane preparations demonstrated specific 125 I-insulin binding. The nonspecific binding was high (36-55% of total binding) and slightly lower affinity receptors were found than are typically observed for crude membrane insulin binding in other chicken tissues. Affinity crosslinking of 125 I-insulin to crude membranes revealed insulin receptor alpha-subunits of Mr 128K, intermediate between those of liver (134K) and brain (124K). When solubilized and partially purified on wheat germ agglutinin (WGA) affinity columns, chicken muscle insulin receptors exhibited typical high affinity binding, with approximately 10(-10) M unlabeled insulin producing 50% inhibition of the specific 125 I-insulin binding. WGA purified chicken muscle insulin receptors also exhibited insulin-stimulated autophosphorylation of the beta-subunit, which appeared as phosphorylated bands of 92- and 81K. Both bands were immunoprecipitated by anti-receptor antiserum (B10). WGA purified membranes also demonstrated dose-dependent insulin-stimulated phosphorylation of the exogenous substrate poly(Glu,Tyr)4:1. However, unlike chicken liver, chicken muscle insulin receptor number and tyrosine kinase activity were unaltered by 48 hr of fasting or 48 hr of fasting and 24 hr of refeeding. Thus, despite the presence of insulin receptors in chicken muscle showing normal coupling to receptor tyrosine kinase activity, nutritional alterations modulate these parameters in a tissue-specific manner in chickens

  6. Studies on insulin receptor, 2

    International Nuclear Information System (INIS)

    Sakai, Yukio

    1979-01-01

    The present study is to investigate an influence of starvation and high fat diet on insulin receptor of the plasma membrane by means of radioreceptor assay using 125 I-labelled insulin. Male guinea pigs of Hartley strain were employed for the starvation study, and 125 I-insulin binding capacity on the plasma membrane of the liver and kidney was determined at 24, 48 and 72 hours of the fast after the last meal. Male rats of Wistar strain were employed for the high fat study where the diet containing 35% of butter was fed ad libitum for 38 or 68 days. The animals were killed at the fast of 12 hours, and 125 I-insulin binding capacity on the plasma membrane of the liver was determined. The results obtained are summarized as follows: 1) An increase in 125 I-insulin binding capacity on the plasma membrane of the liver and kidney was observed by the starvation for 24 to 72 hours. 2) The mechanism of the increase by starvation was considered to be different by the organs; it was due to an increase in number of insulin receptor in the liver, and due to an increase in affinity of insulin receptor in the kidney. 3) In non-obese rats fed with high fat diet, the number of insulin receptor on the liver plasma membrane showed a decrease, and this observation clearly indicated that the decrease in number of the receptor did not depend on the obesity. 4) Obese rats also fed with high fat diet presented a decrease in number of insulin receptor without an elevation of insulin levels in the circulating blood. This indicated that at least in the obese rats fed with high fat diet, the decrease in number of the receptor was not due to hyperinsulinemia. (author)

  7. Metformin and insulin receptors

    International Nuclear Information System (INIS)

    Vigneri, R.; Gullo, D.; Pezzino, V.

    1984-01-01

    The authors evaluated the effect of metformin (N,N-dimethylbiguanide), a biguanide known to be less toxic than phenformin, on insulin binding to its receptors, both in vitro and in vivo. Specific 125 I-insulin binding to cultured IM-9 human lymphocytes and MCF-7 human breast cancer cells was determined after preincubation with metformin. Specific 125 I-insulin binding to circulating monocytes was also evaluated in six controls, eight obese subjects, and six obese type II diabetic patients before and after a short-term treatment with metformin. Plasma insulin levels and blood glucose were also measured on both occasions. Metformin significantly increased insulin binding in vitro to both IM-9 lymphocytes and MCF-7 cells; the maximum increment was 47.1% and 38.0%, respectively. Metformin treatment significantly increased insulin binding in vivo to monocytes of obese subjects and diabetic patients. Scatchard analysis indicated that the increased binding was mainly due to an increase in receptor capacity. Insulin binding to monocytes of normal controls was unchanged after metformin as were insulin levels in all groups; blood glucose was significantly reduced after metformin only in diabetic patients. These data indicate that metformin increases insulin binding to its receptors in vitro and in vivo. The effect in vivo is observed in obese subjects and in obese type II diabetic patients, paralleling the clinical effectiveness of this antidiabetic agent, and is not due to receptor regulation by circulating insulin, since no variation in insulin levels was recorded

  8. Insulin receptor internalization defect in an insulin-resistant mouse melanoma cell line

    International Nuclear Information System (INIS)

    Androlewicz, M.J.; Straus, D.S.; Brandenburg, D.F.

    1989-01-01

    Previous studies from this laboratory demonstrated that the PG19 mouse melanoma cell line does not exhibit a biological response to insulin, whereas melanoma x mouse embryo fibroblast hybrids do respond to insulin. To investigate the molecular basis of the insulin resistance of the PG19 melanoma cells, insulin receptors from the insulin-resistant melanoma cells and insulin-sensitive fibroblast x melanoma hybrid cells were analyzed by the technique of photoaffinity labeling using the photoprobe 125 I-NAPA-DP-insulin. Photolabeled insulin receptors from the two cell types have identical molecular weights as determined by SDS gel electrophoresis under reducing and nonreducing conditions, indicating that the receptors on the two cell lines are structurally similar. Insulin receptor internalization studies revealed that the hybrid cells internalize receptors to a high degree at 37 degree C, whereas the melanoma cells internalize receptors to a very low degree or not at all. The correlation between ability to internalize insulin receptors and sensitivity to insulin action in this system suggests that uptake of the insulin-receptor complex may be required for insulin action in these cells. Insulin receptors from the two cell lines autophosphorylate in a similar insulin-dependent manner both in vitro and in intact cells, indicating that insulin receptors on the melanoma and hybrid cells have functional tyrosine protein kinase activity. Therefore, the block in insulin action in the PG19 melanoma cells appears to reside at a step beyond insulin-stimulated receptor autophosphorylation

  9. Insulin and insulin-like growth factor receptors and responses

    International Nuclear Information System (INIS)

    Roth, R.A.; Steele-Perkins, G.; Hari, J.; Stover, C.; Pierce, S.; Turner, J.; Edman, J.C.; Rutter, W.J.

    1988-01-01

    Insulin is a member of a family of structurally related hormones with diverse physiological functions. In humans, the best-characterized members of this family include insulin, insulin-like growth factor (IGF)-I, and IGF-II. Each of these three polypeptide hormones has its own distinct receptor. The structures of each of these receptors have now been deduced from analyses of isolated cDNA clones. To study further the responses mediated through these three different receptors, the authors have been studying cells expressing the proteins encoded by these three cDNAs. The isolated cDNAs have been transfected into Chinese hamster ovary (CHO) cells, and the resulting transfected cell lines have been characterized as to the ligand-binding activities and signal-transducing activities of the expressed proteins

  10. Changing the insulin receptor to possess insulin-like growth factor I ligand specificity

    International Nuclear Information System (INIS)

    Andersen, A.S.; Kjeldsen, T.; Wiberg, F.C.; Christensen, P.M.; Rasmussen, J.S.; Norris, K.; Moeller, K.B.; Moeller, N.P.H.

    1990-01-01

    To examine the role of the N-terminal part of the insulin-like growth factor I (IGF-I) receptor and insulin receptor in determining ligand specificity, the authors prepared an expression vector encoding a hybrid receptor where exon 1 (encoding the signal peptide and seven amino acids of the α-subunit), exon 2, and exon 3 of the insulin receptor were replaced with the corresponding IGF-I receptor cDNA (938 nucleotides). To allow direct quantitative comparison of the binding capabilities of this hybrid receptor with those of the human IGF-I receptor and the insulin receptor, all three receptors were expressed in baby hamster kidney (BHK) cells as soluble molecules and partially purified before characterization. The hybrid IGF-I/insulin receptor bound IGF-I with an affinity comparable to that of the wild-type IGF-I receptor. In contrast, the hybrid receptor no longer displayed high-affinity binding of insulin. These results directly demonstrate that it is possible to change the specificity of the insulin receptor to that of the IGF-I receptor and, furthermore, that the binding specificity for IGF-I is encoded within the nucleotide sequence from 135 to 938 of the IGF-I receptor cDNA. Since the hybrid receptor only bound insulin with low affinity, the insulin binding region is likely to be located within exons 2 and 3 of the insulin receptor

  11. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Gastroenterology, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072 (China); Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yang, Yong, E-mail: yyang@houstonmethodist.org [Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Medicine, Weill Cornell Medical College, New York, NY 10065 (United States)

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  12. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    International Nuclear Information System (INIS)

    Wang, Feng; Yang, Yong

    2014-01-01

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers

  13. Development of real-time reverse transcription polymerase chain reaction assays to quantify insulin-like growth factor receptor and insulin receptor expression in equine tissue

    Directory of Open Access Journals (Sweden)

    Stephen B. Hughes

    2013-08-01

    Full Text Available The insulin-like growth factor system (insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor 1 receptor, insulin-like growth factor 2 receptor and six insulin-like growth factor-binding proteins and insulin are essential to muscle metabolism and most aspects of male and female reproduction. Insulin-like growth factor and insulin play important roles in the regulation of cell growth, differentiation and the maintenance of cell differentiation in mammals. In order to better understand the local factors that regulate equine physiology, such as muscle metabolism and reproduction (e.g., germ cell development and fertilisation, real-time reverse transcription polymerase chain reaction assays for quantification of equine insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were developed. The assays were sensitive: 192 copies/µLand 891 copies/µL for insulin-like growth factor 1 receptor, messenger ribonucleic acid and insulin receptor respectively (95%limit of detection, and efficient: 1.01 for the insulin-like growth factor 1 receptor assay and 0.95 for the insulin receptor assay. The assays had a broad linear range of detection (seven logs for insulin-like growth factor 1 receptor and six logs for insulin receptor. This allowed for analysis of very small amounts of messenger ribonucleic acid. Low concentrations of both insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were detected in endometrium, lung and spleen samples, whilst high concentrations were detected in heart, muscle and kidney samples, this was most likely due to the high level of glucose metabolism and glucose utilisation by these tissues. The assays developed for insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid expression have been shown to work on equine tissue and will contribute to the understanding of insulin and insulin-like growth factor 1

  14. Dithiothreitol activation of the insulin receptor/kinase does not involve subunit dissociation of the native α2β2 insulin receptor subunit complex

    International Nuclear Information System (INIS)

    Sweet, L.J.; Wilden, P.A.; Pessin, J.E.

    1986-01-01

    The subunit composition of the dithiothreitol- (DTT) activated insulin receptor/kinase was examined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and gel filtration chromatography under denaturing or nondenaturing conditions. Pretreatment of 32 P-labeled insulin receptors with 50 mM DTT followed by gel filtration chromatography in 0.1% SDS demonstrated the dissociation of the α 2 β 2 insulin receptor complex (M/sub r/ 400,000) into the monomeric 95,000 β subunit. In contrast, pretreatment of the insulin receptors with 1-50 mM DTT followed by gel filtration chromatography in 0.1% Triton X-100 resulted in no apparent alteration in mobility compared to the untreated insulin receptors. Resolution of this complex by nonreducing SDS-polyacrylamide gel electrophoresis and autoradiography demonstrated the existence of the α 2 β 2 heterotetrameric complex with essentially no αβ heterodimeric or free monomeric β subunit species present. This suggests that the insulin receptor can reoxidize into the M/sub r/ 400,000 complex after the removal of DTT by gel filtration chromatography. To prevent reoxidation, the insulin receptors were pretreated with 50 mM DTT. Under the conditions the insulin receptors migrated as the M/sub r/ 400,000 α 2 β 2 complex. These results demonstrate that treatment of the insulin receptors with high concentrations of DTT, followed by removal of DTT by gel filtration, results in reoxidation of the reduced α 2 β 2 insulin receptor complex. Further, these results document that although the DTT stimulation of the insulin receptor/kinase does involve reduction of the insulin receptor subunits, it does not result in dissociation of the native α 2 β 2 insulin receptor subunit complex

  15. Studies on insulin receptor, 2. Studies on the influence of starvation and high fat diet on insulin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y [Hiroshima Univ. (Japan). School of Medicine

    1979-08-01

    The present study is to investigate an influence of starvation and high fat diet on insulin receptor of the plasma membrane by means of radioreceptor assay using /sup 125/I-labelled insulin. Male guinea pigs of Hartley strain were employed for the starvation study, and /sup 125/I-insulin binding capacity on the plasma membrane of the liver and kidney was determined at 24, 48 and 72 hours of the fast after the last meal. Male rats of Wistar strain were employed for the high fat study where the diet containing 35% of butter was fed ad libitum for 38 or 68 days. The animals were killed at the fast of 12 hours, and /sup 125/I-insulin binding capacity on the plasma membrane of the liver was determined. The results obtained are summarized as follows: 1) An increase in /sup 125/I-insulin binding capacity on the plasma membrane of the liver and kidney was observed by the starvation for 24 to 72 hours. 2) The mechanism of the increase by starvation was considered to be different by the organs; it was due to an increase in number of insulin receptor in the liver, and due to an increase in affinity of insulin receptor in the kidney. 3) In non-obese rats fed with high fat diet, the number of insulin receptor on the liver plasma membrane showed a decrease, and this observation clearly indicated that the decrease in number of the receptor did not depend on the obesity. 4) Obese rats also fed with high fat diet presented a decrease in number of insulin receptor without an elevation of insulin levels in the circulating blood. This indicated that at least in the obese rats fed with high fat diet, the decrease in number of the receptor was not due to hyperinsulinemia.

  16. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    Science.gov (United States)

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  17. Insulin receptors in the mammary gland

    International Nuclear Information System (INIS)

    Smith, D.H.

    1986-01-01

    Insulin binding studies were conducted using mammary membrane preparations to further the authors understanding of insulin's role in regulating mammary metabolism, particularly ruminant mammary metabolism. Specific objectives were to: (1) characterize insulin binding to bovine mammary microsomes and determine if the specificity and kinetics of binding indicate the presence of insulin receptors in bovine mammary gland; (2) examine and compare insulin binding by liver and mammary microsomes of the pig and dairy cow; (3) examine insulin binding to bovine milk fat globule membranes (MFGM) and evaluate this model's usefulness in assessing insulin receptor regulation in the mammary gland of the cow; (4) examine the effect of dietary fat in insulin binding by rat mammary and liver microsomes. The specificity and kinetics of 125 I-insulin binding of bovine mammary microsomes indicated the presence of insulin receptors in bovine mammary gland. Bovine liver and mammary microsomes specifically bound less 125 I-insulin than did the corresponding porcine microsomes, and mammary microsomes, regardless of species, specifically bound less 125 I-insulin than did liver microsomes. These differences in binding suggest differences in insulin responsiveness between pigs and cattle, as well as between the liver and mammary glands

  18. Agonism and antagonism at the insulin receptor

    DEFF Research Database (Denmark)

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new...... insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been...... shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B'29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR...

  19. Insulin receptor substrates 1 and 2 but not Shc can activate the insulin receptor independent of insulin and induce proliferation in CHO-IR cells

    International Nuclear Information System (INIS)

    Niessen, Markus; Jaschinski, Frank; Item, Flurin; McNamara, Morgan P.; Spinas, Giatgen A.; Trueb, Thomas

    2007-01-01

    Ligand-activated insulin receptor (IR) attracts and phosphorylates various substrates such as insulin receptor substrates 1-4 (IRS) and Shc. To investigate how binding affinity for substrate affects signalling we generated chimeric receptors with the β-chain of the insulin receptor containing NPXY motives with different affinities for receptor substrates. We found that the extent of receptor tyrosine phosphorylation positively correlates with binding affinity towards IRS1/2 but not towards Shc. Moreover, overexpression of IRS1 or IRS2 but not of Shc increased IR tyrosine phosphorylation in a dose-dependent manner, also independent of insulin. Molecular truncations of IRS1 revealed that neither the isolated PH and PTB domains nor the C-terminus with the tyrosine phosphorylation sites alone are sufficient for substrate-dependent receptor activation. Overexpression of IRS1 and IRS2 impaired insulin-induced internalization of the IR in a dose-dependent manner suggesting that IRS proteins prevent endosome-associated receptor dephosphorylation/inactivation. IRS1 and IRS2 could therefore target the activated IR to different cellular compartments. Overexpression of IRS1 and IRS2 inhibited insulin-stimulated activation of the MAP kinases Erk1/2 while it increased/induced activation of Akt/PKB. Finally, overexpression of IRS1 and IRS2 but not of Shc induced DNA synthesis in starved CHO-IR cells independent of exogenous growth factors. Our results demonstrate that variations in cellular IRS1 and IRS2 concentration affect insulin signalling both upstream and downstream and that IRS proteins could play instructive rather than just permissive roles in signal transmission

  20. Nature and regulation of the insulin receptor: structure and function

    International Nuclear Information System (INIS)

    Czech, M.P.

    1985-01-01

    Native, cell-surface insulin receptor consists of two glycoprotein subunit types with apparent masses of about 125,000 daltons (alpha subunit) and 90,000 daltons (beta subunit). The alpha and beta insulin-receptor subunits seem to have distinct functions such that alpha appears to bind hormone whereas beta appears to possess intrinsic tyrosine kinase activity. In detergent extracts, insulin activates receptor autophosphorylation of tyrosine residues on its beta subunit, whereas in the presence of reductant, the alpha subunit is also phosphorylated. In intact cells, insulin activates serine/threonine phosphorylation of insulin receptor beta subunit as well as tyrosine phosphorylation. The biological role of the receptor-associated tyrosine kinase is not known. The insulin receptor kinase is regulated by beta-adrenergic agonists and other agents that elevate cAMP in adipocytes, presumably via the cAMP-dependent protein kinase. Such agents decrease receptor affinity for insulin and partially uncouple receptor tyrosine kinase activity from activation by insulin. These effects appear to contribute to the biological antagonism between insulin and beta-agonists. These data suggest the hypothesis that a complex network of tyrosine and serine/threonine phosphorylations on the insulin receptor modulate its binding and kinase activities in an antagonistic manner

  1. New twist on neuronal insulin receptor signaling in health, disease, and therapeutics.

    Science.gov (United States)

    Wada, Akihiko; Yokoo, Hiroki; Yanagita, Toshihiko; Kobayashi, Hideyuki

    2005-10-01

    Long after the pioneering studies documenting the existence of insulin (year 1967) and insulin receptor (year 1978) in brain, the last decade has witnessed extraordinary progress in the understanding of brain region-specific multiple roles of insulin receptor signalings in health and disease. In the hypothalamus, insulin regulates food intake, body weight, peripheral fat deposition, hepatic gluconeogenesis, reproductive endocrine axis, and compensatory secretion of counter-regulatory hormones to hypoglycemia. In the hippocampus, insulin promotes learning and memory, independent of the glucoregulatory effect of insulin. Defective insulin receptor signalings are associated with the dementia in normal aging and patients with age-related neurodegenerative diseases (e.g., Alzheimer's disease); the cognitive impairment can be reversed with systemic administration of insulin in the euglycemic condition. Intranasal administration of insulin enhances memory and mood and decreases body weight in healthy humans, without causing hypoglycemia. In the hypothalamus, insulin-induced activation of the phosphoinositide 3-kinase pathway followed by opening of ATP-sensitive K+ channel has been shown to be related to multiple effects of insulin. However, the precise molecular mechanisms of insulin's pleiotropic effects still remain obscure. More importantly, much remains unknown about the quality control mechanisms ensuring correct conformational maturation of the insulin receptor, and the cellular mechanisms regulating density of cell surface functional insulin receptors.

  2. A bioluminescence resonance energy transfer 2 (BRET2) assay for monitoring seven transmembrane receptor and insulin receptor crosstalk

    DEFF Research Database (Denmark)

    Sanni, Samra Joke; Kulahin, Nikolaj; Jorgensen, Rasmus

    2017-01-01

    The angiotensin AT1 receptor is a seven transmembrane (7TM) receptor, which mediates the regulation of blood pressure. Activation of angiotensin AT1 receptor may lead to impaired insulin signaling indicating crosstalk between angiotensin AT1 receptor and insulin receptor signaling pathways....... To elucidate the molecular mechanisms behind this crosstalk, we applied the BRET2 technique to monitor the effect of angiotensin II on the interaction between Rluc8 tagged insulin receptor and GFP2 tagged insulin receptor substrates 1, 4, 5 (IRS1, IRS4, IRS5) and Src homology 2 domain-containing protein (Shc......). We demonstrate that angiotensin II reduces the interaction between insulin receptor and IRS1 and IRS4, respectively, while the interaction with Shc is unaffected, and this effect is dependent on Gαq activation. Activation of other Gαq-coupled 7TM receptors led to a similar reduction in insulin...

  3. Nature and regulation of the receptors for insulin-like growth factors

    International Nuclear Information System (INIS)

    Rechler, M.M.; Nissley, S.P.

    1985-01-01

    Two subtypes of IGF receptors have been identified. Type I IGF receptors have a Mr greater than 300,000 and are composed of disulfide-linked 130,000-dalton (alpha) and approximately 90,000-dalton (beta) subunits. Type I receptors preferentially bind IGF-I but also bind IGF-II and, more weakly, insulin. Type II IGF receptors consist of a 250,000-dalton protein that contains internal disulfide bonds but is not linked to other membrane components. Type II receptors bind IGF-II with higher affinity than IGF-I. They do not interact with even very high concentrations of insulin. Type I IGF receptors and insulin receptors are homologous structures. Type II IGF receptors do not appear to be homologous to type I receptors. Type II receptors do not appear to be downregulated. Insulin acutely upregulates type II IGF receptors in intact rat adipose cells by effecting a redistribution of receptors cycling between a large intracellular pool and the plasma membrane. Insulin and the IGFs elicit the same biological responses, either by cross-reacting with one of the receptors for the heterologous ligand or by concurrent activation of convergent effector pathways by binding to the homologous receptor. Which mechanism is utilized appears to depend more on the tissue than on the biological response. Insulin desensitizes rat hepatoma cells to the actions of insulin and IGFs, mediated by both insulin and IGF receptors, by mechanisms distal to hormone binding and possibly common to IGF and insulin effector pathways

  4. Insulin receptor degradation is accelerated in cultured lymphocytes from patients with genetic syndromes of extreme insulin resistance

    International Nuclear Information System (INIS)

    McElduff, A.; Hedo, J.A.; Taylor, S.I.; Roth, J.; Gorden, P.

    1984-01-01

    The insulin receptor degradation rate was examined in B lymphocytes that were obtained from peripheral blood of normal subjects and patients with several syndromes of extreme insulin resistance. The insulin receptors were surface labeled using Na 125 I/lactoperoxidase and the cells were returned to incubate in growth media. After varying periods of incubation, aliquots of cells were solubilized and the cell content of labeled receptor subunits were measured by immunoprecipitation with anti-receptor antibodies and NaDodSO4/polyacrylamide gel electrophoresis. In cell lines from four patients in whom the number of insulin receptors was reduced by greater than 90%, the rate of receptor loss was greater than normal (t1/2 equals 3.8 +/- 0.9 h vs. 6.5 +/- 1.2 h; mean +/- SD, P less than 0.01). However, a similar acceleration in receptor degradation was seen in cells from five patients with extreme insulin resistance but low-normal insulin receptor concentration (t1/2 equals 4.4 +/- 0.9 h). Thus, all the patients with genetic syndromes of insulin resistance had accelerated receptor degradation, regardless of their receptor concentration. By contrast, insulin receptors on cultured lymphocytes that were obtained from patients with extreme insulin resistance secondary to autoantibodies to the insulin receptor had normal receptor degradation (t1/2 equals 6.1 +/- 1.9 h). We conclude that (a) accelerated insulin receptor degradation is an additional feature of cells from patients with genetic forms of insulin resistance; (b) that accelerated insulin receptor degradation may explain the low-normal receptor concentrations that were seen in some patients with extreme insulin resistance; and (c) that accelerated degradation does not explain the decreased receptor concentration in patients with very low insulin receptor binding and, therefore, by inference, a defect in receptor synthesis must be present in this subgroup

  5. Insulin-receptors in diabetes and altered thyroidal status

    International Nuclear Information System (INIS)

    Chaujar, Meena; Subramanian, G.B.V.; Yadav, H.S.; Chauhan, U.P.S.

    1991-01-01

    Rats were made hypothyroid by treating with a single dose of 800 μCi of 131 I and hyperthyroid condition was created by administering 90 μg of thyroxine daily for 2 weeks. Diabetes was produced by administering single dose of alloxan monohydrate. Hypothyroid rats showed significant increase in 125 I-insulin binding with its liver plasma membrane receptors with respect to normal rats. In the case of hypothyroid diabetic rats such binding was greater as compared to hypothyroid rats without diabetes. Hyperthyroid rats with respect to normal control rats showed a decrease in 125 I-insulin binding to its liver plasma membrane receptors. When hyperthyroid rats were made diabetic, 125 I-insulin binding to its receptors was further decreased. The study infers that hyper-thyrodism further decreases insulin binding to its receptors which has already been decreased in diabetes. Hypothyroidism, on the other hand, improves upon the decreased insulin binding to its receptors in diabetes. (author). 16 refs., 6 figs., 2 tabs

  6. Studies on insulin receptor, 1

    International Nuclear Information System (INIS)

    Sakai, Yukio

    1979-01-01

    The present study was designed for the purpose of establishing a method of insulin radioreceptor assay using plasma membranes of guinea pigs as receptor sites. The results obtained are as follows: 1) Insulin receptor in the renal plasma membranes of guinea pigs showed a significantly high affinity to porcine insulin compared with that in the plasma membranes of guinea pig liver or rat kidney and liver. 2) In the insulin radioreceptor assay, an optimum condition was observed by the incubation at 4 0 C for 24 - 48 hours with 100 μg membrane protein of guinea pig kidney and 0.08 ng of 125 I-insulin. This assay method was specific for insulin and showed an accurate biological activity of insulin. 3) The recovery rate of insulin radioreceptor assay was 98.4% and dilution check up to 16 times did not influence on the result. An average of coefficient variation was 3.92% within assay. All of these results indicated the method to be satisfactory. 4) Glucose induced insulin release by perfusion method in isolated Langerhans islets of rats showed an identical pattern of reaction curves between radioreceptor assay and radioimmunoassay, although the values of radioreceptor assay was slightly low. 5) Insulin free serum produced by ultra filtration method was added to the standard assay medium. By this procedure, direct measurement of human serum by radioreceptor assay became possible. 6) The value of human serum insulin receptor binding activity by the radioreceptor assay showed a high correlation with that of insulin radioimmunoassay in sera of normal, borderline or diabetic type defined by glucose tolerance test. (author)

  7. NGA/Insulin receptor scanning

    International Nuclear Information System (INIS)

    Kurtaran, A.; Virgolini, I.

    1994-01-01

    Tc-99m-galactosyl-neoglycoalbumin (NGA) is one of the first receptor-based radiopharmaceuticals which specifically recognizes the hepatic binding protein (HBP) located on the surface of the hepatocytes. The exclusive interactin of NGA with HBP provided the basis for a kinetic model for the evaluation hepatocellular function. During the last years we have used NGA in more than 300 patients with various liver diseases including liver cirrhosis (Stages Child A to Child C), viral hepatitis, and carcinomas. In these studies, the calculated HBP densities, after i.v.-injection of Tc-99m-NGA, significantly correlated with the clinical course of the diseases. Furthermore, similar to conventional Tc-colloid, NGA provided excellent demonstration of 'cold spots' for hepatic masses. In a further approach we used another hepatocyte receptor-seeking radioligand, I-123-Tyr-A14- insulin, and found, that its in vitro-binding to hepatocellular carcinomas is greatly enhanced over normal hepatic tissue. On this basis, we developed a double-tracer method using NGA and insulin in a single study. Thus, areas of 'cold spots' identifying hepatic masses on NGA scans, take up I-123-Tyr-A14-insulin immediately after i.v.-injection. This was true for hepatocellular hepatomas, but not for adenocarcinomas. In conclusion, NGA/insulin receptor scanning could be a novel and save method for the demonstration of hepatocellular hepatomas. (author)

  8. NGA/Insulin receptor scanning

    Energy Technology Data Exchange (ETDEWEB)

    Kurtaran, A; Virgolini, I [Vienna Univ. (Austria). Abt. fuer Nuklearmedizin; Angelberger, P [Ludwig Boltzmann-Institut fuer Nuklearmedizin, Vienna (Austria)

    1994-10-01

    Tc-99m-galactosyl-neoglycoalbumin (NGA) is one of the first receptor-based radiopharmaceuticals which specifically recognizes the hepatic binding protein (HBP) located on the surface of the hepatocytes. The exclusive interactin of NGA with HBP provided the basis for a kinetic model for the evaluation hepatocellular function. During the last years we have used NGA in more than 300 patients with various liver diseases including liver cirrhosis (Stages Child A to Child C), viral hepatitis, and carcinomas. In these studies, the calculated HBP densities, after i.v.-injection of Tc-99m-NGA, significantly correlated with the clinical course of the diseases. Furthermore, similar to conventional Tc-colloid, NGA provided excellent demonstration of `cold spots` for hepatic masses. In a further approach we used another hepatocyte receptor-seeking radioligand, I-123-Tyr-A14- insulin, and found, that its in vitro-binding to hepatocellular carcinomas is greatly enhanced over normal hepatic tissue. On this basis, we developed a double-tracer method using NGA and insulin in a single study. Thus, areas of `cold spots` identifying hepatic masses on NGA scans, take up I-123-Tyr-A14-insulin immediately after i.v.-injection. This was true for hepatocellular hepatomas, but not for adenocarcinomas. In conclusion, NGA/insulin receptor scanning could be a novel and save method for the demonstration of hepatocellular hepatomas. (author).

  9. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Almind, K; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Since relative or absolute insulin deficiency and insulin insensitivity are involved in the aetiology of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether patients with NIDDM exhibit genetic variability in the coding region of insulin receptor substrate-1 (IRS-1), a candidate...

  10. Insulin receptor isoforms A and B as well as insulin receptor substrates-1 and -2 are differentially expressed in prostate cancer.

    Science.gov (United States)

    Heni, Martin; Hennenlotter, Jörg; Scharpf, Marcus; Lutz, Stefan Z; Schwentner, Christian; Todenhöfer, Tilman; Schilling, David; Kühs, Ursula; Gerber, Valentina; Machicao, Fausto; Staiger, Harald; Häring, Hans-Ulrich; Stenzl, Arnulf

    2012-01-01

    In different cancers types, insulin receptor isoform composition or insulin receptor substrate (IRS) isoforms are different to healthy tissue. This may be a molecular link to increased cancer risk in diabetes and obesity. Since this is yet unclear for prostate cancer, we investigated IR isoform composition and IRS balance in prostate cancer compared to benign and tumor adjacent benign prostate tissue and brought this into relation to cell proliferation. We studied 23 benign prostate samples from radical cystectomy or benign prostatic hyperplasia surgery, 30 samples from benign tissue directly adjacent to prostate cancer foci and 35 cancer samples from different patients. RNA expression levels for insulin receptor isoforms A and B, IRS-1, IRS-2, and IGF-1 receptor were assessed by quantitative real-time RT-PCR. In addition, RNA- and protein expression of the cell cycle regulator p27(Kip1) was quantified by real-time RT-PCR and immunohistochemistry. Insulin receptor isoform A to B ratio was significantly higher in cancer as well as in tumor adjacent benign prostate tissue compared to purely benign prostates (pprostatic tissue (pcancer and adjacent tissue were significantly associated with reduced p27(Kip1) content (preceptor levels were significantly lower in patients with type 2 diabetes (p = 0.0019). We found significant differences in the insulin signaling cascade between benign prostate tissue and prostate cancer. Histological benign tissue adjacent to cancer showed expression patterns similar to the malignancies. Our findings suggest a role of the insulin signaling pathway in prostate cancer and surrounding tissue and can hence be relevant for both novel diagnostic and therapeutic approaches in this malignancy.

  11. Insulin and IGF receptors are developmentally regulated in the chick embry eye lens

    International Nuclear Information System (INIS)

    Bassas, L.; Zelenka, P.S.; Serrano, J.; de Pablo, F.

    1987-01-01

    The authors have previously reported that insulin-like growth factor (IGF) receptors appear to predominate over insulin receptors in early stages of embryogenesis in the chick (days 2-3 whole embryo membranes). Overall, [ 125 I]IGF and II binding to specific receptors was maximal when the rate of brain growth is highest. In the present study they used the embryonic chick lens, a well-defined tissue composed of a single type of cell, to analyze whether changes of insulin and IGFI binding are correlated with changes in growth rate and differentiation state of the cells. They show that both insulin receptors and IGF receptors are present in the lens epithelial cells, and that each type is distinctly regulated throughout development. While there is a direct correlation between IFG-binding capability and growth rate of the cells, there is less relation to differentiation status and embryo age. Insulin receptors, by contrast, appear to be mostly related to the differentiated state of cells, decreasing sharply in fibers, irrespective of their developmental age

  12. Binding Mode of Insulin Receptor and Agonist Peptide

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Insulin is a protein hormone secreted by pancreatic β cells. One of its main functions is to keep the balance of glucose inside the body by regulating the absorption and metabolism of glucose in the periphery tissue, as well as the production and storage of hepatic glycogen. The insulin receptor is a transmembrane glycoprotein in which two α subunits with a molecular weight of 135 kD and twoβ subunits with a molecular weight of 95 kD are joined by a disulfide bond to form a β-α-α-β structure. The extracellular α subunit, especially, its three domains near the N-terminal are partially responsible for signal transduction or ligand-binding, as indicated by the experiments. The extracellular α subunits are involved in binding the ligands. The experimental results indicate that the three domains of the N-terminal of the α subunits are the main determinative parts of the insulin receptor to bind the insulin or mimetic peptide.We employed the extracellular domain (PDBID: 1IGR) of the insulin-like growth factor-1 receptor (IGF-1 R ) as the template to simulate and optimize the spatial structures of the three domains in the extracellular domain of the insulin receptor, which includes 468 residues. The work was accomplished by making use of the homology program in the Insight Ⅱ package on an Origin3800 server. The docking calculations of the insulin receptor obtained by homology with hexapeptides were carried out by means of the program Affinity. The analysis indicated that there were hydrogen bonding, and electrostatic and hydrophobic effects in the docking complex of the insulin receptor with hexapeptides.Moreover, we described the spatial orientation of a mimetic peptide with agonist activity in the docking complex. We obtained a rough model of binding of DLAPSQ or STIVYS with the insulin receptor, which provides the powerful theoretical support for designing the minimal insulin mimetic peptide with agonist activity, making it possible to develop oral small

  13. Signal transduction through the IL-4 and insulin receptor families.

    Science.gov (United States)

    Wang, L M; Keegan, A; Frankel, M; Paul, W E; Pierce, J H

    1995-07-01

    Activation of tyrosine kinase-containing receptors and intracellular tyrosine kinases by ligand stimulation is known to be crucial for mediating initial and subsequent events involved in mitogenic signal transduction. Receptors for insulin and insulin-like growth factor 1 (IGF-1) contain cytoplasmic tyrosine kinase domains that undergo autophosphorylation upon ligand stimulation. Activation of these receptors also leads to pronounced and rapid tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells of connective tissue origin. A related substrate, designated 4PS, is similarly phosphorylated by insulin and IGF-1 stimulation in many hematopoietic cell types. IRS-1 and 4PS possess a number of tyrosine phosphorylation sites that are within motifs that bind specific SH2-containing molecules known to be involved in mitogenic signaling such as PI-3 kinase, SHPTP-2 (Syp) and Grb-2. Thus, they appear to act as docking substrates for a variety of signaling molecules. The majority of hematopoietic cytokines bind to receptors that do not possess intrinsic kinase activity, and these receptors have been collectively termed as members of the hematopoietin receptor superfamily. Despite their lack of tyrosine kinase domains, stimulation of these receptors has been demonstrated to activate intracellular kinases leading to tyrosine phosphorylation of multiple substrates. Recent evidence has demonstrated that activation of different members of the Janus family of tyrosine kinases is involved in mediating tyrosine phosphorylation events by specific cytokines. Stimulation of the interleukin 4 (IL-4) receptor, a member of the hematopoietin receptor superfamily, is thought to result in activation of Jak1, Jak3, and/or Fes tyrosine kinases.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Decreased autophosphorylation of EGF receptor in insulin-deficient diabetic rats

    International Nuclear Information System (INIS)

    Okamoto, M.; Kahn, C.R.; Maron, R.; White, M.F.

    1988-01-01

    The authors have previously reported that despite an increase in receptor concentration, there is a decrease in autophosphorylation and tyrosine kinase activity of the insulin receptor in insulin-deficient diabetic rats. To determine if other tyrosine kinases might be altered, they have studied the epidermal growth factor (EGF) receptor kinase in wheat germ agglutinin-purified, Triton X-100-solubilized liver membranes from streptozotocin (STZ)-induced diabetic rats and the insulin-deficient BB rat. They find that autophosphorylation of EGF receptor is decreased in proportion to the severity of the diabetic state in STZ rats with a maximal decrease of 67%. A similar decrease in autophosphorylation was observed in diabetic BB rats that was partially normalized by insulin treatment. Separation of tryptic phosphopeptides by reverse-phase high-performance liquid chromatography revealed a decrease in labeling at all sites of autophosphorylation. A parallel decrease in EGF receptor phosphorylation was also found by immunoblotting with an antiphosphotyrosine antibody. EGF receptor concentration, determined by Scatchard analysis of 125 I-labeled EGF binding, was decreased by 39% in the STZ rat and 27% in the diabetic BB rat. Thus autophosphorylation of EGF receptor, like that of the insulin receptor, is decreased in insulin-deficient rat liver. In the case of EGF receptor, this is due in part to a decrease in receptor number and in part to a decrease in the specific activity of the kinase

  15. Comparison of solubilized and purified plasma membrane and nuclear insulin receptors

    International Nuclear Information System (INIS)

    Wong, K.Y.; Hawley, D.; Vigneri, R.; Goldfine, I.D.

    1988-01-01

    Prior studies have detected biochemical and immunological differences between insulin receptors in plasma membranes and isolated nuclei. To further investigate these receptors, they were solubilized in Triton X-100 partially purified by wheat germ agglutinin-agarose chromatography. In these preparations, the nuclear and plasma membrane receptors had very similar pH optima (pH 8.0) and reactivities to a group of polyclonal antireceptor antibodies. Further, both membrane preparations had identical binding activities when labeled insulin was competed for by unlabeled insulin (50% inhibition at 800 pM). Next, nuclear and plasma membranes were solubilized and purified to homogeneity by wheat germ agglutinin-agarose and insulin-agarose chromatography. In both receptors, labeled insulin was covalently cross-linked to a protein of 130 kilodaltons representing the insulin receptor α subunit. When preparations of both receptors were incubated with insulin and then adenosine 5'-[γ- 32 P]triphosphate, a protein of 95 kilodaltons representing the insulin receptor β subunit was phosphorylated in a dose-dependent manner. These studies indicate, therefore, that solubilized plasma membrane and nuclear insulin receptors have similar structures and biochemical properties, and they suggest that they are the same (or very similar) proteins

  16. Phospholipid environment alters hormone-sensitivity of the purified insulin receptor kinase.

    OpenAIRE

    Lewis, R E; Czech, M P

    1987-01-01

    Insulin receptor kinase, affinity-purified by adsorption and elution from immobilized insulin, is stimulated 2-3-fold by insulin in detergent solution. Reconstitution of the receptor kinase into leaky vesicles containing phosphatidylcholine and phosphatidylethanolamine (1:1, w/w) by detergent removal on Sephadex G-50 results in the complete loss of receptor kinase sensitivity to activation by insulin. Insulin receptors in these vesicles also exhibit an increase in their apparent affinity for ...

  17. [Differences in dynamics of insulin and insulin-like growth I (IGF-I) receptors internalization in isolated rat hepatocytes].

    Science.gov (United States)

    Kolychev, A P; Ternovskaya, E E; Arsenieva, A V; Shapkina, E V

    2013-01-01

    Insulin and IGF-I are two related peptides performing in the mammalian body functionally different roles of the metabolic and growth hormones, respectively. Internalization of the insulin-receptor complex (IRC) is the most important chain of mechanism of the action of hormone. To elucidate differences in the main stages of internalization of the two related hormones, the internalization dynamics of 125I-insulin and 125I-IGF-I was traced in isolated rat hepatocytes at 37 and 12 degrees C. There were established marked differences in the process of internalization of labeled hormones, which is stimulated by insulin and IGF-I. At 37 degrees C the insulin-stimulated internalization, unlike the process initiated by IGF-I, did not reach the maximal level for 1 h of incubation. However, essential differences in the internalization course of these two related peptide were obvious at the temperature of 12 degrees C. The internalization level of insulin receptors at 12 degrees C decreased by one third in spite of a significant increase of the insulin receptor binding on the hepatocytes plasma membrane. At 12 degrees C a slight decrease of the proportion of intracellular 125I-IGF-I correlated with a decrease in the 125I-IGF-I binding to receptors on the cell membrane. Internalization of IGF-I receptors was not affected by low temperature, as neither its level, nor the rate changed at 12 degrees C. The paradoxical decrease of the insulin-stimulated internalization at low temperature seems to represent a peculiar "inhibition mechanism" of immersion of IRC into the cell, which leads to accumulation of the complexes on the cell surface and possibly to a readjustment of the insulin biological activity. The resistance of internalization of the IGF-I receptor to cold seems to be related to the more ancient origin of this mechanism in the poikilothermal vertebrates.

  18. A BRET assay for monitoring insulin receptor interactions and ligand pharmacology

    DEFF Research Database (Denmark)

    Kulahin, Nikolaj; Sanni, Samra J; Slaaby, Rita

    2012-01-01

    The insulin receptor (IR) belongs to the receptor tyrosine kinase super family and plays an important role in glucose homeostasis. The receptor interacts with several large docking proteins that mediate signaling from the receptor, including the insulin receptor substrate (IRS) family and Src...... for monitoring the interactions between the IR and its substrates. Furthermore, the insulin analogue X10 was characterized in the BRET2 assay and was found to be 10 times more potent with respect to IRS1, IRS4 and Shc recruitment compared to human insulin. This study demonstrates that the BRET2 technique can...

  19. Receptors for insulin-like growth factors I and II: autoradiographic localization in rat brain and comparison to receptors for insulin

    International Nuclear Information System (INIS)

    Lesniak, M.A.; Hill, J.M.; Kiess, W.; Rojeski, M.; Pert, C.B.; Roth, J.

    1988-01-01

    Receptors for insulin-like growth factor I (IGF-I) in rat brain were visualized using autoradiography with [125I]IGF-I. The binding of the labeled peptide was competed for fully by high concentrations of unlabeled IGF-I. At intermediate concentrations of unlabeled peptide the binding of [125I]IGF-I was competed for by unlabeled IGF-I more effectively than by IGF-II or insulin, which is typical of receptors for IGF-I. Essentially every brain section shows specific binding of IGF-I, and the pattern of binding of IGF-I to its receptors correlated well with the cytoarchitectonic structures. In parallel studies we showed that [125I]IGF-II was bound to tissue sections of rat brain and that the binding was competed for by an excess of unlabeled IGF-II. However, intermediate concentrations of unlabeled peptides gave inconclusive results. To confirm that the binding of [125I]IGF-II was to IGF-II receptors, we showed that antibodies specific for the IGF-II receptor inhibited the binding of labeled IGF-II. Furthermore, the binding of the antibody to regions of the brain section, visualized by the application of [125I]protein-A, gave patterns indistinguishable from those obtained with [125I]IGF-II alone. Again, the binding was very widely distributed throughout the central nervous system, and the patterns of distribution corresponded well to the underlying neural structures. Densitometric analysis of the receptors enabled us to compare the distribution of IGF-I receptors with that of IGF-II receptors as well as retrospectively with that of insulin receptors

  20. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Hosomi, Naohisa [Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa (Japan); Lei, Bai; Nakano, Daisuke [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu [Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Ma, Hong [Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Griendling, Kathy K. [Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA (United States); Nishiyama, Akira [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan)

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  1. The LDL Receptor-Related Protein 1: At the Crossroads of Lipoprotein Metabolism and Insulin Signaling

    Directory of Open Access Journals (Sweden)

    Dianaly T. Au

    2017-01-01

    Full Text Available The metabolic syndrome is an escalating worldwide public health concern. Defined by a combination of physiological, metabolic, and biochemical factors, the metabolic syndrome is used as a clinical guideline to identify individuals with a higher risk for type 2 diabetes and cardiovascular disease. Although risk factors for type 2 diabetes and cardiovascular disease have been known for decades, the molecular mechanisms involved in the pathophysiology of these diseases and their interrelationship remain unclear. The LDL receptor-related protein 1 (LRP1 is a large endocytic and signaling receptor that is widely expressed in several tissues. As a member of the LDL receptor family, LRP1 is involved in the clearance of chylomicron remnants from the circulation and has been demonstrated to be atheroprotective. Recently, studies have shown that LRP1 is involved in insulin receptor trafficking and regulation and glucose metabolism. This review summarizes the role of tissue-specific LRP1 in insulin signaling and its potential role as a link between lipoprotein and glucose metabolism in diabetes.

  2. Absence of down-regulation of the insulin receptor by insulin. A possible mechanism of insulin resistance in the rat.

    OpenAIRE

    Walker, A P; Flint, D J

    1983-01-01

    Insulin resistance occurs in rat adipocytes during pregnancy and lactation despite increased or normal insulin binding respectively; this suggests that a post-receptor defect exists. The possibility has been examined that, although insulin binding occurs normally, internalization of insulin or its receptor may be impaired in these states. Insulin produced a dose-dependent reduction in the number of insulin receptors on adipocytes from virgin rats maintained in culture medium, probably due to ...

  3. Expression of insulin receptor spliced variants and their functional correlates in muscle from patients with non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Hansen, Torben; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Due to alternative splicing of exon 11 of the receptor gene, the human insulin receptor exists in two forms, that have distinct tissue-specific expression and are functionally different. Needle biopsies obtained from vastus lateralis muscle from 20 patients with noninsulin-dependent diabetes...... kinase activity were examined in wheat germ agglutinin-purified insulin receptors isolated from muscle biopsies. Moreover, insulin-stimulated glucose disposal was studied by means of the euglycemic hyperinsulinemic clamp technique. No difference in the relative expression of spliced variants......, and tyrosine kinase activity toward the exogenous substrate poly(Glu-Tyr(4:1)). Furthermore, no significant relationship was demonstrated between the glucose disposal rate and the relative expression of insulin receptor splice variants. In conclusion, in skeletal muscle from both normal control subjects...

  4. Investigations on the insulin receptor of isolated fat cells

    International Nuclear Information System (INIS)

    Eichler, W.

    1980-01-01

    Fat cells, isolated from the epididymal adipose tissue of rats, were incubed with iodine 125 insulin after previous incubation with various antagonists. By varying the antagonist concentration, it was possible to determine the effect these substances have on the insulin receptor, i.e. the insulin similarity. By varying the preincubation time, toxicity of the test substances could be detected, which pretended repression effects; and by finally verying the incubation time the effects on the receptor via the membrane could be distinguished from direct receptor bindings of the antagonist. (orig./MG) [de

  5. Insulin receptor binding and protein kinase activity in muscles of trained rats

    International Nuclear Information System (INIS)

    Dohm, G.L.; Sinha, M.K.; Caro, J.F.

    1987-01-01

    Exercise has been shown to increase insulin sensitivity, and muscle is quantitatively the most important tissue of insulin action. Since the first step in insulin action is the binding to a membrane receptor, the authors postulated that exercise training would change insulin receptors in muscle and in this study they have investigated this hypothesis. Female rats initially weighing ∼ 100 g were trained by treadmill running for 2 h/day, 6 days/wk for 4 wk at 25 m/min (0 grade). Insulin receptors from vastus intermedius muscles were solubilized by homogenizing in a buffer containing 1% Triton X-100 and then partially purified by passing the soluble extract over a wheat germ agglutinin column. The 4 wk training regimen resulted in a 65% increase in citrate synthase activity in red vastus lateralis muscle, indicating an adaptation to exercise [ 125 I]. Insulin binding by the partially purified receptor preparations was approximately doubled in muscle of trained rats at all insulin concentrations, suggesting an increase in the number of receptors. Training did not alter insulin receptor structure as evidenced by electrophoretic mobility under reducing and nonreducing conditions. Basal insulin receptor protein kinase activity was higher in trained than untrained animals and this was likely due to the greater number of receptors. However, insulin stimulation of the protein kinase activity was depressed by training. These results demonstrate that endurance training does alter receptor number and function in muscle and these changes may be important in increasing insulin sensitivity after exercise training

  6. Insulin resistance in uremia: Insulin receptor kinase activity in liver and muscle from chronic uremic rats

    International Nuclear Information System (INIS)

    Cecchin, F.; Ittoop, O.; Sinha, M.K.; Caro, J.F.

    1988-01-01

    The authors have studied the structure and function of the partially purified insulin receptors from liver and skeletal muscle in a rat model of severe chronic uremia. 125 I-insulin binding was higher in the liver from uremic rats when compared with ad libitum- and pair-fed controls. Furthermore, the ability of insulin to stimulate the autophosphorylation of the β-subunit and insulin receptor kinase activity using Glu 80 , Tyr 20 as exogenous phosphoacceptor was increased in the liver of the uremic animals. The structural characteristics of the receptors, as determined by electrophoretic mobilities of affinity labeled α-subunit and the phosphorylated β-subunit, were normal in uremia. 125 I-insulin binding and insulin receptor kinase activity were similar in the skeletal muscle from uremic and pair- and ad libitum-fed animals. Thus the data are supportive of the hypothesis that in liver and muscle of chronic uremic rats, insulin resistance is due to a defect(s) distal to the insulin receptor kinase

  7. Characterization of a second ligand binding site of the insulin receptor

    International Nuclear Information System (INIS)

    Hao Caili; Whittaker, Linda; Whittaker, Jonathan

    2006-01-01

    Insulin binding to its receptor is characterized by high affinity, curvilinear Scatchard plots, and negative cooperativity. These properties may be the consequence of binding of insulin to two receptor binding sites. The N-terminal L1 domain and the C-terminus of the α subunit contain one binding site. To locate a second site, we examined the binding properties of chimeric receptors in which the L1 and L2 domains and the first Fibronectin Type III repeat of the insulin-like growth factor-I receptor were replaced by corresponding regions of the insulin receptor. Substitutions of the L2 domain and the first Fibronectin Type III repeat together with the L1 domain produced 80- and 300-fold increases in affinity for insulin. Fusion of these domains to human immunoglobulin Fc fragment produced a protein which bound insulin with a K d of 2.9 nM. These data strongly suggest that these domains contain an insulin binding site

  8. β1-adrenergic receptor stimulation by agonist Compound 49b restores insulin receptor signal transduction in vivo

    Science.gov (United States)

    Jiang, Youde; Zhang, Qiuhua; Ye, Eun-Ah

    2014-01-01

    Purpose Determine whether Compound 49b treatment ameliorates retinal changes due to the lack of β2-adrenergic receptor signaling. Methods Using retinas from 3-month-old β2-adrenergic receptor-deficient mice, we treated mice with our novel β1-/β2-adrenergic receptor agonist, Compound 49b, to assess the effects of adrenergic agonists acting only on β1-adrenergic receptors due to the absence of β2-adrenergic receptors. Western blotting or enzyme-linked immunosorbent assay (ELISA) analyses were performed for β1- and β2-adrenergic receptors, as well as key insulin resistance proteins, including TNF-α, SOCS3, IRS-1Ser307, and IRTyr960. Analyses were also performed on key anti- and proapoptotic proteins: Akt, Bcl-xL, Bax, and caspase 3. Electroretinogram analyses were conducted to assess functional changes, while histological assessment was conducted for changes in retinal thickness. Results A 2-month treatment of β2-adrenergic receptor-deficient mice with daily eye drops of 1 mM Compound 49b, a novel β1- and β2-adrenergic receptor agonist, reversed the changes in insulin resistance markers (TNF-α and SOCS3) observed in untreated β2-adrenergic receptor-deficient mice, and concomitantly increased morphological integrity (retinal thickness) and functional responses (electroretinogram amplitude). These results suggest that stimulating β1-adrenergic receptors on retinal endothelial cells or Müller cells can compensate for the loss of β2-adrenergic receptor signaling on Müller cells, restore insulin signal transduction, reduce retinal apoptosis, and enhance retinal function. Conclusions Since our previous studies with β1-adrenergic receptor knockout mice confirmed that the reverse also occurs (β2-adrenergic receptor stimulation can compensate for the loss of β1-adrenergic receptor activity), it appears that increased activity in either of these pathways alone is sufficient to block insulin resistance–based retinal cell apoptosis. PMID:24966659

  9. Relation between the insulin receptor number in cells, autophosphorylation and insulin-stimulated Ras.GTP formation

    NARCIS (Netherlands)

    Osterop, A.P.R.M.; Medema, R.H.; Bos, J.L.; Zon, G.C.M. van der; Moller, D.E.; Flier, J.S.; Möller, W.; Maassen, J.A.

    1992-01-01

    We showed previously that upon insulin stimulation of an insulin receptor overexpressing cell linme,o st of the p2lras warsa pidly converted into the GTP bound state (Burgering, B. M. T., Medema, R. H., Maassen, J. A., Van de Wetering, M. L., Van der Eb, A. J., McCormick, F., and Bos, J. L.

  10. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.

    Science.gov (United States)

    Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R

    1995-10-20

    Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.

  11. Cloning and characterisation of Schistosoma japonicum insulin receptors.

    Directory of Open Access Journals (Sweden)

    Hong You

    2010-03-01

    Full Text Available Schistosomes depend for growth and development on host hormonal signals, which may include the insulin signalling pathway. We cloned and assessed the function of two insulin receptors from Schistosoma japonicum in order to shed light on their role in schistosome biology.We isolated, from S. japonicum, insulin receptors 1 (SjIR-1 and 2 (SjIR-2 sharing close sequence identity to their S. mansoni homologues (SmIR-1 and SmIR-2. SjIR-1 is located on the tegument basal membrane and the internal epithelium of adult worms, whereas SjIR-2 is located in the parenchyma of males and the vitelline tissue of females. Phylogenetic analysis showed that SjIR-2 and SmIR-2 are close to Echinococcus multilocularis insulin receptor (EmIR, suggesting that SjIR-2, SmIR-2 and EmIR share similar roles in growth and development in the three taxa. Structure homology modelling recovered the conserved structure between the SjIRs and Homo sapiens IR (HIR implying a common predicted binding mechanism in the ligand domain and the same downstream signal transduction processing in the tyrosine kinase domain as in HIR. Two-hybrid analysis was used to confirm that the ligand domains of SjIR-1 and SjIR-2 contain the insulin binding site. Incubation of adult worms in vitro, both with a specific insulin receptor inhibitor and anti-SjIRs antibodies, resulted in a significant decrease in worm glucose levels, suggesting again the same function for SjIRs in regulating glucose uptake as described for mammalian cells.Adult worms of S. japonicum possess insulin receptors that can specifically bind to insulin, indicating that the parasite can utilize host insulin for development and growth by sharing the same pathway as mammalian cells in regulating glucose uptake. A complete understanding of the role of SjIRs in the biology of S. japonicum may result in their use as new targets for drug and vaccine development against schistosomiasis.

  12. Knockout of Vasohibin-1 Gene in Mice Results in Healthy Longevity with Reduced Expression of Insulin Receptor, Insulin Receptor Substrate 1, and Insulin Receptor Substrate 2 in Their White Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Eichi Takeda

    2017-01-01

    Full Text Available Vasohibin-1 (Vash1, originally isolated as an endothelium-derived angiogenesis inhibitor, has a characteristic of promoting stress tolerance in endothelial cells (ECs. We therefore speculated that the lack of the vash1 gene would result in a short lifespan. However, to our surprise, vash1−/− mice lived significantly longer with a milder senescence phenotype than wild-type (WT mice. We sought the cause of this healthy longevity and found that vash1−/− mice exhibited mild insulin resistance along with reduced expression of the insulin receptor (insr, insulin receptor substrate 1 (irs-1, and insulin receptor substrate 2 (irs-2 in their white adipose tissue (WAT but not in their liver or skeletal muscle. The expression of vash1 dominated in the WAT among those 3 organs. Importantly, vash1−/− mice did not develop diabetes even when fed a high-fat diet. These results indicate that the expression of vash1 was required for the normal insulin sensitivity of the WAT and that the target molecules for this activity were insr, irs1, and irs2. The lack of vash1 caused mild insulin resistance without the outbreak of overt diabetes and might contribute to healthy longevity.

  13. IGF-I, IGF-II, and Insulin Stimulate Different Gene Expression Responses through Binding to the IGF-I Receptor

    DEFF Research Database (Denmark)

    Versteyhe, Soetkin; Klaproth, Birgit; Borup, Rehannah

    2013-01-01

    Insulin and the insulin-like growth factors (IGF)-I and -II are closely related peptides important for regulation of metabolism, growth, differentiation, and development. The IGFs exert their main effects through the IGF-I receptor. Although the insulin receptor is the main physiological receptor...... for insulin, this peptide hormone can also bind at higher concentrations to the IGF-I receptor and exert effects through it. We used microarray gene expression profiling to investigate the gene expression regulated by IGF-I, IGF-II, and insulin after stimulation of the IGF-I receptor. Fibroblasts from mice......, knockout for IGF-II and the IGF-II/cation-independent mannose-6-phosphate receptor, and expressing functional IGF-I but no insulin receptors, were stimulated for 4 h with equipotent saturating concentrations of insulin, IGF-I, and IGF-II. Each ligand specifically regulated a group of transcripts...

  14. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    Energy Technology Data Exchange (ETDEWEB)

    Vikram, Ajit [Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab 160 062 (India); Jena, Gopabandhu, E-mail: gbjena@gmail.com [Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab 160 062 (India)

    2010-07-23

    Research highlights: {yields}Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. {yields}Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. {yields}Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. {yields}Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia ({approx}18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPAR{gamma}) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 {+-} 16.32 vs. 126.37 {+-} 27.07 mg/dl) and glucose intolerance ({approx}78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  15. Effect of hypothermia on the insulin-receptor interaction in skeletal muscle plasma membranes

    International Nuclear Information System (INIS)

    Torlinska T, Mackowiak P.; Nogowski L, Kozlik J.

    1996-01-01

    The aim of the study was to investigate the effect of hypothermia on (125-I)-insulin binding to rat skeletal muscle membranes and to determine whether the decrease in blood insulin concentration could be related to changes in the number or in the affinity of insulin receptor sites according to the down-regulation theory. Rat skeletal muscle membranes were prepared from control, normothermic rats (Tr = 35.6 ± 0.3 degree C) and hypothermic rats (Tr = 26.0 ± 0.5 deg C) and purified according to Havrankowa. In order to determine the kinetic parameters of the hormone-receptor interaction the data from the competition binding studies were analysed by the method of Scatchard using the LIGAND Pc.v.3.1. computer program of Munson and Rodbard. We have shown that under hypothermic conditions insulin receptors number is significantly increased in specific hindlimb skeletal muscles but the changes take place mainly in the low affinity receptors class. The phenomenon probably results from the lack of spare high affinity insulin receptors in skeletal muscle as shown recently by Camps et al. (author). 36 refs., 3 figs, 2 tabs

  16. Light regulation of the insulin receptor in the retina.

    Science.gov (United States)

    Rajala, Raju V S; Anderson, Robert E

    2003-10-01

    The peptide hormone insulin binds its cognate cell-surface receptors to activate a coordinated biochemical-signaling network and to induce intracellular events. The retina is an integral part of the central nervous system and is known to contain insulin receptors, although their function is unknown. This article, describes recent studies that link the photobleaching of rhodopsin to tyrosine phosphorylation of the insulin receptor and subsequent activation of phosphoinositide 3- kinase (PI3K). We recently found a light-dependent increase in tyrosine phosphorylation of the insulin receptor-beta-subunit (IR beta) and an increase in PI3K enzyme activity in isolated rod outer segments (ROS) and in anti-phosphotyrosine (PY) and anti-IR beta immunoprecipitates of retinal homogenates. The light effect, which was localized to photoreceptor neurons, is independent of insulin secretion. Our results suggest that light induces tyrosine phosphorylation of IR beta in outer-segment membranes, which leads to the binding of p85 through its N-terminal SH2 domain and the generation of PI-3,4,5-P3. We suggest that the physiological role of this process may be to provide neuroprotection of the retina against light damage by activating proteins that protect against stress-induced apoptosis. The studies linking PI3K activation through tyrosine phosphorylation of IR beta now provide physiological relevance for the presence of these receptors in the retina.

  17. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    International Nuclear Information System (INIS)

    Vikram, Ajit; Jena, Gopabandhu

    2010-01-01

    Research highlights: →Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. →Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. →Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. →Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia (∼18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPARγ) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 ± 16.32 vs. 126.37 ± 27.07 mg/dl) and glucose intolerance (∼78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  18. Evolution of the vertebrate insulin receptor substrate (Irs) gene family.

    Science.gov (United States)

    Al-Salam, Ahmad; Irwin, David M

    2017-06-23

    Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.

  19. Insulin Receptor Substrate 2 Is a Negative Regulator of Memory Formation

    Science.gov (United States)

    Irvine, Elaine E.; Drinkwater, Laura; Radwanska, Kasia; Al-Qassab, Hind; Smith, Mark A.; O'Brien, Melissa; Kielar, Catherine; Choudhury, Agharul I.; Krauss, Stefan; Cooper, Jonathan D.; Withers, Dominic J.; Giese, Karl Peter

    2011-01-01

    Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1 receptors to downstream signaling pathways. Here, we have…

  20. Severe hypoglycaemia in a person with insulin autoimmune syndrome accompanied by insulin receptor anomaly type B.

    Science.gov (United States)

    Kato, T; Itoh, M; Hanashita, J; Itoi, T; Matsumoto, T; Ono, Y; Imamura, S; Hayakawa, N; Suzuki, A; Mizutani, Y; Uchigata, Y; Oda, N

    2007-11-01

    A rare case of the insulin autoimmune syndrome (IAS) accompanied by insulin receptor anomaly is reported. Antibodies to insulin and insulin receptor were determined in the patient with severe hypoglycaemia before and after the treatment with prednisolone. Titers of antibody to insulin and insulin receptors were 73.0% and 41.5%, respectively. Drug-induced lymphocyte stimulation tests were all negative for the suspicious drugs. Her HLA-DR was DRB1*0403/04051. Following steroid therapy, the formation of antibodies was suppressed and alleviated her symptoms. Scatchard analysis yielded findings specific to polyclonal antibodies. The changes in autoantibodies resulted in alleviation of the hypoglycemic symptoms as a result of steroid therapy.

  1. Hyperinsulinemia is associated with increased soluble insulin receptors release from hepatocytes

    Directory of Open Access Journals (Sweden)

    Marcia eHiriart

    2014-06-01

    Full Text Available It has been generally assumed that insulin circulates freely in blood. However it can also interact with plasma proteins. Insulin receptors are located in the membrane of target cells and consist of an alpha and beta subunits with a tyrosine kinase cytoplasmic domain. The ectodomain, called soluble insulin receptor (SIR has been found elevated in patients with diabetes mellitus. We explored if insulin binds to SIRs in circulation under physiological conditions and hypothesize that this SIR may be released by hepatocytes in response to high insulin concentrations. The presence of SIR in rat and human plasmas and the culture medium of hepatocytes was explored using Western blot analysis. A purification protocol was performed to isolated SIR using affinity, gel filtration and ion exchange chromatographies. A modified reverse hemolytic plaque assay was used to measure SIR release from cultured hepatocytes. Incubation with 1 nmol l-1 insulin induces the release of the insulin receptor ectodomains from normal rat hepatocytes. This effect can be partially prevented by blocking protease activity. Furthermore, plasma levels of SIR were higher in a model of metabolic syndrome, where rats are hyperinsulinemic. We also found increased SIR levels in hyperinsulinemic humans. SIR may be an important regulator of the amount of free insulin in circulation. In hyperinsulinemia the amount of this soluble receptor increases, this could lead to higher amounts of insulin bound to this receptor, rather than free insulin, which is the biologically active form of the hormone. This observation could enlighten the mechanisms of insulin resistance.

  2. Consolidation of long-term memory by insulin in Lymnaea is not brought about by changing the number of insulin receptors.

    Science.gov (United States)

    Hatakeyama, Dai; Okuta, Akiko; Otsuka, Emi; Lukowiak, Ken; Ito, Etsuro

    2013-05-01

    The pond snail Lymnaea stagnalis learns taste aversion and consolidates it into long-term memory (LTM). This is referred to as conditioned taste aversion (CTA). The superfusion of molluscan insulin-related peptides (MIPs) over the isolated snail brain causes a long-term enhancement of synaptic input between the cerebral giant cell and the B1 buccal motor neuron. This enhancement is hypothesized to underlie CTA. The synaptic enhancement caused by the superfusion of MIPs can be blocked by the application of human insulin receptor antibody, which recognizes the extracellular domain of human insulin receptor and acts as an antagonist even for MIP receptors. An injection of the human insulin receptor antibody into the abdominal cavity of trained snails blocks the consolidation process leading to LTM, even though the snails acquire taste aversion. Here, we examined whether or not taste-aversion training changes the mRNA expression level of MIP receptor in the snail brain and found that it does not. This result, taken together with previous findings, suggest that the MIPs' effect on synaptic function in the snail brain is attributable to a change in the MIP concentration, and not to a change in the mRNA expression level of MIP receptor, which is thought to reflect the number of MIP receptors.

  3. Comparative effects of several simple carbohydrates on erythrocyte insulin receptors in obese subjects.

    Science.gov (United States)

    Rizkalla, S W; Baigts, F; Fumeron, F; Rabillon, B; Bayn, P; Ktorza, A; Spielmann, D; Apfelbaum, M

    1986-09-01

    The effects of simple carbohydrates on erythrocyte insulin receptors, plasma insulin and plasma glucose were studied during four hypocaloric, hyperproteic, diets. One diet contained no carbohydrate; the other three contained 36 g of either glucose, galactose or fructose. These diets were given for a 14-day period to groups of moderately obese subjects. The hypocaloric carbohydrate-free diet produced a decrease in plasma insulin and glucose concentrations concomitant with an increase in the number of insulin receptors. A similar increase in insulin receptor number was found when the diet was supplemented with glucose or galactose, but not with fructose. The presence of fructose in the diet prevented any increase in insulin receptor number.

  4. Identification and characterization of insulin receptors in basolateral membranes of dog intestinal mucosa

    International Nuclear Information System (INIS)

    Gingerich, R.L.; Gilbert, W.R.; Comens, P.G.; Gavin, J.R. III

    1987-01-01

    Little is known about hormonal regulation of substrate transport and metabolism in the mucosal lining of the small intestine. Because insulin regulates these functions in other tissues by binding to its receptor, we have investigated the presence of insulin receptors in canine small intestinal mucosa with basolateral membranes (BLM) and brush border membranes (BBM) prepared by sorbitol density centrifugation. A14-[ 125 I]iodoinsulin was used to study binding and structural characteristics of specific insulin receptors in BLM. Analysis of receptors in BLM identified binding sites with high affinity (Kd 88 pM) and low capacity (0.4 pmol/mg protein) as well as with low affinity (Kd 36 nM) and high capacity (4.7 pmol/mg protein). Binding was time, temperature, and pH dependent, and 125 I-labeled insulin dissociation was enhanced in the presence of unlabeled insulin. Cross-reactivity of these receptors to proinsulin, IGF-II, and IGF-I was 4, 1.8, and less than 1%, respectively. Covalent cross-linking of labeled insulin to BLM insulin receptors with disuccinimidyl suberate revealed a single 135,000-Mr band that was completely inhibited by unlabeled insulin. There was a 16-fold greater specific binding of insulin to BLM (39.0 +/- 2.4%) than to BBM (2.5 +/- 0.6%). These results demonstrate the presence of a highly specific receptor for insulin on the vascular, but not the luminal, surface of the small intestinal mucosa in dogs, and suggest that insulin may play an important role in the regulation of gastrointestinal physiology

  5. Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity.

    Science.gov (United States)

    Federici, M; Porzio, O; Lauro, D; Borboni, P; Giovannone, B; Zucaro, L; Hribal, M L; Sesti, G

    1998-08-01

    We reported that in noninsulin-dependent diabetes melitus (NIDDM) patients expression of insulin/insulin-like growth factor I (IGF-I) hybrid receptors is increased in insulin target tissues. Whether this is a defect associated with NIDDM or represents a generalized abnormality associated with insulin resistant states is still unsettled. To address this, we applied a microwell-based immunoassay to measure abundance of insulin receptors, type 1 IGF receptors, and hybrid receptors in muscle of eight normal and eight obese subjects. Maximal insulin binding to insulin receptors was lower in obese than in control subjects (B/T = 1.8 +/- 0.20 and 2.6 +/- 0.30; P < 0.03, respectively) and was negatively correlated with insulinemia (r = -0.60; P < 0.01). Maximal IGF-I binding to type 1 IGF receptors was higher in obese than in controls (B/T = 1.9 +/- 0.20 and 0.86 +/- 0.10; P < 0.0001, respectively) and was negatively correlated with plasma IGF-I levels (r = -0.69; P < 0.003). Hybrid receptor abundance was higher in obese than in normal subjects (B/T = 1.21 +/- 0.14 and 0.44 +/- 0.06; P < 0.0003, respectively) and was negatively correlated with insulin binding (r = -0.60; P < 0.01) and positively correlated with IGF-I binding (r = 0.92; P < 0.0001). Increased abundance of hybrids was correlated with insulinemia (r = 0.70; P < 0.002) and body mass index (r = 0.71; P < 0.0019), whereas it was negatively correlated with in vivo insulin sensitivity measured by ITT (r = -0.67; P < 0.016). These results indicate that downregulation of insulin receptors or upregulation of type 1 IGF receptors because of changes in plasma insulin and IGF-I levels may result in modifications in hybrid receptor abundance.

  6. Implications of compound heterozygous insulin receptor mutations in congenital muscle fibre type disproportion myopathy for the receptor kinase activation

    DEFF Research Database (Denmark)

    Klein, H H; Müller, R; Vestergaard, H

    1999-01-01

    We studied insulin receptor kinase activation in two brothers with congenital muscle fibre type disproportion myopathy and compound heterozygous mutations of the insulin receptor gene, their parents, and their unaffected brother. In the father who has a heterozygote Arg1174-->Gln mutation, in sit...

  7. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Almind, K; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Since relative or absolute insulin deficiency and insulin insensitivity are involved in the aetiology of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether patients with NIDDM exhibit genetic variability in the coding region of insulin receptor substrate-1 (IRS-1), a candidate...... with NIDDM and 3 of the controls were heterozygous at codon 972 for a polymorphism in which glycine was substituted with arginine. Moreover, at codon 513, 6 patients with NIDDM and 2 controls had a heterozygous polymorphism with a transition from alanine to proline. None of the polymorphism carriers had both...

  8. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.

    Science.gov (United States)

    Takayama, S; White, M F; Kahn, C R

    1988-03-05

    The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function

  9. Theoretical and Computational Studies of Peptides and Receptors of the Insulin Family

    Directory of Open Access Journals (Sweden)

    Harish Vashisth

    2015-02-01

    Full Text Available Synergistic interactions among peptides and receptors of the insulin family are required for glucose homeostasis, normal cellular growth and development, proliferation, differentiation and other metabolic processes. The peptides of the insulin family are disulfide-linked single or dual-chain proteins, while receptors are ligand-activated transmembrane glycoproteins of the receptor tyrosine kinase (RTK superfamily. Binding of ligands to the extracellular domains of receptors is known to initiate signaling via activation of intracellular kinase domains. While the structure of insulin has been known since 1969, recent decades have seen remarkable progress on the structural biology of apo and liganded receptor fragments. Here, we review how this useful structural information (on ligands and receptors has enabled large-scale atomically-resolved simulations to elucidate the conformational dynamics of these biomolecules. Particularly, applications of molecular dynamics (MD and Monte Carlo (MC simulation methods are discussed in various contexts, including studies of isolated ligands, apo-receptors, ligand/receptor complexes and intracellular kinase domains. The review concludes with a brief overview and future outlook for modeling and computational studies in this family of proteins.

  10. Structural Perspectives of Insulin Receptor Isoform-Selective Insulin Analogs

    Czech Academy of Sciences Publication Activity Database

    Jiráček, Jiří; Žáková, Lenka

    2017-01-01

    Roč. 8, Jul 27 (2017), č. článku 167. ISSN 1664-2392 R&D Projects: GA ČR GA15-19018S Institutional support: RVO:61388963 Keywords : insulin receptor * insulin binding * analog * diabetes * glucose Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.675, year: 2016 http://journal.frontiersin.org/article/10.3389/fendo.2017.00167/full

  11. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    DEFF Research Database (Denmark)

    Park, Kyoungmin; Mima, Akira; Li, Qian

    2016-01-01

    Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1...... induction of NO action, which increases endothelin receptor B (EDNRB) expression and intracellular [Ca(2+)]. Using the mice with knockin mutation of eNOS, which had Ser1176 mutated to alanine (AKI), deleting the only known mechanism for insulin to activate eNOS/NO pathway, we observed that IRS1...... overexpression in the endothelia of Aki/ApoE(-/-) mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway...

  12. Interaction between the p21ras GTPase activating protein and the insulin receptor

    NARCIS (Netherlands)

    Pronk, G.J.; Medema, R.H.; Burgering, B.M.T.; Clark, R.; McCormick, F.; Bos, J.L.

    1992-01-01

    We investigated the involvement of the p21ras-GTPase activating protein (GAP) in insulin-induced signal transduction. In cells overexpressing the insulin receptor, we did not observe association between GAP and the insulin receptor after insulin treatment nor the phosphorylation of GAP on tyrosine

  13. Coordinate phosphorylation of insulin-receptor kinase and its 175,000-Mr endogenous substrate in rat hepatocytes

    International Nuclear Information System (INIS)

    Okamoto, M.; Karasik, A.; White, M.F.; Kahn, C.R.

    1991-01-01

    To investigate the early events in insulin signal transmission in liver, isolated rat hepatocytes were labeled with 32 P, and proteins phosphorylated in response to insulin were detected by immunoprecipitation with anti-phosphotyrosine and anti-receptor antibodies and analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and autoradiography. In these cells, insulin rapidly stimulated tyrosine phosphorylation of the 95,000-Mr beta-subunit of the insulin receptor and a 175,000-Mr phosphoprotein (pp175). Both proteins were precipitated by anti-phosphotyrosine antibody, whereas only the insulin receptor was recognized with anti-insulin-receptor antibody. In the insulin-stimulated state, both pp175 and the receptor beta-subunit were found to be phosphorylated on tyrosine and serine residues. Based on precipitation by the two antibodies, receptor phosphorylation was biphasic with an initial increase in tyrosine phosphorylation followed by a more gradual increase in serine phosphorylation over the first 30 min of stimulation. The time course of phosphorylation of pp175 was rapid and paralleled that of the beta-subunit of the insulin receptor. The pp175 was clearly distinguished from the insulin receptor, because it was detected only when boiling SDS was used to extract cellular phosphoproteins, whereas the insulin receptor was extracted with either Triton X-100 or SDS. In addition, the tryptic peptide maps of the two proteins were distinct. The dose-response curve for insulin stimulation was shifted slightly to the left of the insulin receptor, suggesting some signal amplification at this step. These data suggest that pp175 is a major endogenous substrate of the insulin receptor in liver and may be a cytoskeletal-associated protein

  14. Insulin receptor membrane retention by a traceable chimeric mutant

    OpenAIRE

    Giudice, Jimena; Jares, Elizabeth Andrea; Coluccio Leskow, Federico

    2015-01-01

    Background: The insulin receptor (IR) regulates glucose homeostasis, cell growth and differentiation. It has been hypothesized that the specific signaling characteristics of IR are in part determined by ligand-receptor complexes localization. Downstream signaling could be triggered from the plasma membrane or from endosomes. Regulation of activated receptor's internalization has been proposed as the mechanism responsible for the differential isoform and ligand-specific signaling. Re...

  15. Reduced Insulin Receptor Expression Enhances Proximal Tubule Gluconeogenesis.

    Science.gov (United States)

    Pandey, Gaurav; Shankar, Kripa; Makhija, Ekta; Gaikwad, Anil; Ecelbarger, Carolyn; Mandhani, Anil; Srivastava, Aneesh; Tiwari, Swasti

    2017-02-01

    Reduced insulin receptor protein levels have been reported in the kidney cortex from diabetic humans and animals. We recently reported that, targeted deletion of insulin receptor (IR) from proximal tubules (PT) resulted in hyperglycemia in non-obese mice. To elucidate the mechanism, we examined human proximal tubule cells (hPTC) and C57BL/6 mice fed with high-fat diet (HFD, 60% fat for 20 weeks). Immunoblotting revealed a significantly lower protein level of IR in HFD compare to normal chow diet (NCD). Furthermore, a blunted rise in p-AKT 308 levels in the kidney cortex of HFD mice was observed in response to acute insulin (0.75 IU/kg body weight, i.p) relative to NCD n = 8/group, P gluconeogenesis. Transcript levels of the gluconeogenic enzyme PEPCK were significantly increased in cAMP/DEXA-stimulated hPTC cells (n = 3, P gluconeogenesis and PEPCK induction was significantly attenuated in IR (siRNA) silenced hPTC (n = 3, P gluconeogenesis. Thus reduced insulin signaling of the proximal tubule may contribute to hyperglycemia in the metabolic syndrome via elevated gluconeogenesis. J. Cell. Biochem. 118: 276-285, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells

    Directory of Open Access Journals (Sweden)

    Tobias Boothe

    2016-05-01

    Full Text Available Objective: The role and mechanisms of insulin receptor internalization remain incompletely understood. Previous trafficking studies of insulin receptors involved fluorescent protein tagging at their termini, manipulations that may be expected to result in dysfunctional receptors. Our objective was to determine the trafficking route and molecular mechanisms of functional tagged insulin receptors and endogenous insulin receptors in pancreatic beta-cells. Methods: We generated functional insulin receptors tagged with pH-resistant fluorescent proteins between domains. Confocal, TIRF and STED imaging revealed a trafficking pattern of inter-domain tagged insulin receptors and endogenous insulin receptors detected with antibodies. Results: Surprisingly, interdomain-tagged and endogenous insulin receptors in beta-cells bypassed classical Rab5a- or Rab7-mediated endocytic routes. Instead, we found that removal of insulin receptors from the plasma membrane involved tyrosine-phosphorylated caveolin-1, prior to trafficking within flotillin-1-positive structures to lysosomes. Multiple methods of inhibiting caveolin-1 significantly reduced Erk activation in vitro or in vivo, while leaving Akt signaling mostly intact. Conclusions: We conclude that phosphorylated caveolin-1 plays a role in insulin receptor internalization towards lysosomes through flotillin-1-positive structures and that caveolin-1 helps bias physiological beta-cell insulin signaling towards Erk activation. Author Video: Author Video Watch what authors say about their articles Keywords: Insulin receptor internalization, Insulin resistance, Pancreatic islet beta-cells, Autocrine insulin signaling

  17. Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity.

    Science.gov (United States)

    Eisenstein, Sarah A; Gredysa, Danuta M; Antenor-Dorsey, Jo Ann; Green, Leonard; Arbeláez, Ana Maria; Koller, Jonathan M; Black, Kevin J; Perlmutter, Joel S; Moerlein, Stephen M; Hershey, Tamara

    2015-01-01

    Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30) and non-obese (n = 20; body mass indexmonetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methyl)benperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting). Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting). In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding and metabolic factors, including β-cell function, interact to affect reward discounting in humans.

  18. Identification and characterization of insulin receptors on foetal-mouse brain-cortical cells.

    OpenAIRE

    Van Schravendijk, C F; Hooghe-Peters, E L; De Meyts, P; Pipeleers, D G

    1984-01-01

    The occurrence of insulin receptors was investigated in freshly dissociated brain-cortical cells from mouse embryos. By analogy with classical insulin-binding cell types, binding of 125I-insulin to foetal brain-cortical cells was time- and pH-dependent, only partially reversible, and competed for by unlabelled insulin and closely related peptides. Desalanine-desasparagine-insulin, pig proinsulin, hagfish insulin and turkey insulin were respectively 2%, 4%, 2% and 200% as potent as bovine insu...

  19. Unique expression pattern of the three insulin receptor family members in the rat mammary gland

    DEFF Research Database (Denmark)

    Hvid, Henning; Klopfleisch, Robert; Vienberg, Sara Gry

    2011-01-01

    mammary gland. Using laser micro-dissection, quantitative RT-PCR and immunohistochemistry, we examined the expression of IR (insulin receptor), IGF-1R (IGF-1 receptor), IRR (insulin receptor-related receptor), ERα (estrogen receptor alpha), ERβ (estrogen receptor beta) and PR (progesteron receptor......) in young, virgin, female Sprague-Dawley rats and compared to expression in reference organs. The mammary gland displayed the highest expression of IRR and IGF-1R. In contrast, low expression of IR transcripts was observed in the mammary gland tissue with expression of the IR-A isoform being 5-fold higher...... than the expression of the IR-B. By immunohistochemistry, expression of IR and IGF-1R was detected in all mammary gland epithelial cells. Expression of ERα and PR was comparable between mammary gland and ovary, whereas expression of ERβ was lower in mammary gland than in the ovary. Finally, expression...

  20. Localization of insulin receptor mRNA in rat brain by in situ hybridization

    International Nuclear Information System (INIS)

    Marks, J.L.; Porte, D. Jr.; Stahl, W.L.; Baskin, D.G.

    1990-01-01

    Insulin receptor mRNA was demonstrated in rat brain slices by in situ hybridization with three 35 S-oligonucleotide probes and contact film autoradiography. Specificity was confirmed by showing that (a) excess unlabeled probe abolished the signal, (b) an oligonucleotide probe for rat neuropeptide Y mRNA showed a different distribution of hybridization signal, and (c) the distribution of insulin receptor binding was consistent with the distribution of insulin receptor mRNA. Insulin receptor mRNA was most abundant in the granule cell layers of the olfactory bulb, cerebellum and dentate gyrus, in the pyramidal cell body layers of the pyriform cortex and hippocampus, in the choroid plexus and in the arcuate nucleus of the hypothalamus

  1. The A-chain of insulin contacts the insert domain of the insulin receptor. Photo-cross-linking and mutagenesis of a diabetes-related crevice.

    Science.gov (United States)

    Huang, Kun; Chan, Shu Jin; Hua, Qing-xin; Chu, Ying-Chi; Wang, Run-ying; Klaproth, Birgit; Jia, Wenhua; Whittaker, Jonathan; De Meyts, Pierre; Nakagawa, Satoe H; Steiner, Donald F; Katsoyannis, Panayotis G; Weiss, Michael A

    2007-11-30

    The contribution of the insulin A-chain to receptor binding is investigated by photo-cross-linking and nonstandard mutagenesis. Studies focus on the role of Val(A3), which projects within a crevice between the A- and B-chains. Engineered receptor alpha-subunits containing specific protease sites ("midi-receptors") are employed to map the site of photo-cross-linking by an analog containing a photoactivable A3 side chain (para-azido-Phe (Pap)). The probe cross-links to a C-terminal peptide (residues 703-719 of the receptor A isoform, KTFEDYLHNVVFVPRPS) containing side chains critical for hormone binding (underlined); the corresponding segment of the holoreceptor was shown previously to cross-link to a Pap(B25)-insulin analog. Because Pap is larger than Val and so may protrude beyond the A3-associated crevice, we investigated analogs containing A3 substitutions comparable in size to Val as follows: Thr, allo-Thr, and alpha-aminobutyric acid (Aba). Substitutions were introduced within an engineered monomer. Whereas previous studies of smaller substitutions (Gly(A3) and Ser(A3)) encountered nonlocal conformational perturbations, NMR structures of the present analogs are similar to wild-type insulin; the variant side chains are accommodated within a native-like crevice with minimal distortion. Receptor binding activities of Aba(A3) and allo-Thr(A3) analogs are reduced at least 10-fold; the activity of Thr(A3)-DKP-insulin is reduced 5-fold. The hormone-receptor interface is presumably destabilized either by a packing defect (Aba(A3)) or by altered polarity (allo-Thr(A3) and Thr(A3)). Our results provide evidence that Val(A3), a site of mutation causing diabetes mellitus, contacts the insert domain-derived tail of the alpha-subunit in a hormone-receptor complex.

  2. Insulin signaling inhibits the 5-HT2C receptor in choroid plexus via MAP kinase

    Directory of Open Access Journals (Sweden)

    Guan Kunliang

    2003-06-01

    Full Text Available Abstract Background G protein-coupled receptors (GPCRs interact with heterotrimeric GTP-binding proteins (G proteins to modulate acute changes in intracellular messenger levels and ion channel activity. In contrast, long-term changes in cellular growth, proliferation and differentiation are often mediated by tyrosine kinase receptors and certain GPCRs by activation of mitogen-activated protein (MAP kinases. Complex interactions occur between these signaling pathways, but the specific mechanisms of such regulatory events are not well-understood. In particular it is not clear whether GPCRs are modulated by tyrosine kinase receptor-MAP kinase pathways. Results Here we describe tyrosine kinase receptor regulation of a GPCR via MAP kinase. Insulin reduced the activity of the 5-HT2C receptor in choroid plexus cells which was blocked by the MAP kinase kinase (MEK inhibitor, PD 098059. We demonstrate that the inhibitory effect of insulin and insulin-like growth factor type 1 (IGF-1 on the 5-HT2C receptor is dependent on tyrosine kinase, RAS and MAP kinase. The effect may be receptor-specific: insulin had no effect on another GPCR that shares the same G protein signaling pathway as the 5-HT2C receptor. This effect is also direct: activated MAP kinase mimicked the effect of insulin, and removing a putative MAP kinase site from the 5-HT2C receptor abolished the effect of insulin. Conclusion These results show that insulin signaling can inhibit 5-HT2C receptor activity and suggest that MAP kinase may play a direct role in regulating the function of a specific GPCR.

  3. Designing peptide inhibitor of insulin receptor to induce diabetes mellitus type 2 in animal model Mus musculus.

    Science.gov (United States)

    Permatasari, Galuh W; Utomo, Didik H; Widodo

    2016-10-01

    A designing peptide as agent for inducing diabetes mellitus type 2 (T2DM) in an animal model is challenging. The computational approach provides a sophisticated tool to design a functional peptide that may block the insulin receptor activity. The peptide that able to inhibit the binding between insulin and insulin receptor is a warrant for inducing T2DM. Therefore, we designed a potential peptide inhibitor of insulin receptor as an agent to generate T2DM animal model by bioinformatics approach. The peptide has been developed based on the structure of insulin receptor binding site of insulin and then modified it to obtain the best properties of half life, hydrophobicity, antigenicity, and stability binding into insulin receptor. The results showed that the modified peptide has characteristics 100h half-life, high-affinity -95.1±20, and high stability 28.17 in complex with the insulin receptor. Moreover, the modified peptide has molecular weight 4420.8g/Mol and has no antigenic regions. Based on the molecular dynamic simulation, the complex of modified peptide-insulin receptor is more stable than the commercial insulin receptor blocker. This study suggested that the modified peptide has the promising performance to block the insulin receptor activity that potentially induce diabetes mellitus type 2 in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance

    Science.gov (United States)

    Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammat...

  5. The macrophage A2B adenosine receptor regulates tissue insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Hillary Johnston-Cox

    Full Text Available High fat diet (HFD-induced type 2 diabetes continues to be an epidemic with significant risk for various pathologies. Previously, we identified the A2b adenosine receptor (A2bAR, an established regulator of inflammation, as a regulator of HFD-induced insulin resistance. In particular, HFD was associated with vast upregulation of liver A2bAR in control mice, and while mice lacking this receptor showed augmented liver inflammation and tissue insulin resistance. As the A2bAR is expressed in different tissues, here, we provide the first lead to cellular mechanism by demonstrating that the receptor's influence on tissue insulin sensitivity is mediated via its expression in macrophages. This was shown using a newly generated transgenic mouse model expressing the A2bAR gene in the macrophage lineage on an otherwise A2bAR null background. Reinstatement of macrophage A2bAR expression in A2bAR null mice fed HFD restored insulin tolerance and tissue insulin signaling to the level of control mice. The molecular mechanism for this effect involves A2bAR-mediated changes in cyclic adenosine monophosphate in macrophages, reducing the expression and release of inflammatory cytokines, which downregulate insulin receptor-2. Thus, our results illustrate that macrophage A2bAR signaling is needed and sufficient for relaying the protective effect of the A2bAR against HFD-induced tissue inflammation and insulin resistance in mice.

  6. Monoclonal antibody to the type I insulin-like growth factor (IGF-I) receptor blocks IGF-I receptor-mediated DNA synthesis: clarification of the mitogenic mechanisms of IGF-I and insulin in human skin fibroblasts

    International Nuclear Information System (INIS)

    Flier, J.S.; Usher, P.; Moses, A.C.

    1986-01-01

    Insulin and insulin-like growth factor type I (IGF-I) stimulate an overlapping spectrum of biological responses in human skin fibroblasts. Although insulin and IGF-I are known to stimulate the incorporation of [ 3 H]thymidine into DNA in these cells, the identify of the receptor(s) that mediates this effect has not been fully clarified. The mouse anti-human IGF-I receptor antibody αIR-3 binds with specificity to IGF-I but not to insulin receptors in human placental membranes; it also specifically inhibits the binding of 125 I-labeled IGF-I but not 125 I-labeled insulin to suspensions of human skin fibroblasts in a dose-dependent manner. αIR-3 competitively inhibits IGF-I-mediated stimulation of [ 3 H]thymidine incorporation into DNA. This inhibition is dependent on the concentration of αIR-3 and in the presence of a fixed antibody concentration can be partially overcome by high concentrations of IGF-I. In contrast, at concentrations of 3 H]thymidine incorporation is not inhibited by αIR-3. However, the incremental effects of higher concentrations (> 1 μg/ml) of insulin on [ 3 H]thymidine incorporation are inhibited by αIR-3. αIR-3 is a highly specific antagonist of IGF-I receptor-mediated mitogenesis in human skin fibroblasts. By using this antibody, it is shown directly that insulin can act through the IGF-I receptor to stimulate DNA synthesis but can also activate this effect through the insulin receptor itself

  7. Founder effect in the Horn of Africa for an insulin receptor mutation that may impair receptor recycling

    DEFF Research Database (Denmark)

    Raffan, E; Soos, M A; Rocha, N

    2011-01-01

    Genetic insulin receptoropathies are a rare cause of severe insulin resistance. We identified the Ile119Met missense mutation in the insulin receptor INSR gene, previously reported in a Yemeni kindred, in four unrelated patients with Somali ancestry. We aimed to investigate a possible genetic...

  8. Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity.

    Directory of Open Access Journals (Sweden)

    Sarah A Eisenstein

    Full Text Available Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30 and non-obese (n = 20; body mass index<30 adults were assessed for percent body fat with dual-energy X-ray absorptiometry and for β-cell function using disposition index. Choice of larger, but delayed or less certain, monetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methylbenperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting. Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting. In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding

  9. Receptor-like protein-tyrosine phosphatase alpha specifically inhibits insulin-increased prolactin gene expression

    DEFF Research Database (Denmark)

    Jacob, K K; Sap, J; Stanley, F M

    1998-01-01

    A physiologically relevant response to insulin, stimulation of prolactin promoter activity in GH4 pituitary cells, was used as an assay to study the specificity of protein-tyrosine phosphatase function. Receptor-like protein-tyrosine phosphatase alpha (RPTPalpha) blocks the effect of insulin...... is specific by two criteria. A number of potential RPTPalpha targets were ruled out by finding (a) that they are not affected or (b) that they are not on the pathway to insulin-increased prolactin-CAT activity. The negative effect of RPTPalpha on insulin activation of the prolactin promoter is not due...... to reduced phosphorylation or kinase activity of the insulin receptor or to reduced phosphorylation of insulin receptor substrate-1 or Shc. Inhibitor studies suggest that insulin-increased prolactin gene expression is mediated by a Ras-like GTPase but is not mitogen-activated protein kinase dependent...

  10. The role of insulin receptor signaling in the brain.

    Science.gov (United States)

    Plum, Leona; Schubert, Markus; Brüning, Jens C

    2005-03-01

    The insulin receptor (IR) is expressed in various regions of the developing and adult brain, and its functions have become the focus of recent research. Insulin enters the central nervous system (CNS) through the blood-brain barrier by receptor-mediated transport to regulate food intake, sympathetic activity and peripheral insulin action through the inhibition of hepatic gluconeogenesis and reproductive endocrinology. On a molecular level, some of the effects of insulin converge with those of the leptin signaling machinery at the point of activation of phosphatidylinositol 3-kinase (PI3K), resulting in the regulation of ATP-dependent potassium channels. Furthermore, insulin inhibits neuronal apoptosis via activation of protein kinase B in vitro, and it regulates phosphorylation of tau, metabolism of the amyloid precursor protein and clearance of beta-amyloid from the brain in vivo. These findings indicate that neuronal IR signaling has a direct role in the link between energy homeostasis, reproduction and the development of neurodegenerative diseases.

  11. Receptor-isoform-selective insulin analogues give tissue-preferential effects

    DEFF Research Database (Denmark)

    Vienberg, Sara Gry; Bouman, Stephan D; Sørensen, Heidi

    2011-01-01

    The relative expression patterns of the two IR (insulin receptor) isoforms, +/- exon 11 (IR-B/IR-A respectively), are tissue-dependent. Therefore we have developed insulin analogues with different binding affinities for the two isoforms to test whether tissue-preferential biological effects can...... be attained. In rats and mice, IR-B is the most prominent isoform in the liver (> 95%) and fat (> 90%), whereas in muscles IR-A is the dominant isoform (> 95%). As a consequence, the insulin analogue INS-A, which has a higher relative affinity for human IR-A, had a higher relative potency [compared with HI...... (human insulin)] for glycogen synthesis in rat muscle strips (26%) than for glycogen accumulation in rat hepatocytes (5%) and for lipogenesis in rat adipocytes (4%). In contrast, the INS-B analogue, which has an increased affinity for human IR-B, had higher relative potencies (compared with HI...

  12. Dopamine D2 receptors in the pathophysiology of insulin resistance

    NARCIS (Netherlands)

    Leeuw van Weenen, Judith Elisabeth de

    2011-01-01

    Extensive literature links the dopamine receptor D2 to insulin resistance and diabetes mellitus type 2. However, many aspects of the functional relationship remain unclear. In this thesis we focused on unraveling the characteristics of the interplay between dopamine D2 receptors and glucose

  13. Intrahepatic detection of insulin receptor substrate 2 in chronic hepatitis c patients

    International Nuclear Information System (INIS)

    Ahmed, N.; Rashid, A.; Bashir, Q.; Majeed, A.

    2017-01-01

    To detect hepatic insulin receptor substrate 2 in chronic hepatitis C patients. Study Design: Comparative study. Place and Duration of Study: Center for research in experimental and applied medicine (CREAM), Department of Biochemistry and Molecular Biology, Army Medical College and Holy Family Hospital Rawalpindi, from Dec 2011 to Nov 2012. Diagnosed patients of chronic hepatitis C were included in the study. Known cases of diabetes mellitus, patients with pancreatic disease and liver pathology other than hepatitis C were excluded from the study. Material and Methods: Twenty seropositive non diabetic HCV infected patients and 10 control subjects were recruited. Liver biopsy specimen was obtained from seropositive HCV patients while blood samples were obtained from controls as biopsy sample was not possible from normal controls. Both types of speciens were studied for detection of insulin receptor substrate 2 (IRS-2). Results: No alteration in the content of insulin receptor substrate 2 in both seropositive patients and control samples were detected. Conclusion: Hepatitis C virus has no effect on insulin receptor substrate 2 content thus indicating absence of hepatic insulin resistance in patients with HCV infection. (author)

  14. Internalized insulin-receptor complexes are unidirectionally translocated to chloroquine-sensitive degradative sites. Dependence on metabolic energy

    International Nuclear Information System (INIS)

    Berhanu, P.

    1988-01-01

    Insulin receptors on the surface of isolated rat adipocytes were photoaffinity labeled at 12 degrees C with the iodinated photoreactive insulin analogue, 125I-B2 (2-nitro-4-azidophenylacetyl)-des-PheB1-insulin, and the pathways in the intracellular processing of the labeled receptors were studied at 37 degrees C. During 37 degrees C incubations, the labeled 440-kDa insulin receptors were continuously internalized (as assessed by trypsin inaccessibility) and degraded such that up to 50% of the initially labeled receptors were lost by 120 min. Metabolic poisons (0.125-0.75 mM 2,4-dinitrophenol (DNP) and 1-10 mM NaF), which led to dose-dependent depletion of adipocyte ATP pools, inhibited receptor loss, and caused up to 3-fold increase in intracellular receptor accumulation. This effect was due to inhibition of intracellular receptor degradation, and there was no apparent effect of the metabolic poisons on initial internalization of the receptors. Following maximal intracellular accumulation of labeled insulin receptors in the presence of NaF or DNP, removal of these agents resulted in a subsequent, time-dependent degradation of the accumulated receptors. However, when the lysosomotropic agent, chloroquine (0.2 mM), was added immediately following removal of the metabolic poisons, further degradation of the intracellularly accumulated receptors was prevented, suggesting that the chloroquine-sensitive degradation of insulin receptors occurs distal to the site of inhibition by NaF or DNP. To confirm this, maximal intracellular accumulation of labeled receptors was first allowed to occur in the presence of chloroquine and the cells were then washed and reincubated in chloroquine-free media in the absence or presence of NaF or DNP. Under these conditions, degradation of the intracellularly accumulated receptors continued to occur, and NaF or DNP failed to block the degradation

  15. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling

    Science.gov (United States)

    Wang, Linlin; Schulz, Thomas C.; Sherrer, Eric S.; Dauphin, Derek S.; Shin, Soojung; Nelson, Angelique M.; Ware, Carol B.; Zhan, Mei; Song, Chao-Zhong; Chen, Xiaoji; Brimble, Sandii N.; McLean, Amanda; Galeano, Maria J.; Uhl, Elizabeth W.; D'Amour, Kevin A.; Chesnut, Jonathan D.; Rao, Mahendra S.

    2007-01-01

    Despite progress in developing defined conditions for human embryonic stem cell (hESC) cultures, little is known about the cell-surface receptors that are activated under conditions supportive of hESC self-renewal. A simultaneous interrogation of 42 receptor tyrosine kinases (RTKs) in hESCs following stimulation with mouse embryonic fibroblast (MEF) conditioned medium (CM) revealed rapid and prominent tyrosine phosphorylation of insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R); less prominent tyrosine phosphorylation of epidermal growth factor receptor (EGFR) family members, including ERBB2 and ERBB3; and trace phosphorylation of fibroblast growth factor receptors. Intense IGF1R and IR phosphorylation occurred in the absence of MEF conditioning (NCM) and was attributable to high concentrations of insulin in the proprietary KnockOut Serum Replacer (KSR). Inhibition of IGF1R using a blocking antibody or lentivirus-delivered shRNA reduced hESC self-renewal and promoted differentiation, while disruption of ERBB2 signaling with the selective inhibitor AG825 severely inhibited hESC proliferation and promoted apoptosis. A simple defined medium containing an IGF1 analog, heregulin-1β (a ligand for ERBB2/ERBB3), fibroblast growth factor-2 (FGF2), and activin A supported long-term growth of multiple hESC lines. These studies identify previously unappreciated RTKs that support hESC proliferation and self-renewal, and provide a rationally designed medium for the growth and maintenance of pluripotent hESCs. PMID:17761519

  16. Insulin-like growth factor-II receptors in cultured rat hepatocytes: regulation by cell density

    International Nuclear Information System (INIS)

    Scott, C.D.; Baxter, R.C.

    1987-01-01

    Insulin-like growth factor-II (IGF-II) receptors in primary cultures of adult rat hepatocytes were characterized and their regulation by cell density examined. In hepatocytes cultured at 5 X 10(5) cells per 3.8 cm2 plate [ 125 I]IGF-II bound to specific, high affinity receptors (Ka = 4.4 +/- 0.5 X 10(9) l/mol). Less than 1% cross-reactivity by IGF-I and no cross-reactivity by insulin were observed. IGF-II binding increased when cells were permeabilized with 0.01% digitonin, suggesting the presence of an intracellular receptor pool. Determined by Scatchard analysis and by polyacrylamide gel electrophoresis after affinity labeling, the higher binding was due solely to an increase in binding sites present on 220 kDa type II IGF receptors. In hepatocytes cultured at low densities, the number of cell surface receptors increased markedly, from 10-20,000 receptors per cell at a culture density of 6 X 10(5) cells/well to 70-80,000 receptors per cell at 0.38 X 10(5) cells/well. The increase was not due simply to the exposure of receptors from the intracellular pool, as a density-related increase in receptors was also seen in cells permeabilized with digitonin. There was no evidence that IGF binding proteins, either secreted by hepatocytes or present in fetal calf serum, had any effect on the measurement of receptor concentration or affinity. We conclude that rat hepatocytes in primary culture contain specific IGF-II receptors and that both cell surface and intracellular receptors are regulated by cell density

  17. Insulin-like growth factor-II (IGF II) receptor from rat brain is of lower apparent molecular weight than the IGF II receptor from rat liver

    International Nuclear Information System (INIS)

    McElduff, A.; Poronnik, P.; Baxter, R.C.

    1987-01-01

    The binding subunits of the insulin and insulin-like growth factor-I (IGF I) receptors from rat brain are of lower molecular weight than the corresponding receptor in rat liver, possibly due to variations in sialic acid content. We have compared the IGF II receptor from rat brain and rat liver. The brain receptor is of smaller apparent mol wt (about 10 K) on sodium dodecyl sulfate polyacrylamide gel electrophoresis. This size difference is independent of ligand binding as it persists in iodinated and specifically immunoprecipitated receptors. From studies of wheat germ agglutinin binding and the effect of neuraminidase on receptor mobility, we conclude that this difference is not simply due to variations in sialic acid content. Treatment with endoglycosidase F results in reduction in the molecular size of both liver and brain receptors and after this treatment the aglycoreceptors are of similar size. We conclude that in rat brain tissue the IGF II receptor like the binding subunits of the insulin and IGF I receptors is of lower molecular size than the corresponding receptors in rat liver. This difference is due to differences in N-linked glycosylation

  18. High-level expression of human insulin receptor cDNA in mouse NIH 3T3 cells

    International Nuclear Information System (INIS)

    Whittaker, J.; Okamoto, A.K.; Thys, R.; Bell, G.I.; Steiner, D.F.; Hofmann, C.A.

    1987-01-01

    In order to develop a simple, efficient system for the high-level expression of human insulin receptors in eukaryotic cells, a full-length human kidney insulin receptor cDNA was inserted into a bovine papilloma virus vector under the control of the mouse metallothionein promoter. After transfection of mouse NIH 3T3 cells with this construct, seven cell lines expressing insulin receptors were isolated; two cell lines had more than 10 6 receptors per cell. The cell line with the highest 125 I-insulin binding (NIH 3T3 HIR3.5) had 6 x 10 6 receptors with a K/sub d/ of 10 -9 M. This level was not dependent on exposure to metals but could be increased further to 2 x 10 7 receptors per cell by addition of sodium butyrate to the culture medium. The α and β subunits had apparent molecular weights of 147,000 and 105,000, respectively (compared to 135,000 and 95,000 in IM-9 human lymphocytes), values identical to those of the α and β subunits of the insulin receptors of nontransformed NIH 3T3 cells. This size difference was due to altered carbohydrate composition, as N-glycanase digestion reduced the apparent receptor subunit size of the transfected cells and IM-9 lymphocytes to identical values. The alteration in N-linked oligosaccharide composition could not be ascribed to differences in the kinetics of posttranslational processing of the insulin receptors, which was comparable to that of other cells studied. The basal rate of glycogen synthesis in the cells overexpressing insulin receptors was increased 4- to 5-fold compared with controls. Low levels of added insulin (0.1 nM) caused a 50% increase in the rate of glycogen synthesis

  19. Effect of Scoparia dulcis extract on insulin receptors in streptozotocin induced diabetic rats: studies on insulin binding to erythrocytes.

    Science.gov (United States)

    Pari, Leelavinothan; Latha, Muniappan; Rao, Chippada Appa

    2004-01-01

    We investigated the insulin-receptor-binding effect of Scoparia dulcis plant extract in streptozotocin (STZ)-induced male Wistar rats, using circulating erythrocytes (ER) as a model system. An aqueous extract of S dulcis plant (SPEt) (200 mg/kg body weight) was administered orally. We measured blood levels of glucose and plasma insulin and the binding of insulin to cell-membrane ER receptors. Glibenclamide was used as standard reference drug. The mean specific binding of insulin to ER was significantly lower in diabetic control rats (DC) (55.0 +/- 2.8%) than in SPEt-treated (70.0 +/- 3.5%)- and glibenclamide-treated (65.0 +/- 3.3%) diabetic rats, resulting in a significant decrease in plasma insulin. Scatchard plot analysis demonstrated that the decrease in insulin binding was accounted for by a lower number of insulin receptor sites per cell in DC rats when compared with SPEt- and glibenclamide-treated rats. High-affinity (Kd1), low-affinity (Kd2), and kinetic analysis revealed an increase in the average receptor affinity in ER from SPEt and glibenclamide treated diabetic rats having 2.5 +/- 0.15 x 10(10) M(-1) (Kd1); 17.0 +/- 1.0 x 10(-8) M(-1) (Kd2), and 2.0 +/- 0.1 x 10(-10) M(-1) (Kd1); 12.3 +/- 0.9 x 10(-8) M(-1) (Kd2) compared with 1.0 +/- 0.08 x 10(-10) M(-1) (Kd1); 2.7 +/- 0.25 x 10(-8) M(-1) (Kd2) in DC rats. The results suggest an acute alteration in the number of insulin receptors on ER membranes in STZ-induced diabetic rats. Treatment with SPEt and glibenclamide significantly improved specific insulin binding, with receptor number and affinity binding (p < 0.001) reaching almost normal non-diabetic levels. The data presented here show that SPEt and glibenclamide increase total ER membrane insulin binding sites with a concomitant significant increase in plasma insulin.

  20. Rapid internalization of the insulin receptor in rat hepatoma cells

    International Nuclear Information System (INIS)

    Backer, J.M.; White, M.F.; Kahn, C.R.

    1987-01-01

    The authors have studied the internalization of the insulin receptor (IR) in rat hepatoma cells (Fao). The cells were surface-iodinated at 4 0 C, stimulated with insulin at 37 0 C, and then cooled rapidly, trypsinized at 4 0 C and solubilized. The IR was immunoprecipitated with a specific antibody, and internalization of the IR was assessed by the appearance of trypsin-resistant bands on SDS-PAGE. Insulin induced the internalization of surface receptors with a t 1/2 of 9-10 mins; cells not exposed to insulin internalized less than 20% of the IR during 1 h at 37 0 C. Further experiments demonstrated that the accumulation of trypsin-resistant IR paralleled a loss of receptor from the cell surface. Insulin-stimulated cells were chilled and iodinated at 4 0 C, followed by solubilization, immunoprecipitation and SDS-PAGE; alternatively, insulin-stimulated cells were chilled, surface-bound ligand removed by washing the cells at pH 4.2, and specific [ 125 I]insulin binding measured at 4 0 C. Both techniques confirmed the disappearance of IR from the cell surface at rates comparable to the insulin-stimulated internalization described above. The total amount of phosphotyrosine-containing IR, as assessed by immunoprecipitation with an anti-phosphotyrosine antibody, remained constant during this time interval, suggesting that active kinase is translocated into the cell. In summary, the authors data indicate that insulin binding increases the rate of IR internalization of Fao cells. This relocation may facilitate the interaction of the activated tyrosine kinase in the IR with intracellular substrates, thus transmitting the insulin signal to metabolic pathways

  1. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state

    Science.gov (United States)

    Cabail, M. Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E.; Hubbard, Stevan R.; Miller, W. Todd

    2015-03-01

    The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.

  2. Assembly of high-affinity insulin receptor agonists and antagonists from peptide building blocks

    Science.gov (United States)

    Schäffer, Lauge; Brissette, Renee E.; Spetzler, Jane C.; Pillutla, Renuka C.; Østergaard, Søren; Lennick, Michael; Brandt, Jakob; Fletcher, Paul W.; Danielsen, Gillian M.; Hsiao, Ku-Chuan; Andersen, Asser S.; Dedova, Olga; Ribel, Ulla; Hoeg-Jensen, Thomas; Hansen, Per Hertz; Blume, Arthur J.; Markussen, Jan; Goldstein, Neil I.

    2003-01-01

    Insulin is thought to elicit its effects by crosslinking the two extracellular α-subunits of its receptor, thereby inducing a conformational change in the receptor, which activates the intracellular tyrosine kinase signaling cascade. Previously we identified a series of peptides binding to two discrete hotspots on the insulin receptor. Here we show that covalent linkage of such peptides into homodimers or heterodimers results in insulin agonists or antagonists, depending on how the peptides are linked. An optimized agonist has been shown, both in vitro and in vivo, to have a potency close to that of insulin itself. The ability to construct such peptide derivatives may offer a path for developing agonists or antagonists for treatment of a wide variety of diseases. PMID:12684539

  3. Differential Role of Insulin/IGF-1 Receptor Signaling in Muscle Growth and Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Brian T. O’Neill

    2015-05-01

    Full Text Available Insulin and insulin-like growth factor 1 (IGF-1 are major regulators of muscle protein and glucose homeostasis. To determine how these pathways interact, we generated mice with muscle-specific knockout of IGF-1 receptor (IGF1R and insulin receptor (IR. These MIGIRKO mice showed >60% decrease in muscle mass. Despite a complete lack of insulin/IGF-1 signaling in muscle, MIGIRKO mice displayed normal glucose and insulin tolerance. Indeed, MIGIRKO mice showed fasting hypoglycemia and increased basal glucose uptake. This was secondary to decreased TBC1D1 resulting in increased Glut4 and Glut1 membrane localization. Interestingly, overexpression of a dominant-negative IGF1R in muscle induced glucose intolerance in MIGIRKO animals. Thus, loss of insulin/IGF-1 signaling impairs muscle growth, but not whole-body glucose tolerance due to increased membrane localization of glucose transporters. Nonetheless, presence of a dominant-negative receptor, even in the absence of functional IR/IGF1R, induces glucose intolerance, indicating that interactions between these receptors and other proteins in muscle can impair glucose homeostasis.

  4. Therapeutic actions of an insulin receptor activator and a novel peroxisome proliferator-activated receptor gamma agonist in the spontaneously hypertensive obese rat model of metabolic syndrome X.

    Science.gov (United States)

    Velliquette, Rodney A; Friedman, Jacob E; Shao, J; Zhang, Bei B; Ernsberger, Paul

    2005-07-01

    Insulin resistance clusters with hyperlipidemia, impaired glucose tolerance, and hypertension as metabolic syndrome X. We tested a low molecular weight insulin receptor activator, demethylasterriquinone B-1 (DMAQ-B1), and a novel indole peroxisome proliferator-activated receptor gamma agonist, 2-(2-(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid (PPEIA), in spontaneously hypertensive obese rats (SHROB), a genetic model of syndrome X. Agents were given orally for 19 days. SHROB showed fasting normoglycemia but impaired glucose tolerance after an oral load, as shown by increased glucose area under the curve (AUC) [20,700 mg x min/ml versus 8100 in lean spontaneously hypertensive rats (SHR)]. Insulin resistance was indicated by 20-fold excess fasting insulin and increased insulin AUC (6300 ng x min/ml versus 990 in SHR). DMAQ-B1 did not affect glucose tolerance (glucose AUC = 21,300) but reduced fasting insulin 2-fold and insulin AUC (insulin AUC = 4300). PPEIA normalized glucose tolerance (glucose AUC = 9100) and reduced insulin AUC (to 3180) without affecting fasting insulin. PPEIA also increased food intake, fat mass, and body weight gain (81 +/- 12 versus 45 +/- 8 g in untreated controls), whereas DMAQ-B1 had no effect on body weight but reduced subscapular fat mass. PPEIA but not DMAQ-B1 reduced blood pressure. In skeletal muscle, insulin-stimulated phosphorylation of the insulin receptor and insulin receptor substrate protein 1-associated phosphatidylinositol 3-kinase activity were decreased by 40 to 55% in SHROB relative to lean SHR. PPEIA, but not DMAQ-B1, enhanced both insulin actions. SHROB also showed severe hypertriglyceridemia (355 +/- 42 mg/dl versus 65 +/- 3 in SHR) attenuated by both agents (DMAQ-B1, 228 +/- 18; PPEIA, 79 +/- 3). Both these novel antidiabetic agents attenuate insulin resistance and hypertriglyceridemia associated with metabolic syndrome but via distinct mechanisms.

  5. How insulin engages its primary binding site on the insulin receptor

    Czech Academy of Sciences Publication Activity Database

    Menting, J. G.; Whittaker, J.; Margetts, M. B.; Whittaker, L. J.; Kong, G. K. W.; Smith, B. J.; Watson, C. J.; Žáková, Lenka; Kletvíková, Emília; Jiráček, Jiří; Chan, S. J.; Steiner, D. F.; Dodson, G. G.; Brzozowski, A. M.; Weiss, M. A.; Ward, C. W.; Lawrence, M. C.

    2013-01-01

    Roč. 493, č. 7431 (2013), s. 241-245 ISSN 0028-0836 R&D Projects: GA ČR GPP207/11/P430 Institutional support: RVO:61388963 Keywords : insulin * receptor * complex * crystal structure Subject RIV: CE - Biochemistry Impact factor: 42.351, year: 2013

  6. Expression, receptor binding, and biophysical characterization of guinea pig insulin desB30

    DEFF Research Database (Denmark)

    Engholm, Ebbe; Hansen, Thomas Hesselhøj; Johansson, Eva

    2015-01-01

    Here we report, for the first time, the heterologous expression of desB30 guinea pig insulin (GI desB30) in the yeast Saccharomyces cerevisiae. The affinities of GI desB30 for the insulin receptor A and the IGF-I receptor were also quantified for the first time. Small-angle X-ray scattering...

  7. Direct demonstration of rapid insulin-like growth factor II receptor internalization and recycling in rat adipocytes. Insulin stimulates 125I-insulin-like growth factor II degradation by modulating the IGF-II receptor recycling process

    International Nuclear Information System (INIS)

    Oka, Y.; Rozek, L.M.; Czech, M.P.

    1985-01-01

    The photoactive insulin-like growth factor (IGF)-II analogue 4-azidobenzoyl- 125 I-IGF-II was synthesized and used to label specifically and covalently the Mr = 250,000 Type II IGF receptor. When rat adipocytes are irradiated after a 10-min incubation with 4-azidobenzoyl- 125 I-IGF-II at 10 degrees C and immediately homogenized, most of the labeled IGF-II receptors are associated with the plasma membrane fraction, indicating that receptors accessible to the labeling reagent at low temperature are on the cell surface. However, when the photolabeled cells are incubated at 37 degrees C for various times before homogenization, labeled IGF-II receptors are rapidly internalized with a half-time of 3.5 min as evidenced by a loss from the plasma membrane fraction and a concomitant appearance in the low density microsome fraction. The steady state level of cell surface IGF-II receptors in the presence or absence of IGF-II remains constant under these conditions, demonstrating that IGF-II receptors rapidly recycle back to the cell surface at the same rate as receptor internalization. Using the above methodology, it is shown that acute insulin action: 1) increases the steady state number of cell surface IGF-II receptors; 2) increases the number of ligand-bound IGF-II receptors that are internalized per unit of time; and 3) increases the rate of cellular 125 I-IGF-II degradation by a process that is blocked by anti-IGF-II receptor antibody

  8. Functional labeling of insulin receptor subunits in live cells. Alpha 2 beta 2 species is the major autophosphorylated form

    International Nuclear Information System (INIS)

    Le Marchand-Brustel, Y.; Ballotti, R.; Gremeaux, T.; Tanti, J.F.; Brandenburg, D.; Van Obberghen, E.

    1989-01-01

    Both receptor subunits were functionally labeled in order to provide methods allowing, in live cells and in broken cell systems, concomitant evaluation of the insulin receptor dual function, hormone binding, and kinase activity. In cell-free systems, insulin receptors were labeled on their alpha-subunit with 125I-photoreactive insulin, and on their beta-subunit by autophosphorylation. Thereafter, phosphorylated receptors were separated from the complete set of receptors by means of anti-phosphotyrosine antibodies. Using this approach, a subpopulation of receptors was found which had bound insulin, but which were not phosphorylated. Under nonreducing conditions, receptors appeared in three oligomeric species identified as alpha 2 beta 2, alpha 2 beta, and alpha 2. Mainly the alpha 2 beta 2 receptor species was found to be phosphorylated while insulin was bound to alpha 2 beta 2, alpha 2 beta, and alpha 2 forms. In live cells, biosynthetic labeling of insulin receptors was used. Receptors were first labeled with [35S]methionine. Subsequently, the addition of insulin led to receptor autophosphorylation by virtue of the endogenous ATP pool. The total amount of [35S]methionine-labeled receptors was precipitated with antireceptor antibodies, whereas with anti-phosphotyrosine antibodies, only the phosphorylated receptors were isolated. Using this approach we made the two following key findings: (1) Both receptor species, alpha 2 beta 2 and alpha 2 beta, are present in live cells and in comparable amounts. This indicates that the alpha 2 beta form is not a degradation product of the alpha 2 beta 2 form artificially generated during receptor preparation. (2) The alpha 2 beta 2 species is the prevalently autophosphorylated form

  9. Combining GLP-1 receptor agonists with insulin

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Vilsbøll, T

    2013-01-01

    Due to the increasing prevalence of type 2 diabetes mellitus (T2DM), the emergent trend towards diagnosis in younger patients and the progressive nature of this disease, many more patients than before now require insulin to maintain glycaemic control. However, there is a degree of inertia among...... physicians and patients regarding the initiation and intensification of insulin therapy, in part due to concerns about the associated weight gain and increased risk of hypoglycaemia. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) increase insulin release and suppress glucagon secretion in a glucose......, compared with insulin, the antihyperglycaemic efficacy of GLP-1RAs is limited. The combination of a GLP-1RA and insulin might thus be highly effective for optimal glucose control, ameliorating the adverse effects typically associated with insulin. Data from clinical studies support the therapeutic...

  10. Differential Effects of Camel Milk on Insulin Receptor Signaling – Towards Understanding the Insulin-like Properties of Camel Milk

    Directory of Open Access Journals (Sweden)

    Abdulrasheed O Abdulrahman

    2016-01-01

    Full Text Available Previous studies on the Arabian camel (Camelus dromedarius showed beneficial effects of its milk reported in diverse models of human diseases including a substantial hypoglycemic activity. However, the cellular and molecular mechanisms involved in such effects remain completely unknown. In this study, we hypothesized that camel milk may act at the level of human insulin receptor (hIR and its related intracellular signaling pathways. Therefore, we examined the effect of camel milk on the activation of hIR transiently expressed in human embryonic kidney 293 (HEK293 cells using bioluminescence resonance energy transfer (BRET technology. BRET was used to assess, in live cells and real-time, the physical interaction between hIR and insulin receptor signaling proteins (IRS1 and the growth factor receptor-bound protein 2 (Grb2. Our data showed that camel milk did not promote any increase in the BRET signal between hIR and IRS1 or Grb2 in the absence of insulin stimulation. However, it significantly potentiated the maximal insulin-promoted BRET signal between hIR and Grb2 but not IRS1. Interestingly, camel milk appears to differentially impact the downstream signaling since it significantly activated ERK1/2 and potentiated the insulin-induced ERK1/2 but not Akt activation. These observations are to some extent consistent with the BRET data since ERK1/2 and Akt activation are known to reflect the engagement of Grb2 and IRS1 pathways, respectively. The preliminary fractionation of camel milk suggests the peptide/protein nature of the active component in camel milk. Together, our study demonstrates for the first time an allosteric effect of camel milk on insulin receptor conformation and activation with differential effects on its intracellular signaling. These findings should help to shed more light on the hypoglycemic activity of camel milk with potential therapeutic applications.

  11. The Biased G-Protein-Coupled Receptor Agonism Bridges the Gap between the Insulin Receptor and the Metabolic Syndrome

    Science.gov (United States)

    Liauchonak, Iryna; Dawoud, Fady; Riat, Yatin; Sambi, Manpreet; Jain, Justin; Kalaydina, Regina-Veronicka; Mendonza, Nicole; Bajwa, Komal

    2018-01-01

    Insulin signaling, as mediated through the insulin receptor (IR), plays a critical role in metabolism. Aberrations in this signaling cascade lead to several pathologies, the majority of which are classified under the umbrella term “metabolic syndrome”. Although many of these pathologies are associated with insulin resistance, the exact mechanisms are not well understood. One area of current interest is the possibility of G-protein-coupled receptors (GPCRs) influencing or regulating IR signaling. This concept is particularly significant, because GPCRs have been shown to participate in cross-talk with the IR. More importantly, GPCR signaling has also been shown to preferentially regulate specific downstream signaling targets through GPCR agonist bias. A novel study recently demonstrated that this GPCR-biased agonism influences the activity of the IR without the presence of insulin. Although GPCR-IR cross-talk has previously been established, the notion that GPCRs can regulate the activation of the IR is particularly significant in relation to metabolic syndrome and other pathologies that develop as a result of alterations in IR signaling. As such, we aim to provide an overview of the physiological and pathophysiological roles of the IR within metabolic syndrome and its related pathologies, including cardiovascular health, gut microflora composition, gastrointestinal tract functioning, polycystic ovarian syndrome, pancreatic cancer, and neurodegenerative disorders. Furthermore, we propose that the GPCR-biased agonism may perhaps mediate some of the downstream signaling effects that further exacerbate these diseases for which the mechanisms are currently not well understood. PMID:29462993

  12. Association of the insulin-receptor variant Met-985 with hyperglycemia and non-insulin-dependent diabetes mellitus in the Netherlands : A population-based study

    NARCIS (Netherlands)

    tHart, LM; Stolk, RP; Heine, RJ; Grobbee, DE; vanderDoes, FEE; Maassen, JA

    1996-01-01

    One of the characteristics of non-insulin-dependent diabetes mellitus (NIDDM) is the presence of insulin resistance. Most NIDDM patients have a normal sequence of the insulin receptor, indicating that, if insulin-receptor mutations contribute to the development of NIDDM, they will be present only in

  13. Association of the insulin-receptor variant Met-985 with hyperglycemia and non-insulin-dependent diabetes mellitus in the Netherlands : A population-based study

    NARCIS (Netherlands)

    tHart, LM; Stolk, RP; Heine, RJ; Grobbee, DE; vanderDoes, FEE; Maassen, JA

    One of the characteristics of non-insulin-dependent diabetes mellitus (NIDDM) is the presence of insulin resistance. Most NIDDM patients have a normal sequence of the insulin receptor, indicating that, if insulin-receptor mutations contribute to the development of NIDDM, they will be present only in

  14. Elevation of serum insulin concentration during euglycemic hyperinsulinemic clamp studies leads to similar activation of insulin receptor kinase in skeletal muscle of subjects with and without NIDDM

    DEFF Research Database (Denmark)

    Klein, H H; Vestergaard, H; Kotzke, G

    1995-01-01

    The role of skeletal muscle insulin receptor kinase in the pathogenesis of non-insulin-dependent diabetes mellitus (NIDDM) was investigated. Muscle biopsies from 13 patients with NIDDM and 10 control subjects at fasting serum insulin concentrations and approximately 1,000 pmol/l steady-state serum...... insulin during euglycemic hyperinsulinemic clamps were immediately frozen. The biopsies were then solubilized, and the receptors were immobilized to anti-insulin receptor antibody-coated microwells. Receptor kinase and binding activities were consecutively measured in these wells. The increase in serum...... and control groups, respectively). Moreover, by selecting only the receptors that bound to anti-phosphotyrosine antibody, we found similar hyperinsulinemia-induced increases of this receptor fraction and its kinase activity in both study groups. In vitro activation of the immobilized receptors with 2 mmol...

  15. Autophagy downregulation contributes to insulin resistance mediated injury in insulin receptor knockout podocytes in vitro

    Directory of Open Access Journals (Sweden)

    Ying Xu

    2016-04-01

    Full Text Available It is unknown whether autophagy activity is altered in insulin resistant podocytes and whether autophagy could be a therapeutic target for diabetic nephropathy (DN. Here we used shRNA transfection to knockdown the insulin receptor (IR gene in cultured human immortalized podocytes as an in vitro insulin resistant model. Autophagy related proteins LC3, Beclin, and p62 as well as nephrin, a podocyte injury marker, were assessed using western blot and immunofluorescence staining. Our results show that autophagy is suppressed when podocytes lose insulin sensitivity and that treatment of rapamycin, an mTOR specific inhibitor, could attenuate insulin resistance induced podocytes injury via autophagy activation. The present study deepens our understanding of the role of autophagy in the pathogenesis of DN.

  16. Insulin and insulin-like growth factor receptors in the brain: physiological and pathological aspects.

    Science.gov (United States)

    Werner, Haim; LeRoith, Derek

    2014-12-01

    The involvement of insulin, the insulin-like growth factors (IGF1, IGF2) and their receptors in central nervous system development and function has been the focus of scientific interest for more than 30 years. The insulin-like peptides, both locally-produced proteins as well as those transported from the circulation into the brain via the blood-brain barrier, are involved in a myriad of biological activities. These actions include, among others, neuronal survival, neurogenes, angiogenesis, excitatory and inhibitory neurotransmission, regulation of food intake, and cognition. In recent years, a linkage between brain insulin/IGF1 and certain neuropathologies has been identified. Epidemiological studies have demonstrated a correlation between diabetes (mainly type 2) and Alzheimer׳s disease. In addition, an aberrant decline in IGF1 values was suggested to play a role in the development of Alzheimer׳s disease. The present review focuses on the expression and function of insulin, IGFs and their receptors in the brain in physiological and pathological conditions. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  17. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation.

    Science.gov (United States)

    Tudurí, Eva; Beiroa, Daniel; Stegbauer, Johannes; Fernø, Johan; López, Miguel; Diéguez, Carlos; Nogueiras, Rubén

    2016-11-01

    Pancreatic insulin-secreting β-cells express opioid receptors, whose activation by opioid peptides modulates hormone secretion. Opioid receptors are also expressed in multiple brain regions including the hypothalamus, where they play a role in feeding behavior and energy homeostasis, but their potential role in central regulation of glucose metabolism is unknown. Here, we investigate whether central opioid receptors participate in the regulation of insulin secretion and glucose homeostasis in vivo. C57BL/6J mice were acutely treated by intracerebroventricular (i.c.v.) injection with specific agonists for the three main opioid receptors, kappa (KOR), delta (DOR) and mu (MOR) opioid receptors: activation of KOR and DOR did not alter glucose tolerance, whereas activation of brain MOR with the specific agonist DAMGO blunted glucose-stimulated insulin secretion (GSIS), reduced insulin sensitivity, increased the expression of gluconeogenic genes in the liver and, consequently, impaired glucose tolerance. Pharmacological blockade of α2A-adrenergic receptors prevented DAMGO-induced glucose intolerance and gluconeogenesis. Accordingly, DAMGO failed to inhibit GSIS and to impair glucose tolerance in α2A-adrenoceptor knockout mice, indicating that the effects of central MOR activation on β-cells are mediated via sympathetic innervation. Our results show for the first time a new role of the central opioid system, specifically the MOR, in the regulation of insulin secretion and glucose metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Cannabinoid CB2 receptor potentiates obesity-associated inflammation, insulin resistance and hepatic steatosis.

    Directory of Open Access Journals (Sweden)

    Vanessa Deveaux

    Full Text Available BACKGROUND: Obesity-associated inflammation is of critical importance in the development of insulin resistance and non-alcoholic fatty liver disease. Since the cannabinoid receptor CB2 regulates innate immunity, the aim of the present study was to investigate its role in obesity-induced inflammation, insulin resistance and fatty liver. METHODOLOGY: Murine obesity models included genetically leptin-deficient ob/ob mice and wild type (WT mice fed a high fat diet (HFD, that were compared to their lean counterparts. Animals were treated with pharmacological modulators of CB2 receptors. Experiments were also performed in mice knock-out for CB2 receptors (Cnr2 -/-. PRINCIPAL FINDINGS: In both HFD-fed WT mice and ob/ob mice, Cnr2 expression underwent a marked induction in the stromal vascular fraction of epididymal adipose tissue that correlated with increased fat inflammation. Treatment with the CB2 agonist JWH-133 potentiated adipose tissue inflammation in HFD-fed WT mice. Moreover, cultured fat pads isolated from ob/ob mice displayed increased Tnf and Ccl2 expression upon exposure to JWH-133. In keeping, genetic or pharmacological inactivation of CB2 receptors decreased adipose tissue macrophage infiltration associated with obesity, and reduced inductions of Tnf and Ccl2 expressions. In the liver of obese mice, Cnr2 mRNA was only weakly induced, and CB2 receptors moderately contributed to liver inflammation. HFD-induced insulin resistance increased in response to JWH-133 and reduced in Cnr2 -/- mice. Finally, HFD-induced hepatic steatosis was enhanced in WT mice treated with JWH-133 and blunted in Cnr2 -/- mice. CONCLUSION/SIGNIFICANCE: These data unravel a previously unrecognized contribution of CB2 receptors to obesity-associated inflammation, insulin resistance and non-alcoholic fatty liver disease, and suggest that CB2 receptor antagonists may open a new therapeutic approach for the management of obesity-associated metabolic disorders.

  19. Glucose Induces Mouse β-Cell Proliferation via IRS2, MTOR, and Cyclin D2 but Not the Insulin Receptor

    Science.gov (United States)

    Stamateris, Rachel E.; Sharma, Rohit B.; Kong, Yahui; Ebrahimpour, Pantea; Panday, Deepika; Ranganath, Pavana; Zou, Baobo; Levitt, Helena; Parambil, Nisha Abraham; O’Donnell, Christopher P.; García-Ocaña, Adolfo

    2016-01-01

    An important goal in diabetes research is to understand the processes that trigger endogenous β-cell proliferation. Hyperglycemia induces β-cell replication, but the mechanism remains debated. A prime candidate is insulin, which acts locally through the insulin receptor. Having previously developed an in vivo mouse hyperglycemia model, we tested whether glucose induces β-cell proliferation through insulin signaling. By using mice lacking insulin signaling intermediate insulin receptor substrate 2 (IRS2), we confirmed that hyperglycemia-induced β-cell proliferation requires IRS2 both in vivo and ex vivo. Of note, insulin receptor activation was not required for glucose-induced proliferation, and insulin itself was not sufficient to drive replication. Glucose and insulin caused similar acute signaling in mouse islets, but chronic signaling differed markedly, with mammalian target of rapamycin (MTOR) and extracellular signal–related kinase (ERK) activation by glucose and AKT activation by insulin. MTOR but not ERK activation was required for glucose-induced proliferation. Cyclin D2 was necessary for glucose-induced β-cell proliferation. Cyclin D2 expression was reduced when either IRS2 or MTOR signaling was lost, and restoring cyclin D2 expression rescued the proliferation defect. Human islets shared many of these regulatory pathways. Taken together, these results support a model in which IRS2, MTOR, and cyclin D2, but not the insulin receptor, mediate glucose-induced proliferation. PMID:26740601

  20. Functional characterization of autophosphorylation sites of the activated insulin receptor-tyrosine kinase

    International Nuclear Information System (INIS)

    Flores-Riveros, J.R.; Lane, M.D.

    1987-01-01

    Insulin receptor, solubilized from 3T3-L1 cellular membranes and then purified, was autophosphorylated with [γ- 32 P]ATP in the absence or presence of insulin. Specific phosphopeptides generated by trypsin digestion of the 32 P-labeled β-subunit were identified and separated by reverse phase HPLC. In the absence of insulin, radioactivity of the phosphopeptides is evenly distributed among four major peaks designated as sites I, II, III and IV, according to their order of elution. This pattern is maintained for at least the first 30 min of autophosphorylation. When the reaction is carried out in the presence of insulin, > 50% of the total 32 P radioactivity is found in site I and the rate of 32 P incorporation into this site is markedly higher than into sites II, III and IV. Maximal activation of tyrosine kinase activity, as estimated by substrate phosphorylation, is coincident with the nearly complete phosphorylation of site I. Delayed activation of previously autophosphorylated receptor by insulin, but not by EGF or IGF-I, produced a similar pattern where phosphorylated site I predominates. These observations indicate that one major insulin-regulated autophosphorylation site in the β-subunit is responsible for activation of the insulin receptor tyrosine kinase. The isolation of this phosphopeptide on a preparative scale and its characterization are now in progress

  1. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice

    Science.gov (United States)

    Tanigaki, Keiji; Chambliss, Ken L.; Yuhanna, Ivan S.; Sacharidou, Anastasia; Ahmed, Mohamed; Atochin, Dmitriy N.; Huang, Paul L.

    2016-01-01

    Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis. PMID:27207525

  2. C1qTNF-related protein 1 improve insulin resistance by reducing phosphorylation of serine 1101 in insulin receptor substrate 1.

    Science.gov (United States)

    Xin, Yaping; Zhang, Dongming; Fu, Yanqin; Wang, Chongxian; Li, Qingju; Tian, Chenguang; Zhang, Suhe; Lyu, Xiaodong

    2017-08-30

    C1qTNF-related protein 1 (CTRP1) is independently associated with type 2 diabetes. However, the relationship between CTRP1 and insulin resistance is still not established. This study aimed to explore the role of CTRP1 under the situation of insulin resistance in adipose tissue. Plasma CTRP1 level was investigated in type 2 diabetic subjects (n = 35) and non-diabetic subjects (n = 35). The relationship between CTRP1 and phosphorylation of multi insulin receptor substrate 1 (IRS-1) serine (Ser) sites was further explored. Our data showed that Plasma CTRP1 was higher and negative correlation with insulin resistance in diabetic subjects (r = -0.283, p = 0.018). Glucose utilisation test revealed that the glucose utilisation rate of mature adipocytes was improved by CTRP1 in the presence of insulin. CTRP1 was not only related to IRS-1 protein, but also negatively correlated with IRS-1 Ser1101 phosphorylation (r = -0.398, p = 0.031). Furthermore, Phosphorylation levels of IRS-1 Ser1101 were significantly lower after incubation with 40 ng/mL CTRP1 in mature adipocytes than those with no intervention (p insulin resistance by reducing the phosphorylation of IRS-1 Ser1101, induced in the situation of insulin resistance as a feedback adipokine.

  3. Cannabinoid 2 Receptor Agonist Improves Systemic Sensitivity to Insulin in High-Fat Diet/Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Xiuyuan Zhang

    2016-12-01

    Full Text Available Background/Aims: The endocannabinoid signalling (ECS system has been known to regulate glucose homeostasis. Previous studies have suggested that the cannabinoid 2 (CB2 receptor may play a regulatory role on insulin secretion, immune modulation and insulin resistance. Given that diabetes and insulin resistance are attributable to elevated inflammatory tone, we investigated the role of CB2 receptor on glucose tolerance and insulin sensitivity in high-fat diet (HFD/streptozotocin (STZ-induced mice. Methods: Diabetes was induced in male ICR mice by HFD/STZ and exposed to a CB2 receptor agonist, SER601, for 2- or 4-weeks via subcutaneous implantation of osmotic minipumps. Glucose and insulin tolerance tests were performed at the end of treatment. Islets were isolated for assessment of β-cell function. Pancreases and skeletal muscles were also obtained for histological analyses. Results: Despite a lack of impact on glucose tolerance, substantial improvement on insulin sensitivity was observed in SER601-treated mice, which could partly be attributed to improved islet β-cell function, shown as increased glucose-induced insulin secretion and insulin content. No changes on islet macrophage infiltration or skeletal muscle fat deposition were detectable from SER601-treated mice. However, a major decrease in body weight was recorded at the end of 4-week SER601 exposure, accompanied by a lack of epididymal adipose mass in SER601-treated mice. Conclusion: Our data suggest a lipolytic role of SER601 in HFD/STZ-induced diabetic mice, which results in significant improvement of systemic insulin sensitivity. Thus, the CB2 receptor may be considered a promising target for therapeutic development against insulin resistance and obesity-related diabetes.

  4. IL-4 and IL-13 Receptor Signaling From 4PS to Insulin Receptor Substrate 2: There and Back Again, a Historical View.

    Science.gov (United States)

    Keegan, Achsah D; Zamorano, Jose; Keselman, Aleksander; Heller, Nicola M

    2018-01-01

    In this historical perspective, written in honor of Dr. William E. Paul, we describe the initial discovery of one of the dominant substrates for tyrosine phosphorylation stimulated by IL-4. We further describe how this "IL-4-induced phosphorylated substrate" (4PS) was characterized as a member of the insulin receptor substrate (IRS) family of large adaptor proteins that link IL-4 and insulin receptors to activation of the phosphatidyl-inositol 3' kinase pathway as well as other downstream signaling pathways. The relative contribution of the 4PS/IRS pathway to the early models of IL-4-induced proliferation and suppression of apoptosis are compared to our more recent understanding of the complex interplay between positive and negative regulatory pathways emanating from members of the IRS family that impact allergic responses.

  5. SH2-Balpha is an insulin-receptor adapter protein and substrate that interacts with the activation loop of the insulin-receptor kinase.

    OpenAIRE

    Kotani, K; Wilden, P; Pillay, T S

    1998-01-01

    We identified SH2-Balpha as an insulin-receptor-binding protein based on interaction screening in yeast hybrid systems and co-precipitation in cells. SH2-Balpha contains pleckstrin-homology ('PH') and Src homology 2 (SH2) domains and is closely related to APS (adapter protein with a PH domain and an SH2 domain) and lnk, adapter proteins first identified in lymphocytes. SH2-Balpha is ubiquitously expressed and is present in rat epididymal adipose tissue, liver and skeletal muscle, physiologica...

  6. The insulin receptor substrate (IRS)-1 pleckstrin homology domain functions in downstream signaling.

    Science.gov (United States)

    Vainshtein, I; Kovacina, K S; Roth, R A

    2001-03-16

    The pleckstrin homology (PH) domain of the insulin receptor substrate-1 (IRS-1) plays a role in directing this molecule to the insulin receptor, thereby regulating its tyrosine phosphorylation. In this work, the role of the PH domain in subsequent signaling was studied by constructing constitutively active forms of IRS-1 in which the inter-SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase was fused to portions of the IRS-1 molecule. Chimeric molecules containing the PH domain were found to activate the downstream response of stimulating the Ser/Thr kinase Akt. A chimera containing point mutations in the PH domain that abolished the ability of this domain to bind phosphatidylinositol 4,5-bisphosphate prevented these molecules from activating Akt. These mutations also decreased by about 70% the amount of the constructs present in a particulate fraction of the cells. These results indicate that the PH domain of IRS-1, in addition to directing this protein to the receptor for tyrosine phosphorylation, functions in the ability of this molecule to stimulate subsequent responses. Thus, compromising the function of the PH domain, e.g. in insulin-resistant states, could decrease both the ability of IRS-1 to be tyrosine phosphorylated by the insulin receptor and to link to subsequent downstream targets.

  7. Receptor-mediated photo-cytotoxicity: synthesis of a photoactivatable psoralen derivative conjugated to insulin.

    Science.gov (United States)

    Gasparro, F P; Knobler, R M; Yemul, S S; Bisaccia, E; Edelson, R L

    1986-12-15

    4'-Aminomethyl-4,5',8-trimethylpsoralen has been chemically conjugated to insulin using a carbodiimide derivative. The psoralen moiety retains its photochemical reactivity as evidenced by its ability to crosslink DNA after exposure to long wavelength ultraviolet light (UVA, 320-400 nm). This chimeric molecule has been used to selectively kill a population of lymphocytes whose expression of insulin receptors has been stimulated with phytohemagglutinin. Insulin carries the psoralen into the cell via receptor-mediated endocytosis, where it is subsequently activated by exposure to UVA light. The UVA induced activity of AMT-insulin can be blocked by the presence of native insulin. The viability of unstimulated lymphocytes was not affected by AMT-insulin and UVA light. The hybrid insulin-psoralen molecule may be a prototype for a family of phototoxic drugs which can be selectively delivered to subsets of lymphocytes.

  8. APPL1 potentiates insulin sensitivity by facilitating the binding of IRS1/2 to the insulin receptor.

    Science.gov (United States)

    Ryu, Jiyoon; Galan, Amanda K; Xin, Xiaoban; Dong, Feng; Abdul-Ghani, Muhammad A; Zhou, Lijun; Wang, Changhua; Li, Cuiling; Holmes, Bekke M; Sloane, Lauren B; Austad, Steven N; Guo, Shaodong; Musi, Nicolas; DeFronzo, Ralph A; Deng, Chuxia; White, Morris F; Liu, Feng; Dong, Lily Q

    2014-05-22

    Binding of insulin receptor substrate proteins 1 and 2 (IRS1/2) to the insulin receptor (IR) is essential for the regulation of insulin sensitivity and energy homeostasis. However, the mechanism of IRS1/2 recruitment to the IR remains elusive. Here, we identify adaptor protein APPL1 as a critical molecule that promotes IRS1/2-IR interaction. APPL1 forms a complex with IRS1/2 under basal conditions, and this complex is then recruited to the IR in response to insulin or adiponectin stimulation. The interaction between APPL1 and IR depends on insulin- or adiponectin-stimulated APPL1 phosphorylation, which is greatly reduced in insulin target tissues in obese mice. appl1 deletion in mice consistently leads to systemic insulin resistance and a significant reduction in insulin-stimulated IRS1/2, but not IR, tyrosine phosphorylation, indicating that APPL1 sensitizes insulin signaling by acting at a site downstream of the IR. Our study uncovers a mechanism regulating insulin signaling and crosstalk between the insulin and adiponectin pathways. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Studies on interaction of insulin and insulin receptor in rat liver cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y; Hara, H; Kawate, R; Kawasaki, T [Hiroshima Univ. (Japan). School of Medicine

    1975-07-01

    Rat liver was homogenized with a Polytron PT 20 ST and fractionated by differential centrifugation. Prepared plasma membranes (100 ..mu..g protein) were incubated with enzymatically iodinated /sup 125/I-insulin (0.3 ng, specific activity 107 ..mu..Ci/..mu..g) in 25 mM Tris-HCl buffer, pH 7.5, containing 0.9% NaCl and 1% bovine serum albumin. The 12,000xg- and 17,000xg-sediments obtained after subfractionation of liver homogenates showed almost equally high specific binding activity with /sup 125/I-insulin and less activity was detected in the 600 g-, 5,000 g- and 40,000 g- sediments and the 40,000 g- supernatant. Specific binding of insulin with the membrane fraction was time-, temperature- and ionic strength-dependent. The highest binding was obtained under conditions in which the membrane fraction was incubated with insulin for 24 hours at 4/sup 0/C in the buffer containing 1 M NaCl. Under these conditions, specific binding of /sup 125/I-insulin was 26.8% of the total radioactivity. The effect of native insulin on the binding of /sup 125/I-insulin with the membrane fraction was studied in the range of 0--6.4 x 10/sup 5/ ..mu..U/ml of unlabeled insulin and a distinct competitive displacement of /sup 125/I-insulin with native insulin was observed between 10 and 10/sup 4/ ..mu..U/ml. Kinetic studies by Scatchard plot analysis of the above results revealed heterogeneity in insulin receptors or receptor sites, one with a high affinity of 10/sup 9/ M/sup -1/ order and the other with a low affinity of 10/sup 8/ M/sup -1/ order. Both affinities were also affected by temperature and ionic strength.

  10. Autoimmune Hypoglycemia in a Patient with Characterization of Insulin Receptor Autoantibodies

    Directory of Open Access Journals (Sweden)

    Suk Chon

    2011-02-01

    Full Text Available BackgroundType B insulin resistance syndrome is a manifestation of autoantibodies to the insulin receptor that results in severe hyperglycemia and acanthosis nigricans. However, the mechanisms by which these autoantibodies induce hypoglycemia are largely unknown. In this paper, we report the case of patient with type B insulin resistance syndrome who presented with frequent severe fasting hypoglycemia and acanthosis nigricans.MethodsTo evaluate the mechanism of hypoglycemia, we measured the inhibition of insulin binding to erythrocytes and IM9 lymphocytes in a sample of the patient's dialyzed serum before and after immunosuppressive therapy.ResultsIn the patient's pre-treatment serum IgG, the binding of 125I-insulin to erythrocytes was markedly inhibited in a dose-dependent manner until the cold insulin level reached 10-9 mol/L. We also observed dose-dependent inhibition of insulin binding to IM9 lymphocytes, which reached approximately 82% inhibition and persisted even when diluted 1:20. After treatment with glucocorticoids, insulin-erythrocyte binding activity returned to between 70% and 80% of normal, while the inhibition of insulin-lymphocyte binding was reduced by 17%.ConclusionWe treated a patient with type B insulin resistance syndrome showing recurrent fasting hypoglycemia with steroids and azathioprine. We characterized the patient's insulin receptor antibodies by measuring the inhibition of insulin binding.

  11. Antibodies to the α-subunit of insulin receptor from eggs of immunized hens

    International Nuclear Information System (INIS)

    Song, C.; Yu, J.; Bai, D.H.; Hester, P.Y.; Kim, K.

    1985-01-01

    Simple methods for the generation, purification, and assay of antibodies to the α-subunit of insulin receptor from eggs of immunized hen have been described. Chicken antibodies against the α-subunit inhibit insulin binding to the receptor and stimulate glucose oxidation as well as autophosphorylation of the β-subunit. Thus the properties of chicken antibodies are very similar to those of antibodies found in human autoimmune diseases and different from rabbit antibodies obtained against the same antigen

  12. IL-4 and IL-13 Receptor Signaling From 4PS to Insulin Receptor Substrate 2: There and Back Again, a Historical View

    Directory of Open Access Journals (Sweden)

    Achsah D. Keegan

    2018-05-01

    Full Text Available In this historical perspective, written in honor of Dr. William E. Paul, we describe the initial discovery of one of the dominant substrates for tyrosine phosphorylation stimulated by IL-4. We further describe how this “IL-4-induced phosphorylated substrate” (4PS was characterized as a member of the insulin receptor substrate (IRS family of large adaptor proteins that link IL-4 and insulin receptors to activation of the phosphatidyl-inositol 3′ kinase pathway as well as other downstream signaling pathways. The relative contribution of the 4PS/IRS pathway to the early models of IL-4-induced proliferation and suppression of apoptosis are compared to our more recent understanding of the complex interplay between positive and negative regulatory pathways emanating from members of the IRS family that impact allergic responses.

  13. Expression of the growth hormone receptor gene in insulin producing cells

    DEFF Research Database (Denmark)

    Møldrup, Annette; Billestrup, N; Nielsen, Jens Høiriis

    1990-01-01

    Growth hormone (GH) plays a dual role in glucose homeostasis. On the one hand, it exerts an insulin antagonistic effect on the peripheral tissue, on the other hand, it stimulates insulin biosynthesis and beta-cell proliferation. The expression of GH-receptors on the rat insulinoma cell line RIN-5...

  14. Adiponectin release and insulin receptor targeting share trans-Golgi-dependent endosomal trafficking routes

    Directory of Open Access Journals (Sweden)

    Maria Rödiger

    2018-02-01

    Full Text Available Objective: Intracellular vesicle trafficking maintains cellular structures and functions. The assembly of cargo-laden vesicles at the trans-Golgi network is initiated by the ARF family of small GTPases. Here, we demonstrate the role of the trans-Golgi localized monomeric GTPase ARFRP1 in endosomal-mediated vesicle trafficking of mature adipocytes. Methods: Control (Arfrp1flox/flox and inducible fat-specific Arfrp1 knockout (Arfrp1iAT−/− mice were metabolically characterized. In vitro experiments on mature 3T3-L1 cells and primary mouse adipocytes were conducted to validate the impact of ARFRP1 on localization of adiponectin and the insulin receptor. Finally, secretion and transferrin-based uptake and recycling assays were performed with HeLa and HeLa M-C1 cells. Results: We identified the ARFRP1-based sorting machinery to be involved in vesicle trafficking relying on the endosomal compartment for cell surface delivery. Secretion of adiponectin from fat depots was selectively reduced in Arfrp1iAT−/− mice, and Arfrp1-depleted 3T3-L1 adipocytes revealed an accumulation of adiponectin in Rab11-positive endosomes. Plasma adiponectin deficiency of Arfrp1iAT−/− mice resulted in deteriorated hepatic insulin sensitivity, increased gluconeogenesis and elevated fasting blood glucose levels. Additionally, the insulin receptor, undergoing endocytic recycling after ligand binding, was less abundant at the plasma membrane of adipocytes lacking Arfrp1. This had detrimental effects on adipose insulin signaling, followed by insufficient suppression of basal lipolytic activity and impaired adipose tissue expansion. Conclusions: Our findings suggest that adiponectin secretion and insulin receptor surface targeting utilize the same post-Golgi trafficking pathways that are essential for an appropriate systemic insulin sensitivity and glucose homeostasis. Keywords: Adiponectin, ARFRP1, Exocytosis, Insulin receptor, trans-Golgi

  15. Adenovirus E4-ORF1 Dysregulates Epidermal Growth Factor and Insulin/Insulin-Like Growth Factor Receptors To Mediate Constitutive Myc Expression

    OpenAIRE

    Kong, Kathleen; Kumar, Manish; Taruishi, Midori; Javier, Ronald T.

    2015-01-01

    The E4-ORF1 protein encoded by human adenovirus stimulates viral replication in human epithelial cells by binding and activating cellular phosphatidylinositol 3-kinase (PI3K) at the plasma membrane and cellular Myc in the nucleus. In this study, we showed that E4-ORF1 hijacks the tyrosine kinase activities of cellular epidermal growth factor receptor (EGFR) and insulin receptor (InsR)/insulin-like growth factor receptor 1 (IGF1R), as well as the lipid kinase activity of PI3K, to mediate const...

  16. Ultrastructural evidence for the accumulation of insulin in nuclei of intact 3T3-L1 adipocytes by an insulin-receptor mediated process

    International Nuclear Information System (INIS)

    Smith, R.M.; Jarett, L.

    1987-01-01

    Monomeric ferritin-labeled insulin (F/sub m/-Ins), a biologically active, electron-dense marker of occupied insulin receptors, was used to characterize the internalization of insulin in 3T3-L1 adipocytes. F/sub m/-Ins bound specifically to insulin receptors and was internalized in a time- and temperature-dependent manner. In the nucleus, several F/sub m/-Ins particles usually were found in the same general location-near nuclear pores, associated with the periphery of the condensed chromatin. Addition of a 250-fold excess of unlabeled insulin or incubation at 15 0 C reduced the number of F/sub m/-Ins particles found in nuclei after 90 min by 99% or 92%, respectively. Nuclear accumulation of unlabeled ferritin was only 2% of that found with F/sub m/-Ins after 90 min at 37 0 C. Biochemical experiments utilizing 125 I-labeled insulin and subcellular fractionation indicated that intact 3T3-L1 adipocytes internalized insulin rapidly and that ≅ 3% of the internalized ligand accumulated in nuclei after 1 hr. These data provide biochemical and high-resolution ultrastructural evidence that 3T3-L1 adipocytes accumulate potentially significant amounts of insulin in nuclei by an insulin receptor-mediated process. The transport of insulin or the insulin-receptor complex to nuclei in this cell or in others may be directly involved in the long-term biological effects of insulin - in particular, in the control of DNA and RNA synthesis

  17. Influence of reductive diet and physical aerobic training on binding and degradation of 125J-insulin by erythrocyte receptors in children with simple obesity

    International Nuclear Information System (INIS)

    Szczesniak, L.; Rychlewski, T.; Kasprzak, Z.; Banaszak, F.

    1994-01-01

    Insuline resistance, expressed by lower insuline binding by receptors, is related to the obesity. Improvement of the binding was observed together with reduction of body weight and in result of physical exercise. In the work was investigated an influence of complex result of reductive diet at the level of 1300-1500 kcal and systematic half-an-hour aerobic exercise on binding and degradation of 125 J-insulin by erythrocyte receptors in children with simple obesity. The rest binding of insulin by erythrocyte receptors in obese children was compared with the result observed in the children having normal body weight. Results of these researches confirm that systematic physical exercise connected with reductive diet improves the indexes of lipid balance, increases efficiency of the organism, estimated by maximal oxygen absorption, decreases body weight and improves binding of 125 J-insulin to erythrocyte receptors. (authors)

  18. Insulin binding and stimulation of hexose and amino acid transport by normal and receptor-defective human fibroblasts

    International Nuclear Information System (INIS)

    Longo, N.; Nagata, N.; Danner, D.; Priest, J.; Elsas, L.

    1986-01-01

    The authors analyzed insulin receptors in cells cultured from a sibship of related parents who had two offspring with severe insulin resistance (Leprechaunism). 124 I-Insulin (1 ng/ml) binding to skin fibroblasts from the proband, mother, and father was 9, 60 and 62% of control cells, respectively, at equilibrium, Non-linear regression analysis, utilizing a two receptors model, of curvilinear Scatchard plots indicated a reduced number of high-affinity binding sites in both parents. Influx of L-Proline (System A), L-Serine (ASC) and L-Leucine (L) was similar in control and mutant cells. Similarly, during the depletion of intracellular amino acid pools, there was a release from transinhibition for System A and a decrease of transstimulation of Systems ASC and L in both cell lines. Surprisingly, insulin augmented, normally, A system influx with an ED 50 = 70 ng/ml at 24 0 C and 7 ng/ml at 37 0 C. By contrast insulin failed to simulated 3-0-methyl-D-glucose influx into the proband's cells, while normal cells were stimulated 30% with an ED 50 of 6 ng/ml. These results indicate that defective high-affinity insulin binding is inherited as an autosomal recessive trait; that general membrane functions are intact; that insulin regulates A system amino acid and hexose transport by two different mechanisms; and, that the latter mechanism is impaired by this family's receptor mutation

  19. Changes in erythrocyte insulin receptors in normal dogs and keeshond dogs with inheritable, early onset, insulin dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Klaassen, J.K.

    1986-01-01

    Validation of a procedure to evaluate insulin receptors on erythrocytes (RBC-IR) in dogs is described. The specific binding of ( 125 I)iodoinsulin to RBC-IR of normal dogs is significantly greater than binding in keeshonds with an inheritable form of early onset diabetes mellitus. This decreased binding was due to a significant decrease in RBC-IR affinity in the diabetic keeshonds. To determine the effect on RBC-IR, normal dogs were treated with either dexamethasone (0.1 mg/kg) or prednisone (0.3 mg/kg) for 10 days: concentrations of plasma cortisol, glucose, and insulin, plus binding characteristics of RBC-IR were determined. In the dexamethasone treated group, plasma glucose concentrations were elevated significantly by day 6 and continued through day 10. Insulin concentrations were elevated significantly by day 3 and remained elevated through day 10. In the prednisone treated group, glucose concentrations were elevated significantly by day 3, while insulin concentrations were elevated significantly by day 8. Maximum binding of RBC-IR was unaffected by prednisone and neither affinities nor receptor numbers were significantly different from day 1. No changes in plasma cortisol concentration were seen. Diabetic keeshonds on daily insulin treatment were removed from exogenous insulin therapy for 48 hours. Significant increases in glucose concentrations were observed, but no significant changes in cortisol, insulin, average receptor binding affinity, or RBC-IR number per cell occurred

  20. Insulin/insulin like growth factors in cancer: new roles for the aryl hydrocarbon receptor, tumor resistance mechanisms and new blocking strategies

    Directory of Open Access Journals (Sweden)

    Travis B Salisbury

    2015-02-01

    Full Text Available The insulin-like growth factor 1 receptor (IGF1R and the insulin receptor (IR are receptor tyrosine kinases (RTKs that are expressed in cancer cells. The results of different studies indicate that tumor proliferation and survival is dependent on the IGF1R and IR, and that their inhibition leads to reductions in proliferation and increases in cell death. Molecular targeting therapies that have been used in solid tumors include: anti-IGF1R antibodies, anti-IGF1/IGF2 antibodies and small molecule inhibitors that suppress IGF1R and IR kinase activity. New advances in the molecular basis of anti-IGF1R blocking antibodies reveal they are biased agonists and promote the binding of IGF1 to integrin β3 receptors in some cancer cells. Our recent reports indicate that pharmacological aryl hydrocarbon receptor (AHR ligands inhibit breast cancer cell responses to IGFs, suggesting that targeting AHR may have benefit in cancers whose proliferation and survival are dependent on insulin/IGF signaling. Novel aspects of IGF1R/IR in cancer, such as biased agonism, integrin β3 signaling, AHR and new therapeutic targeting strategies will be discussed.

  1. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct

    Science.gov (United States)

    Pavlov, Tengis S.; Ilatovskaya, Daria V.; Levchenko, Vladislav; Li, Lijun; Ecelbarger, Carolyn M.; Staruschenko, Alexander

    2013-01-01

    The epithelial sodium channel (ENaC) is one of the central effectors involved in regulation of salt and water homeostasis in the kidney. To study mechanisms of ENaC regulation, we generated knockout mice lacking the insulin receptor (InsR KO) specifically in the collecting duct principal cells. Single-channel analysis in freshly isolated split-open tubules demonstrated that the InsR-KO mice have significantly lower ENaC activity compared to their wild-type (C57BL/6J) littermates when animals were fed either normal or sodium-deficient diets. Immunohistochemical and Western blot assays demonstrated no significant changes in expression of ENaC subunits in InsR-KO mice compared to wild-type littermates. Insulin treatment caused greater ENaC activity in split-open tubules isolated from wild-type mice but did not have this effect in the InsR-KO mice. Thus, these results suggest that insulin increases ENaC activity via its own receptor affecting the channel open probability. To further determine the mechanism of the action of insulin on ENaC, we used mouse mpkCCDc14 principal cells. Insulin significantly augmented amiloride-sensitive transepithelial flux in these cells. Pretreatment of the mpkCCDc14 cells with phosphatidylinositol 3-kinase (LY294002; 10 μM) or mTOR (PP242; 100 nM) inhibitors precluded this effect. This study provides new information about the importance of insulin receptors expressed in collecting duct principal cells for ENaC activity.—Pavlov, T. S., Ilatovskaya, D. V., Levchenko, V., Li, L., Ecelbarger, C. M., Staruschenko, A. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct. PMID:23558339

  2. Characterization of insulin-like growth factor I and insulin receptors on cultured bovine adrenal fasciculata cells. Role of these peptides on adrenal cell function

    International Nuclear Information System (INIS)

    Penhoat, A.; Chatelain, P.G.; Jaillard, C.; Saez, J.M.

    1988-01-01

    We have characterized insulin-like growth factor I (IGF-I) and insulin receptors in cultured bovine adrenal cells by binding and cross-linking affinity experiments. At equilibrium the dissociation constant and the number of binding sites per cell for IGF-I were 1.4 +/- (SE) 0.3 x 10(-9) M and 19,200 +/- 2,100, respectively. Under reduction conditions, disuccinimidyl suberate cross-linked [ 125 I]iodo-IGF-I to one receptor complex with an Mr of 125,000. Adrenal cells also contain specific insulin receptors with an apparent dissociation constant (Kd) of 10(-9) M. Under reduction conditions [ 125 I]iodo-insulin binds to one band with an approximate Mr of 125,000. IGF-I and insulin at micromolar concentrations, but not at nanomolar concentrations, slightly stimulated DNA synthesis, but markedly potentiated the mitogenic action of fibroblast growth factor. Adrenal cells cultured in a serum-free medium containing transferrin, ascorbic acid, and insulin (5 micrograms/ml) maintained fairly constant angiotensin-II (A-II) receptor concentration per cell and increased cAMP release on response to ACTH and their steroidogenic response to both ACTH and A-II. When the cells were cultured in the same medium without insulin, the number of A-II receptors significantly decreased to 65% and the increased responsiveness was blunted. Treatment of such cells for 3 days with increasing concentrations of IGF-I (1-100 ng/ml) produced a 2- to 3-fold increase in A-II receptors and enhanced the cAMP response (3- to 4-fold) to ACTH and the steroidogenic response (4- to 6-fold) to ACTH and A-II. These effects were time and dose dependent (ED50 approximately equal to 10(-9) M). Insulin at micromolar concentrations produced an effect similar to that of IGF-I, but at nanomolar concentrations the effect was far less

  3. An energetic orphan in an endocrine tissue: a revised perspective of the function of estrogen receptor-related receptor alpha in bone and cartilage.

    Science.gov (United States)

    Bonnelye, Edith; Aubin, Jane E

    2013-02-01

    Estrogen receptor-related receptor alpha (ERRα) is an orphan nuclear receptor with sequence homology to the estrogen receptors, ERα/β, but it does not bind estrogen. ERRα not only plays a functional role in osteoblasts but also in osteoclasts and chondrocytes. In addition, the ERRs, including ERRα, can be activated by coactivators such as peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC1α and β) and are implicated in adipogenesis, fatty acid oxidation, and oxidative stress defense, suggesting that ERRα-through its activity in bone resorption and adipogenesis--may regulate the insulin and leptin pathways and contribute to aging-related changes in bone and cartilage. In this review, we discuss data on ERRα and its cellular and molecular modes of action, which have broad implications for considering the potential role of this orphan receptor in cartilage and bone endocrine function, on whole-organism physiology, and in the bone aging process. Copyright © 2013 American Society for Bone and Mineral Research.

  4. Alternative splicing, gene localization, and binding of SH2-B to the insulin receptor kinase domain

    OpenAIRE

    Nelms, Keats; O'Neill, Thomas J.; Li, Shiqing; Hubbard, Stevan R.; Gustafson, Thomas A.; Paul, William E.

    1999-01-01

    . The SH2-B protein is an SH2-domain-containing molecule that interacts with a number of phosphorylated kinase and receptor molecules including the insulin receptor. Two isoforms of the SH2-B have been identified and have been proposed to arise through alternate splicing. Here we have identified a third isoform of the SH2-B protein, SH2-Bγ, that interacts specifically with the insulin receptor. This interaction required phosphorylation of residue Y1146 in the triple tyrosine motif within the ...

  5. Insulin and insulin-like growth factor-I (IGF-I) receptor phosphorylation in µ-calpain knockout mice

    Science.gov (United States)

    Numerous cellular processes are controlled by insulin and IGF-I signaling pathways. Due to previous work in our laboratories, we hypothesized that insulin (IR) and type 1 IGF-I (IGF-IR) receptor signaling is decreased due to increased protein tyrosine phosphatase 1B (PTP1B) activity. C57BL/6J mice...

  6. Association between GRB2/Sos and insulin receptor substrate 1 is not sufficient for activation of extracellular signal-regulated kinases by interleukin-4: implications for Ras activation by insulin.

    Science.gov (United States)

    Pruett, W; Yuan, Y; Rose, E; Batzer, A G; Harada, N; Skolnik, E Y

    1995-03-01

    Insulin receptor substrate 1 (IRS-1) mediates the activation of a variety of signaling pathways by the insulin and insulin-like growth factor 1 receptors by serving as a docking protein for signaling molecules with SH2 domains. We and others have shown that in response to insulin stimulation IRS-1 binds GRB2/Sos and have proposed that this interaction is important in mediating Ras activation by the insulin receptor. Recently, it has been shown that the interleukin (IL)-4 receptor also phosphorylates IRS-1 and an IRS-1-related molecule, 4PS. Unlike insulin, however, IL-4 fails to activate Ras, extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases. We have reconstituted the IL-4 receptor into an insulin-responsive L6 myoblast cell line and have shown that IRS-1 is tyrosine phosphorylated to similar degrees in response to insulin and IL-4 stimulation in this cell line. In agreement with previous findings, IL-4 failed to activate the ERKs in this cell line or to stimulate DNA synthesis, whereas the same responses were activated by insulin. Surprisingly, IL-4's failure to activate ERKs was not due to a failure to stimulate the association of tyrosine-phosphorylated IRS-1 with GRB2/Sos; the amounts of GRB2/Sos associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. Moreover, the amounts of phosphatidylinositol 3-kinase activity associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. In contrast to insulin, however, IL-4 failed to induce tyrosine phosphorylation of Shc or association of Shc with GRB2. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Previous studies have indicated that activation of ERks in this cell line is dependent upon Ras since a dominant-negative Ras (Asn-17) blocks ERK activation by insulin. Our findings, taken in the context

  7. Type-I Insulin-Like Growth Factor Receptor (IGF1R)-Estrogen Receptor (ER) Crosstalk Contributes to Antiestrogen Therapy Resistance in Breast Cancer Cells

    Science.gov (United States)

    2013-02-01

    vitro have downregulated J GF1R making antibodies directed agai nst th is receptor ineffective. Inhlbition of IH may be necessary to manage ...monoclonal antibody to insulin-like growth factor receptor 1. J Clin Oncol 2009;27:580Q-7. 31. Drury s. Detre s. Leary A, Salter J, Reis-Filho J

  8. Dual pathways for the intracellular processing of insulin. Relationship between retroendocytosis of intact hormone and the recycling of insulin receptors

    International Nuclear Information System (INIS)

    Marshall, S.

    1985-01-01

    Adipocytes process insulin through either of two pathways: a retroendocytotic pathway that culminates in the release of intact insulin, and a degradative pathway that terminates in the intracellular catabolism and release of degraded ligand. Mechanistically, these pathways were found to differ in several ways. First, temporal differences were found in the rate at which intact and degraded products were extruded. After 125 I-insulin was preloaded into the cell interior, intact ligand was completely released during the first 10 min (t 1/2 = 2 min), whereas degraded insulin was released at a much slower rate over 1 h (t 1/2 greater than 8 min). Secondly, it was found that chloroquine profoundly inhibited the insulin degradative pathway, resulting in the intracellular accumulation of intact ligand and a reduction in the release of degraded products. In contrast, however, chloroquine was without effect on the retroendocytotic processing of insulin. Based on the known actions of chloroquine, it appears that retroendocytosis of insulin does not involve vesicular acidification or dissociation of the insulin-receptor complex and that insulin is most likely carried to the cell exterior in the same vesicles (either receptor-bound or free) as those mediating recycling receptors. Interestingly, accumulation of undergraded insulin within chloroquine-treated cells did not result in the release of additional intact ligand, suggesting that once insulin enters the degradative compartment it is committed to catabolism and cannot exit the cell through the retroendocytotic pathway. A third difference was revealed by the finding that extracellular unlabeled insulin (100 ng/ml) markedly accelerated the rate at which preloaded 125 I-insulin was released from adipocytes (t 1/2 of 3 min versus 7 min in controls cells)

  9. Adiponectin, Leptin, and Leptin Receptor in Obese Patients with Type 2 Diabetes Treated with Insulin Detemir

    Directory of Open Access Journals (Sweden)

    Paweł Olczyk

    2017-07-01

    Full Text Available The aim of the present study is to quantitatively assess the expression of selected regulatory molecules, such as leptin, leptin receptor, and adiponectin in the blood of obese patients with type 2 diabetes both before treatment and after six months of pharmacological therapy with the long-lasting insulin analogue, insulin detemir. A significant decrease in the analysed regulatory molecules, i.e., leptin receptor and adiponectin, was found in blood plasma of the patients with untreated type 2 diabetes. These changes were accompanied by an increase in plasma leptin concentrations. Insulin treatment resulted in the normalization of plasma leptin receptor and adiponectin concentrations. The circulating leptin level did not change following anti-diabetic therapy with insulin detemir. Gender was a significant factor modifying the circulating level of all the analysed regulatory active compounds. Bioinformatic analysis was performed using Matlab with the Signal Processing Toolbox. The conducted discriminant analysis revealed that the leptin receptor, Δw(19, and adiponectin, Δw(21, were the parameters undergoing the most significant quantitative changes during the six-month therapy with insulin detemir. The conducted examinations indicated the contribution of adipocytokines—the biologically-active mediators of systemic metabolism, such as leptin and adiponectin in the pathomechanism of disorders being the basis for obesity which leads to development of insulin resistance, which, in turn, results in the occurrence of type 2 diabetes.

  10. Insulin receptor substrate-3, interacting with Bcl-3, enhances p50 NF-{kappa}B activity

    Energy Technology Data Exchange (ETDEWEB)

    Kabuta, Tomohiro [Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan); Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502 (Japan); Hakuno, Fumihiko; Cho, Yoshitake; Yamanaka, Daisuke; Chida, Kazuhiro [Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan); Asano, Tomoichiro [Graduate School of Biomedical Science, Hiroshima University, Hiroshima 734-8551 (Japan); Wada, Keiji [Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502 (Japan); Takahashi, Shin-Ichiro, E-mail: atkshin@mail.ecc.u-tokyo.ac.jp [Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan)

    2010-04-09

    The insulin receptor substrate (IRS) proteins are major substrates of both insulin receptor and insulin-like growth factor (IGF)-I receptor tyrosine kinases. Previously, we reported that IRS-3 is localized to both cytosol and nucleus, and possesses transcriptional activity. In the present study, we identified Bcl-3 as a novel binding protein to IRS-3. Bcl-3 is a nuclear protein, which forms a complex with the homodimer of p50 NF-{kappa}B, leading to enhancement of transcription through p50 NF-{kappa}B. We found that Bcl-3 interacts with the pleckstrin homology domain and the phosphotyrosine binding domain of IRS-3, and that IRS-3 interacts with the ankyrin repeat domain of Bcl-3. In addition, IRS-3 augmented the binding activity of p50 to the NF-{kappa}B DNA binding site, as well as the tumor necrosis factor (TNF)-{alpha}-induced transcriptional activity of NF-{kappa}B. Lastly, IRS-3 enhanced NF-{kappa}B-dependent anti-apoptotic gene induction and consequently inhibited TNF-{alpha}-induced cell death. This series of results proposes a novel function for IRS-3 as a transcriptional regulator in TNF-{alpha} signaling, distinct from its function as a substrate of insulin/IGF receptor kinases.

  11. Compensatory insulin receptor (IR) activation on inhibition of insulin-like growth factor-1 receptor (IGF-1R): rationale for cotargeting IGF-1R and IR in cancer.

    Science.gov (United States)

    Buck, Elizabeth; Gokhale, Prafulla C; Koujak, Susan; Brown, Eric; Eyzaguirre, Alexandra; Tao, Nianjun; Rosenfeld-Franklin, Maryland; Lerner, Lorena; Chiu, M Isabel; Wild, Robert; Epstein, David; Pachter, Jonathan A; Miglarese, Mark R

    2010-10-01

    Insulin-like growth factor-1 receptor (IGF-1R) is a receptor tyrosine kinase (RTK) and critical activator of the phosphatidylinositol 3-kinase-AKT pathway. IGF-1R is required for oncogenic transformation and tumorigenesis. These observations have spurred anticancer drug discovery and development efforts for both biological and small-molecule IGF-1R inhibitors. The ability for one RTK to compensate for another to maintain tumor cell viability is emerging as a common resistance mechanism to antitumor agents targeting individual RTKs. As IGF-1R is structurally and functionally related to the insulin receptor (IR), we asked whether IR is tumorigenic and whether IR-AKT signaling contributes to resistance to IGF-1R inhibition. Both IGF-1R and IR(A) are tumorigenic in a mouse mammary tumor model. In human tumor cells coexpressing IGF-1R and IR, bidirectional cross talk was observed following either knockdown of IR expression or treatment with a selective anti-IGF-1R antibody, MAB391. MAB391 treatment resulted in a compensatory increase in phospho-IR, which was associated with resistance to inhibition of IRS1 and AKT. In contrast, treatment with OSI-906, a small-molecule dual inhibitor of IGF-1R/IR, resulted in enhanced reduction in phospho-IRS1/phospho-AKT relative to MAB391. Insulin or IGF-2 activated the IR-AKT pathway and decreased sensitivity to MAB391 but not to OSI-906. In tumor cells with an autocrine IGF-2 loop, both OSI-906 and an anti-IGF-2 antibody reduced phospho-IR/phospho-AKT, whereas MAB391 was ineffective. Finally, OSI-906 showed superior efficacy compared with MAB391 in human tumor xenograft models in which both IGF-1R and IR were phosphorylated. Collectively, these data indicate that cotargeting IGF-1R and IR may provide superior antitumor efficacy compared with targeting IGF-1R alone.

  12. Development of receptors for insulin and insulin-like growth factor-I in head and brain of chick embryos: Autoradiographic localization

    International Nuclear Information System (INIS)

    Bassas, L.; Girbau, M.; Lesniak, M.A.; Roth, J.; de Pablo, F.

    1989-01-01

    In whole brain of chick embryos insulin receptors are highest at the end of embryonic development, while insulin-like growth factor-I (IGF-I) receptors dominate in the early stages. These studies provided evidence for developmental regulation of both types of receptors, but they did not provide information on possible differences between brain regions at each developmental stage or within one region at different embryonic ages. We have now localized the specific binding of [125I]insulin and [125I]IGF-I in sections of head and brain using autoradiography and computer-assisted densitometric analysis. Embryos have been studied from the latter part of organogenesis (days 6 and 12) through late development (day 18, i.e. 3 days before hatching), and the binding patterns have been compared with those in the adult brain. At all ages the binding of both ligands was to discrete anatomical regions. Interestingly, while in late embryos and adult brain the patterns of [125I]insulin and [125I] IGF-I binding were quite distinct, in young embryos both ligands showed very similar localization of binding. In young embryos the retina and lateral wall of the growing encephalic vesicles had the highest binding of both [125I]insulin and [125I]IGF-I. In older embryos, as in the adult brain, insulin binding was high in the paleostriatum augmentatum and molecular layer of the cerebellum, while IGF-I binding was prominent in the hippocampus and neostriatum. The mapping of receptors in a vertebrate embryo model from early prenatal development until adulthood predicts great overlap in any possible function of insulin and IGF-I in brain development, while it anticipates differential localized actions of the peptides in the mature brain

  13. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR.

    Science.gov (United States)

    Yin, Yancun; Hua, Hui; Li, Minjing; Liu, Shu; Kong, Qingbin; Shao, Ting; Wang, Jiao; Luo, Yuanming; Wang, Qian; Luo, Ting; Jiang, Yangfu

    2016-01-01

    Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor(+/+) MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor(-/-) MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation.

  14. Studies of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene in relation to insulin sensitivity among glucose tolerant caucasians

    DEFF Research Database (Denmark)

    Ek, J; Andersen, G; Urhammer, S A

    2001-01-01

    We examined whether the Pro12-Ala polymorphism of the human peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene was related to altered insulin sensitivity among glucose-tolerant subjects or a lower accumulated incidence or prevalence of IGT and Type II (non-insulin-dependent) dia......-insulin-dependent) diabetes mellitus among Scandinavian Caucasians....

  15. A highly phosphorylated subpopulation of insulin-like growth factor II/mannose 6-phosphate receptors is concentrated in a clathrin-enriched plasma membrane fraction

    International Nuclear Information System (INIS)

    Corvera, S.; Folander, K.; Clairmont, K.B.; Czech, M.P.

    1988-01-01

    Insulin-like growth factor II (IGF-II)/mannose 6-phosphate (Man-6-P) receptors immunoprecipitated from purified plasma membranes of 32 P-labeled rat adipocytes are markedly heterogenous in their phosphorylation state. Approximately 80% of the plasma membrane receptors are solubilized in 1% (vol/vol) Triton X-100 and are phosphorylated on serine residues at a stoichiometry of ∼ 0.1-0.2 mol of phosphate per mol of receptor. In contrast, 15-20% of the receptors are Triton X-100-insoluble and are phosphorylated on serine and threonine residues at ∼ 4 or 5 mol of phosphate per mol of receptor. This Triton X-100-insoluble membrane subfraction contains only 5% of the total plasma membrane protein and yet contains all of the clathrin heavy chain associated with plasma membrane. Based on the relative yields of protein in the detergent-insoluble material, IGF-II/Man-6-P receptors are concentrated ∼ 3-fold in this clathrin-enriched subfraction. Taken together, these results indicate that insulin decreases the phosphorylation state of a highly phosphorylated subpopulation of IGF-II/Man-6-P receptors on the plasma membrane. In addition, insulin action may prevent the concentration of these receptors in a clathrin-enriched membrane subfraction

  16. Peroxisome Proliferator-Activated Receptors and Hepatitis C Virus-Induced Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Francesco Negro

    2009-01-01

    Full Text Available Insulin resistance and type 2 diabetes are associated with hepatitis C virus infection. A wealth of clinical and experimental data suggests that the virus is directly interfering with the insulin signalling in hepatocytes. In the case of at least one viral genotype (the type 3a, insulin resistance seems to be directly mediated by the downregulation of the peroxisome proliferator-activated receptor γ. Whether and how this interaction may be manipulated pharmacologically, in order to improve the responsiveness to antivirals of insulin resistant chronic hepatitis C, patients remain to be fully explored.

  17. Targeting non-small cell lung cancer cells by dual inhibition of the insulin receptor and the insulin-like growth factor-1 receptor.

    Directory of Open Access Journals (Sweden)

    Emma E Vincent

    Full Text Available Phase III trials of the anti-insulin-like growth factor-1 receptor (IGF1R antibody figitumumab in non-small cell lung cancer (NSCLC patients have been discontinued owing to lack of survival benefit. We investigated whether inhibition of the highly homologous insulin receptor (IR in addition to the IGF1R would be more effective than inhibition of the IGF1R alone at preventing the proliferation of NSCLC cells. Signalling through IGF1R and IR in the NSCLC cell lines A549 and Hcc193 was stimulated by a combination of IGF1, IGF2 and insulin. It was inhibited by antibodies that block ligand binding, αIR3 (IGF1R and IR47-9 (IR, and by the ATP-competitive small molecule tyrosine kinase inhibitors AZ12253801 and NVPAWD742 which inhibit both IGF1R and IR tyrosine kinases. The effect of inhibitors was determined by an anchorage-independent proliferation assay and by analysis of Akt phosphorylation. In Hcc193 cells the reduction in cell proliferation and Akt phosphorylation due to anti-IGF1R antibody was enhanced by antibody-mediated inhibition of the IR whereas in A549 cells, with a relatively low IR:IGF1R expression ratio, it was not. In each cell line proliferation and Akt phosphorylation were more effectively inhibited by AZ12253801 and NVPAWD742 than by combined αIR3 and IR47-9. When the IGF1R alone is inhibited, unencumbered signalling through the IR can contribute to continued NSCLC cell proliferation. We conclude that small molecule inhibitors targeting both the IR and IGF1R more effectively reduce NSCLC cell proliferation in a manner independent of the IR:IGF1R expression ratio, providing a therapeutic rationale for the treatment of this disease.

  18. Acute up-regulation of the rat brain somatostatin receptor-effector system by leptin is related to activation of insulin signaling and may counteract central leptin actions.

    Science.gov (United States)

    Perianes-Cachero, A; Burgos-Ramos, E; Puebla-Jiménez, L; Canelles, S; Frago, L M; Hervás-Aguilar, A; de Frutos, S; Toledo-Lobo, M V; Mela, V; Viveros, M P; Argente, J; Chowen, J A; Arilla-Ferreiro, E; Barrios, V

    2013-11-12

    Leptin and somatostatin (SRIF) have opposite effects on food seeking and ingestive behaviors, functions partially regulated by the frontoparietal cortex and hippocampus. Although it is known that the acute suppression of food intake mediated by leptin decreases with time, the counter-regulatory mechanisms remain unclear. Our aims were to analyze the effect of acute central leptin infusion on the SRIF receptor-effector system in these areas and the implication of related intracellular signaling mechanisms in this response. We studied 20 adult male Wister rats including controls and those treated intracerebroventricularly with a single dose of 5 μg of leptin and sacrificed 1 or 6h later. Density of SRIF receptors was unchanged at 1h, whereas leptin increased the density of SRIF receptors at 6h, which was correlated with an elevated capacity of SRIF to inhibit forskolin-stimulated adenylyl cyclase activity in both areas. The functional capacity of SRIF receptors was unaltered as cell membrane levels of αi1 and αi2 subunits of G inhibitory proteins were unaffected in both brain areas. The increased density of SRIF receptors was due to enhanced SRIF receptor subtype 2 (sst2) protein levels that correlated with higher mRNA levels for this receptor. These changes in sst2 mRNA levels were concomitant with increased activation of the insulin signaling, c-Jun and cyclic AMP response element-binding protein (CREB); however, activation of signal transducer and activator of transcription 3 was reduced in the cortex and unchanged in the hippocampus and suppressor of cytokine signaling 3 remained unchanged in these areas. In addition, the leptin antagonist L39A/D40A/F41A blocked the leptin-induced changes in SRIF receptors, leptin signaling and CREB activation. In conclusion, increased activation of insulin signaling after leptin infusion is related to acute up-regulation of the SRIF receptor-effector system that may antagonize short-term leptin actions in the rat brain

  19. Insulin and 20-hydroxyecdysone action in Bombyx mori: Glycogen content and expression pattern of insulin and ecdysone receptors in fat body.

    Science.gov (United States)

    Keshan, Bela; Thounaojam, Bembem; Kh, Sanathoibi D

    2017-01-15

    Insulin and ecdysone signaling play a critical role on the growth and development of insects including Bombyx mori. Our previous study showed that Bombyx larvae reached critical weight for metamorphosis between day 3.5 and 4 of the fifth larval instar. The present study showed that the effect of insulin on the accumulation of glycogen in fat body of Bombyx larvae depends on the critical growth period. When larvae are in active growth period (before reaching critical weight), insulin caused increased accumulation of glycogen, while its treatment in larvae at terminal growth period (after critical period) resulted in an increased mobilization of glycogen. During terminal growth period, insulin and 20-hydroxyecdysone (20E) showed an antagonistic effect on the accumulation of fat body glycogen in fed, food deprived and decapitated larvae as well as in isolated abdomens. Insulin treatment decreased the glycogen content, whereas, 20E increased it. Food deprivation and decapitation caused an increase in the transcript levels of insulin receptor (InR) and this increase in InR expression might be attributed to a decrease in synthesis/secretion of insulin-like peptides, as insulin treatment in these larvae showed a down-regulation in InR expression. However, insulin showed an up-regulation in InR in isolated abdomens and it suggests that in food deprived and decapitated larvae, the exogenous insulin may interact with some head and/or thoracic factors in modulating the expression of InR. Moreover, in fed larvae, insulin-mediated increase in InR expression indicates that its regulation by insulin-like peptides also depends on the nutritional status of the larvae. The treatment of 20E in fed larvae showed an antagonistic effect on the transcript levels since a down-regulation in InR expression was observed. 20E treatment also led to a decreased expression of InR in food deprived and decapitated larvae as well as in isolated abdomens. Insulin and 20E also modulated the

  20. α-Helical element at the hormone-binding surface of the insulin receptor functions as a signaling element to activate its tyrosine kinase.

    Science.gov (United States)

    Whittaker, Jonathan; Whittaker, Linda J; Roberts, Charles T; Phillips, Nelson B; Ismail-Beigi, Faramarz; Lawrence, Michael C; Weiss, Michael A

    2012-07-10

    The primary hormone-binding surface of the insulin receptor spans one face of the N-terminal β-helix of the α-subunit (the L1 domain) and an α-helix in its C-terminal segment (αCT). Crystallographic analysis of the free ectodomain has defined a contiguous dimer-related motif in which the αCT α-helix packs against L1 β-strands 2 and 3. To relate structure to function, we exploited expanded genetic-code technology to insert photo-activatable probes at key sites in L1 and αCT. The pattern of αCT-mediated photo-cross-linking within the free and bound receptor is in accord with the crystal structure and prior mutagenesis. Surprisingly, L1 photo-probes in β-strands 2 and 3, predicted to be shielded by αCT, efficiently cross-link to insulin. Furthermore, anomalous mutations were identified on neighboring surfaces of αCT and insulin that impair hormone-dependent activation of the intracellular receptor tyrosine kinase (contained within the transmembrane β-subunit) disproportionately to their effects on insulin binding. Taken together, these results suggest that αCT, in addition to its hormone-recognition role, provides a signaling element in the mechanism of receptor activation.

  1. Ubiquitinated CD36 sustains insulin-stimulated Akt activation by stabilizing insulin receptor substrate 1 in myotubes.

    Science.gov (United States)

    Sun, Shishuo; Tan, Pengcheng; Huang, Xiaoheng; Zhang, Wei; Kong, Chen; Ren, Fangfang; Su, Xiong

    2018-02-16

    Both the magnitude and duration of insulin signaling are important in executing its cellular functions. Insulin-induced degradation of insulin receptor substrate 1 (IRS1) represents a key negative feedback loop that restricts insulin signaling. Moreover, high concentrations of fatty acids (FAs) and glucose involved in the etiology of obesity-associated insulin resistance also contribute to the regulation of IRS1 degradation. The scavenger receptor CD36 binds many lipid ligands, and its contribution to insulin resistance has been extensively studied, but the exact regulation of insulin sensitivity by CD36 is highly controversial. Herein, we found that CD36 knockdown in C2C12 myotubes accelerated insulin-stimulated Akt activation, but the activated signaling was sustained for a much shorter period of time as compared with WT cells, leading to exacerbated insulin-induced insulin resistance. This was likely due to enhanced insulin-induced IRS1 degradation after CD36 knockdown. Overexpression of WT CD36, but not a ubiquitination-defective CD36 mutant, delayed IRS1 degradation. We also found that CD36 functioned through ubiquitination-dependent binding to IRS1 and inhibiting its interaction with cullin 7, a key component of the multisubunit cullin-RING E3 ubiquitin ligase complex. Moreover, dissociation of the Src family kinase Fyn from CD36 by free FAs or Fyn knockdown/inhibition accelerated insulin-induced IRS1 degradation, likely due to disrupted IRS1 interaction with CD36 and thus enhanced binding to cullin 7. In summary, we identified a CD36-dependent FA-sensing pathway that plays an important role in negative feedback regulation of insulin activation and may open up strategies for preventing or managing type 2 diabetes mellitus. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Characterization of the growth of murine fibroblasts that express human insulin receptors. II. Interaction of insulin with other growth factors

    International Nuclear Information System (INIS)

    Randazzo, P.A.; Jarett, L.

    1990-01-01

    The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetal calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity

  3. The role of G-protein-coupled receptors in mediating the effect of fatty acids on inflammation and insulin sensitivity.

    Science.gov (United States)

    Oh, Da Young; Lagakos, William S

    2011-07-01

    Chronic activation of inflammatory pathways mediates the pathogenesis of insulin resistance, and the macrophage/adipocyte nexus provides a key mechanism underlying decreased insulin sensitivity. Free fatty acids are important in the pathogenesis of insulin resistance, although their precise mechanisms of action have yet to be fully elucidated. Recently, a family of G-protein-coupled receptors has been identified that exhibits high affinity for fatty acids. This review summarizes recent findings on six of these receptors, their ligands, and their potential physiological functions in vivo. Upon activation, the free fatty acid receptors affect inflammation, glucose metabolism, and insulin sensitivity. Genetic deletion of GPR40 and GPR41, receptors for long-chain and short-chain fatty acids, respectively, results in resistance to diet-induced obesity. Deletion of GPR43 and GPR84 exacerbates inflammation, and deletion of the long-chain fatty acid receptors GPR119 and GPR120 reduces or is predicted to reduce glucose tolerance. These studies provide a new understanding of the general biology of gastric motility and also shed valuable insight into some potentially beneficial therapeutic targets. Furthermore, highly selective agonists or antagonists for the free fatty acid receptors have been developed and look promising for treating various metabolic diseases.

  4. Structural analogs of human insulin-like growth factor I with reduced affinity for serum binding proteins and the type 2 insulin-like growth factor receptor

    International Nuclear Information System (INIS)

    Bayne, M.L.; Applebaum, J.; Chicchi, G.G.; Hayes, N.S.; Green, B.G.; Cascieri, M.A.

    1988-01-01

    Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. [Phe -1 , Val 1 , Asn 2 , Gln 3 , His 4 , Ser 8 , His 9 , Glu 12 , Tyr 15 , Leu 16 ]IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has >1000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. [Gln 3 , Ala 4 ] IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. [Tyr 15 , Leu 16 ] IGH-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. The peptide in which these four-point mutations are combined, [Gln 3 , Ala 4 , Tyr 15 ,Leu 16 ]IGF-I, has 600-fold reduced affinity for the serum binding proteins. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, These peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I

  5. High fructose-mediated attenuation of insulin receptor signaling does not affect PDGF-induced proliferative signaling in vascular smooth muscle cells.

    Science.gov (United States)

    Osman, Islam; Poulose, Ninu; Ganapathy, Vadivel; Segar, Lakshman

    2016-11-15

    Insulin resistance is associated with accelerated atherosclerosis. Although high fructose is known to induce insulin resistance, it remains unclear as to how fructose regulates insulin receptor signaling and proliferative phenotype in vascular smooth muscle cells (VSMCs), which play a major role in atherosclerosis. Using human aortic VSMCs, we investigated the effects of high fructose treatment on insulin receptor substrate-1 (IRS-1) serine phosphorylation, insulin versus platelet-derived growth factor (PDGF)-induced phosphorylation of Akt, S6 ribosomal protein, and extracellular signal-regulated kinase (ERK), and cell cycle proteins. In comparison with PDGF (a potent mitogen), neither fructose nor insulin enhanced VSMC proliferation and cyclin D1 expression. d-[ 14 C(U)]fructose uptake studies revealed a progressive increase in fructose uptake in a time-dependent manner. Concentration-dependent studies with high fructose (5-25mM) showed marked increases in IRS-1 serine phosphorylation, a key adapter protein in insulin receptor signaling. Accordingly, high fructose treatment led to significant diminutions in insulin-induced phosphorylation of downstream signaling components including Akt and S6. In addition, high fructose significantly diminished insulin-induced ERK phosphorylation. Nevertheless, high fructose did not affect PDGF-induced key proliferative signaling events including phosphorylation of Akt, S6, and ERK and expression of cyclin D1 protein. Together, high fructose dysregulates IRS-1 phosphorylation state and proximal insulin receptor signaling in VSMCs, but does not affect PDGF-induced proliferative signaling. These findings suggest that systemic insulin resistance rather than VSMC-specific dysregulation of insulin receptor signaling by high fructose may play a major role in enhancing atherosclerosis and neointimal hyperplasia. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Nigella sativa Relieves the Altered Insulin Receptor Signaling in Streptozotocin-Induced Diabetic Rats Fed with a High-Fat Diet.

    Science.gov (United States)

    Balbaa, Mahmoud; El-Zeftawy, Marwa; Ghareeb, Doaa; Taha, Nabil; Mandour, Abdel Wahab

    2016-01-01

    The black cumin (Nigella sativa) "NS" or the black seeds have many pharmacological activities such as antioxidant, anticarcinogenic, antihypertensive, and antidiabetic properties. In this work, streptozotocin-induced diabetic rats fed with a high-fat diet were treated daily with NS oil (NSO) in order to study the effect on the blood glucose, lipid profile, oxidative stress parameters, and the gene expression of some insulin receptor-induced signaling molecules. This treatment was combined also with some drugs (metformin and glimepiride) and the insulin receptor inhibitor I-OMe-AG538. The administration of NSO significantly induced the gene expression of insulin receptor compared to rats that did not receive NSO. Also, it upregulated the expression of insulin-like growth factor-1 and phosphoinositide-3 kinase, whereas the expression of ADAM-17 was downregulated. The expression of ADAM-17 is corroborated by the analysis of TIMP-3 content. In addition, the NSO significantly reduced blood glucose level, components of the lipid profile, oxidative stress parameters, serum insulin/insulin receptor ratio, and the tumor necrosis factor-α, confirming that NSO has an antidiabetic activity. Thus, the daily NSO treatment in our rat model indicates that NSO has a potential in the management of diabetes as well as improvement of insulin-induced signaling.

  7. Nigella sativa Relieves the Altered Insulin Receptor Signaling in Streptozotocin-Induced Diabetic Rats Fed with a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Mahmoud Balbaa

    2016-01-01

    Full Text Available The black cumin (Nigella sativa “NS” or the black seeds have many pharmacological activities such as antioxidant, anticarcinogenic, antihypertensive, and antidiabetic properties. In this work, streptozotocin-induced diabetic rats fed with a high-fat diet were treated daily with NS oil (NSO in order to study the effect on the blood glucose, lipid profile, oxidative stress parameters, and the gene expression of some insulin receptor-induced signaling molecules. This treatment was combined also with some drugs (metformin and glimepiride and the insulin receptor inhibitor I-OMe-AG538. The administration of NSO significantly induced the gene expression of insulin receptor compared to rats that did not receive NSO. Also, it upregulated the expression of insulin-like growth factor-1 and phosphoinositide-3 kinase, whereas the expression of ADAM-17 was downregulated. The expression of ADAM-17 is corroborated by the analysis of TIMP-3 content. In addition, the NSO significantly reduced blood glucose level, components of the lipid profile, oxidative stress parameters, serum insulin/insulin receptor ratio, and the tumor necrosis factor-α, confirming that NSO has an antidiabetic activity. Thus, the daily NSO treatment in our rat model indicates that NSO has a potential in the management of diabetes as well as improvement of insulin-induced signaling.

  8. Activation and regulation of the pattern recognition receptors in obesity-induced adipose tissue inflammation and insulin resistance.

    Science.gov (United States)

    Watanabe, Yasuharu; Nagai, Yoshinori; Takatsu, Kiyoshi

    2013-09-23

    Obesity-associated chronic tissue inflammation is a key contributing factor to type 2 diabetes mellitus, and a number of studies have clearly demonstrated that the immune system and metabolism are highly integrated. Recent advances in deciphering the various immune cells and signaling networks that link the immune and metabolic systems have contributed to our understanding of the pathogenesis of obesity-associated inflammation. Other recent studies have suggested that pattern recognition receptors in the innate immune system recognize various kinds of endogenous and exogenous ligands, and have a crucial role in initiating or promoting obesity-associated chronic inflammation. Importantly, these mediators act on insulin target cells or on insulin-producing cells impairing insulin sensitivity and its secretion. Here, we discuss how various pattern recognition receptors in the immune system underlie the etiology of obesity-associated inflammation and insulin resistance, with a particular focus on the TLR (Toll-like receptor) family protein Radioprotective 105 (RP105)/myeloid differentiation protein-1 (MD-1).

  9. Activation and Regulation of the Pattern Recognition Receptors in Obesity-Induced Adipose Tissue Inflammation and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Kiyoshi Takatsu

    2013-09-01

    Full Text Available Obesity-associated chronic tissue inflammation is a key contributing factor to type 2 diabetes mellitus, and a number of studies have clearly demonstrated that the immune system and metabolism are highly integrated. Recent advances in deciphering the various immune cells and signaling networks that link the immune and metabolic systems have contributed to our understanding of the pathogenesis of obesity-associated inflammation. Other recent studies have suggested that pattern recognition receptors in the innate immune system recognize various kinds of endogenous and exogenous ligands, and have a crucial role in initiating or promoting obesity-associated chronic inflammation. Importantly, these mediators act on insulin target cells or on insulin-producing cells impairing insulin sensitivity and its secretion. Here, we discuss how various pattern recognition receptors in the immune system underlie the etiology of obesity-associated inflammation and insulin resistance, with a particular focus on the TLR (Toll-like receptor family protein Radioprotective 105 (RP105/myeloid differentiation protein-1 (MD-1.

  10. Mechanical stress regulates insulin sensitivity through integrin-dependent control of insulin receptor localization.

    Science.gov (United States)

    Kim, Jung; Bilder, David; Neufeld, Thomas P

    2018-01-15

    Insulin resistance, the failure to activate insulin signaling in the presence of ligand, leads to metabolic diseases, including type 2 diabetes. Physical activity and mechanical stress have been shown to protect against insulin resistance, but the molecular mechanisms remain unclear. Here, we address this relationship in the Drosophila larval fat body, an insulin-sensitive organ analogous to vertebrate adipose tissue and livers. We found that insulin signaling in Drosophila fat body cells is abolished in the absence of physical activity and mechanical stress even when excess insulin is present. Physical movement is required for insulin sensitivity in both intact larvae and fat bodies cultured ex vivo. Interestingly, the insulin receptor and other downstream components are recruited to the plasma membrane in response to mechanical stress, and this membrane localization is rapidly lost upon disruption of larval or tissue movement. Sensing of mechanical stimuli is mediated in part by integrins, whose activation is necessary and sufficient for mechanical stress-dependent insulin signaling. Insulin resistance develops naturally during the transition from the active larval stage to the immotile pupal stage, suggesting that regulation of insulin sensitivity by mechanical stress may help coordinate developmental programming with metabolism. © 2018 Kim et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Insulin-like growth factor receptor inhibitors: baby or the bathwater?

    Science.gov (United States)

    Yee, Douglas

    2012-07-03

    The success of targeted therapies for cancer is undisputed; strong preclinical evidence has resulted in the approval of several new agents for cancer treatment. The type I insulin-like growth factor receptor (IGF1R) appeared to be one of these promising new targets. Substantial population and preclinical data have all pointed toward this pathway as an important regulator of tumor cell biology. Although early results from clinical trials that targeted the IGF1R showed some evidence of response, larger randomized phase III trials have not shown clear clinical benefit of targeting this pathway in combination with conventional strategies. These disappointing results have resulted in the discontinuation of several anti-IGF1R programs. However, the conduct of these trials has brought to the forefront several important factors that need to be considered in the conduct of future clinical trials. The need to develop biomarkers, a clearer understanding of insulin receptor function, and defining rational combination regimens all require further consideration. In this commentary, the current state of IGF1R inhibitors in cancer therapy is reviewed.

  12. Role of the Insulin-Like Growth Factor Type 1 Receptor in the Pathogenesis of Diabetic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Duo Zhang

    2015-01-01

    Full Text Available Defective cognitive function is common in patients with diabetes, suggesting that insulin normally exerts anabolic actions in neuron, namely, diabetic encephalopathy. However, because insulin can cross-activate the insulin-like growth factor type 1 receptor (IGF-1R, which also functions in most of tissues, such as muscle and bone, it has been difficult to establish the direct (IGF-1-independent actions of insulin in the pathogenesis of diabetic encephalopathy. To overcome this problem, we examined insulin signaling and action in primary PC-12 cells engineered for conditional disruption of the IGF-1 receptor (ΔIGF-1R. The results showed that the lower glucose metabolism and high expression of IGF-1R occurred in the brain of the DE rat model. The results also showed the defect of IGF-1R could significantly improve the ability of glucose consumption and enhance sensitivity to insulin-induced IR and Akt phosphorylation in PC12 cells. And meanwhile, IGF-1R allele gene knockout (IGF-1Rneo mice treated with HFD/STZ had better cognitive abilities than those of wild mice. Those results indicate that insulin exerts direct anabolic actions in neuron-like cells by activation of its cognate receptor and prove that IGF-1R plays an important role in the pathogenesis of diabetic encephalopathy.

  13. Partial rescue of in vivo insulin signalling in skeletal muscle by impaired insulin clearance in heterozygous carriers of a mutation in the insulin receptor gene

    DEFF Research Database (Denmark)

    Højlund, K.; Wojtaszewski, Jørgen; Birk, Jesper Bratz

    2006-01-01

    AIMS/HYPOTHESIS: Recently we reported the coexistence of postprandial hypoglycaemia and moderate insulin resistance in heterozygous carriers of the Arg1174Gln mutation in the insulin receptor gene (INSR). Controlled studies of in vivo insulin signalling in humans with mutant INSR are unavailable,...

  14. Modulating Estrogen Receptor-related Receptor-α Activity Inhibits Cell Proliferation*

    OpenAIRE

    Bianco, Stéphanie; Lanvin, Olivia; Tribollet, Violaine; Macari, Claire; North, Sophie; Vanacker, Jean-Marc

    2009-01-01

    High expression of the estrogen receptor-related receptor (ERR)-α in human tumors is correlated to a poor prognosis, suggesting an involvement of the receptor in cell proliferation. In this study, we show that a synthetic compound (XCT790) that modulates the activity of ERRα reduces the proliferation of various cell lines and blocks the G1/S transition of the cell cycle in an ERR...

  15. Study of NSILA-s (nonsuppressible insulin-like activity soluble in acid ethanol) by a new radio-receptor assay

    International Nuclear Information System (INIS)

    Megyeri, K.

    1977-01-01

    The insulin-like activity nonsuppressible with insulin-antibodies (NSILA) accounts for 90% of the insulin activity of the blood plasma. A peptid, soluble in acid ethanol, was purified (NSILA-s) and specific NSILA-s receptors were found on the plasma membrane of liver cells. The specificity, kinetics, affinity and pH-optimum of NSILA-s receptors significantly differed from those of insulin-receptors. A new, highly specific radio-receptor assay was developed, applying 125 I NSILA-s and liver cell membranes or lymphocytes. By this means the NSILA-s concentration of blood plasma was determined under normal and pathological (hypoglycaemizing tumours, hypopituritarism, acromegaly, anorexia nervosa, etc.) conditions. It is concluded that, 90% of the NSILA-s concentration of blood plasma is bound. In cases of hypoglycaemizing tumours increased NSILA-s activity was demonstrated both in blood serum and in the extracts of the tumour-tissue. Pharmacological doses of growth hormon (GH) increased plasma NSILA-s concentration, however, in the case of stimulation- and inhibition-tests carried out in normal patients, no unambiguous relationship could be demonstrated between plasma GH- and NSILA-s-levels. (L.E.)

  16. Effect of insulin analogues on insulin/IGF1 hybrid receptors: increased activation by glargine but not by its metabolites M1 and M2.

    Directory of Open Access Journals (Sweden)

    Cécile Pierre-Eugene

    Full Text Available BACKGROUND: In diabetic patients, the pharmacokinetics of injected human insulin does not permit optimal control of glycemia. Fast and slow acting insulin analogues have been developed, but they may have adverse properties, such as increased mitogenic or anti-apoptotic signaling. Insulin/IGF1 hybrid receptors (IR/IGF1R, present in most tissues, have been proposed to transmit biological effects close to those of IGF1R. However, the study of hybrid receptors is difficult because of the presence of IR and IGF1R homodimers. Our objective was to perform the first study on the pharmacological properties of the five marketed insulin analogues towards IR/IGF1R hybrids. METHODOLOGY: To study the effect of insulin analogues on IR/IGF1R hybrids, we used our previously developed Bioluminescence Resonance Energy Transfer (BRET assay that permits specific analysis of the pharmacological properties of hybrid receptors. Moreover, we have developed a new, highly sensitive BRET-based assay to monitor phophatidylinositol-3 phosphate (PIP(3 production in living cells. Using this assay, we performed a detailed pharmacological analysis of PIP(3 production induced by IGF1, insulin and insulin analogues in living breast cancer-derived MCF-7 and MDA-MB231 cells. RESULTS: Among the five insulin analogues tested, only glargine stimulated IR/IGF1R hybrids with an EC50 that was significantly lower than insulin and close to that of IGF1. Glargine more efficiently stimulated PIP(3 production in MCF-7 cells but not in MDA-MB231 cells as compared to insulin. In contrast, glargine metabolites M1 and M2 showed lower potency for hybrid receptors stimulation, PIP(3 production, Akt and Erk1/2 phosphorylation and DNA synthesis in MCF-7 cells, compared to insulin. CONCLUSION: Glargine, possibly acting through IR/IGF1R hybrids, displays higher potency, whereas its metabolites M1 and M2 display lower potency than insulin for the stimulation of proliferative/anti-apoptotic pathways in

  17. Effects of the antitumor drug OSI-906, a dual inhibitor of IGF-1 receptor and insulin receptor, on the glycemic control, β-cell functions, and β-cell proliferation in male mice.

    Science.gov (United States)

    Shirakawa, Jun; Okuyama, Tomoko; Yoshida, Eiko; Shimizu, Mari; Horigome, Yuka; Tuno, Takayuki; Hayasaka, Moe; Abe, Shiori; Fuse, Masahiro; Togashi, Yu; Terauchi, Yasuo

    2014-06-01

    The IGF-1 receptor has become a therapeutic target for the treatment of cancer. The efficacy of OSI-906 (linstinib), a dual inhibitor of IGF-1 receptor and insulin receptor, for solid cancers has been examined in clinical trials. The effects of OSI-906, however, on the blood glucose levels and pancreatic β-cell functions have not yet been reported. We investigated the impact of OSI-906 on glycemic control, insulin secretion, β-cell mass, and β-cell proliferation in male mice. Oral administration of OSI-906 worsened glucose tolerance in a dose-dependent manner in the wild-type mice. OSI-906 at a dose equivalent to the clinical daily dose (7.5 mg/kg) transiently evoked glucose intolerance and hyperinsulinemia. Insulin receptor substrate (IRS)-2-deficient mice and mice with diet-induced obesity, both models of peripheral insulin resistance, exhibited more severe glucose intolerance after OSI-906 administration than glucokinase-haploinsufficient mice, a model of impaired insulin secretion. Phloridzin improved the hyperglycemia induced by OSI-906 in mice. In vitro, OSI-906 showed no effect on insulin secretion from isolated islets. After daily administration of OSI-906 for a week to mice, the β-cell mass and β-cell proliferation rate were significantly increased. The insulin signals in the β-cells were apparently unaffected in those mice. Taken together, the results suggest that OSI-906 could exacerbate diabetes, especially in patients with insulin resistance. On the other hand, the results suggest that the β-cell mass may expand in response to chemotherapy with this drug.

  18. The insulin receptor substrate 1 associates with phosphotyrosine phosphatase SHPTP2 in liver and muscle of rats

    Directory of Open Access Journals (Sweden)

    Lima M.H.M.

    1998-01-01

    Full Text Available Insulin stimulates the tyrosine kinase activity of its receptor resulting in the phosphorylation of its cytosolic substrate, insulin receptor substrate-1 (IRS-1 which, in turn, associates with proteins containing SH2 domains. It has been shown that IRS-1 associates with the tyrosine phosphatase SHPTP2 in cell cultures. While the effect of the IRS-1/SHPTP2 association on insulin signal transduction is not completely known, this association may dephosphorylate IRS-1 and may play a critical role in the mitogenic actions of insulin. However, there is no physiological demonstration of this pathway of insulin action in animal tissues. In the present study we investigated the ability of insulin to induce association between IRS-1 and SHPTP2 in liver and muscle of intact rats, by co-immunoprecipitation with anti-IRS-1 antibody and anti-SHPTP2 antibody. In both tissues there was an increase in IRS-1 association with SHPTP2 after insulin stimulation. This association occurred when IRS-1 had the highest level of tyrosine phosphorylation and the decrease in this association was more rapid than the decrease in IRS-1 phosphorylation levels. The data provide evidence against the participation of SHPTP2 in IRS-1 dephosphorylation in rat tissues, and suggest that the insulin signal transduction pathway in rat tissues is related mainly to the mitogenic effects of the hormone.

  19. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells

    DEFF Research Database (Denmark)

    Billestrup, N; Møldrup, A; Serup, P

    1990-01-01

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, we have transfected ...

  20. Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor.

    Science.gov (United States)

    Mulvihill, Mark J; Cooke, Andrew; Rosenfeld-Franklin, Maryland; Buck, Elizabeth; Foreman, Ken; Landfair, Darla; O'Connor, Matthew; Pirritt, Caroline; Sun, Yingchaun; Yao, Yan; Arnold, Lee D; Gibson, Neil W; Ji, Qun-Sheng

    2009-09-01

    The IGF-1 receptor (IGF-1R) has been implicated in the promotion of tumorigenesis, metastasis and resistance to cancer therapies. Therefore, this receptor has become a major focus for the development of anticancer agents. Our lead optimization efforts that blended structure-based design and empirical medicinal chemistry led to the discovery of OSI-906, a novel small-molecule dual IGF-1R/insulin receptor (IR) kinase inhibitor. OSI-906 potently and selectively inhibits autophosphorylation of both human IGF-1R and IR, displays in vitro antiproliferative effects in a variety of tumor cell lines and shows robust in vivo anti-tumor efficacy in an IGF-1R-driven xenograft model when administered orally once daily. OSI-906 is a novel, potent, selective and orally bioavailable dual IGF-1R/IR kinase inhibitor with favorable preclinical drug-like properties, which has demonstrated in vivo efficacy in tumor models and is currently in clinical testing.

  1. Insulin-like growth factor type-1 receptor down-regulation associated with dwarfism in Holstein calves.

    Science.gov (United States)

    Blum, J W; Elsasser, T H; Greger, D L; Wittenberg, S; de Vries, F; Distl, O

    2007-10-01

    Perturbations in endocrine functions can impact normal growth. Endocrine traits were studied in three dwarf calves exhibiting retarded but proportionate growth and four phenotypically normal half-siblings, sired by the same bull, and four unrelated control calves. Plasma 3,5,3'-triiodothyronine and thyroxine concentrations in dwarfs and half-siblings were in the physiological range and responded normally to injected thyroid-releasing hormone. Plasma glucagon concentrations were different (dwarfs, controls>half-siblings; Pcontrols, Pcontrols, P=0.08). Responses of GH to xylazine and to a GH-releasing-factor analogue were similar in dwarfs and half-siblings. Relative gene expression of IGF-1, IGF-2, GH receptor (GHR), insulin receptor, IGF-1 type-1 and -2 receptors (IGF-1R, IGF-2R), and IGF binding proteins were measured in liver and anconeus muscle. GHR mRNA levels were different in liver (dwarfsdwarfism in studied calves.

  2. Increased interaction with insulin receptor substrate 1, a novel abnormality in insulin resistance and type 2 diabetes

    DEFF Research Database (Denmark)

    Caruso, Michael; Ma, Danjun; Msallaty, Zaher

    2014-01-01

    Insulin receptor substrate 1 (IRS1) is a key mediator of insulin signal transduction. Perturbations involving IRS1 complexes may lead to the development of insulin resistance and type 2 diabetes (T2D). Surprisingly little is known about the proteins that interact with IRS1 in humans under health...... in obesity and T2D in humans, provides new insights into the molecular mechanism of insulin resistance and identifies new targets for T2D drug development....... and disease conditions. We used a proteomic approach to assess IRS1 interaction partners in skeletal muscle from lean healthy control subjects (LCs), obese insulin-resistant nondiabetic control subjects (OCs), and participants with T2D before and after insulin infusion. We identified 113 novel endogenous IRS1...

  3. Conjugated Linoleic Acids Mediate Insulin Release through Islet G Protein-coupled Receptor FFA1/GPR40

    DEFF Research Database (Denmark)

    Schmidt, Johannes; Liebscher, Kathrin; Merten, Nicole

    2011-01-01

    of insulin resistance and the risk of developing diabetes. However, the mechanisms accounting for the effects of CLAs on glucose homeostasis are incompletely understood. Herein we provide evidence that CLAs specifically activate the cell surface receptor FFA1, an emerging therapeutic target to treat type 2...... found to activate FFA1 in vitro at concentrations sufficient to also account for FFA1 activation in vivo. Each CLA isomer markedly increased glucose-stimulated insulin secretion in insulin-producing INS-1E cells that endogenously express FFA1 and in primary pancreatic β-cells of wild type but not FFA1......(-/-) knock-out mice. Our findings establish a clear mechanistic link between CLAs and insulin production and identify the cell surface receptor FFA1 as a molecular target for CLAs, explaining their acute stimulatory effects on insulin secretion in vivo. CLAs are also revealed as insulinotropic components...

  4. Binding of the Ras activator son of sevenless to insulin receptor substrate-1 signaling complexes.

    Science.gov (United States)

    Baltensperger, K; Kozma, L M; Cherniack, A D; Klarlund, J K; Chawla, A; Banerjee, U; Czech, M P

    1993-06-25

    Signal transmission by insulin involves tyrosine phosphorylation of a major insulin receptor substrate (IRS-1) and exchange of Ras-bound guanosine diphosphate for guanosine triphosphate. Proteins containing Src homology 2 and 3 (SH2 and SH3) domains, such as the p85 regulatory subunit of phosphatidylinositol-3 kinase and growth factor receptor-bound protein 2 (GRB2), bind tyrosine phosphate sites on IRS-1 through their SH2 regions. Such complexes in COS cells were found to contain the heterologously expressed putative guanine nucleotide exchange factor encoded by the Drosophila son of sevenless gene (dSos). Thus, GRB2, p85, or other proteins with SH2-SH3 adapter sequences may link Sos proteins to IRS-1 signaling complexes as part of the mechanism by which insulin activates Ras.

  5. Recruitment of GABA(A) receptors and fearfulness in chicks: modulation by systemic insulin and/or epinephrine.

    Science.gov (United States)

    Cid, Mariana Paula; Toledo, Carolina Maribel; Salvatierra, Nancy Alicia

    2013-02-01

    One-day-old chicks were individually assessed on their latency to peck pebbles, and categorized as low latency (LL) or high latency (HL) according to fear. Interactions between acute stress and systemic insulin and epinephrine on GABA(A) receptor density in the forebrain were studied. At 10 days of life, LL and HL chicks were intraperitoneally injected with insulin, epinephrine or saline, and immediately after stressed by partial water immersion for 15 min and killed by decapitation. Forebrains were dissected and the GABA(A) receptor density was measured ex vivo by the (3)[H]-flunitrazepam binding assay in synaptosomes. In non-stressed chicks, insulin (non-hypoglycemic dose) at 2.50 IU/kg of body weight incremented the Bmax by 40.53% in the HL chicks compared to saline group whereas no significant differences were observed between individuals in the LL subpopulation. Additionally, insulin increased the Bmax (23.48%) in the HL group with respect to the LL ones, indicating that the insulin responses were different according to the anxiety of each category. Epinephrine administration (0.25 and 0.50mg/kg) incremented the Bmax in non-stressed chicks, in the LL group by about 37% and 33%, respectively, compared to ones injected with saline. In the stressed chicks, 0.25mg/kg bw epinephrine increased the Bmax significantly in the HL group by about 24% compared to saline, suggesting that the effect of epinephrine was only observed in the HL group under acute stress conditions. Similarly, the same epinephrine doses co-administered with insulin increased the receptor density in both subpopulations and also showed that the highest dose of epinephrine did not further increase the maximum density of GABA(A)R in HL chicks. These results suggest that systemic epinephrine, perhaps by evoking central norepinephrine release, modulated the increase in the forebrain GABA(A) receptor recruitment induced by both insulin and stress in different ways depending on the subpopulation

  6. Hyperosmotic stress inhibits insulin receptor substrate-1 function by distinct mechanisms in 3T3-L1 adipocytes

    DEFF Research Database (Denmark)

    Gual, Philippe; Gonzalez, Teresa; Grémeaux, Thierry

    2003-01-01

    . Furthermore, the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented the osmotic shock-induced phosphorylation of IRS-1 on Ser307. The inhibition of mTOR completely reversed the inhibitory effect of hyperosmotic stress on insulin-induced IRS-1 tyrosine phosphorylation and PI 3-kinase activation......In 3T3-L1 adipocytes, hyperosmotic stress was found to inhibit insulin signaling, leading to an insulin-resistant state. We show here that, despite normal activation of insulin receptor, hyperosmotic stress inhibits both tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and IRS-1....... In addition, prolonged osmotic stress enhanced the degradation of IRS proteins through a rapamycin-insensitive pathway and a proteasome-independent process. These data support evidence of new mechanisms involved in osmotic stress-induced cellular insulin resistance. Short-term osmotic stress induces...

  7. Developmental aspects of the rat brain insulin receptor: loss of sialic acid and fluctuation in number characterize fetal development

    International Nuclear Information System (INIS)

    Brennan, W.A. Jr.

    1988-01-01

    In this study, I have investigated the structure of the rat brain insulin receptor during fetal development. There is a progressive decrease in the apparent molecular size of the brain alpha-subunit during development: 130K on day 16 of gestation, 126K at birth, and 120K in the adult. Glycosylation was investigated as a possible reason for the observed differences in the alpha-subunit molecular size. The results show that the developmental decrease in the brain alpha-subunit apparent molecular size is due to a parallel decrease in sialic acid content. This was further confirmed by measuring the retention of autophosphorylated insulin receptors on wheat germ agglutinin (WGA)-Sepharose. An inverse correlation between developmental age and retention of 32 P-labeled insulin receptors on the lectin column was observed. Insulin binding increases 6-fold between 16 and 20 days of gestation [61 +/- 25 (+/- SE) fmol/mg protein and 364 +/- 42 fmol/mg, respectively]. Thereafter, binding in brain membranes decreases to 150 +/- 20 fmol/mg by 2 days after birth, then reaches the adult level of 63 +/- 15 fmol/mg. In addition, the degree of insulin-stimulated autophosphorylation closely parallels the developmental changes in insulin binding. Between 16 and 20 days of fetal life, insulin-stimulated phosphorylation of the beta-subunit increases 6-fold. Thereafter, the extent of phosphorylation decreases rapidly, reaching adult values identical with those in 16-day-old fetal brain. These results suggest that the embryonic brain possesses competent insulin receptors whose expression changes markedly during fetal development. This information should be important in defining the role of insulin in the developing nervous system

  8. The importance of α-CT and Salt bridges in the Formation of Insulin and its Receptor Complex by Computational Simulation.

    Science.gov (United States)

    Dehghan-Shasaltaneh, Marzieh; Lanjanian, Hossein; Riazi, Gholam Hossein; Masoudi-Nejad, Ali

    2018-01-01

    Insulin hormone is an important part of the endocrine system. It contains two polypeptide chains and plays a pivotal role in regulating carbohydrate metabolism. Insulin receptors (IR) located on cell surface interacts with insulin to control the intake of glucose. Although several studies have tried to clarify the interaction between insulin and its receptor, the mechanism of this interaction remains elusive because of the receptor's structural complexity and structural changes during the interaction. In this work, we tried to fractionate the interactions. Therefore, sequential docking method utilization of HADDOCK was used to achieve the mentioned goal, so the following processes were done: the first, two pdb files of IR i.e., 3LOH and 3W11 were concatenated using modeller. The second, flexible regions of IR were predicted by HingeProt. Output files resulting from HingeProt were uploaded into HADDOCK. Our results predict new salt bridges in the complex and emphasize on the role of salt bridges to maintain an inverted V structure of IR. Having an inverted V structure leads to activate intracellular signaling pathway. In addition to presence salt bridges to form a convenient structure of IR, the importance of α-chain of carboxyl terminal (α-CT) to interact with insulin was surveyed and also foretokened new insulin/IR contacts, particularly at site 2 (rigid parts 2 and 3). Finally, several conformational changes in residues Asn711-Val715 of α-CT were occurred, we suggest that α-CT is a suitable situation relative to insulin due to these conformational alterations.

  9. Effects of age and insulin-like growth factor-1 on rat neurotrophin receptor expression after nerve injury.

    Science.gov (United States)

    Luo, T David; Alton, Timothy B; Apel, Peter J; Cai, Jiaozhong; Barnwell, Jonathan C; Sonntag, William E; Smith, Thomas L; Li, Zhongyu

    2016-10-01

    Neurotrophin receptors, such as p75(NTR) , direct neuronal response to injury. Insulin-like growth factor-1 receptor (IGF-1R) mediates the increase in p75(NTR) during aging. The aim of this study was to examine the effect of aging and insulin-like growth factor-1 (IGF-1) treatment on recovery after peripheral nerve injury. Young and aged rats underwent tibial nerve transection with either local saline or IGF-1 treatment. Neurotrophin receptor mRNA and protein expression were quantified. Aged rats expressed elevated baseline IGF-1R (34% higher, P = 0.01) and p75(NTR) (68% higher, P < 0.01) compared with young rats. Post-injury, aged animals expressed significantly higher p75(NTR) levels (68.5% above baseline at 4 weeks). IGF-1 treatment suppressed p75(NTR) gene expression at 4 weeks (17.2% above baseline, P = 0.002) post-injury. Local IGF-1 treatment reverses age-related declines in recovery after peripheral nerve injuries by suppressing p75(NTR) upregulation and pro-apoptotic complexes. IGF-1 may be considered a viable adjuvant therapy to current treatment modalities. Muscle Nerve 54: 769-775, 2016. © 2016 Wiley Periodicals, Inc.

  10. The Role of Insulin, Insulin Growth Factor, and Insulin-Degrading Enzyme in Brain Aging and Alzheimer's Disease

    OpenAIRE

    Messier, Claude; Teutenberg, Kevin

    2005-01-01

    Most brain insulin comes from the pancreas and is taken up by the brain by what appears to be a receptor-based carrier. Type 2 diabetes animal models associated with insulin resistance show reduced insulin brain uptake and content. Recent data point to changes in the insulin receptor cascade in obesity-related insulin resistance, suggesting that brain insulin receptors also become less sensitive to insulin, which could reduce synaptic plasticity. Insulin transport to the brain is reduced in a...

  11. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion.

    Directory of Open Access Journals (Sweden)

    Yuko Nakagawa

    Full Text Available BACKGROUND: Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. METHODOLOGY/PRINCIPAL FINDINGS: The expression of the sweet taste receptor was determined by RT-PCR and immunohistochemistry. Changes in cytoplasmic Ca(2+ ([Ca(2+](c and cAMP ([cAMP](c were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca(2+](c. The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca(2+](c response. The effect of sucralose on [Ca(2+](c was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a G(q inhibitor. Sucralose also induced sustained elevation of [cAMP](c, which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. CONCLUSIONS: Sweet taste receptor is expressed in beta-cells, and activation of this receptor induces insulin secretion by Ca(2+ and cAMP-dependent mechanisms.

  12. Cell-Cell Adhesion and Insulin-Like Growth Factor I Receptor in Breast Cancer

    National Research Council Canada - National Science Library

    Bartucci, Monica

    2001-01-01

    .... Our goal was to study the role of the insulin-like growth factor I receptor (IGF-IR) in breast cancer. The IGF-IR is a multifunctional tyrosine kinase that has been recently implicated in breast tumor development and progression...

  13. Alternative translation initiation of Caveolin-2 desensitizes insulin signaling through dephosphorylation of insulin receptor by PTP1B and causes insulin resistance.

    Science.gov (United States)

    Kwon, Hayeong; Jang, Donghwan; Choi, Moonjeong; Lee, Jaewoong; Jeong, Kyuho; Pak, Yunbae

    2018-06-01

    Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2β isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2β-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2β is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. The phosphatidylinositol-3 kinase pathway is not essential for insulin-like growth factor I receptor-mediated clonogenic radioresistance

    International Nuclear Information System (INIS)

    Yu, Dong; Watanabe, Hiroshi; Shibuya, Hitoshi; Miura, Masahiko

    2002-01-01

    The insulin-like growth factor I receptor (IGF-IR) is known to induce clonogenic radioresistance in cells following ionizing irradiation. To explore the downstream signaling pathways, we focused on the phosphatidylinositol-3 kinase (PI3-K) pathway, which is thought to be the primary cell survival signal originating from the receptor. For this purpose, R- cells deficient in the endogenous IGF-IR were used as a recipient of the human IGF-IR with or without mutations at potential PI3-K activation sites: NPXY 950 and Y 1316 XXM. Mutats with double mutation at Y950/Y1316 exhibited not abrogated, but reduced activation of insulin receptor substance-1 (IRS-1), PI3-K, and Akt upon IGF-I stimulation. However, the mutants had the same clonogenic radioresistance as cells with wild type (WT) receptors. Neither wortmannin nor LY294002, specific inhibitors of PI3-K, affected the radioresistance of cells with WT receptors at concentrations specific for PI3-K. Collectively, these results indicate that the PI3-K pathway is not essential for IGF-IR-mediated clonogenic radioresistance. (author)

  15. GQ-16, a Novel Peroxisome Proliferator-activated Receptor gamma (PPAR gamma) Ligand, Promotes Insulin Sensitization without Weight Gain

    NARCIS (Netherlands)

    Amato, Angelica A.; Rajagopalan, Senapathy; Lin, Jean Z.; Carvalho, Bruno M.; Figueira, Ana C. M.; Lu, Jenny; Ayers, Stephen D.; Mottin, Melina; Silveira, Rodrigo L.; Telles de Souza, Paulo; Mourao, Rosa H. V.; Saad, Mario J. A.; Togashi, Marie; Simeoni, Luiz A.; Abdalla, Dulcineia S. P.; Skaf, Munir S.; Polikparpov, Igor; Lima, Maria C. A.; Galdino, Suely L.; Brennan, Richard G.; Baxter, John D.; Pitta, Ivan R.; Webb, Paul; Phillips, Kevin J.; Neves, Francisco A. R.

    2012-01-01

    The recent discovery that peroxisome proliferator-activated receptor gamma (PPAR gamma) targeted anti-diabetic drugs function by inhibiting Cdk5-mediated phosphorylation of the receptor has provided a new viewpoint to evaluate and perhaps develop improved insulin-sensitizing agents. Herein we report

  16. Drosophila Insulin receptor regulates the persistence of injury-induced nociceptive sensitization

    Science.gov (United States)

    Patel, Atit A.

    2018-01-01

    ABSTRACT Diabetes-associated nociceptive hypersensitivity affects diabetic patients with hard-to-treat chronic pain. Because multiple tissues are affected by systemic alterations in insulin signaling, the functional locus of insulin signaling in diabetes-associated hypersensitivity remains obscure. Here, we used Drosophila nociception/nociceptive sensitization assays to investigate the role of Insulin receptor (Insulin-like receptor, InR) in nociceptive hypersensitivity. InR mutant larvae exhibited mostly normal baseline thermal nociception (absence of injury) and normal acute thermal hypersensitivity following UV-induced injury. However, their acute thermal hypersensitivity persists and fails to return to baseline, unlike in controls. Remarkably, injury-induced persistent hypersensitivity is also observed in larvae that exhibit either type 1 or type 2 diabetes. Cell type-specific genetic analysis indicates that InR function is required in multidendritic sensory neurons including nociceptive class IV neurons. In these same nociceptive sensory neurons, only modest changes in dendritic morphology were observed in the InRRNAi-expressing and diabetic larvae. At the cellular level, InR-deficient nociceptive sensory neurons show elevated calcium responses after injury. Sensory neuron-specific expression of InR rescues the persistent thermal hypersensitivity of InR mutants and constitutive activation of InR in sensory neurons ameliorates the hypersensitivity observed with a type 2-like diabetic state. Our results suggest that a sensory neuron-specific function of InR regulates the persistence of injury-associated hypersensitivity. It is likely that this new system will be an informative genetically tractable model of diabetes-associated hypersensitivity. PMID:29752280

  17. Drosophila insulin-producing cells are differentially modulated by serotonin and octopamine receptors and affect social behavior.

    Directory of Open Access Journals (Sweden)

    Jiangnan Luo

    Full Text Available A set of 14 insulin-producing cells (IPCs in the Drosophila brain produces three insulin-like peptides (DILP2, 3 and 5. Activity in IPCs and release of DILPs is nutrient dependent and controlled by multiple factors such as fat body-derived proteins, neurotransmitters, and neuropeptides. Two monoamine receptors, the octopamine receptor OAMB and the serotonin receptor 5-HT1A, are expressed by the IPCs. These receptors may act antagonistically on adenylate cyclase. Here we investigate the action of the two receptors on activity in and output from the IPCs. Knockdown of OAMB by targeted RNAi led to elevated Dilp3 transcript levels in the brain, whereas 5-HT1A knockdown resulted in increases of Dilp2 and 5. OAMB-RNAi in IPCs leads to extended survival of starved flies and increased food intake, whereas 5-HT1A-RNAi produces the opposite phenotypes. However, knockdown of either OAMB or 5-HT1A in IPCs both lead to increased resistance to oxidative stress. In assays of carbohydrate levels we found that 5-HT1A knockdown in IPCs resulted in elevated hemolymph glucose, body glycogen and body trehalose levels, while no effects were seen after OAMB knockdown. We also found that manipulations of the two receptors in IPCs affected male aggressive behavior in different ways and 5-HT1A-RNAi reduced courtship latency. Our observations suggest that activation of 5-HT1A and OAMB signaling in IPCs generates differential effects on Dilp transcription, fly physiology, metabolism and social interactions. However the findings do not support an antagonistic action of the two monoamines and their receptors in this particular system.

  18. Drosophila insulin-producing cells are differentially modulated by serotonin and octopamine receptors and affect social behavior.

    Science.gov (United States)

    Luo, Jiangnan; Lushchak, Oleh V; Goergen, Philip; Williams, Michael J; Nässel, Dick R

    2014-01-01

    A set of 14 insulin-producing cells (IPCs) in the Drosophila brain produces three insulin-like peptides (DILP2, 3 and 5). Activity in IPCs and release of DILPs is nutrient dependent and controlled by multiple factors such as fat body-derived proteins, neurotransmitters, and neuropeptides. Two monoamine receptors, the octopamine receptor OAMB and the serotonin receptor 5-HT1A, are expressed by the IPCs. These receptors may act antagonistically on adenylate cyclase. Here we investigate the action of the two receptors on activity in and output from the IPCs. Knockdown of OAMB by targeted RNAi led to elevated Dilp3 transcript levels in the brain, whereas 5-HT1A knockdown resulted in increases of Dilp2 and 5. OAMB-RNAi in IPCs leads to extended survival of starved flies and increased food intake, whereas 5-HT1A-RNAi produces the opposite phenotypes. However, knockdown of either OAMB or 5-HT1A in IPCs both lead to increased resistance to oxidative stress. In assays of carbohydrate levels we found that 5-HT1A knockdown in IPCs resulted in elevated hemolymph glucose, body glycogen and body trehalose levels, while no effects were seen after OAMB knockdown. We also found that manipulations of the two receptors in IPCs affected male aggressive behavior in different ways and 5-HT1A-RNAi reduced courtship latency. Our observations suggest that activation of 5-HT1A and OAMB signaling in IPCs generates differential effects on Dilp transcription, fly physiology, metabolism and social interactions. However the findings do not support an antagonistic action of the two monoamines and their receptors in this particular system.

  19. Insulin receptor binding and tyrosine kinase activity in skeletal muscle from normal pregnant women and women with gestational diabetes

    DEFF Research Database (Denmark)

    Damm, P.; Handberg, A.; Kühl, C.

    1993-01-01

    OBJECTIVE: To ascertain whether the decreased glucose tolerance and insulin resistance found in normal and gestational diabetic pregnancy might be associated with changes in insulin receptor function. METHODS: Eight nonpregnant healthy women (nonpregnant controls), eight healthy pregnant women...... (pregnant controls), and eight women with gestational diabetes were investigated. All were non-obese. Muscle biopsies were obtained from the vastus lateralis muscle, and insulin binding and tyrosine kinase activities in partially purified skeletal muscle insulin receptors were studied. The pregnant controls...... with gestational diabetes compared to nonpregnant controls (P pregnant women did not differ from the other two groups. Postpartum, no differences in insulin binding were found between the groups. Basal and maximal tyrosine kinase activities toward the exogenous substrate poly(Glu4Tyr1) were...

  20. Insulin-like growth factor II: complexity of biosynthesis and receptor binding

    DEFF Research Database (Denmark)

    Gammeltoft, S; Christiansen, Jan; Nielsen, F C

    1991-01-01

    Insulin-like growth factor II (IGF-II) belongs to the insulin family of peptides and acts as a growth factor in many fetal tissues and tumors. The gene expression of IGF-II is initiated at three different promoters which gives rise to multiple transcripts. In a human rhabdomyosarcoma cell line......, Man-6-P induces cellular responses. We have studied rat brain neuronal precursor cells where Man-6-P acted as a mitogen suggesting that phosphomannosylated proteins may act as growth factors via the Man-6-P/IGF-II receptor. In conclusion, the gene expression and mechanism of action of IGF-II is very...

  1. Synthesis and Evaluation of a Library of Trifunctional Scaffold-Derived Compounds as Modulators of the Insulin Receptor.

    Science.gov (United States)

    Fabre, Benjamin; Pícha, Jan; Vaněk, Václav; Selicharová, Irena; Chrudinová, Martina; Collinsová, Michaela; Žáková, Lenka; Buděšínský, Miloš; Jiráček, Jiří

    2016-12-12

    We designed a combinatorial library of trifunctional scaffold-derived compounds, which were derivatized with 30 different in-house-made azides. The compounds were proposed to mimic insulin receptor (IR)-binding epitopes in the insulin molecule and bind to and activate this receptor. This work has enabled us to test our synthetic and biological methodology and to prove its robustness and reliability for the solid-phase synthesis and testing of combinatorial libraries of the trifunctional scaffold-derived compounds. Our effort resulted in the discovery of two compounds, which were able to weakly induce the autophosphorylation of IR and weakly bind to this receptor at a 0.1 mM concentration. Despite these modest biological results, which well document the well-known difficulty in modulating protein-protein interactions, this study represents a unique example of targeting the IR with a set of nonpeptide compounds that were specifically designed and synthesized for this purpose. We believe that this work can open new perspectives for the development of next-generation insulin mimetics based on the scaffold structure.

  2. Angiotensin II receptor blocker ameliorates stress-induced adipose tissue inflammation and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Motoharu Hayashi

    Full Text Available A strong causal link exists between psychological stress and insulin resistance as well with hypertension. Meanwhile, stress-related responses play critical roles in glucose metabolism in hypertensive patients. As clinical trials suggest that angiotensin-receptor blocker delays the onset of diabetes in hypertensive patients, we investigated the effects of irbesartan on stress-induced adipose tissue inflammation and insulin resistance. C57BL/6J mice were subjected to 2-week intermittent restraint stress and orally treated with vehicle, 3 and 10 mg/kg/day irbesartan. The plasma concentrations of lipid and proinflammatory cytokines [Monocyte Chemoattractant Protein-1 (MCP-1, tumor necrosis factor-α, and interleukin-6] were assessed with enzyme-linked immunosorbent assay. Monocyte/macrophage accumulation in inguinal white adipose tissue (WAT was observed with CD11b-positive cell counts and mRNA expressions of CD68 and F4/80 using immunohistochemistry and RT-PCR methods respectively. The mRNA levels of angiotensinogen, proinflammatory cytokines shown above, and adiponectin in WAT were also assessed with RT-PCR method. Glucose metabolism was assessed by glucose tolerance tests (GTTs and insulin tolerance tests, and mRNA expression of insulin receptor substrate-1 (IRS-1 and glucose transporter 4 (GLUT4 in WAT. Restraint stress increased monocyte accumulation, plasma free fatty acids, expression of angiotensinogen and proinflammatory cytokines including MCP-1, and reduced adiponectin. Irbesartan reduced stress-induced monocyte accumulation in WAT in a dose dependent manner. Irbesartan treatment also suppressed induction of adipose angiotensinogen and proinflammatory cytokines in WAT and blood, and reversed changes in adiponectin expression. Notably, irbesartan suppressed stress-induced reduction in adipose tissue weight and free fatty acid release, and improved insulin tolerance with restoration of IRS-1 and GLUT4 mRNA expressions in WAT. The results

  3. High-Fat Diet Augments VPAC1 Receptor-Mediated PACAP Action on the Liver, Inducing LAR Expression and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Masanori Nakata

    2016-01-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP acts on multiple processes of glucose and energy metabolism. PACAP potentiates insulin action in adipocytes and insulin release from pancreatic β-cells, thereby enhancing glucose tolerance. Contrary to these effects at organ levels, PACAP null mice exhibit hypersensitivity to insulin. However, this apparent discrepancy remains to be solved. We aimed to clarify the mechanism underlying the antidiabetic phenotype of PACAP null mice. Feeding with high-fat diet (HFD impaired insulin sensitivity and glucose tolerance in wild type mice, whereas these changes were prevented in PACAP null mice. HFD also impaired insulin-induced Akt phosphorylation in the liver in wild type mice, but not in PACAP null mice. Using GeneFishing method, HFD increased the leukocyte common antigen-related (LAR protein tyrosine phosphatase in the liver in wild type mice. Silencing of LAR restored the insulin signaling in the liver of HFD mice. Moreover, the increased LAR expression by HFD was prevented in PACAP null mice. HFD increased the expression of VPAC1 receptor (VPAC1-R, one of three PACAP receptors, in the liver of wild type mice. These data indicate that PACAP-VPAC1-R signaling induces LAR expression and insulin resistance in the liver of HFD mice. Antagonism of VPAC1-R may prevent progression of HFD-induced insulin resistance in the liver, providing a novel antidiabetic strategy.

  4. A nonsense mutation causing decreased levels of insulin receptor mRNA: Detection by a simplified technique for direct sequencing of genomic DNA amplified by the polymerase chain reaction

    International Nuclear Information System (INIS)

    Kadowaki, T.; Kadowaki, H.; Taylor, S.I.

    1990-01-01

    Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. The authors have studied a patient with leprechaunism (leprechaun/Minn-1), a genetic syndrome associated with intrauterine growth retardation and extreme insulin resistance. Genomic DNA from the patient was amplified by the polymerase chain reaction catalyzed by Thermus aquaticus (Taq) DNA polymerase, and the amplified DNA was directly sequenced. A nonsense mutations was identified at codon 897 in exon 14 in the paternal allele of the patient's insulin receptor gene. Levels of insulin receptor mRNA are decreased to <10% of normal in Epstein-Barr virus-transformed lymphoblasts and cultured skin fibroblasts from this patient. Thus, this nonsense mutation appears to cause a decrease in the levels of insulin receptor mRNA. In addition, they have obtained indirect evidence that the patient's maternal allele of the insulin receptor gene contains a cis-acting dominant mutation that also decreases the level of mRNA, but by a different mechanism. The nucleotide sequence of the entire protein-coding domain and the sequences of the intron-exon boundaries for all 22 exons of the maternal allele were normal. Presumably, the mutation in the maternal allele maps elsewhere in the insulin receptor gene. Thus, they conclude that the patient is a compound heterozygote for two cis-acting dominant mutations in the insulin receptor gene: (i) a nonsense mutation in the paternal allel that reduces the level of insulin receptor mRNA and (ii) an as yet unidentified mutation in the maternal allele that either decreases the rate of transcription or decreases the stability of the mRNA

  5. Fixed ratio combinations of glucagon like peptide 1 receptor agonists with basal insulin: a systematic review and meta-analysis.

    Science.gov (United States)

    Liakopoulou, Paraskevi; Liakos, Aris; Vasilakou, Despoina; Athanasiadou, Eleni; Bekiari, Eleni; Kazakos, Kyriakos; Tsapas, Apostolos

    2017-06-01

    Basal insulin controls primarily fasting plasma glucose but causes hypoglycaemia and weight gain, whilst glucagon like peptide 1 receptor agonists induce weight loss without increasing risk for hypoglycaemia. We conducted a systematic review and meta-analysis of randomised controlled trials to investigate the efficacy and safety of fixed ratio combinations of basal insulin with glucagon like peptide 1 receptor agonists. We searched Medline, Embase, and the Cochrane Library as well as conference abstracts up to December 2016. We assessed change in haemoglobin A 1c , body weight, and incidence of hypoglycaemia and gastrointestinal adverse events. We included eight studies with 5732 participants in the systematic review. Switch from basal insulin to fixed ratio combinations with a glucagon like peptide 1 receptor agonist was associated with 0.72% reduction in haemoglobin A 1c [95% confidence interval -1.03 to -0.41; I 2  = 93%] and 2.35 kg reduction in body weight (95% confidence interval -3.52 to -1.19; I 2  = 93%), reducing also risk for hypoglycaemia [odds ratio 0.70; 95% confidence interval 0.57 to 0.86; I 2  = 85%] but increasing incidence of nausea (odds ratio 6.89; 95% confidence interval 3.73-12.74; I 2  = 79%). Similarly, switching patients from treatment with a glucagon like peptide 1 receptor agonist to a fixed ratio combination with basal insulin was associated with 0.94% reduction in haemoglobin A 1c (95% confidence interval -1.11 to -0.77) and an increase in body weight by 2.89 kg (95% confidence interval 2.17-3.61). Fixed ratio combinations of basal insulin with glucagon like peptide 1 receptor agonists improve glycaemic control whilst balancing out risk for hypoglycaemia and gastrointestinal side effects.

  6. Differential interaction of Apolipoprotein-E isoforms with insulin receptors modulates brain insulin signaling in mutant human amyloid precursor protein transgenic mice.

    Science.gov (United States)

    Chan, Elizabeth S; Chen, Christopher; Cole, Gregory M; Wong, Boon-Seng

    2015-09-08

    It is unclear how human apolipoprotein E4 (ApoE4) increases the risk for Alzheimer's disease (AD). Although Aβ levels can lead to insulin signaling impairment, these experiments were done in the absence of human ApoE. To examine ApoE role, we crossed the human ApoE-targeted replacement mice with mutant human amyloid precursor protein (APP) mice. In 26 week old mice with lower Aβ levels, the expression and phosphorylation of insulin signaling proteins remained comparable among APP, ApoE3xAPP and ApoE4xAPP mouse brains. When the mice aged to 78 weeks, these proteins were markedly reduced in APP and ApoE4xAPP mouse brains. While Aβ can bind to insulin receptor, how ApoE isoforms modulate this interaction remains unknown. Here, we showed that ApoE3 had greater association with insulin receptor as compared to ApoE4, regardless of Aβ42 concentration. In contrast, ApoE4 bound more Aβ42 with increasing peptide levels. Using primary hippocampal neurons, we showed that ApoE3 and ApoE4 neurons are equally sensitive to physiological levels of insulin. However, in the presence of Aβ42, insulin failed to elicit a downstream response only in ApoE4 hippocampal neurons. Taken together, our data show that ApoE genotypes can modulate this Aβ-mediated insulin signaling impairment.

  7. Receptor-mediated endocytosis and intracellular trafficking of insulin and low-density lipoprotein by retinal vascular endothelial cells.

    Science.gov (United States)

    Stitt, A W; Anderson, H R; Gardiner, T A; Bailie, J R; Archer, D B

    1994-08-01

    The authors investigated the receptor-mediated endocytosis (RME) and intracellular trafficking of insulin and low-density lipoprotein (LDL) in cultured retinal vascular endothelial cells (RVECs). Low-density lipoprotein and insulin were conjugated to 10 nm colloidal gold, and these ligands were added to cultured bovine RVECs for 20 minutes at 4 degrees C. The cultures were then warmed to 37 degrees C and fixed after incubation times between 30 seconds and 1 hour. Control cells were incubated with unconjugated gold colloid at times and concentrations similar to those of the ligands. Additional control cells were exposed to several concentrations of anti-insulin receptor antibody or a saturating solution of unconjugated insulin before incubation with gold insulin. Using transmission electron microscopy, insulin gold and LDL gold were both observed at various stages of RME. Insulin-gold particles were first seen to bind to the apical plasma membrane (PM) before clustering in clathrin-coated pits and internalization in coated vesicles. Gold was later visualized in uncoated cytoplasmic vesicles, corresponding to early endosomes and multivesicular bodies (MVBs) or late endosomes. In several instances, localized regions of the limiting membrane of the MVBs appeared coated, a feature of endosomal membranes not previously described. After RME at the apical PM and passage through the endosomal system, the greater part of both insulin- and LDL-gold conjugates was seen to accumulate in large lysosome-like compartments. However, a small but significant proportion of the internalized ligands was transcytosed and released as discrete membrane-associated quanta at the basal cell surface. The uptake of LDL gold was greatly increased in highly vacuolated, late-passage RVECs. In controls, anti-insulin receptor antibody and excess unconjugated insulin caused up to 89% inhibition in gold-insulin binding and internalization. These results illustrate the internalization and intracellular

  8. Insulin receptor in mouse neuroblastoma cell line N18TG2: binding properties and visualization with colloidal gold.

    Science.gov (United States)

    Sartori, C; Stefanini, S; Bernardo, A; Augusti-Tocco, G

    1992-08-01

    Insulin function in the nervous system is still poorly understood. Possible roles as a neuromodulator and as a growth factor have been proposed (Baskin et al., 1987, Ann. Rev. Physiol. 49, 335-347). Stable cell lines may provide an appropriate experimental system for the analysis of insulin action on the various cellular components of the central nervous system. We report here a study to investigate the presence and the properties of insulin specific binding sites in the murine neuroblastoma line, N18TG2, together with insulin action on cell growth and metabolism. Also, receptor internalization has been studied. Binding experiments, carried out in standard conditions at 20 degrees C, enabled us to demonstrate that these cells bind insulin in a specific manner, thus confirming previous findings on other cell lines. Saturation curves showed the presence of two binding sites with Kd 0.3 and 9.7 nM. Competition experiments with porcine and bovine insulin showed an IC50 of 1 and 10 nM, respectively. Competition did not occur in the presence of the unrelated hormones ACTH and FSH. Dissociation experiments indicated the existence of an internalization process of the ligand-receptor complex; this was confirmed by an ultrastructural study using gold conjugated insulin. As far as the insulin action in N18TG2 cells is concerned, physiological concentrations stimulate cell proliferation, whereas no stimulation of glucose uptake was observed, indicating that insulin action in these cells is not mediated by general metabolic effects. On the basis of these data, N18TG2 line appears to be a very suitable model for further studies of the neuronal type insulin receptors, and possibly insulin specific action on the nervous system.

  9. Context-dependent regulation of feeding behaviour by the insulin receptor, DAF-2, in Caenorhabditis elegans.

    Science.gov (United States)

    Dillon, James; Holden-Dye, Lindy; O'Connor, Vincent; Hopper, Neil A

    2016-06-01

    Insulin signalling plays a significant role in both developmental programmes and pathways modulating the neuronal signalling that controls adult behaviour. Here, we have investigated insulin signalling in food-associated behaviour in adult C. elegans by scoring locomotion and feeding on and off bacteria, the worm's food. This analysis used mutants (daf-2, daf-18) of the insulin signalling pathway, and we provide evidence for an acute role for insulin signalling in the adult nervous system distinct from its impact on developmental programmes. Insulin receptor daf-2 mutants move slower than wild type both on and off food and showed impaired locomotory responses to food deprivation. This latter behaviour is manifest as a failure to instigate dispersal following prolonged food deprivation and suggests a role for insulin signalling in this adaptive response. Insulin receptor daf-2 mutants are also deficient in pharyngeal pumping on food and off food. Pharmacological analysis showed the pharynx of daf-2 is selectively compromised in its response to 5-HT compared to the excitatory neuropeptide FLP-17. By comparing the adaptive pharyngeal behaviour in intact worms and isolated pharyngeal preparations, we determined that an insulin-dependent signal extrinsic to the pharyngeal system is involved in feeding adaptation. Hence, we suggest that reactive insulin signalling modulates both locomotory foraging and pharyngeal pumping as the animal adapts to the absence of food. We discuss this in the context of insulin signalling directing a shift in the sensitivity of neurotransmitter systems to regulate the worm's response to changes in food availability in the environment.

  10. Fundamental studies on the insulin receptor in rabbit erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Shinomiya, Y; Kagawa, S; Konishi, Y; Morimoto, H; Tsumura, Y [Hyogo Medical Coll. (Japan)

    1975-09-01

    The authors studied the binding of insulin to rabbit erythrocytes as a mode case in the hope of characterizing the physiologic role of the binding of insulin to receptor in both normal adults and patients. Specific binding sites for insulin were detected in rabbit erythrocytes. The characteristics of the binding were similar to those observed in other target tissues. The specific binding of /sup 125/I-labeled insulin was competitively inhibited by a small amount of unlabeled insulin and was completely inhibited by 1,000 ng/ml of unlabeled insulin. Glucagon, however, had no effect on the insulin binding to fat cells or liver membranes nor had it any effect on the binding of insulin to rabbit erythrocytes. Scatchard analysis of this binding reaction indicated two different binding sites with Ksub(aff)=3.2 x 10/sup 8//M, Ksub(diss)=3.1 x 10/sup -9/M; Ksub(aff)=1.4 x 10/sup 8//M, Ksub(diss)=7.1 x 10/sup -9/M respectively, and the binding capacities of each site were estimated at 0.011 ng/4 x 10/sup 8/ cells and 0.138 ng/4 x 10/sup 8/ cells. The binding of /sup 125/I-insulin to rabbit erythrocytes was a saturable function of the insulin concentration and was a linear function of cell concentration. The pH optimum for the reaction was 7.4 at 0/sup 0/C, the amount of insulin binding increased continuously under the reaction and this binding reaction reached a steady state after 10 to 15hr. On the other hand, the specific binding of insulin at higher temperatures showed maximal amounts after 20 to 30 min. and subsequently fell off at later time points.

  11. Modulating Estrogen Receptor-related Receptor-α Activity Inhibits Cell Proliferation*

    Science.gov (United States)

    Bianco, Stéphanie; Lanvin, Olivia; Tribollet, Violaine; Macari, Claire; North, Sophie; Vanacker, Jean-Marc

    2009-01-01

    High expression of the estrogen receptor-related receptor (ERR)-α in human tumors is correlated to a poor prognosis, suggesting an involvement of the receptor in cell proliferation. In this study, we show that a synthetic compound (XCT790) that modulates the activity of ERRα reduces the proliferation of various cell lines and blocks the G1/S transition of the cell cycle in an ERRα-dependent manner. XCT790 induces, in a p53-independent manner, the expression of the cell cycle inhibitor p21waf/cip1 at the protein, mRNA, and promoter level, leading to an accumulation of hypophosphorylated Rb. Finally, XCT790 reduces cell tumorigenicity in Nude mice. PMID:19546226

  12. Insulin-like Growth Factor Receptor Inhibitors: Baby or the Bathwater?

    OpenAIRE

    Yee, Douglas

    2012-01-01

    The success of targeted therapies for cancer is undisputed; strong preclinical evidence has resulted in the approval of several new agents for cancer treatment. The type I insulin-like growth factor receptor (IGF1R) appeared to be one of these promising new targets. Substantial population and preclinical data have all pointed toward this pathway as an important regulator of tumor cell biology. Although early results from clinical trials that targeted the IGF1R showed some evidence of response...

  13. Mactosylceramide Prevents Glial Cell Overgrowth by Inhibiting Insulin and Fibroblast Growth Factor Receptor Signaling

    DEFF Research Database (Denmark)

    Gerdøe-Kristensen, Stine; Lund, Viktor K; Wandall, Hans H

    2017-01-01

    , in which the mannosyltransferase Egghead controls conversion of glucosylceramide (GlcCer) to mactosylceramide (MacCer). Lack of elongated GSL in egghead (egh) mutants causes overgrowth of subperineurial glia (SPG), largely due to aberrant activation of phosphatidylinositol 3-kinase (PI3K). However, to what...... of the Drosophila Insulin Receptor (InR) and the FGFR homolog Heartless (Htl) in wild type SPG, and is suppressed by inhibiting Htl and InR activity in egh. Knockdown of GlcCer synthase in the SPG fails to suppress glial overgrowth in egh nerves, and slightly promotes overgrowth in wild type, suggesting that RTK...... hyperactivation is caused by absence of MacCer and not by GlcCer accumulation. We conclude that an early product in GSL biosynthesis, MacCer, prevents inappropriate activation of Insulin and Fibroblast Growth Factor Receptors in Drosophila glia. This article is protected by copyright. All rights reserved....

  14. Novel Drosophila receptor that binds multiple growth factors

    International Nuclear Information System (INIS)

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-01-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10 -6 to 10 -8 M. The 100 kDa protein can be affinity-labeled with these 125 I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by 125 I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors

  15. Drosophila insulin release is triggered by adipose Stunted ligand to brain Methuselah receptor.

    Science.gov (United States)

    Delanoue, Renald; Meschi, Eleonora; Agrawal, Neha; Mauri, Alessandra; Tsatskis, Yonit; McNeill, Helen; Léopold, Pierre

    2016-09-30

    Animals adapt their growth rate and body size to available nutrients by a general modulation of insulin-insulin-like growth factor signaling. In Drosophila, dietary amino acids promote the release in the hemolymph of brain insulin-like peptides (Dilps), which in turn activate systemic organ growth. Dilp secretion by insulin-producing cells involves a relay through unknown cytokines produced by fat cells. Here, we identify Methuselah (Mth) as a secretin-incretin receptor subfamily member required in the insulin-producing cells for proper nutrient coupling. We further show, using genetic and ex vivo organ culture experiments, that the Mth ligand Stunted (Sun) is a circulating insulinotropic peptide produced by fat cells. Therefore, Sun and Mth define a new cross-organ circuitry that modulates physiological insulin levels in response to nutrients. Copyright © 2016, American Association for the Advancement of Science.

  16. p68 Sam is a substrate of the insulin receptor and associates with the SH2 domains of p85 PI3K.

    Science.gov (United States)

    Sánchez-Margalet, V; Najib, S

    1999-07-23

    The 68 kDa Src substrate associated during mitosis is an RNA binding protein with Src homology 2 and 3 domain binding sites. A role for Src associated in mitosis 68 as an adaptor protein in signaling transduction has been proposed in different systems such as T-cell receptors. In the present work, we have sought to assess the possible role of Src associated in mitosis 68 in insulin receptor signaling. We performed in vivo studies in HTC-IR cells and in vitro studies using recombinant Src associated in mitosis 68, purified insulin receptor and fusion proteins containing either the N-terminal or the C-terminal Src homology 2 domain of p85 phosphatidylinositol-3-kinase. We have found that Src associated in mitosis 68 is a substrate of the insulin receptor both in vivo and in vitro. Moreover, tyrosine-phosphorylated Src associated in mitosis 68 was found to associate with p85 phosphatidylinositol-3-kinase in response to insulin, as assessed by co-immunoprecipitation studies. Therefore, Src associated in mitosis 68 may be part of the signaling complexes of insulin receptor along with p85. In vitro studies demonstrate that Src associated in mitosis 68 associates with the Src homology 2 domains of p85 after tyrosine phosphorylation by the activated insulin receptor. Moreover, tyr-phosphorylated Src associated in mitosis 68 binds with a higher affinity to the N-terminal Src homology 2 domain of p85 compared to the C-terminal Src homology 2 domain of p85, suggesting a preferential association of Src associated in mitosis 68 with the N-terminal Src homology 2 domain of p85. This association may be important for the link of the signaling with RNA metabolism.

  17. Divergent effects of insulin-like growth factor-1 receptor expression on prognosis of estrogen receptor positive versus triple negative invasive ductal breast carcinoma

    NARCIS (Netherlands)

    Hartog, Hermien; Horlings, Hugo M; van der Vegt, Bert; Kreike, Bas; Ajouaou, Abderrahim; van de Vijver, Marc J; Boezen, Hendrika; de Bock, Geertruida H; van der Graaf, Wilhelmina; Wesseling, Jelle

    2011-01-01

    The insulin-like growth factor type 1 receptor (IGF1R) is involved in progression of breast cancer and resistance to systemic treatment. Targeting IGF1R signaling may, therefore, be beneficial in systemic treatment. We report the effect of IGF1R expression on prognosis in invasive ductal breast

  18. Distribution and levels of [125I]IGF-I, [125I]IGF-II and [125I]insulin receptor binding sites in the hippocampus of aged memory-unimpaired and -impaired rats

    International Nuclear Information System (INIS)

    Quirion, R.; Rowe, W.; Kar, S.; Dore, S.

    1997-01-01

    The insulin-like growth factors (IGF-I and IGF-II) and insulin are localized within distinct brain regions and their respective functions are mediated by specific membrane receptors. High densities of binding sites for these growth factors are discretely and differentially distributed throughout the brain, with prominent levels localized to the hippocampal formation. IGFs and insulin, in addition to their growth promoting actions, are considered to play important roles in the development and maintenance of normal cell functions throughout life. We compared the anatomical distribution and levels of IGF and insulin receptors in young (five month) and aged (25 month) memory-impaired and memory-unimpaired male Long-Evans rats as determined in the Morris water maze task in order to determine if alterations in IGF and insulin activity may be related to the emergence of cognitive deficits in the aged memory-impaired rat. In the hippocampus, [ 125 I]IGF-I receptors are concentrated primarily in the dentate gyrus (DG) and the CA3 sub-field while high amounts of [ 125 I]IGF-II binding sites are localized to the pyramidal cell layer, and the granular cell layer of the DG. [ 125 I]insulin binding sites are mostly found in the molecular layer of the DG and the CA1 sub-field. No significant differences were found in [ 125 I]IGF-I, [ 125 I]IGF-II or [ 125 I]insulin binding levels in any regions or laminae of the hippocampus of young vs aged rats, and deficits in cognitive performance did not relate to altered levels of these receptors in aged memory-impaired vs aged memory-unimpaired rats. Other regions, including various cortical areas, were also examined and failed to reveal any significant differences between the three groups studied.It thus appears that IGF-I, IGF-II and insulin receptor sites are not markedly altered during the normal ageing process in the Long-Evans rat, in spite of significant learning deficits in a sub-group (memory-impaired) of aged animals. Hence

  19. Biphasic modulation of insulin receptor substrate-1 during goitrogenesis

    Directory of Open Access Journals (Sweden)

    R. Grozovsky

    2007-05-01

    Full Text Available Insulin receptor substrate-1 (IRS-1 is the main intracellular substrate for both insulin and insulin-like growth factor I (IGF-I receptors and is critical for cell mitogenesis. Thyrotropin is able to induce thyroid cell proliferation through the cyclic AMP intracellular cascade; however, the presence of either insulin or IGF-I is required for the mitogenic effect of thyroid-stimulating hormone (TSH to occur. The aim of the present study was to determine whether thyroid IRS-1 content is modulated by TSH in vivo. Strikingly, hypothyroid goitrous rats, which have chronically high serum TSH levels (control, C = 2.31 ± 0.28; methimazole (MMI 21d = 51.02 ± 6.02 ng/mL, N = 12 rats, when treated with 0.03% MMI in drinking water for 21 days, showed significantly reduced thyroid IRS-1 mRNA content. Since goiter was already established in these animals by MMI for 21 days, we also evaluated IRS-1 expression during goitrogenesis. Animals treated with MMI for different periods of time showed a progressive increase in thyroid weight (C = 22.18 ± 1.21; MMI 5d = 32.83 ± 1.48; MMI 7d = 31.1 ± 3.25; MMI 10d = 33.8 ± 1.25; MMI 14d = 45.5 ± 2.56; MMI 18d = 53.0 ± 3.01; MMI 21d = 61.9 ± 3.92 mg, N = 9-15 animals per group and serum TSH levels (C = 1.57 ± 0.2; MMI 5d = 9.95 ± 0.74; MMI 7d = 10.38 ± 0.84; MMI 10d = 17.72 ± 1.47; MMI 14d = 25.65 ± 1.23; MMI 18d = 35.38 ± 3.69; MMI 21d = 31.3 ± 2.7 ng/mL, N = 9-15 animals per group. Thyroid IRS-1 mRNA expression increased progressively during goitrogenesis, being significantly higher by the 14th day of MMI treatment, and then started to decline, reaching the lowest values by the 21st day, when a significant reduction was detected. In the liver of these animals, however, a significant decrease of IRS-1 mRNA was detected after 14 days of MMI treatment, a mechanism probably involved in the insulin resistance that occurs in hypothyroidism. The increase in IRS-1 expression during goitrogenesis may represent an

  20. An insulin receptor mutant (Asp707 → Ala), involved in leprechaunism, is processed and transported to the cell surface but unable to bind insulin

    NARCIS (Netherlands)

    L.M. 't Hart (Leen); D. Lindhout (Dick); G.C.M. van der Zon (Gerard); H. Kayserilli (Hülya); M.Y. Apak (Memnune); W.J. Kleijer (Wim); E.R. van der Vorm (Eric); J.A. Maassen (Johannes)

    1996-01-01

    textabstractWe have identified a homozygous mutation near the carboxyl terminus of the insulin receptor (IR) α subunit from a leprechaun patient, changing Asp707 into Ala. Fibroblasts from this patient had no high affinity insulin binding sites. To examine the effect of the mutation on IR

  1. Autoradiographic visualization of insulin-like growth factor-II receptors in rat brain

    International Nuclear Information System (INIS)

    Mendelsohn, L.G.; Kerchner, G.A.; Clemens, J.A.; Smith, M.C.

    1986-01-01

    The documented presence of IGF-II in brain and CSF prompted us to investigate the distribution of receptors for IGF-II in rat brain slices. Human 125 -I-IGF-II (10 pM) was incubated for 16 hrs at 4 0 C with slide-mounted rat brain slices in the absence and presence of unlabeled human IGF-II (67 nM) or human insulin (86 nM). Slides were washed, dried, and exposed to X-ray film for 4-7 days. The results showed dense labeling in the granular layers of the olfactory bulbs, deep layers of the cerebral cortex, pineal gland, anterior pituitary, hippocampus (pyramidal cells CA 1 -CA 2 and dentate gyrus), and the granule cell layers of the cerebellum. Unlabeled IGF-II eliminated most of the binding of these brain regions while insulin produced only a minimal reduction in the amount of 125 I-IGF-II bound. These results indicate that a specific neural receptor for IGS-II is uniquely distributed in rat brain tissue and supports the notion that this peptide might play an important role in normal neuronal functioning

  2. Mechanisms of estradiol-induced insulin secretion by the G protein-coupled estrogen receptor GPR30/GPER in pancreatic beta-cells.

    Science.gov (United States)

    Sharma, Geetanjali; Prossnitz, Eric R

    2011-08-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes.

  3. Mechanisms of Estradiol-Induced Insulin Secretion by the G Protein-Coupled Estrogen Receptor GPR30/GPER in Pancreatic β-Cells

    Science.gov (United States)

    Sharma, Geetanjali

    2011-01-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes. PMID:21673097

  4. Uteroplacental insufficiency down regulates insulin receptor and affects expression of key enzymes of long-chain fatty acid (LCFA metabolism in skeletal muscle at birth

    Directory of Open Access Journals (Sweden)

    Puglianiello Antonella

    2008-05-01

    Full Text Available Abstract Background Epidemiological studies have revealed a relationship between early growth restriction and the subsequent development of insulin resistance and type 2 diabetes. Ligation of the uterine arteries in rats mimics uteroplacental insufficiency and serves as a model of intrauterine growth restriction (IUGR and subsequent developmental programming of impaired glucose tolerance, hyperinsulinemia and adiposity in the offspring. The objective of this study was to investigate the effects of uterine artery ligation on the skeletal muscle expression of insulin receptor and key enzymes of LCFA metabolism. Methods Bilateral uterine artery ligation was performed on day 19 of gestation in Sprague-Dawley pregnant rats. Muscle of the posterior limb was dissected at birth and processed by real-time RT-PCR to analyze the expression of insulin receptor, ACCα, ACCβ (acetyl-CoA carboxylase alpha and beta subunits, ACS (acyl-CoA synthase, AMPK (AMP-activated protein kinase, alpha2 catalytic subunit, CPT1B (carnitine palmitoyltransferase-1 beta subunit, MCD (malonyl-CoA decarboxylase in 14 sham and 8 IUGR pups. Muscle tissue was treated with lysis buffer and Western immunoblotting was performed to assay the protein content of insulin receptor and ACC. Results A significant down regulation of insulin receptor protein (p Conclusion Our data suggest that uteroplacental insufficiency may affect skeletal muscle metabolism down regulating insulin receptor and reducing the expression of key enzymes involved in LCFA formation and oxidation.

  5. Co-targeting the HER and IGF/insulin receptor axis in breast cancer, with triple targeting with endocrine therapy for hormone-sensitive disease.

    Science.gov (United States)

    Chakraborty, Ashok; Hatzis, Christos; DiGiovanna, Michael P

    2017-05-01

    Interactions between HER2, estrogen receptor (ER), and insulin-like growth factor I receptor (IGF1R) are implicated in resistance to monotherapies targeting these receptors. We have previously shown in pre-clinical studies synergistic anti-tumor effects for co-targeting each pairwise combination of HER2, IGF1R, and ER. Strikingly, synergy for HER2/IGF1R targeting occurred not only in a HER2+ model, but also in a HER2-normal model. The purpose of the current study was therefore to determine the generalizability of synergistic anti-tumor effects of co-targeting HER2/IGF1R, the anti-tumor activity of triple-targeting HER2/IGF1R/ER in hormone-dependent cell lines, and the effect of using the multi-targeting drugs neratinib (pan-HER) and BMS-754807 (dual IGF1R/insulin receptor). Proliferation and apoptosis assays were performed in a large panel of cell lines representing varying receptor expression levels. Mechanistic effects were studied using phospho-protein immunoblotting. Analyses of drug interaction effects were performed using linear mixed-effects regression models. Enhanced anti-proliferative effects of HER/IGF-insulin co-targeting were seen in most, though not all, cell lines, including HER2-normal lines. For ER+ lines, triple targeting with inclusion of anti-estrogen generally resulted in the greatest anti-tumor effects. Double or triple targeting generally resulted in marked increases in apoptosis in the sensitive lines. Mechanistic studies demonstrated that the synergy between drugs was correlated with maximal inhibition of Akt and ERK pathway signaling. Dual HER/IGF-insulin targeting, and triple targeting with inclusion of anti-estrogen drugs, shows striking anti-tumor activity across breast cancer types, and drugs with broader receptor specificity may be more effective than single receptor selective drugs, particularly for ER- cells.

  6. Purinergic receptors in the endocrine and exocrine pancreas.

    Science.gov (United States)

    Novak, I

    2008-09-01

    The pancreas is a complex gland performing both endocrine and exocrine functions. In recent years there has been increasing evidence that both endocrine and exocrine cells possess purinergic receptors, which influence processes such as insulin secretion and epithelial ion transport. Most commonly, these processes have been viewed separately. In beta cells, stimulation of P2Y(1) receptors amplifies secretion of insulin in the presence of glucose. Nucleotides released from secretory granules could also contribute to autocrine/paracrine regulation in pancreatic islets. In addition to P2Y(1) receptors, there is also evidence for other P2 and adenosine receptors in beta cells (P2Y(2), P2Y(4), P2Y(6), P2X subtypes and A(1) receptors) and in glucagon-secreting alpha cells (P2X(7), A(2) receptors). In the exocrine pancreas, acini release ATP and ATP-hydrolysing and ATP-generating enzymes. P2 receptors are prominent in pancreatic ducts, and several studies indicate that P2Y(2), P2Y(4), P2Y(11), P2X(4) and P2X(7) receptors could regulate secretion, primarily by affecting Cl(-) and K(+) channels and intracellular Ca(2+) signalling. In order to understand the physiology of the whole organ, it is necessary to consider the full complement of purinergic receptors on different cells as well as the structural and functional relation between various cells within the whole organ. In addition to the possible physiological function of purinergic receptors, this review analyses whether the receptors could be potential therapeutic targets for drug design aimed at treatment of pancreatic diseases.

  7. Quasi-Steady-State Analysis based on Structural Modules and Timed Petri Net Predict System’s Dynamics: The Life Cycle of the Insulin Receptor

    Directory of Open Access Journals (Sweden)

    Jennifer Scheidel

    2015-12-01

    Full Text Available The insulin-dependent activation and recycling of the insulin receptor play an essential role in the regulation of the energy metabolism, leading to a special interest for pharmaceutical applications. Thus, the recycling of the insulin receptor has been intensively investigated, experimentally as well as theoretically. We developed a time-resolved, discrete model to describe stochastic dynamics and study the approximation of non-linear dynamics in the context of timed Petri nets. Additionally, using a graph-theoretical approach, we analyzed the structure of the regulatory system and demonstrated the close interrelation of structural network properties with the kinetic behavior. The transition invariants decomposed the model into overlapping subnetworks of various sizes, which represent basic functional modules. Moreover, we computed the quasi-steady states of these subnetworks and demonstrated that they are fundamental to understand the dynamic behavior of the system. The Petri net approach confirms the experimental results of insulin-stimulated degradation of the insulin receptor, which represents a common feature of insulin-resistant, hyperinsulinaemic states.

  8. β2-Adrenergic Receptor Knockout Mice Exhibit A Diabetic Retinopathy Phenotype

    Science.gov (United States)

    Jiang, Youde; Zhang, Qiuhua; Liu, Li; Tang, Jie; Kern, Timothy S.; Steinle, Jena J.

    2013-01-01

    There is considerable evidence from our lab and others for a functional link between β-adrenergic receptor and insulin receptor signaling pathways in retina. Furthermore, we hypothesize that this link may contribute to lesions similar to diabetic retinopathy in that the loss of adrenergic input observed in diabetic retinopathy may disrupt normal anti-apoptotic insulin signaling, leading to retinal cell death. Our studies included assessment of neural retina function (ERG), vascular degeneration, and Müller glial cells (which express only β1 and β2-adrenergic receptor subtypes). In the current study, we produced β2-adrenergic receptor knockout mice to examine this deletion on retinal neurons and vasculature, and to identify specific pathways through which β2-adrenergic receptor modulates insulin signaling. As predicted from our hypothesis, β2-adrenergic receptor knockout mice display certain features similar to diabetic retinopathy. In addition, loss of β2-adrenergic input resulted in an increase in TNFα, a key inhibitor of insulin receptor signaling. Increased TNFα may be associated with insulin-dependent production of the anti-apoptotic factor, Akt. Since the effects occurred in vivo under normal glucose conditions, we postulate that aspects of the diabetic retinopathy phenotype might be triggered by loss of β2-adrenergic receptor signaling. PMID:23894672

  9. IGF-II receptors and IGF-II-stimulated glucose transport in human fat cells

    International Nuclear Information System (INIS)

    Sinha, M.K.; Buchanan, C.; Raineri-Maldonado, C.; Khazanie, P.; Atkinson, S.; DiMarchi, R.; Caro, J.F.

    1990-01-01

    Insulin-like growth factor II (IGF-II) receptors have been described in rat but not in human adipocytes. In both species, IGF-II has been reported to stimulate glucose transport by interacting with the insulin receptor. In this study, we have unequivocally demonstrated the presence of IGF-II receptors in human adipocytes. 125I-labeled IGF-II specifically binds to intact adipocytes, membranes, and lectin-purified detergent solubilized extracts. Through the use of 0.5 mM disuccinimidyl suberate, 125I-IGF-II is cross-linked to a 260-kDa protein that is identified as the IGF-II receptor by displacement experiments with unlabeled IGF-II, IGF-I, and insulin and either by immunoprecipitation or by Western blot analysis with mannose 6-phosphate receptor antibodies. The concentrations of IGF-II required for half-maximal and maximal stimulation of glucose transport in human adipocytes are 35 and 100 times more than that of insulin. The possibility of IGF-II stimulating glucose transport by interacting predominantly with the insulin receptor is suggested by the following: (1) the concentration of IGF-II that inhibits half of insulin binding is only 20 times more than that of insulin; (2) the lack of an additive effect of IGF-II and insulin for maximal stimulation of glucose transport; (3) the ability of monoclonal insulin receptor antibodies to decrease glucose transport stimulated by submaximal concentrations of both IGF-II and insulin; and (4) the ability of IGF-II to stimulate insulin receptor autophosphorylation albeit at a reduced potency when compared with insulin

  10. Alternative splicing of exon 17 and a missense mutation in exon 20 of the insulin receptor gene in two brothers with a novel syndrome of insulin resistance (congenital fiber-type disproportion myopathy)

    DEFF Research Database (Denmark)

    Vorwerk, P; Christoffersen, C T; Müller, J

    1999-01-01

    The insulin receptor (IR) in two brothers with a rare syndrome of congenital muscle fiber type disproportion myopathy (CFTDM) associated with diabetes and severe insulin resistance was studied. By direct sequencing of Epstein-Barr virus-transformed lymphocytes both patients were found...... either of the two mutated receptors lacked basal or stimulated IR beta-subunit autophosphorylation. A third brother who inherited both normal alleles has an normal muscle phenotype and insulin sensitivity, suggesting a direct linkage of these IR mutations with the CFTDM phenotype....

  11. Interactive roles of Ras, insulin receptor substrate-1, and proteins with Src homology-2 domains in insulin signaling in Xenopus oocytes.

    Science.gov (United States)

    Chuang, L M; Hausdorff, S F; Myers, M G; White, M F; Birnbaum, M J; Kahn, C R

    1994-11-04

    Insulin receptor substrate-1 (IRS-1) serves as the major immediate substrate of insulin/insulin-like growth factor (IGF)-1 receptors and following tyrosine phosphorylation binds to specific Src homology-2 (SH2) domain-containing proteins including the p85 subunit of phosphatidylinositol (PI) 3-kinase and GRB2, a molecule believed to link IRS-1 to the Ras pathway. To investigate how these SH2-containing signaling molecules interact to regulate insulin/IGF-1 action, IRS-1, glutathione S-transferase (GST)-SH2 domain fusion proteins and Ras proteins were microinjected into Xenopus oocytes. We found that pleiotropic insulin actions are mediated by IRS-1 through two independent, but convergent, pathways involving PI 3-kinase and GRB2. Thus, microinjection of GST-fusion proteins of either p85 or GRB2 inhibited IRS-1-dependent activation of mitogen-activated protein (MAP) and S6 kinases and oocyte maturation, although only the GST-SH2 of p85 reduced insulin-stimulated PI 3-kinase activation. Co-injection of a dominant negative Ras (S17N) with IRS-1 inhibited insulin-stimulated MAP and S6 kinase activation. Micro-injection of activated [Arg12,Thr59]Ras increased basal MAP and S6 kinase activities and sensitized the oocytes to insulin-stimulated maturation without altering insulin-stimulated PI 3-kinase. The Ras-enhanced oocyte maturation response, but not the elevated basal level of MAP and S6 kinase, was partially blocked by the SH2-p85, but not SH2-GRB2. These data strongly suggest that IRS-1 can mediate many of insulin's actions on cellular enzyme activation and cell cycle progression requires binding and activation of multiple different SH2-domain proteins.

  12. Comparative evaluation of optical methods and conventional isotope techniques for the detection of insulin receptors in heterogenous cell systems

    International Nuclear Information System (INIS)

    Thun, C.

    1984-01-01

    The findings of studies using radioactively labelled (I-125) insulin to characterise its binding to various heterogenous cell systems had led to a classification of the relevant receptors with those of high affinity and low capacity or vice versa. This, in turn, raised questions as to the binding properties of each individual cell or cell material of a heterogenous nature. Apparently homogenous (lymphocytes) and heterogenous (blood and islet cells) cell populations were investigated on the basis of various techniques for the separate evaluation of individual cells, which were cytofluorometry using FITC insulin and the analysis of gold insulin under the electron microscope. For the association kinetics and equilibration analysis or affinity and receptor quantity a radioactive tracer and light microscope were used. Insulin was shown to bind to erythrocytes, reticulocytes, monocytes and lymphocytes and this result finds confirmation in the relevant literature. Furthermore, binding parameters could be determined for isolated islet cells. Cytofluorometry pointed to the fact that the insulin receptors of an apparently homogenous cell system differed in affinity and number and permitted the use of a multiple parameter procedure. Thus, it holds out promise as a method to be routinely used in the clinical diagnosis of binding parameters, without requiring previous separation procedures that are complicated or involve a loss of material. Transmission electron microscopy permitted conclusions to be drawn as to the type of cell to which insulin is attached. Owing to the use of gold insulin it was possible to throw some light on the factors determining the fate of membrane-bound insulin during its uptake into the cell. (TRV) [de

  13. Role of aryl hydrocarbon receptor nuclear translocator in KATP channel-mediated insulin secretion in INS-1 insulinoma cells

    International Nuclear Information System (INIS)

    Kim, Ji-Seon; Zheng Haifeng; Kim, Sung Joon; Park, Jong-Wan; Park, Kyong Soo; Ho, Won-Kyung; Chun, Yang-Sook

    2009-01-01

    Aryl hydrocarbon receptor nuclear translocator (ARNT) has been known to participate in cellular responses to xenobiotic and hypoxic stresses, as a common partner of aryl hydrocarbon receptor and hypoxia inducible factor-1/2α. Recently, it was reported that ARNT is essential for adequate insulin secretion in response to glucose input and that its expression is downregulated in the pancreatic islets of diabetic patients. In the present study, the authors addressed the mechanism by which ARNT regulates insulin secretion in the INS-1 insulinoma cell line. In ARNT knock-down cells, basal insulin release was elevated, but insulin secretion was not further stimulated by a high-glucose challenge. Electrophysiological analyses revealed that glucose-dependent membrane depolarization was impaired in these cells. Furthermore, K ATP channel activity and expression were reduced. Of two K ATP channel subunits, Kir6.2 was found to be positively regulated by ARNT at the mRNA and protein levels. Based on these results, the authors suggest that ARNT expresses K ATP channel and by so doing regulates glucose-dependent insulin secretion.

  14. The insulin receptor substrate-1-related 4PS substrate but not the interleukin-2R gamma chain is involved in interleukin-13-mediated signal transduction.

    Science.gov (United States)

    Wang, L M; Michieli, P; Lie, W R; Liu, F; Lee, C C; Minty, A; Sun, X J; Levine, A; White, M F; Pierce, J H

    1995-12-01

    Interleukin-13 (IL-13) induced a potent mitogenic response in IL-3-dependent TF-1 cells and DNA synthesis to a lesser extent in MO7E and FDC-P1 cells. IL-13 stimulation of these lines, like IL-4 and insulin-like growth factor-1 (IGF-1), resulted in tyrosine phosphorylation of a 170-kD substrate. The tyrosine-phosphorylated 170-kD substrate strongly associated with the 85-kD subunit of phosphoinositol-3 (PI-3) kinase and with Grb-2. Anti-4PS serum readily detected the 170-kD substrate in lysates from both TF-1 and FDC-P1 cells stimulated with IL-13 or IL-4. These data provide evidence that IL-13 induces tyrosine phosphorylation of the 4PS substrate, providing an essential interface between the IL-13 receptor and signaling molecules containing SH2 domains. IL-13 and IL-4 stimulation of murine L cell fibroblasts, which endogenously express the IL-4 receptor (IL-4R alpha) and lack expression of the IL-2 receptor gamma subunit (IL-2R gamma), resulted in tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1)/4PS. Enhanced tyrosine phosphorylation of IRS-1/4PS was observed in response to IL-4, but not IL-13 treatment of L cells transfected with the IL-2R gamma chain. These results indicate that IL-13 does not use the IL-2R gamma subunit in its receptor complex and that expression of IL-2R gamma enhances, but is not absolutely required for mediating IL-4-induced tyrosine phosphorylation of IRS-1/4PS.

  15. Synthesis and Evaluation of a Library of Trifunctional Scaffold-Derived Compounds as Modulators of the Insulin Receptor

    Czech Academy of Sciences Publication Activity Database

    Fabre, Benjamin; Pícha, Jan; Vaněk, Václav; Selicharová, Irena; Chrudinová, Martina; Collinsová, Michaela; Žáková, Lenka; Buděšínský, Miloš; Jiráček, Jiří

    2016-01-01

    Roč. 18, č. 12 (2016), s. 710-722 ISSN 2156-8952 R&D Projects: GA ČR GA14-17305S Institutional support: RVO:61388963 Keywords : insulin mimetics * insulin receptor * library * protein-protein interactions * scaffold * trifunctional Subject RIV: CE - Biochemistry Impact factor: 3.168, year: 2016 http://pubs.acs.org/doi/full/10.1021/acscombsci.6b00132

  16. Characterization of the insulin sensitivity of ghrelin receptor KO mice using glycemic clamps

    Directory of Open Access Journals (Sweden)

    Morgan Kristen

    2011-01-01

    Full Text Available Abstract Background We and others have demonstrated previously that ghrelin receptor (GhrR knock out (KO mice fed a high fat diet (HFD have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG and hyperinsulinemic-euglycemic (HI-E clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity. Results Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd, and decreased hepatic glucose production (HGP. HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice. Conclusions These results indicate that improved glucose homeostasis of GhrR KO mice is

  17. One week treatment with the IL-1 receptor antagonist anakinra leads to a sustained improvement in insulin sensitivity in insulin resistant patients with type 1 diabetes mellitus

    NARCIS (Netherlands)

    Asseldonk, van E.J.P.; Poppel, van P.C.M.; Ballak, D.B.; Stienstra, Rinke; Netea, M.G.; Tack, C.J.

    2015-01-01

    Inflammation associated with obesity is involved in the development of insulin resistance. We hypothesized that anti-inflammatory treatment with the Interleukin-1 receptor antagonist anakinra would improve insulin sensitivity.In an open label proof-of-concept study, we included overweight

  18. Roles of oxidative stress, adiponectin, and nuclear hormone receptors in obesity-associated insulin resistance and cardiovascular risk.

    Science.gov (United States)

    Matsuda, Morihiro; Shimomura, Iichiro

    2014-08-01

    Obesity leads to the development of type 2 diabetes mellitus, which is a strong risk factor for cardiovascular disease. A better understanding of the molecular basis of obesity will lead to the establishment of effective prevention strategies for cardiovascular diseases. Adipocytes have been shown to generate a variety of endocrine factors termed adipokines/adipocytokines. Obesity-associated changes to these adipocytokines contribute to the development of cardiovascular diseases. Adiponectin, which is one of the most well-characterized adipocytokines, is produced exclusively by adipocytes and exerts insulin-sensitizing and anti-atherogenic effects. Obese subjects have lower levels of circulating adiponectin, and this is recognized as one of the factors involved in obesity-induced insulin resistance and atherosclerosis. Another pathophysiological feature of obesity may involve the low-grade chronic inflammation in adipose tissue. This inflammatory process increases oxidative stress in adipose tissue, which may affect remote organs, leading to the development of diabetes, hypertension, and atherosclerosis. Nuclear hormone receptors (NRs) regulate the transcription of the target genes in response to binding with their ligands, which include metabolic and nutritional substrates. Among the various NRs, peroxisome proliferator-activated receptor γ promotes the transcription of adiponectin and antioxidative enzymes, whereas mineralocorticoid receptor mediates the effects of aldosterone and glucocorticoid to induce oxidative stress in adipocytes. It is hypothesized that both play crucial roles in the pathophysiology of obesity-associated insulin resistance and cardiovascular diseases. Thus, reduced adiponectin and increased oxidative stress play pathological roles in obesity-associated insulin resistance to increase the cardiovascular disease risk, and various NRs may be involved in this pathogenesis.

  19. A chimeric receptor of the insulin-like growth factor receptor type 1 (IGFR1) and a single chain antibody specific to myelin oligodendrocyte glycoprotein activates the IGF1R signalling cascade in CG4 oligodendrocyte progenitors

    NARCIS (Netherlands)

    Annenkov, A.; Rigby, A.; Amor, S.; Zhou, D.M.; Yousaf, N.; Hemmer, B.; Chernajovsky, Y.

    2011-01-01

    In order to generate neural stem cells with increased ability to survive after transplantation in brain parenchyma we developed a chimeric receptor (ChR) that binds to myelin oligodendrocyte glycoprotein (MOG) via its ectodomain and activates the insulin-like growth factor receptor type 1 (IGF1R)

  20. Inhibition of central insulin-receptor signaling by S961 causes hyperglycemia and glucose intolerance in rats

    OpenAIRE

    Ajit Vikram; Gopabandhu Jena

    2011-01-01

    Genetic ablation studies confirmed the role of central insulin-receptor signaling (CIRS) in fuel metabolism. However, the need to examine the role of CIRS in glucose homeostasis under normal physiological condition is indispensable, as insulin affects the neuronal growth, differentiation and synaptic plasticity. Intracerebral administration of S961 induced hyperglycemia and glucose intolerance in normal rats, and provided direct evidence for the involvement of CIRS in the regulation of glucos...

  1. Transcriptional targets shared by estrogen receptor- related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta.

    Science.gov (United States)

    Vanacker, J M; Pettersson, K; Gustafsson, J A; Laudet, V

    1999-01-01

    The physiological activities of estrogens are thought to be mediated by specific nuclear receptors, ERalpha and ERbeta. However, certain tissues, such as the bone, that are highly responsive to estrogens only express a low level of these receptors. Starting from this apparent contradiction, we have evaluated the potentials of two related receptors ERRalpha and ERRbeta to intervene in estrogen signaling. ERalpha, ERRalpha and ERRbeta bind to and activate transcription through both the classical estrogen response element (ERE) and the SF-1 response element (SFRE). In contrast, ERbeta DNA-binding and transcriptional activity is restricted to the ERE. Accordingly, the osteopontin gene promoter is stimulated through SFRE sequences, by ERRalpha as well as by ERalpha, but not by ERbeta. Analysis of the cross-talk within the ER/ERR subgroup of nuclear receptors thus revealed common targets but also functional differences between the two ERs. PMID:10428965

  2. Insulin: its binding to specific receptors and its stimulation of DNA synthesis and 2',3'-cyclic nucleotide phosphohydrolase in embryonic mouse brain cell cultures

    International Nuclear Information System (INIS)

    Shanker, G.; Pieringer, R.A.

    1986-01-01

    Previously, the authors demonstrated that ornithine decarboxylase was stimulated by insulin in cultures of embryonic mouse brain cells. In the present work, they have investigated the presence and specificity of insulin receptors in these cultures. A time study showed that maximum binding of 125 [I] labelled insulin was around 75 min. Other studies measured the influence of concentration and age on insulin binding. A displacement study using increasing concentrations of cold insulin, glucagon or growth hormone demonstrated that the specificity of the receptors for insulin was rather high. It was also found that insulin displayed a clear dose-dependent stimulation of thymidine incorporation into the brain cells. Insulin also stimulated the glial enzyme 2':3'-cyclic nucleotide phosphohydrolase (CNP-ase). The results suggest a dual role for insulin; it regulates both cell proliferation as well as differentiation

  3. Research resource: new and diverse substrates for the insulin receptor isoform a revealed by quantitative proteomics after stimulation with igf-ii or insulin

    DEFF Research Database (Denmark)

    Morcavallo, Alaide; Gaspari, Marco; Pandini, Giuseppe

    2011-01-01

    progression. We hypothesized that IGF-II binding to the IR-A elicits a unique signaling pathway. In order to obtain an unbiased evaluation of IR-A substrates differentially involved after IGF-II and insulin stimulation, we performed quantitative proteomics of IR-A substrates recruited to tyrosine......-phosphorylated protein complexes using stable isotope labeling with amino acids in cell culture in combination with antiphosphotyrosine antibody pull down and mass spectrometry. Using cells expressing only the human IR-A and lacking the IGF-I receptor, we identified 38 IR-A substrates. Only 10 were known IR mediators......, whereas 28 substrates were not previously related to IR signaling. Eleven substrates were recruited by stimulation with both ligands: two equally recruited by IGF-II and insulin, three more strongly recruited by IGF-II, and six more strongly recruited by insulin. Moreover, 14 substrates were recruited...

  4. G-Protein-coupled receptors as potential drug candidates in preeclampsia: targeting the relaxin/insulin-like family peptide receptor 1 for treatment and prevention.

    Science.gov (United States)

    Conrad, Kirk P

    2016-09-01

    Important roles for G-protein-coupled receptors (GPCRs) have been identified in the maternal physiological adaptations to pregnancy and in the pathogenesis of preeclampsia. On this basis, GPCRs are potential therapeutic targets for preeclampsia. In this review, vasopressin and apelin are initially considered in this context before the focus on the hormone relaxin and its cognate receptor, the relaxin/insulin-like family peptide receptor 1 (RXFP1). Based on both compelling scientific rationale and a promising safety profile, the relaxin ligand-receptor system is comprehensively evaluated as a potential therapeutic endpoint in preeclampsia. The published literature relating to the topic was searched through January 2016 using PubMed. Relaxin is a peptide hormone secreted by the corpus luteum; it circulates in the luteal phase and during pregnancy. Activation of RXFP1 is vasodilatory; thus, relaxin supplementation is expected to at least partly restore the fundamental vasodilatory changes of normal pregnancy, thereby alleviating maternal organ hypoperfusion, which is a major pathogenic manifestation of severe preeclampsia. Specifically, by exploiting its pleiotropic hemodynamic attributes in preeclampsia, relaxin administration is predicted to (i) reverse robust arterial myogenic constriction; (ii) blunt systemic and renal vasoconstriction in response to activation of the angiotensin II receptor, type 1; (iii) mollify the action of endogenous vasoconstrictors on uterine spiral arteries with failed remodeling and retained smooth muscle; (iv) increase arterial compliance; (v) enhance insulin-mediated glucose disposal by promoting skeletal muscle vasodilation and (vi) mobilize and activate bone marrow-derived angiogenic progenitor cells, thereby repairing injured endothelium and improving maternal vascularity in organs such as breast, uterus, pancreas, skin and fat. By exploiting its pleiotropic molecular attributes in preeclampsia, relaxin supplementation is

  5. Systemic administration of kainic acid induces selective time dependent decrease in [125I]insulin-like growth factor I, [125I]insulin-like growth factor II and [125I]insulin receptor binding sites in adult rat hippocampal formation

    International Nuclear Information System (INIS)

    Quirion, R.; Chabot, J.-G.; Dore, S.; Seto, D.; Kar, S.

    1997-01-01

    Administration of kainic acid evokes acute seizure in hippocampal pathways that results in a complex sequence of functional and structural alterations resembling human temporal lobe epilepsy. The structural alterations induced by kainic acid include selective loss of neurones in CA1-CA3 subfields and the hilar region of the dentate gyrus followed by sprouting and permanent reorganization of the synaptic connections of the mossy fibre pathways. Although the neuronal degeneration and process of reactive synaptogenesis have been extensively studied, at present little is known about means to prevent pathological conditions leading to kainate-induced cell death. In the present study, to address the role of insulin-like growth factors I and II, and insulin in neuronal survival as well as synaptic reorganization following kainate-induced seizure, the time course alterations of the corresponding receptors were evaluated. Additionally, using histological preparations, the temporal profile of neuronal degeneration and hypertrophy of resident astroglial cells were also studied. [ 125 I]Insulin-like growth factor I binding was found to be decreased transiently in almost all regions of the hippocampal formation at 12 h following treatment with kainic acid. The dentate hilar region however, exhibited protracted decreases in [ 125 I]insulin-like growth factor I receptor sites throughout (i.e. 30 days) the study. [ 125 I]Insulin-like growth factor II receptor binding sites in the hippocampal formation were found to be differentially altered following systemic administration of kainic acid. A significant decrease in [ 125 I]insulin-like growth factor II receptor sites was observed in CA1 subfield and the pyramidal cell layer of the Ammon's horn at all time points studied whereas the hilar region and the stratum radiatum did not exhibit alteration at any time. A kainate-induced decrease in [ 125 I]insulin receptor binding was noted at all time points in the molecular layer of the

  6. Deletion of interleukin 1 receptor-associated kinase 1 (Irak1) improves glucose tolerance primarily by increasing insulin sensitivity in skeletal muscle.

    Science.gov (United States)

    Sun, Xiao-Jian; Kim, Soohyun Park; Zhang, Dongming; Sun, Helen; Cao, Qi; Lu, Xin; Ying, Zhekang; Li, Liwu; Henry, Robert R; Ciaraldi, Theodore P; Taylor, Simeon I; Quon, Michael J

    2017-07-21

    Chronic inflammation may contribute to insulin resistance via molecular cross-talk between pathways for pro-inflammatory and insulin signaling. Interleukin 1 receptor-associated kinase 1 (IRAK-1) mediates pro-inflammatory signaling via IL-1 receptor/Toll-like receptors, which may contribute to insulin resistance, but this hypothesis is untested. Here, we used male Irak1 null (k/o) mice to investigate the metabolic role of IRAK-1. C57BL/6 wild-type (WT) and k/o mice had comparable body weights on low-fat and high-fat diets (LFD and HFD, respectively). After 12 weeks on LFD (but not HFD), k/o mice ( versus WT) had substantially improved glucose tolerance (assessed by the intraperitoneal glucose tolerance test (IPGTT)). As assessed with the hyperinsulinemic euglycemic glucose clamp technique, insulin sensitivity was 30% higher in the Irak1 k/o mice on chow diet, but the Irak1 deletion did not affect IPGTT outcomes in mice on HFD, suggesting that the deletion did not overcome the impact of obesity on glucose tolerance. Moreover, insulin-stimulated glucose-disposal rates were higher in the k/o mice, but we detected no significant difference in hepatic glucose production rates (± insulin infusion). Positron emission/computed tomography scans indicated higher insulin-stimulated glucose uptake in muscle, but not liver, in Irak1 k/o mice in vivo Moreover, insulin-stimulated phosphorylation of Akt was higher in muscle, but not in liver, from Irak1 k/o mice ex vivo In conclusion, Irak1 deletion improved muscle insulin sensitivity, with the effect being most apparent in LFD mice. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Elevated insulin-like growth factor 1 receptor signaling induces antiestrogen resistance through the MAPK/ERK and PI3K/Akt signaling routes

    NARCIS (Netherlands)

    Zhang, Y.; Moerkens, M.; Ramaiahgari, S.; Bont, de H.J.G.M.; Price, L.; Meerman, J.H.N.; Water, van de B.

    2011-01-01

    INTRODUCTION: Insulin-like growth factor 1 (IGF-1) receptor (IGF-1R) is phosphorylated in all breast cancer subtypes. Past findings have shown that IGF-1R mediates antiestrogen resistance through cross-talk with estrogen receptor (ER) signaling and via its action upstream of the epidermal growth

  8. Novel nuclear localization and potential function of insulin-like growth factor-1 receptor/insulin receptor hybrid in corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yu-Chieh Wu

    Full Text Available BACKGROUND: Type I insulin-like growth factor receptor (IGF-1R and insulin receptor (INSR are highly homologous molecules, which can heterodimerize to form an IGF-1R/INSR hybrid (Hybrid-R. The presence and biological significance of the Hybrid-R in human corneal epithelium has not yet been established. In addition, while nuclear localization of IGF-1R was recently reported in cancer cells and human corneal epithelial cells, the function and profile of nuclear IGF-1R is unknown. In this study, we characterized the nuclear localization and function of the Hybrid-R and the role of IGF-1/IGF-1R and Hybrid-R signaling in the human corneal epithelium. METHODOLOGY/PRINCIPLE FINDINGS: IGF-1-mediated signaling and cell growth were examined in a human telomerized corneal epithelial (hTCEpi cell line using co-immunoprecipitation, immunoblotting and cell proliferation assays. The presence of Hybrid-R in hTCEpi and primary cultured human corneal epithelial cells was confirmed by immunofluorescence and reciprocal immunoprecipitation of whole cell lysates. We found that IGF-1 stimulated Akt and promoted cell growth through IGF-1R activation, which was independent of the Hybrid-R. The presence of Hybrid-R, but not IGF-1R/IGF-1R, was detected in nuclear extracts. Knockdown of INSR by small interfering RNA resulted in depletion of the INSR/INSR and preferential formation of Hybrid-R. Chromatin-immunoprecipitation sequencing assay with anti-IGF-1R or anti-INSR was subsequently performed to identify potential genomic targets responsible for critical homeostatic regulatory pathways. CONCLUSION/SIGNIFICANCE: In contrast to previous reports on nuclear localized IGF-1R, this is the first report identifying the nuclear localization of Hybrid-R in an epithelial cell line. The identification of a nuclear Hybrid-R and novel genomic targets suggests that IGF-1R traffics to the nucleus as an IGF-1R/INSR heterotetrameric complex to regulate corneal epithelial homeostatic

  9. Label-Free Proteomic Identification of Endogenous, Insulin-Stimulated Interaction Partners of Insulin Receptor Substrate-1

    Science.gov (United States)

    Geetha, Thangiah; Langlais, Paul; Luo, Moulun; Mapes, Rebekka; Lefort, Natalie; Chen, Shu-Chuan; Mandarino, Lawrence J.; Yi, Zhengping

    2011-03-01

    Protein-protein interactions are key to most cellular processes. Tandem mass spectrometry (MS/MS)-based proteomics combined with co-immunoprecipitation (CO-IP) has emerged as a powerful approach for studying protein complexes. However, a majority of systematic proteomics studies on protein-protein interactions involve the use of protein overexpression and/or epitope-tagged bait proteins, which might affect binding stoichiometry and lead to higher false positives. Here, we report an application of a straightforward, label-free CO-IP-MS/MS method, without the use of protein overexpression or protein tags, to the investigation of changes in the abundance of endogenous proteins associated with a bait protein, which is in this case insulin receptor substrate-1 (IRS-1), under basal and insulin stimulated conditions. IRS-1 plays a central role in the insulin signaling cascade. Defects in the protein-protein interactions involving IRS-1 may lead to the development of insulin resistance and type 2 diabetes. HPLC-ESI-MS/MS analyses identified eleven novel endogenous insulin-stimulated IRS-1 interaction partners in L6 myotubes reproducibly, including proteins play an important role in protein dephosphorylation [protein phosphatase 1 regulatory subunit 12A, (PPP1R12A)], muscle contraction and actin cytoskeleton rearrangement, endoplasmic reticulum stress, and protein folding, as well as protein synthesis. This novel application of label-free CO-IP-MS/MS quantification to assess endogenous interaction partners of a specific protein will prove useful for understanding how various cell stimuli regulate insulin signal transduction.

  10. Identification and transcriptional modulation of the largemouth bass, Micropterus salmoides, vitellogenin receptor during oocyte development by insulin and sex steroids.

    Science.gov (United States)

    Dominguez, Gustavo A; Quattro, Joseph M; Denslow, Nancy D; Kroll, Kevin J; Prucha, Melinda S; Porak, Wesley F; Grier, Harry J; Sabo-Attwood, Tara L

    2012-09-01

    Fish vitellogenin synthesized and released from the liver of oviparous animals is taken up into oocytes by the vitellogenin receptor. This is an essential process in providing nutrient yolk to developing embryos to ensure successful reproduction. Here we disclose the full length vtgr cDNA sequence for largemouth bass (LMB) that reveals greater than 90% sequence homology with other fish vtgr sequences. We classify LMB Vtgr as a member of the low density lipoprotein receptor superfamily based on conserved domains and categorize as the short variant that is devoid of the O-glycan segment. Phylogenetic analysis places LMB Vtgr sequence into a well-supported monophyletic group of fish Vtgr. Real-time PCR showed that the greatest levels of LMB vtgr mRNA expression occurred in previtellogenic ovarian tissues. In addition, we reveal the effects of insulin, 17beta-estradiol (E(2)), and 11-ketotestosterone (11-KT) in modulation of vtgr, esr, and ar mRNAs in previtellogenic oocytes. Insulin increased vtgr expression levels in follicles ex vivo while exposure to E(2) or 11-KT did not result in modulation of expression. However, both steroids were able to repress insulin-induced vtgr transcript levels. Coexposure with insulin and E(2) or of insulin and 11-KT increased ovarian esr2b and ar mRNA levels, respectively, which suggest a role for these nuclear receptors in insulin-mediated signaling pathways. These data provide the first evidence for the ordered stage-specific expression of LMB vtgr during the normal reproductive process and the hormonal influence of insulin and sex steroids on controlling vtgr transcript levels in ovarian tissues.

  11. Insulin Resistance Induced by Hyperinsulinemia Coincides with a Persistent Alteration at the Insulin Receptor Tyrosine Kinase Domain

    Science.gov (United States)

    Catalano, Karyn J.; Maddux, Betty A.; Szary, Jaroslaw; Youngren, Jack F.; Goldfine, Ira D.; Schaufele, Fred

    2014-01-01

    Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR) activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK) domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered ‘insulin refractory’ IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated) levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based ‘memory’ of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states. PMID:25259572

  12. Insulin resistance induced by hyperinsulinemia coincides with a persistent alteration at the insulin receptor tyrosine kinase domain.

    Directory of Open Access Journals (Sweden)

    Karyn J Catalano

    Full Text Available Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered 'insulin refractory' IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based 'memory' of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states.

  13. Relationships between endothelin and insulin receptor of red blood cell and insulin resistance in patients with hypertension

    International Nuclear Information System (INIS)

    Tong Qian; Zheng Yang; Xu Hui

    2004-01-01

    Objective: To find the relationships between endothelin (ET) and insulin resistance (IR) and insulin receptor (INSR) in patients with essential hypertension. Methods: Forty patients including 20 cases of essential hypertension disease (EHD) and 20 health persons were divided into experimental group and control group. Blood glucose, serum insulin, ET and the number of erythrocyte INSR in all patients during fasting condition were detected by radioimmunoassay and radiometric analysis. Results: Both insulin sensitivity index (ISI) and the number of INSR in EHD group were much less than that of control group, on the contrary, ET level of EHD group was significantly higher than that of control group (P<0.05). Statistical analysis demonstrated a negative correlation between ET and ISI and INSR number existed in EHD group. Conclusion: IR is a common phenomenon in patient with EHD and possibly due to decrease of INSR number. The ET levels are higher in patients with EHD than that in health people and correlate with INSR, and the change of INSR number is the possible mediator for their relationship

  14. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob

    2018-01-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling...... properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type......, IRS-1-/-and IRS-2-/-mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1...

  15. Growth factor receptor-binding protein 10 (Grb10) as a partner of phosphatidylinositol 3-kinase in metabolic insulin action.

    Science.gov (United States)

    Deng, Youping; Bhattacharya, Sujoy; Swamy, O Rama; Tandon, Ruchi; Wang, Yong; Janda, Robert; Riedel, Heimo

    2003-10-10

    The regulation of the metabolic insulin response by mouse growth factor receptor-binding protein 10 (Grb10) has been addressed in this report. We find mouse Grb10 to be a critical component of the insulin receptor (IR) signaling complex that provides a functional link between IR and p85 phosphatidylinositol (PI) 3-kinase and regulates PI 3-kinase activity. This regulatory mechanism parallels the established link between IR and p85 via insulin receptor substrate (IRS) proteins. A direct association was demonstrated between Grb10 and p85 but was not observed between Grb10 and IRS proteins. In addition, no effect of mouse Grb10 was observed on the association between IRS-1 and p85, on IRS-1-associated PI 3-kinase activity, or on insulin-mediated activation of IR or IRS proteins. A critical role of mouse Grb10 was observed in the regulation of PI 3-kinase activity and the resulting metabolic insulin response. Dominant-negative Grb10 domains, in particular the SH2 domain, eliminated the metabolic response to insulin in differentiated 3T3-L1 adipocytes. This was consistently observed for glycogen synthesis, glucose and amino acid transport, and lipogenesis. In parallel, the same metabolic responses were substantially elevated by increased levels of Grb10. A similar role of Grb10 was confirmed in mouse L6 cells. In addition to the SH2 domain, the Pro-rich amino-terminal region of Grb10 was implicated in the regulation of PI 3-kinase catalytic activity. These regulatory roles of Grb10 were extended to specific insulin mediators downstream of PI 3-kinase including PKB/Akt, glycogen synthase kinase, and glycogen synthase. In contrast, a regulatory role of Grb10 in parallel insulin response pathways including p70 S6 kinase, ubiquitin ligase Cbl, or mitogen-activated protein kinase p38 was not observed. The dissection of the interaction of mouse Grb10 with p85 and the resulting regulation of PI 3-kinase activity should help elucidate the complexity of the IR signaling

  16. Experimental diabetes increases insulin-like growth factor I and II receptor concentration and gene expression in kidney

    International Nuclear Information System (INIS)

    Werner, H.; Shen-Orr, Z.; Stannard, B.; Burguera, B.; Roberts, C.T. Jr.; LeRoith, D.

    1990-01-01

    Insulinlike growth factor I (IGF-I) is a mitogenic hormone with important regulatory roles in growth and development. One of the target organs for IGF-I action is the kidney, which synthesizes abundant IGF-I receptors and IGF-I itself. To study the involvement of IGF-I and the IGF-I receptor in the development of nephropathy, one of the major complications of diabetes mellitus, we measured the expression of these genes in the kidney and in other tissues of the streptozocin-induced diabetic rat. The binding of 125I-labeled IGF-I to crude membranes was measured in the same tissues. We observed a 2.5-fold increase in the steady-state level of IGF-I-receptor mRNA in the diabetic kidney, which was accompanied by a 2.3-fold increase in IGF-I binding. In addition to this increase in IGF-I binding to the IGF-I receptor, there was also binding to a lower-molecular-weight material that may represent an IGF-binding protein. No change was detected in the level of IGF-I-peptide mRNA. Similarly, IGF-II-receptor mRNA levels and IGF-II binding were significantly increased in the diabetic kidney. IGF-I- and IGF-II-receptor mRNA levels and IGF-I and IGF-II binding returned to control values after insulin treatment. Because the IGF-I receptor is able to transduce mitogenic signals on activation of its tyrosine kinase domain, we hypothesize that, among other factors, high levels of receptor in the diabetic kidney may also be involved in the development of diabetic nephropathy. Increased IGF-II-receptor expression in the diabetic kidney may be important for the intracellular transport and packaging of lysosomal enzymes, although a role for this receptor in signal transduction cannot be excluded. Finally, the possible role of IGF-binding proteins requires further study

  17. Effect of neoadjuvant chemotherapy on low-density lipoprotein (LDL) receptor and LDL receptor-related protein 1 (LRP-1) receptor in locally advanced breast cancer

    International Nuclear Information System (INIS)

    Pires, L.A.; Hegg, R.; Freitas, F.R.; Tavares, E.R.; Almeida, C.P.; Baracat, E.C.; Maranhão, R.C.

    2012-01-01

    Low-density lipoprotein (LDL) receptors are overexpressed in most neoplastic cell lines and provide a mechanism for the internalization and concentration of drug-laden nanoemulsions that bind to these receptors. The aim of the present study was to determine whether the administration of standard chemotherapeutic schemes can alter the expression of LDL and LDL receptor-related protein 1 (LRP-1) receptors in breast carcinoma. Fragments of tumoral and normal breast tissue from 16 consecutive volunteer women with breast cancer in stage II or III were obtained from biopsies before the beginning of neoadjuvant chemotherapy and after chemotherapy, from fragments excised during mastectomy. Tissues were analyzed by immunohistochemistry for both receptors. Because complete response to treatment was achieved in 4 patients, only the tumors from 12 were analyzed. Before chemotherapy, there was overexpression of LDL receptor in the tumoral tissue compared to normal breast tissue in 8 of these patients. LRP-1 receptor overexpression was observed in tumors of 4 patients. After chemotherapy, expression of both receptors decreased in the tumors of 6 patients, increased in 4 and was unchanged in 2. Nonetheless, even when chemotherapy reduced receptors expression, the expression was still above normal. The fact that chemotherapy does not impair LDL receptors expression supports the use of drug carrier systems that target neoplastic cells by the LDL receptor endocytic pathway in patients on conventional chemotherapy

  18. Human circulating monocytes internalize 125I-insulin in a similar fashion to rat hepatocytes: relevance to receptor regulation in target and nontarget tissues

    International Nuclear Information System (INIS)

    Grunberger, G.; Robert, A.; Carpentier, J.L.; Dayer, J.M.; Roth, A.; Stevenson, H.C.; Orci, L.; Gorden, P.

    1985-01-01

    Circulating monocytes bind 125 I-insulin in a specific fashion and have been used to analyze the ambient receptor status in humans. When freshly isolated circulating monocytes are incubated with 125 I-insulin and examined by electron microscopic autoradiography, approximately 18% of the labeled material is internalized after 15 minutes at 37 degrees C. By 2 hours at 37 degrees C, approximately one half of the 125 I-insulin is internalized. Internalization occurs also at 15 degrees C but at a slower rate. Furthermore, the monocytes bind and internalize 125 I-insulin in a manner that mirrors that of major target tissues, such as rat hepatocytes. These data suggest that the insulin receptor of the circulating monocyte might be regulated by adsorptive endocytosis in a manner analogous to that of target tissue, such as the liver

  19. Converting Insulin-like Growth Factors 1 and 2 into High-Affinity Ligands for Insulin Receptor Isoform A by the Introduction of an Evolutionarily Divergent Mutation

    Czech Academy of Sciences Publication Activity Database

    Macháčková, Kateřina; Chrudinová, Martina; Radosavljević, Jelena; Potalitsyn, Pavlo; Křížková, Květoslava; Fábry, Milan; Selicharová, Irena; Collinsová, Michaela; Brzozowski, A. M.; Žáková, Lenka; Jiráček, Jiří

    2018-01-01

    Roč. 57, č. 16 (2018), s. 2373-2382 ISSN 0006-2960 R&D Projects: GA ČR GA15-19018S Institutional support: RVO:61388963 ; RVO:68378050 Keywords : insulin-like growth factor * insulin * receptor * analog Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 2.938, year: 2016 https://pubs.acs.org/doi/10.1021/acs.biochem.7b01260

  20. Testosterone treatment increases androgen receptor and aromatase gene expression in myotubes from patients with PCOS and controls, but does not induce insulin resistance.

    Science.gov (United States)

    Eriksen, Mette Brandt; Glintborg, Dorte; Nielsen, Michael Friberg Bruun; Jakobsen, Marianne Antonius; Brusgaard, Klaus; Tan, Qihua; Gaster, Michael

    2014-09-05

    Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity is conserved in cultured myotubes (in vitro) from patients with PCOS, but the effect of testosterone on this insulin sensitivity is unknown. We investigated the effect of 7days testosterone treatment (100nmol/l) on glucose transport and gene expression levels of hormone receptors and enzymes involved in the synthesis and conversion of testosterone (HSD17B1, HSD17B2, CYP19A1, SRD5A1-2, AR, ER-α, HSD17B6 and AKR1-3) in myotubes from ten patients with PCOS and ten matched controls. Testosterone treatment significantly increased aromatase and androgen receptor gene expression levels in patients and controls. Glucose transport in myotubes was comparable in patients with PCOS vs. controls and was unchanged by testosterone treatment (p=0.21 PCOS vs. controls). These results suggest that testosterone treatment of myotubes increases the aromatase and androgen receptor gene expression without affecting insulin sensitivity and if testosterone is implicated in muscular insulin resistance in PCOS, this is by and indirect mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Identification and Transcriptional Modulation of the Largemouth Bass, Micropterus salmoides, Vitellogenin Receptor During Oocyte Development by Insulin and Sex Steroids1

    Science.gov (United States)

    Dominguez, Gustavo A.; Quattro, Joseph M.; Denslow, Nancy D.; Kroll, Kevin J.; Prucha, Melinda S.; Porak, Wesley F.; Grier, Harry J.; Sabo-Attwood, Tara L.

    2012-01-01

    ABSTRACT Fish vitellogenin synthesized and released from the liver of oviparous animals is taken up into oocytes by the vitellogenin receptor. This is an essential process in providing nutrient yolk to developing embryos to ensure successful reproduction. Here we disclose the full length vtgr cDNA sequence for largemouth bass (LMB) that reveals greater than 90% sequence homology with other fish vtgr sequences. We classify LMB Vtgr as a member of the low density lipoprotein receptor superfamily based on conserved domains and categorize as the short variant that is devoid of the O-glycan segment. Phylogenetic analysis places LMB Vtgr sequence into a well-supported monophyletic group of fish Vtgr. Real-time PCR showed that the greatest levels of LMB vtgr mRNA expression occurred in previtellogenic ovarian tissues. In addition, we reveal the effects of insulin, 17beta-estradiol (E2), and 11-ketotestosterone (11-KT) in modulation of vtgr, esr, and ar mRNAs in previtellogenic oocytes. Insulin increased vtgr expression levels in follicles ex vivo while exposure to E2 or 11-KT did not result in modulation of expression. However, both steroids were able to repress insulin-induced vtgr transcript levels. Coexposure with insulin and E2 or of insulin and 11-KT increased ovarian esr2b and ar mRNA levels, respectively, which suggest a role for these nuclear receptors in insulin-mediated signaling pathways. These data provide the first evidence for the ordered stage-specific expression of LMB vtgr during the normal reproductive process and the hormonal influence of insulin and sex steroids on controlling vtgr transcript levels in ovarian tissues. PMID:22786822

  2. Insulin use, hormone receptor status and hematopoietic cytokines׳ circulation in women with diabetes mellitus and breast cancer

    Directory of Open Access Journals (Sweden)

    Zachary A.P. Wintrob

    2017-04-01

    The data presented here is among the first to show a relationship between pre-existing use of injectable insulin in women diagnosed with breast cancer and type 2 diabetes mellitus, hematopoietic cytokine profiles at time of breast cancer diagnosis, and subsequent cancer outcomes. A Pearson correlation analysis evaluating the relationship between G-CSF, GM-CSF, and IL-7 stratified by insulin use, controls, as well as by estrogen and progesterone receptor status is also provided.

  3. Chemokine-like receptor 1 deficiency does not affect the development of insulin resistance and nonalcoholic fatty liver disease in mice.

    Directory of Open Access Journals (Sweden)

    Nanda Gruben

    Full Text Available The adipokine chemerin and its receptor, chemokine-like receptor 1 (Cmklr1, are associated with insulin resistance and nonalcoholic fatty liver disease (NAFLD, which covers a broad spectrum of liver diseases, ranging from simple steatosis to nonalcoholic steatohepatitis (NASH. It is possible that chemerin and/or Cmklr1 exert their effects on these disorders through inflammation, but so far the data have been controversial. To gain further insight into this matter, we studied the effect of whole-body Cmklr1 deficiency on insulin resistance and NAFLD. In view of the primary role of macrophages in hepatic inflammation, we also transplanted bone marrow from Cmklr1 knock-out (Cmklr1-/- mice and wild type (WT mice into low-density lipoprotein receptor knock-out (Ldlr-/- mice, a mouse model for NASH. All mice were fed a high fat, high cholesterol diet containing 21% fat from milk butter and 0.2% cholesterol for 12 weeks. Insulin resistance was assessed by an oral glucose tolerance test, an insulin tolerance test, and by measurement of plasma glucose and insulin levels. Liver pathology was determined by measuring hepatic inflammation, fibrosis, lipid accumulation and the NAFLD activity score (NAS. Whole-body Cmklr1 deficiency did not affect body weight gain or food intake. In addition, we observed no differences between WT and Cmklr1-/- mice for hepatic inflammatory and fibrotic gene expression, immune cell infiltration, lipid accumulation or NAS. In line with this, we detected no differences in insulin resistance. In concordance with whole-body Cmklr1 deficiency, the absence of Cmklr1 in bone marrow-derived cells in Ldlr-/- mice did not affect their insulin resistance or liver pathology. Our results indicate that Cmklr1 is not involved in the pathogenesis of insulin resistance or NAFLD. Thus, we recommend that the associations reported between Cmklr1 and insulin resistance or NAFLD should be interpreted with caution.

  4. Impaired LDL receptor-related protein 1 translocation correlates with improved dyslipidemia and atherosclerosis in apoE-deficient mice.

    Directory of Open Access Journals (Sweden)

    Philip L S M Gordts

    Full Text Available OBJECTIVE: Determination of the in vivo significance of LDL receptor-related protein 1 (LRP1 dysfunction on lipid metabolism and atherosclerosis development in absence of its main ligand apoE. METHODS AND RESULTS: LRP1 knock-in mice carrying an inactivating mutation in the NPxYxxL motif were crossed with apoE-deficient mice. In the absence of apoE, relative to LRP1 wild-type animals, LRP1 mutated mice showed an increased clearance of postprandial lipids despite a compromised LRP1 endocytosis rate and inefficient insulin-mediated translocation of the receptor to the plasma membrane, likely due to inefficient slow recycling of the mutated receptor. Postprandial lipoprotein improvement was explained by increased hepatic clearance of triglyceride-rich remnant lipoproteins and accompanied by a compensatory 1.6-fold upregulation of LDLR expression in hepatocytes. One year-old apoE-deficient mice having the dysfunctional LRP1 revealed a 3-fold decrease in spontaneous atherosclerosis development and a 2-fold reduction in LDL-cholesterol levels. CONCLUSION: These findings demonstrate that the NPxYxxL motif in LRP1 is important for insulin-mediated translocation and slow perinuclear endosomal recycling. These LRP1 impairments correlated with reduced atherogenesis and cholesterol levels in apoE-deficient mice, likely via compensatory LDLR upregulation.

  5. Fatty acid represses insulin receptor gene expression by impairing HMGA1 through protein kinase Cε

    International Nuclear Information System (INIS)

    Dey, Debleena; Bhattacharya, Anirban; Roy, SibSankar; Bhattacharya, Samir

    2007-01-01

    It is known that free fatty acid (FFA) contributes to the development of insulin resistance and type2 diabetes. However, the underlying mechanism in FFA-induced insulin resistance is still unclear. In the present investigation we have demonstrated that palmitate significantly (p < 0.001) inhibited insulin-stimulated phosphorylation of PDK1, the key insulin signaling molecule. Consequently, PDK1 phosphorylation of plasma membrane bound PKCε was also inhibited. Surprisingly, phosphorylation of cytosolic PKCε was greatly stimulated by palmitate; this was then translocated to the nuclear region and associated with the inhibition of insulin receptor (IR) gene transcription. A PKCε translocation inhibitor peptide, εV1, suppressed this inhibitory effect of palmitate, suggesting requirement of phospho-PKCε migration to implement palmitate effect. Experimental evidences indicate that phospho-PKCε adversely affected HMGA1. Since HMGA1 regulates IR promoter activity, expression of IR gene was impaired causing reduction of IR on cell surface and that compromises with insulin sensitivity

  6. Peroxisome Proliferator-activated Receptor gamma Regulates Expression of the Anti-lipolytic G-protein-coupled Receptor 81 (GPR81/Gpr81)

    NARCIS (Netherlands)

    Jeninga, E.H.; Bugge, A.; Nielsen, R.; Kersten, A.H.; Hamers, N.; Dani, C.; Wabitsch, M.; Berger, R.; Stunnenberg, H.G.; Mandrup, S.; Kalkhoven, E.

    2009-01-01

    The ligand-inducible nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR gamma) plays a key role in the differentiation, maintenance, and function of adipocytes and is the molecular target for the insulin-sensitizing thiazoledinediones (TZDs). Although a number of PPAR gamma

  7. Receptors for insulin-like growth factor II (IGF-II) in the rat kidney glomerulus

    International Nuclear Information System (INIS)

    Haskell, J.F.; Pillion, D.J.; Meezan, E.

    1986-01-01

    Renal glomeruli were isolated by a technique involving renal perfusion with a solution containing magnetic iron oxide particles, followed by homogenization, sieving and isolation over a strong magnet. Isolated glomeruli were treated with 1% Triton X-100 to solubilize plasma membrane components while insoluble basement membrane components were removed by centrifugation. [ 125 I]Insulin-like growth factor-II (IGF-II) binding to this preparation was competitively inhibited by increasing amounts of unlabelled IGF-II, with 50% inhibition of binding observed at an IGF-II concentration of 1 ng/ml. [ 125 I]IGF-II was covalently cross-linked to its receptor with disuccinimidyl suberate in two tissues known to contain IGF-II receptors, the rat chondrosarcoma chondrocyte and the rat kidney tubule, as well as in rat renal glomeruli. In all three cases, a specific high-molecular weight (Mr = 255,000) band could be identified on autoradiograms of dodecyl sulfate polyacrylamide gels. These results indicate that the rat glomerulus contains a high-affinity receptor for IGF-II. This finding is consistent with the hypothesis that IGF-II plays a role in glomerular growth and differentiation

  8. Effects of Steaming Time and Frequency for Manufactured Red Liriope platyphylla on the Insulin Secretion Ability and Insulin Receptor Signaling Pathway.

    Science.gov (United States)

    Choi, Sun Il; Lee, Hye Ryun; Goo, Jun Seo; Kim, Ji Eun; Nam, So Hee; Hwang, In Sik; Lee, Young Ju; Prak, So Hae; Lee, Hee Seob; Lee, Jong Sup; Jang, In Surk; Son, Hong Ju; Hwang, Dae Youn

    2011-06-01

    In oriental medicine, Liriope platyphylla (LP) has long been regarded as a curative herb useful for the treatment of diabetes, asthma, and neurodegenerative disorders. The principal objective of this study was to assess the effects of steaming time and frequency for manufactured Red LP (RLP) on insulin secretion ability and insulin receptor signaling pathway. To achieve our goal, several types of LPs manufactured under different conditions were applied to INS cells and streptozotocin (STZ)-induced diabetic ICR mice, after which alterations in insulin concentrations were detected in the culture supernatants and sera. The optimal concentration for the investigation of insulin secretion ability was found to be 50 ug/mL of LP. At this concentration, maximum insulin secretion was observed in the INS cells treated with LP extract steamed for 3 h (3-SLP) with two repeated steps (3 h steaming and 24 h air-dried) carried out 9 times (9-SALP); no significant changes in viability were detected in any of the treated cells. Additionally, the expression and phosphorylation levels of most components in the insulin receptor signaling pathway were increased significantly in the majority of cells treated with steaming-processed LP as compared to the cells treated with LP prepared without steaming. With regard to glucose transporter (GLUT) expression, alterations of steaming time induced similar responses on the expression levels of GLUT-2 and GLUT-3. However, differences in steaming frequency were also shown to induce dose-dependent responses in the expression level of GLUT-2 only; no significant differences in GLUT-3 expression were detected under these conditions. Furthermore, these responses observed in vitro were similarly detected in STZ-induced diabetic mice. 24-SLP and 9-SALP treatment applied for 14 days induced the down-regulation of glucose concentration and upregulation of insulin concentration. Therefore, these results indicated that the steaming processed LP may

  9. Nuclear receptors and nonalcoholic fatty liver disease1

    Science.gov (United States)

    Cave, Matthew C.; Clair, Heather B.; Hardesty, Josiah E.; Falkner, K. Cameron; Feng, Wenke; Clark, Barbara J.; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A.; McClain, Craig J.; Prough, Russell A.

    2016-01-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic

  10. Human blood-brain barrier insulin-like growth factor receptor

    International Nuclear Information System (INIS)

    Duffy, K.R.; Pardridge, W.M.; Rosenfeld, R.G.

    1988-01-01

    Insulin-like growth factor (IGF)-1 and IGF-2, may be important regulatory molecules in the CNS. Possible origins of IGFs in brain include either de novo synthesis or transport of circulating IGFs from blood into brain via receptor mediated transcytosis mechanisms at the brain capillary endothelial wall, ie, the blood-brain barrier (BBB). In the present studies, isolated human brain capillaries are used as an in vitro model system of the human BBB and the characteristics of IGF-1 or IGF-2 binding to this preparation were assessed. The total binding of IGF-2 at 37 degrees C exceeded 130% per mg protein and was threefold greater than the total binding for IGF-1. However, at 37 degrees C nonsaturable binding equaled total binding, suggesting that endocytosis is rate limiting at physiologic temperatures. Binding studies performed at 4 degrees C slowed endocytosis to a greater extent than membrane binding, and specific binding of either IGF-1 or IGF-2 was detectable. Scatchard plots for either peptide were linear and the molar dissociation constant of IGF-1 and IGF-2 binding was 2.1 +/- 0.4 and 1.1 +/- 0.1 nmol/L, respectively. Superphysiologic concentrations of porcine insulin inhibited the binding of both IGF-1 (ED50 = 2 micrograms/mL) and IGF-2 (ED50 = 0.5 microgram/mL). Affinity cross linking of 125 I-IGF-1, 125 I-IGF-2, and 125 I-insulin to isolated human brain capillaries was performed using disuccinimidylsuberate (DSS). These studies revealed a 141 kd binding site for both IGF-1 and IGF-2, and a 133 kd binding site for insulin

  11. Anti hyperglycaemic study of natural inhibitors for Insulin receptor.

    Science.gov (United States)

    Chatterjee, Subhojyoti; Narasimhaiah, Akshaya Lakshmi; Kundu, Sanjay; Anand, Santosh

    2012-01-01

    Diabetes is a metabolic disorder associated with either improper functioning of the beta-cells or wherein cells fail to use insulin properly. Insulin, the principal hormone regulates uptake of glucose from the blood into most of the cells except central nervous system. Therefore, deficiency of insulin or the insensitivity of its receptors plays a key role in all forms of diabetes. In the present work, attempt has been made to find out plant sources which show anti hyperglycaemic activity (AhG) (i.e. compounds that bring down the blood glucose level in the body). Ayurvedic plants showing AhG activity formed the basis of our study by using the platform of Computer Aided Drug Designing (CADD). Among 600 plants showing AhG activity, 500 compounds were selected and screened, out of which 243 compounds showed drug likeness property that can be used as therapeutic ligand/drug. Initial screening of such compounds was done based on their drug likeness or biochemical properties. Dynamic interaction of these molecules was captured through Protein-Ligand study. It also gave an insight of the binding pockets involved. Bench marking of all the parameters were done using the diabetic inhibitor drug, Glipizide. Pharmacokinetic studies of the compounds such as Aloins, Capparisine, Funiculosin and Rhein exhibited less toxicity on various levels of the body. As a conclusion these ligands can lay a foundation for a better anti-diabetic therapy. AhG - Anti hyperglycaemic, CADD - Computer Aided Drug Designing.

  12. Specific, high affinity receptors for insulin-like growth factor II in the rat kidney glomerulus

    International Nuclear Information System (INIS)

    Haskell, J.F.; Pillion, D.J.; Meezan, E.

    1988-01-01

    Rat renal glomeruli were isolated by a technique involving kidney perfusion with a solution containing magnetic iron oxide particles, followed by homogenization, sieving, and concentration over a strong magnet. Isolated glomeruli were treated with 1% Triton X-100 to solubilize plasma membrane components, while insoluble basement membrane components were removed by centrifugation. [ 125 I]Insulin-like growth factor II (IGF-II) binding to this preparation was competitively inhibited by increasing amounts of unlabeled IGF-II, with 50% inhibition at an IGF-II concentration of 1 ng/ml. [ 125 I]IGF-II was covalently cross-linked with disuccinimidyl suberate to its receptor in rat renal glomeruli and a specific high mol wt (255,000) band could be identified on autoradiograms of dodecyl sulfate-polyacrylamide gels. [ 125 I]IGF-II binding and cross-linking to this band was inhibited by a polyclonal antibody against the type II IGF receptor. These results demonstrate for the first time that the isolated rat renal glomerulus contains a high affinity receptor for IGF-II

  13. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    Czech Academy of Sciences Publication Activity Database

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, C. J.; Turkenburg, J. P.; Jiráček, Jiří; Brzozowski, A. M.

    2014-01-01

    Roč. 70, č. 10 (2014), s. 2765-2774 ISSN 0907-4449 R&D Projects: GA ČR GPP207/11/P430; GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : insulin * insulin receptor * complex * active form * analog * structure Subject RIV: CE - Biochemistry Impact factor: 7.232, year: 2013

  14. No association of the G972S polymorphism of the insulin receptor substrate-1 gene with polycystic ovary syndrome in lean PCOS women with biochemical hyperandrogenemia.

    Science.gov (United States)

    Marioli, Dimitra J; Koika, Vasiliki; Adonakis, George L; Saltamavros, Alexandros D; Karela, Anastasia; Armeni, Anastasia K; Tsapanos, Vasilios S; Decavalas, George O; Georgopoulos, Neoklis A

    2010-06-01

    The aim of the present study was to determine the prevalence and association of the G972S polymorphism of the insulin receptor substrate-1 gene (IRS-1 G972S SNP) with polycystic ovary syndrome (PCOS) and insulin resistance-related traits in a distinct phenotypic group of lean PCOS women with biochemical hyperandrogenemia, excluding obesity, which is considered to be an aggravating parameter of insulin resistance. The study included 162 women with PCOS and 122 regularly menstruating, ovulatory women as controls. Physical measurements included weight, height, fat-free mass, fat mass, systolic and diastolic blood pressure and resting heart rate. Biochemical parameters included the serum testosterone, free testosterone, androstenedione, total cholesterol, triglycerides, HDL and LDL cholesterol and glucose levels. Insulin resistance was assessed by determining fasting insulin levels, fasting glucose levels, the fasting glucose/insulin ratio, as well as the HOMA and QUICKI indexes. All DNA samples were genotyped by a PCR-restriction fragment length polymorphism (RLFP) assay. No association of the genotype frequencies of the G972S polymorphism in insulin receptor substrate-1 gene (IRS-1 G972S SNP) with PCOS phenotype and insulin resistance was detected. The G972S polymorphism of the IRS-1 gene should not be viewed as major contributor to the development of PCOS or as a causative variant for insulin resistance.

  15. Hydroxylamine enhances glucose uptake in C2C12 skeletal muscle cells through the activation of insulin receptor substrate 1.

    Science.gov (United States)

    Kimura, Taro; Kato, Eisuke; Machikawa, Tsukasa; Kimura, Shunsuke; Katayama, Shinji; Kawabata, Jun

    2014-02-28

    Diabetes mellitus is a global disease, and the number of patients with it is increasing. Of various agents for treatment, those that directly act on muscle are currently attracting attention because muscle is one of the main tissues in the human body, and its metabolism is decreased in type II diabetes. In this study, we found that hydroxylamine (HA) enhances glucose uptake in C2C12 myotubes. Analysis of HA's mechanism revealed the involvement of IRS1, PI3K and Akt that is related to the insulin signaling pathway. Further investigation about the activation mechanism of insulin receptor or IRS1 by HA may provide a way to develop a novel anti-diabetic agent alternating to insulin. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Reevaluation of Fatty acid receptor 1 (FFAR1/GPR40) as drug target for the stimulation of insulin secretion in humans

    DEFF Research Database (Denmark)

    Wagner, Robert; Kaiser, Gabriele; Gerst, Felicia

    2013-01-01

    The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are under investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes...... risk variants in FFAR1. We reevaluated the role of FFAR1 in insulin secretion using a specific agonist, FFAR1-knockout mice and human islets. Nondiabetic individuals were metabolically phenotyped and genotyped. In vitro experiments indicated that palmitate and a specific FFAR1-agonist, TUG-469......, stimulate glucose-induced insulin secretion through FFAR1. The pro-apoptotic effect of chronic exposure of beta-cells to palmitate was independent of FFAR1. TUG-469 was protective, while inhibition of FFAR1 promoted apoptosis. In accordance with the pro-apoptotic effect of palmitate, in vivo crosssectional...

  17. Insulin binding properties of normal and transformed human epidermal cultured keratinocytes

    International Nuclear Information System (INIS)

    Verrando, P.; Ortonne, J.P.

    1985-01-01

    Insulin binding to its receptors was studied in cultured normal and transformed (A431 line) human epidermal keratinocytes. The specific binding was a temperature-dependent, saturable process. Normal keratinocytes possess a mean value of about 80,000 receptors per cell. Fifteen hours exposure of the cells to insulin lowered their receptor number (about 65% loss in available sites); these reappeared when the hormone was removed from the culture medium. In the A431 epidermoid carcinoma cell line, there is a net decrease in insulin binding (84% of the initial bound/free hormone ratio in comparison with normal cells) essentially related to a loss in receptor affinity for insulin. Thus, cultured human keratinocytes which express insulin receptors may be a useful tool in understanding skin pathology related to insulin disorders

  18. Sex-specific effects of naturally occurring variants in the dopamine receptor D2 locus on insulin secretion and Type 2 diabetes susceptibility

    DEFF Research Database (Denmark)

    Guigas, B; de Leeuw van Weenen, J E; van Leeuwen, N

    2014-01-01

    AIMS: Modulation of dopamine receptor D2 (DRD2) activity affects insulin secretion in both rodents and isolated pancreatic β-cells. We hypothesized that single nucleotide polymorphisms in the DRD2/ANKK1 locus may affect susceptibility to Type 2 diabetes in humans. METHODS: Four potentially....... In addition, 340 Dutch subjects underwent a 2-h hyperglycaemic clamp to investigate insulin secretion. Since sexual dimorphic associations related to DRD2 polymorphisms have been previously reported, we also performed a gender-stratified analysis. RESULTS: rs1800497 at the DRD2/ANKK1 locus was associated...

  19. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice.

    Science.gov (United States)

    Liu, Jun-Li; Coschigano, Karen T; Robertson, Katie; Lipsett, Mark; Guo, Yubin; Kopchick, John J; Kumar, Ujendra; Liu, Ye Lauren

    2004-09-01

    Growth hormone, acting through its receptor (GHR), plays an important role in carbohydrate metabolism and in promoting postnatal growth. GHR gene-deficient (GHR(-/-)) mice exhibit severe growth retardation and proportionate dwarfism. To assess the physiological relevance of growth hormone actions, GHR(-/-) mice were used to investigate their phenotype in glucose metabolism and pancreatic islet function. Adult GHR(-/-) mice exhibited significant reductions in the levels of blood glucose and insulin, as well as insulin mRNA accumulation. Immunohistochemical analysis of pancreatic sections revealed normal distribution of the islets despite a significantly smaller size. The average size of the islets found in GHR(-/-) mice was only one-third of that in wild-type littermates. Total beta-cell mass was reduced 4.5-fold in GHR(-/-) mice, significantly more than their body size reduction. This reduction in pancreatic islet mass appears to be related to decreases in proliferation and cell growth. GHR(-/-) mice were different from the human Laron syndrome in serum insulin level, insulin responsiveness, and obesity. We conclude that growth hormone signaling is essential for maintaining pancreatic islet size, stimulating islet hormone production, and maintaining normal insulin sensitivity and glucose homeostasis.

  20. Regulation of insulin-like growth factor (IGF) I receptor expression during muscle cell differentiation. Potential autocrine role of IGF-II.

    OpenAIRE

    Rosenthal, S M; Brunetti, A; Brown, E J; Mamula, P W; Goldfine, I D

    1991-01-01

    Muscle is an important target tissue for insulin-like growth factor (IGF) action. The presence of specific, high affinity IGF receptors, as well as the expression of IGF peptides and binding proteins by muscle suggest that a significant component of IGF action in this tissue is mediated through autocrine and/or paracrine mechanisms. To explore autocrine/paracrine action of IGFs in muscle, we studied the regulation of the IGF-I receptor and the expression of IGF peptides during differentiation...

  1. Somatostatin receptors

    DEFF Research Database (Denmark)

    Møller, Lars Neisig; Stidsen, Carsten Enggaard; Hartmann, Bolette

    2003-01-01

    functional units, receptors co-operate. The total receptor apparatus of individual cell types is composed of different-ligand receptors (e.g. SRIF and non-SRIF receptors) and co-expressed receptor subtypes (e.g. sst(2) and sst(5) receptors) in characteristic proportions. In other words, levels of individual......-peptides, receptor agonists and antagonists. Relatively long half lives, as compared to those of the endogenous ligands, have been paramount from the outset. Motivated by theoretical puzzles or the shortcomings of present-day diagnostics and therapy, investigators have also aimed to produce subtype...

  2. Adrenergic receptors are a fallible index of adrenergic denervation hypersensitivity

    DEFF Research Database (Denmark)

    Dejgaard, Anders; Liggett, S B; Christensen, N J

    1991-01-01

    In view of evidence that neither interindividual nor induced intra-individual variations of adrenergic receptor status are related to metabolic or haemodynamic sensitivity to adrenaline in vivo, we took an alternative approach to assessment of the relevance of adrenergic receptor measurement...... by measuring these in a group of subjects with well-documented adrenergic denervation hypersensitivity, patients with diabetic autonomic neuropathy. Mononuclear leukocyte beta 2-adrenergic receptor densities (and binding affinities), measured with 125I-labelled pindolol, and isoproterenol-stimulated cyclic AMP...... accumulation, in samples from patients with insulin-dependent diabetes mellitus (IDDM) with diabetic autonomic neuropathy (n = 8), were no different from those in samples from patients with IDDM without neuropathy (n = 8), or from non-diabetic subjects (n = 8). In addition, platelet alpha 2-adrenergic receptor...

  3. A novel insulin receptor-binding protein from Momordica charantia enhances glucose uptake and glucose clearance in vitro and in vivo through triggering insulin receptor signaling pathway.

    Science.gov (United States)

    Lo, Hsin-Yi; Ho, Tin-Yun; Li, Chia-Cheng; Chen, Jaw-Chyun; Liu, Jau-Jin; Hsiang, Chien-Yun

    2014-09-10

    Diabetes, a common metabolic disorder, is characterized by hyperglycemia. Insulin is the principal mediator of glucose homeostasis. In a previous study, we identified a trypsin inhibitor, named Momordica charantia insulin receptor (IR)-binding protein (mcIRBP) in this study, that might interact with IR. The physical and functional interactions between mcIRBP and IR were clearly analyzed in the present study. Photo-cross-linking coupled with mass spectrometry showed that three regions (17-21, 34-40, and 59-66 residues) located on mcIRBP physically interacted with leucine-rich repeat domain and cysteine-rich region of IR. IR-binding assay showed that the binding behavior of mcIRBP and insulin displayed a cooperative manner. After binding to IR, mcIRBP activated the kinase activity of IR by (5.87 ± 0.45)-fold, increased the amount of phospho-IR protein by (1.31 ± 0.03)-fold, affected phosphoinositide-3-kinase/Akt pathways, and consequently stimulated the uptake of glucose in 3T3-L1 cells by (1.36 ± 0.12)-fold. Intraperitoneal injection of 2.5 nmol/kg mcIRBP significantly decreased the blood glucose levels by 20.9 ± 3.2% and 10.8 ± 3.6% in normal and diabetic mice, respectively. Microarray analysis showed that mcIRBP affected genes involved in insulin signaling transduction pathway in mice. In conclusion, our findings suggest that mcIRBP is a novel IRBP that binds to sites different from the insulin-binding sites on IR and stimulates both the glucose uptake in cells and the glucose clearance in mice.

  4. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic {beta} cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Mirshahi, Faridoddin [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Grider, John R. [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Murthy, Karnam S., E-mail: skarnam@vcu.edu [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Sanyal, Arun J., E-mail: asanyal@mcvh-vcu.edu [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer G protein coupled receptor TGR5 is expressed in mouse and human islets. Black-Right-Pointing-Pointer TGR5 is coupled to activation of Gs and Ca{sup 2+} release via cAMP/Epac/PLC-{epsilon} pathway. Black-Right-Pointing-Pointer Activation of TGR5 by bile salts and selective ligands causes insulin secretion. Black-Right-Pointing-Pointer TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic {beta} cells. In the present study, we have identified the expression of TGR5 in pancreatic {beta} cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated G{alpha}{sub s} and caused an increase in intracellular cAMP and Ca{sup 2+}. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective G{alpha}{sub s} inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G{sub s}/cAMP/Ca{sup 2+} pathway. 8-pCPT-2 Prime -O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic {beta} cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  5. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells

    International Nuclear Information System (INIS)

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila; Mirshahi, Faridoddin; Grider, John R.; Murthy, Karnam S.; Sanyal, Arun J.

    2012-01-01

    Highlights: ► G protein coupled receptor TGR5 is expressed in mouse and human islets. ► TGR5 is coupled to activation of Gs and Ca 2+ release via cAMP/Epac/PLC-ε pathway. ► Activation of TGR5 by bile salts and selective ligands causes insulin secretion. ► TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic β cells. In the present study, we have identified the expression of TGR5 in pancreatic β cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated Gα s and caused an increase in intracellular cAMP and Ca 2+ . OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective Gα s inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G s /cAMP/Ca 2+ pathway. 8-pCPT-2′-O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic β cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  6. The L-alpha-amino acid receptor GPRC6A is expressed in the islets of Langerhans but is not involved in L-arginine-induced insulin release

    DEFF Research Database (Denmark)

    Smajilovic, Sanela; Clemmensen, Christoffer; Johansen, Lars Dan

    2013-01-01

    insulin secretion; therefore, the receptor has been hypothesized to have a role in regulating glucose metabolism. In this study, we demonstrate that GPRC6A is expressed in islets of Langerhans, but activation of the receptor by L-arginine did not stimulate insulin secretion. We also investigated central...... metabolic parameters in GPRC6A knockout mice compared with wildtype littermates and found no difference in glucose metabolism or body fat percentage when mice were administered a standard chow diet. In conclusion, our data do not support a role for GPRC6A in L-arginine-induced insulin release and glucose...

  7. A novel syndrome of autosomal-dominant hyperinsulinemic hypoglycemia linked to a mutation in the human insulin receptor gene

    DEFF Research Database (Denmark)

    Højlund, Kurt; Hansen, Torben; Lajer, Maria

    2004-01-01

    a missense mutation (Arg1174Gln) in the tyrosine kinase domain of the insulin receptor gene that cosegregated with the disease phenotype (logarithm of odds [LOD] score 3.21). In conclusion, we report a novel syndrome of autosomal-dominant hyperinsulinemic hypoglycemia. The findings demonstrate...

  8. Neuronal low-density lipoprotein receptor-related protein 1 binds and endocytoses prion fibrils via receptor cluster 4

    DEFF Research Database (Denmark)

    Jen, Angela; Parkyn, Celia J; Mootoosamy, Roy C

    2010-01-01

    For infectious prion protein (designated PrP(Sc)) to act as a template to convert normal cellular protein (PrP(C)) to its distinctive pathogenic conformation, the two forms of prion protein (PrP) must interact closely. The neuronal receptor that rapidly endocytoses PrP(C) is the low......-density lipoprotein receptor-related protein 1 (LRP1). We show here that on sensory neurons LRP1 is also the receptor that binds and rapidly endocytoses smaller oligomeric forms of infectious prion fibrils, and recombinant PrP fibrils. Although LRP1 binds two molecules of most ligands independently to its receptor...... both prion and LRP1 biology....

  9. Biodistribution and receptor imaging studies of insulin labelled with radioiodine in mice bearing H22 hepatocellular cacinoma

    International Nuclear Information System (INIS)

    Tang Gongshun; Kuang Anren; Liang Zenlu

    2004-01-01

    Objectives: It has been demonstrated that insulin receptor of hepatocellular carcinoma cells is overexpression. The biodistribution of 125I-insulin and receptor imaging studies of 131I-insulin in mice bearing solid liver tumor comprised of hepatic carcinoma H22 cells were performed to develop insulin as a carder of radioiodine. Methods: 1 )Insulin was radiolabeled with iodine-125 or iodine-131 using a Chloramines T method. Twenty mice bearing tumor were divided into 4 groups (n = 5 each) randomly. They were killed at 5, 15, 30, 60 min after 125I-insulin administered intravenously. The percentage of injected dose of 125I-insulin per gram of tissue(%ID/gdis) in mice bearing tumor were determined. 2) Another ten mice bearing tumor were selected to be as a inhibition group. They received cold insulin 2 mg intravenously 2 min ahead of administration of 125I-insulin and they were killed at 30 min (n=5) and 60 rain (n=5) randomly post 125I-insulin injection. The %ID/ginh and the inhibited rates[(%ID/gdis-%iD/ginh) %ID/gdis 100%] were obtained. 3) One tumor-mouse received 7.4 Mbq 13II-insulin intravenously, another received cold insulin 2 mg injection before 13II-insulin injection. Whole body images were carded out and the radioactivity ratios of tumor/normal were accounted at 60 min. Results: 1) The radiochemical purities of 125I-insulin and 13II-insulin were 96.7%-98.9%. The tumors uptake of the 125I-insulin increased gradually, its peak (%ID/gdis) was 3.44% 0.42% at 30 min, when the normal tissues uptake decreased sharply post-injection. The radioactivity ratio of the tumor/blood and tumor/muscle reached to 1.44 and 3.62 respectively at 60 min. 2)The tumor-inhibition rate was 32.07% at 30 min and 37.42% at 60 min. 3) A high radioactivity accumulation in tumor region could be seen in the mouse at 60 min post 131I-insulin injection. The radioactivity ratio of the tumor/normal tissue was 2.13 and it declined to 1.37 after received insulin 2 mg intervention. Conclusions

  10. Relationship between tyrosine phosphorylation and protein expression of insulin receptor and insulin resistance in gestational diabetes mellitus.

    Science.gov (United States)

    Chu, Yong-li; Gong, Yu-dian; Su, Zhi-hui; Yu, Hong-na; Cui, Qing; Jiang, Hai-yang; Qu, Hong-mei

    2014-06-01

    The relationship between tyrosine phosphorylation (TP) and protein expression of insulin receptor (InsR) and insulin resistance (IR) in patients with gestational diabetes mellitus (GDM) was investigated. The InsR expression and TP in skeleton muscle tissue were determined by Western blotting and immunoprecipitation in women with GDM (GDM group, n=22), normal pregnant women (normal pregnancy group, n=22) and normal non-pregnant women (normal non-pregnant group, n=13). Fasting plasma glucose (FPG) and fasting insulin (FINS) were measured by oxidase assay and immunoradioassay. The results showed that the levels of FPG (5.61±0.78 mmol/L), FINS (15.42±5.13 mU/L) and Homeostasis model assessment-IR (HOMA-IR) (1.21±0.52) in GDM group were significantly higher than those in normal pregnancy group (4.43±0.46 mmol/L, 10.56±3.07 mU/L and 0.80±0.31 respectively) (Ppregnant group (7.56±2.31 mU/L and 0.47±0.26 respectively) (P0.05). TP of InsR with insulin stimulation was significantly decreased in GDM group (0.20±0.05) as compared with normal pregnancy group (0.26±0.06) (Pinsulin stimulation in normal pregnancy group was lower than that in normal non-pregnant group (0.31±0.06) (Pinsulin stimulation was negatively related with HOMA-IR in GDM group (r=-0.525, P0.05). It was suggested that there is no significant correlation between the protein expression of InsR in skeletal muscle and IR in GDM, but changes in TP of InsR are associated with IR in GDM.

  11. The multiligand α2-macroglobulin receptor/low density lipoprotein receptor-related protein

    DEFF Research Database (Denmark)

    Gliemann, Jørgen; Nykjær, Anders; Petersen, Claus Munck

    1994-01-01

    The fusion of separate lines of research has greatly helped in elucidating the function of the giant members of the low density lipoprotein (LDL) receptor (LDLR) supergene family. The cDNA encoding a large protein structurally closely related to LDLR, and hence named LDLR-related protein (LRP......), was cloned by Herz et al. in 1988.'Evidence was provided demonstrating that LRP can function as a receptor for chylomicron remnants@-migrating very low density lipoproteins (P-VLDL) rich in apolipoprotein E (apoE)?' The a2-macroglobulin (a2M) receptor (a2MR) was purified from rat livep and human p l a~e n t...... from the observation that affinity-purified a2MR/LRP contains a 40-kDa5.8 or 39-kDa6.' protein, designated a2MRAP, in addition to the a2MFULRP a- and P-chains. cDNA cloning" disclosed the 323-residue protein as both the human homologue of mouse heparin binding protein 44 (see reference 11) and...

  12. Purinergic receptors in the endocrine and exocrine pancreas

    DEFF Research Database (Denmark)

    Novak, I

    2008-01-01

    The pancreas is a complex gland performing both endocrine and exocrine functions. In recent years there has been increasing evidence that both endocrine and exocrine cells possess purinergic receptors, which influence processes such as insulin secretion and epithelial ion transport. Most commonly......, there is also evidence for other P2 and adenosine receptors in beta cells (P2Y(2), P2Y(4), P2Y(6), P2X subtypes and A(1) receptors) and in glucagon-secreting alpha cells (P2X(7), A(2) receptors). In the exocrine pancreas, acini release ATP and ATP-hydrolysing and ATP-generating enzymes. P2 receptors...

  13. Independent signaling by Drosophila insulin receptor for axon guidance and growth

    Directory of Open Access Journals (Sweden)

    Caroline Rita Li

    2014-01-01

    Full Text Available The Drosophila insulin receptor (DInR regulates a diverse array of biological processes including growth, axon guidance, and sugar homeostasis. Growth regulation by DInR is mediated by Chico, the Drosophila homolog of vertebrate insulin-receptor-substrate proteins IRS1-4. In contrast, DInR regulation of photoreceptor axon guidance in the developing visual system is mediated by the SH2-SH3 domain adaptor protein Dreadlocks (Dock. In vitro studies by others identified five NPXY motifs, one in the juxtamembrane region and four in the signaling C-terminal tail (C-tail, important for interaction with Chico. Here we used yeast two-hybrid assays to identify regions in the DInR C-tail that interact with Dock. These Dock-binding sites were in separate portions of the C-tail from the previously identified Chico-binding sites. To test whether these sites are required for growth or axon guidance in whole animals, a panel of DInR proteins, in which the putative Chico and Dock interaction sites had been mutated individually or in combination, were tested for their ability to rescue viability, growth, and axon guidance defects of dinr mutant flies. Sites required for viability were identified. Unexpectedly, mutation of both putative Dock binding sites, either individually or in combination, did not lead to defects in photoreceptor axon guidance. Thus, either sites also required for viability are necessary for DInR function in axon guidance and/or there is redundancy built into the DInR/Dock interaction such that Dock is able to interact with multiple regions of DInR. We also found that simultaneous mutation of all 5 NPXY motifs implicated in Chico interaction drastically decreased growth in both male and female adult flies. Mutation of these 5 NPXY motifs did not affect photoreceptor axon guidance, showing that different sites within DInR control growth and axon guidance.

  14. Effect of single physical exercise at 35% VO2 max. intensity on secretion activity of pancreas β-cells and 125J-insulin binding and degradation ability by erythrocyte receptors in children with diabetes mellitus

    International Nuclear Information System (INIS)

    Szczesniak, L.; Rychlewski, T.; Banaszak, F.; Kasprzak, Z.; Walczak, M.

    1994-01-01

    In this report we showed research results of effect of single physical exercise on cycloergometer at 35% VO 2 max. intensity on 125 J-insulin binding and degradation ability by erythrocyte receptors in children with diabetes mellitus, secreting and non-secreting endogenous insulin. Insulin secretion was evaluated by measurement of C-peptide by Biodet test (Serono) of sensitivity threshold at 0.3 μg/ml. We indicated in children non-secreting endogenous insulin (n=32) there is statistically essential lower 125 J-insulin binding with erythrocyte receptor in comparison to children group with C-peptide. Physical exercise on cycloergometer at 35% VO 2 max. intensity caused different reaction in range of physiological indices, like acid-base parameters, level of glucose and 125 J-insulin binding and degradation. In children devoid of endogenous insulin we indicated statistically nonessential changes in 125 J-insulin degradation by non-impaired erythrocytes and by hemolizate, as well. 125 J-insulin binding after physical exercise increased in both groups, though change amplitude was different. Obtained research results allowed us to conclude, in children with I-type diabetes, that in dependence of impairment degree of pancreas βcells sensitivity of insulin receptor and/or number of receptors on erythrocyte surface is different

  15. Insulin-increased L-arginine transport requires A(2A adenosine receptors activation in human umbilical vein endothelium.

    Directory of Open Access Journals (Sweden)

    Enrique Guzmán-Gutiérrez

    Full Text Available Adenosine causes vasodilation of human placenta vasculature by increasing the transport of arginine via cationic amino acid transporters 1 (hCAT-1. This process involves the activation of A(2A adenosine receptors (A(2AAR in human umbilical vein endothelial cells (HUVECs. Insulin increases hCAT-1 activity and expression in HUVECs, and A(2AAR stimulation increases insulin sensitivity in subjects with insulin resistance. However, whether A(2AAR plays a role in insulin-mediated increase in L-arginine transport in HUVECs is unknown. To determine this, we first assayed the kinetics of saturable L-arginine transport (1 minute, 37°C in the absence or presence of nitrobenzylthioinosine (NBTI, 10 µmol/L, adenosine transport inhibitor and/or adenosine receptors agonist/antagonists. We also determined hCAT-1 protein and mRNA expression levels (Western blots and quantitative PCR, and SLC7A1 (for hCAT-1 reporter promoter activity. Insulin and NBTI increased the extracellular adenosine concentration, the maximal velocity for L-arginine transport without altering the apparent K(m for L-arginine transport, hCAT-1 protein and mRNA expression levels, and SLC7A1 transcriptional activity. An A2AAR antagonist ZM-241385 blocked these effects. ZM241385 inhibited SLC7A1 reporter transcriptional activity to the same extent in cells transfected with pGL3-hCAT-1(-1606 or pGL3-hCAT-1(-650 constructs in the presence of NBTI + insulin. However, SLC7A1 reporter activity was increased by NBTI only in cells transfected with pGL3-hCAT-1(-1606, and the ZM-241385 sensitive fraction of the NBTI response was similar in the absence or in the presence of insulin. Thus, insulin modulation of hCAT-1 expression and activity requires functional A(2AAR in HUVECs, a mechanism that may be applicable to diseases associated with fetal insulin resistance, such as gestational diabetes.

  16. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters.

    Science.gov (United States)

    Ververis, J J; Ku, L; Delafontaine, P

    1993-06-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.

  17. Heteronuclear 2D NMR studies on an engineered insulin monomer: Assignments and characterization of the receptor-binding surface by selective 2H and 13C labeling with application to protein design

    International Nuclear Information System (INIS)

    Weiss, M.A.; Hua, Qingxin; Lynch, C.S.; Shoelson, S.E.; Frank, B.H.

    1991-01-01

    Insulin provides an important model for the application of genetic engineering to rational protein design and has been well characterized in the crystal state. However, self-association of insulin in solution has precluded complementary 2D NMR study under physiological conditions. The authors demonstrate here that such limitations may be circumvented by the use of a monomeric analogue that contains three amino acid substitutions on the protein surface (HisB10 → Asp, ProB28 → Lys, and LysB29 → Pro); this analogue (designated DKP-insulin) retains native receptor-binding potency. Comparative 1 H NMR studies of native human insulin and a series of three related analogues-(i) the singly substituted analogue [HisB10→Asp], (ii) the doubly substituted analogue [ProB28→Lys; LysB29→Pro], and (iii) DKP-insulin-demonstrate progressive reduction in concentration-dependent line-broadening in accord with the results of analytical ultracentrifugation. Extensive nonlocal interactions are observed in the NOESY spectrum of DKP-insulin, indicating that this analogue adopts a compact and stably folded structure as a monomer in overall accord with crystal models. Site-specific 2 H and 13 C isotopic labels are introduced by semisynthesis as probes for the structure and dynamics of the receptor-binding surface. These studies confirm and extend under physiological conditions the results of a previous 2D NMR analysis of native insulin in 20% acetic acid. Implications for the role of protein flexibility in receptor recognition are discussed with application to the design of novel insulin analogues

  18. Testosterone treatment increases androgen receptor and aromatase gene expression in myotubes from patients with PCOS and controls, but does not induce insulin resistance

    DEFF Research Database (Denmark)

    Eriksen, Mette Brandt; Glintborg, Dorte; Nielsen, Michael Friberg Bruun

    2014-01-01

    Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity is conse......Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity...... is conserved in cultured myotubes (in vitro) from patients with PCOS, but the effect of testosterone on this insulin sensitivity is unknown. We investigated the effect of 7days testosterone treatment (100nmol/l) on glucose transport and gene expression levels of hormone receptors and enzymes involved...... in the synthesis and conversion of testosterone (HSD17B1, HSD17B2, CYP19A1, SRD5A1-2, AR, ER-α, HSD17B6 and AKR1-3) in myotubes from ten patients with PCOS and ten matched controls. Testosterone treatment significantly increased aromatase and androgen receptor gene expression levels in patients and controls...

  19. Enhancement of insulin-like growth factor 2 receptors in glioblastoma

    International Nuclear Information System (INIS)

    Sara, V.; Prisell, Per; Sjoegren, Barbro; Enberg, Goesta

    1986-01-01

    The somatomedins (IGF-1/IGF-2) are a family of growth-promoting hormones which have been identified in the human central nervous system where their specific receptors are distributed. The present study identified somatomedin receptors in glioblastoma and compared them with those found in normal brain. A significant enhancement in the binding of 125 1-IGF-2 but not 125 1-IGF-1 to glioblastoma membranes was found. A fourfold increase in IGF-2 receptor concentration was observed. These findings indicate enhanced expression of the IGF-2 receptor in glioblastoma. (author)

  20. Enhancement of insulin-like growth factor 2 receptors in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Sara, V; Prisell, P; Sjoegren, B; Persson, L; Boethius, J; Enberg, G

    1986-09-01

    The somatomedins (IGF-1/IGF-2) are a family of growth-promoting hormones which have been identified in the human central nervous system where their specific receptors are distributed. The present study identified somatomedin receptors in glioblastoma and compared them with those found in normal brain. A significant enhancement in the binding of /sup 125/1-IGF-2 but not /sup 125/1-IGF-1 to glioblastoma membranes was found. A fourfold increase in IGF-2 receptor concentration was observed. These findings indicate enhanced expression of the IGF-2 receptor in glioblastoma. 14 refs.

  1. The putative imidazoline receptor agonist, harmane, promotes intracellular calcium mobilisation in pancreatic beta-cells.

    Science.gov (United States)

    Squires, Paul E; Hills, Claire E; Rogers, Gareth J; Garland, Patrick; Farley, Sophia R; Morgan, Noel G

    2004-10-06

    beta-Carbolines (including harmane and pinoline) stimulate insulin secretion by a mechanism that may involve interaction with imidazoline I(3)-receptors but which also appears to be mediated by actions that are additional to imidazoline receptor agonism. Using the MIN6 beta-cell line, we now show that both the imidazoline I(3)-receptor agonist, efaroxan, and the beta-carboline, harmane, directly elevate cytosolic Ca(2+) and increase insulin secretion but that these responses display different characteristics. In the case of efaroxan, the increase in cytosolic Ca(2+) was readily reversible, whereas, with harmane, the effect persisted beyond removal of the agonist and resulted in the development of a repetitive train of Ca(2+)-oscillations whose frequency, but not amplitude, was concentration-dependent. Initiation of the Ca(2+)-oscillations by harmane was independent of extracellular calcium but was sensitive to both dantrolene and high levels (20 mM) of caffeine, suggesting the involvement of ryanodine receptor-gated Ca(2+)-release. The expression of ryanodine receptor-1 and ryanodine receptor-2 mRNA in MIN6 cells was confirmed using reverse transcription-polymerase chain reaction (RT-PCR) and, since low concentrations of caffeine (1 mM) or thimerosal (10 microM) stimulated increases in [Ca(2+)](i), we conclude that ryanodine receptors are functional in these cells. Furthermore, the increase in insulin secretion induced by harmane was attenuated by dantrolene, consistent with the involvement of ryanodine receptors in mediating this response. By contrast, the smaller insulin secretory response to efaroxan was unaffected by dantrolene. Harmane-evoked changes in cytosolic Ca(2+) were maintained by nifedipine-sensitive Ca(2+)-influx, suggesting the involvement of L-type voltage-gated Ca(2+)-channels. Taken together, these data imply that harmane may interact with ryanodine receptors to generate sustained Ca(2+)-oscillations in pancreatic beta-cells and that this effect

  2. Hepatic changes in metabolic gene expression in old ghrelin and ghrelin receptor knockout mice

    Science.gov (United States)

    Ghrelin knockout (GKO) and ghrelin receptor (growth hormone secretagogue receptor) knockout (GHSRKO) mice exhibit enhanced insulin sensitivity, but the mechanism is unclear. Insulin sensitivity declines with age and is inversely associated with accumulation of lipid in liver, a key glucoregulatory ...

  3. Insulin and IGF1 Receptors Are Essential for XX and XY Gonadal Differentiation and Adrenal Development in Mice

    Science.gov (United States)

    Romero, Yannick; Conne, Béatrice; Truong, Vy; Papaioannou, Marilena D.; Schaad, Olivier; Docquier, Mylène; Herrera, Pedro Luis; Wilhelm, Dagmar; Nef, Serge

    2013-01-01

    Mouse sex determination provides an attractive model to study how regulatory genetic networks and signaling pathways control cell specification and cell fate decisions. This study characterizes in detail the essential role played by the insulin receptor (INSR) and the IGF type I receptor (IGF1R) in adrenogenital development and primary sex determination. Constitutive ablation of insulin/IGF signaling pathway led to reduced proliferation rate of somatic progenitor cells in both XX and XY gonads prior to sex determination together with the downregulation of hundreds of genes associated with the adrenal, testicular, and ovarian genetic programs. These findings indicate that prior to sex determination somatic progenitors in Insr;Igf1r mutant gonads are not lineage primed and thus incapable of upregulating/repressing the male and female genetic programs required for cell fate restriction. In consequence, embryos lacking functional insulin/IGF signaling exhibit (i) complete agenesis of the adrenal cortex, (ii) embryonic XY gonadal sex reversal, with a delay of Sry upregulation and the subsequent failure of the testicular genetic program, and (iii) a delay in ovarian differentiation so that Insr;Igf1r mutant gonads, irrespective of genetic sex, remained in an extended undifferentiated state, before the ovarian differentiation program ultimately is initiated at around E16.5. PMID:23300479

  4. Ligand binding affinity at the insulin receptor isoform A (IR-A and subsequent IR-A tyrosine phosphorylation kinetics are important determinants of mitogenic biological outcomes.

    Directory of Open Access Journals (Sweden)

    Harinda eRajapaksha

    2015-07-01

    Full Text Available The insulin receptor (IR is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A arises from alternative splicing of exon 11 and has different ligand binding and signalling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival and migration by activating some unique signalling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signalling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signalling (MAPK and Akt and receptor internalisation rates (related to mitogenic signalling. We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic ([His4, Tyr15, Thr49, Ile51] IGF-I, qIGF-I or metabolic (S597 peptide biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signalling through the IR-A. The 3-fold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316 and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and the kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I.

  5. Quality control of insulin radioreceptor assay for human erythrocytes. Effect of ageing of mono-125I-Tyr-A14-insulin preparation

    International Nuclear Information System (INIS)

    Marttinen, A.; Pasternack, A.; Koivula, T.; Jokela, H.; Lehtinen, M.

    1984-01-01

    The quality control of insulin radioreceptor assay for human erythrocytes is based on the storage of erythrocyte preparations in Hepes buffer of pH 8.0, containing 10 g/l of albumin and 20 mmol/l of glucose. The change of erythrocytes into spherocytes and crenated cells reduces the apparent number of insulin receptors in a relatively constant way by less than 8% a week after 10 days of storage. At the same time the dissociation constants of the insulin-receptor complex increase rapidly. Thus the use of a preparation must be limited to controlling the determination of the insulin binding sites of erythrocytes, and not to the measurement of the affinities of the receptors. When mono- 125 I-Tyr-A14-insulin gets old, a slow decrease in the insulin binding sites can be measured, but the dissociation constants of the insulin receptor complex are not affected. (author)

  6. Effects of insulin analogs and glucagon-like peptide-1 receptor agonists on proliferation and cellular energy metabolism in papillary thyroid cancer

    Directory of Open Access Journals (Sweden)

    He L

    2017-11-01

    Full Text Available Liang He,1,* Siliang Zhang,2,* Xiaowen Zhang,3 Rui Liu,2 Haixia Guan,2 Hao Zhang1 1Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 2Department of Endocrinology and Metabolism, The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning, 3Department of Endocrinology and Metabolism, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, People’s Republic of China *These authors contributed equally to this work Purpose: This study was aimed to investigate the expressions of the insulin receptor (IR, insulin-like growth factor receptor (IGF-1R, and glucagon-like peptide-1 receptor (GLP-1R in normal thyroid tissue, papillary thyroid cancer (PTC tissues, and PTC cells, and to examine the possible role of insulin analogs and GLP-1R agonists in cell proliferation and energy metabolism in PTC cells.Methods: The expressions of IR, IGF-1R, and GLP-1R in PTC tissues and PTC cell lines were detected by immunohistochemistry and western blotting, respectively. Cell proliferation was evaluated by the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Levels of members of the phosphoinositol-3 kinase/AKT serine/threonine kinase (Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (Erk signaling pathways were measured by western blotting. Energy metabolism of PTC cell lines was analyzed using a Seahorse Extracellular Flux analyzer.Results: Three receptors could be detected in both PTC tissues and PTC cell lines. Expressions of IGF-1R and GLP-1R were more obvious in PTC than in normal thyroid cells. Neither insulin, four insulin analogs, and two GLP-1R agonists showed significant effects on the proliferation of PTC cells, nor did they influence the levels of Akt/p-Akt and Erk/p-Erk. None of these antidiabetic agents could change the mitochondrial

  7. Insulin-like growth factor-I and insulin-like growth factor binding proteins in the bovine mammary gland: Receptors, endogenous secretion, and appearance in milk

    International Nuclear Information System (INIS)

    Campbell, P.G.

    1988-01-01

    This is the first study to characterize both insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding proteins (IGFBPs) in bovine milk, to characterize the IGF-I receptor in the dry and lactating mammary gland, and to report de novo synthesis and secretion of IGF-I and IGFBP from normal mammary tissue. Immunoreactive IGF-I was principally associated with 45 kDa IGFBP in milk. Multiparous cows had a higher IGF-I concentration of 307 ng/ml than primiparous cows at 147 ng/ml. IGF-I concentration on day 56 of lactation was 34 ng/ml for combined parity groups. At parturition, IGF-I mass in blood and milk pools was 1.4 and 1.2 mg, respectively. Binding of 125 I-IGF-I was specific for IGF-I with anIC 50 of 2.2 ng which was a 10- and 1273-fold greater affinity than IGF-II and insulin, respectively. Association constants, as determined by Scatchard analysis, were similar for both pregnant and lactating cows at 3.5 and 4.0 L/nM, respectively. In addition, estimated mean receptor concentration was 0.25 and 0.23 pM/mg protein for pregnant and lactating cows, respectively. In a survey of mammary microscomes prepared from 48 cows, 125 I-IGF-I binding declined with progressing lactation and a similar trend was observed during pregnancy

  8. Interaction of epidermal growth factor receptors with the cytoskeleton is related to receptor clustering

    NARCIS (Netherlands)

    van Belzen, N.; Spaargaren, M.; Verkleij, A. J.; Boonstra, J.

    1990-01-01

    Recently it has been established that cytoskeleton-associated epidermal growth factor (EGF) receptors are predominantly of the high-affinity class and that EGF induces a recruitment of low-affinity receptors to the cytoskeleton. The nature of this EGF-induced receptor-cytoskeleton interaction,

  9. Structural analysis of the interaction of IGF I with the IGF types 1 and 2 and insulin receptors

    International Nuclear Information System (INIS)

    Cascieri, M.A.; Chicchi, G.G.; Hayes, N.S.; Green, B.G.; Applebaum, J.A.; Bayne, M.L.

    1987-01-01

    A synthetic gene for human IGF I has been synthesized which directs the synthesis and secretion of fully active human IGF I (rIGF I) from yeast. rIGF I inhibits binding of 125 I-IGF I to type 1 IGF receptors from human placenta (IGF-R1, IC50 = 4 nM), binding of 125 I-insulin to insulin receptors (IR, IC50 = 881 nM), binding of 125 I-MSA to type 2 IGF receptors from rat liver (IGF-R2, IC50 = 80 nM), and binding of 125 I-IGF I to crude human serum binding protein (hBP, IC50 = 0.42 nM). rIGF I is equipotent to human IGF I in stimulating glucose transport in murine BC3H1 cells and in stimulating DNA synthesis in rat A10 cells. Site directed mutagenesis of the synthetic gene is being used to characterize the structural requirements for binding to these receptors. IGF I (FFY) B(23-25) is equipotent to rIGF I at the IGF-R1 (6.9 nM), the IGF-R2 (36 nM), and the IR (841 nM) and is less potent at the hBP (1.7 nM). In contrast, IGF I(SFY) B(23-25) is 20-fold less potent than rIGF I at the IGF-R1 and is 10-fold less potent than rIGF I at hBP. This peptide is greater than 10-fold less active at the IGF-R2 and the IR. This peptide is a full agonist in the cell assays but 20-50 fold less potent than rIGF I. These data are consistent with the hypothesis that the F to S change destabilizes the tertiary structure of IGF I

  10. Mice lacking the p43 mitochondrial T3 receptor become glucose intolerant and insulin resistant during aging.

    Directory of Open Access Journals (Sweden)

    Christelle Bertrand

    Full Text Available Thyroid hormones (TH play an important regulatory role in energy expenditure regulation and are key regulators of mitochondrial activity. We have previously identified a mitochondrial triiodothyronine (T3 receptor (p43 which acts as a mitochondrial transcription factor of the organelle genome, which leads in vitro and in vivo, to a stimulation of mitochondrial biogenesis. Recently, we generated mice carrying a specific p43 invalidation. At 2 months of age, we reported that p43 depletion in mice induced a major defect in insulin secretion both in vivo and in isolated pancreatic islets, and a loss of glucose-stimulated insulin secretion. The present study was designed to determine whether p43 invalidation influences life expectancy and modulates blood glucose and insulin levels as well as glucose tolerance or insulin sensitivity during aging. We report that from 4 months old onwards, mice lacking p43 are leaner than wild-type mice. p43-/- mice also have a moderate reduction of life expectancy compared to wild type. We found no difference in blood glucose levels, excepted at 24 months old where p43-/- mice showed a strong hyperglycemia in fasting conditions compared to controls animals. However, the loss of glucose-stimulated insulin secretion was maintained whatever the age of mice lacking p43. If up to 12 months old, glucose tolerance remained unchanged, beyond this age p43-/- mice became increasingly glucose intolerant. In addition, if up to 12 months old p43 deficient animals were more sensitive to insulin, after this age we observed a loss of this capacity, culminating in 24 months old mice with a decreased sensitivity to the hormone. In conclusion, we demonstrated that during aging the depletion of the mitochondrial T3 receptor p43 in mice progressively induced an increased glycemia in the fasted state, glucose intolerance and an insulin-resistance several features of type-2 diabetes.

  11. The Proton-Activated Receptor GPR4 Modulates Glucose Homeostasis by Increasing Insulin Sensitivity

    Directory of Open Access Journals (Sweden)

    Luca Giudici

    2013-11-01

    Full Text Available Background: The proton-activated G protein-coupled receptor GPR4 is expressed in many tissues including white adipose tissue. GPR4 is activated by extracellular protons in the physiological pH range (i.e. pH 7.7 - 6.8 and is coupled to the production of cAMP. Methods: We examined mice lacking GPR4 and examined glucose tolerance and insulin sensitivity in young and aged mice as well as in mice fed with a high fat diet. Expression profiles of pro- and anti-inflammatory cytokines in white adipose tissue, liver and skeletal muscle was assessed. Results: Here we show that mice lacking GPR4 have an improved intraperitoneal glucose tolerance test and increased insulin sensitivity. Insulin levels were comparable but leptin levels were increased in GPR4 KO mice. Gpr4-/- showed altered expression of PPARα, IL-6, IL-10, TNFα, and TGF-1β in skeletal muscle, white adipose tissue, and liver. High fat diet abolished the differences in glucose tolerance and insulin sensitivity between Gpr4+/+ and Gpr4-/- mice. In contrast, in aged mice (12 months old, the positive effect of GPR4 deficiency on glucose tolerance and insulin sensitivity was maintained. Liver and adipose tissue showed no major differences in the mRNA expression of pro- and anti-inflammatory factors between aged mice of both genotypes. Conclusion: Thus, GPR4 deficiency improves glucose tolerance and insulin sensitivity. The effect may involve an altered balance between pro- and anti-inflammatory factors in insulin target tissues.

  12. Adaptor protein SH2-B linking receptor-tyrosine kinase and Akt promotes adipocyte differentiation by regulating peroxisome proliferator-activated receptor gamma messenger ribonucleic acid levels.

    Science.gov (United States)

    Yoshiga, Daigo; Sato, Naoichi; Torisu, Takehiro; Mori, Hiroyuki; Yoshida, Ryoko; Nakamura, Seiji; Takaesu, Giichi; Kobayashi, Takashi; Yoshimura, Akihiko

    2007-05-01

    Adipocyte differentiation is regulated by insulin and IGF-I, which transmit signals by activating their receptor tyrosine kinase. SH2-B is an adaptor protein containing pleckstrin homology and Src homology 2 (SH2) domains that have been implicated in insulin and IGF-I receptor signaling. In this study, we found a strong link between SH2-B levels and adipogenesis. The fat mass and expression of adipogenic genes including peroxisome proliferator-activated receptor gamma (PPARgamma) were reduced in white adipose tissue of SH2-B-/- mice. Reduced adipocyte differentiation of SH2-B-deficient mouse embryonic fibroblasts (MEFs) was observed in response to insulin and dexamethasone, whereas retroviral SH2-B overexpression enhanced differentiation of 3T3-L1 preadipocytes to adipocytes. SH2-B overexpression enhanced mRNA level of PPARgamma in 3T3-L1 cells, whereas PPARgamma levels were reduced in SH2-B-deficient MEFs in response to insulin. SH2-B-mediated up-regulation of PPARgamma mRNA was blocked by a phosphatidylinositol 3-kinase inhibitor, but not by a MAPK kinase inhibitor. Insulin-induced Akt activation and the phosphorylation of forkhead transcription factor (FKHR/Foxo1), a negative regulator of PPARgamma transcription, were up-regulated by SH2-B overexpression, but reduced in SH2-B-deficient MEFs. These data indicate that SH2-B is a key regulator of adipogenesis both in vivo and in vitro by regulating the insulin/IGF-I receptor-Akt-Foxo1-PPARgamma pathway.

  13. Insulin-Mimetic Action of Rhoifolin and Cosmosiin Isolated from Citrus grandis (L. Osbeck Leaves: Enhanced Adiponectin Secretion and Insulin Receptor Phosphorylation in 3T3-L1 Cells

    Directory of Open Access Journals (Sweden)

    Yerra Koteswara Rao

    2011-01-01

    Full Text Available Citrus grandis (L. Osbeck (red wendun leaves have been used in traditional Chinese medicine to treat several illnesses including diabetes. However, there is no scientific evidence supporting these actions and its active compounds. Two flavone glycosides, rhoifolin and cosmosiin were isolated for the first time from red wendun leaves and, identified these leaves are rich source for rhoifolin (1.1%, w/w. In differentiated 3T3-L1 adipocytes, rhoifolin and cosmosiin showed dose-dependent response in concentration range of o.oo1–5 μM and 1–20 μM, respectively, in biological studies beneficial to diabetes. Particularly, rhoifolin and cosmosiin at 0.5 and 20 μM, respectively showed nearly similar response to that 10 nM of insulin, on adiponectin secretion level. Furthermore, 5 μM of rhoifolin and 20 μM of cosmosiin showed equal potential with 10 nM of insulin to increase the phosphorylation of insulin receptor-β, in addition to their positive effect on GLUT4 translocation. These findings indicate that rhoifolin and cosmosiin from red wendun leaves may be beneficial for diabetic complications through their enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and GLUT4 translocation.

  14. JAK1 kinase forms complexes with interleukin-4 receptor and 4PS/insulin receptor substrate-1-like protein and is activated by interleukin-4 and interleukin-9 in T lymphocytes.

    Science.gov (United States)

    Yin, T; Tsang, M L; Yang, Y C

    1994-10-28

    Interleukin (IL)-4 and IL-9 regulate the proliferation of T lymphocytes through interactions with their receptors. Previous studies have shown that unknown tyrosine kinases are involved in the proliferative signaling triggered by IL-4 and IL-9. Here we show that IL-4 and IL-9 induce overlapping (170, 130, and 125 kilodalton (kDa)) and distinct (45 and 88/90 kDa, respectively) protein tyrosine phosphorylation in T lymphocytes. We further identify the 170-kDa tyrosine-phosphorylated protein as 4PS/insulin receptor substrate-1-like (IRS-1L) protein and 130-kDa protein as JAK1 kinase. Furthermore, we demonstrate for the first time that JAK1 forms complexes with the IL-4 receptor and 4PS/IRS-1L protein following ligand-receptor interaction. In addition, we demonstrate that IL-9, but not IL-4, induced tyrosine phosphorylation of Stat 91 transcriptional factor. The overlapping and distinct protein tyrosine phosphorylation and activation of the same JAK1 kinase in T lymphocytes strongly suggests that IL-4 and IL-9 share the common signal transduction pathways and that the specificity for each cytokine could be achieved through the unique tyrosine-phosphorylated proteins triggered by individual cytokines.

  15. Peroxisome proliferator-activated receptor γ: Its role in metabolic syndrome

    International Nuclear Information System (INIS)

    Pakala, Rajbabu; Kuchulakanti, Pramod; Rha, Seung-Woon; Cheneau, Edouard; Baffour, Richard; Waksman, Ron

    2004-01-01

    Here we review PPARγ function in relation to human adipogenesis, insulin sensitization, lipid metabolism, blood pressure regulation and prothrombotic state to perhaps provide justification for this nuclear receptor remaining a key therapeutic target for the continuing development of agents to treat human metabolic syndrome

  16. Quality control of insulin radioreceptor assay for human erythrocytes. Effect of ageing of mono-/sup 125/I-Tyr-A14-insulin preparation

    Energy Technology Data Exchange (ETDEWEB)

    Marttinen, A; Pasternack, A [Tampere Univ. (Finland). Dept. of Clinical Sciences; Koivula, T; Jokela, H; Lehtinen, M [Tampere Univ. Central Hospital (Finland). Dept. of Clinical Chemistry

    1984-09-01

    The quality control of insulin radioreceptor assay for human erythrocytes is based on the storage of erythrocyte preparations in Hepes buffer of pH 8.0, containing 10 g/l of albumin and 20 mmol/l of glucose. The change of erythrocytes into spherocytes and crenated cells reduces the apparent number of insulin receptors in a relatively constant way by less than 8% a week after 10 days of storage. At the same time the dissociation constants of the insulin-receptor complex increase rapidly. Thus the use of a preparation must be limited to controlling the determination of the insulin binding sites of erythrocytes, and not to the measurement of the affinities of the receptors. When mono-/sup 125/I-Tyr-A14-insulin gets old, a slow decrease in the insulin binding sites can be measured, but the dissociation constants of the insulin receptor complex are not affected.

  17. Studies on binding and mitogenic effect of insulin and insulin-like growth factor I in glomerular mesangial cells

    International Nuclear Information System (INIS)

    Conti, F.G.; Striker, L.J.; Lesniak, M.A.; MacKay, K.; Roth, J.; Striker, G.E.

    1988-01-01

    The mesangial cells are actively involved in regulating glomerular hemodynamics. Their overlying endothelium is fenestrated; therefore, these cells are directly exposed to plasma substances, including hormones such as insulin and insulin-like growth factor I (IGF-I). These peptides may contribute to the mesangial sclerosis and cellular hyperplasia that characterize diabetic glomerulopathy. We report herein the characterization of the receptors and the mitogenic effects of IGF-I and insulin on mouse glomerular mesangial cells in culture. The IGF-I receptor was characterized on intact cells. The Kd of the IGF-I receptor was 1.47 X 10(-9) M, and the estimated number of sites was 64,000 receptors/cell. The binding was time, temperature, and pH dependent, and the receptor showed down-regulation after exposure to serum. The expression of the receptor did not change on cells at different densities. The specific binding for insulin was too low to allow characterization of the insulin receptor on intact cells. However, it was possible to identify the insulin receptor in a wheat germ agglutinin-purified preparation of solubilized mesangial cells. This receptor showed the characteristic features of the insulin receptor, including pH dependence of binding and a curvilinear Scatchard plot. The mitogenic effects of insulin and IGF-I on mesangial cells were measured by the incorporation of [3H]thymidine into DNA. IGF-I was more potent than insulin. The half-maximal response to IGF-I stimulation occurred at 1.3 X 10(-10) M, and a similar increase with insulin was observed at concentrations in the range of 10(-7) M, suggesting that this insulin action was mediated through the IGF-I receptor. These data show that the mouse microvascular smooth muscle cells of the glomerulus express a cell surface receptor for IGF-I in vitro and that this peptide is a potent mitogen for these mesangial cells

  18. Independent signaling by Drosophila insulin receptor for axon guidance and growth.

    Science.gov (United States)

    Li, Caroline R; Guo, Dongyu; Pick, Leslie

    2013-01-01

    The Drosophila insulin receptor (DInR) regulates a diverse array of biological processes including growth, axon guidance, and sugar homeostasis. Growth regulation by DInR is mediated by Chico, the Drosophila homolog of vertebrate insulin receptor substrate proteins IRS1-4. In contrast, DInR regulation of photoreceptor axon guidance in the developing visual system is mediated by the SH2-SH3 domain adaptor protein Dreadlocks (Dock). In vitro studies by others identified five NPXY motifs, one in the juxtamembrane region and four in the signaling C-terminal tail (C-tail), important for interaction with Chico. Here we used yeast two-hybrid assays to identify regions in the DInR C-tail that interact with Dock. These Dock binding sites were in separate portions of the C-tail from the previously identified Chico binding sites. To test whether these sites are required for growth or axon guidance in whole animals, a panel of DInR proteins, in which the putative Chico and Dock interaction sites had been mutated individually or in combination, were tested for their ability to rescue viability, growth and axon guidance defects of dinr mutant flies. Sites required for viability were identified. Unexpectedly, mutation of both putative Dock binding sites, either individually or in combination, did not lead to defects in photoreceptor axon guidance. Thus, either sites also required for viability are necessary for DInR function in axon guidance and/or there is redundancy built into the DInR/Dock interaction such that Dock is able to interact with multiple regions of DInR. We also found that simultaneous mutation of all five NPXY motifs implicated in Chico interaction drastically decreased growth in both male and female adult flies. These animals resembled chico mutants, supporting the notion that DInR interacts directly with Chico in vivo to control body size. Mutation of these five NPXY motifs did not affect photoreceptor axon guidance, segregating the roles of DInR in the

  19. Probing Receptor Specificity by Sampling the Conformational Space of the Insulin-like Growth Factor II C-domain

    Czech Academy of Sciences Publication Activity Database

    Hexnerová, Rozálie; Křížková, Květoslava; Fábry, Milan; Sieglová, Irena; Kedrová, Kateřina; Collinsová, Michaela; Ullrichová, P.; Srb, Pavel; Williams, C.; Crump, M. P.; Tošner, Z.; Jiráček, Jiří; Veverka, Václav; Žáková, Lenka

    2016-01-01

    Roč. 291, č. 40 (2016), s. 21234-21245 ISSN 0021-9258 R&D Projects: GA ČR GA15-19018S; GA MŠk(CZ) LK11205; GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 ; RVO:68378050 Keywords : insulin * IGF-2 * receptor Subject RIV: CE - Biochemistry Impact factor: 4.125, year: 2016 http://www.jbc.org/content/291/40/21234.full

  20. PPAR-γ activation increases insulin secretion through the up-regulation of the free fatty acid receptor GPR40 in pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Hyo-Sup Kim

    Full Text Available BACKGROUND: It has been reported that peroxisome proliferator-activated receptor (PPAR-γ and their synthetic ligands have direct effects on pancreatic β-cells. We investigated whether PPAR-γ activation stimulates insulin secretion through the up-regulation of GPR40 in pancreatic β-cells. METHODS: Rat insulinoma INS-1 cells and primary rat islets were treated with rosiglitazone (RGZ and/or adenoviral PPAR-γ overexpression. OLETF rats were treated with RGZ. RESULTS: PPAR-γ activation with RGZ and/or adenoviral PPAR-γ overexpression increased free fatty acid (FFA receptor GPR40 expression, and increased insulin secretion and intracellular calcium mobilization, and was blocked by the PLC inhibitors, GPR40 RNA interference, and GLUT2 RNA interference. As a downstream signaling pathway of intracellular calcium mobilization, the phosphorylated levels of CaMKII and CREB, and the downstream IRS-2 and phospho-Akt were significantly increased. Despite of insulin receptor RNA interference, the levels of IRS-2 and phospho-Akt was still maintained with PPAR-γ activation. In addition, the β-cell specific gene expression, including Pdx-1 and FoxA2, increased in a GPR40- and GLUT2-dependent manner. The levels of GPR40, phosphorylated CaMKII and CREB, and β-cell specific genes induced by RGZ were blocked by GW9662, a PPAR-γ antagonist. Finally, PPAR-γ activation up-regulated β-cell gene expressions through FoxO1 nuclear exclusion, independent of the insulin signaling pathway. Based on immunohistochemical staining, the GLUT2, IRS-2, Pdx-1, and GPR40 were more strongly expressed in islets from RGZ-treated OLETF rats compared to control islets. CONCLUSION: These observations suggest that PPAR-γ activation with RGZ and/or adenoviral overexpression increased intracellular calcium mobilization, insulin secretion, and β-cell gene expression through GPR40 and GLUT2 gene up-regulation.

  1. Novel Zn2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents.

    Directory of Open Access Journals (Sweden)

    Ola Fjellström

    Full Text Available Type 2 diabetes (T2D occurs when there is insufficient insulin release to control blood glucose, due to insulin resistance and impaired β-cell function. The GPR39 receptor is expressed in metabolic tissues including pancreatic β-cells and has been proposed as a T2D target. Specifically, GPR39 agonists might improve β-cell function leading to more adequate and sustained insulin release and glucose control. The present study aimed to test the hypothesis that GPR39 agonism would improve glucose stimulated insulin secretion in vivo. A high throughput screen, followed by a medicinal chemistry program, identified three novel potent Zn2+ modulated GPR39 agonists. These agonists were evaluated in acute rodent glucose tolerance tests. The results showed a lack of glucose lowering and insulinotropic effects not only in lean mice, but also in diet-induced obese (DIO mice and Zucker fatty rats. It is concluded that Zn2+ modulated GPR39 agonists do not acutely stimulate insulin release in rodents.

  2. Differential subcellular localization of insulin receptor substrates depends on C-terminal regions and importin β

    International Nuclear Information System (INIS)

    Kabuta, Tomohiro; Take, Kazumi; Kabuta, Chihana; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2008-01-01

    Insulin receptor substrates (IRSs) play essential roles in signal transduction of insulin and insulin-like growth factors. Previously, we showed that IRS-3 is localized to the nucleus as well as the cytosol, while IRS-1 and 2 are mainly localized to the cytoplasm. In the present study, we found that importin β directly interacts with IRS-3 and is able to mediate nuclear transport of IRS-3. Importin β interacted with the pleckstrin homology domain, the phosphotyrosine binding domain and the C-terminal region of IRS-3; indeed all of these fragments exhibited predominant nuclear localization. By contrast, almost no interaction of importin β with IRS-1 and -2 was observed, and their C-terminal regions displayed discrete spotty images in the cytosol. In addition, using chimeric proteins between IRS-1 and IRS-3, we revealed that the C-terminal regions are the main determinants of the differing subcellular localizations of IRS-1 and IRS-3.

  3. Ghrelin receptor regulates adipose tissue inflammation in aging

    Science.gov (United States)

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth ho...

  4. Dietary approaches to stop hypertension influence on insulin receptor substrate-1gene expression: A randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Marzieh Kafeshani

    2015-01-01

    Full Text Available Background: Insulin receptor substrate (IRS Type 1 is a main substrate for the insulin receptor, controls insulin signaling in skeletal muscle, adipose tissue, and the vascular, so it is an important candidate gene for insulin resistance (IR. We aimed to compare the effects of the Dietary Approaches to Stop Hypertension (DASH and Usual Dietary Advices (UDA on IRS1 gene expression in women at risk for cardiovascular disease. Materials and Methods: A randomized controlled clinical trial was performed in 44 women at risk for cardiovascular disease. Participants were randomly assigned to a UDA diet or the DASH diet. The DASH diet was rich in fruits, vegetables, whole grains, and low-fat dairy products and low in saturated fat, total fat, cholesterol, refined grains, and sweets, with a total of 2400 mg/day sodium. The UDA diet was a regular diet with healthy dietary advice. Gene expression was assessed by the real-time polymerase chain reaction at the first of study and after 12 weeks. Independent sample t-test and paired-samples t-test were used to compare means of all variables within and between two groups respectively. Results: IRS1 gene expression was increased in DASH group compared with UDA diet (P = 0.00. Weight and waist circumference decreased in DASH group significantly compared to the UDA group (P < 0.05 but the results between the two groups showed no significant difference. Conclusion: DASH diet increased IRS1 gene expression and probably has beneficial effects on IR risks.

  5. Enhanced muscarinic M1 receptor gene expression in the corpus striatum of streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Mathew Jobin

    2009-04-01

    Full Text Available Abstract Acetylcholine (ACh, the first neurotransmitter to be identified, regulate the activities of central and peripheral functions through interactions with muscarinic receptors. Changes in muscarinic acetylcholine receptor (mAChR have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS. Previous reports from our laboratory on streptozotocin (STZ induced diabetic rats showed down regulation of muscarinic M1 receptors in the brainstem, hypothalamus, cerebral cortex and pancreatic islets. In this study, we have investigated the changes of acetylcholine esterase (AChE enzyme activity, total muscarinic and muscarinic M1 receptor binding and gene expression in the corpus striatum of STZ – diabetic rats and the insulin treated diabetic rats. The striatum, a neuronal nucleus intimately involved in motor behaviour, is one of the brain regions with the highest acetylcholine content. ACh has complex and clinically important actions in the striatum that are mediated predominantly by muscarinic receptors. We observed that insulin treatment brought back the decreased maximal velocity (Vmax of acetylcholine esterase in the corpus striatum during diabetes to near control state. In diabetic rats there was a decrease in maximal number (Bmax and affinity (Kd of total muscarinic receptors whereas muscarinic M1 receptors were increased with decrease in affinity in diabetic rats. We observed that, in all cases, the binding parameters were reversed to near control by the treatment of diabetic rats with insulin. Real-time PCR experiment confirmed the increase in muscarinic M1 receptor gene expression and a similar reversal with insulin treatment. These results suggest the diabetes-induced changes of the cholinergic activity in the corpus striatum and the regulatory role of insulin on binding parameters and gene expression of total and muscarinic M1 receptors.

  6. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016 (China); Wang, Jianwei, E-mail: wangjianwei1968@gmail.com [Department of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016 (China); Gu, Tieguang [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia); Yamahara, Johji [Pharmafood Institute, Kyoto 602-8136 (Japan); Li, Yuhao, E-mail: yuhao@sitcm.edu.au [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia)

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  7. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    International Nuclear Information System (INIS)

    Li, Ying; Wang, Jianwei; Gu, Tieguang; Yamahara, Johji; Li, Yuhao

    2014-01-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  8. The estrogen-related receptors and the adipocyte.

    Science.gov (United States)

    Carnesecchi, Julie; Vanacker, Jean-Marc

    2013-08-01

    The estrogen-related receptors (ERRα, β, and γ) are orphan members of the nuclear receptor superfamily. ERRα and γ are highly expressed in tissues displaying elevated energy demands and are involved in several aspects of energetic metabolism, which they regulate mostly in association with members of the PGC-1 coactivator family. These activities have mostly been documented in the liver, heart, or skeletal muscle. ERRα and γ are also highly expressed in adipocytes. Their precise roles in this cell type are less documented, although published data indicate that they contribute to cell differentiation as well as functionality. This review describes these activities.

  9. Insulin, IGF-1, and GH Receptors Are Altered in an Adipose Tissue Depot-Specific Manner in Male Mice With Modified GH Action.

    Science.gov (United States)

    Hjortebjerg, Rikke; Berryman, Darlene E; Comisford, Ross; Frank, Stuart J; List, Edward O; Bjerre, Mette; Frystyk, Jan; Kopchick, John J

    2017-05-01

    Growth hormone (GH) is a determinant of glucose homeostasis and adipose tissue (AT) function. Using 7-month-old transgenic mice expressing the bovine growth hormone (bGH) gene and growth hormone receptor knockout (GHR-/-) mice, we examined whether changes in GH action affect glucose, insulin, and pyruvate tolerance and AT expression of proteins involved in the interrelated signaling pathways of GH, insulinlike growth factor 1 (IGF-1), and insulin. Furthermore, we searched for AT depot-specific differences in control mice. Glycated hemoglobin levels were reduced in bGH and GHR-/- mice, and bGH mice displayed impaired gluconeogenesis as judged by pyruvate tolerance testing. Serum IGF-1 was elevated by 90% in bGH mice, whereas IGF-1 and insulin were reduced by 97% and 61% in GHR-/- mice, respectively. Igf1 RNA was increased in subcutaneous, epididymal, retroperitoneal, and brown adipose tissue (BAT) depots in bGH mice (mean increase ± standard error of the mean in all five depots, 153% ± 27%) and decreased in all depots in GHR-/- mice (mean decrease, 62% ± 4%). IGF-1 receptor expression was decreased in all AT depots of bGH mice (mean decrease, 49% ± 6%) and increased in all AT depots of GHR-/- mice (mean increase, 94% ± 8%). Insulin receptor expression was reduced in retroperitoneal, mesenteric, and BAT depots in bGH mice (mean decrease in all depots, 56% ± 4%) and augmented in subcutaneous, retroperitoneal, mesenteric, and BAT depots in GHR-/- mice (mean increase: 51% ± 1%). Collectively, our findings indicate a role for GH in influencing hormone signaling in AT in a depot-dependent manner. Copyright © 2017 Endocrine Society.

  10. Effect of Kaiyu Qingwei Granule (开郁清胃颗粒) on Insulin Receptor in Liver and Skeletal Muscular Cell Membrane in Diabetes Mellitus Rats

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-fang (柳红芳); TONG Xiao-lin(仝小林); WANG Qing-guo(王庆国); ZUO Ping-ping(左萍萍); GUO An-chen(郭安臣); LIU Hong-xing(刘红星)

    2003-01-01

    Objective: To investigate the effect of Kaiyu Qingwei granule (KYQWG,开郁清胃颗粒) on the insulin binding capacity of liver and skeletal muscular cell membrane and serum insulin-like growth factor-1 (IGF-1) in streptozotocin-induced diabetic rats. Methods:Rats in four experimental groups were investigated: the control group, the model group, the KYQWG group and the Metformin group. The insulin binding rate (IBR) of liver and skeletal muscular cell membrane was detected by receptor-ligand radiometric method and changes of serum levels of glucose, insulin and IGF-1 were observed before and after 4 weeks of medication. Results: The KYQWG group had a lower blood glucose level and IBR of liver and muscular cell membrane, as compared with those in the model group (P<0.01 or P<0.05), and a higher level of IGF-1 than that in the model group(P<0.01), but had no obvious changes in the serum level of insulin. Conclusion: KYQWG may increase the serum level of IGF-1 in diabetic rats, thus to decrease the insulin resistance at ante-receptor sites and improve the sugar metabolic disturbance in rats with diabetes mellitus.

  11. Small-molecule agonists for the glucagon-like peptide 1 receptor

    DEFF Research Database (Denmark)

    Knudsen, Lotte Bjerre; Kiel, Dan; Teng, Min

    2007-01-01

    and independent agonists. Potency of GLP-1 was not changed by the allosteric agonists, but affinity of GLP-1 for the receptor was increased. The most potent compound identified stimulates glucose-dependent insulin release from normal mouse islets but, importantly, not from GLP-1 receptor knockout mice. Also...

  12. Effect Of IGF-1 On Expression Of Gh Receptor, IGF-1, IGF-1 ...

    African Journals Online (AJOL)

    ... and the skin expression of growth hormone receptor (GHR), insulin-like growth factor1 (IGF-1), insulin-like growth factor receptor (IGF- R), KAP3.2 and KAP6-1 mRNA were measured by RT-PCR. The results indicated that IGF-1 could degrade GHR gene expression, have no effect of IGF-1 and IGF-1R gene expression, ...

  13. GABA receptor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Doo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA{sub A}-receptor that allows chloride to pass through a ligand gated ion channel and GABA{sub B}-receptor that uses G-proteins for signaling. The GABA{sub A}-receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA{sub A}-receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with {sup 11}C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, {sup 18}F-fluoroflumazenil (FFMZ) has been developed to overcome {sup 11}C's short half-life. {sup 18}F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1{sup 1}C-FMZ PET instead of {sup 18}F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA{sub A} receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas.

  14. GABA receptor imaging

    International Nuclear Information System (INIS)

    Lee, Jong Doo

    2007-01-01

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA A -receptor that allows chloride to pass through a ligand gated ion channel and GABA B -receptor that uses G-proteins for signaling. The GABA A -receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA A -receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with 11 C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, 18 F-fluoroflumazenil (FFMZ) has been developed to overcome 11 C's short half-life. 18 F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1 1 C-FMZ PET instead of 18 F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA A receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas

  15. Experimental Alcohol-Related Peripheral Neuropathy: Role of Insulin/IGF Resistance

    Directory of Open Access Journals (Sweden)

    James Gilchrist

    2012-08-01

    Full Text Available The mechanisms of alcohol-related peripheral neuropathy (ALPN are poorly understood. We hypothesize that, like alcohol-related liver and brain degeneration, ALPN may be mediated by combined effects of insulin/IGF resistance and oxidative stress. Adult male Long Evans rats were chronically pair-fed with diets containing 0% or 37% ethanol (caloric, and subjected to nerve conduction studies. Chronic ethanol feeding slowed nerve conduction in the tibial (p = 0.0021 motor nerve, and not plantar sensory nerve, but it did not affect amplitude. Histological studies of the sciatic nerve revealed reduced nerve fiber diameters with increased regenerative sprouts, and denervation myopathy in ethanol-fed rats. qRT-PCR analysis demonstrated reduced mRNA levels of insulin, IGF-1, and IGF-2 polypeptides, IGF-1 receptor, and IRS2, and ELISAs revealed reduced immunoreactivity for insulin and IGF-1 receptors, IRS-1, IRS-4, myelin-associated glycoprotein, and tau in sciatic nerves of ethanol-fed rats (all p < 0.05 or better. The findings suggest that ALPN is characterized by (1 slowed conduction velocity with demyelination, and a small component of axonal degeneration; (2 impaired trophic factor signaling due to insulin and IGF resistance; and (3 degeneration of myelin and axonal cytoskeletal proteins. Therefore, ALPN is likely mediated by molecular and signal transduction abnormalities similar to those identified in alcoholic liver and brain degeneration.

  16. Ginseng Berry Extract Supplementation Improves Age-Related Decline of Insulin Signaling in Mice

    Directory of Open Access Journals (Sweden)

    Eunhui Seo

    2015-04-01

    Full Text Available The aim of this study was to evaluate the effects of ginseng berry extract on insulin sensitivity and associated molecular mechanisms in aged mice. C57BL/6 mice (15 months old were maintained on a regular diet (CON or a regular diet supplemented with 0.05% ginseng berry extract (GBD for 24 or 32 weeks. GBD-fed mice showed significantly lower serum insulin levels (p = 0.016 and insulin resistance scores (HOMA-IR (p = 0.012, suggesting that GBD improved insulin sensitivity. Pancreatic islet hypertrophy was also ameliorated in GBD-fed mice (p = 0.007. Protein levels of tyrosine phosphorylated insulin receptor substrate (IRS-1 (p = 0.047, and protein kinase B (AKT (p = 0.037, were up-regulated in the muscle of insulin-injected GBD-fed mice compared with CON-fed mice. The expressions of forkhead box protein O1 (FOXO1 (p = 0.036 and peroxisome proliferator-activated receptor gamma (PPARγ (p = 0.032, which are known as aging- and insulin resistance-related genes, were also increased in the muscle of GBD-fed mice. We conclude that ginseng berry extract consumption might increase activation of IRS-1 and AKT, contributing to the improvement of insulin sensitivity in aged mice.

  17. Studies of relationships between variation of the human G protein-coupled receptor 40 Gene and Type 2 diabetes and insulin release

    DEFF Research Database (Denmark)

    Hamid, Y H; Vissing, H; Holst, B

    2005-01-01

    AIMS: Recently, a novel human G protein-coupled receptor 40 (GPR40), which is predominantly expressed in pancreatic islets, was shown to mediate an amplifying effect of long-chain fatty acids on glucose-induced insulin secretion. The present aim was to examine the coding region of GPR40 for varia......AIMS: Recently, a novel human G protein-coupled receptor 40 (GPR40), which is predominantly expressed in pancreatic islets, was shown to mediate an amplifying effect of long-chain fatty acids on glucose-induced insulin secretion. The present aim was to examine the coding region of GPR40...... compared with the wild type (P = 0.01). The Arg211His polymorphism had a similar allele frequency among 1384 Type 2 diabetic patients [MAF%; 23.4 (95% CI: 21.8-25.0)] and 4424 middle-aged glucose-tolerant subjects [24.1% (23.2-25.0)]. A genotype-quantitative trait study of 5597 non-diabetic, middle...

  18. Angiotensin receptor blockade improves cardiac mitochondrial activity in response to an acute glucose load in obese insulin resistant rats

    Directory of Open Access Journals (Sweden)

    Max Thorwald

    2018-04-01

    Full Text Available Hyperglycemia increases the risk of oxidant overproduction in the heart through activation of a multitude of pathways. Oxidation of mitochondrial enzymes may impair their function resulting in accumulation of intermediates and reverse electron transfer, contributing to mitochondrial dysfunction. Furthermore, the renin-angiotensin system (RAS becomes inappropriately activated during metabolic syndrome, increasing oxidant production. To combat excess oxidant production, the transcription factor, nuclear factor erythriod-2- related factor 2 (Nrf2, induces expression of many antioxidant genes. We hypothesized that angiotensin II receptor type 1 (AT1 blockade improves mitochondrial function in response to an acute glucose load via upregulation of Nrf2. To address this hypothesis, an oral glucose challenge was performed in three groups prior to dissection (n = 5–8 animals/group/time point of adult male rats: 1 Long Evans Tokushima Otsuka (LETO; lean strain-control, 2 insulin resistant, obese Otsuka Long Evans Tokushima Fatty (OLETF, and 3 OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d × 6 weeks. Hearts were collected at T0, T60, and T120 minutes post-glucose infusion. ARB increased Nrf2 binding 32% compared to OLETF at T60. Total superoxide dismutase (SOD and catalase (CAT activities were increased 45% and 66% respectively in ARB treated animals compared to OLETF. Mitochondrial enzyme activities of aconitase, complex I, and complex II increased by 135%, 33% and 66%, respectively in ARB compared to OLETF. These data demonstrate the protective effects of AT1 blockade on mitochondrial function during the manifestation of insulin resistance suggesting that the inappropriate activation of AT1 during insulin resistance may impair Nrf2 translocation and subsequent antioxidant activities and mitochondrial function. Keywords: Angiotensin II, Mitochondria, Cardiac, Antioxidant enzymes, TCA cycle

  19. Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology.

    Science.gov (United States)

    Fuxe, K; Marcellino, D; Rivera, A; Diaz-Cabiale, Z; Filip, M; Gago, B; Roberts, D C S; Langel, U; Genedani, S; Ferraro, L; de la Calle, A; Narvaez, J; Tanganelli, S; Woods, A; Agnati, L F

    2008-08-01

    Future therapies for diseases associated with altered dopaminergic signaling, including Parkinson's disease, schizophrenia and drug addiction or drug dependence may substantially build on the existence of intramembrane receptor-receptor interactions within dopamine receptor containing receptor mosaics (RM; dimeric or high-order receptor oligomers) where it is believed that the dopamine D(2) receptor may operate as the 'hub receptor' within these complexes. The constitutive adenosine A(2A)/dopamine D(2) RM, located in the dorsal striato-pallidal GABA neurons, are of particular interest in view of the demonstrated antagonistic A(2A)/D(2) interaction within these heteromers; an interaction that led to the suggestion and later demonstration that A(2A) antagonists could be used as novel anti-Parkinsonian drugs. Based on the likely existence of A(2A)/D(2)/mGluR5 RM located both extrasynaptically on striato-pallidal GABA neurons and on cortico-striatal glutamate terminals, multiple receptor-receptor interactions within this RM involving synergism between A(2A)/mGluR5 to counteract D(2) signaling, has led to the proposal of using combined mGluR5 and A(2A) antagonists as a future anti-Parkinsonian treatment. Based on the same RM in the ventral striato-pallidal GABA pathways, novel strategies for the treatment of schizophrenia, building on the idea that A(2A) agonists and/or mGluR5 agonists will help reduce the increased dopaminergic signaling associated with this disease, have been suggested. Such treatment may ensure the proper glutamatergic drive from the mediodorsal thalamic nucleus to the prefrontal cortex, one which is believed to be reduced in schizophrenia due to a dominance of D(2)-like signaling in the ventral striatum. Recently, A(2A) receptors also have been shown to counteract the locomotor and sensitizing actions of cocaine and increases in A(2A) receptors have also been observed in the nucleus accumbens after extended cocaine self-administration, probably

  20. Expression of sulfonylurea receptors in rat taste buds.

    Science.gov (United States)

    Liu, Dian-Xin; Liu, Xiao-Min; Zhou, Li-Hong; Feng, Xiao-Hong; Zhang, Xiao-Juan

    2011-07-01

    To test the possibility that a fast-onset promoting agent repaglinide may initiate prandial insulin secretion through the mechanism of cephalic-phase insulin release, we explored the expression and distribution character of sulfonylurea receptors in rat taste buds. Twenty male Wistar rats aged 10 weeks old were killed after general anesthesia. The circumvallate papillae, fungiform papillae and pancreas tissues were separately collected. Immunohistochemical staining was used to detect the expression and distribution of sulfonylurea receptor 1 (SUR1) or sulfonylurea receptor 2 (SUR2) in rat taste buds. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to analyze the expression of SUR1 or SUR2 mRNA. The pancreatic tissues from the same rat were used as positive control. This is the first study to report that SUR1 is uniquely expressed in the taste buds of fungiform papillae of each rat tongue, while the expression of SUR1 or SUR2 was not detected in the taste buds of circumvallate papillae. SUR1 is selectively expressed in rat taste buds, and its distribution pattern may be functionally relevant, suggesting that the rapid insulin secretion-promoting effect of repaglinide may be exerted through the cephalic-phase secretion pathway mediated by taste buds. Copyright © 2010 Elsevier GmbH. All rights reserved.

  1. One week treatment with the IL-1 receptor antagonist anakinra leads to a sustained improvement in insulin sensitivity in insulin resistant patients with type 1 diabetes mellitus.

    Science.gov (United States)

    van Asseldonk, Edwin J P; van Poppel, Pleun C M; Ballak, Dov B; Stienstra, Rinke; Netea, Mihai G; Tack, Cees J

    2015-10-01

    Inflammation associated with obesity is involved in the development of insulin resistance. We hypothesized that anti-inflammatory treatment with the Interleukin-1 receptor antagonist anakinra would improve insulin sensitivity. In an open label proof-of-concept study, we included overweight patients diagnosed with type 1 diabetes with an HbA1c level over 7.5%. Selecting insulin resistant patients with longstanding type 1 diabetes allowed us to study the effects of anakinra on insulin sensitivity. Patients were treated with 100mg anakinra daily for one week. Insulin sensitivity, insulin need and blood glucose profiles were measured before, after one week and after four weeks of follow-up. Fourteen patients completed the study. One week of anakinra treatment led to an improvement of insulin sensitivity, an effect that was sustained for four weeks. Similarly, glucose profiles, HbA1c levels and insulin needs improved. In conclusion, one week of treatment with anakinra improves insulin sensitivity in patients with type 1 diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Growth hormone, interferon-gamma, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1

    DEFF Research Database (Denmark)

    Argetsinger, L S; Hsu, G W; Myers, M G

    1995-01-01

    ), the principle substrate of the insulin receptor. Tyrosyl phosphorylation of IRS-1 is a critical step in insulin signaling and provides binding sites for proteins with the appropriate Src homology 2 domains, including the 85-kDa regulatory subunit of phosphatidylinositol (PI) 3'-kinase. In 3T3-F442A fibroblasts......., Campbell, G. S., Allevato, G., Billestrup, N., Norstedt, G., and Carter-Su, C. (1994) J. Biol. Chem. 269, 21709-21717). When other cytokines that activate JAK2 were tested for the ability to stimulate the tyrosyl phosphorylation of IRS-1, stimulation was detected with interferon-gamma and leukemia...... to JAK2. GH is also shown to stimulate binding of IRS-1 to the 85-kDa regulatory subunit of PI 3'-kinase. The ability of GH to stimulate tyrosyl phosphorylation of IRS-1 and its association with PI 3'-kinase provides a biochemical basis for responses shared by insulin and GH including the well...

  3. G protein-coupled receptors (GPCRs) That Signal via Protein Kinase A (PKA) Cross-talk at Insulin Receptor Substrate 1 (IRS1) to Activate the phosphatidylinositol 3-kinase (PI3K)/AKT Pathway.

    Science.gov (United States)

    Law, Nathan C; White, Morris F; Hunzicker-Dunn, Mary E

    2016-12-30

    G protein-coupled receptors (GPCRs) activate PI3K/v-AKT thymoma viral oncoprotein (AKT) to regulate many cellular functions that promote cell survival, proliferation, and growth. However, the mechanism by which GPCRs activate PI3K/AKT remains poorly understood. We used ovarian preantral granulosa cells (GCs) to elucidate the mechanism by which the GPCR agonist FSH via PKA activates the PI3K/AKT cascade. Insulin-like growth factor 1 (IGF1) is secreted in an autocrine/paracrine manner by GCs and activates the IGF1 receptor (IGF1R) but, in the absence of FSH, fails to stimulate YXXM phosphorylation of IRS1 (insulin receptor substrate 1) required for PI3K/AKT activation. We show that PKA directly phosphorylates the protein phosphatase 1 (PP1) regulatory subunit myosin phosphatase targeting subunit 1 (MYPT1) to activate PP1 associated with the IGF1R-IRS1 complex. Activated PP1 is sufficient to dephosphorylate at least four IRS1 Ser residues, Ser 318 , Ser 346 , Ser 612 , and Ser 789 , and promotes IRS1 YXXM phosphorylation by the IGF1R to activate the PI3K/AKT cascade. Additional experiments indicate that this mechanism also occurs in breast cancer, thyroid, and preovulatory granulosa cells, suggesting that the PKA-dependent dephosphorylation of IRS1 Ser/Thr residues is a conserved mechanism by which GPCRs signal to activate the PI3K/AKT pathway downstream of the IGF1R. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Receptor Activity-modifying Protein-directed G Protein Signaling Specificity for the Calcitonin Gene-related Peptide Family of Receptors.

    Science.gov (United States)

    Weston, Cathryn; Winfield, Ian; Harris, Matthew; Hodgson, Rose; Shah, Archna; Dowell, Simon J; Mobarec, Juan Carlos; Woodlock, David A; Reynolds, Christopher A; Poyner, David R; Watkins, Harriet A; Ladds, Graham

    2016-10-14

    The calcitonin gene-related peptide (CGRP) family of G protein-coupled receptors (GPCRs) is formed through the association of the calcitonin receptor-like receptor (CLR) and one of three receptor activity-modifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM), and intermedin/adrenomedullin 2 (AM2), is well known to result in a Gα s -mediated increase in cAMP. Here we used modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gα s and Gα q but also identify a Gα i component to CLR signaling in both yeast and HEK-293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand- and RAMP-dependent signaling bias among the Gα s , Gα i , and Gα q/11 pathways. The results are discussed in the context of RAMP interactions probed through molecular modeling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. High-fat diet and glucocorticoid treatment cause hyperglycemia associated with adiponectin receptor alterations

    Directory of Open Access Journals (Sweden)

    Oller do Nascimento Cláudia

    2011-01-01

    Full Text Available Abstract Background Adiponectin is the most abundant plasma protein synthesized for the most part in adipose tissue, and it is an insulin-sensitive hormone, playing a central role in glucose and lipid metabolism. In addition, it increases fatty acid oxidation in the muscle and potentiates insulin inhibition of hepatic gluconeogenesis. Two adiponectin receptors have been identified: AdipoR1 is the major receptor expressed in skeletal muscle, whereas AdipoR2 is mainly expressed in liver. Consumption of high levels of dietary fat is thought to be a major factor in the promotion of obesity and insulin resistance. Excessive levels of cortisol are characterized by the symptoms of abdominal obesity, hypertension, glucose intolerance or diabetes and dyslipidemia; of note, all of these features are shared by the condition of insulin resistance. Although it has been shown that glucocorticoids inhibit adiponectin expression in vitro and in vivo, little is known about the regulation of adiponectin receptors. The link between glucocorticoids and insulin resistance may involve the adiponectin receptors and adrenalectomy might play a role not only in regulate expression and secretion of adiponectin, as well regulate the respective receptors in several tissues. Results Feeding of a high-fat diet increased serum glucose levels and decreased adiponectin and adipoR2 mRNA expression in subcutaneous and retroperitoneal adipose tissues, respectively. Moreover, it increased both adipoR1 and adipoR2 mRNA levels in muscle and adipoR2 protein levels in liver. Adrenalectomy combined with the synthetic glucocorticoid dexamethasone treatment resulted in increased glucose and insulin levels, decreased serum adiponectin levels, reduced adiponectin mRNA in epididymal adipose tissue, reduction of adipoR2 mRNA by 7-fold in muscle and reduced adipoR1 and adipoR2 protein levels in muscle. Adrenalectomy alone increased adiponectin mRNA expression 3-fold in subcutaneous adipose

  6. The Implication of the Brain Insulin Receptor in Late Onset Alzheimer’s Disease Dementia

    Directory of Open Access Journals (Sweden)

    Jaume Folch

    2018-01-01

    Full Text Available Alzheimer’s disease (AD is progressive neurodegenerative disorder characterized by brain accumulation of the amyloid β peptide (Aβ, which form senile plaques, neurofibrillary tangles (NFT and, eventually, neurodegeneration and cognitive impairment. Interestingly, epidemiological studies have described a relationship between type 2 diabetes mellitus (T2DM and this pathology, being one of the risk factors for the development of AD pathogenesis. Information as it is, it would point out that, impairment in insulin signalling and glucose metabolism, in central as well as peripheral systems, would be one of the reasons for the cognitive decline. Brain insulin resistance, also known as Type 3 diabetes, leads to the increase of Aβ production and TAU phosphorylation, mitochondrial dysfunction, oxidative stress, protein misfolding, and cognitive impairment, which are all hallmarks of AD. Moreover, given the complexity of interlocking mechanisms found in late onset AD (LOAD pathogenesis, more data is being obtained. Recent evidence showed that Aβ42 generated in the brain would impact negatively on the hypothalamus, accelerating the “peripheral” symptomatology of AD. In this situation, Aβ42 production would induce hypothalamic dysfunction that would favour peripheral hyperglycaemia due to down regulation of the liver insulin receptor. The objective of this review is to discuss the existing evidence supporting the concept that brain insulin resistance and altered glucose metabolism play an important role in pathogenesis of LOAD. Furthermore, we discuss AD treatment approaches targeting insulin signalling using anti-diabetic drugs and mTOR inhibitors.

  7. Receptor-mediated endocytosis of polypeptide hormones is a regulated process: inhibition of [125I]iodoinsulin internalization in hypoinsulinemic diabetes of rat and man

    International Nuclear Information System (INIS)

    Carpentier, J.L.; Robert, A.; Grunberger, G.; van Obberghen, E.; Freychet, P.; Orci, L.; Gorden, P.

    1986-01-01

    Much data suggest that receptor-mediated endocytosis is regulated in states of hormone excess. Thus, in hyperinsulinemic states there is an accelerated loss of cell surface insulin receptors. In the present experiments we addressed this question in hypoinsulinemic states, in which insulin binding to cell surface receptors is generally increased. In hepatocytes obtained from hypoinsulinemic streptozotocin-induced diabetic rats, [ 125 I]iodoglucagon internalization was increased, while at the same time [ 125 I]iodoinsulin internalization was decreased. The defect in [ 125 I]iodoinsulin internalization was corrected by insulin treatment of the animal. In peripheral blood monocytes from patients with type I insulinopenic diabetes, internalization of [ 125 I]iodoinsulin was impaired; this defect was not present in insulin-treated patients. These data in the hypoinsulinemic rat and human diabetes suggest that receptor-mediated endocytosis is regulated in states of insulin deficiency as well as insulin excess. Delayed or reduced internalization of the insulin-receptor complex could amplify the muted signal caused by deficient hormone secretion

  8. Quantitative receptor radioautography in the study of receptor-receptor interactions in the nucleus tractus solitarii

    Directory of Open Access Journals (Sweden)

    Fior-Chadi D.R.

    1998-01-01

    Full Text Available The nucleus tractus solitarii (NTS in the dorsomedial medulla comprises a wide range of neuropeptides and biogenic amines. Several of them are related to mechanisms of central blood pressure control. Angiotensin II (Ang II, neuropeptide Y (NPY and noradrenaline (NA are found in the NTS cells, as well as their receptors. Based on this observation we have evaluated the modulatory effect of these peptide receptors on a2-adrenoceptors in the NTS. Using quantitative receptor radioautography, we observed that NPY and Ang II receptors decreased the affinity of a2-adrenoceptors for their agonists in the NTS of the rat. Cardiovascular experiments agreed with the in vitro data. Coinjection of a threshold dose of Ang II or of the NPY agonists together with an ED50 dose of adrenergic agonists such as NA, adrenaline and clonidine counteracted the depressor effect produced by the a2-agonist in the NTS. The results provide evidence for the existence of an antagonistic interaction between Ang II at1 receptors and NPY receptor subtypes with the a2-adrenoceptors in the NTS. This receptor interaction may reduce the transduction over the a2-adrenoceptors which can be important in central cardiovascular regulation and in the development of hypertension

  9. O-GlcNAcylation of Orphan Nuclear Receptor Estrogen-Related Receptor γ Promotes Hepatic Gluconeogenesis.

    Science.gov (United States)

    Misra, Jagannath; Kim, Don-Kyu; Jung, Yoon Seok; Kim, Han Byeol; Kim, Yong-Hoon; Yoo, Eun-Kyung; Kim, Byung Gyu; Kim, Sunghoon; Lee, In-Kyu; Harris, Robert A; Kim, Jeong-Sun; Lee, Chul-Ho; Cho, Jin Won; Choi, Hueng-Sik

    2016-10-01

    Estrogen-related receptor γ (ERRγ) is a major positive regulator of hepatic gluconeogenesis. Its transcriptional activity is suppressed by phosphorylation signaled by insulin in the fed state, but whether posttranslational modification alters its gluconeogenic activity in the fasted state is not known. Metabolically active hepatocytes direct a small amount of glucose into the hexosamine biosynthetic pathway, leading to protein O-GlcNAcylation. In this study, we demonstrate that ERRγ is O-GlcNAcylated by O-GlcNAc transferase in the fasted state. This stabilizes the protein by inhibiting proteasome-mediated protein degradation, increasing ERRγ recruitment to gluconeogenic gene promoters. Mass spectrometry identifies two serine residues (S317, S319) present in the ERRγ ligand-binding domain that are O-GlcNAcylated. Mutation of these residues destabilizes ERRγ protein and blocks the ability of ERRγ to induce gluconeogenesis in vivo. The impact of this pathway on gluconeogenesis in vivo was confirmed by the observation that decreasing the amount of O-GlcNAcylated ERRγ by overexpressing the deglycosylating enzyme O-GlcNAcase decreases ERRγ-dependent glucose production in fasted mice. We conclude that O-GlcNAcylation of ERRγ serves as a major signal to promote hepatic gluconeogenesis. © 2016 by the American Diabetes Association.

  10. Prolonged Treatment with Free Fatty Acids has Post Receptor Effect in Hepatic Insulin Resistance: Evidence that Fatty Acids, Oleate and Palmitate have Insignificant Effect on the Insulin Receptor Beta In Vivo and Ex Vivo Primary Hepatocytes

    Directory of Open Access Journals (Sweden)

    Rafik Ragheb

    2009-01-01

    Full Text Available In the current study, we used immunoprecipitation and immunoblotting to examine the levels and phosphorylation status of the insulin receptor-beta subunit (IR-β, as well as the down stream target in PI3K pathway, total PKB/Akt as well as their phosphorylated forms. The assessment of FFAs treatment showed no direct and significant effect on the PI3K stimulation, specifically the IR-β in primary hepatic control cells treated with insulin. Cells treated with either oleate or palmitate (360 µM showed no statistically significant values following insulin stimulation (P > 0.05. To further investigate the effect of both FFAs and high insulin (1 µg, we examined the effects of oleate and palmitate at 360 µM concentration on IR-β as well as PKB. There was no significant difference in the total protein levels and their phosphorylated forms in cells treated with or without oleate or plamitate. Interestingly, IR-β tyrosine phosphorylation showed a similar insignificant effect in vivo and ex vivo hepatic cells treated with oleate or palmitate in comparison to their controls in the fructose fed hamsters.

  11. Insulin and the brain.

    Science.gov (United States)

    Derakhshan, Fatemeh; Toth, Cory

    2013-03-01

    Mainly known for its role in peripheral glucose homeostasis, insulin has also significant impact within the brain, functioning as a key neuromodulator in behavioral, cellular, biochemical and molecular studies. The brain is now regarded as an insulin-sensitive organ with widespread, yet selective, expression of the insulin receptor in the olfactory bulb, hypothalamus, hippocampus, cerebellum, amygdala and cerebral cortex. Insulin receptor signaling in the brain is important for neuronal development, glucoregulation, feeding behavior, body weight, and cognitive processes such as with attention, executive functioning, learning and memory. Emerging evidence has demonstrated insulin receptor signaling to be impaired in several neurological disorders. Moreover, insulin receptor signaling is recognized as important for dendritic outgrowth, neuronal survival, circuit development, synaptic plasticity and postsynaptic neurotransmitter receptor trafficking. We review the multiple roles of insulin in the brain, as well as its endogenous trafficking to the brain or its exogenous intervention. Although insulin can be directly targeted to the brain via intracerebroventricular (ICV) or intraparenchymal delivery, these invasive techniques are with significant risk, necessitating repeated surgical intervention and providing potential for systemic hypoglycemia. Another method, intranasal delivery, is a non-invasive, safe, and alternative approach which rapidly targets delivery of molecules to the brain while minimizing systemic exposure. Over the last decades, the delivery of intranasal insulin in animal models and human patients has evolved and expanded, permitting new hope for associated neurodegenerative and neurovascular disorders.

  12. Expression of transient receptor potential ankyrin 1 (TRPA1 and its role in insulin release from rat pancreatic beta cells.

    Directory of Open Access Journals (Sweden)

    De-Shou Cao

    Full Text Available Several transient receptor potential (TRP channels are expressed in pancreatic beta cells and have been proposed to be involved in insulin secretion. However, the endogenous ligands for these channels are far from clear. Here, we demonstrate the expression of the transient receptor potential ankyrin 1 (TRPA1 ion channel in the pancreatic beta cells and its role in insulin release. TRPA1 is an attractive candidate for inducing insulin release because it is calcium permeable and is activated by molecules that are produced during oxidative glycolysis.Immunohistochemistry, RT-PCR, and Western blot techniques were used to determine the expression of TRPA1 channel. Ca²⁺ fluorescence imaging and electrophysiology (voltage- and current-clamp techniques were used to study the channel properties. TRPA1-mediated insulin release was determined using ELISA.TRPA1 is abundantly expressed in a rat pancreatic beta cell line and freshly isolated rat pancreatic beta cells, but not in pancreatic alpha cells. Activation of TRPA1 by allyl isothiocyanate (AITC, hydrogen peroxide (H₂O₂, 4-hydroxynonenal (4-HNE, and cyclopentenone prostaglandins (PGJ₂ and a novel agonist methylglyoxal (MG induces membrane current, depolarization, and Ca²⁺ influx leading to generation of action potentials in a pancreatic beta cell line and primary cultured pancreatic beta cells. Activation of TRPA1 by agonists stimulates insulin release in pancreatic beta cells that can be inhibited by TRPA1 antagonists such as HC030031 or AP-18 and by RNA interference. TRPA1-mediated insulin release is also observed in conditions of voltage-gated Na⁺ and Ca²⁺ channel blockade as well as ATP sensitive potassium (K(ATP channel activation.We propose that endogenous and exogenous ligands of TRPA1 cause Ca²⁺ influx and induce basal insulin release and that TRPA1-mediated depolarization acts synergistically with K(ATP channel blockade to facilitate insulin release.

  13. Functional insulin receptors are overexpressed in thyroid tumors: is this an early event in thyroid tumorigenesis?

    Science.gov (United States)

    Frittitta, L; Sciacca, L; Catalfamo, R; Ippolito, A; Gangemi, P; Pezzino, V; Filetti, S; Vigneri, R

    1999-01-15

    Insulin receptor (IR), a member of the receptor tyrosine kinase family, is expressed in normal thyroid cells and affects thyroid cell proliferation and differentiation. The authors measured IR content in benign and malignant thyroid tumors by three independent methods: a specific radioimmunoassay, 125I-insulin binding studies, and immunohistochemistry. The results obtained were compared with the IR content in paired, adjacent, normal thyroid tissue. To assess IR function in thyroid carcinoma cells, glucose uptake responsiveness to insulin was also studied in a human transformed thyroid cell line (B-CPAP) and in follicular carcinoma cells in primary culture. In 9 toxic adenomas, the average IR content was similar to that observed in the 9 paired normal thyroid tissue specimens from the same patients (2.2+/-0.3 vs. 2.1+/-0.3). In 13 benign nonfunctioning, or "cold," adenomas, the average IR content was significantly higher (P thyroid tissue (4.0+/-0.4 vs. 1.6+/-0.2 and 5.6+/-1.0 vs. 1.8+/-0.2, respectively). The finding of a higher IR content in benign "cold" adenomas and in thyroid carcinomas was confirmed by both binding and immunostaining studies. The current studies indicate that 1) IR content is elevated in most follicular and papillary differentiated thyroid carcinomas, and 2) IR content is also elevated in most benign follicular adenomas ("cold" nodules) but not in highly differentiated, hyperfunctioning follicular adenomas ("hot" nodules), which very rarely become malignant. This observation suggests that increased IR expression is not restricted to the thyroid malignant phenotype but is already present in the premalignant "cold" adenomas. It may contribute, therefore, to thyroid tumorigenesis and/or represent an early event that gives a selective growth advantage to transformed thyroid cells.

  14. Sex-specific effects of naturally occurring variants in the dopamine receptor D2 locus on insulin secretion and Type 2 diabetes susceptibility

    NARCIS (Netherlands)

    Guigas, B.; Leeuw van Weenen, J.E. de; van Leeuwen, N.; Simonis-Bik, A.M.; Haeften, T.W. van; Nijpels, G.; Houwing-Duistermaat, J.J.; Beekman, M.; Deelen, J.; Havekes, L.M.; Penninx, B.W.J.H.; Vogelzangs, N.; Riet, E. van 't; Dehghan, A.; Hofman, A.; Witteman, J.C.; Uitterlinden, A.G.; Grarup, N.; Jørgensen, T.; Witte, D.R.; Lauritzen, T.; Hansen, T.; Pedersen, O.; Hottenga, J.; Romijn, J.A.; Diamant, M.; Kramer, M.H.H.; Heine, R.J.; Willemsen, G.; Dekker, J.M.; Eekhoff, E.M.; Pijl, H.; Geus, E.J. de; Slagboom, P.E.; Hart, L.M. 't

    2014-01-01

    Aims: Modulation of dopamine receptor D2 (DRD2) activity affects insulin secretion in both rodents and isolated pancreatic β-cells. We hypothesized that single nucleotide polymorphisms in the DRD2/ANKK1 locus may affect susceptibility to Type 2 diabetes in humans. Methods: Four potentially

  15. Insulin-like growth factor I and risk of breast cancer by age and hormone receptor status-A prospective study within the EPIC cohort.

    Science.gov (United States)

    Kaaks, Rudolf; Johnson, Theron; Tikk, Kaja; Sookthai, Disorn; Tjønneland, Anne; Roswall, Nina; Overvad, Kim; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine; Dossus, Laure; Rinaldi, Sabina; Romieu, Isabelle; Boeing, Heiner; Schütze, Madlen; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Palli, Domenico; Grioni, Sara; Tumino, Rosario; Sacerdote, Carlotta; Panico, Salvatore; Buckland, Genevieve; Argüelles, Marcial; Sánchez, María-José; Amiano, Pilar; Chirlaque, Maria-Dolores; Ardanaz, Eva; Bueno-de-Mesquita, H Bas; van Gils, Carla H; Peeters, Petra H; Andersson, Anne; Sund, Malin; Weiderpass, Elisabete; Gram, Inger Torhild; Lund, Eiliv; Khaw, Kay-Tee; Wareham, Nick; Key, Timothy J; Travis, Ruth C; Merritt, Melissa A; Gunter, Marc J; Riboli, Elio; Lukanova, Annekatrin

    2014-06-01

    Experimental evidence shows cross-talk in mammary cells between estrogen, insulin-like growth factor I (IGF-I) and their respective receptors and possible synergistic effects of estrogen receptor (ER) activation and increased IGF-I signaling with regard to breast tumor development, and epidemiological evidence suggests that circulating IGF-I levels may be related more to the risk of ER-positive than ER-negative breast cancer. Using a case-control study nested within the prospective European EPIC cohort (938 breast cancer cases and 1,394 matched control subjects), we analyzed the relationships of prediagnostic serum IGF-I levels with the risk of estrogen and progesterone receptor-positive and -negative breast tumors. IGF-I levels were positively associated with the risk of ER+ breast tumors overall (pre- and postmenopausal women combined, odds ratio (OR)Q4-Q1 = 1.41 [95% confidence interval (CI) 1.01-1.98] for the highest vs. lowest quartile; OR = 1.17 [95% CI 1.04-1.33] per 1-standard deviation (SD) increase in IGF-I, ptrend = 0.01) and among women who were diagnosed with breast cancer at 50 years or older (ORQ3-Q1 = 1.38 [95% CI 1.01-1.89]; OR = 1.19 [95% CI 1.04-1.36] per 1-SD increase in IGF-I, ptrend = 0.01) but not with receptor-positive disease diagnosed at an earlier age. No statistically significant associations were observed for ER- breast tumors overall and by age at diagnosis. Tests for heterogeneity by receptor status of the tumor were not statistically significant, except for women diagnosed with breast cancer at 50 years or older (phet = 0.03 for ER+/PR+ vs. ER-/PR- disease). Our data add to a global body of evidence indicating that higher circulating IGF-I levels may increase risk specifically of receptor-positive, but not receptor-negative, breast cancer diagnosed at 50 years or older. © 2013 UICC.

  16. Modulation of β-catenin signaling by glucagon receptor activation.

    Directory of Open Access Journals (Sweden)

    Jiyuan Ke

    Full Text Available The glucagon receptor (GCGR is a member of the class B G protein-coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA pathway, activation of GCGR also induced β-catenin stabilization and activated β-catenin-mediated transcription. Activation of β-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R and glucagon-like peptide 1 (GLP-1R receptors. Since low-density-lipoprotein receptor-related protein 5 (Lrp5 is an essential co-receptor required for Wnt protein mediated β-catenin signaling, we examined the role of Lrp5 in glucagon-induced β-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced β-catenin stabilization and TCF promoter-mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1 or by expression of the Lrp5 extracellular domain blocked glucagon-induced β-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and β-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations.

  17. Characterization of the growth of murine fibroblasts that express human insulin receptors. I. The effect of insulin in the absence of other growth factors

    International Nuclear Information System (INIS)

    Randazzo, P.A.; Morey, V.A.; Polishook, A.K.; Jarett, L.

    1990-01-01

    The effect of insulin on the growth of murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental cells (NIH/3T3) was characterized. Insulin in the absence of other mitogens increased the rate of incorporation of thymidine into NIH 3T3/HIR cells with a half-maximal response occurring at an insulin concentration of 35 ng/ml and a maximal response that was equivalent to that elicited by 10% fetal calf serum. The thymidine incorporation rate was increased by 12 h, was maximal at approximately 16 h, and returned to basal rates at 24 h after the addition of insulin. Insulin induced a maximum of 65% of cells to incorporate thymidine. The increased DNA synthesis was accompanied by net growth. Addition of insulin to the NIH 3T3/HIR cells resulted in increased DNA content with a half-maximal response occurring at approximately 30 ng/ml insulin and a maximal response equivalent to that elicited by serum. An increase in cell number detected after the addition of insulin to the NIH 3T3/HIR suggests that the cells had progressed through mitosis. Insulin did not increase the rate of thymidine incorporation, DNA content, or number of the parental NIH 3T3 cells. These data show that insulin, in the absence of a second mitogen, is able to induce NIH 3T3/HIR fibroblasts to traverse the cell cycle

  18. Identification of plant extracts with potential antidiabetic properties: effect on human peroxisome proliferator-activated receptor (PPAR), adipocyte differentiation and insulin-stimulated glucose uptake

    DEFF Research Database (Denmark)

    Christensen, Kathrine B; Minet, Ariane; Svenstrup, Henrik

    2009-01-01

    Thiazolidinediones (TZDs) are insulin sensitizing drugs used to treat type 2 diabetes. The primary target of the TZDs is the peroxisome proliferator-activated receptor (PPAR) gamma, a key regulator of adipogenesis and glucose homeostasis. Currently prescribed TZDs are full PPARgamma agonists, and...

  19. Insulin receptors mediate growth effects in cultured fetal neurons. I. Rapid stimulation of protein synthesis

    International Nuclear Information System (INIS)

    Heidenreich, K.A.; Toledo, S.P.

    1989-01-01

    In this study we have examined the effects of insulin on protein synthesis in cultured fetal chick neurons. Protein synthesis was monitored by measuring the incorporation of [3H]leucine (3H-leu) into trichloroacetic acid (TCA)-precipitable protein. Upon addition of 3H-leu, there was a 5-min lag before radioactivity occurred in protein. During this period cell-associated radioactivity reached equilibrium and was totally recovered in the TCA-soluble fraction. After 5 min, the incorporation of 3H-leu into protein was linear for 2 h and was inhibited (98%) by the inclusion of 10 micrograms/ml cycloheximide. After 24 h of serum deprivation, insulin increased 3H-leu incorporation into protein by approximately 2-fold. The stimulation of protein synthesis by insulin was dose dependent (ED50 = 70 pM) and seen within 30 min. Proinsulin was approximately 10-fold less potent than insulin on a molar basis in stimulating neuronal protein synthesis. Insulin had no effect on the TCA-soluble fraction of 3H-leu at any time and did not influence the uptake of [3H]aminoisobutyric acid into neurons. The isotope ratio of 3H-leu/14C-leu in the leucyl tRNA pool was the same in control and insulin-treated neurons. Analysis of newly synthesized proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that insulin uniformly increased the incorporation of 14C-leu into all of the resolved neuronal proteins. We conclude from these data that (1) insulin rapidly stimulates overall protein synthesis in fetal neurons independent of amino acid uptake and aminoacyl tRNA precursor pools; (2) stimulation of protein synthesis is mediated by the brain subtype of insulin receptor; and (3) insulin is potentially an important in vivo growth factor for fetal central nervous system neurons

  20. Liver protein profiles in insulin receptor-knockout mice reveal novel molecules involved in the diabetes pathophysiology.

    Science.gov (United States)

    Capuani, Barbara; Della-Morte, David; Donadel, Giulia; Caratelli, Sara; Bova, Luca; Pastore, Donatella; De Canio, Michele; D'Aguanno, Simona; Coppola, Andrea; Pacifici, Francesca; Arriga, Roberto; Bellia, Alfonso; Ferrelli, Francesca; Tesauro, Manfredi; Federici, Massimo; Neri, Anna; Bernardini, Sergio; Sbraccia, Paolo; Di Daniele, Nicola; Sconocchia, Giuseppe; Orlandi, Augusto; Urbani, Andrea; Lauro, Davide

    2015-05-01

    Liver has a principal role in glucose regulation and lipids homeostasis. It is under a complex control by substrates such as hormones, nutrients, and neuronal impulses. Insulin promotes glycogen synthesis, lipogenesis, and lipoprotein synthesis and inhibits gluconeogenesis, glycogenolysis, and VLDL secretion by modifying the expression and enzymatic activity of specific molecules. To understand the pathophysiological mechanisms leading to metabolic liver disease, we analyzed liver protein patterns expressed in a mouse model of diabetes by proteomic approaches. We used insulin receptor-knockout (IR(-/-)) and heterozygous (IR(+/-)) mice as a murine model of liver metabolic dysfunction associated with diabetic ketoacidosis and insulin resistance. We evaluated liver fatty acid levels by microscopic examination and protein expression profiles by orthogonal experimental strategies using protein 2-DE MALDI-TOF/TOF and peptic nLC-MS/MS shotgun profiling. Identified proteins were then loaded into Ingenuity Pathways Analysis to find possible molecular networks. Twenty-eight proteins identified by 2-DE analysis and 24 identified by nLC-MS/MS shotgun were differentially expressed among the three genotypes. Bioinformatic analysis revealed a central role of high-mobility group box 1/2 and huntigtin never reported before in association with metabolic and related liver disease. A different modulation of these proteins in both blood and hepatic tissue further suggests their role in these processes. These results provide new insight into pathophysiology of insulin resistance and hepatic steatosis and could be useful in identifying novel biomarkers to predict risk for diabetes and its complications. Copyright © 2015 the American Physiological Society.

  1. Delayed puberty but normal fertility in mice with selective deletion of insulin receptors from Kiss1 cells.

    Science.gov (United States)

    Qiu, Xiaoliang; Dowling, Abigail R; Marino, Joseph S; Faulkner, Latrice D; Bryant, Benjamin; Brüning, Jens C; Elias, Carol F; Hill, Jennifer W

    2013-03-01

    Pubertal onset only occurs in a favorable, anabolic hormonal environment. The neuropeptide kisspeptin, encoded by the Kiss1 gene, modifies GnRH neuronal activity to initiate puberty and maintain fertility, but the factors that regulate Kiss1 neurons and permit pubertal maturation remain to be clarified. The anabolic factor insulin may signal nutritional status to these neurons. To determine whether insulin sensing plays an important role in Kiss1 neuron function, we generated mice lacking insulin receptors in Kiss1 neurons (IR(ΔKiss) mice). IR(ΔKiss) females showed a delay in vaginal opening and in first estrus, whereas IR(ΔKiss) males also exhibited late sexual maturation. Correspondingly, LH levels in IR(ΔKiss) mice were reduced in early puberty in both sexes. Adult reproductive capacity, body weight, fat composition, food intake, and glucose regulation were comparable between the 2 groups. These data suggest that impaired insulin sensing by Kiss1 neurons delays the initiation of puberty but does not affect adult fertility. These studies provide insight into the mechanisms regulating pubertal timing in anabolic states.

  2. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Johansen, Lars Dan; Bräuner-Osborne, Hans

    2009-01-01

    drug targets, to treat, for example, type II diabetes by mimicking food intake by potent agonists or positive allosteric modulators. The ligand-receptor interactions of the promiscuous receptors of organic nutrients thus remain an interesting subject of emerging functional importance....... in taste tissue, the gastrointestinal tract, endocrine glands, adipose tissue, and/or kidney. These receptors thus hold the potential to act as sensors of food intake, regulating, for example, release of incretin hormones from the gut, insulin/glucagon from the pancreas, and leptin from adipose tissue....... The promiscuous tendency in ligand recognition of these receptors is in contrast to the typical specific interaction with one physiological agonist seen for most receptors, which challenges the classic "lock-and-key" concept. We here review the molecular mechanisms of nutrient sensing of the calcium...

  3. Treating Diabetes Mellitus: Pharmacophore Based Designing of Potential Drugs from Gymnema sylvestre against Insulin Receptor Protein

    Directory of Open Access Journals (Sweden)

    Mohammad Uzzal Hossain

    2016-01-01

    Full Text Available Diabetes mellitus (DM is one of the most prevalent metabolic disorders which can affect the quality of life severely. Injectable insulin is currently being used to treat DM which is mainly associated with patient inconvenience. Small molecules that can act as insulin receptor (IR agonist would be better alternatives to insulin injection. Herein, ten bioactive small compounds derived from Gymnema sylvestre (G. sylvestre were chosen to determine their IR binding affinity and ADMET properties using a combined approach of molecular docking study and computational pharmacokinetic elucidation. Designing structural analogues were also performed for the compounds associated with toxicity and less IR affinity. Among the ten parent compounds, six were found to have significant pharmacokinetic properties with considerable binding affinity towards IR while four compounds were associated with toxicity and less IR affinity. Among the forty structural analogues, four compounds demonstrated considerably increased binding affinity towards IR and less toxicity compared with parent compounds. Finally, molecular interaction analysis revealed that six parent compounds and four analogues interact with the active site amino acids of IR. So this study would be a way to identify new therapeutics and alternatives to insulin for diabetic patients.

  4. Expression of insulin-like growth factor-1 and insulin-like growth factor-1 receptors in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Weigent, Douglas A; Arnold, Robyn E

    2005-03-01

    Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.

  5. Functional relevance of G-protein-coupled-receptor-associated proteins, exemplified by receptor-activity-modifying proteins (RAMPs).

    Science.gov (United States)

    Fischer, J A; Muff, R; Born, W

    2002-08-01

    The calcitonin (CT) receptor (CTR) and the CTR-like receptor (CRLR) are close relatives within the type II family of G-protein-coupled receptors, demonstrating sequence identity of 50%. Unlike the interaction between CT and CTR, receptors for the related hormones and neuropeptides amylin, CT-gene-related peptide (CGRP) and adrenomedullin (AM) require one of three accessory receptor-activity-modifying proteins (RAMPs) for ligand recognition. An amylin/CGRP receptor is revealed when CTR is co-expressed with RAMP1. When complexed with RAMP3, CTR interacts with amylin alone. CRLR, initially classed as an orphan receptor, is a CGRP receptor when co-expressed with RAMP1. The same receptor is specific for AM in the presence of RAMP2. Together with human RAMP3, CRLR defines an AM receptor, and with mouse RAMP3 it is a low-affinity CGRP/AM receptor. CTR-RAMP1, antagonized preferentially by salmon CT-(8-32) and not by CGRP-(8-37), and CRLR-RAMP1, antagonized by CGRP-(8-37), are two CGRP receptor isotypes. Thus amylin and CGRP interact specifically with heterodimeric complexes between CTR and RAMP1 or RAMP3, and CGRP and AM interact with complexes between CRLR and RAMP1, RAMP2 or RAMP3.

  6. XMRV: usage of receptors and potential co-receptors

    Directory of Open Access Journals (Sweden)

    Gaddam Durga

    2011-09-01

    Full Text Available Abstract Background XMRV is a gammaretrovirus first identified in prostate tissues of Prostate Cancer (PC patients and later in the blood cells of patients with Chronic Fatigue Syndrome (CFS. Although XMRV is thought to use XPR1 for cell entry, it infects A549 cells that do not express XPR1, suggesting usage of other receptors or co-receptors. Methods To study the usage of different receptors and co- receptors that could play a role in XMRV infection of lymphoid cells and GHOST (GFP- Human osteosarcoma cells expressing CD4 along with different chemokine receptors including CCR1, CCR2, etc., were infected with XMRV. Culture supernatants and cells were tested for XMRV replication using real time quantitative PCR. Results Infection and replication of XMRV was seen in a variety of GHOST cells, LNCaP, DU145, A549 and Caski cell lines. The levels of XMRV replication varied in different cell lines showing differential replication in different cell lines. However, replication in A549 which lacks XPR1 expression was relatively higher than DU145 but lower than, LNCaP. XMRV replication varied in GHOST cell lines expressing CD4 and each of the co- receptors CCR1-CCR8 and bob. There was significant replication of XMRV in CCR3 and Bonzo although it is much lower when compared to DU145, A549 and LNCaP. Conclusion XMRV replication was observed in GHOST cells that express CD4 and each of the chemokine receptors ranging from CCR1- CCR8 and BOB suggesting that infectivity in hematopoietic cells could be mediated by use of these receptors.

  7. Reduced phosphorylation of brain insulin receptor substrate and Akt proteins in apolipoprotein-E4 targeted replacement mice.

    Science.gov (United States)

    Ong, Qi-Rui; Chan, Elizabeth S; Lim, Mei-Li; Cole, Gregory M; Wong, Boon-Seng

    2014-01-17

    Human ApoE4 accelerates memory decline in ageing and in Alzheimer's disease. Although intranasal insulin can improve cognition, this has little effect in ApoE4 subjects. To understand this ApoE genotype-dependent effect, we examined brain insulin signaling in huApoE3 and huApoE4 targeted replacement (TR) mice. At 32 weeks, lower insulin receptor substrate 1 (IRS1) at S636/639 and Akt phosphorylation at T308 were detected in fasting huApoE4 TR mice as compared to fasting huApoE3 TR mice. These changes in fasting huApoE4 TR mice were linked to lower brain glucose content and have no effect on plasma glucose level. However, at 72 weeks of age, these early changes were accompanied by reduction in IRS2 expression, IRS1 phosphorylation at Y608, Akt phosphorylation at S473, and MAPK (p38 and p44/42) activation in the fasting huApoE4 TR mice. The lower brain glucose was significantly associated with higher brain insulin in the aged huApoE4 TR mice. These results show that ApoE4 reduces brain insulin signaling and glucose level leading to higher insulin content.

  8. SUMO-modified insulin-like growth factor 1 receptor (IGF-1R) increases cell cycle progression and cell proliferation.

    Science.gov (United States)

    Lin, Yingbo; Liu, Hongyu; Waraky, Ahmed; Haglund, Felix; Agarwal, Prasoon; Jernberg-Wiklund, Helena; Warsito, Dudi; Larsson, Olle

    2017-10-01

    Increasing number of studies have shown nuclear localization of the insulin-like growth factor 1 receptor (nIGF-1R) in tumor cells and its links to adverse clinical outcome in various cancers. Any obvious cell physiological roles of nIGF-1R have, however, still not been disclosed. Previously, we reported that IGF-1R translocates to cell nucleus and modulates gene expression by binding to enhancers, provided that the receptor is SUMOylated. In this study, we constructed stable transfectants of wild type IGF1R (WT) and triple-SUMO-site-mutated IGF1R (TSM) using igf1r knockout mouse fibroblasts (R-). Cell clones (R-WT and R-TSM) expressing equal amounts of IGF-1R were selected for experiments. Phosphorylation of IGF-1R, Akt, and Erk upon IGF-1 stimulation was equal in R-WT and R-TSM. WT was confirmed to enter nuclei. TSM did also undergo nuclear translocation, although to a lesser extent. This may be explained by that TSM heterodimerizes with insulin receptor, which is known to translocate to cell nuclei. R-WT proliferated substantially faster than R-TSM, which did not differ significantly from the empty vector control. Upon IGF-1 stimulation G1-S-phase progression of R-WT increased from 12 to 38%, compared to 13 to 20% of R-TSM. The G1-S progression of R-WT correlated with increased expression of cyclin D1, A, and CDK2, as well as downregulation of p27. This suggests that SUMO-IGF-1R affects upstream mechanisms that control and coordinate expression of cell cycle regulators. Further studies to identify such SUMO-IGF-1R dependent mechanisms seem important. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.

  9. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action.

    Science.gov (United States)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob; Kahn, C Ronald; Emanuelli, Brice

    2018-07-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1 -/- and IRS-2 -/- mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Minqian Shen

    2015-01-01

    Full Text Available The liver is one of the most essential organs involved in the regulation of energy homeostasis. Hepatic steatosis, a major manifestation of metabolic syndrome, is associated with imbalance between lipid formation and breakdown, glucose production and catabolism, and cholesterol synthesis and secretion. Epidemiological studies show sex difference in the prevalence in fatty liver disease and suggest that sex hormones may play vital roles in regulating hepatic steatosis. In this review, we summarize current literature and discuss the role of estrogens and androgens and the mechanisms through which estrogen receptors and androgen receptors regulate lipid and glucose metabolism in the liver. In females, estradiol regulates liver metabolism via estrogen receptors by decreasing lipogenesis, gluconeogenesis, and fatty acid uptake, while enhancing lipolysis, cholesterol secretion, and glucose catabolism. In males, testosterone works via androgen receptors to increase insulin receptor expression and glycogen synthesis, decrease glucose uptake and lipogenesis, and promote cholesterol storage in the liver. These recent integrated concepts suggest that sex hormone receptors could be potential promising targets for the prevention of hepatic steatosis.

  11. β cell membrane remodelling and procoagulant events occur in inflammation-driven insulin impairment: a GLP-1 receptor dependent and independent control.

    Science.gov (United States)

    Gleizes, Céline; Kreutter, Guillaume; Abbas, Malak; Kassem, Mohamad; Constantinescu, Andrei Alexandru; Boisramé-Helms, Julie; Yver, Blandine; Toti, Florence; Kessler, Laurence

    2016-02-01

    Inflammation and hyperglycaemia are associated with a prothrombotic state. Cell-derived microparticles (MPs) are the conveyors of active procoagulant tissue factor (TF) and circulate at high concentration in diabetic patients. Liraglutide, a glucagon-like peptide (GLP)-1 analogue, is known to promote insulin secretion and β-cell preservation. In this in vitro study, we examined the link between insulin impairment, procoagulant activity and plasma membrane remodelling, under inflammatory conditions. Rin-m5f β-cell function, TF activity mediated by MPs and their modulation by 1 μM liraglutide were examined in a cell cross-talk model. Methyl-β-cyclodextrine (MCD), a cholesterol depletor, was used to evaluate the involvement of raft on TF activity, MP shedding and insulin secretion as well as Soluble N-éthylmaleimide-sensitive-factor Attachment protein Receptor (SNARE)-dependent exocytosis. Cytokines induced a two-fold increase in TF activity at MP surface that was counteracted by liraglutide. Microparticles prompted TF activity on the target cells and a two-fold decrease in insulin secretion via protein kinase A (PKA) and p38 signalling, that was also abolished by liraglutide. Large lipid raft clusters were formed in response to cytokines and liraglutide or MCD-treated cells showed similar patterns. Cells pre-treated by saturating concentration of the GLP-1r antagonist exendin (9-39), showed a partial abolishment of the liraglutide-driven insulin secretion and liraglutide-decreased TF activity. Measurement of caspase 3 cleavage and MP shedding confirmed the contribution of GLP-1r-dependent and -independent pathways. Our results confirm an integrative β-cell response to GLP-1 that targets receptor-mediated signalling and membrane remodelling pointing at the coupling of insulin secretion and inflammation-driven procoagulant events. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and

  12. Glucose-Dependent Insulin Secretion in Pancreatic β-Cell Islets from Male Rats Requires Ca2+ Release via ROS-Stimulated Ryanodine Receptors.

    Directory of Open Access Journals (Sweden)

    Paola Llanos

    Full Text Available Glucose-stimulated insulin secretion (GSIS from pancreatic β-cells requires an increase in intracellular free Ca2+ concentration ([Ca2+]. Glucose uptake into β-cells promotes Ca2+ influx and reactive oxygen species (ROS generation. In other cell types, Ca2+ and ROS jointly induce Ca2+ release mediated by ryanodine receptor (RyR channels. Therefore, we explored here if RyR-mediated Ca2+ release contributes to GSIS in β-cell islets isolated from male rats. Stimulatory glucose increased islet insulin secretion, and promoted ROS generation in islets and dissociated β-cells. Conventional PCR assays and immunostaining confirmed that β-cells express RyR2, the cardiac RyR isoform. Extended incubation of β-cell islets with inhibitory ryanodine suppressed GSIS; so did the antioxidant N-acetyl cysteine (NAC, which also decreased insulin secretion induced by glucose plus caffeine. Inhibitory ryanodine or NAC did not affect insulin secretion induced by glucose plus carbachol, which engages inositol 1,4,5-trisphosphate receptors. Incubation of islets with H2O2 in basal glucose increased insulin secretion 2-fold. Inhibitory ryanodine significantly decreased H2O2-stimulated insulin secretion and prevented the 4.5-fold increase of cytoplasmic [Ca2+] produced by incubation of dissociated β-cells with H2O2. Addition of stimulatory glucose or H2O2 (in basal glucose to β-cells disaggregated from islets increased RyR2 S-glutathionylation to similar levels, measured by a proximity ligation assay; in contrast, NAC significantly reduced the RyR2 S-glutathionylation increase produced by stimulatory glucose. We propose that RyR2-mediated Ca2+ release, induced by the concomitant increases in [Ca2+] and ROS produced by stimulatory glucose, is an essential step in GSIS.

  13. Insulin signal transduction in skeletal muscle from glucose-intolerant relatives of type 2 diabetic patients [corrected

    DEFF Research Database (Denmark)

    Storgaard, H; Song, X M; Jensen, C B

    2001-01-01

    before and during a euglycemic-hyperinsulinemic clamp. IGT relatives were insulin-resistant in oxidative and nonoxidative pathways for glucose metabolism. In vivo insulin infusion increased skeletal muscle insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation (P = 0.01) and phosphatidylinositide......To determine whether defects in the insulin signal transduction cascade are present in skeletal muscle from prediabetic individuals, we excised biopsies from eight glucose-intolerant male first-degree relatives of patients with type 2 diabetes (IGT relatives) and nine matched control subjects...... 3-kinase (PI 3-kinase) activity (phosphotyrosine and IRS-1 associated) in control subjects (P increase in insulin action on IRS-1 tyrosine phosphorylation was lower in IGT relatives versus control subjects (P

  14. Possible Relevance of Receptor-Receptor Interactions between Viral- and Host-Coded Receptors for Viral-Induced Disease

    Directory of Open Access Journals (Sweden)

    Luigi F. Agnati

    2007-01-01

    Full Text Available It has been demonstrated that some viruses, such as the cytomegalovirus, code for G-protein coupled receptors not only to elude the immune system, but also to redirect cellular signaling in the receptor networks of the host cells. In view of the existence of receptor-receptor interactions, the hypothesis is introduced that these viral-coded receptors not only operate as constitutively active monomers, but also can affect other receptor function by interacting with receptors of the host cell. Furthermore, it is suggested that viruses could also insert not single receptors (monomers, but clusters of receptors (receptor mosaics, altering the cell metabolism in a profound way. The prevention of viral receptor-induced changes in host receptor networks may give rise to novel antiviral drugs that counteract viral-induced disease.

  15. Activation of dopamine D3 receptors inhibits reward-related learning induced by cocaine.

    Science.gov (United States)

    Kong, H; Kuang, W; Li, S; Xu, M

    2011-03-10

    Memories of learned associations between the rewarding properties of drugs and environmental cues contribute to craving and relapse in humans. The mesocorticolimbic dopamine (DA) system is involved in reward-related learning induced by drugs of abuse. DA D3 receptors are preferentially expressed in mesocorticolimbic DA projection areas. Genetic and pharmacological studies have shown that DA D3 receptors suppress locomotor-stimulant effects of cocaine and reinstatement of cocaine-seeking behaviors. Activation of the extracellular signal-regulated kinase (ERK) induced by acute cocaine administration is also inhibited by D3 receptors. How D3 receptors modulate cocaine-induced reward-related learning and associated changes in cell signaling in reward circuits in the brain, however, have not been fully investigated. In the present study, we show that D3 receptor mutant mice exhibit potentiated acquisition of conditioned place preference (CPP) at low doses of cocaine compared to wild-type mice. Activation of ERK and CaMKIIα, but not the c-Jun N-terminal kinase and p38, in the nucleus accumbens, amygdala and prefrontal cortex is also potentiated in D3 receptor mutant mice compared to that in wild-type mice following CPP expression. These results support a model in which D3 receptors modulate reward-related learning induced by low doses of cocaine by inhibiting activation of ERK and CaMKIIα in reward circuits in the brain. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Sustained Brown Fat Stimulation and Insulin Sensitization by a Humanized Bispecific Antibody Agonist for Fibroblast Growth Factor Receptor 1/βKlotho Complex

    Directory of Open Access Journals (Sweden)

    Ganesh Kolumam

    2015-07-01

    Full Text Available Dissipating excess calories as heat through therapeutic stimulation of brown adipose tissues (BAT has been proposed as a potential treatment for obesity-linked disorders. Here, we describe the generation of a humanized effector-less bispecific antibody that activates fibroblast growth factor receptor (FGFR 1/βKlotho complex, a common receptor for FGF21 and FGF19. Using this molecule, we show that antibody-mediated activation of FGFR1/βKlotho complex in mice induces sustained energy expenditure in BAT, browning of white adipose tissue, weight loss, and improvements in obesity-associated metabolic derangements including insulin resistance, hyperglycemia, dyslipidemia and hepatosteatosis. In mice and cynomolgus monkeys, FGFR1/βKlotho activation increased serum high-molecular-weight adiponectin, which appears to contribute over time by enhancing the amplitude of the metabolic benefits. At the same time, insulin sensitization by FGFR1/βKlotho activation occurs even before the onset of weight loss in a manner that is independent of adiponectin. Together, selective activation of FGFR1/βKlotho complex with a long acting therapeutic antibody represents an attractive approach for the treatment of type 2 diabetes and other obesity-linked disorders through enhanced energy expenditure, insulin sensitization and induction of high-molecular-weight adiponectin.

  17. [Serum leptin levels and soluble leptin receptors in female patients with anorexia nervosa].

    Science.gov (United States)

    Jiskra, J; Haluzík, M; Svobodová, J; Haluzíková, D; Nedvídková, J; Parízková, J; Kotrlíková, E

    2000-10-25

    Leptin action in peripheral tissues is enabled by an interaction with specific transmembrane receptors. Several of leptin receptor isoforms were identified, including soluble leptin receptor isoform structurally identical to extracellular domain of the the long leptin receptor isoform. The soluble receptor isoform is released to the circulation and acts probably as leptin-binding factor. The aim of our study was to measure serum concentrations of the soluble leptin receptor in patients with anorexia nervosa and in the control group of healthy women. Relationships of soluble leptin receptor levels to body mass index (BMI), body fat content, serum leptin, TNF-alpha and insulin levels were also studied. 16 patients with anorexia nervosa and 16 age-matched lean healthy women were included into the study. All of the subjects were measured and weighed, the body fat content was estimated from the skinfold thickness measurement. The blood for the determination of leptin, soluble leptin receptor and other hormonal parameters was obtained from all subjects after the overnight fasting. BMI, body fat content, serum leptin and insulin levels in patients with anorexia nervosa were significantly lower than in the control group (BMI: 14.98 +/- 2.32 vs. 22.21 +/- 2.48, p anorexia nervosa were significantly higher compared the to control group (24.67 +/- 8.3 U.ml-1 vs. 15.71 +/- 2.79 U.ml-1, p anorexia nervosa were significantly higher in comparison with the healthy subjects. Except of the negative correlation between serum soluble leptin receptor levels and BMI no statistically significant relationships between serum soluble leptin receptor and the rest of parameters studied were found.

  18. Energy expenditure, body composition and insulin response to glucose in male twins discordant for the Trp64Arg polymorphism of the β3-adrenergic receptor gene

    DEFF Research Database (Denmark)

    Højlund, Kurt; Christiansen, Christian; Bjørnsbo, K.S.

    2006-01-01

    AIM: The tryptophan to arginine change in position 64 (Trp64Arg) polymorphism of the beta3-adrenergic receptor (beta3AR) gene has been associated with an increased prevalence of obesity, insulin resistance and type 2 diabetes. In this, decreased rates of energy expenditure and impaired insulin...... and environmental background, the Trp64Arg polymorphism of the beta3AR gene is associated with lower fat mass, fasting insulin levels and an appropriate insulin response to glucose. Thus, heterozygosity for the Trp64Arg variant is unlikely to increase the risk of obesity, insulin resistance or type 2 diabetes....

  19. L-glutamate Receptor In Paramecium

    Science.gov (United States)

    Bernal-Martínez, Juan; Ortega-Soto, Arturo

    2004-09-01

    Behavioral, electrophysiological and biochemical experiments were performed in order to establish the presence of a glutamate receptor in the ciliate Paramecium. It was found that an AMPA/KA receptor is functionally expressed in Paramecium and that this receptor is immunologically and fillogenetically related to the AMPA/KA receptor present in vertebrates.

  20. Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling

    DEFF Research Database (Denmark)

    Argetsinger, L S; Norstedt, G; Billestrup, Nils

    1996-01-01

    In this report, we demonstrate that insulin receptor substrate-2 (IRS-2) is tyrosyl-phosphorylated following stimulation of 3T3-F442A fibroblasts with growth hormone (GH), leukemia inhibitory factor and interferon-gamma. In response to GH and leukemia inhibitory factor, IRS-2 is immediately...... for GH is further demonstrated by the finding that GH stimulates association of IRS-2 with the 85-kDa regulatory subunit of phosphatidylinositol 3'-kinase and with the protein-tyrosine phosphatase SHP2. These results are consistent with the possibility that IRS-2 is a downstream signaling partner...

  1. Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects.

    Science.gov (United States)

    Reyna, Sara M; Ghosh, Sangeeta; Tantiwong, Puntip; Meka, C S Reddy; Eagan, Phyllis; Jenkinson, Christopher P; Cersosimo, Eugenio; Defronzo, Ralph A; Coletta, Dawn K; Sriwijitkamol, Apiradee; Musi, Nicolas

    2008-10-01

    OBJECTIVE- Tall-like receptor (TLR)4 has been implicated in the pathogenesis of free fatty acid (FFA)-induced insulin resistance by activating inflammatory pathways, including inhibitor of kappaB (IkappaB)/nuclear factor kappaB (NFkappaB). However, it is not known whether insulin-resistant subjects have abnormal TLR4 signaling. We examined whether insulin-resistant subjects have abnormal TLR4 expression and TLR4-driven (IkappaB/NFkappaB) signaling in skeletal muscle. RESEARCH DESIGN AND METHODS- TLR4 gene expression and protein content were measured in muscle biopsies in 7 lean, 8 obese, and 14 type 2 diabetic subjects. A primary human myotube culture system was used to examine whether FFAs stimulate IkappaB/NFkappaB via TLR4 and whether FFAs increase TLR4 expression/content in muscle. RESULTS- Obese and type 2 diabetic subjects had significantly elevated TLR4 gene expression and protein content in muscle. TLR4 muscle protein content correlated with the severity of insulin resistance. Obese and type 2 diabetic subjects also had lower IkappaBalpha content, an indication of elevated IkappaB/NFkappaB signaling. The increase in TLR4 and NFkappaB signaling was accompanied by elevated expression of the NFkappaB-regulated genes interleukin (IL)-6 and superoxide dismutase (SOD)2. In primary human myotubes, acute palmitate treatment stimulated IkappaB/NFkappaB, and blockade of TLR4 prevented the ability of palmitate to stimulate the IkappaB/NFkappaB pathway. Increased TLR4 content and gene expression observed in muscle from insulin-resistant subjects were reproduced by treating myotubes from lean, normal-glucose-tolerant subjects with palmitate. Palmitate also increased IL-6 and SOD2 gene expression, and this effect was prevented by inhibiting NFkappaB. CONCLUSIONS- Abnormal TLR4 expression and signaling, possibly caused by elevated plasma FFA levels, may contribute to the pathogenesis of insulin resistance in humans.

  2. Codon 972 polymorphism in the insulin receptor substrate-1 gene, obesity, and risk of noninsulin-dependent diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Sigal, R.J.; Doria, A.; Warram, J.H.; Krolewski, A.S. [Joslin Diabetes Center, Boston, MA (United States)

    1996-04-01

    Because of the role of insulin receptor substrate-1 in insulin action, the insulin receptor substrate-1 gene is a candidate gene for noninsulin-dependent diabetes mellitus (NIDDM). Modest associations between NIDDM and a GGG-AGG single base substitution (corresponding to a glycine-arginine amino acid substitution) in codon 972 of the gene have been found, but none reached statistical significance. To examine further how large a proportion of NIDDM cases could be caused by the mutation, we performed a stratified analysis combining the results from the 6 earlier studies and those from our panel of 192 unrelated NIDDM subjects and 104 healthy controls. In addition, we looked for a possibility that the codon 972 mutation plays a role only in the presence of certain conditions. Genomic DNA samples obtained from NIDDM cases and healthy controls were genotyped using a PCR-restriction fragment length polymorphism protocol modified for genomic DNA. The GGG{r_arrow}AGG substitution was found in 5.7% of the diabetic subjects (11 of 192) and 6.9% of the controls (7 of 104). The difference between groups was not statistically significant, and it was not different from the results of other studies. The Mantel-Haenszel summary odds ratio across all studies was 1.49 (P < 0.05; 95% confidence intervals, 1.01-2.2). This summary odds ratio is consistent with a small proportion of NIDDM cases ({approximately}3%) being caused by the mutation. Exploratory subgroup analyses on our panel suggested a clustering of NIDDM, the codon 972 mutation, and overweight, raising the hypothesis that the mutation may predispose to NIDDM only in the presence of excess body weight. 9 refs., 2 tabs.

  3. Real-Time G-Protein-Coupled Receptor Imaging to Understand and Quantify Receptor Dynamics

    Directory of Open Access Journals (Sweden)

    María S. Aymerich

    2011-01-01

    Full Text Available Understanding the trafficking of G-protein-coupled receptors (GPCRs and their regulation by agonists and antagonists is fundamental to develop more effective drugs. Optical methods using fluorescent-tagged receptors and spinning disk confocal microscopy are useful tools to investigate membrane receptor dynamics in living cells. The aim of this study was to develop a method to characterize receptor dynamics using this system which offers the advantage of very fast image acquisition with minimal cell perturbation. However, in short-term assays photobleaching was still a problem. Thus, we developed a procedure to perform a photobleaching-corrected image analysis. A study of short-term dynamics of the long isoform of the dopamine type 2 receptor revealed an agonist-induced increase in the mobile fraction of receptors with a rate of movement of 0.08 μm/s For long-term assays, the ratio between the relative fluorescence intensity at the cell surface versus that in the intracellular compartment indicated that receptor internalization only occurred in cells co-expressing G protein-coupled receptor kinase 2. These results indicate that the lateral movement of receptors and receptor internalization are not directly coupled. Thus, we believe that live imaging of GPCRs using spinning disk confocal image analysis constitutes a powerful tool to study of receptor dynamics.

  4. Dietary modulation of erythrocyte insulin receptor interaction and the regulation of adipose tissue pyruvate dehydrogenase enzyme activity in growing rats; a mechanism of action of dietary fiber in metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ogunwole, J.O.A.

    1984-01-01

    The metabolic effects of graded cellulose (a dietary fiber) intake were studied at minimal (10%) and maximal (20%) protein levels in male weanling Sprague Dawley rats. The hypothesis was tested that the hypoglycemic effect of high fiber diets is partly mediated through increased tissue sensitivity to insulin at the cell receptor level. Erythrocyte insulin receptor interaction (IRI) and percent insulin stimulation of adipose tissue pyruvate dehydrogenase (PDH) activity (PDS) were used as indices of tissue sensitivity to insulin. IRI was determined by a standardized radioceptor assay PDS by the rate of oxidation of 1-/sup 14/C-pyruvate to /sup 14/CO/sub 2/ in epidymal fat pads and serum insulin levels by radioimmunoassay. In both protein groups, the addition of fiber in the diet resulted in a significant (P < 0.05) increase in food intake (FI) for calorie compensation. Fiber and protein intake had a significant (P < 0.01) effect on IRI and both basal (PDB) and PDS activities of PDH. At all fiber levels, specific percent /sup 125/I-insulin binding (SIB) was higher in the 20% protein groups while in the fiber-free group, a higher SIB was observed in the 10% protein group.

  5. IRS-1: essential for insulin- and IL-4-stimulated mitogenesis in hematopoietic cells.

    Science.gov (United States)

    Wang, L M; Myers, M G; Sun, X J; Aaronson, S A; White, M; Pierce, J H

    1993-09-17

    Although several interleukin-3 (IL-3)-dependent cell lines proliferate in response to IL-4 or insulin, the 32D line does not. Insulin and IL-4 sensitivity was restored to 32D cells by expression of IRS-1, the principal substrate of the insulin receptor. Although 32D cells possessed receptors for both factors, they lacked the IRS-1--related protein, 4PS, which becomes phosphorylated by tyrosine in insulin- or IL-4--responsive lines after stimulation. These results indicate that factors that bind unrelated receptors can use similar mitogenic signaling pathways in hematopoietic cells and that 4PS and IRS-1 are functionally similar proteins that are essential for insulin- and IL-4--induced proliferation.

  6. Neuromedin B receptor in esophagus: evidence for subtypes of bombesin receptors

    International Nuclear Information System (INIS)

    Von Schrenck, T.; Heinz-Erian, P.; Moran, T.; Mantey, S.A.; Gardner, J.D.; Jensen, R.T.

    1989-01-01

    To identify receptors for bombesin-related peptides in the rat esophagus, we measured binding of 125I-Bolton-Hunter neuromedin B (125I-BH-neuromedin B) and 125I-[Tyr4]bombesin to tissue sections from the rat esophagus and compared the results with those for rat pancreas. Esophagus bound both tracers, whereas pancreas bound only 125I-[Tyr4]bombesin. In each tissue binding was saturable, dependent on pH, on time, and on temperature, reversible, and specific. Autoradiography demonstrated binding of both tracers only to the muscularis mucosae of the esophagus and binding of 125I-[Tyr4]bombesin diffusely over pancreatic acini. In the esophagus, the relative potencies for inhibition of binding of both tracers were as follows: neuromedin B greater than bombesin greater than GRP = neuromedin C; similar relative potencies were found for causing contraction of muscle strips from whole esophagus and from the isolated muscularis mucosae. In pancreas tissue sections and dispersed acini, the relative potencies for inhibition of binding of 125I-[Tyr4]bombesin were as follows: bombesin greater than GRP = neuromedin C much greater than neuromedin B. Similar relative potencies were found for stimulation of enzyme secretion from dispersed pancreatic acini. Computer analysis in both tissues demonstrated only a single binding site. The present study demonstrates that rat esophagus muscle possesses specific receptors for bombesin-related peptides. Furthermore, this study shows that the esophageal bombesin receptors represent a previously unidentified class of bombesin receptors in that they have a higher affinity for neuromedin B than for bombesin. In contrast, the pancreatic bombesin receptors have, like all other bombesin receptors described to date, a high affinity for bombesin, but low affinity for neuromedin B

  7. Molecular cloning of a novel, putative G protein-coupled receptor from sea anemones structurally related to members of the FSH, TSH, LH/CG receptor family from mammals

    DEFF Research Database (Denmark)

    Nothacker, H P; Grimmelikhuijzen, C J

    1993-01-01

    hormone (FSH, TSH, LH/CG) receptor family from mammals, including a very large, extracellular N terminus (18-25% sequence identity) and a 7 transmembrane region (44-48% sequence identity). As with the mammalian glycoprotein hormone receptor genes, the sea anemone receptor gene yields transcripts which can...... be alternatively spliced, thereby yielding a shortened receptor variant only containing the large extracellular (soluble) N terminus. All this is strong evidence that the putative glycoprotein hormone receptor from sea anemones is evolutionarily related to those from mammals. This is the first report showing...

  8. The viral G protein-coupled receptor ORF74 unmasks phospholipase C signaling of the receptor tyrosine kinase IGF-1R.

    NARCIS (Netherlands)

    de Munnik, S.M.; van der Lee, R.; Velders, D.M.; van Offenbeek, J.; Smits-de Vries, L.; Leurs, R.; Smit, M.J.; Vischer, H.F.

    2016-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes the constitutively active G protein-coupled receptor ORF74, which is expressed on the surface of infected host cells and has been linked to the development of the angioproliferative tumor Kaposi's sarcoma. Furthermore, the insulin-like growth

  9. Sex differences and left-right asymmetries in expression of insulin and insulin-like growth factor-1 receptors in developing rat hippocampus.

    Science.gov (United States)

    Hami, Javad; Sadr-Nabavi, Ariane; Sankian, Mojtaba; Haghir, Hossein

    2012-04-01

    Sex differences and laterality of rat hippocampus with respect to insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor (InsR) expression as two important contributors to/regulators of developmental and cognitive functions were examined using real-time PCR and western blot analysis at P0, P7 and P14. Expression of the IGF-1R gene was lowest at P0 in all studied hippocampi. In males, we found the highest expression at P7 in the right hippocampus, and at P14 in the left one. In contrast, the peaked IGF-1R expression occurred at P7 in female hippocampi independent of laterality. Hippocampal InsR expression in males decreased significantly between P0 and P7, followed by a marked upregulation at P14. Conversely, the expression of InsR in females peaked at P7 and then decreased again significantly at P14. We found significant interhemispheric differences in IGF-1R mRNA levels in both male and female hippocampi at different time points. In contrast, we only found significant interhemispheric differences in InsR mRNA expression in P14 male rats, with higher values in the left hippocampus. Interestingly, changes in mRNA expression and in protein levels followed the same developmental pattern, indicating that IGF-1R and InsR transcription is not subject to modulatory effects during the first two weeks of development. These findings indicate that there are prominent interhemispheric and sex differences in IGF-1R and InsR expression in the developing rat hippocampus, suggesting a probable mechanism for the control of gender and laterality differences in development and function of the hippocampus.

  10. Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method.

    Science.gov (United States)

    Ma, Weina; Yang, Liu; Lv, Yanni; Fu, Jia; Zhang, Yanmin; He, Langchong

    2017-06-23

    The equilibrium dissociation constant (K D ) of drug-membrane receptor affinity is the basic parameter that reflects the strength of interaction. The cell membrane chromatography (CMC) method is an effective technique to study the characteristics of drug-membrane receptor affinity. In this study, the K D value of CMC relative standard method for the determination of drug-membrane receptor affinity was established to analyze the relative K D values of drugs binding to the membrane receptors (Epidermal growth factor receptor and angiotensin II receptor). The K D values obtained by the CMC relative standard method had a strong correlation with those obtained by the frontal analysis method. Additionally, the K D values obtained by CMC relative standard method correlated with pharmacological activity of the drug being evaluated. The CMC relative standard method is a convenient and effective method to evaluate drug-membrane receptor affinity. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The estrogen-related receptors (ERRs): potential targets against bone loss.

    Science.gov (United States)

    Zhang, Ling; Wong, Jiemin; Vanacker, Jean-Marc

    2016-10-01

    Bone loss and the resulting skeletal fragility is induced by several pathological or natural conditions, the most prominent of which being aging as well as the decreased levels of circulating estrogens in post-menopause females. To date, most treatments against bone loss aim at preventing excess bone resorption. We here summarize data indicating that the estrogen-related receptors (ERRs) α and γ prevent bone formation. Inhibiting these receptors may thus constitute an anabolic approach by increasing bone formation.

  12. Cost-effectiveness of once daily GLP-1 receptor agonist lixisenatide compared to bolus insulin both in combination with basal insulin for the treatment of patients with type 2 diabetes in Norway.

    Science.gov (United States)

    Huetson, Pernilla; Palmer, James L; Levorsen, Andrée; Fournier, Marie; Germe, Maeva; McLeod, Euan

    2015-01-01

    Lixisenatide is a potent, selective and short-acting once daily prandial glucagon-like peptide-1 receptor agonist which lowers glycohemoglobin and body weight by clinically significant amounts in patients with type 2 diabetes treated with basal insulin, with limited risk of hypoglycemia. To assess the cost-effectiveness of lixisenatide versus bolus insulin, both in combination with basal insulin, in patients with type 2 diabetes in Norway. The IMS CORE Diabetes Model, a non-product-specific and validated simulation model, was used to make clinical and cost projections. Transition probabilities, risk adjustments and the progression of complication risk factors were derived from the UK Prospective Diabetes Study, supplemented with Norwegian data. Patients were assumed to receive combination treatment with basal insulin, lixisenatide or bolus insulin therapy for 3 years, followed by intensification of a basal-bolus insulin regimen for their remaining lifetime. Simulated healthcare costs, taken from the public payer perspective, were derived from microcosting and diagnosis related groups, discounted at 4% per annum and reported in Norwegian krone (NOK). Productivity costs were also captured based on extractions from the Norwegian Labor and Welfare Administration. Health state utilities were derived from a systematic literature review. Sensitivity and scenario analyses were performed. Lixisenatide in combination with basal insulin was associated with increased quality-adjusted life years (QALYs) and reduced lifetime healthcare costs compared to bolus insulin in combination with basal insulin in patients with Type 2 diabetes, and can be considered dominant. The net monetary benefit of lixisenatide versus bolus insulin was NOK 39,369 per patient. Results were sensitive to discounting, the application of excess body weight associated disutility and uncertainty surrounding the changes in HbA1c. Lixisenatide may be considered an economically efficient therapy in combination

  13. Pharmacological characterization of receptor-activity-modifying proteins (RAMPs) and the human calcitonin receptor.

    Science.gov (United States)

    Armour, S L; Foord, S; Kenakin, T; Chen, W J

    1999-12-01

    Receptor-activity-modifying proteins (RAMPs) are a family of single transmembrane domain proteins shown to be important for the transport and ligand specificity of the calcitonin gene-related peptide (CGRP) receptor. In this report, we describe the analysis of pharmacological properties of the human calcitonin receptor (hCTR) coexpressed with different RAMPs with the use of the Xenopus laevis melanophore expression system. We show that coexpression of RAMP3 with human calcitonin receptor changed the relative potency of hCTR to human calcitonin (hCAL) and rat amylin. RAMP1 and RAMP2, in contrast, had little effect on the change of hCTR potency to hCAL or rat amylin. When coexpressed with RAMP3, hCTR reversed the relative potency by a 3.5-fold loss in sensitivity to hCAL and a 19-fold increase in sensitivity to rat amylin. AC66, an inverse agonist, produced apparent simple competitive antagonism of hCAL and rat amylin, as indicated by linear Schild regressions. The potency of AC66 was changed in the blockade of rat amylin but not hCAL responses with RAMP3 coexpression. The mean pK(B) for AC66 to hCAL was 9.4 +/- 0.3 without RAMP3 and 9.45 +/- 0.07 with RAMP3. For the antagonism of AC66 to rat amylin, the pK(B) was 9.25 +/- 0.15 without RAMP3 and 8.2 +/- 0.35 with RAMP3. The finding suggests that RAMP3 might modify the active states of calcitonin receptor in such a way as to create a new receptor phenotype that is "amylin-like." Irrespective of the physiological association of the new receptor species, the finding that a coexpressed membrane protein can completely change agonist and antagonist affinities for a receptor raises implications for screening in recombinant receptor systems.

  14. Biological roles and therapeutic potential of hydroxy-carboxylic acid receptors

    Directory of Open Access Journals (Sweden)

    Kashan eAhmed

    2011-10-01

    Full Text Available In the recent past, deorphanization studies have described intermediates of energy metabolism to activate G protein-coupled receptors (GPCRs and to thereby regulate metabolic functions. GPR81, GPR109A and GPR109B, formerly known as the nicotinic acid receptor family, are encoded by clustered genes and share a high degree of sequence homology. Recently, hydroxy-carboxylic acids were identified as endogenous ligands of GPR81, GPR109A and GPR109B, and therefore these receptors have been placed into a novel receptor family of hydroxy-carboxylic acid (HCA receptors. The HCA1 receptor (GPR81 is activated by the glycolytic metabolite 2-hydroxy-propionic acid (lactate, the HCA2 receptor is activated by the ketone body 3-hydroxy-butyric acid and the HCA3 receptor (GPR109B is a receptor for the β-oxidation intermediate 3-hydroxy-octanoic acid. While HCA1 and HCA2 receptors are present in most mammalian species, the HCA3 receptor is exclusively found in humans and higher primates. HCA receptors are expressed in adipose tissue and mediate anti-lipolytic effects in adipocytes through Gi-type G-protein-dependent inhibition of adenylyl cyclase. HCA2 and HCA3 inhibit lipolysis during conditions of increased β-oxidation such as prolonged fasting, whereas HCA1 mediates the anti-lipolytic effects of insulin in the fed state. As HCA2 is a receptor for the established anti-dyslipidemic drug nicotinic acid, HCA1 and HCA3 also represent promising drug targets and several synthetic ligands for HCA receptors have been developed. In this article, we will summarize the deorphanization and pharmacological characterization of HCA receptors. Moreover, we will discuss recent progress in elucidating the physiological and pathophysiological role to further evaluate the therapeutic potential of the HCA receptor family for the treatment of metabolic disease.

  15. IL-4 function can be transferred to the IL-2 receptor by tyrosine containing sequences found in the IL-4 receptor alpha chain.

    Science.gov (United States)

    Wang, H Y; Paul, W E; Keegan, A D

    1996-02-01

    IL-4 binds to a cell surface receptor complex that consists of the IL-4 binding protein (IL-4R alpha) and the gamma chain of the IL-2 receptor complex (gamma c). The receptors for IL-4 and IL-2 have several features in common; both use the gamma c as a receptor component, and both activate the Janus kinases JAK-1 and JAK-3. In spite of these similarities, IL-4 evokes specific responses, including the tyrosine phosphorylation of 4PS/IRS-2 and the induction of CD23. To determine whether sequences within the cytoplasmic domain of the IL-4R alpha specify these IL-4-specific responses, we transplanted the insulin IL-4 receptor motif (I4R motif) of the huIL-4R alpha to the cytoplasmic domain of a truncated IL-2R beta. In addition, we transplanted a region that contains peptide sequences shown to block Stat6 binding to DNA. We analyzed the ability of cells expressing these IL-2R-IL-4R chimeric constructs to respond to IL-2. We found that IL-4 function could be transplanted to the IL-2 receptor by these regions and that proliferative and differentiative functions can be induced by different receptor sequences.

  16. Molecular mechanisms of insulin resistance | Pillay | South African ...

    African Journals Online (AJOL)

    This review discusses recent advances in understanding of the structure and function of the insulin receptor and insulin action, and how these relate to the clinical aspects of insulin resistance associated with non-insulin-dependent diabetes and other disorders. Improved understanding of the molecular basis of insulin ...

  17. Blocking of beta-2 adrenergic receptors hastens recovery from hypoglycemia-associated social withdrawal.

    Science.gov (United States)

    Park, Min Jung; Guest, Christopher B; Barnes, Meredith B; Martin, Jonathan; Ahmad, Uzma; York, Jason M; Freund, Gregory G

    2008-11-01

    Hypoglycemia is associated with a variety of adverse behaviors including fatigue, confusion and social withdrawal. While these clinical symptoms are well characterized, the mechanism of their cause is not understood. Here we investigated how insulin-induced hypoglycemia causes social withdrawal. Male 8-12-week-old C57BL/6J mice were injected intraperitoneally (IP) with or without and/or insulin, norepinephrine (NE) and epinephrine (Epi), terbutaline and butoxamine with subsequent measurement of blood glucose, social withdrawal and plasma catecholamines. Insulin generated (0.75h post-injection) significant hypoglycemia with blood glucose nadirs of 64+/-4 and 48+/-5mg/dl for 0.8 and 1.2units/kg of insulin, respectively. Insulin (0.8 or 1.2units/kg) caused near total social withdrawal at 0.75h with full recovery not occurring until 4h (0.8units/kg) or 8h (1.2units/kg) post-insulin injection. Insulin also caused a marked elevation in plasma catecholamines. Basal 12h fasting NE and Epi were 287+/-38 and 350+/-47pg/ml, respectively. Insulin at 0.8units/kg increased plasma NE and Epi to 994+/-73 and 1842+/-473pg/ml, respectively. Administration of exogenous NE or Epi caused social withdrawal similar in magnitude to insulin. Importantly, administration of the beta-2 adrenergic receptor agonist terbutaline also caused social withdrawal while administration of the beta-2 adrenergic receptor antagonist butoxamine blocked NE-induced social withdrawal. Finally, butoxamine blocked insulin-induced social withdrawal. These data demonstrate that hypoglycemia-associated social withdrawal is dependent on catecholamines via a beta-2 receptor-mediated pathway.

  18. Expression of serum insulin-like growth factors, insulin-like growth factor-binding proteins, and the growth hormone-binding protein in heterozygote relatives of Ecuadorian growth hormone receptor deficient patients.

    Science.gov (United States)

    Fielder, P J; Guevara-Aguirre, J; Rosenbloom, A L; Carlsson, L; Hintz, R L; Rosenfeld, R G

    1992-04-01

    Recently, an isolated population of apparent GH-receptor deficient (GHRD) patients has been identified in the Loja province of southern Ecuador. These individuals presented many of the physical and biochemical phenotypes characteristic of Laron-Syndrome and are believed to have a defect in the GH-receptor gene. In this study, we have compared the biochemical phenotypes between the affected individuals and their parents, considered to be obligate heterozygotes for the disorder. Serum GH, insulin-like growth factor I and II (IGF-I and IGF-II) levels were measured by RIA Insulin-like growth factor binding proteins. (IGFBPs) were measured by Western ligand blotting (WLB) of serum samples, following separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and relative quantitation of serum IGFBPs was performed with a scanning laser densitometer. Serum GH-binding protein (GHBP) levels were measured with a ligand-mediated immunofunctional assay using a monoclonal antibody raised against the GHBP. These values were then compared to values obtained from normal, sex-matched adult Ecuadorian controls, to determine if the above parameters were abnormal in the heterozygotes. The serum IGF-I levels of the GHRD patients were less than 13% of control values for adults and 2% for children. However, the IGF-I levels of both the mothers and fathers were not significantly different from that of the control population. The serum IGF-II levels of the GHRD patients were approximately 20% of control values for adults and 12% for the children. The IGF-II levels of the mothers were reduced, but were not significantly different from that of the control population. However, IGF-II levels of the fathers were significantly lower than those of controls (64% of control male levels). WLB analysis of serum IGFBP levels of the affected subjects demonstrated increased IGFBP-2 and decreased IGFBP-3, suggesting an inverse relationship between these IGFBPs. The GHRD patients who had the

  19. Novel covalently linked insulin dimer engineered to investigate the function of insulin dimerization.

    Directory of Open Access Journals (Sweden)

    Tine N Vinther

    Full Text Available An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers in the circulation, and it is stabilized by hexamer formation in the presence of zinc ions during storage in the pancreatic β-cell. Due to the transient nature of insulin dimer, direct investigation of this important form is inherently difficult. To address the relationship between insulin oligomerization and insulin stability and function, we engineered a covalently linked insulin dimer in which two monomers were linked by a disulfide bond. The structure of this covalent dimer was identical to the self-association dimer of human insulin. Importantly, this covalent dimer was capable of further oligomerization to form the structural equivalent of the classical hexamer. The covalently linked dimer neither bound to the insulin receptor, nor induced a metabolic response in vitro. However, it was extremely thermodynamically stable and did not form amyloid fibrils when subjected to mechanical stress, underlining the importance of oligomerization for insulin stability.

  20. Calcitonin and calcitonin receptor-like receptors: common themes with family B GPCRs?

    Science.gov (United States)

    Barwell, James; Gingell, Joseph J; Watkins, Harriet A; Archbold, Julia K; Poyner, David R; Hay, Debbie L

    2012-05-01

    The calcitonin receptor (CTR) and calcitonin receptor-like receptor (CLR) are two of the 15 human family B (or Secretin-like) GPCRs. CTR and CLR are of considerable biological interest as their pharmacology is moulded by interactions with receptor activity-modifying proteins. They also have therapeutic relevance for many conditions, such as osteoporosis, diabetes, obesity, lymphatic insufficiency, migraine and cardiovascular disease. In light of recent advances in understanding ligand docking and receptor activation in both the family as a whole and in CLR and CTR specifically, this review reflects how applicable general family B GPCR themes are to these two idiosyncratic receptors. We review the main functional domains of the receptors; the N-terminal extracellular domain, the juxtamembrane domain and ligand interface, the transmembrane domain and the intracellular C-terminal domain. Structural and functional findings from the CLR and CTR along with other family B GPCRs are critically appraised to gain insight into how these domains may function. The ability for CTR and CLR to interact with receptor activity-modifying proteins adds another level of sophistication to these receptor systems but means careful consideration is needed when trying to apply generic GPCR principles. This review encapsulates current thinking in the realm of family B GPCR research by highlighting both conflicting and recurring themes and how such findings relate to two unusual but important receptors, CTR and CLR. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  1. IGF-1-dependent subunit communication of the IGF-1 holoreceptor: Interactions between αβ heterodimeric receptor halves

    International Nuclear Information System (INIS)

    Wilden, P.A.; Treadway, J.L.; Morrison, B.D.; Pessin, J.E.

    1989-01-01

    Examination of 125 I-IGF-1 affinity cross-linking and β-subunit autophosphorylation has indicated that IGF-1 induces a covalent association of isolated αβ heterodimeric IGF-1 receptors into an α 2 β 2 heterotetrameric state, in a similar manner to that observed for the insulin receptor. The formation of the α 2 β 2 heterotetrameric IGF-1 receptor complex from the partially purified αβ heterodimers was time dependent with half-maximal formation in approximately 30 min at saturating IGF-1 concentrations. The IGF-1-dependent association of the partially purified αβ heterodimers into an α 2 β 2 heterotetrameric state was specific for the IGF-1 receptors since IGF-1 was unable to stimulate the protein kinase activity of the purified αβ heterodimeric insulin receptor complex. Incubation of the α 2 β 2 heterotetrameric IGF-1 holoreceptor with the specific sulfhydryl agent iodoacetamide (IAN) did not alter 125 I-IGF-1 binding or IGF-1 stimulation of protein kinase activity. However, IAN treatment of the αβ heterodimeric IGF-1 receptors inhibited the IGF-1 dependent covalent formation of the disulfide-linked α 2 β 2 heterotetrameric complex. These data indicate that IGF-1 induces the covalent association of isolated αβ heterodimeric IGF-1 receptor complexes into a disulfide-linked α 2 β 2 heterotetrameric state whereas Mn/MgATP induces a noncovalent association. Therefore, unlike the insulin receptor in which noncovalent association is sufficient for kinase activation, only the covalent assembly of the IGF-1 receptor αβ heterodimers into the α 2 β 2 heterotetrameric holoreceptor complex is associated with ligand-stimulated protein kinase activation

  2. The Role of the Sweet Taste Receptor in Enteroendocrine Cells and Pancreatic β-Cells

    Directory of Open Access Journals (Sweden)

    Itaru Kojima

    2011-10-01

    Full Text Available The sweet taste receptor is expressed in taste cells located in taste buds of the tongue. This receptor senses sweet substances in the oral cavity, activates taste cells, and transmits the taste signals to adjacent neurons. The sweet taste receptor is a heterodimer of two G protein-coupled receptors, T1R2 and T1R3. Recent studies have shown that this receptor is also expressed in the extragustatory system, including the gastrointestinal tract, pancreatic β-cells, and glucose-responsive neurons in the brain. In the intestine, the sweet taste receptor regulates secretion of incretin hormones and glucose uptake from the lumen. In β-cells, activation of the sweet taste receptor leads to stimulation of insulin secretion. Collectively, the sweet taste receptor plays an important role in recognition and metabolism of energy sources in the body.

  3. Influence of Unweighting on Insulin Signal Transduction in Muscle

    Science.gov (United States)

    Tischler, Marc E.

    2002-01-01

    Unweighting of the juvenile soleus muscle is characterized by an increased binding capacity for insulin relative to muscle mass due to sparing of the receptors during atrophy. Although carbohydrate metabolism and protein degradation in the unweighted muscle develop increased sensitivity to insulin in vivo, protein synthesis in vivo and system A amino acid transport in vitro do not appear to develop such an enhanced response. The long-term goal is to identify the precise nature of this apparent resistance in the insulin signal transduction pathway and to consider how reduced weight-bearing may elicit this effect, by evaluating specific components of the insulin signalling pathway. Because the insulin-signalling pathway has components in common with the signal transduction pathway for insulin-like growth factor (IGF-1) and potentially other growth factors, the study could have important implications in the role of weight-bearing function on muscle growth and development. Since the insulin signalling pathway diverges following activation of insulin receptor tyrosine kinase, the immediate specific aims will be to study the receptor tyrosine kinase (IRTK) and those branches, which lead to phosphorylation of insulin receptor substrate-1 (IRS-1) and of Shc protein. To achieve these broader objectives, we will test in situ, by intramuscular injection, the responses of glucose transport, system A amino acid transport and protein synthesis to insulin analogues for which the receptor has either a weaker or much stronger binding affinity compared to insulin. Studies will include: (1) estimation of the ED(sub 50) for each analogue for these three processes; (2) the effect of duration (one to four days) of unweighting on the response of each process to all analogues tested; (3) the effect of unweighting and the analogues on IRTK activity; and (4) the comparative effects of unweighting and analogue binding on the tyrosine phosphorylation of IRTK, IRS-1, and Shc protein.

  4. Molecular Cloning, Genomic Organization and Developmental Regulation of a Novel Receptor from Drosophila melanogaster Structurally Related to Gonadotropin-Releasing Hormone Receptors from Vertebrates

    DEFF Research Database (Denmark)

    Hauser, Frank; Søndergaard, Leif; Grimmelikhuijzen, Cornelis J.P.

    1998-01-01

    After screening the data base of the BerkeleyDrosophilaGenome Project with a sequence coding for the transmembrane region of a G protein-coupled receptor, we found thatDrosophilamight contain a gene coding for a receptor that is structurally related to the Gonadotropin-Releasing Hormone (GnRH) re...

  5. Differential effects of early-life NMDA receptor antagonism on aspartame-impaired insulin tolerance and behavior.

    Science.gov (United States)

    Collison, Kate S; Inglis, Angela; Shibin, Sherin; Andres, Bernard; Ubungen, Rosario; Thiam, Jennifer; Mata, Princess; Al-Mohanna, Futwan A

    2016-12-01

    We have previously showed that lifetime exposure to aspartame, commencing in utero via the mother's diet, may impair insulin tolerance and cause behavioral deficits in adulthood via mechanisms which are incompletely understood. The role of the CNS in regulating glucose homeostasis has been highlighted by recent delineation of the gut-brain axis, in which N-methyl-d-aspartic acid receptors (NMDARs) are important in maintaining glucose homeostasis, in addition to regulating certain aspects of behavior. Since the gut-brain axis can be modulated by fetal programming, we hypothesized that early-life NMDAR antagonism may affect aspartame-induced glucose deregulation in adulthood, and may alter the aspartame behavioral phenotype. Accordingly, C57Bl/6J mice were chronically exposed to aspartame commencing in utero, in the presence and absence of maternal administration of the competitive NMDAR antagonist CGP 39551, from conception until weaning. Drug/diet interactions in adulthood glucocentric and behavioral parameters were assessed. Aspartame exposure elevated blood glucose and impaired insulin-induced glucose disposal during an insulin tolerance test, which could be normalized by NMDAR antagonism. The same effects were not observed in control diet mice, suggesting an early-life drug/diet interaction. Behavioral analysis of adult offspring indicated that NMDAR antagonism of control diet mice caused hyperlocomotion and impaired spatial navigation. Conversely hypolocomotion, reduced exploratory activity and increased anxiety-related behavior were apparent in aspartame diet mice with early-life NMDAR antagonism. significant drug/diet interactions in glucocentric and behavioral parameters were identified in aspartame-exposed mice with early-life NMDAR antagonism. This suggests a possible involvement of early NMDAR interactions in aspartame-impaired glucose homeostasis and behavioral deficits. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients.

    Science.gov (United States)

    Wellendorph, Petrine; Johansen, Lars Dan; Bräuner-Osborne, Hans

    2009-09-01

    A number of highly promiscuous seven transmembrane (7TM) receptors have been cloned and characterized within the last few years. It is noteworthy that many of these receptors are activated broadly by amino acids, proteolytic degradation products, carbohydrates, or free fatty acids and are expressed in taste tissue, the gastrointestinal tract, endocrine glands, adipose tissue, and/or kidney. These receptors thus hold the potential to act as sensors of food intake, regulating, for example, release of incretin hormones from the gut, insulin/glucagon from the pancreas, and leptin from adipose tissue. The promiscuous tendency in ligand recognition of these receptors is in contrast to the typical specific interaction with one physiological agonist seen for most receptors, which challenges the classic "lock-and-key" concept. We here review the molecular mechanisms of nutrient sensing of the calcium-sensing receptor, the G protein-coupled receptor family C, group 6, subtype A (GPRC6A), and the taste1 receptor T1R1/T1R3, which are sensing L-alpha-amino acids, the carbohydrate-sensing T1R2/T1R3 receptor, the proteolytic degradation product sensor GPR93 (also termed GPR92), and the free fatty acid (FFA) sensing receptors FFA1, FFA2, FFA3, GPR84, and GPR120. The involvement of the individual receptors in sensing of food intake has been validated to different degrees because of limited availability of specific pharmacological tools and/or receptor knockout mice. However, as a group, the receptors represent potential drug targets, to treat, for example, type II diabetes by mimicking food intake by potent agonists or positive allosteric modulators. The ligand-receptor interactions of the promiscuous receptors of organic nutrients thus remain an interesting subject of emerging functional importance.

  7. Short-acting glucagon-like peptide-1 receptor agonists as add-on to insulin therapy in type 1 diabetes

    DEFF Research Database (Denmark)

    Albèr, Anders; Brønden, Andreas; Knop, Filip K

    2017-01-01

    emptying in patients with type 1 diabetes, which could translate into effective lowering of postprandial glucose excursions; however, these observations regarding short-acting GLP-1RAs are all derived from small open-label trials and should thus be interpreted with caution. In the present paper we review......A large proportion of patients with type 1 diabetes do not reach their glycaemic target of glycated hemoglobin (HbA1c) type 1 diabetes are overweight and obese. Treatment of type 1 diabetes is based on insulin therapy......, which is associated with well-described and unfortunate adverse effects such as hypoglycaemia and increased body weight. Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) are the focus of increasing interest as a possible adjunctive treatment to insulin in type 1 diabetes because...

  8. Evaluated the Up –regulation in Gene ‎Expression of Hepatic Insulin Gene and ‎Hepatic Insulin Receptor Gene in Type 1 ‎Diabetic Rats Treated with Cuscuta chinesis ‎Lam.‎

    Directory of Open Access Journals (Sweden)

    Fadia ‎ H. Al-Sultany

    2018-02-01

    Full Text Available         This research was conducted to study the hypoglycemic activity of C. chinesis Lam on type 1 diabetic disease and investigate the  molecular and histological mechanism of  its action .many parameters was investigated , Fasting blood glucose (FBG, Fasting serum insulin,Hepatic Insulin Gene Expression, pancreas Insulin Gene Expression ,Hepatic Insulin  Receptors Gene expression  and histological sections of pancrease and liver.54 Rattus rattus male rats weighting(180 -200g were divided into 3 groups: A normal control daily administrated with Dw, B Diabetic control daily administrated with Dw  and C  diabetic group daily administrated with 400 mg/Kg body weight of C. chinesis  Lam. methanolic extract, each group consisted of  18 rats and further divided into (3 sub- groups 1 ,2  and 3. According to the period of administration  30, 60 and  90 days respectively. The results showing  the daily administration of 400 mg/Kg body weight of C. chinesis  Lam. methanolic extract for 60 day causing significance  decrease  in FBG and In the other hand each of fasting serum insulin, hepatic Insulin gene expression,pancreas Insulin gene expression and hepatic Insulin receptor gene expression was increased in group C in compare to B group and return all studied parameters involving pancrease and liver texture to the normal state ,which were statically morphologically  not appeared any significant difference from A group .this study concluded that the daily administration type 1 diabetic rats with 400 mg/Kg body weight of C. chinesis  Lam. extract for 60 day was return  fasting serum insulin and FBG to normal value by  upregulated  the gene expression of hepatic INS Gene ,INSR gene , pancreas INS Gene ,regenerate pancreatic beta- cell and returnthe texture of both liver and pancrease to the normal state

  9. Bloqueo del receptor del factor de crecimiento semejante a la Insulina Tipo I utilizando oligodeoxinucleótidos antisentido en cáncer de mama experimental Type I insulin-like growth factor receptor antisense strategies in experimental breast cancer

    Directory of Open Access Journals (Sweden)

    Mariana Salatino

    2004-04-01

    Full Text Available Evaluamos el efecto del bloqueo de la expresión del receptor del factor de crecimiento semejante a la insulina tipo I (IGF-IR sobre el crecimiento in vivo de cáncer de mama empleando una estrategia "antisentido". Utilizamos el adenocarcinoma mamario murino progestágeno-dependiente C4HD. La administración intratumoral o sistémica de oligodeoxinucleótidos antisentido fosfotiolados al ARNm del IGF-IR (AS[S]ODN inhibió el crecimiento tumoral. El efecto antitumoral fue específico debido a su dosis-dependencia y a la falta de efecto en ratones tratados con el S[S]ODN "sentido". Los tumores obtenidos de ratones tratados con AS[S]ODN mostraron: disminución en la expresión de IGF-IR y en la fosforilación del sustrato del receptor de insulina-1, inhibición de la activación de PI-3K/Akt, p42/p44MAPK y ErbB-2, mientras que la expresión y activación del receptor de progesterona no se afectó. Es la primera demostración que el crecimiento de cáncer de mama puede ser inhibido por la administración in vivo de AS[S]ODN al IGF-IR.We addressed the effect of targeting type I insulin-like growth factor receptor (IGF-IR, with antisense strategies in in vivo growth of breast cancer cells. We used C4HD tumors from an experimental model of hormonal carcinogenesis in which medroxyprogesterone acetate induced mammary adenocarcinomas in Balb/c mice. Intratumor or systemic administration of phosphorothiolated antisense oligodeoxynucleotides (AS[S]ODN to IGF-IR mRNA resulted in a significant inhibition of C4HD tumor growth. The antitumor effect was specific since inhibition of tumor growth was dose-dependent and no effect was observed in mice treated with sense S[S]ODN. Tumors from AS[S]ODN-treated mice showed a decrease in IGF-IR expression and in insulin receptor substrate-1 tyrosine phosphorylation. Activation of PI-3K/Akt, p42/p44 MAPK and ErbB-2 was abolished in tumors treated with AS[S]ODN. Progesterone receptor expression or activity remained

  10. Peroxisome proliferator-activated receptor-gamma (PPARgamma) Pro12Ala polymorphism and risk for pediatric obesity

    NARCIS (Netherlands)

    Dedoussis, George V; Vidra, Nikoleta; Butler, Johannah; Papoutsakis, Constantina; Yannakoulia, Mary; Hirschhorn, Joel N; Lyon, Helen N; Vidra, Nikoletta

    BACKGROUND: Variation in the peroxisome-proliferator-activated receptor gamma (PPARgamma) gene has been reported to alter the risk for adiposity in adults. METHODS: We investigated the gender related association between the Pro12Ala variant (rs1801282) in obesity and insulin resistance traits in 794

  11. Time-dependent therapeutic roles of nitazoxanide on high-fat diet/streptozotocin-induced diabetes in rats: effects on hepatic peroxisome proliferator-activated receptor-gamma receptors.

    Science.gov (United States)

    Elaidy, Samah M; Hussain, Mona A; El-Kherbetawy, Mohamed K

    2018-05-01

    Targeting peroxisome proliferator-activated receptor-gamma (PPAR-γ) is an approved strategy in facing insulin resistance (IR) for diabetes mellitus (DM) type 2. The PPAR-γ modulators display improvements in the insulin-sensitizing and adverse effects of the traditional thiazolidinediones. Nitazoxanide (NTZ) is proposed as a PPAR-γ receptor ligand with agonistic post-transcriptional effects. Currently, NTZ antidiabetic activities versus pioglitazone (PIO) in a high-fat diet/streptozotocin rat model of type 2 diabetes was explored. Diabetic adult male Wistar rats were treated orally with either PIO (2.7 mg·kg -1 ·day -1 ) or NTZ (200 mg·kg -1 ·day -1 ) for 14, 21, and 28 days. Body masses, fasting blood glucose, IR, lipid profiles, and liver and kidney functions of rats were assayed. Hepatic glucose metabolism and PPAR-γ protein expression levels as well as hepatic, pancreatic, muscular, and renal histopathology were evaluated. Significant time-dependent euglycemic and insulin-sensitizing effects with preservation of liver and kidney functions were offered by NTZ. Higher hepatic levels of glucose-6-phosphatase and glucose-6-phosphate dehydrogenase enzymes and PPAR-γ protein expressions were acquired by NTZ and PIO, respectively. NTZ could be considered an oral therapeutic strategy for DM type 2. Further systematic NTZ/PPAR-γ receptor subtype molecular activations are recommended. Simultaneous use of NTZ with other approved antidiabetics should be explored.

  12. Vitamin D receptor gene polymorphisms, dietary promotion of insulin resistance, and colon and rectal cancer.

    Science.gov (United States)

    Murtaugh, Maureen A; Sweeney, Carol; Ma, Khe-Ni; Potter, John D; Caan, Bette J; Wolff, Roger K; Slattery, Martha L

    2006-01-01

    Modifiable risk factors in colorectal cancer etiology and their interactions with genetic susceptibility are of particular interest. Functional vitamin D receptor (VDR) gene polymorphisms may influence carcinogenesis through modification of cell growth, protection from oxidative stress, cell-cell matrix effects, or insulin and insulin-like growth factor pathways. We investigated interactions between foods (dairy products, red and processed meat, and whole and refined grains) and dietary patterns (sucrose-to-fiber ratio and glycemic index) associated with insulin resistance with the FokI polymorphism of the VDR gene and colon and rectal cancer risk. Data (diet, anthropometrics, and lifestyle) and DNA came from case-control studies of colon (1,698 cases and 1,861 controls) and rectal cancer (752 cases and 960 controls) in northern California, Utah, and the Twin Cities metropolitan area, Minnesota (colon cancer study only). Unconditional logistic regression models were adjusted for smoking, race, sex, age, body mass index, physical activity, energy intake, dietary fiber, and calcium. The lowest colon cancer risk was observed with the Ff/ff FokI genotypes and a low sucrose-to-fiber ratio. Rectal cancer risk decreased with greater consumption of dairy products and increased with red or processed meat consumption and the FF genotype. Modifiable dietary risk factors may be differentially important among individuals by VDR genotype and may act through the insulin pathway to affect colon cancer risk and through fat, calcium, or other means to influence rectal cancer risk.

  13. Identification of the bioactive and consensus peptide motif from Momordica charantia insulin receptor-binding protein.

    Science.gov (United States)

    Lo, Hsin-Yi; Li, Chia-Cheng; Ho, Tin-Yun; Hsiang, Chien-Yun

    2016-08-01

    Many food bioactive peptides with diverse functions have been discovered by studying plant proteins. We have previously identified a 68-residue insulin receptor (IR)-binding protein (mcIRBP) from Momordica charantia that exhibits hypoglycemic effects in mice via interaction with IR. By in vitro digestion, we found that mcIRBP-19, spanning residues 50-68 of mcIRBP, enhanced the binding of insulin to IR, stimulated the phosphorylation of PDK1 and Akt, induced the expression of glucose transporter 4, and stimulated both the uptake of glucose in cells and the clearance of glucose in diabetic mice. Furthermore, mcIRBP-19 homologs were present in various plants and shared similar β-hairpin structures and IR kinase-activating abilities to mcIRBP-19. In conclusion, our findings suggested that mcIRBP-19 is a blood glucose-lowering bioactive peptide that exhibits IR-binding potentials. Moreover, we newly identified novel IR-binding bioactive peptides in various plants which belonged to different taxonomic families. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice

    NARCIS (Netherlands)

    Cariou, B; van Harmelen, K; Duran-Sandoval, D; van Dijk, TH; Grefhorst, A; Abdelkarim, M; Caron, S; Torpier, G; Fruchart, JC; Gonzalez, FJ; Kuipers, F; Staels, B

    2006-01-01

    The farnesoid X receptor (FXR) is a bile acid (BA)-activated nuclear receptor that plays a major role in the regulation of BA and lipid metabolism. Recently, several studies have suggested a potential role of FXR in the control of hepatic carbohydrate metabolism, but its contribution to the

  15. Effects of insulin and exercise training on FGF21, its receptors and target genes in obesity and type 2 diabetes

    DEFF Research Database (Denmark)

    Sørensen, Rikke Kruse; Vienberg, Sara Gry; Vind, Birgitte F

    2017-01-01

    obesity with and without type 2 diabetes led to reduced expression of KLB, but increased FGFR1c expression. However, the expression of most FGF21 target genes was unaltered except for reduced CIDEA expression in individuals with type 2 diabetes. CONCLUSIONS....../INTERPRETATION: Insulin-induced expression of muscle FGF21 correlates strongly with a rise in serum FGF21, and this response appears intact in overweight/obesity and type 2 diabetes. FGF21 resistance may involve reduced KLB expression in WAT. However, increased FGFR1c expression or other mechanisms seem to ensure...... that insulin and exercise increase FGF21 in plasma. Obesity and type 2 diabetes are potentially FGF21-resistant states, but to what extent FGF21 responses to insulin and exercise training are preserved, and whether FGF21, its receptors and target genes are altered, remains to be established. METHODS...

  16. The influence of short-term endurance training on the insulin blood level, binding, and degradation of 125I-insulin by erythrocyte receptors in patients after myocardial infarction.

    Science.gov (United States)

    Dylewicz, P; Przywarska, I; Szcześniak, L; Rychlewski, T; Bieńkowska, S; Długiewicz, I; Wilk, M

    1999-01-01

    This study was directed toward establishing whether and to what extent, short-term endurance training influences the insulin blood level, and the binding and degradation of 125I-insulin by erythrocyte receptors in patients undergoing rehabilitation after myocardial infarction. The study was conducted in a group of 60 patients who had had myocardial infarction within the past 1.5 to 3 months and who did not have arterial hypertension and diabetes mellitus. All the patients took a symptom-limited cardiopulmonary exercise test. Before and after the test, venous blood was collected to determine lactic acid and insulin blood levels as well as the binding and degradation of 125I-insulin. The study group was randomized into two subgroups. One subgroup entered into a 3-week in-patient rehabilitation course. The control group was discharged from the hospital and was given no recommendations for physical exercise. The same investigation was repeated 3 weeks later. In the patients (50%) with hyperinsulinemia (insulin resistance index, > 10 microIU/mL), which was detected during the first investigation, insulin blood level decreased from 23.9 +/- 4.4 to 15.0 +/- 1.9 microIU/mL (P endurance training period during rehabilitation after myocardial infarction reduces insulin resistance in patients with hyperinsulinemia.

  17. TLR4 and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Jane J. Kim

    2010-01-01

    Full Text Available Chronic inflammation is a key feature of insulin resistance and obesity. Toll-Like Receptor 4 (TLR4, involved in modulating innate immunity, is an important mediator of insulin resistance and its comorbidities. TLR4 contributes to the development of insulin resistance and inflammation through its activation by elevated exogenous ligands (e.g., dietary fatty acids and enteric lipopolysaccharide and endogenous ligands (e.g., free fatty acids which are elevated in obese states. TLR4, expressed in insulin target tissues, activates proinflammatory kinases JNK, IKK, and p38 that impair insulin signal transduction directly through inhibitory phosphorylation of insulin receptor substrate (IRS on serine residues. TLR4 activation also leads to increased transcription of pro-inflammatory genes, resulting in elevation of cytokine, chemokine, reactive oxygen species, and eicosanoid levels that promote further insulin-desensitization within the target cell itself and in other cells via paracrine and systemic effects. Increased understanding of cell type-specific TLR4-mediated effects on insulin action present the opportunity and challenge of developing related therapeutic approaches for improving insulin sensitivity while preserving innate immunity.

  18. Glucocorticoid receptor polymorphism in obesity and glucose homeostasis.

    Science.gov (United States)

    Majer-Łobodzińska, Agnieszka; Adamiec-Mroczek, Joanna

    2017-01-01

    Glucocorticoid receptor (GR) activity plays a significant role in the etiology of obesity and is essential for glucose homeostasis, the development of hyperinsulinaemia and subsequent increased fat deposition. Several polymorphisms in the GR gene have been described, and at least three of them seem to be associated with altered glucocorticoid sensitivity and changes in glucose homeostasis, and other metabolic parameters. The N363S polymorphism has been associated with increased sensitivity to glucocorticoides, increased insulin response to dexamethasone and increased plasma glucose level. BclI polymorphism is associated with increased abdominal obesity, hyperinsulinaemia and increased insulin resistance. Another polymorphism, ER22/23EK, in contrast to the others, is associated with relative resistance to glucocoricides actions and more beneficial metabolic profile-lower insulin resistance level, decreased lower cardiovascular risk and subseuent prolongation of life time. More research is still needed to understand the mechanisms behind these associations at the molecular level.

  19. Postreceptor defects causing insulin resistance in normoinsulinemic non-insulin-dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Bolinder, J.; Ostman, J.; Arner, P.

    1982-01-01

    The mechanisms of the diminished hypoglycemic response to insulin in non-insulin-dependent diabetes mellitus (NIDDM) with normal levels of circulating plasma insulin were investigated. Specific binding of mono- 125 I (Tyr A14)-insulin to isolated adipocytes and effects of insulin (5--10,000 microunits/ml) on glucose oxidation and lipolysis were determined simultaneously in subcutaneous adipose tissue of seven healthy subjects of normal weight and seven untreated NIDDM patients with normal plasma insulin levels. The two groups were matched for age, sex, and body weight. Insulin binding, measured in terms of receptor number and affinity, was normal in NIDDM, the total number of receptors averaging 350,000 per cell. Neither sensitivity nor the maximum antilipolytic effect of insulin was altered in NIDDM patients as compared with control subjects; the insulin concentration producing half the maximum effect (ED50) was 10 microunits/ml. As regards the effect of insulin on glucose oxidation, for the control subjects ED50 was 30 microunits/ml, whereas in NIDDM patients, insulin exerted no stimulatory effect. The results obtained suggest that the effect of insulin on glucose utilization in normoinsulinemic NIDDM may be diminished in spite of normal insulin binding to receptors. The resistance may be due solely to postreceptor defects, and does not involve antilipolysis

  20. Patologia molecular do receptor de sulfoniluréia (SUR1)

    OpenAIRE

    Reis, André F.; Velho, Gilberto

    2000-01-01

    The sulfonylurea receptor is a subunit of the ATP-sensitive potassium channel, which is expressed in the pancreatic beta cell. The central role of this receptor in glucose-induced insulin secretion was confirmed by description that mutations in this gene might result in hyperinsulinemic hypoglycemia of infancy. The possible role of SUR1 gene variants in the genetic susceptibility for type 2 diabetes mellitus has been studied. In this review, we discuss the results concerning the genetic varia...

  1. Autocrine growth induced by the insulin-related factor in the insulin-independent teratoma cell line 1246-3A

    International Nuclear Information System (INIS)

    Yamada, Yukio; Serrero, G.

    1988-01-01

    An insulin-independent teratoma-derived cell line, called 1246-3A, has been isolated from the adipogenic cell line 1246, which stringently requires insulin for proliferation. The 1246-3A cell line, which can proliferate in the absence of exogenous insulin, produces in its conditioned medium a growth factor similar to pancreatic insulin by its biological and immunological properties. This factor, called insulin-related factor (IRF), was purified and iodinated to study its binding to cell surface receptors. 125 I-labeled IRF binding to intact 1246-3A cells is lower than to 1246 cells. Cell surface binding can be restored by culturing the 1246-3A cells in the presence of an anti-porcine insulin monoclonal antibody of by acid prewash of the cells prior to performing the binding. Scatchard analysis of binding indicates that IRF secreted by the 1246-3A cells partially occupies high-affinity binding sites on the producer cells. Moreover, insulin monoclonal antibody inhibits the proliferation of the IRF-producing 1246-3A cells, suggesting that these cells are dependent on the secreted IRF for growth in culture. The authors conclude that the insulin-related factor secreted by the insulin-independent 1246-3A cells stimulates their proliferation in an autocrine fashion

  2. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    International Nuclear Information System (INIS)

    Xu, Ling; Hausmann, Martin; Dietmaier, Wolfgang; Kellermeier, Silvia; Pesch, Theresa; Stieber-Gunckel, Manuela; Lippert, Elisabeth; Klebl, Frank; Rogler, Gerhard

    2010-01-01

    Cholangiocarcinoma (CC) is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Expression of EGFR (epithelial growth factor receptor), HGFR (hepatocyte growth factor receptor) IGF1R (insulin-like growth factor 1 receptor), IGF2R (insulin-like growth factor 2 receptor) and VEGFR1-3 (vascular endothelial growth factor receptor 1-3) were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1). The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml), with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D). HuH28, OZ and TFK-1 lacked KRAS mutation. CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab

  3. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Kellermeier Silvia

    2010-06-01

    Full Text Available Abstract Background Cholangiocarcinoma (CC is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Methods Expression of EGFR (epithelial growth factor receptor, HGFR (hepatocyte growth factor receptor IGF1R (insulin-like growth factor 1 receptor, IGF2R (insulin-like growth factor 2 receptor and VEGFR1-3 (vascular endothelial growth factor receptor 1-3 were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1. The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. Results EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml, with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D. HuH28, OZ and TFK-1 lacked KRAS mutation. Conclusion CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab.

  4. Soman- or kainic acid-induced convulsions decrease muscarinic receptors but not benzodiazepine receptors

    International Nuclear Information System (INIS)

    Churchill, L.; Pazdernik, T.L.; Cross, R.S.; Nelson, S.R.; Samson, F.E.

    1990-01-01

    [3H]Quinuclidinyl benzilate (QNB) binding to muscarinic receptors decreased in the rat forebrain after convulsions induced by a single dose of either soman, a potent inhibitor of acetylcholinesterase, or kainic acid, an excitotoxin. A Rosenthal plot revealed that the receptors decreased in number rather than affinity. When the soman-induced convulsions were blocked, the decrease in muscarinic receptors at 3 days was less extensive than when convulsions occurred and at 10 days they approached control levels in most of the brain areas. The most prominent decrements in QNB binding were in the piriform cortex where the decline in QNB binding is probably related to the extensive convulsion-associated neuropathology. The decrements in QNB binding after convulsions suggest that the convulsive state leads to a down-regulation of muscarinic receptors in some brain areas. In contrast to the decrease in QNB binding after convulsions, [3H]flunitrazepam binding to benzodiazepine receptors did not change even in the piriform cortex where the loss in muscarinic receptors was most prominent. Thus, it appears that those neuronal processes that bear muscarinic receptors are more vulnerable to convulsion-induced change than those with benzodiazepine receptors

  5. Gastro-Resistant Insulin Receptor-Binding Peptide from Momordica charantia Improved the Glucose Tolerance in Streptozotocin-Induced Diabetic Mice via Insulin Receptor Signaling Pathway.

    Science.gov (United States)

    Lo, Hsin-Yi; Li, Chia-Cheng; Chen, Feng-Yuan; Chen, Jaw-Chyun; Hsiang, Chien-Yun; Ho, Tin-Yun

    2017-10-25

    Momordica charantia is a commonly used food and has been used for the management of diabetes. Our previous study has identified an insulin receptor (IR)-binding protein (mcIRBP) from Momordica charantia. Here we identified the gastro-resistant hypoglycemic bioactive peptides from protease-digested mcIRBP. By in vitro digestion and IR kinase activity assay, we found that a 9-amino-acid-residue peptide, mcIRBP-9, was a gastro-resistant peptide that enhanced IR kinase activities. mcIRBP-9 activated IR signaling transduction pathway, which resulted in the phosphorylation of IR, the translocation of glucose transporter 4, and the uptake of glucose in cells. Intraperitoneal and oral administration of mcIRBP-9 stimulated the glucose clearance by 30.91 ± 0.39% and 32.09 ± 0.38%, respectively, in streptozotocin-induced diabetic mice. Moreover, a pilot study showed that daily ingestion of mcIRBP-9 for 30 days decreased the fasting blood glucose levels and glycated hemoglobin (HbA1c) levels by 23.62 ± 6.14% and 24.06 ± 1.53%, respectively. In conclusion, mcIRBP-9 is a unique gastro-resistant bioactive peptide generated after the digestion of mcIRBP. Furthermore, oral administration of mcIRBP-9 improves both the glucose tolerance and the HbA1c levels in diabetic mice via targeting IR signaling transduction pathway.

  6. Interaction between retinoid acid receptor-related orphan receptor alpha (RORA and neuropeptide S receptor 1 (NPSR1 in asthma.

    Directory of Open Access Journals (Sweden)

    Nathalie Acevedo

    Full Text Available Retinoid acid receptor-related Orphan Receptor Alpha (RORA was recently identified as a susceptibility gene for asthma in a genome-wide association study. To investigate the impact of RORA on asthma susceptibility, we performed a genetic association study between RORA single nucleotide polymorphisms (SNPs in the vicinity of the asthma-associated SNP (rs11071559 and asthma-related traits. Because the regulatory region of a previously implicated asthma susceptibility gene, Neuropeptide S receptor 1 (NPSR1, has predicted elements for RORA binding, we hypothesized that RORA may interact biologically and genetically with NPSR1. 37 RORA SNPs and eight NPSR1 SNPs were genotyped in the Swedish birth cohort BAMSE (2033 children and the European cross-sectional PARSIFAL study (1120 children. Seven RORA SNPs confined into a 49 kb region were significantly associated with physician-diagnosed childhood asthma. The most significant association with rs7164773 (T/C was driven by the CC genotype in asthma cases (OR = 2.0, 95%CI 1.36-2.93, p = 0.0003 in BAMSE; and 1.61, 1.18-2.19, p = 0.002 in the combined BAMSE-PARSIFAL datasets, respectively, and strikingly, the risk effect was dependent on the Gln344Arg mutation in NPSR1. In cell models, stimulation of NPSR1 activated a pathway including RORA and other circadian clock genes. Over-expression of RORA decreased NPSR1 promoter activity further suggesting a regulatory loop between these genes. In addition, Rora mRNA expression was lower in the lung tissue of Npsr1 deficient mice compared to wildtype littermates during the early hours of the light period. We conclude that RORA SNPs are associated with childhood asthma and show epistasis with NPSR1, and the interaction between RORA and NPSR1 may be of biological relevance. Combinations of common susceptibility alleles and less common functional polymorphisms may modify the joint risk effects on asthma susceptibility.

  7. Synthetic Ligands of Cannabinoid Receptors Affect Dauer Formation in the Nematode Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Pedro Reis Rodrigues

    2016-06-01

    Full Text Available Under adverse environmental conditions the nematode Caenorhabditis elegans can enter an alternate developmental stage called the dauer larva. To identify lipophilic signaling molecules that influence this process, we screened a library of bioactive lipids and found that AM251, an antagonist of the human cannabinoid (CB receptor, suppresses dauer entry in daf-2 insulin receptor mutants. AM251 acted synergistically with glucose supplementation indicating that the metabolic status of the animal influenced the activity of this compound. Similarly, loss of function mutations in the energy-sensing AMP-activated kinase subunit, aak-2, enhanced the dauer-suppressing effects of AM251, while constitutive activation of aak-2 in neurons was sufficient to inhibit AM251 activity. Chemical epistasis experiments indicated that AM251 acts via G-protein signaling and requires the TGF-β ligand DAF-7, the insulin peptides DAF-28 and INS-6, and a functional ASI neuron to promote reproductive growth. AM251 also required the presence of the SER-5 serotonin receptor, but in vitro experiments suggest that this may not be via a direct interaction. Interestingly, we found that other antagonists of mammalian CB receptors also suppress dauer entry, while the nonselective CB receptor agonist, O-2545, not only inhibited the activity of AM251, but also was able to promote dauer entry when administered alone. Since worms do not have obvious orthologs of CB receptors, the effects of synthetic CBs on neuroendocrine signaling in C. elegans are likely to be mediated via another, as yet unknown, receptor mechanism. However, we cannot exclude the existence of a noncanonical CB receptor in C. elegans.

  8. Insulin Action in Brain Regulates Systemic Metabolism and Brain Function

    OpenAIRE

    Kleinridders, Andr?; Ferris, Heather A.; Cai, Weikang; Kahn, C. Ronald

    2014-01-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in t...

  9. Effect of single physical exercise at 35% VO{sub 2} max. intensity on secretion activity of pancreas {beta}-cells and {sup 125}J-insulin binding and degradation ability by erythrocyte receptors in children with diabetes mellitus; Einfluss der einmaligen Koerperanstrengung von 35% VO{sub 2} max. auf Sekretionsfaehigkeit von B-Zellen der Bauchspeicheldruese und auf Bindungs-und Degradationsfaehigkeit von {sup 125}J-Insulin durch Erythrozytenrezeptoren bei Kindern mit Diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Szczesniak, L; Rychlewski, T [Lehrstuhl fuer Physiologie, Biochemie und Hygiene, Akademie fuer Koerpererziehung, Poznan (Poland); Banaszak, F; Kasprzak, Z; Walczak, M [3. Klinik von Kinderkrankheiten, Medizinische Akademie, Poznan (Poland)

    1994-12-31

    In this report we showed research results of effect of single physical exercise on cycloergometer at 35% VO{sub 2} max. intensity on {sup 125}J-insulin binding and degradation ability by erythrocyte receptors in children with diabetes mellitus, secreting and non-secreting endogenous insulin. Insulin secretion was evaluated by measurement of C-peptide by Biodet test (Serono) of sensitivity threshold at 0.3 {mu}g/ml. We indicated in children non-secreting endogenous insulin (n=32) there is statistically essential lower {sup 125}J-insulin binding with erythrocyte receptor in comparison to children group with C-peptide. Physical exercise on cycloergometer at 35% VO{sub 2} max. intensity caused different reaction in range of physiological indices, like acid-base parameters, level of glucose and {sup 125}J-insulin binding and degradation. In children devoid of endogenous insulin we indicated statistically nonessential changes in {sup 125}J-insulin degradation by non-impaired erythrocytes and by hemolizate, as well. {sup 125}J-insulin binding after physical exercise increased in both groups, though change amplitude was different. Obtained research results allowed us to conclude, in children with I-type diabetes, that in dependence of impairment degree of pancreas {beta}cells sensitivity of insulin receptor and/or number of receptors on erythrocyte surface is different.

  10. Crucial roles of Nox2-derived oxidative stress in deteriorating the function of insulin receptors and endothelium in dietary obesity of middle-aged mice.

    Science.gov (United States)

    Du, Junjie; Fan, Lampson M; Mai, Anna; Li, Jian-Mei

    2013-11-01

    Systemic oxidative stress associated with dietary calorie overload plays an important role in the deterioration of vascular function in middle-aged patients suffering from obesity and insulin resistance. However, effective therapy is still lacking. In this study, we used a mouse model of middle-aged obesity to investigate the therapeutic potential of pharmaceutical inhibition (apocynin, 5 mM supplied in the drinking water) or knockout of Nox2, an enzyme generating reactive oxygen species (ROS), in high-fat diet (HFD)-induced obesity, oxidative stress, insulin resistance and endothelial dysfunction. Littermates of C57BL/6J wild-type (WT) and Nox2 knockout (KO) mice (7 months old) were fed with a HFD (45% kcal fat) or normal chow diet (NCD, 12% kcal fat) for 16 weeks and used at 11 months of age. Compared to NCD WT mice, HFD WT mice developed obesity, insulin resistance, dyslipidaemia and hypertension. Aortic vessels from these mice showed significantly increased Nox2 expression and ROS production, accompanied by significantly increased ERK1/2 activation, reduced insulin receptor expression, decreased Akt and eNOS phosphorylation and impaired endothelium-dependent vessel relaxation to acetylcholine. All these HFD-induced abnormalities (except the hyperinsulinaemia) were absent in apocynin-treated WT or Nox2 KO mice given the same HFD. In conclusion, Nox2-derived ROS played a key role in damaging insulin receptor and endothelial function in dietary obesity after middle-age. Targeting Nox2 could represent a valuable therapeutic strategy in the metabolic syndrome. © 2013 The British Pharmacological Society.

  11. Reduced glomerular angiotensin II receptor density in diabetes mellitus in the rat: time course and mechanism

    International Nuclear Information System (INIS)

    Wilkes, B.M.

    1987-01-01

    Glomerular angiotensin II receptors are reduced in number in early diabetes mellitus, which may contribute to hyperfiltration and glomerular injury. The time course and role of the renin-angiotensin-aldosterone system in the pathogenesis of the receptor abnormality were studied in male Sprague-Dawley rats made diabetic with streptozotocin (65 mg, iv). Glomerular angiotensin II receptors were measured by Scatchard analysis; insulin, renin activity, angiotensin II, and aldosterone were measured by RIA. Diabetes mellitus was documented at 24 h by a rise in plasma glucose (vehicle-injected control, 133 +/- 4; diabetic, 482 +/- 22 mg/dl and a fall in plasma insulin (control, 53.1 +/- 5.7; diabetic, 35.6 +/- 4.0 microIU/ml. At 24 h glomerular angiotensin II receptor density was decreased by 26.5% in diabetic rats (control, 75.5 +/- 9.6 X 10(6); diabetic, 55.5 +/- 8.3 X 10(6) receptors/glomerulus. Receptor occupancy could not explain the defect, because there was reduced binding in diabetic glomeruli after pretreatment with 3 M MgCl 2 , a maneuver that caused dissociation of previously bound hormone. There was a progressive return of the receptor density toward normal over the 60 days following induction of diabetes, with diabetic glomeruli measuring 22.7%, 14.8%, and 3.7% fewer receptors than age-matched controls at 11 days, 1 month, and 2 months, respectively

  12. Mammary tumors that become independent of the type I insulin-like growth factor receptor express elevated levels of platelet-derived growth factor receptors

    Directory of Open Access Journals (Sweden)

    Campbell Craig I

    2011-11-01

    Full Text Available Abstract Background Targeted therapies are becoming an essential part of breast cancer treatment and agents targeting the type I insulin-like growth factor receptor (IGF-IR are currently being investigated in clinical trials. One of the limitations of targeted therapies is the development of resistant variants and these variants typically present with unique gene expression patterns and characteristics compared to the original tumor. Results MTB-IGFIR transgenic mice, with inducible overexpression of the IGF-IR were used to model mammary tumors that develop resistance to IGF-IR targeting agents. IGF-IR independent mammary tumors, previously shown to possess characteristics associated with EMT, were found to express elevated levels of PDGFRα and PDGFRβ. Furthermore, these receptors were shown to be inversely expressed with the IGF-IR in this model. Using cell lines derived from IGF-IR-independent mammary tumors (from MTB-IGFIR mice, it was demonstrated that PDGFRα and to a lesser extent PDGFRβ was important for cell migration and invasion as RNAi knockdown of PDGFRα alone or PDGFRα and PDGFRβ in combination, significantly decreased tumor cell migration in Boyden chamber assays and suppressed cell migration in scratch wound assays. Somewhat surprisingly, concomitant knockdown of PDGFRα and PDGFRβ resulted in a modest increase in cell proliferation and a decrease in apoptosis. Conclusion During IGF-IR independence, PDGFRs are upregulated and function to enhance tumor cell motility. These results demonstrate a novel interaction between the IGF-IR and PDGFRs and highlight an important, therapeutically relevant pathway, for tumor cell migration and invasion.

  13. Mechanisms of action of brain insulin against neurodegenerative diseases.

    Science.gov (United States)

    Ramalingam, Mahesh; Kim, Sung-Jin

    2014-06-01

    Insulin, a pancreatic hormone, is best known for its peripheral effects on the metabolism of glucose, fats and proteins. There is a growing body of evidence linking insulin action in the brain to neurodegenerative diseases. Insulin present in central nervous system is a regulator of central glucose metabolism nevertheless this glucoregulation is not the main function of insulin in the brain. Brain is known to be specifically vulnerable to oxidative products relative to other organs and altered brain insulin signaling may cause or promote neurodegenerative diseases which invalidates and reduces the quality of life. Insulin located within the brain is mostly of pancreatic origin or is produced in the brain itself crosses the blood-brain barrier and enters the brain via a receptor-mediated active transport system. Brain Insulin, insulin receptor and insulin receptor substrate-mediated signaling pathways play important roles in the regulation of peripheral metabolism, feeding behavior, memory and maintenance of neural functions such as neuronal growth and differentiation, neuromodulation and neuroprotection. In the present review, we would like to summarize the novel biological and pathophysiological roles of neuronal insulin in neurodegenerative diseases and describe the main signaling pathways in use for therapeutic strategies in the use of insulin to the cerebral tissues and their biological applications to neurodegenerative diseases.

  14. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors.

    Science.gov (United States)

    Poyner, David R; Sexton, Patrick M; Marshall, Ian; Smith, David M; Quirion, Remi; Born, Walter; Muff, Roman; Fischer, Jan A; Foord, Steven M

    2002-06-01

    The calcitonin family of peptides comprises calcitonin, amylin, two calcitonin gene-related peptides (CGRPs), and adrenomedullin. The first calcitonin receptor was cloned in 1991. Its pharmacology is complicated by the existence of several splice variants. The receptors for the other members the family are made up of subunits. The calcitonin-like receptor (CL receptor) requires a single transmembrane domain protein, termed receptor activity modifying protein, RAMP1, to function as a CGRP receptor. RAMP2 and -3 enable the same CL receptor to behave as an adrenomedullin receptor. Although the calcitonin receptor does not require RAMP to bind and respond to calcitonin, it can associate with the RAMPs, resulting in a series of receptors that typically have high affinity for amylin and varied affinity for CGRP. This review aims to reconcile what is observed when the receptors are reconstituted in vitro with the properties they show in native cells and tissues. Experimental conditions must be rigorously controlled because different degrees of protein expression may markedly modify pharmacology in such a complex situation. Recommendations, which follow International Union of Pharmacology guidelines, are made for the nomenclature of these multimeric receptors.

  15. Cross-talk between insulin and Wnt signaling in preadipocytes

    DEFF Research Database (Denmark)

    Palsgaard, Jane; Emanuelli, Brice; Winnay, Jonathon N

    2012-01-01

    and appears to be due to an inducible interaction between LRP5 and the insulin receptor as demonstrated by co-immunoprecipitation. These data demonstrate that Wnt and insulin signaling pathways exhibit cross-talk at multiple levels. Wnt induces phosphorylation of Akt, ERK1/2, and GSK3β, and this is dependent...... and LRP6 and with and without knock-out of insulin and IGF-1 receptors. We find that Wnt stimulation leads to phosphorylation of insulin signaling key mediators, including Akt, GSK3β, and ERK1/2, although with a lower fold stimulation and slower time course than observed for insulin. These Wnt effects...... are insulin/IGF-1 receptor-dependent and are lost in insulin/IGF-1 receptor double knock-out cells. Conversely, in LRP5 knockdown preadipocytes, insulin-induced phosphorylation of IRS1, Akt, GSK3β, and ERK1/2 is highly reduced. This effect is specific to insulin, as compared with IGF-1, stimulation...

  16. Insulin receptor substrate proteins create a link between the tyrosine phosphorylation cascade and the Ca2+-ATPases in muscle and heart.

    Science.gov (United States)

    Algenstaedt, P; Antonetti, D A; Yaffe, M B; Kahn, C R

    1997-09-19

    Following phosphorylation by the insulin receptor kinase, the insulin receptor substrates (IRS)-1 and IRS-2 bind to and activate several Src homology 2 (SH2) domain proteins. To identify novel proteins that interact with IRS proteins in muscle, a human skeletal muscle cDNA expression library was created in the lambdaEXlox system and probed with baculovirus-produced and tyrosine-phosphorylated human IRS-1. One clone of the 10 clones which was positive through three rounds of screening represented the C terminus of the human homologue of the adult fast twitch skeletal muscle Ca2+-ATPase (SERCA1) including the cytoplasmic tail and part of transmembrane region 10. Western blot analysis of extracts of rat muscle demonstrated co-immunoprecipitation of both IRS-1 and IRS-2 with the skeletal muscle Ca2+-ATPase (SERCA1) and the cardiac muscle isoform (SERCA2). In both cases, injection of insulin stimulated a 2- to 6-fold increase in association of which was maximal within 5 min. In primary cultures of aortic smooth muscle cells and C2C12 cells, the insulin-stimulated interaction between IRS proteins and SERCA1 and -2 was dose-dependent with a maximum induction at 100 nM insulin. This interaction was confirmed in a "pull down" experiment using a glutathione S-transferase fusion protein containing the C terminus of the human SERCA isoform and phosphorylated IRS-1 in vitro and could be blocked by a FLVRES-like domain peptide present in the human SERCA sequence. Affinity chromatography of phosphopeptide libraries using the glutathione S-transferase fusion protein of the C terminus of SERCA1 indicated a consensus sequence for binding of XpYGSS; this is identical to potential tyrosine phosphorylation sites at position 431 of human IRS-1 and at position 500 of human IRS-2. In streptozotocin diabetic rats the interaction between IRS proteins and SERCA1 in skeletal muscle and SERCA2 in cardiac muscle was significantly reduced. Taken together, these results indicate that the IRS

  17. Ghrelin receptor regulates adipose tissue inflammation in aging.

    Science.gov (United States)

    Lin, Ligen; Lee, Jong Han; Buras, Eric D; Yu, Kaijiang; Wang, Ruitao; Smith, C Wayne; Wu, Huaizhu; Sheikh-Hamad, David; Sun, Yuxiang

    2016-01-01

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr(-/-) mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsrp(-/-) mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsrp(-/-) mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance.

  18. Distribution of IGF receptors in the plasma membrane of proximal tubular cells

    International Nuclear Information System (INIS)

    Hammerman, M.R.; Rogers, S.

    1987-01-01

    To characterize the distribution of receptors for insulin-like growth factors I and II (IGF I and II) in the plasma membrane of the renal proximal tubular cell, the authors measured binding of 125 I-labeled IGF I and 125 I-labeled IGF II to proximal tubular basolateral and brush-border membranes and characterized IGF I-stimulated phosphorylation of detergent-solubilized membranes. 125 I-IGF bound primarily to a 135,000 relative molecular weight (M r ) protein and IGF II to a 260,000 M r protein in isolated membranes. Binding of 125 I-IGF I was severalfold greater in basolateral than in brush-border membranes. IGF I-stimulated phosphorylation of the 92,000 M r β-subunit of its receptors could be demonstrated only in basolateral membranes. These findings are consistent with an asymmetrical distribution of receptors for IGF I in the plasma membrane of the renal proximal tubular cell, localization being primary on the basolateral side. In contrast, binding of 125 I-IGF II to isolated basolateral and brush-border membranes was equivalent, suggesting that receptors for this peptide are distributed more symmetrically in the plasma membrane. The findings suggest that the action of IGF I in proximal tubule are mediated via interaction of circulating peptide with specific receptors in the basolateral membrane. However, the findings established the potential for actions of IGF II to be exerted in proximal tubule via interaction with both basolateral and/or brush-border membrane receptors

  19. Activation of α7 nicotinic acetylcholine receptor decreases on-site mortality in crush syndrome through insulin signaling-Na/K-ATPase pathway

    Directory of Open Access Journals (Sweden)

    Bo-Shi eFan

    2016-03-01

    Full Text Available On-site mortality in crush syndrome remains high due to lack of effective drugs based on definite diagnosis. Anisodamine is widely used in China for treatment of shock, and activation of α7 nicotinic acetylcholine receptor (α7nAChR mediates such antishock effect. The present work was designed to test whether activation of α7nAChR with anisodamine decreased mortality in crush syndrome shortly after decompression. Sprague-Dawley rats and C57BL/6 mice with crush syndrome were injected with anisodamine (20 mg/kg and 28 mg/kg respectively, i.p. 30 min before decompression. Survival time, serum potassium, insulin, and glucose levels were observed shortly after decompression. Involvement of α7nAChR was verified with methyllycaconitine (selective α7nAChR antagonist and PNU282987 (selective α7nAChR agonist, or in α7nAChR knockout mice. Effect of anisodamine was also appraised in C2C12 myotubes. Anisodamine reduced mortality and serum potassium and enhanced insulin sensitivity shortly after decompression in animals with crush syndrome, and PNU282987 exerted similar effects. Such effects were counteracted by methyllycaconitine or in α7nAChR knockout mice. Mortality and serum potassium in rats with hyperkalemia were also reduced by anisodamine. Phosphorylation of Na/K-ATPase was enhanced by anisodamine in C2C12 myotubes. Inhibition of tyrosine kinase on insulin receptor, phosphoinositide 3-kinase, mammalian target of rapamycin, signal transducer and activator of transcription 3, and Na/K-ATPase counteracted the effect of anisodamine on extracellular potassium. These findings demonstrated that activation of α7nAChR could decrease on-site mortality in crush syndrome, at least in part based on the decline of serum potassium through insulin signaling-Na/K-ATPase pathway.

  20. The Prelude on Novel Receptor and Ligand Targets Involved in the Treatment of Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Venu Gopal Jonnalagadda

    2014-05-01

    Full Text Available Metabolic disorders are a group of disorders, due to the disruption of the normal metabolic process at a cellular level. Diabetes Mellitus and Tyrosinaemia are the majorly reported metabolic disorders. Among them, Diabetes Mellitus is a one of the leading metabolic syndrome, affecting 5 to 7 % of the population worldwide and mainly characterised by elevated levels of glucose and is associated with two types of physiological event disturbances such as impaired insulin secretion and insulin resistance. Up to now, various treatment strategies are like insulin, alphaglucosidase inhibitors, biguanides, incretins were being followed. Concurrently, various novel therapeutic strategies are required to advance the therapy of Diabetes mellitus. For the last few decades, there has been an extensive research in understanding the metabolic pathways involved in Diabetes Mellitus at the cellular level and having the profound knowledge on cell-growth, cell-cycle, and apoptosis at a molecular level provides new targets for the treatment of Diabetes Mellitus. Receptor signalling has been involved in these mechanisms, to translate the information coming from outside. To understand the various receptors involved in these pathways, we must have a sound knowledge on receptors and ligands involved in it. This review mainly summarises the receptors and ligands which are involved the Diabetes Mellitus. Finally, researchers have to develop the alternative chemical moieties that retain their affinity to receptors and efficacy. Diabetes Mellitus being a metabolic disorder due to the glucose surfeit, demands the need for regular exercise along with dietary changes.

  1. Differential expression of TRAIL and its receptors relative to calcification in AAA

    International Nuclear Information System (INIS)

    Liu, Xun; Winrow, Vivienne R.; Horrocks, Michael; Stevens, Cliff R.

    2007-01-01

    Abdominal aortic aneurysm (AAA) is commonly associated with atherosclerosis. Human AAA tissue displays cells undergoing all stages of apoptosis. Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis in tumour cells but not in normal cells. It has death receptors and decoy receptors. An inhibitor of TRAIL, osteoprotegerin (OPG), is involved in osteogenesis and vascular calcification. We investigated TRAIL and its receptors in AAA compared within normal aorta (NA). Both qualitative and quantitative analyses of calcification in AAA walls were determined using Von Kossa staining and pre-operation computer tomography (CT) scans. There was a significant difference in calcification level at different locations in the AAA wall (p < 0.05). Apoptosis was confirmed in AAA by TUNEL assay. A significant difference in TRAIL and its receptor expression was observed between normal aortae and AAA (p < 0.05). Significant differences were also observed between tissues displaying different extents of calcification for TRAIL mRNA (p < 0.05) by RT-PCR examination and OPG protein (p < 0.01) by protein blotting examination. We propose that this pattern of expression of TRAIL and its receptors may contribute to AAA formation and calcification in the AAA wall

  2. Regulation of Liver Energy Balance by the Nuclear Receptors Farnesoid X Receptor and Peroxisome Proliferator Activated Receptor α.

    Science.gov (United States)

    Kim, Kang Ho; Moore, David D

    2017-01-01

    The liver undergoes major changes in substrate utilization and metabolic output over the daily feeding and fasting cycle. These changes occur acutely in response to hormones such as insulin and glucagon, with rapid changes in signaling pathways mediated by protein phosphorylation and other post-translational modifications. They are also reflected in chronic alterations in gene expression in response to nutrient-sensitive transcription factors. Among these, the nuclear receptors farnesoid X receptor (FXR) and peroxisome proliferator activated receptor α (PPARα) provide an intriguing, coordinated response to maintain energy balance in the liver. FXR is activated in the fed state by bile acids returning to the liver, while PPARα is activated in the fasted state in response to the free fatty acids produced by adipocyte lipolysis or possibly other signals. Key Messages: Previous studies indicate that FXR and PPARα have opposing effects on each other's primary targets in key metabolic pathways including gluconeogenesis. Our more recent work shows that these 2 nuclear receptors coordinately regulate autophagy: FXR suppresses this pathway of nutrient and energy recovery, while PPARα activates it. Another recent study indicates that FXR activates the complement and coagulation pathway, while earlier studies identify this as a negative target of PPARα. Since secretion is a very energy- and nutrient-intensive process for hepatocytes, it is possible that FXR licenses it in the nutrient-rich fed state, while PPARα represses it to spare resources in the fasted state. Energy balance is a potential connection linking FXR and PPARα regulation of autophagy and secretion, 2 seemingly unrelated aspects of hepatocyte function. FXR and PPARα act coordinately to promote energy balance and homeostasis in the liver by regulating autophagy and potentially protein secretion. It is quite likely that their impact extends to additional pathways relevant to hepatic energy balance, and

  3. Vitamin D receptor and estrogen receptor gene polymorphisms in postmenopausal Danish women

    DEFF Research Database (Denmark)

    Bagger, Y Z; Hassager, C; Heegaard, Anne-Marie

    2000-01-01

    To investigate the polymorphisms of the vitamin D receptor (VDR) and estrogen receptor (ER) genes in relation to biochemical markers of bone turnover (serum osteocalcin and urinary collagen type I degradation products (CrossLaps), and to study ER genotypes in relation to serum lipoproteins, blood...... pressure, or changes in these parameters after 2 years of hormone replacement therapy (HRT) in 499 Danish postmenopausal women....

  4. The FKBP51-Glucocorticoid Receptor Balance in Stress-Related Mental Disorders.

    Science.gov (United States)

    Fries, Gabriel R; Gassen, Nils C; Schmidt, Ulrike; Rein, Theo

    2015-01-01

    The immunophilin FK506 binding protein 51 (FKBP51) has emerged as one of the most intensely investigated proteins in stress-related mental disorders. It was originally characterized as Hsp90 cochaperone and part of the receptor-chaperone heterocomplex that governs the activity of steroid receptors. It turned out that the presence of FKBP51 in this heterocomplex leads to diminished activity of the corticosteroid receptors. In particular, based on its inhibitory action on the glucocorticoid receptor (GR), FKBP51 was included in a candidate gene approach to discover gene polymorphisms that might be relevant for the development and treatment of major depression. The discovery that polymorphisms in the gene coding for FKBP51 were linked to the treatment response of depressed patients intensified the research on the role of FKBP51 in stress-related diseases worldwide. It has become evident that FKBP51 is not only a regulator of GR action, but also a GR target. The function of this ultrashort intracellular feedback loop is critically important for cellular and physiological stress regulation as it does not only calibrate the function of GR, but also the levels of FKBP51. Given the pleiotropic functions of FKBP51, its levels might be equally important for mental disorders as GR function and hence for the development of potential FKBP51 drug targets.

  5. Variation in the peroxisome proliferator-activated receptor δ gene in relation to common metabolic traits in 7,495 middle-aged white people

    DEFF Research Database (Denmark)

    Grarup, Niels; Albrechtsen, A.; Ek, J.

    2007-01-01

    Studies in animals reveal that peroxisome proliferator-activated receptor delta (PPARdelta) regulates glucose metabolism and insulin sensitivity in both the liver and skeletal muscles. Moreover, PPARdelta augments physical endurance and increases oxidative metabolism, thereby averting obesity. Th...

  6. In vitro phosphorylation of insulin receptor substrate 1 by protein kinase C-zeta: functional analysis and identification of novel phosphorylation sites.

    Science.gov (United States)

    Sommerfeld, Mark R; Metzger, Sabine; Stosik, Magdalene; Tennagels, Norbert; Eckel, Jürgen

    2004-05-18

    Protein kinase C-zeta (PKC-zeta) participates both in downstream insulin signaling and in the negative feedback control of insulin action. Here we used an in vitro approach to identify PKC-zeta phosphorylation sites within insulin receptor substrate 1 (IRS-1) and to characterize the functional implications. A recombinant IRS-1 fragment (rIRS-1(449)(-)(664)) containing major tyrosine motifs for interaction with phosphatidylinositol (PI) 3-kinase strongly associated to the p85alpha subunit of PI 3-kinase after Tyr phosphorylation by the insulin receptor. Phosphorylation of rIRS-1(449)(-)(664) by PKC-zeta induced a prominent inhibition of this process with a mixture of classical PKC isoforms being less effective. Both PKC-zeta and the classical isoforms phosphorylated rIRS-1(449)(-)(664) on Ser(612). However, modification of this residue did not reduce the affinity of p85alpha binding to pTyr-containing peptides (amino acids 605-615 of rat IRS-1), as determined by surface plasmon resonance. rIRS-1(449)(-)(664) was then phosphorylated by PKC-zeta using [(32)P]ATP and subjected to tryptic phosphopeptide mapping based on two-dimensional HPLC coupled to mass spectrometry. Ser(498) and Ser(570) were identified as novel phosphoserine sites targeted by PKC-zeta. Both sites were additionally confirmed by phosphopeptide mapping of the corresponding Ser --> Ala mutants of rIRS-1(449)(-)(664). Ser(570) was specifically targeted by PKC-zeta, as shown by immunoblotting with a phosphospecific antiserum against Ser(570) of IRS-1. Binding of p85alpha to the S570A mutant was less susceptible to inhibition by PKC-zeta, when compared to the S612A mutant. In conclusion, our in vitro data demonstrate a strong inhibitory action of PKC-zeta at the level of IRS-1/PI 3-kinase interaction involving multiple serine phosphorylation sites. Whereas Ser(612) appears not to participate in the negative control of insulin signaling, Ser(570) may at least partly contribute to this process.

  7. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    May, Felicity EB, E-mail: F.E.B.May@ncl.ac.uk [Northern Institute for Cancer Research and Department of Pathology, Faculty of Medical Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne (United Kingdom)

    2014-05-23

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  8. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    International Nuclear Information System (INIS)

    May, Felicity EB

    2014-01-01

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  9. Expression of insulin-like growth factor-2 receptors on EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Farmer, John T; Weigent, Douglas A

    2007-01-01

    In the present study, we report the upregulation of functional IGF-2Rs in cells overexpressing growth hormone (GH). EL4 lymphoma cells stably transfected with an rGH cDNA overexpression vector (GHo) exhibited an increase in the binding of (125)I-IGF-2 with no change in the binding affinity compared to vector alone controls. An increase in the expression of the insulin-like growth factor-2 receptor (IGF-2R) in cells overexpressing GH was confirmed by Western blot analysis and IGF-2R promoter luciferase assays. EL4 cells produce insulin-like growth factor-2 (IGF-2) as detected by the reverse transcription-polymerase chain reaction (RT-PCR); however, no IGF-2 protein was detected by Western analysis. The increase in the expression of the IGF-2R resulted in greater levels of IGF-2 uptake in GHo cells compared to vector alone controls. The data suggest that one of the consequences of the overexpression of GH is an increase in the expression of the IGF-2R.

  10. The interleukin-4 receptor: signal transduction by a hematopoietin receptor.

    Science.gov (United States)

    Keegan, A D; Pierce, J H

    1994-02-01

    Over the last several years, the receptors for numerous cytokines have been molecularly characterized. Analysis of their amino acid sequences shows that some of these receptors bear certain motifs in their extracellular domains that define a family of receptors called the Hematopoietin receptor superfamily. Significant advances in characterizing the structure, function, and mechanisms of signal transduction have been made for several members of this family. The purpose of this review is to discuss the recent advances made for one of the family members, the interleukin (IL) 4 receptor. Other receptor systems have recently been reviewed elsewhere. The IL-4 receptor consists of, at the minimum, the cloned 140 kDa IL-4-binding chain with the potential for associating with other chains. The IL-4 receptor transduces its signal by activating a tyrosine kinase that phosphorylates cellular substrates, including the receptor itself, and the 170 kDa substrate called 4PS. Phosphorylated 4PS interacts with the SH2 domain of the enzyme PI-3'-kinase and increases its enzymatic activity. These early events in the IL-4 receptor initiated signaling pathway may trigger a series of signals that will ultimately lead to an IL-4 specific biologic outcome.

  11. Related-to-receptor tyrosine kinase receptor regulates hematopoietic stem and progenitor sensitivity to myelosuppressive injury in mice.

    Science.gov (United States)

    Povinelli, Benjamin J; Srivastava, Pragya; Nemeth, Michael J

    2015-03-01

    Maintaining a careful balance between quiescence and proliferation of hematopoietic stem and progenitor cells (HSPCs) is necessary for lifelong blood formation. Previously, we demonstrated that the Wnt5a ligand inhibits HSPC proliferation through a functional interaction with a noncanonical Wnt ligand receptor termed 'related-to-receptor tyrosine kinase' (Ryk). Expression of Ryk on HSPCs in vivo is associated with a lower rate of proliferation, and, following treatment with fluorouracil (5-FU), the percentage of Ryk(+/high) HSPCs increased and the percentage of Ryk(-/low) HSPCs decreased. Based on these data, we hypothesized that one function of the Ryk receptor is to protect HSPCs from the effects of myeloablative agents. We found that Ryk expression on HSPCs is associated with lower rates of apoptosis following 5-FU and radiation. Transient inhibition of Ryk signaling in vivo resulted in increased hematopoietic-stem-cell proliferation and decreased hematopoietic-stem-cell function in bone marrow transplant assays. Furthermore, inhibition of Ryk signaling sensitized HSPCs to 5-FU treatment in association with increased levels of reactive oxygen species. Together, these results demonstrated an association between Ryk expression and survival of HSPCs following suppressive injury. Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  12. Melatonin Receptor Genes in Vertebrates

    Directory of Open Access Journals (Sweden)

    Hua Dong Yin

    2013-05-01

    Full Text Available Melatonin receptors are members of the G protein-coupled receptor (GPCR family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A and MT2 (or Mel1b or MTNR1B receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C, has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor.

  13. The role of transient receptor potential channels in metabolic syndrome

    DEFF Research Database (Denmark)

    Liu, Daoyan; Zhu, Zhiming; Tepel, Martin

    2008-01-01

    Metabolic syndrome is correlated with increased cardiovascular risk and characterized by several factors, including visceral obesity, hypertension, insulin resistance, and dyslipidemia. Several members of a large family of nonselective cation entry channels, e.g., transient receptor potential (TRP...

  14. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    Science.gov (United States)

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Estrogen-related receptor beta interacts with Oct4 to positively regulate Nanog gene expression

    NARCIS (Netherlands)

    D.L.C. van den Berg (Debbie); W. Zhang (Wensheng); A. Yates (Adam); M.P. Engelen (Erik); K. Takacs (Katalin); K. Bezstarosti (Karel); J.A.A. Demmers (Jeroen); I. Chambers (Ian); R.A. Poor (Raymond)

    2008-01-01

    textabstractEmbryonic stem (ES) cell self-renewal is regulated by transcription factors, including Oct4, Sox2, and Nanog. A number of additional transcriptional regulators of ES cell self-renewal have recently been identified, including the orphan nuclear receptor estrogen-related receptor beta

  16. Identification of bioactive compounds from flowers of black elder (Sambucus nigra L.) that activate the human peroxisome proliferator-activated receptor (PPAR) gamma

    DEFF Research Database (Denmark)

    Christensen, Kathrine B; Petersen, Rasmus K; Kristiansen, Karsten

    2010-01-01

    Obesity is one of the predisposing factors for the development of overt Type 2 diabetes (T2D). T2D is caused by a combination of insulin resistance and beta-cell failure and can be treated with insulin sensitizing drugs that target the nuclear receptor peroxisome proliferator-activated receptor (...

  17. P2X receptor-ion channels in the inflammatory response in adipose tissue and pancreas-potential triggers in onset of type 2 diabetes?

    DEFF Research Database (Denmark)

    Novak, Ivana; Solini, Anna

    2018-01-01

    -cell and adipose tissue. In the former, P2Y and possibly some P2X receptors-ion channels regulate insulin secretion, but it is still debated whether excessive ATP can via P2X receptors impair β-cell function directly or whether cell damage is due to an excessive systemic release of cytokines. In human adipocytes......, the P2X7 receptor promotes the release of inflammatory cytokines, at least in part via inflammasome activation, likely contributing to systemic insulin resistance. This receptor-inflammasome system is also strongly activated in macrophages infiltrating both pancreas and adipose tissue, mediating...

  18. The LDL receptor.

    Science.gov (United States)

    Goldstein, Joseph L; Brown, Michael S

    2009-04-01

    In this article, the history of the LDL receptor is recounted by its codiscoverers. Their early work on the LDL receptor explained a genetic cause of heart attacks and led to new ways of thinking about cholesterol metabolism. The LDL receptor discovery also introduced three general concepts to cell biology: receptor-mediated endocytosis, receptor recycling, and feedback regulation of receptors. The latter concept provides the mechanism by which statins selectively lower plasma LDL, reducing heart attacks and prolonging life.

  19. Oxytocin, vasopressin and estrogen receptor gene expression in relation to social recognition in female mice.

    Science.gov (United States)

    Clipperton-Allen, Amy E; Lee, Anna W; Reyes, Anny; Devidze, Nino; Phan, Anna; Pfaff, Donald W; Choleris, Elena

    2012-02-28

    Inter- and intra-species differences in social behavior and recognition-related hormones and receptors suggest that different distribution and/or expression patterns may relate to social recognition. We used qRT-PCR to investigate naturally occurring differences in expression of estrogen receptor-alpha (ERα), ER-beta (ERβ), progesterone receptor (PR), oxytocin (OT) and receptor, and vasopressin (AVP) and receptors in proestrous female mice. Following four 5 min exposures to the same two conspecifics, one was replaced with a novel mouse in the final trial (T5). Gene expression was examined in mice showing high (85-100%) and low (40-60%) social recognition scores (i.e., preferential novel mouse investigation in T5) in eight socially-relevant brain regions. Results supported OT and AVP involvement in social recognition, and suggest that in the medial preoptic area, increased OT and AVP mRNA, together with ERα and ERβ gene activation, relate to improved social recognition. Initial social investigation correlated with ERs, PR and OTR in the dorsolateral septum, suggesting that these receptors may modulate social interest without affecting social recognition. Finally, increased lateral amygdala gene activation in the LR mice may be associated with general learning impairments, while decreased lateral amygdala activity may indicate more efficient cognitive mechanisms in the HR mice. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Hypothalamic growth hormone receptor (GHR controls hepatic glucose production in nutrient-sensing leptin receptor (LepRb expressing neurons

    Directory of Open Access Journals (Sweden)

    Gillian Cady

    2017-05-01

    Full Text Available Objective: The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR are active in the central nervous system (CNS and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance of GH-responsive cells, but the role of GH signaling in hypothalamic neurons is unknown. Previous work has demonstrated that the Ghr gene is highly expressed in LepRb neurons. Given that leptin is a key regulator of energy balance by acting on leptin receptor (LepRb-expressing neurons, we tested the hypothesis that LepRb neurons represent an important site for GHR signaling to control body homeostasis. Methods: To determine the importance of GHR signaling in LepRb neurons, we utilized Cre/loxP technology to ablate GHR expression in LepRb neurons (LeprEYFPΔGHR. The mice were generated by crossing the Leprcre on the cre-inducible ROSA26-EYFP mice to GHRL/L mice. Parameters of body composition and glucose homeostasis were evaluated. Results: Our results demonstrate that the sites with GHR and LepRb co-expression include ARH, DMH, and LHA neurons. Leptin action was not altered in LeprEYFPΔGHR mice; however, GH-induced pStat5-IR in LepRb neurons was significantly reduced in these mice. Serum IGF-1 and GH levels were unaltered, and we found no evidence that GHR signaling regulates food intake and body weight in LepRb neurons. In contrast, diminished GHR signaling in LepRb neurons impaired hepatic insulin sensitivity and peripheral lipid metabolism. This was paralleled with a failure to suppress expression of the gluconeogenic genes and impaired hepatic insulin signaling in LeprEYFPΔGHR mice. Conclusion: These findings suggest the existence of GHR-leptin neurocircuitry that plays an important role in the GHR-mediated regulation of glucose metabolism irrespective of feeding. Keywords: Growth hormone receptor, Hypothalamus, Leptin receptor, Glucose production, Liver

  1. Circulating osteoprotegerin and soluble receptor activator of nuclear factor κB ligand in polycystic ovary syndrome: relationships to insulin resistance and endothelial dysfunction.

    Science.gov (United States)

    Pepene, Carmen Emanuela; Ilie, Ioana Rada; Marian, Ioan; Duncea, Ileana

    2011-01-01

    There is plenty of evidence that osteoprotegerin (OPG) is linked to subclinical vascular damage and predicts cardiovascular disease in high-risk populations. Our aim is to investigate the relationships of OPG/free soluble receptor activator of nuclear factor κB ligand (sRANKL) to insulin resistance, brachial artery flow-mediated vasodilation (FMD), and the carotid artery intima-media thickness (CIMT) in polycystic ovary syndrome (PCOS), a disorder characterized by hyperandrogenism, impaired glucose control, and endothelial injury. A cross-sectional, observational study. Hormonal and metabolic profiles, FMD, CIMT, serum OPG, and ampli-sRANKL were assessed in 64 young PCOS patients and 20 controls of similar age. Body composition was measured by dual energy X-ray absorptiometry. OPG was significantly lower in PCOS and related negatively to free testosterone and positively to estradiol (E(2)) levels. In multivariate analysis, OPG but not ampli-sRANKL correlated positively to fasting insulin, insulin sensitivity indices, and FMD. Neither OPG nor ampli-sRANKL was associated with CIMT. Significantly lower adjusted FMD values were demonstrated in women in the upper OPG quartile group (>2.65 pmol/l) compared with all other quartile groups together (P=0.012). In PCOS, multiple regression analysis retained E(2)/sex hormone-binding globulin ratio, fat mass, and homeostasis model assessment of insulin resistance as independent predictors of OPG. In PCOS, circulating OPG is related to both endothelial dysfunction and insulin resistance, independent of obesity and androgen excess, suggesting OPG as a useful biomarker of these effects. Further studies are needed to evaluate OPG in relation to cardiovascular events and cardiovascular mortality in PCOS.

  2. Nuclear Receptors, RXR, and the Big Bang.

    Science.gov (United States)

    Evans, Ronald M; Mangelsdorf, David J

    2014-03-27

    Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Polymorphism rs3123554 in the cannabinoid receptor gene type 2 (CNR2) reveals effects on body weight and insulin resistance in obese subjects.

    Science.gov (United States)

    de Luis, Daniel Antonio; Izaola, Olatz; Primo, David; de la Fuente, Beatriz; Aller, Rocio

    2017-10-01

    Few studies assessing the relationship between single nucleotide polymorphisms in CNR2 and obesity or its related metabolic parameters are available. To investigate the influence of polymorphism rs3123554 in the CNR2 receptor gene on obesity anthropometric parameters, insulin resistance, and adipokines in subjects with obesity. The study population consisted of 1027 obese subjects, who were performed bioelectrical impedance analyses, blood pressure measurements, serial assessments of dietary intake during three days, and biochemical tests. Genotypes GG, GA, and AA were found in 339 (33.0%), 467 (45.5%), and 221 (21.5%) respectively. Body mass index, weight, fat mass, waist circumference, insulin, HOMA-IR, and triglyceride and leptin levels were higher in A-allele carriers as compared to non A-allele carriers. No differences were seen in these parameters between the GA and AA genotypes. There were no statistical differences in dietary intake. The main study finding was the association of the minor allele of the SNP rs3123554 in the CNR2 gene with body weight and triglyceride, HOMA-IR, insulin, and leptin levels. Copyright © 2017 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. The overexpressed human 46-kDa mannose 6-phosphate receptor mediates endocytosis and sorting of β-glucuronidase

    International Nuclear Information System (INIS)

    Watanabe, H.; Grubb, J.H.; Sly, W.S.

    1990-01-01

    The authors studied the function of the human small (46-kDa) mannose 6-phosphate receptor (SMPR) in transfected mouse L cells that do not express the larger insulin-like growth factor II/mannose 6-phosphate receptor. Cells overexpressing human SMPR were studied for enzyme binding to cell surface receptors, for binding to intracellular receptors in permeabilized cells, and for receptor-mediated endocytosis of recombinant human β-glucuronidase. Specific binding to human SMPR in permeabilized cells showed a pH optimum between pH 6.0 and pH 6.5. Binding was significant in the present of EDTA but was enhanced by added divalent cations. Up to 2.3% of the total functional receptor could be detected on the cell surface by enzyme binding. They present experiments showing that at very high levels of overexpression, and at pH 6.5, human SMPR mediated the endocytosis of β-glucuronidase. At pH 7.5, the rate of endocytosis was only 14% the rate seen at pH 6.5. Cells overexpressing human SMPR also showed reduced secretion of newly synthesized β-glucuronidase when compared to cells transfected with vector only, suggesting that overexpressed human SMPR can participate in sorting of newly synthesized β-glucuronidase and partially correct the sorting defect in mouse L cells that do not express the insulin-like growth factor II/mannose 6-phosphate receptor

  5. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    Science.gov (United States)

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists.

  6. β-Adrenergic receptor-mediated suppression of interleukin 2 receptors in human lymphocytes

    International Nuclear Information System (INIS)

    Feldman, R.D.; Hunninghake, G.W.; McArdle, W.L.

    1987-01-01

    Adrenergic receptor agonists are know to attenuate the proliferative response of human lymphocytes after activation; however, their mechanism of action is unknown. Since expression of interleukin 2 (IL-2) receptors is a prerequisite for proliferation, the effect of β-adrenergic receptor agonists on lymphocyte IL-2 receptors was studied on both mitogen-stimulated lymphocytes and IL-2-dependent T lymphocyte cell lines. In both cell types the β-adrenergic receptor agonist isoproterenol blocked the expression of IL-2 receptors, as determined with the IL-2 receptor anti-TAC antibody. To determine the effect of β-adrenergic agonists on expression of the high affinity IL-2 receptors, [ 125 I]IL-2 binding studies were performed at concentrations selective for high affinity sites. No significant effect of β-adrenergic agonists on high affinity IL-2 receptor sites could be detected. The data demonstrate that β-adrenergic receptor agonists down-regulate IL-2 receptors primarily affecting low affinity sites

  7. Fasting and feeding variations of insulin requirements and insulin binding to erythrocytes at different times of the day in insulin dependent diabetics--assessed under the condition of glucose-controlled insulin infusion.

    Science.gov (United States)

    Hung, C T; Beyer, J; Schulz, G

    1986-07-01

    Nine insulin-dependent diabetic patients were examined for insulin requirement, counterregulatory hormones, and receptor binding during their connection to glucose-controlled insulin infusion system. They were of 103% ideal body weight. A diet of 45% carbohydrate, 20% protein and 35% fat was divided into three meals and three snacks averaging the daily calorie intake of 1859 kcal. Following an equilibrating phase of 14 hours after the connection to the glucose-controlled insulin infusion system the blood samples were taken at 0800, 1200 and 1800. The insulin infusion rate increased at 0300 in the early morning from 0.128 mU/kg/min to 0.221 mU/kg/min (P less than 0.02). The postprandial insulin infusion rate jumped from 0.7 U/h (0700-0800) to 7.5 U/h (0800-0900). The calorie related and carbohydrate related insulin demands after breakfast were also highest and declined after lunch respectively (1.16 uU/kg/min kj vs. 0.61 uU/kg/min kj, P less than 0.05 and 236 mU/g CHO vs. 129 mU/g CHO and 143 mU/g CHO). Of the counterregulatory hormones the cortisol showed a significant diurnal rhythm to insulin demands. The insulin tracer binding was higher at 0800 before breakfast than that at 1200 before lunch (P less than 0.05). The increased binding could be better attributed to receptor concentration change than to affinity change. The cause of insulin relative insensitivity in the morning could be due to altered liver response to the cortisol peak in type 1 diabetics. The preserved variation of insulin binding in our patients might be referred to feeding.

  8. Deletion of G-protein-coupled receptor 55 promotes obesity by reducing physical activity.

    Science.gov (United States)

    Meadows, A; Lee, J H; Wu, C-S; Wei, Q; Pradhan, G; Yafi, M; Lu, H-C; Sun, Y

    2016-03-01

    Cannabinoid receptor 1 (CB1) is the best-characterized cannabinoid receptor, and CB1 antagonists are used in clinical trials to treat obesity. Because of the wide range of CB1 functions, the side effects of CB1 antagonists pose serious concerns. G-protein-coupled receptor 55 (GPR55) is an atypical cannabinoid receptor, and its pharmacology and functions are distinct from CB1. GPR55 regulates neuropathic pain, gut, bone, immune functions and motor coordination. GPR55 is expressed in various brain regions and peripheral tissues. However, the roles of GPR55 in energy and glucose homeostasis are unknown. Here we have investigated the roles of GPR55 in energy balance and insulin sensitivity using GPR55-null mice (GPR55(-/-)). Body composition of the mice was measured by EchoMRI. Food intake, feeding behavior, energy expenditure and physical activity of GPR55(-/-) mice were determined by indirect calorimetry. Muscle function was assessed by forced treadmill running test. Insulin sensitivity was evaluated by glucose and insulin tolerance tests. Adipose inflammation was assessed by flow cytometry analysis of adipose tissue macrophages. The expression of inflammatory markers in adipose tissues and orexigenic/anorexigenic peptides in the hypothalamus was also analyzed by real-time PCR. GPR55(-/-) mice had normal total energy intake and feeding pattern (i.e., no changes in meal size, meal number or feeding frequency). Intriguingly, whereas adult GPR55(-/-) mice only showed a modest increase in overall body weight, they exhibited significantly increased fat mass and insulin resistance. The spontaneous locomotor activity of GPR55(-/-) mice was dramatically decreased, whereas resting metabolic rate and non-shivering thermogenesis were unchanged. Moreover, GPR55(-/-) mice exhibited significantly decreased voluntary physical activity, showing reduced running distance on the running wheels, whereas muscle function appeared to be normal. GPR55 has an important role in energy

  9. Lipid raft integrity affects GABAA receptor, but not NMDA receptor modulation by psychopharmacological compounds.

    Science.gov (United States)

    Nothdurfter, Caroline; Tanasic, Sascha; Di Benedetto, Barbara; Uhr, Manfred; Wagner, Eva-Maria; Gilling, Kate E; Parsons, Chris G; Rein, Theo; Holsboer, Florian; Rupprecht, Rainer; Rammes, Gerhard

    2013-07-01

    Lipid rafts have been shown to play an important role for G-protein mediated signal transduction and the function of ligand-gated ion channels including their modulation by psychopharmacological compounds. In this study, we investigated the functional significance of the membrane distribution of NMDA and GABAA receptor subunits in relation to the accumulation of the tricyclic antidepressant desipramine (DMI) and the benzodiazepine diazepam (Diaz). In the presence of Triton X-100, which allowed proper separation of the lipid raft marker proteins caveolin-1 and flotillin-1 from the transferrin receptor, all receptor subunits were shifted to the non-raft fractions. In contrast, under detergent-free conditions, NMDA and GABAA receptor subunits were detected both in raft and non-raft fractions. Diaz was enriched in non-raft fractions without Triton X-100 in contrast to DMI, which preferentially accumulated in lipid rafts. Impairment of lipid raft integrity by methyl-β-cyclodextrine (MβCD)-induced cholesterol depletion did not change the inhibitory effect of DMI at the NMDA receptor, whereas it enhanced the potentiating effect of Diaz at the GABAA receptor at non-saturating concentrations of GABA. These results support the hypothesis that the interaction of benzodiazepines with the GABAA receptor likely occurs outside of lipid rafts while the antidepressant DMI acts on ionotropic receptors both within and outside these membrane microdomains.

  10. Anticancer effect of genistein on BG-1 ovarian cancer growth induced by 17 β-estradiol or bisphenol A via the suppression of the crosstalk between estrogen receptor alpha and insulin-like growth factor-1 receptor signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyung-A; Park, Min-Ah; Kang, Nam-Hee; Yi, Bo-Rim; Hyun, Sang-Hwan; Jeung, Eui-Bae; Choi, Kyung-Chul, E-mail: kchoi@cbu.ac.kr

    2013-11-01

    The interaction between estrogen receptor (ER) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathway plays an important role in proliferation of and resistance to endocrine therapy to estrogen dependent cancers. Estrogen (E2) upregulates the expression of components of IGF-1 system and induces the downstream of mitogenic signaling cascades via phosphorylation of insulin receptor substrate-1 (IRS-1). In the present study, we evaluated the xenoestrogenic effect of bisphenol A (BPA) and antiproliferative activity of genistein (GEN) in accordance with the influence on this crosstalk. BPA was determined to affect this crosstalk by upregulating mRNA expressions of ERα and IGF-1R and inducing phosphorylation of IRS-1 and Akt in protein level in BG-1 ovarian cancer cells as E2 did. In the mouse model xenografted with BG-1 cells, BPA significantly increased a tumor burden of mice and expressions of ERα, pIRS-1, and cyclin D1 in tumor mass compared to vehicle, indicating that BPA induces ovarian cancer growth by promoting the crosstalk between ER and IGF-1R signals. On the other hand, GEN effectively reversed estrogenicity of BPA by reversing mRNA and protein expressions of ERα, IGF-1R, pIRS-1, and pAkt induced by BPA in cellular model and also significantly decreased tumor growth and in vivo expressions of ERα, pIRS-1, and pAkt in xenografted mouse model. Also, GEN was confirmed to have an antiproliferative effect by inducing apoptotic signaling cascades. Taken together, these results suggest that GEN effectively reversed the increased proliferation of BG-1 ovarian cancer by suppressing the crosstalk between ERα and IGF-1R signaling pathways upregulated by BPA or E2.

  11. Anticancer effect of genistein on BG-1 ovarian cancer growth induced by 17 β-estradiol or bisphenol A via the suppression of the crosstalk between estrogen receptor alpha and insulin-like growth factor-1 receptor signaling pathways

    International Nuclear Information System (INIS)

    Hwang, Kyung-A; Park, Min-Ah; Kang, Nam-Hee; Yi, Bo-Rim; Hyun, Sang-Hwan; Jeung, Eui-Bae; Choi, Kyung-Chul

    2013-01-01

    The interaction between estrogen receptor (ER) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathway plays an important role in proliferation of and resistance to endocrine therapy to estrogen dependent cancers. Estrogen (E2) upregulates the expression of components of IGF-1 system and induces the downstream of mitogenic signaling cascades via phosphorylation of insulin receptor substrate-1 (IRS-1). In the present study, we evaluated the xenoestrogenic effect of bisphenol A (BPA) and antiproliferative activity of genistein (GEN) in accordance with the influence on this crosstalk. BPA was determined to affect this crosstalk by upregulating mRNA expressions of ERα and IGF-1R and inducing phosphorylation of IRS-1 and Akt in protein level in BG-1 ovarian cancer cells as E2 did. In the mouse model xenografted with BG-1 cells, BPA significantly increased a tumor burden of mice and expressions of ERα, pIRS-1, and cyclin D1 in tumor mass compared to vehicle, indicating that BPA induces ovarian cancer growth by promoting the crosstalk between ER and IGF-1R signals. On the other hand, GEN effectively reversed estrogenicity of BPA by reversing mRNA and protein expressions of ERα, IGF-1R, pIRS-1, and pAkt induced by BPA in cellular model and also significantly decreased tumor growth and in vivo expressions of ERα, pIRS-1, and pAkt in xenografted mouse model. Also, GEN was confirmed to have an antiproliferative effect by inducing apoptotic signaling cascades. Taken together, these results suggest that GEN effectively reversed the increased proliferation of BG-1 ovarian cancer by suppressing the crosstalk between ERα and IGF-1R signaling pathways upregulated by BPA or E2

  12. Interleukins 2, 4, 7, and 15 stimulate tyrosine phosphorylation of insulin receptor substrates 1 and 2 in T cells. Potential role of JAK kinases.

    Science.gov (United States)

    Johnston, J A; Wang, L M; Hanson, E P; Sun, X J; White, M F; Oakes, S A; Pierce, J H; O'Shea, J J

    1995-12-01

    The signaling molecules insulin receptor substrate (IRS)-1 and the newly described IRS-2 (4PS) molecule are major insulin and interleukin 4 (IL-4)-dependent phosphoproteins. We report here that IL-2, IL-7, and IL-15, as well as IL-4, rapidly stimulate the tyrosine phosphorylation of IRS-1 and IRS-2 in human peripheral blood T cells, NK cells, and in lymphoid cell lines. In addition, we show that the Janus kinases, JAK1 and JAK3, associate with IRS-1 and IRS-2 in T cells. Coexpression studies demonstrate that these kinases can tyrosine-phosphorylate IRS-2, suggesting a possible mechanism by which cytokine receptors may induce the tyrosine phosphorylation of IRS-1 and IRS-2. We further demonstrate that the p85 subunit of phosphoinositol 3-kinase associates with IRS-1 in response to IL-2 and IL-4 in T cells. Therefore, these data indicate that IRS-1 and IRS-2 may have important roles in T lymphocyte activation not only in response to IL-4, but also in response to IL-2, IL-7, and IL-15.

  13. Targeting Insulin-Like Growth Factor 1 Receptor Inhibits Pancreatic Cancer Growth and Metastasis

    Science.gov (United States)

    Subramani, Ramadevi; Lopez-Valdez, Rebecca; Arumugam, Arunkumar; Nandy, Sushmita; Boopalan, Thiyagarajan; Lakshmanaswamy, Rajkumar

    2014-01-01

    Pancreatic cancer is one of the most lethal cancers. Increasing incidence and mortality indicates that there is still much lacking in detection and management of the disease. This is partly due to a lack of specific symptoms during early stages of the disease. Several growth factor receptors have been associated with pancreatic cancer. Here, we have investigated if an RNA interference approach targeted to IGF-IR could be effective and efficient against pancreatic cancer growth and metastasis. For that, we evaluated the effects of IGF-1R inhibition using small interfering RNA (siRNAs) on tumor growth and metastasis in HPAC and PANC-1 pancreatic cancer cell lines. We found that silencing IGF-1R inhibits pancreatic cancer growth and metastasis by blocking key signaling pathways such AKT/PI3K, MAPK, JAK/STAT and EMT. Silencing IGF-1R resulted in an anti-proliferative effect in PANC-1 and HPAC pancreatic cancer cell lines. Matrigel invasion, transwell migration and wound healing assays also revealed a role for IGF-1R in metastatic properties of pancreatic cancer. These results were further confirmed using Western blotting analysis of key intermediates involved in proliferation, epithelial mesenchymal transition, migration, and invasion. In addition, soft agar assays showed that silencing IGF-1R also blocks the colony forming capabilities of pancreatic cancer cells in vitro. Western blots, as well as, flow cytometric analysis revealed the induction of apoptosis in IGF-1R silenced cells. Interestingly, silencing IGF-1R also suppressed the expression of insulin receptor β. All these effects together significantly control pancreatic cancer cell growth and metastasis. To conclude, our results demonstrate the significance of IGF-1R in pancreatic cancer. PMID:24809702

  14. The dog as a naturally-occurring model for insulin-like growth factor type 1 receptor-overexpressing breast cancer: an observational cohort study

    International Nuclear Information System (INIS)

    Jaillardon, Laetitia; Abadie, Jérome; Godard, Tiffanie; Campone, Mario; Loussouarn, Delphine; Siliart, Brigitte; Nguyen, Frédérique

    2015-01-01

    Dogs spontaneously develop invasive mammary carcinoma with a high prevalence of the triple-negative (TN) subtype (lack of ER-Estrogen Receptor and PR-Progesterone Receptor expression, lack of HER2-Human Epidermal Growth Factor Receptor 2 overexpression), making this animal model relevant for investigating new therapeutic pathways. Insulin-like growth factor Type-1 receptor (IGF1R) is frequently overexpressed in primary human breast cancers, with a growing role in the TN phenotype. The purpose of this study was to investigate the Dog as a candidate model for IGF1R-overexpressing mammary carcinoma. 150 bitches with canine mammary carcinoma (CMC) and a known 2-year follow-up were retrospectively included. IGF1R expression was assessed by immunohistochemistry (IHC) using a similar scoring system as for HER2 in breast cancer. The prognostic value of the IGF1R expression was assessed in terms of overall and specific survival as well as disease-free interval (DFI). 47 CMC (31 %) were classified as luminal and 103 (69 %) as triple-negative (TN-CMC). 41 % of CMC overexpressed IGF1R (IHC score 3+) of which 76 % were TN-CMC and 62 % grade III. IGF1R overexpression was associated with aggressive features including lymphovascular invasion, histological grade III, low ER expression and the TN phenotype. Univariate and multivariate analyses revealed that IGF1R overexpression was associated with shorter overall and specific survivals and shorter DFI in TN-CMC. IGF1R overexpression is common and related to a poor outcome in canine invasive mammary carcinoma, particularly in the triple negative subtype, as in human breast cancer. Preclinical studies using the Dog as a spontaneous animal model could be considered to investigate new therapies targeting IGF1R in triple-negative breast cancer. The online version of this article (doi:10.1186/s12885-015-1670-6) contains supplementary material, which is available to authorized users

  15. The complement anaphylatoxin C5a receptor contributes to obese adipose tissue inflammation and insulin resistance.

    Science.gov (United States)

    Phieler, Julia; Chung, Kyoung-Jin; Chatzigeorgiou, Antonios; Klotzsche-von Ameln, Anne; Garcia-Martin, Ruben; Sprott, David; Moisidou, Maria; Tzanavari, Theodora; Ludwig, Barbara; Baraban, Elena; Ehrhart-Bornstein, Monika; Bornstein, Stefan R; Mziaut, Hassan; Solimena, Michele; Karalis, Katia P; Economopoulou, Matina; Lambris, John D; Chavakis, Triantafyllos

    2013-10-15

    Obese adipose tissue (AT) inflammation contributes critically to development of insulin resistance. The complement anaphylatoxin C5a receptor (C5aR) has been implicated in inflammatory processes and as regulator of macrophage activation and polarization. However, the role of C5aR in obesity and AT inflammation has not been addressed. We engaged the model of diet-induced obesity and found that expression of C5aR was significantly upregulated in the obese AT, compared with lean AT. In addition, C5a was present in obese AT in the proximity of macrophage-rich crownlike structures. C5aR-sufficient and -deficient mice were fed a high-fat diet (HFD) or a normal diet (ND). C5aR deficiency was associated with increased AT weight upon ND feeding in males, but not in females, and with increased adipocyte size upon ND and HFD conditions in males. However, obese C5aR(-/-) mice displayed improved systemic and AT insulin sensitivity. Improved AT insulin sensitivity in C5aR(-/-) mice was associated with reduced accumulation of total and proinflammatory M1 macrophages in the obese AT, increased expression of IL-10, and decreased AT fibrosis. In contrast, no difference in β cell mass was observed owing to C5aR deficiency under an HFD. These results suggest that C5aR contributes to macrophage accumulation and M1 polarization in the obese AT and thereby to AT dysfunction and development of AT insulin resistance.

  16. Identification of Insulin-Like Growth Factor-I Receptor (IGF-IR) Gene Promoter-Binding Proteins in Estrogen Receptor (ER)-Positive and ER-Depleted Breast Cancer Cells

    International Nuclear Information System (INIS)

    Sarfstein, Rive; Belfiore, Antonino; Werner, Haim

    2010-01-01

    The insulin-like growth factor I receptor (IGF-IR) has been implicated in the etiology of breast cancer. Overexpression of the IGF-IR gene is a typical feature of most primary breast cancers, whereas low IGF-IR levels are seen at advanced stages. Hence, evaluation of IGF-IR levels might be important for assessing prognosis. In the present study, we employed a proteomic approach based on DNA affinity chromatography followed either by mass spectroscopy (MS) or Western blot analysis to identify transcription factors that may associate with the IGF-IR promoter in estrogen receptor (ER)-positive and ER-depleted breast cancer cells. A biotinylated IGF-IR promoter fragment was bound to streptavidin magnetic beads and incubated with nuclear extracts of breast cancer cells. IGF-IR promoter-binding proteins were eluted with high salt and analyzed by MS and Western blots. Among the proteins that were found to bind to the IGF-IR promoter we identified zinc finger transcription factors Sp1 and KLF6, ER-α, p53, c-jun, and poly (ADP-ribosylation) polymerase. Furthermore, chromatin immune-precipitation (ChIP) analysis confirmed the direct in vivo binding of some of these transcription factors to IGF-IR promoter DNA. The functional relevance of binding data was assessed by cotransfection experiments with specific expression vectors along with an IGF-IR promoter reporter. In summary, we identified nuclear proteins that are potentially responsible for the differential expression of the IGF-IR gene in ER-positive and ER-depleted breast cancer cells

  17. Identification of Insulin-Like Growth Factor-I Receptor (IGF-IR) Gene Promoter-Binding Proteins in Estrogen Receptor (ER)-Positive and ER-Depleted Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sarfstein, Rive [Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978 (Israel); Belfiore, Antonino [Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Catanzaro 88100 (Italy); Werner, Haim, E-mail: hwerner@post.tau.ac.il [Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978 (Israel)

    2010-03-25

    The insulin-like growth factor I receptor (IGF-IR) has been implicated in the etiology of breast cancer. Overexpression of the IGF-IR gene is a typical feature of most primary breast cancers, whereas low IGF-IR levels are seen at advanced stages. Hence, evaluation of IGF-IR levels might be important for assessing prognosis. In the present study, we employed a proteomic approach based on DNA affinity chromatography followed either by mass spectroscopy (MS) or Western blot analysis to identify transcription factors that may associate with the IGF-IR promoter in estrogen receptor (ER)-positive and ER-depleted breast cancer cells. A biotinylated IGF-IR promoter fragment was bound to streptavidin magnetic beads and incubated with nuclear extracts of breast cancer cells. IGF-IR promoter-binding proteins were eluted with high salt and analyzed by MS and Western blots. Among the proteins that were found to bind to the IGF-IR promoter we identified zinc finger transcription factors Sp1 and KLF6, ER-α, p53, c-jun, and poly (ADP-ribosylation) polymerase. Furthermore, chromatin immune-precipitation (ChIP) analysis confirmed the direct in vivo binding of some of these transcription factors to IGF-IR promoter DNA. The functional relevance of binding data was assessed by cotransfection experiments with specific expression vectors along with an IGF-IR promoter reporter. In summary, we identified nuclear proteins that are potentially responsible for the differential expression of the IGF-IR gene in ER-positive and ER-depleted breast cancer cells.

  18. Free energy calculations offer insights into the influence of receptor flexibility on ligand-receptor binding affinities.

    Science.gov (United States)

    Dolenc, Jožica; Riniker, Sereina; Gaspari, Roberto; Daura, Xavier; van Gunsteren, Wilfred F

    2011-08-01

    Docking algorithms for computer-aided drug discovery and design often ignore or restrain the flexibility of the receptor, which may lead to a loss of accuracy of the relative free enthalpies of binding. In order to evaluate the contribution of receptor flexibility to relative binding free enthalpies, two host-guest systems have been examined: inclusion complexes of α-cyclodextrin (αCD) with 1-chlorobenzene (ClBn), 1-bromobenzene (BrBn) and toluene (MeBn), and complexes of DNA with the minor-groove binding ligands netropsin (Net) and distamycin (Dist). Molecular dynamics simulations and free energy calculations reveal that restraining of the flexibility of the receptor can have a significant influence on the estimated relative ligand-receptor binding affinities as well as on the predicted structures of the biomolecular complexes. The influence is particularly pronounced in the case of flexible receptors such as DNA, where a 50% contribution of DNA flexibility towards the relative ligand-DNA binding affinities is observed. The differences in the free enthalpy of binding do not arise only from the changes in ligand-DNA interactions but also from changes in ligand-solvent interactions as well as from the loss of DNA configurational entropy upon restraining.

  19. Relationship of dopamine type 2 receptor binding potential with fasting neuroendocrine hormones and insulin sensitivity in human obesity.

    Science.gov (United States)

    Dunn, Julia P; Kessler, Robert M; Feurer, Irene D; Volkow, Nora D; Patterson, Bruce W; Ansari, Mohammad S; Li, Rui; Marks-Shulman, Pamela; Abumrad, Naji N

    2012-05-01

    Midbrain dopamine (DA) neurons, which are involved with reward and motivation, are modulated by hormones that regulate food intake (insulin, leptin, and acyl ghrelin [AG]). We hypothesized that these hormones are associated with deficits in DA signaling in obesity. We assessed the relationships between fasting levels of insulin and leptin, and AG, BMI, and insulin sensitivity index (S(I)) with the availability of central DA type 2 receptor (D2R). We measured D2R availability using positron emission tomography and [(18)F]fallypride (radioligand that competes with endogenous DA) in lean (n = 8) and obese (n = 14) females. Fasting hormones were collected prior to scanning and S(I) was determined by modified oral glucose tolerance test. Parametric image analyses revealed associations between each metabolic measure and D2R. The most extensive findings were negative associations of AG with clusters involving the striatum and inferior temporal cortices. Regional regression analyses also found extensive negative relationships between AG and D2R in the caudate, putamen, ventral striatum (VS), amygdala, and temporal lobes. S(I) was negatively associated with D2R in the VS, while insulin was not. In the caudate, BMI and leptin were positively associated with D2R availability. The direction of associations of leptin and AG with D2R availability are consistent with their opposite effects on DA levels (decreasing and increasing, respectively). After adjusting for BMI, AG maintained a significant relationship in the VS. We hypothesize that the increased D2R availability in obese subjects reflects relatively reduced DA levels competing with the radioligand. Our findings provide evidence for an association between the neuroendocrine hormones and DA brain signaling in obese females.

  20. Co-inhibition of epidermal growth factor receptor and insulin-like growth factor receptor 1 enhances radiosensitivity in human breast cancer cells

    International Nuclear Information System (INIS)

    Li, Ping; Veldwijk, Marlon R; Zhang, Qing; Li, Zhao-bin; Xu, Wen-cai; Fu, Shen

    2013-01-01

    Over-expression of epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor (IGF-1R) have been shown to closely correlate with radioresistance of breast cancer cells. This study aimed to investigate the impact of co-inhibition of EGFR and IGF-1R on the radiosensitivity of two breast cancer cells with different profiles of EGFR and IGF-1R expression. The MCF-7 (EGFR +/−, IGF-1R +++) and MDA-MB-468 (EGFR +++, IGF-1R +++) breast cancer cell lines were used. Radiosensitizing effects were determined by colony formation assay. Apoptosis and cell cycle distribution were measured by flow cytometry. Phospho-Akt and phospho-Erk1/2 were quantified by western blot. In vivo studies were conducted using MDA-MB-468 cells xenografted in nu/nu mice. In MDA-MB-468 cells, the inhibition of IGF-1R upregulated the p-EGFR expression. Either EGFR (AG1478) or IGF-1R inhibitor (AG1024) radiosensitized MDA-MB-468 cells. In MCF-7 cells, radiosensitivity was enhanced by AG1024, but not by AG1478. Synergistical radiosensitizing effect was observed by co-inhibition of EGFR and IGF-1R only in MDA-MB-468 cells with a DMF 10% of 1.90. The co-inhibition plus irradiation significantly induced more apoptosis and arrested the cells at G0/G1 phase in MDA-MB-468 cells. Only co-inhibition of EGFR and IGF-1R synergistically diminished the expression of p-Akt and p-Erk1/2 in MDA-MB-468 cells. In vivo studies further verified the radiosensitizing effects by co-inhibition of both pathways in a MDA-MB-468 xenograft model. Our data suggested that co-inhibition of EGFR and IGF-1R synergistically radiosensitized breast cancer cells with both EGFR and IGF-1R high expression. The approach may have an important therapeutic implication in the treatment of breast cancer patients with high expression of EGFR and IGF-1R

  1. The two-state dimer receptor model: a general model for receptor dimers.

    Science.gov (United States)

    Franco, Rafael; Casadó, Vicent; Mallol, Josefa; Ferrada, Carla; Ferré, Sergi; Fuxe, Kjell; Cortés, Antoni; Ciruela, Francisco; Lluis, Carmen; Canela, Enric I

    2006-06-01

    Nonlinear Scatchard plots are often found for agonist binding to G-protein-coupled receptors. Because there is clear evidence of receptor dimerization, these nonlinear Scatchard plots can reflect cooperativity on agonist binding to the two binding sites in the dimer. According to this, the "two-state dimer receptor model" has been recently derived. In this article, the performance of the model has been analyzed in fitting data of agonist binding to A(1) adenosine receptors, which are an example of receptor displaying concave downward Scatchard plots. Analysis of agonist/antagonist competition data for dopamine D(1) receptors using the two-state dimer receptor model has also been performed. Although fitting to the two-state dimer receptor model was similar to the fitting to the "two-independent-site receptor model", the former is simpler, and a discrimination test selects the two-state dimer receptor model as the best. This model was also very robust in fitting data of estrogen binding to the estrogen receptor, for which Scatchard plots are concave upward. On the one hand, the model would predict the already demonstrated existence of estrogen receptor dimers. On the other hand, the model would predict that concave upward Scatchard plots reflect positive cooperativity, which can be neither predicted nor explained by assuming the existence of two different affinity states. In summary, the two-state dimer receptor model is good for fitting data of binding to dimeric receptors displaying either linear, concave upward, or concave downward Scatchard plots.

  2. Activation-induced proteolysis of cytoplasmic domain of zeta in T cell receptors and Fc receptors.

    Science.gov (United States)

    Taupin, J L; Anderson, P

    1994-12-01

    The CD3-T cell receptor (TCR) complex on T cells and the Fc gamma receptor type III (Fc gamma RIII)-zeta-gamma complex on natural killer cells are functionally analogous activation receptors that associate with a family of disulfide-linked dimers composed of the related subunits zeta and gamma. Immunochemical analysis of receptor complexes separated on two-dimensional diagonal gels allowed the identification of a previously uncharacterized zeta-p14 heterodimer. zeta-p14 is a component of both CD3-TCR and Fc gamma RIII-zeta-gamma. Peptide mapping analysis shows that p14 is structurally related to zeta, suggesting that it is either: (i) derived from zeta proteolytically or (ii) the product of an alternatively spliced mRNA. The observation that COS cells transformed with a cDNA encoding zeta express zeta-p14 supports the former possibility. The expression of CD3-TCR complexes including zeta-p14 increases following activation with phorbol 12-myristate 13-acetate or concanavalin A, suggesting that proteolysis of zeta may contribute to receptor modulation or desensitization.

  3. Genomic organization of a receptor from sea anemones, structurally and evolutionary related to glycoprotein hormone receptors from mamals

    DEFF Research Database (Denmark)

    Vibede, N; Hauser, Frank; Williamson, M

    1998-01-01

    organization of this sea anemone receptor. The receptor gene contains eight introns that are all localized within a region coding for the large extracellular N terminus. These introns occur at the same positions and have the same intron phasing as eight introns in the genes coding for the mammalian...

  4. Insulin stimulates the tyrosine phosphorylation of a Mr = 160,000 glycoprotein in adipocyte plasma membranes

    International Nuclear Information System (INIS)

    Yu, K.T.; Khalaf, N.; Czech, M.P.

    1986-01-01

    In an attempt to identify putative substrates for the insulin receptor kinase, adipocyte plasma membranes were incubated with [γ- 32 P]ATP in the presence and absence of insulin. Insulin stimulates the tyrosine phosphorylation of its receptor β subunit but does not detectably alter the phosphorylation of other membrane proteins. In contrast, when plasma membranes from insulin-treated adipocytes are phosphorylated, the 32 P-labeling of a Mr=160,000 species (p160) and insulin receptor β subunit are markedly increased when compared to controls. p160 exhibits a rapid response (max. at 1 min) and high sensitivity (ED 50 = 2 x 10 -10 M) to insulin. The stimulatory effect of insulin on the phosphorylation of p160 is rapidly reversed following the addition of anti-insulin serum. Cold chase experiments indicate that insulin promotes the phosphorylation of p160 rather than inhibiting its dephosphorylation. p160 is a glycoprotein as evidenced by its adsorption to immobilized lectins and does not represent the insulin receptor precursor. The action of insulin on p160 tyrosine phosphorylation is mimicked by concanavalin A but not by EGF and other insulin-like agents such as hydrogen peroxide and vanadate. These results suggest that p160 tyrosine phosphorylation is an insulin receptor-mediated event and may participate in signalling by the insulin receptor

  5. Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis.

    Science.gov (United States)

    Berglund, Eric D; Liu, Chen; Sohn, Jong-Woo; Liu, Tiemin; Kim, Mi Hwa; Lee, Charlotte E; Vianna, Claudia R; Williams, Kevin W; Xu, Yong; Elmquist, Joel K

    2013-12-01

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor agonists on energy and glucose homeostasis are unknown. Here, we show that mice lacking serotonin 2C receptors (Htr2c) specifically in pro-opiomelanocortin (POMC) neurons had normal body weight but developed glucoregulatory defects including hyperinsulinemia, hyperglucagonemia, hyperglycemia, and insulin resistance. Moreover, these mice did not show anorectic responses to serotonergic agents that suppress appetite and developed hyperphagia and obesity when they were fed a high-fat/high-sugar diet. A requirement of serotonin 2C receptors in POMC neurons for the maintenance of normal energy and glucose homeostasis was further demonstrated when Htr2c loss was induced in POMC neurons in adult mice using a tamoxifen-inducible POMC-cre system. These data demonstrate that serotonin 2C receptor-expressing POMC neurons are required to control energy and glucose homeostasis and implicate POMC neurons as the target for the effect of serotonin 2C receptor agonists on weight-loss induction and improved glycemic control.

  6. Vascular endothelium receptors and transduction mechanisms

    CERN Document Server

    Gillis, C; Ryan, Una; Proceedings of the Advanced Studies Institute on "Vascular Endothelium: Receptors and Transduction Mechanisms"

    1989-01-01

    Beyond their obvious role of a barrier between blood and tissue, vascular endothelial cells are now firmly established as active and essential participants in a host of crucial physiological and pathophysiological functions. Probably the two most important factors responsible for promoting the current knowledge of endothelial functions are 1) observations in the late sixties-early seventies that many non-ventilatory properties of the lung could be attributed to the pulmonary endothelium and 2) the establishment, in the early and mid-seventies of procedures for routine culture of vascular endothelial cells. Many of these endothelial functions require the presence of receptors on the surface of the plasma membrane. There is now evidence for the existence among others of muscarinic, a-and /3-adrenergic, purine, insulin, histamine, bradykinin, lipoprotein, thrombin, paf, fibronectin, vitronectin, interleukin and albumin receptors. For some of these ligands, there is evidence only for the existence of endothelial ...

  7. Drug discovery opportunities and challenges at G protein coupled receptors for long chain free fatty acids

    Directory of Open Access Journals (Sweden)

    Nicholas D Holliday

    2012-01-01

    Full Text Available Discovery of G protein coupled receptors for long chain free fatty acids (FFAs, FFA1 (GPR40 and GPR120, has expanded our understanding of these nutrients as signalling molecules. These receptors have emerged as important sensors for FFA levels in the circulation or the gut lumen, based on evidence from in vitro and rodent models, and an increasing number of human studies. Here we consider their promise as therapeutic targets for metabolic disease, including type 2 diabetes and obesity. FFA1 directly mediates acute FFA-induced glucose-stimulated insulin secretion in pancreatic beta-cells, while GPR120 and FFA1 trigger release of incretins from intestinal endocrine cells, and so indirectly enhance insulin secretion and promote satiety. GPR120 signalling in adipocytes and macrophages also results in insulin sensitizing and beneficial anti-inflammatory effects. Drug discovery has focussed on agonists to replicate acute benefits of FFA receptor signalling, with promising early results for FFA1 agonists in man. Controversy surrounding chronic effects of FFA1 on beta-cells illustrates that long term benefits of antagonists also need exploring. It has proved challenging to generate highly selective potent ligands for FFA1 or GPR120 subtypes, given that both receptors have hydrophobic orthosteric binding sites, which are not completely defined and have modest ligand affinity. Structure activity relationships are also reliant on functional read outs, in the absence of robust binding assays to provide direct affinity estimates. Nevertheless synthetic ligands have already helped dissect specific contributions of FFA1 and GPR120 signalling from the many possible cellular effects of FFAs. Approaches including use of fluorescent ligand binding assays, and targeting allosteric receptor sites, may improve further preclinical ligand development at these receptors, to exploit their unique potential to target multiple facets of diabetes.

  8. The strength of small: Improved targeting of Insulin-like Growth Factor-1 Receptor (IGF-1R) with F(ab')2-R1507 fragments in Ewing sarcomas

    NARCIS (Netherlands)

    Fleuren, Emmy D. G.; Versleijen-Jonkers, Yvonne M. H.; Heskamp, Sandra; Roeffen, Melissa H. S.; Bouwman, Wilbert H.; Molkenboer-Kuenen, Janneke D. M.; van Laarhoven, Hanneke W. M.; Oyen, Wim J. G.; Boerman, Otto C.; van der Graaf, Winette T. A.

    2013-01-01

    To investigate whether F(ab')2-fragments of the monoclonal Insulin-like Growth Factor-1 Receptor (IGF-1R) antibody R1507 (F(ab')2-R1507) can successfully target IGF-1R in Ewing sarcomas (ES). BALB/c nude mice were subcutaneously implanted with IGF-1R-expressing human ES xenografts (EW-5 and EW-8)

  9. Steroid Hormone Receptor Signals as Prognosticators for Urothelial Tumor

    Directory of Open Access Journals (Sweden)

    Hiroki Ide

    2015-01-01

    Full Text Available There is a substantial amount of preclinical or clinical evidence suggesting that steroid hormone receptor-mediated signals play a critical role in urothelial tumorigenesis and tumor progression. These receptors include androgen receptor, estrogen receptors, glucocorticoid receptor, progesterone receptor, vitamin D receptor, retinoid receptors, peroxisome proliferator-activated receptors, and others including orphan receptors. In particular, studies using urothelial cancer tissue specimens have demonstrated that elevated or reduced expression of these receptors as well as alterations of their upstream or downstream pathways correlates with patient outcomes. This review summarizes and discusses available data suggesting that steroid hormone receptors and related signals serve as biomarkers for urothelial carcinoma and are able to predict tumor recurrence or progression.

  10. In vitro and in vivo potency of insulin analogues designed for clinical use.

    Science.gov (United States)

    Vølund, A; Brange, J; Drejer, K; Jensen, I; Markussen, J; Ribel, U; Sørensen, A R; Schlichtkrull, J

    1991-11-01

    Analogues of human insulin designed to have improved absorption properties after subcutaneous injection have been prepared by recombinant DNA technology. Five rapidly absorbed analogues, being predominantly in mono- or di-meric states in the pharmaceutical preparation, and a hexameric analogue with very low solubility at neutral pH and slow absorption, were studied. Receptor binding assays with HEP-G2 cells showed overall agreement with mouse free adipocyte assays. Two analogues, B28Asp and A21Gly + B27Arg + B30Thr-NH2, had nearly the same molar in vitro potency as human insulin. Another two showed increased adipocyte potency and receptor binding, B10Asp 194% and 333% and A8His + B4His + B10Glu + B27His 575% and 511%, while B9Asp + B27Glu showed 29% and 18% and the B25Asp analogue only 0.12% and 0.05% potency. Bioassays in mice or rabbits of the analogues except B25Asp showed that they had the same in vivo potency as human insulin 1.00 IU = 6.00 nmol. Thus the variation had the same in vivo potency as human insulin 1.00 IU = 6.00 nmol. Thus the variation in in vivo potency reflects the differences in receptor binding affinity. Relative to human insulin a low concentration is sufficient for a high affinity analogue to produce a given receptor complex formation and metabolic response. In conclusion, human insulin and analogues with markedly different in vitro potencies were equipotent in terms of hypoglycaemic effect. This is in agreement with the concept that elimination of insulin from blood and its subsequent degradation is mediated by insulin receptors.

  11. Despite higher body fat content, Ecuadorian subjects with Laron syndrome have less insulin resistance and lower incidence of diabetes than their relatives.

    Science.gov (United States)

    Guevara-Aguirre, Jaime; Procel, Patricio; Guevara, Carolina; Guevara-Aguirre, Marco; Rosado, Verónica; Teran, Enrique

    2016-06-01

    In the present pandemics of obesity and insulin resistant diabetes mellitus (DM), the specific contribution of etiological factors such as shifts in nutritional and exercise patterns, genetic and hormonal, is subject of ongoing research. Among the hormonal factors implicated, we selected obesity-driven insulin resistance for further evaluation. It is known that growth hormone (GH) has profound effects on carbohydrate metabolism. In consequence, we compared the effects of the lack of the counter-regulatory effects of GH, in a group of subjects with GH receptor deficiency (GHRD) due to a mutated GH receptor vs. that of their normal relatives. It was found that, despite their obesity, subjects with GHRD, have diminished incidence of diabetes, lower glucose and insulin concentrations, and lower values of indexes indicative of insulin resistance such as HOMA-IR. The GHRD subjects were also capable of appropriately handling glucose or mixed meal loads despite diminished insulin secretion. These observations allow us to suggest that the association of obesity with increased risk for diabetes appears to be dependent on intact growth hormone signaling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Insulin binding to brain capillaries is reduced in genetically obese, hyperinsulinemic Zucker rats

    International Nuclear Information System (INIS)

    Schwartz, M.W.; Figlewicz, D.F.; Kahn, S.E.; Baskin, D.G.; Greenwood, M.R.; Porte, D. Jr.

    1990-01-01

    In order to study the role of plasma insulin in regulating the binding of insulin to the endothelium of the blood-brain barrier (BBB), insulin binding to a purified preparation of brain capillaries was measured in both genetically obese Zucker rats and lean Zucker controls. We found a reduction of 65% in brain capillary insulin binding site number in the obese compared to lean rats with no change in receptor affinity. Furthermore, specific insulin binding to brain capillaries was negatively correlated (p less than 0.05) to the plasma insulin level, suggesting a role for plasma insulin in regulating insulin binding. A similar relationship was observed between insulin receptor number in liver membranes and the plasma insulin level. We conclude that obese, hyperinsulinemic Zucker rats exhibit a reduction in the number of BBB insulin receptors, which parallels the reduction seen in other peripheral tissues. Since insulin receptors have been hypothesized to participate in the transport of insulin across the BBB, the reduction observed in the obese rats may account for the decrease in cerebrospinal fluid insulin uptake previously demonstrated in these animals

  13. Xenobiotics and the Glucocorticoid Receptor

    International Nuclear Information System (INIS)

    Gulliver, Linda S M

    2017-01-01

    Glucocorticoid Receptor (GR) is present in virtually every human cell type. Representing a nuclear receptor superfamily, GR has several different isoforms essentially acting as ligand-dependent transcription factors, regulating glucocorticoid-responsive gene expression in both a positive and a negative manner. Although the natural ligand of the Glucocorticoid Receptor, glucocorticoids (GC) represent only some of the multiple ligands for GR. Xenobiotics, ubiquitous in the environment, bind to GR and are also capable of activating or repressing GR gene expression, thereby modulating GR cell and tissue-specific downstream effects in a multitude of ways that include responses to inflammatory, allergic, metabolic, neoplastic and autoimmune processes. Many xenobiotics, if inadequately metabolized by xenobiotic metabolizing enzymes and not wholly eliminated, could have deleterious toxic effects with potentially lethal consequences. This review examines GR, the genomic and non-genomic actions of natural and synthetic GC and the body's handling of xenobiotic compounds, before reviewing what is presently known about GR's interactions with many of the more commonly encountered and some of the less well known GR-associated xenobiotics. GR promiscuity and crosstalk with other signaling pathways is discussed, alongside novel roles for GR that include mood disorder and addiction. A knowledge of GR interactions with xenobiotics is increasingly relevant when considering aging populations and the related prevalence of neoplastic disease, together with growing concerns around human exposure to mixtures of chemicals in the environment. Furthermore, escalating rates of obesity, Type 2 diabetes; autoimmune, allergy, addiction and mood disorder-related pathologies, require novel targeted interventions and GR appears a promising pharmacological candidate. - Highlights: • Biological impact of xenobiotics acting through Glucocorticoid Receptor. • Promiscuity of Glucocorticoid

  14. Xenobiotics and the Glucocorticoid Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Gulliver, Linda S M, E-mail: linda.gulliver@otago.ac.nz

    2017-03-15

    Glucocorticoid Receptor (GR) is present in virtually every human cell type. Representing a nuclear receptor superfamily, GR has several different isoforms essentially acting as ligand-dependent transcription factors, regulating glucocorticoid-responsive gene expression in both a positive and a negative manner. Although the natural ligand of the Glucocorticoid Receptor, glucocorticoids (GC) represent only some of the multiple ligands for GR. Xenobiotics, ubiquitous in the environment, bind to GR and are also capable of activating or repressing GR gene expression, thereby modulating GR cell and tissue-specific downstream effects in a multitude of ways that include responses to inflammatory, allergic, metabolic, neoplastic and autoimmune processes. Many xenobiotics, if inadequately metabolized by xenobiotic metabolizing enzymes and not wholly eliminated, could have deleterious toxic effects with potentially lethal consequences. This review examines GR, the genomic and non-genomic actions of natural and synthetic GC and the body's handling of xenobiotic compounds, before reviewing what is presently known about GR's interactions with many of the more commonly encountered and some of the less well known GR-associated xenobiotics. GR promiscuity and crosstalk with other signaling pathways is discussed, alongside novel roles for GR that include mood disorder and addiction. A knowledge of GR interactions with xenobiotics is increasingly relevant when considering aging populations and the related prevalence of neoplastic disease, together with growing concerns around human exposure to mixtures of chemicals in the environment. Furthermore, escalating rates of obesity, Type 2 diabetes; autoimmune, allergy, addiction and mood disorder-related pathologies, require novel targeted interventions and GR appears a promising pharmacological candidate. - Highlights: • Biological impact of xenobiotics acting through Glucocorticoid Receptor. • Promiscuity of Glucocorticoid

  15. Transgenic Wuzhishan minipigs designed to express a dominant-negative porcine growth hormone receptor display small stature and a perturbed insulin/IGF-1 pathway.

    Science.gov (United States)

    Li, Feida; Li, Yong; Liu, Huan; Zhang, Xingju; Liu, Chuxin; Tian, Kai; Bolund, Lars; Dou, Hongwei; Yang, Wenxian; Yang, Huanming; Staunstrup, Nicklas Heine; Du, Yutao

    2015-12-01

    Growth hormone (GH) is an anabolic mitogen with widespread influence on cellular growth and differentiation as well as on glucose and lipid metabolism. GH binding to the growth hormone receptor (GHR) on hepatocytes prompts expression of insulin growth factor I (IGF-1) involved in nutritionally induced compensatory hyperplasia of pancreatic β-cell islets and insulin release. A prolonged hyperactivity of the IGF-1/insulin axis in the face of insulinotropic nutrition, on the other hand, can lead to collapse of the pancreatic islets and glucose intolerance. Individuals with Laron syndrome carry mutations in the GHR gene resulting in severe congenital IGF-1 deficiency and elevated GH serum levels leading to short stature as well as perturbed lipid and glucose metabolism. However, these individuals enjoy a reduced prevalence of acne, cancer and possibly diabetes. Minipigs have become important biomedical models for human conditions due to similarities in organ anatomy, physiology, and metabolism relative to humans. The purpose of this study was to generate transgenic Wuzhishan minipigs by handmade cloning with impaired systemic GHR activity and assess their growth profile and glucose metabolism. Transgenic minipigs featuring overexpression of a dominant-negative porcine GHR (GHR(dm)) presented postnatal growth retardation and proportionate dwarfism. Molecular changes included elevated GH serum levels and mild hyperglycemia. We believe that this model may prove valuable in the study of GH functions in relation to cancer, diabetes and longevity.

  16. Characterization of dFOXO binding sites upstream of the Insulin Receptor P2 promoter across the Drosophila phylogeny.

    Directory of Open Access Journals (Sweden)

    Dorcas J Orengo

    Full Text Available The insulin/TOR signal transduction pathway plays a critical role in determining such important traits as body and organ size, metabolic homeostasis and life span. Although this pathway is highly conserved across the animal kingdom, the affected traits can exhibit important differences even between closely related species. Evolutionary studies of regulatory regions require the reliable identification of transcription factor binding sites. Here we have focused on the Insulin Receptor (InR expression from its P2 promoter in the Drosophila genus, which in D. melanogaster is up-regulated by hypophosphorylated Drosophila FOXO (dFOXO. We have finely characterized this transcription factor binding sites in vitro along the 1.3 kb region upstream of the InR P2 promoter in five Drosophila species. Moreover, we have tested the effect of mutations in the characterized dFOXO sites of D. melanogaster in transgenic flies. The number of experimentally established binding sites varies across the 1.3 kb region of any particular species, and their distribution also differs among species. In D. melanogaster, InR expression from P2 is differentially affected by dFOXO binding sites at the proximal and distal halves of the species 1.3 kb fragment. The observed uneven distribution of binding sites across this fragment might underlie their differential contribution to regulate InR transcription.

  17. Elafibranor, an Agonist of the Peroxisome Proliferator-Activated Receptor-alpha and -delta, Induces Resolution of Nonalcoholic Steatohepatitis Without Fibrosis Worsening

    NARCIS (Netherlands)

    Ratziu, V.; Harrison, S.A.; Francque, S.; Bedossa, P.; Lehert, P.; Serfaty, L.; Romero-Gomez, M.; Boursier, J.; Abdelmalek, M.; Caldwell, S.; Drenth, J.P.; Anstee, Q.M.; Hum, D.; Hanf, R.; Roudot, A.; Megnien, S.; Staels, B.; Sanyal, A.

    2016-01-01

    BACKGROUND & AIMS: Elafibranor is an agonist of the peroxisome proliferator-activated receptor-alpha and peroxisome proliferator-activated receptor-delta. Elafibranor improves insulin sensitivity, glucose homeostasis, and lipid metabolism and reduces inflammation. We assessed the safety and efficacy

  18. EBI2, GPR18 and GPR17--three structurally related, but biologically distinct 7TM receptors

    DEFF Research Database (Denmark)

    Nørregaard, Kristine; Benned-Jensen, Tau; Rosenkilde, Mette Marie

    2011-01-01

    7TM receptors constitute one of the largest superfamilies of proteins in the human genome. They are involved in a large number of physiological and pathological processes in the human body and thus represent major and important drug targets for the pharmaceutical industry. Although the majority...... have been deorphanized, many remain orphan, and these orphan receptors constitute a large pool of potential drug targets. This review focuses on one of these orphan targets, the Epstein-Barr Virus-induced receptor 2, EBI2 (or GPR183), together with two structurally related receptors, GPR17 and GPR18...

  19. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions.

    Directory of Open Access Journals (Sweden)

    Ana Carolina eAriza

    2012-02-01

    Full Text Available The succinate receptor (also known as GPR91 is a G protein-coupled receptor that is closely related to the family of P2Y purinoreceptors. It is expressed in a variety of tissues, including blood cells, adipose tissue, the liver, retina and kidney. In these tissues, this receptor and its ligand succinate have recently emerged as novel mediators in local stress situations, including ischemia, hypoxia, toxicity and hyperglycemia. Amongst others, the succinate receptor is involved in recruitment of immune cells to transplanted tissues. Moreover, it was shown to play a key role in the development of diabetic retinopathy. However, most prominently, the role of locally increased succinate levels and succinate receptor activation in the kidney, stimulating the systemic and local renin-angiotensin system, starts to unfold: The succinate receptor is a key mediator in the development of hypertension and possibly fibrosis in diabetes mellitus and metabolic syndrome. This makes the succinate receptor a promising drug target to counteract or prevent cardiovascular and fibrotic defects in these expanding disorders. Recent development of SUCNR1-specific antagonists opens novel possibilities for research in models for these disorders and may eventually provide novel opportunities for the treatment of patients.

  20. Receptor oligomerization in family B1 of G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Roed, Sarah Norklit; Ørgaard, Anne; Jørgensen, Rasmus

    2012-01-01

    , the glucagon receptor, and the receptors for parathyroid hormone (PTHR1 and PTHR2). The dysregulation of several family B1 receptors is involved in diseases, such as diabetes, chronic inflammation, and osteoporosis which underlines the pathophysiological importance of this GPCR subfamily. In spite of this......, investigation of family B1 receptor oligomerization and especially its pharmacological importance is still at an early stage. Even though GPCR oligomerization is a well-established phenomenon, there is a need for more investigations providing a direct link between these interactions and receptor functionality......The superfamily of the seven transmembrane G-protein-coupled receptors (7TM/GPCRs) is the largest family of membrane-associated receptors. GPCRs are involved in the pathophysiology of numerous human diseases, and they constitute an estimated 30-40% of all drug targets. During the last two decades...