WorldWideScience

Sample records for insulin receptor substrate-4

  1. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.

    Science.gov (United States)

    Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R

    1995-10-20

    Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.

  2. IL-4 and IL-13 Receptor Signaling From 4PS to Insulin Receptor Substrate 2: There and Back Again, a Historical View.

    Science.gov (United States)

    Keegan, Achsah D; Zamorano, Jose; Keselman, Aleksander; Heller, Nicola M

    2018-01-01

    In this historical perspective, written in honor of Dr. William E. Paul, we describe the initial discovery of one of the dominant substrates for tyrosine phosphorylation stimulated by IL-4. We further describe how this "IL-4-induced phosphorylated substrate" (4PS) was characterized as a member of the insulin receptor substrate (IRS) family of large adaptor proteins that link IL-4 and insulin receptors to activation of the phosphatidyl-inositol 3' kinase pathway as well as other downstream signaling pathways. The relative contribution of the 4PS/IRS pathway to the early models of IL-4-induced proliferation and suppression of apoptosis are compared to our more recent understanding of the complex interplay between positive and negative regulatory pathways emanating from members of the IRS family that impact allergic responses.

  3. Insulin receptor substrates 1 and 2 but not Shc can activate the insulin receptor independent of insulin and induce proliferation in CHO-IR cells

    International Nuclear Information System (INIS)

    Niessen, Markus; Jaschinski, Frank; Item, Flurin; McNamara, Morgan P.; Spinas, Giatgen A.; Trueb, Thomas

    2007-01-01

    Ligand-activated insulin receptor (IR) attracts and phosphorylates various substrates such as insulin receptor substrates 1-4 (IRS) and Shc. To investigate how binding affinity for substrate affects signalling we generated chimeric receptors with the β-chain of the insulin receptor containing NPXY motives with different affinities for receptor substrates. We found that the extent of receptor tyrosine phosphorylation positively correlates with binding affinity towards IRS1/2 but not towards Shc. Moreover, overexpression of IRS1 or IRS2 but not of Shc increased IR tyrosine phosphorylation in a dose-dependent manner, also independent of insulin. Molecular truncations of IRS1 revealed that neither the isolated PH and PTB domains nor the C-terminus with the tyrosine phosphorylation sites alone are sufficient for substrate-dependent receptor activation. Overexpression of IRS1 and IRS2 impaired insulin-induced internalization of the IR in a dose-dependent manner suggesting that IRS proteins prevent endosome-associated receptor dephosphorylation/inactivation. IRS1 and IRS2 could therefore target the activated IR to different cellular compartments. Overexpression of IRS1 and IRS2 inhibited insulin-stimulated activation of the MAP kinases Erk1/2 while it increased/induced activation of Akt/PKB. Finally, overexpression of IRS1 and IRS2 but not of Shc induced DNA synthesis in starved CHO-IR cells independent of exogenous growth factors. Our results demonstrate that variations in cellular IRS1 and IRS2 concentration affect insulin signalling both upstream and downstream and that IRS proteins could play instructive rather than just permissive roles in signal transmission

  4. IL-4 and IL-13 Receptor Signaling From 4PS to Insulin Receptor Substrate 2: There and Back Again, a Historical View

    Directory of Open Access Journals (Sweden)

    Achsah D. Keegan

    2018-05-01

    Full Text Available In this historical perspective, written in honor of Dr. William E. Paul, we describe the initial discovery of one of the dominant substrates for tyrosine phosphorylation stimulated by IL-4. We further describe how this “IL-4-induced phosphorylated substrate” (4PS was characterized as a member of the insulin receptor substrate (IRS family of large adaptor proteins that link IL-4 and insulin receptors to activation of the phosphatidyl-inositol 3′ kinase pathway as well as other downstream signaling pathways. The relative contribution of the 4PS/IRS pathway to the early models of IL-4-induced proliferation and suppression of apoptosis are compared to our more recent understanding of the complex interplay between positive and negative regulatory pathways emanating from members of the IRS family that impact allergic responses.

  5. Signal transduction through the IL-4 and insulin receptor families.

    Science.gov (United States)

    Wang, L M; Keegan, A; Frankel, M; Paul, W E; Pierce, J H

    1995-07-01

    Activation of tyrosine kinase-containing receptors and intracellular tyrosine kinases by ligand stimulation is known to be crucial for mediating initial and subsequent events involved in mitogenic signal transduction. Receptors for insulin and insulin-like growth factor 1 (IGF-1) contain cytoplasmic tyrosine kinase domains that undergo autophosphorylation upon ligand stimulation. Activation of these receptors also leads to pronounced and rapid tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells of connective tissue origin. A related substrate, designated 4PS, is similarly phosphorylated by insulin and IGF-1 stimulation in many hematopoietic cell types. IRS-1 and 4PS possess a number of tyrosine phosphorylation sites that are within motifs that bind specific SH2-containing molecules known to be involved in mitogenic signaling such as PI-3 kinase, SHPTP-2 (Syp) and Grb-2. Thus, they appear to act as docking substrates for a variety of signaling molecules. The majority of hematopoietic cytokines bind to receptors that do not possess intrinsic kinase activity, and these receptors have been collectively termed as members of the hematopoietin receptor superfamily. Despite their lack of tyrosine kinase domains, stimulation of these receptors has been demonstrated to activate intracellular kinases leading to tyrosine phosphorylation of multiple substrates. Recent evidence has demonstrated that activation of different members of the Janus family of tyrosine kinases is involved in mediating tyrosine phosphorylation events by specific cytokines. Stimulation of the interleukin 4 (IL-4) receptor, a member of the hematopoietin receptor superfamily, is thought to result in activation of Jak1, Jak3, and/or Fes tyrosine kinases.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Almind, K; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Since relative or absolute insulin deficiency and insulin insensitivity are involved in the aetiology of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether patients with NIDDM exhibit genetic variability in the coding region of insulin receptor substrate-1 (IRS-1), a candidate...

  7. The insulin receptor substrate-1-related 4PS substrate but not the interleukin-2R gamma chain is involved in interleukin-13-mediated signal transduction.

    Science.gov (United States)

    Wang, L M; Michieli, P; Lie, W R; Liu, F; Lee, C C; Minty, A; Sun, X J; Levine, A; White, M F; Pierce, J H

    1995-12-01

    Interleukin-13 (IL-13) induced a potent mitogenic response in IL-3-dependent TF-1 cells and DNA synthesis to a lesser extent in MO7E and FDC-P1 cells. IL-13 stimulation of these lines, like IL-4 and insulin-like growth factor-1 (IGF-1), resulted in tyrosine phosphorylation of a 170-kD substrate. The tyrosine-phosphorylated 170-kD substrate strongly associated with the 85-kD subunit of phosphoinositol-3 (PI-3) kinase and with Grb-2. Anti-4PS serum readily detected the 170-kD substrate in lysates from both TF-1 and FDC-P1 cells stimulated with IL-13 or IL-4. These data provide evidence that IL-13 induces tyrosine phosphorylation of the 4PS substrate, providing an essential interface between the IL-13 receptor and signaling molecules containing SH2 domains. IL-13 and IL-4 stimulation of murine L cell fibroblasts, which endogenously express the IL-4 receptor (IL-4R alpha) and lack expression of the IL-2 receptor gamma subunit (IL-2R gamma), resulted in tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1)/4PS. Enhanced tyrosine phosphorylation of IRS-1/4PS was observed in response to IL-4, but not IL-13 treatment of L cells transfected with the IL-2R gamma chain. These results indicate that IL-13 does not use the IL-2R gamma subunit in its receptor complex and that expression of IL-2R gamma enhances, but is not absolutely required for mediating IL-4-induced tyrosine phosphorylation of IRS-1/4PS.

  8. Insulin Receptor Substrate 2 Is a Negative Regulator of Memory Formation

    Science.gov (United States)

    Irvine, Elaine E.; Drinkwater, Laura; Radwanska, Kasia; Al-Qassab, Hind; Smith, Mark A.; O'Brien, Melissa; Kielar, Catherine; Choudhury, Agharul I.; Krauss, Stefan; Cooper, Jonathan D.; Withers, Dominic J.; Giese, Karl Peter

    2011-01-01

    Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1 receptors to downstream signaling pathways. Here, we have…

  9. Knockout of Vasohibin-1 Gene in Mice Results in Healthy Longevity with Reduced Expression of Insulin Receptor, Insulin Receptor Substrate 1, and Insulin Receptor Substrate 2 in Their White Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Eichi Takeda

    2017-01-01

    Full Text Available Vasohibin-1 (Vash1, originally isolated as an endothelium-derived angiogenesis inhibitor, has a characteristic of promoting stress tolerance in endothelial cells (ECs. We therefore speculated that the lack of the vash1 gene would result in a short lifespan. However, to our surprise, vash1−/− mice lived significantly longer with a milder senescence phenotype than wild-type (WT mice. We sought the cause of this healthy longevity and found that vash1−/− mice exhibited mild insulin resistance along with reduced expression of the insulin receptor (insr, insulin receptor substrate 1 (irs-1, and insulin receptor substrate 2 (irs-2 in their white adipose tissue (WAT but not in their liver or skeletal muscle. The expression of vash1 dominated in the WAT among those 3 organs. Importantly, vash1−/− mice did not develop diabetes even when fed a high-fat diet. These results indicate that the expression of vash1 was required for the normal insulin sensitivity of the WAT and that the target molecules for this activity were insr, irs1, and irs2. The lack of vash1 caused mild insulin resistance without the outbreak of overt diabetes and might contribute to healthy longevity.

  10. Intrahepatic detection of insulin receptor substrate 2 in chronic hepatitis c patients

    International Nuclear Information System (INIS)

    Ahmed, N.; Rashid, A.; Bashir, Q.; Majeed, A.

    2017-01-01

    To detect hepatic insulin receptor substrate 2 in chronic hepatitis C patients. Study Design: Comparative study. Place and Duration of Study: Center for research in experimental and applied medicine (CREAM), Department of Biochemistry and Molecular Biology, Army Medical College and Holy Family Hospital Rawalpindi, from Dec 2011 to Nov 2012. Diagnosed patients of chronic hepatitis C were included in the study. Known cases of diabetes mellitus, patients with pancreatic disease and liver pathology other than hepatitis C were excluded from the study. Material and Methods: Twenty seropositive non diabetic HCV infected patients and 10 control subjects were recruited. Liver biopsy specimen was obtained from seropositive HCV patients while blood samples were obtained from controls as biopsy sample was not possible from normal controls. Both types of speciens were studied for detection of insulin receptor substrate 2 (IRS-2). Results: No alteration in the content of insulin receptor substrate 2 in both seropositive patients and control samples were detected. Conclusion: Hepatitis C virus has no effect on insulin receptor substrate 2 content thus indicating absence of hepatic insulin resistance in patients with HCV infection. (author)

  11. Reduced phosphorylation of brain insulin receptor substrate and Akt proteins in apolipoprotein-E4 targeted replacement mice.

    Science.gov (United States)

    Ong, Qi-Rui; Chan, Elizabeth S; Lim, Mei-Li; Cole, Gregory M; Wong, Boon-Seng

    2014-01-17

    Human ApoE4 accelerates memory decline in ageing and in Alzheimer's disease. Although intranasal insulin can improve cognition, this has little effect in ApoE4 subjects. To understand this ApoE genotype-dependent effect, we examined brain insulin signaling in huApoE3 and huApoE4 targeted replacement (TR) mice. At 32 weeks, lower insulin receptor substrate 1 (IRS1) at S636/639 and Akt phosphorylation at T308 were detected in fasting huApoE4 TR mice as compared to fasting huApoE3 TR mice. These changes in fasting huApoE4 TR mice were linked to lower brain glucose content and have no effect on plasma glucose level. However, at 72 weeks of age, these early changes were accompanied by reduction in IRS2 expression, IRS1 phosphorylation at Y608, Akt phosphorylation at S473, and MAPK (p38 and p44/42) activation in the fasting huApoE4 TR mice. The lower brain glucose was significantly associated with higher brain insulin in the aged huApoE4 TR mice. These results show that ApoE4 reduces brain insulin signaling and glucose level leading to higher insulin content.

  12. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Almind, K; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Since relative or absolute insulin deficiency and insulin insensitivity are involved in the aetiology of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether patients with NIDDM exhibit genetic variability in the coding region of insulin receptor substrate-1 (IRS-1), a candidate...... with NIDDM and 3 of the controls were heterozygous at codon 972 for a polymorphism in which glycine was substituted with arginine. Moreover, at codon 513, 6 patients with NIDDM and 2 controls had a heterozygous polymorphism with a transition from alanine to proline. None of the polymorphism carriers had both...

  13. Association between GRB2/Sos and insulin receptor substrate 1 is not sufficient for activation of extracellular signal-regulated kinases by interleukin-4: implications for Ras activation by insulin.

    Science.gov (United States)

    Pruett, W; Yuan, Y; Rose, E; Batzer, A G; Harada, N; Skolnik, E Y

    1995-03-01

    Insulin receptor substrate 1 (IRS-1) mediates the activation of a variety of signaling pathways by the insulin and insulin-like growth factor 1 receptors by serving as a docking protein for signaling molecules with SH2 domains. We and others have shown that in response to insulin stimulation IRS-1 binds GRB2/Sos and have proposed that this interaction is important in mediating Ras activation by the insulin receptor. Recently, it has been shown that the interleukin (IL)-4 receptor also phosphorylates IRS-1 and an IRS-1-related molecule, 4PS. Unlike insulin, however, IL-4 fails to activate Ras, extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases. We have reconstituted the IL-4 receptor into an insulin-responsive L6 myoblast cell line and have shown that IRS-1 is tyrosine phosphorylated to similar degrees in response to insulin and IL-4 stimulation in this cell line. In agreement with previous findings, IL-4 failed to activate the ERKs in this cell line or to stimulate DNA synthesis, whereas the same responses were activated by insulin. Surprisingly, IL-4's failure to activate ERKs was not due to a failure to stimulate the association of tyrosine-phosphorylated IRS-1 with GRB2/Sos; the amounts of GRB2/Sos associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. Moreover, the amounts of phosphatidylinositol 3-kinase activity associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. In contrast to insulin, however, IL-4 failed to induce tyrosine phosphorylation of Shc or association of Shc with GRB2. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Previous studies have indicated that activation of ERks in this cell line is dependent upon Ras since a dominant-negative Ras (Asn-17) blocks ERK activation by insulin. Our findings, taken in the context

  14. Evolution of the vertebrate insulin receptor substrate (Irs) gene family.

    Science.gov (United States)

    Al-Salam, Ahmad; Irwin, David M

    2017-06-23

    Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.

  15. The insulin receptor substrate (IRS)-1 pleckstrin homology domain functions in downstream signaling.

    Science.gov (United States)

    Vainshtein, I; Kovacina, K S; Roth, R A

    2001-03-16

    The pleckstrin homology (PH) domain of the insulin receptor substrate-1 (IRS-1) plays a role in directing this molecule to the insulin receptor, thereby regulating its tyrosine phosphorylation. In this work, the role of the PH domain in subsequent signaling was studied by constructing constitutively active forms of IRS-1 in which the inter-SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase was fused to portions of the IRS-1 molecule. Chimeric molecules containing the PH domain were found to activate the downstream response of stimulating the Ser/Thr kinase Akt. A chimera containing point mutations in the PH domain that abolished the ability of this domain to bind phosphatidylinositol 4,5-bisphosphate prevented these molecules from activating Akt. These mutations also decreased by about 70% the amount of the constructs present in a particulate fraction of the cells. These results indicate that the PH domain of IRS-1, in addition to directing this protein to the receptor for tyrosine phosphorylation, functions in the ability of this molecule to stimulate subsequent responses. Thus, compromising the function of the PH domain, e.g. in insulin-resistant states, could decrease both the ability of IRS-1 to be tyrosine phosphorylated by the insulin receptor and to link to subsequent downstream targets.

  16. Ankyrin repeat and SOCS box containing protein 4 (Asb-4 colocalizes with insulin receptor substrate 4 (IRS4 in the hypothalamic neurons and mediates IRS4 degradation

    Directory of Open Access Journals (Sweden)

    Xia Zefeng

    2011-09-01

    Full Text Available Abstract Background The arcuate nucleus of the hypothalamus regulates food intake. Ankyrin repeat and SOCS box containing protein 4 (Asb-4 is expressed in neuropeptide Y and proopiomelanocortin (POMC neurons in the arcuate nucleus, target neurons in the regulation of food intake and metabolism by insulin and leptin. However, the target protein(s of Asb-4 in these neurons remains unknown. Insulin receptor substrate 4 (IRS4 is an adaptor molecule involved in the signal transduction by both insulin and leptin. In the present study we examined the colocalization and interaction of Asb-4 with IRS4 and the involvement of Asb-4 in insulin signaling. Results In situ hybridization showed that the expression pattern of Asb-4 was consistent with that of IRS4 in the rat brain. Double in situ hybridization showed that IRS4 colocalized with Asb-4, and both Asb-4 and IRS4 mRNA were expressed in proopiomelanocortin (POMC and neuropeptide Y (NPY neurons within the arcuate nucleus of the hypothalamus. In HEK293 cells co-transfected with Myc-tagged Asb-4 and Flag-tagged IRS4, Asb-4 co-immunoprecipitated with IRS4; In these cells endogenous IRS4 also co-immunoprecipitated with transfected Myc-Asb-4; Furthermore, Asb-4 co-immunoprecipitated with IRS4 in rat hypothalamic extracts. In HEK293 cells over expression of Asb-4 decreased IRS4 protein levels and deletion of the SOCS box abolished this effect. Asb-4 increased the ubiquitination of IRS4; Deletion of SOCS box abolished this effect. Expression of Asb-4 decreased both basal and insulin-stimulated phosphorylation of AKT at Thr308. Conclusions These data demonstrated that Asb-4 co-localizes and interacts with IRS4 in hypothalamic neurons. The interaction of Asb-4 with IRS4 in cell lines mediates the degradation of IRS4 and decreases insulin signaling.

  17. Insulin receptor substrate-3, interacting with Bcl-3, enhances p50 NF-{kappa}B activity

    Energy Technology Data Exchange (ETDEWEB)

    Kabuta, Tomohiro [Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan); Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502 (Japan); Hakuno, Fumihiko; Cho, Yoshitake; Yamanaka, Daisuke; Chida, Kazuhiro [Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan); Asano, Tomoichiro [Graduate School of Biomedical Science, Hiroshima University, Hiroshima 734-8551 (Japan); Wada, Keiji [Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502 (Japan); Takahashi, Shin-Ichiro, E-mail: atkshin@mail.ecc.u-tokyo.ac.jp [Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan)

    2010-04-09

    The insulin receptor substrate (IRS) proteins are major substrates of both insulin receptor and insulin-like growth factor (IGF)-I receptor tyrosine kinases. Previously, we reported that IRS-3 is localized to both cytosol and nucleus, and possesses transcriptional activity. In the present study, we identified Bcl-3 as a novel binding protein to IRS-3. Bcl-3 is a nuclear protein, which forms a complex with the homodimer of p50 NF-{kappa}B, leading to enhancement of transcription through p50 NF-{kappa}B. We found that Bcl-3 interacts with the pleckstrin homology domain and the phosphotyrosine binding domain of IRS-3, and that IRS-3 interacts with the ankyrin repeat domain of Bcl-3. In addition, IRS-3 augmented the binding activity of p50 to the NF-{kappa}B DNA binding site, as well as the tumor necrosis factor (TNF)-{alpha}-induced transcriptional activity of NF-{kappa}B. Lastly, IRS-3 enhanced NF-{kappa}B-dependent anti-apoptotic gene induction and consequently inhibited TNF-{alpha}-induced cell death. This series of results proposes a novel function for IRS-3 as a transcriptional regulator in TNF-{alpha} signaling, distinct from its function as a substrate of insulin/IGF receptor kinases.

  18. A BRET assay for monitoring insulin receptor interactions and ligand pharmacology

    DEFF Research Database (Denmark)

    Kulahin, Nikolaj; Sanni, Samra J; Slaaby, Rita

    2012-01-01

    The insulin receptor (IR) belongs to the receptor tyrosine kinase super family and plays an important role in glucose homeostasis. The receptor interacts with several large docking proteins that mediate signaling from the receptor, including the insulin receptor substrate (IRS) family and Src...... for monitoring the interactions between the IR and its substrates. Furthermore, the insulin analogue X10 was characterized in the BRET2 assay and was found to be 10 times more potent with respect to IRS1, IRS4 and Shc recruitment compared to human insulin. This study demonstrates that the BRET2 technique can...

  19. JAK1 kinase forms complexes with interleukin-4 receptor and 4PS/insulin receptor substrate-1-like protein and is activated by interleukin-4 and interleukin-9 in T lymphocytes.

    Science.gov (United States)

    Yin, T; Tsang, M L; Yang, Y C

    1994-10-28

    Interleukin (IL)-4 and IL-9 regulate the proliferation of T lymphocytes through interactions with their receptors. Previous studies have shown that unknown tyrosine kinases are involved in the proliferative signaling triggered by IL-4 and IL-9. Here we show that IL-4 and IL-9 induce overlapping (170, 130, and 125 kilodalton (kDa)) and distinct (45 and 88/90 kDa, respectively) protein tyrosine phosphorylation in T lymphocytes. We further identify the 170-kDa tyrosine-phosphorylated protein as 4PS/insulin receptor substrate-1-like (IRS-1L) protein and 130-kDa protein as JAK1 kinase. Furthermore, we demonstrate for the first time that JAK1 forms complexes with the IL-4 receptor and 4PS/IRS-1L protein following ligand-receptor interaction. In addition, we demonstrate that IL-9, but not IL-4, induced tyrosine phosphorylation of Stat 91 transcriptional factor. The overlapping and distinct protein tyrosine phosphorylation and activation of the same JAK1 kinase in T lymphocytes strongly suggests that IL-4 and IL-9 share the common signal transduction pathways and that the specificity for each cytokine could be achieved through the unique tyrosine-phosphorylated proteins triggered by individual cytokines.

  20. Insulin receptor isoforms A and B as well as insulin receptor substrates-1 and -2 are differentially expressed in prostate cancer.

    Science.gov (United States)

    Heni, Martin; Hennenlotter, Jörg; Scharpf, Marcus; Lutz, Stefan Z; Schwentner, Christian; Todenhöfer, Tilman; Schilling, David; Kühs, Ursula; Gerber, Valentina; Machicao, Fausto; Staiger, Harald; Häring, Hans-Ulrich; Stenzl, Arnulf

    2012-01-01

    In different cancers types, insulin receptor isoform composition or insulin receptor substrate (IRS) isoforms are different to healthy tissue. This may be a molecular link to increased cancer risk in diabetes and obesity. Since this is yet unclear for prostate cancer, we investigated IR isoform composition and IRS balance in prostate cancer compared to benign and tumor adjacent benign prostate tissue and brought this into relation to cell proliferation. We studied 23 benign prostate samples from radical cystectomy or benign prostatic hyperplasia surgery, 30 samples from benign tissue directly adjacent to prostate cancer foci and 35 cancer samples from different patients. RNA expression levels for insulin receptor isoforms A and B, IRS-1, IRS-2, and IGF-1 receptor were assessed by quantitative real-time RT-PCR. In addition, RNA- and protein expression of the cell cycle regulator p27(Kip1) was quantified by real-time RT-PCR and immunohistochemistry. Insulin receptor isoform A to B ratio was significantly higher in cancer as well as in tumor adjacent benign prostate tissue compared to purely benign prostates (pprostatic tissue (pcancer and adjacent tissue were significantly associated with reduced p27(Kip1) content (preceptor levels were significantly lower in patients with type 2 diabetes (p = 0.0019). We found significant differences in the insulin signaling cascade between benign prostate tissue and prostate cancer. Histological benign tissue adjacent to cancer showed expression patterns similar to the malignancies. Our findings suggest a role of the insulin signaling pathway in prostate cancer and surrounding tissue and can hence be relevant for both novel diagnostic and therapeutic approaches in this malignancy.

  1. Coordinate phosphorylation of insulin-receptor kinase and its 175,000-Mr endogenous substrate in rat hepatocytes

    International Nuclear Information System (INIS)

    Okamoto, M.; Karasik, A.; White, M.F.; Kahn, C.R.

    1991-01-01

    To investigate the early events in insulin signal transmission in liver, isolated rat hepatocytes were labeled with 32 P, and proteins phosphorylated in response to insulin were detected by immunoprecipitation with anti-phosphotyrosine and anti-receptor antibodies and analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and autoradiography. In these cells, insulin rapidly stimulated tyrosine phosphorylation of the 95,000-Mr beta-subunit of the insulin receptor and a 175,000-Mr phosphoprotein (pp175). Both proteins were precipitated by anti-phosphotyrosine antibody, whereas only the insulin receptor was recognized with anti-insulin-receptor antibody. In the insulin-stimulated state, both pp175 and the receptor beta-subunit were found to be phosphorylated on tyrosine and serine residues. Based on precipitation by the two antibodies, receptor phosphorylation was biphasic with an initial increase in tyrosine phosphorylation followed by a more gradual increase in serine phosphorylation over the first 30 min of stimulation. The time course of phosphorylation of pp175 was rapid and paralleled that of the beta-subunit of the insulin receptor. The pp175 was clearly distinguished from the insulin receptor, because it was detected only when boiling SDS was used to extract cellular phosphoproteins, whereas the insulin receptor was extracted with either Triton X-100 or SDS. In addition, the tryptic peptide maps of the two proteins were distinct. The dose-response curve for insulin stimulation was shifted slightly to the left of the insulin receptor, suggesting some signal amplification at this step. These data suggest that pp175 is a major endogenous substrate of the insulin receptor in liver and may be a cytoskeletal-associated protein

  2. Increased interaction with insulin receptor substrate 1, a novel abnormality in insulin resistance and type 2 diabetes

    DEFF Research Database (Denmark)

    Caruso, Michael; Ma, Danjun; Msallaty, Zaher

    2014-01-01

    Insulin receptor substrate 1 (IRS1) is a key mediator of insulin signal transduction. Perturbations involving IRS1 complexes may lead to the development of insulin resistance and type 2 diabetes (T2D). Surprisingly little is known about the proteins that interact with IRS1 in humans under health...... in obesity and T2D in humans, provides new insights into the molecular mechanism of insulin resistance and identifies new targets for T2D drug development....... and disease conditions. We used a proteomic approach to assess IRS1 interaction partners in skeletal muscle from lean healthy control subjects (LCs), obese insulin-resistant nondiabetic control subjects (OCs), and participants with T2D before and after insulin infusion. We identified 113 novel endogenous IRS1...

  3. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action.

    Science.gov (United States)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob; Kahn, C Ronald; Emanuelli, Brice

    2018-07-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1 -/- and IRS-2 -/- mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Characterization of the chicken muscle insulin receptor

    International Nuclear Information System (INIS)

    Adamo, M.; Simon, J.; Rosebrough, R.W.; McMurtry, J.P.; Steele, N.C.; LeRoith, D.

    1987-01-01

    Insulin receptors are present in chicken skeletal muscle. Crude membrane preparations demonstrated specific 125 I-insulin binding. The nonspecific binding was high (36-55% of total binding) and slightly lower affinity receptors were found than are typically observed for crude membrane insulin binding in other chicken tissues. Affinity crosslinking of 125 I-insulin to crude membranes revealed insulin receptor alpha-subunits of Mr 128K, intermediate between those of liver (134K) and brain (124K). When solubilized and partially purified on wheat germ agglutinin (WGA) affinity columns, chicken muscle insulin receptors exhibited typical high affinity binding, with approximately 10(-10) M unlabeled insulin producing 50% inhibition of the specific 125 I-insulin binding. WGA purified chicken muscle insulin receptors also exhibited insulin-stimulated autophosphorylation of the beta-subunit, which appeared as phosphorylated bands of 92- and 81K. Both bands were immunoprecipitated by anti-receptor antiserum (B10). WGA purified membranes also demonstrated dose-dependent insulin-stimulated phosphorylation of the exogenous substrate poly(Glu,Tyr)4:1. However, unlike chicken liver, chicken muscle insulin receptor number and tyrosine kinase activity were unaltered by 48 hr of fasting or 48 hr of fasting and 24 hr of refeeding. Thus, despite the presence of insulin receptors in chicken muscle showing normal coupling to receptor tyrosine kinase activity, nutritional alterations modulate these parameters in a tissue-specific manner in chickens

  5. TLR4 and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Jane J. Kim

    2010-01-01

    Full Text Available Chronic inflammation is a key feature of insulin resistance and obesity. Toll-Like Receptor 4 (TLR4, involved in modulating innate immunity, is an important mediator of insulin resistance and its comorbidities. TLR4 contributes to the development of insulin resistance and inflammation through its activation by elevated exogenous ligands (e.g., dietary fatty acids and enteric lipopolysaccharide and endogenous ligands (e.g., free fatty acids which are elevated in obese states. TLR4, expressed in insulin target tissues, activates proinflammatory kinases JNK, IKK, and p38 that impair insulin signal transduction directly through inhibitory phosphorylation of insulin receptor substrate (IRS on serine residues. TLR4 activation also leads to increased transcription of pro-inflammatory genes, resulting in elevation of cytokine, chemokine, reactive oxygen species, and eicosanoid levels that promote further insulin-desensitization within the target cell itself and in other cells via paracrine and systemic effects. Increased understanding of cell type-specific TLR4-mediated effects on insulin action present the opportunity and challenge of developing related therapeutic approaches for improving insulin sensitivity while preserving innate immunity.

  6. Drosophila Longevity Assurance Conferred by Reduced Insulin Receptor Substrate Chico Partially Requires d4eBP.

    Directory of Open Access Journals (Sweden)

    Hua Bai

    Full Text Available Mutations of the insulin/IGF signaling (IIS pathway extend Drosophila lifespan. Based on genetic epistasis analyses, this longevity assurance is attributed to downstream effects of the FOXO transcription factor. However, as reported FOXO accounts for only a portion of the observed longevity benefit, suggesting there are additional outputs of IIS to mediate aging. One candidate is target of rapamycin complex 1 (TORC1. Reduced TORC1 activity is reported to slow aging, whereas reduced IIS is reported to repress TORC1 activity. The eukaryotic translation initiation factor 4E binding protein (4E-BP is repressed by TORC1, and activated 4E-BP is reported to increase Drosophila lifespan. Here we use genetic epistasis analyses to test whether longevity assurance mutants of chico, the Drosophila insulin receptor substrate homolog, require Drosophila d4eBP to slow aging. In chico heterozygotes, which are robustly long-lived, d4eBP is required but not sufficient to slow aging. Remarkably, d4eBP is not required or sufficient for chico homozygotes to extend longevity. Likewise, chico heterozygote females partially require d4eBP to preserve age-dependent locomotion, and both chico genotypes require d4eBP to improve stress-resistance. Reproduction and most measures of growth affected by either chico genotype are always independent of d4eBP. In females, chico heterozygotes paradoxically produce more rather than less phosphorylated 4E-BP (p4E-BP. Altered IRS function within the IIS pathway of Drosophila appears to have partial, conditional capacity to regulate aging through an unconventional interaction with 4E-BP.

  7. A bioluminescence resonance energy transfer 2 (BRET2) assay for monitoring seven transmembrane receptor and insulin receptor crosstalk

    DEFF Research Database (Denmark)

    Sanni, Samra Joke; Kulahin, Nikolaj; Jorgensen, Rasmus

    2017-01-01

    The angiotensin AT1 receptor is a seven transmembrane (7TM) receptor, which mediates the regulation of blood pressure. Activation of angiotensin AT1 receptor may lead to impaired insulin signaling indicating crosstalk between angiotensin AT1 receptor and insulin receptor signaling pathways....... To elucidate the molecular mechanisms behind this crosstalk, we applied the BRET2 technique to monitor the effect of angiotensin II on the interaction between Rluc8 tagged insulin receptor and GFP2 tagged insulin receptor substrates 1, 4, 5 (IRS1, IRS4, IRS5) and Src homology 2 domain-containing protein (Shc......). We demonstrate that angiotensin II reduces the interaction between insulin receptor and IRS1 and IRS4, respectively, while the interaction with Shc is unaffected, and this effect is dependent on Gαq activation. Activation of other Gαq-coupled 7TM receptors led to a similar reduction in insulin...

  8. Ubiquitinated CD36 sustains insulin-stimulated Akt activation by stabilizing insulin receptor substrate 1 in myotubes.

    Science.gov (United States)

    Sun, Shishuo; Tan, Pengcheng; Huang, Xiaoheng; Zhang, Wei; Kong, Chen; Ren, Fangfang; Su, Xiong

    2018-02-16

    Both the magnitude and duration of insulin signaling are important in executing its cellular functions. Insulin-induced degradation of insulin receptor substrate 1 (IRS1) represents a key negative feedback loop that restricts insulin signaling. Moreover, high concentrations of fatty acids (FAs) and glucose involved in the etiology of obesity-associated insulin resistance also contribute to the regulation of IRS1 degradation. The scavenger receptor CD36 binds many lipid ligands, and its contribution to insulin resistance has been extensively studied, but the exact regulation of insulin sensitivity by CD36 is highly controversial. Herein, we found that CD36 knockdown in C2C12 myotubes accelerated insulin-stimulated Akt activation, but the activated signaling was sustained for a much shorter period of time as compared with WT cells, leading to exacerbated insulin-induced insulin resistance. This was likely due to enhanced insulin-induced IRS1 degradation after CD36 knockdown. Overexpression of WT CD36, but not a ubiquitination-defective CD36 mutant, delayed IRS1 degradation. We also found that CD36 functioned through ubiquitination-dependent binding to IRS1 and inhibiting its interaction with cullin 7, a key component of the multisubunit cullin-RING E3 ubiquitin ligase complex. Moreover, dissociation of the Src family kinase Fyn from CD36 by free FAs or Fyn knockdown/inhibition accelerated insulin-induced IRS1 degradation, likely due to disrupted IRS1 interaction with CD36 and thus enhanced binding to cullin 7. In summary, we identified a CD36-dependent FA-sensing pathway that plays an important role in negative feedback regulation of insulin activation and may open up strategies for preventing or managing type 2 diabetes mellitus. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Research resource: new and diverse substrates for the insulin receptor isoform a revealed by quantitative proteomics after stimulation with igf-ii or insulin

    DEFF Research Database (Denmark)

    Morcavallo, Alaide; Gaspari, Marco; Pandini, Giuseppe

    2011-01-01

    progression. We hypothesized that IGF-II binding to the IR-A elicits a unique signaling pathway. In order to obtain an unbiased evaluation of IR-A substrates differentially involved after IGF-II and insulin stimulation, we performed quantitative proteomics of IR-A substrates recruited to tyrosine......-phosphorylated protein complexes using stable isotope labeling with amino acids in cell culture in combination with antiphosphotyrosine antibody pull down and mass spectrometry. Using cells expressing only the human IR-A and lacking the IGF-I receptor, we identified 38 IR-A substrates. Only 10 were known IR mediators......, whereas 28 substrates were not previously related to IR signaling. Eleven substrates were recruited by stimulation with both ligands: two equally recruited by IGF-II and insulin, three more strongly recruited by IGF-II, and six more strongly recruited by insulin. Moreover, 14 substrates were recruited...

  10. Biphasic modulation of insulin receptor substrate-1 during goitrogenesis

    Directory of Open Access Journals (Sweden)

    R. Grozovsky

    2007-05-01

    Full Text Available Insulin receptor substrate-1 (IRS-1 is the main intracellular substrate for both insulin and insulin-like growth factor I (IGF-I receptors and is critical for cell mitogenesis. Thyrotropin is able to induce thyroid cell proliferation through the cyclic AMP intracellular cascade; however, the presence of either insulin or IGF-I is required for the mitogenic effect of thyroid-stimulating hormone (TSH to occur. The aim of the present study was to determine whether thyroid IRS-1 content is modulated by TSH in vivo. Strikingly, hypothyroid goitrous rats, which have chronically high serum TSH levels (control, C = 2.31 ± 0.28; methimazole (MMI 21d = 51.02 ± 6.02 ng/mL, N = 12 rats, when treated with 0.03% MMI in drinking water for 21 days, showed significantly reduced thyroid IRS-1 mRNA content. Since goiter was already established in these animals by MMI for 21 days, we also evaluated IRS-1 expression during goitrogenesis. Animals treated with MMI for different periods of time showed a progressive increase in thyroid weight (C = 22.18 ± 1.21; MMI 5d = 32.83 ± 1.48; MMI 7d = 31.1 ± 3.25; MMI 10d = 33.8 ± 1.25; MMI 14d = 45.5 ± 2.56; MMI 18d = 53.0 ± 3.01; MMI 21d = 61.9 ± 3.92 mg, N = 9-15 animals per group and serum TSH levels (C = 1.57 ± 0.2; MMI 5d = 9.95 ± 0.74; MMI 7d = 10.38 ± 0.84; MMI 10d = 17.72 ± 1.47; MMI 14d = 25.65 ± 1.23; MMI 18d = 35.38 ± 3.69; MMI 21d = 31.3 ± 2.7 ng/mL, N = 9-15 animals per group. Thyroid IRS-1 mRNA expression increased progressively during goitrogenesis, being significantly higher by the 14th day of MMI treatment, and then started to decline, reaching the lowest values by the 21st day, when a significant reduction was detected. In the liver of these animals, however, a significant decrease of IRS-1 mRNA was detected after 14 days of MMI treatment, a mechanism probably involved in the insulin resistance that occurs in hypothyroidism. The increase in IRS-1 expression during goitrogenesis may represent an

  11. Interleukins 2, 4, 7, and 15 stimulate tyrosine phosphorylation of insulin receptor substrates 1 and 2 in T cells. Potential role of JAK kinases.

    Science.gov (United States)

    Johnston, J A; Wang, L M; Hanson, E P; Sun, X J; White, M F; Oakes, S A; Pierce, J H; O'Shea, J J

    1995-12-01

    The signaling molecules insulin receptor substrate (IRS)-1 and the newly described IRS-2 (4PS) molecule are major insulin and interleukin 4 (IL-4)-dependent phosphoproteins. We report here that IL-2, IL-7, and IL-15, as well as IL-4, rapidly stimulate the tyrosine phosphorylation of IRS-1 and IRS-2 in human peripheral blood T cells, NK cells, and in lymphoid cell lines. In addition, we show that the Janus kinases, JAK1 and JAK3, associate with IRS-1 and IRS-2 in T cells. Coexpression studies demonstrate that these kinases can tyrosine-phosphorylate IRS-2, suggesting a possible mechanism by which cytokine receptors may induce the tyrosine phosphorylation of IRS-1 and IRS-2. We further demonstrate that the p85 subunit of phosphoinositol 3-kinase associates with IRS-1 in response to IL-2 and IL-4 in T cells. Therefore, these data indicate that IRS-1 and IRS-2 may have important roles in T lymphocyte activation not only in response to IL-4, but also in response to IL-2, IL-7, and IL-15.

  12. The insulin receptor substrate 1 associates with phosphotyrosine phosphatase SHPTP2 in liver and muscle of rats

    Directory of Open Access Journals (Sweden)

    Lima M.H.M.

    1998-01-01

    Full Text Available Insulin stimulates the tyrosine kinase activity of its receptor resulting in the phosphorylation of its cytosolic substrate, insulin receptor substrate-1 (IRS-1 which, in turn, associates with proteins containing SH2 domains. It has been shown that IRS-1 associates with the tyrosine phosphatase SHPTP2 in cell cultures. While the effect of the IRS-1/SHPTP2 association on insulin signal transduction is not completely known, this association may dephosphorylate IRS-1 and may play a critical role in the mitogenic actions of insulin. However, there is no physiological demonstration of this pathway of insulin action in animal tissues. In the present study we investigated the ability of insulin to induce association between IRS-1 and SHPTP2 in liver and muscle of intact rats, by co-immunoprecipitation with anti-IRS-1 antibody and anti-SHPTP2 antibody. In both tissues there was an increase in IRS-1 association with SHPTP2 after insulin stimulation. This association occurred when IRS-1 had the highest level of tyrosine phosphorylation and the decrease in this association was more rapid than the decrease in IRS-1 phosphorylation levels. The data provide evidence against the participation of SHPTP2 in IRS-1 dephosphorylation in rat tissues, and suggest that the insulin signal transduction pathway in rat tissues is related mainly to the mitogenic effects of the hormone.

  13. Binding of the Ras activator son of sevenless to insulin receptor substrate-1 signaling complexes.

    Science.gov (United States)

    Baltensperger, K; Kozma, L M; Cherniack, A D; Klarlund, J K; Chawla, A; Banerjee, U; Czech, M P

    1993-06-25

    Signal transmission by insulin involves tyrosine phosphorylation of a major insulin receptor substrate (IRS-1) and exchange of Ras-bound guanosine diphosphate for guanosine triphosphate. Proteins containing Src homology 2 and 3 (SH2 and SH3) domains, such as the p85 regulatory subunit of phosphatidylinositol-3 kinase and growth factor receptor-bound protein 2 (GRB2), bind tyrosine phosphate sites on IRS-1 through their SH2 regions. Such complexes in COS cells were found to contain the heterologously expressed putative guanine nucleotide exchange factor encoded by the Drosophila son of sevenless gene (dSos). Thus, GRB2, p85, or other proteins with SH2-SH3 adapter sequences may link Sos proteins to IRS-1 signaling complexes as part of the mechanism by which insulin activates Ras.

  14. Interactive roles of Ras, insulin receptor substrate-1, and proteins with Src homology-2 domains in insulin signaling in Xenopus oocytes.

    Science.gov (United States)

    Chuang, L M; Hausdorff, S F; Myers, M G; White, M F; Birnbaum, M J; Kahn, C R

    1994-11-04

    Insulin receptor substrate-1 (IRS-1) serves as the major immediate substrate of insulin/insulin-like growth factor (IGF)-1 receptors and following tyrosine phosphorylation binds to specific Src homology-2 (SH2) domain-containing proteins including the p85 subunit of phosphatidylinositol (PI) 3-kinase and GRB2, a molecule believed to link IRS-1 to the Ras pathway. To investigate how these SH2-containing signaling molecules interact to regulate insulin/IGF-1 action, IRS-1, glutathione S-transferase (GST)-SH2 domain fusion proteins and Ras proteins were microinjected into Xenopus oocytes. We found that pleiotropic insulin actions are mediated by IRS-1 through two independent, but convergent, pathways involving PI 3-kinase and GRB2. Thus, microinjection of GST-fusion proteins of either p85 or GRB2 inhibited IRS-1-dependent activation of mitogen-activated protein (MAP) and S6 kinases and oocyte maturation, although only the GST-SH2 of p85 reduced insulin-stimulated PI 3-kinase activation. Co-injection of a dominant negative Ras (S17N) with IRS-1 inhibited insulin-stimulated MAP and S6 kinase activation. Micro-injection of activated [Arg12,Thr59]Ras increased basal MAP and S6 kinase activities and sensitized the oocytes to insulin-stimulated maturation without altering insulin-stimulated PI 3-kinase. The Ras-enhanced oocyte maturation response, but not the elevated basal level of MAP and S6 kinase, was partially blocked by the SH2-p85, but not SH2-GRB2. These data strongly suggest that IRS-1 can mediate many of insulin's actions on cellular enzyme activation and cell cycle progression requires binding and activation of multiple different SH2-domain proteins.

  15. Hyperosmotic stress inhibits insulin receptor substrate-1 function by distinct mechanisms in 3T3-L1 adipocytes

    DEFF Research Database (Denmark)

    Gual, Philippe; Gonzalez, Teresa; Grémeaux, Thierry

    2003-01-01

    . Furthermore, the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented the osmotic shock-induced phosphorylation of IRS-1 on Ser307. The inhibition of mTOR completely reversed the inhibitory effect of hyperosmotic stress on insulin-induced IRS-1 tyrosine phosphorylation and PI 3-kinase activation......In 3T3-L1 adipocytes, hyperosmotic stress was found to inhibit insulin signaling, leading to an insulin-resistant state. We show here that, despite normal activation of insulin receptor, hyperosmotic stress inhibits both tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and IRS-1....... In addition, prolonged osmotic stress enhanced the degradation of IRS proteins through a rapamycin-insensitive pathway and a proteasome-independent process. These data support evidence of new mechanisms involved in osmotic stress-induced cellular insulin resistance. Short-term osmotic stress induces...

  16. Label-Free Proteomic Identification of Endogenous, Insulin-Stimulated Interaction Partners of Insulin Receptor Substrate-1

    Science.gov (United States)

    Geetha, Thangiah; Langlais, Paul; Luo, Moulun; Mapes, Rebekka; Lefort, Natalie; Chen, Shu-Chuan; Mandarino, Lawrence J.; Yi, Zhengping

    2011-03-01

    Protein-protein interactions are key to most cellular processes. Tandem mass spectrometry (MS/MS)-based proteomics combined with co-immunoprecipitation (CO-IP) has emerged as a powerful approach for studying protein complexes. However, a majority of systematic proteomics studies on protein-protein interactions involve the use of protein overexpression and/or epitope-tagged bait proteins, which might affect binding stoichiometry and lead to higher false positives. Here, we report an application of a straightforward, label-free CO-IP-MS/MS method, without the use of protein overexpression or protein tags, to the investigation of changes in the abundance of endogenous proteins associated with a bait protein, which is in this case insulin receptor substrate-1 (IRS-1), under basal and insulin stimulated conditions. IRS-1 plays a central role in the insulin signaling cascade. Defects in the protein-protein interactions involving IRS-1 may lead to the development of insulin resistance and type 2 diabetes. HPLC-ESI-MS/MS analyses identified eleven novel endogenous insulin-stimulated IRS-1 interaction partners in L6 myotubes reproducibly, including proteins play an important role in protein dephosphorylation [protein phosphatase 1 regulatory subunit 12A, (PPP1R12A)], muscle contraction and actin cytoskeleton rearrangement, endoplasmic reticulum stress, and protein folding, as well as protein synthesis. This novel application of label-free CO-IP-MS/MS quantification to assess endogenous interaction partners of a specific protein will prove useful for understanding how various cell stimuli regulate insulin signal transduction.

  17. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob

    2018-01-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling...... properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type......, IRS-1-/-and IRS-2-/-mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1...

  18. IRS-1: essential for insulin- and IL-4-stimulated mitogenesis in hematopoietic cells.

    Science.gov (United States)

    Wang, L M; Myers, M G; Sun, X J; Aaronson, S A; White, M; Pierce, J H

    1993-09-17

    Although several interleukin-3 (IL-3)-dependent cell lines proliferate in response to IL-4 or insulin, the 32D line does not. Insulin and IL-4 sensitivity was restored to 32D cells by expression of IRS-1, the principal substrate of the insulin receptor. Although 32D cells possessed receptors for both factors, they lacked the IRS-1--related protein, 4PS, which becomes phosphorylated by tyrosine in insulin- or IL-4--responsive lines after stimulation. These results indicate that factors that bind unrelated receptors can use similar mitogenic signaling pathways in hematopoietic cells and that 4PS and IRS-1 are functionally similar proteins that are essential for insulin- and IL-4--induced proliferation.

  19. Insulin receptors

    International Nuclear Information System (INIS)

    Kahn, C.R.; Harrison, L.C.

    1988-01-01

    This book contains the proceedings on insulin receptors. Part A: Methods for the study of structure and function. Topics covered include: Method for purification and labeling of insulin receptors, the insulin receptor kinase, and insulin receptors on special tissues

  20. Expression of insulin receptor spliced variants and their functional correlates in muscle from patients with non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Hansen, Torben; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Due to alternative splicing of exon 11 of the receptor gene, the human insulin receptor exists in two forms, that have distinct tissue-specific expression and are functionally different. Needle biopsies obtained from vastus lateralis muscle from 20 patients with noninsulin-dependent diabetes...... kinase activity were examined in wheat germ agglutinin-purified insulin receptors isolated from muscle biopsies. Moreover, insulin-stimulated glucose disposal was studied by means of the euglycemic hyperinsulinemic clamp technique. No difference in the relative expression of spliced variants......, and tyrosine kinase activity toward the exogenous substrate poly(Glu-Tyr(4:1)). Furthermore, no significant relationship was demonstrated between the glucose disposal rate and the relative expression of insulin receptor splice variants. In conclusion, in skeletal muscle from both normal control subjects...

  1. Identification and characterization of insulin receptors in basolateral membranes of dog intestinal mucosa

    International Nuclear Information System (INIS)

    Gingerich, R.L.; Gilbert, W.R.; Comens, P.G.; Gavin, J.R. III

    1987-01-01

    Little is known about hormonal regulation of substrate transport and metabolism in the mucosal lining of the small intestine. Because insulin regulates these functions in other tissues by binding to its receptor, we have investigated the presence of insulin receptors in canine small intestinal mucosa with basolateral membranes (BLM) and brush border membranes (BBM) prepared by sorbitol density centrifugation. A14-[ 125 I]iodoinsulin was used to study binding and structural characteristics of specific insulin receptors in BLM. Analysis of receptors in BLM identified binding sites with high affinity (Kd 88 pM) and low capacity (0.4 pmol/mg protein) as well as with low affinity (Kd 36 nM) and high capacity (4.7 pmol/mg protein). Binding was time, temperature, and pH dependent, and 125 I-labeled insulin dissociation was enhanced in the presence of unlabeled insulin. Cross-reactivity of these receptors to proinsulin, IGF-II, and IGF-I was 4, 1.8, and less than 1%, respectively. Covalent cross-linking of labeled insulin to BLM insulin receptors with disuccinimidyl suberate revealed a single 135,000-Mr band that was completely inhibited by unlabeled insulin. There was a 16-fold greater specific binding of insulin to BLM (39.0 +/- 2.4%) than to BBM (2.5 +/- 0.6%). These results demonstrate the presence of a highly specific receptor for insulin on the vascular, but not the luminal, surface of the small intestinal mucosa in dogs, and suggest that insulin may play an important role in the regulation of gastrointestinal physiology

  2. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.

    Science.gov (United States)

    Takayama, S; White, M F; Kahn, C R

    1988-03-05

    The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function

  3. Receptor-like protein-tyrosine phosphatase alpha specifically inhibits insulin-increased prolactin gene expression

    DEFF Research Database (Denmark)

    Jacob, K K; Sap, J; Stanley, F M

    1998-01-01

    A physiologically relevant response to insulin, stimulation of prolactin promoter activity in GH4 pituitary cells, was used as an assay to study the specificity of protein-tyrosine phosphatase function. Receptor-like protein-tyrosine phosphatase alpha (RPTPalpha) blocks the effect of insulin...... is specific by two criteria. A number of potential RPTPalpha targets were ruled out by finding (a) that they are not affected or (b) that they are not on the pathway to insulin-increased prolactin-CAT activity. The negative effect of RPTPalpha on insulin activation of the prolactin promoter is not due...... to reduced phosphorylation or kinase activity of the insulin receptor or to reduced phosphorylation of insulin receptor substrate-1 or Shc. Inhibitor studies suggest that insulin-increased prolactin gene expression is mediated by a Ras-like GTPase but is not mitogen-activated protein kinase dependent...

  4. Rapid internalization of the insulin receptor in rat hepatoma cells

    International Nuclear Information System (INIS)

    Backer, J.M.; White, M.F.; Kahn, C.R.

    1987-01-01

    The authors have studied the internalization of the insulin receptor (IR) in rat hepatoma cells (Fao). The cells were surface-iodinated at 4 0 C, stimulated with insulin at 37 0 C, and then cooled rapidly, trypsinized at 4 0 C and solubilized. The IR was immunoprecipitated with a specific antibody, and internalization of the IR was assessed by the appearance of trypsin-resistant bands on SDS-PAGE. Insulin induced the internalization of surface receptors with a t 1/2 of 9-10 mins; cells not exposed to insulin internalized less than 20% of the IR during 1 h at 37 0 C. Further experiments demonstrated that the accumulation of trypsin-resistant IR paralleled a loss of receptor from the cell surface. Insulin-stimulated cells were chilled and iodinated at 4 0 C, followed by solubilization, immunoprecipitation and SDS-PAGE; alternatively, insulin-stimulated cells were chilled, surface-bound ligand removed by washing the cells at pH 4.2, and specific [ 125 I]insulin binding measured at 4 0 C. Both techniques confirmed the disappearance of IR from the cell surface at rates comparable to the insulin-stimulated internalization described above. The total amount of phosphotyrosine-containing IR, as assessed by immunoprecipitation with an anti-phosphotyrosine antibody, remained constant during this time interval, suggesting that active kinase is translocated into the cell. In summary, the authors data indicate that insulin binding increases the rate of IR internalization of Fao cells. This relocation may facilitate the interaction of the activated tyrosine kinase in the IR with intracellular substrates, thus transmitting the insulin signal to metabolic pathways

  5. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance

    Science.gov (United States)

    Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammat...

  6. p68 Sam is a substrate of the insulin receptor and associates with the SH2 domains of p85 PI3K.

    Science.gov (United States)

    Sánchez-Margalet, V; Najib, S

    1999-07-23

    The 68 kDa Src substrate associated during mitosis is an RNA binding protein with Src homology 2 and 3 domain binding sites. A role for Src associated in mitosis 68 as an adaptor protein in signaling transduction has been proposed in different systems such as T-cell receptors. In the present work, we have sought to assess the possible role of Src associated in mitosis 68 in insulin receptor signaling. We performed in vivo studies in HTC-IR cells and in vitro studies using recombinant Src associated in mitosis 68, purified insulin receptor and fusion proteins containing either the N-terminal or the C-terminal Src homology 2 domain of p85 phosphatidylinositol-3-kinase. We have found that Src associated in mitosis 68 is a substrate of the insulin receptor both in vivo and in vitro. Moreover, tyrosine-phosphorylated Src associated in mitosis 68 was found to associate with p85 phosphatidylinositol-3-kinase in response to insulin, as assessed by co-immunoprecipitation studies. Therefore, Src associated in mitosis 68 may be part of the signaling complexes of insulin receptor along with p85. In vitro studies demonstrate that Src associated in mitosis 68 associates with the Src homology 2 domains of p85 after tyrosine phosphorylation by the activated insulin receptor. Moreover, tyr-phosphorylated Src associated in mitosis 68 binds with a higher affinity to the N-terminal Src homology 2 domain of p85 compared to the C-terminal Src homology 2 domain of p85, suggesting a preferential association of Src associated in mitosis 68 with the N-terminal Src homology 2 domain of p85. This association may be important for the link of the signaling with RNA metabolism.

  7. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    International Nuclear Information System (INIS)

    Levy, J.R.; Olefsky, J.M.

    1988-01-01

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4 0 C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37 0 C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation

  8. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Gastroenterology, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072 (China); Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yang, Yong, E-mail: yyang@houstonmethodist.org [Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Medicine, Weill Cornell Medical College, New York, NY 10065 (United States)

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  9. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    International Nuclear Information System (INIS)

    Wang, Feng; Yang, Yong

    2014-01-01

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers

  10. C1qTNF-related protein 1 improve insulin resistance by reducing phosphorylation of serine 1101 in insulin receptor substrate 1.

    Science.gov (United States)

    Xin, Yaping; Zhang, Dongming; Fu, Yanqin; Wang, Chongxian; Li, Qingju; Tian, Chenguang; Zhang, Suhe; Lyu, Xiaodong

    2017-08-30

    C1qTNF-related protein 1 (CTRP1) is independently associated with type 2 diabetes. However, the relationship between CTRP1 and insulin resistance is still not established. This study aimed to explore the role of CTRP1 under the situation of insulin resistance in adipose tissue. Plasma CTRP1 level was investigated in type 2 diabetic subjects (n = 35) and non-diabetic subjects (n = 35). The relationship between CTRP1 and phosphorylation of multi insulin receptor substrate 1 (IRS-1) serine (Ser) sites was further explored. Our data showed that Plasma CTRP1 was higher and negative correlation with insulin resistance in diabetic subjects (r = -0.283, p = 0.018). Glucose utilisation test revealed that the glucose utilisation rate of mature adipocytes was improved by CTRP1 in the presence of insulin. CTRP1 was not only related to IRS-1 protein, but also negatively correlated with IRS-1 Ser1101 phosphorylation (r = -0.398, p = 0.031). Furthermore, Phosphorylation levels of IRS-1 Ser1101 were significantly lower after incubation with 40 ng/mL CTRP1 in mature adipocytes than those with no intervention (p insulin resistance by reducing the phosphorylation of IRS-1 Ser1101, induced in the situation of insulin resistance as a feedback adipokine.

  11. Differential subcellular localization of insulin receptor substrates depends on C-terminal regions and importin β

    International Nuclear Information System (INIS)

    Kabuta, Tomohiro; Take, Kazumi; Kabuta, Chihana; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2008-01-01

    Insulin receptor substrates (IRSs) play essential roles in signal transduction of insulin and insulin-like growth factors. Previously, we showed that IRS-3 is localized to the nucleus as well as the cytosol, while IRS-1 and 2 are mainly localized to the cytoplasm. In the present study, we found that importin β directly interacts with IRS-3 and is able to mediate nuclear transport of IRS-3. Importin β interacted with the pleckstrin homology domain, the phosphotyrosine binding domain and the C-terminal region of IRS-3; indeed all of these fragments exhibited predominant nuclear localization. By contrast, almost no interaction of importin β with IRS-1 and -2 was observed, and their C-terminal regions displayed discrete spotty images in the cytosol. In addition, using chimeric proteins between IRS-1 and IRS-3, we revealed that the C-terminal regions are the main determinants of the differing subcellular localizations of IRS-1 and IRS-3.

  12. Dietary approaches to stop hypertension influence on insulin receptor substrate-1gene expression: A randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Marzieh Kafeshani

    2015-01-01

    Full Text Available Background: Insulin receptor substrate (IRS Type 1 is a main substrate for the insulin receptor, controls insulin signaling in skeletal muscle, adipose tissue, and the vascular, so it is an important candidate gene for insulin resistance (IR. We aimed to compare the effects of the Dietary Approaches to Stop Hypertension (DASH and Usual Dietary Advices (UDA on IRS1 gene expression in women at risk for cardiovascular disease. Materials and Methods: A randomized controlled clinical trial was performed in 44 women at risk for cardiovascular disease. Participants were randomly assigned to a UDA diet or the DASH diet. The DASH diet was rich in fruits, vegetables, whole grains, and low-fat dairy products and low in saturated fat, total fat, cholesterol, refined grains, and sweets, with a total of 2400 mg/day sodium. The UDA diet was a regular diet with healthy dietary advice. Gene expression was assessed by the real-time polymerase chain reaction at the first of study and after 12 weeks. Independent sample t-test and paired-samples t-test were used to compare means of all variables within and between two groups respectively. Results: IRS1 gene expression was increased in DASH group compared with UDA diet (P = 0.00. Weight and waist circumference decreased in DASH group significantly compared to the UDA group (P < 0.05 but the results between the two groups showed no significant difference. Conclusion: DASH diet increased IRS1 gene expression and probably has beneficial effects on IR risks.

  13. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Hosomi, Naohisa [Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa (Japan); Lei, Bai; Nakano, Daisuke [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu [Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Ma, Hong [Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Griendling, Kathy K. [Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA (United States); Nishiyama, Akira [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan)

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  14. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    DEFF Research Database (Denmark)

    Park, Kyoungmin; Mima, Akira; Li, Qian

    2016-01-01

    Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1...... induction of NO action, which increases endothelin receptor B (EDNRB) expression and intracellular [Ca(2+)]. Using the mice with knockin mutation of eNOS, which had Ser1176 mutated to alanine (AKI), deleting the only known mechanism for insulin to activate eNOS/NO pathway, we observed that IRS1...... overexpression in the endothelia of Aki/ApoE(-/-) mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway...

  15. Studies on insulin receptor, 1

    International Nuclear Information System (INIS)

    Sakai, Yukio

    1979-01-01

    The present study was designed for the purpose of establishing a method of insulin radioreceptor assay using plasma membranes of guinea pigs as receptor sites. The results obtained are as follows: 1) Insulin receptor in the renal plasma membranes of guinea pigs showed a significantly high affinity to porcine insulin compared with that in the plasma membranes of guinea pig liver or rat kidney and liver. 2) In the insulin radioreceptor assay, an optimum condition was observed by the incubation at 4 0 C for 24 - 48 hours with 100 μg membrane protein of guinea pig kidney and 0.08 ng of 125 I-insulin. This assay method was specific for insulin and showed an accurate biological activity of insulin. 3) The recovery rate of insulin radioreceptor assay was 98.4% and dilution check up to 16 times did not influence on the result. An average of coefficient variation was 3.92% within assay. All of these results indicated the method to be satisfactory. 4) Glucose induced insulin release by perfusion method in isolated Langerhans islets of rats showed an identical pattern of reaction curves between radioreceptor assay and radioimmunoassay, although the values of radioreceptor assay was slightly low. 5) Insulin free serum produced by ultra filtration method was added to the standard assay medium. By this procedure, direct measurement of human serum by radioreceptor assay became possible. 6) The value of human serum insulin receptor binding activity by the radioreceptor assay showed a high correlation with that of insulin radioimmunoassay in sera of normal, borderline or diabetic type defined by glucose tolerance test. (author)

  16. The proto-oncogene product c-Crk associates with insulin receptor substrate-1 and 4PS. Modulation by insulin growth factor-I (IGF) and enhanced IGF-I signaling.

    Science.gov (United States)

    Beitner-Johnson, D; Blakesley, V A; Shen-Orr, Z; Jimenez, M; Stannard, B; Wang, L M; Pierce, J; LeRoith, D

    1996-04-19

    The Crk proto-oncogene product is an SH2 and SH3 domain-containing adaptor protein which we have previously shown to become rapidly tyrosine phosphorylated in response to stimulation with insulin-like growth factor I (IGF-I) in NIH-3T3 cells. In order to further characterize the role of Crk in the IGF-I signaling pathway, NIH-3T3 and 293 cells were stably transfected with an expression vector containing the Crk cDNA. The various resultant 3T3-Crk clones expressed Crk at approximately 2-15-fold higher levels than parental 3T3 cells. In 3T3-Crk cells, Crk immunoreactivity was detected in insulin receptor substrate-1 (IRS-1) immunoprecipitates. Stimulation with IGF-I resulted in a dissociation of Crk protein from IRS-1. In contrast, the association of the related adaptor protein Grb2 with IRS-1 was enhanced by IGF-I stimulation. Similar results were obtained in stably transfected 293-Crk cells, which express both IRS-1 and the IRS-1-related signaling protein 4PS. In these cells, IRS-1 and 4PS both associated with Crk, and this association was also decreased by IGF-I treatment, whereas the association of Grb2 with IRS-1 and 4PS was enhanced by IGF-I. Overexpression of Crk also enhanced IGF-I-induced mitogenesis of NIH-3T3 cells, as measured by [3H]thymidine incorporation. The levels of IGF-I-induced mitogenesis were proportional to the level of Crk expression. These results suggest that Crk is a positive effector of IGF-I signaling, and may mediate its effects via interaction with IRS-1 and/or 4PS.

  17. Growth hormone, interferon-gamma, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1

    DEFF Research Database (Denmark)

    Argetsinger, L S; Hsu, G W; Myers, M G

    1995-01-01

    ), the principle substrate of the insulin receptor. Tyrosyl phosphorylation of IRS-1 is a critical step in insulin signaling and provides binding sites for proteins with the appropriate Src homology 2 domains, including the 85-kDa regulatory subunit of phosphatidylinositol (PI) 3'-kinase. In 3T3-F442A fibroblasts......., Campbell, G. S., Allevato, G., Billestrup, N., Norstedt, G., and Carter-Su, C. (1994) J. Biol. Chem. 269, 21709-21717). When other cytokines that activate JAK2 were tested for the ability to stimulate the tyrosyl phosphorylation of IRS-1, stimulation was detected with interferon-gamma and leukemia...... to JAK2. GH is also shown to stimulate binding of IRS-1 to the 85-kDa regulatory subunit of PI 3'-kinase. The ability of GH to stimulate tyrosyl phosphorylation of IRS-1 and its association with PI 3'-kinase provides a biochemical basis for responses shared by insulin and GH including the well...

  18. Studies on insulin receptor, 2

    International Nuclear Information System (INIS)

    Sakai, Yukio

    1979-01-01

    The present study is to investigate an influence of starvation and high fat diet on insulin receptor of the plasma membrane by means of radioreceptor assay using 125 I-labelled insulin. Male guinea pigs of Hartley strain were employed for the starvation study, and 125 I-insulin binding capacity on the plasma membrane of the liver and kidney was determined at 24, 48 and 72 hours of the fast after the last meal. Male rats of Wistar strain were employed for the high fat study where the diet containing 35% of butter was fed ad libitum for 38 or 68 days. The animals were killed at the fast of 12 hours, and 125 I-insulin binding capacity on the plasma membrane of the liver was determined. The results obtained are summarized as follows: 1) An increase in 125 I-insulin binding capacity on the plasma membrane of the liver and kidney was observed by the starvation for 24 to 72 hours. 2) The mechanism of the increase by starvation was considered to be different by the organs; it was due to an increase in number of insulin receptor in the liver, and due to an increase in affinity of insulin receptor in the kidney. 3) In non-obese rats fed with high fat diet, the number of insulin receptor on the liver plasma membrane showed a decrease, and this observation clearly indicated that the decrease in number of the receptor did not depend on the obesity. 4) Obese rats also fed with high fat diet presented a decrease in number of insulin receptor without an elevation of insulin levels in the circulating blood. This indicated that at least in the obese rats fed with high fat diet, the decrease in number of the receptor was not due to hyperinsulinemia. (author)

  19. Insulin receptor degradation is accelerated in cultured lymphocytes from patients with genetic syndromes of extreme insulin resistance

    International Nuclear Information System (INIS)

    McElduff, A.; Hedo, J.A.; Taylor, S.I.; Roth, J.; Gorden, P.

    1984-01-01

    The insulin receptor degradation rate was examined in B lymphocytes that were obtained from peripheral blood of normal subjects and patients with several syndromes of extreme insulin resistance. The insulin receptors were surface labeled using Na 125 I/lactoperoxidase and the cells were returned to incubate in growth media. After varying periods of incubation, aliquots of cells were solubilized and the cell content of labeled receptor subunits were measured by immunoprecipitation with anti-receptor antibodies and NaDodSO4/polyacrylamide gel electrophoresis. In cell lines from four patients in whom the number of insulin receptors was reduced by greater than 90%, the rate of receptor loss was greater than normal (t1/2 equals 3.8 +/- 0.9 h vs. 6.5 +/- 1.2 h; mean +/- SD, P less than 0.01). However, a similar acceleration in receptor degradation was seen in cells from five patients with extreme insulin resistance but low-normal insulin receptor concentration (t1/2 equals 4.4 +/- 0.9 h). Thus, all the patients with genetic syndromes of insulin resistance had accelerated receptor degradation, regardless of their receptor concentration. By contrast, insulin receptors on cultured lymphocytes that were obtained from patients with extreme insulin resistance secondary to autoantibodies to the insulin receptor had normal receptor degradation (t1/2 equals 6.1 +/- 1.9 h). We conclude that (a) accelerated insulin receptor degradation is an additional feature of cells from patients with genetic forms of insulin resistance; (b) that accelerated insulin receptor degradation may explain the low-normal receptor concentrations that were seen in some patients with extreme insulin resistance; and (c) that accelerated degradation does not explain the decreased receptor concentration in patients with very low insulin receptor binding and, therefore, by inference, a defect in receptor synthesis must be present in this subgroup

  20. Adenovirus E4-ORF1 Dysregulates Epidermal Growth Factor and Insulin/Insulin-Like Growth Factor Receptors To Mediate Constitutive Myc Expression

    OpenAIRE

    Kong, Kathleen; Kumar, Manish; Taruishi, Midori; Javier, Ronald T.

    2015-01-01

    The E4-ORF1 protein encoded by human adenovirus stimulates viral replication in human epithelial cells by binding and activating cellular phosphatidylinositol 3-kinase (PI3K) at the plasma membrane and cellular Myc in the nucleus. In this study, we showed that E4-ORF1 hijacks the tyrosine kinase activities of cellular epidermal growth factor receptor (EGFR) and insulin receptor (InsR)/insulin-like growth factor receptor 1 (IGF1R), as well as the lipid kinase activity of PI3K, to mediate const...

  1. The impact of pegvisomant treatment on substrate metabolism and insulin sensitivity in patients with acromegaly

    DEFF Research Database (Denmark)

    Lindberg-Larsen, Rune; Møller, Niels; Schmitz, Ole

    2007-01-01

    CONTEXT: Pegvisomant is a specific GH receptor antagonist that is able to normalize serum IGF-I concentrations in most patients with acromegaly. The impact of pegvisomant on insulin sensitivity and substrate metabolism is less well described. PATIENTS AND METHODS: We assessed basal and insulin......-stimulated (euglycemic clamp) substrate metabolism in seven patients with active acromegaly before and after 4-wk pegvisomant treatment (15 mg/d) in an open design. RESULTS: After pegvisomant, IGF-I decreased, whereas GH increased (IGF-I, 621 +/- 82 vs. 247 +/- 33 microg/liter, P = 0.02; GH, 5.3 +/- 1.5 vs. 10.8 +/- 3...... vs. 1563 +/- 101 kcal/24 h, P = 0.03), but the rate of lipid oxidation did not change significantly. CONCLUSIONS: 1) Pegvisomant treatment for 4 wk improves peripheral and hepatic insulin sensitivity in acromegaly. 2) This is associated with a decrease in resting energy expenditure, whereas free...

  2. No association of the G972S polymorphism of the insulin receptor substrate-1 gene with polycystic ovary syndrome in lean PCOS women with biochemical hyperandrogenemia.

    Science.gov (United States)

    Marioli, Dimitra J; Koika, Vasiliki; Adonakis, George L; Saltamavros, Alexandros D; Karela, Anastasia; Armeni, Anastasia K; Tsapanos, Vasilios S; Decavalas, George O; Georgopoulos, Neoklis A

    2010-06-01

    The aim of the present study was to determine the prevalence and association of the G972S polymorphism of the insulin receptor substrate-1 gene (IRS-1 G972S SNP) with polycystic ovary syndrome (PCOS) and insulin resistance-related traits in a distinct phenotypic group of lean PCOS women with biochemical hyperandrogenemia, excluding obesity, which is considered to be an aggravating parameter of insulin resistance. The study included 162 women with PCOS and 122 regularly menstruating, ovulatory women as controls. Physical measurements included weight, height, fat-free mass, fat mass, systolic and diastolic blood pressure and resting heart rate. Biochemical parameters included the serum testosterone, free testosterone, androstenedione, total cholesterol, triglycerides, HDL and LDL cholesterol and glucose levels. Insulin resistance was assessed by determining fasting insulin levels, fasting glucose levels, the fasting glucose/insulin ratio, as well as the HOMA and QUICKI indexes. All DNA samples were genotyped by a PCR-restriction fragment length polymorphism (RLFP) assay. No association of the genotype frequencies of the G972S polymorphism in insulin receptor substrate-1 gene (IRS-1 G972S SNP) with PCOS phenotype and insulin resistance was detected. The G972S polymorphism of the IRS-1 gene should not be viewed as major contributor to the development of PCOS or as a causative variant for insulin resistance.

  3. Small G proteins in insulin action: Rab and Rho families at the crossroads of signal transduction and GLUT4 vesicle traffic.

    Science.gov (United States)

    Ishikura, S; Koshkina, A; Klip, A

    2008-01-01

    Insulin stimulates glucose uptake into muscle and adipose tissues through glucose transporter 4 (GLUT4). GLUT4 cycles between the intracellular compartments and the plasma membrane. GLUT4 traffic-regulating insulin signals are largely within the insulin receptor-insulin receptor substrate-phosphatidylinositol 3-kinase (IR-IRS-PI3K) axis. In muscle cells, insulin signal bifurcates downstream of the PI3K into one arm leading to the activation of the Ser/Thr kinases Akt and atypical protein kinase C, and another leading to the activation of Rho family protein Rac1 leading to actin remodelling. Activated Akt inactivates AS160, a GTPase-activating protein for Rab family small G proteins. Here we review the roles of Rab and Rho proteins, particularly Rab substrates of AS160 and Rac1, in insulin-stimulated GLUT4 traffic. We discuss: (1) how distinct steps in GLUT4 traffic may be regulated by discrete Rab proteins, and (2) the importance of Rac1 activation in insulin-induced actin remodelling in muscle cells, a key element for the net gain in surface GLUT4.

  4. Insulin receptors in the mammary gland

    International Nuclear Information System (INIS)

    Smith, D.H.

    1986-01-01

    Insulin binding studies were conducted using mammary membrane preparations to further the authors understanding of insulin's role in regulating mammary metabolism, particularly ruminant mammary metabolism. Specific objectives were to: (1) characterize insulin binding to bovine mammary microsomes and determine if the specificity and kinetics of binding indicate the presence of insulin receptors in bovine mammary gland; (2) examine and compare insulin binding by liver and mammary microsomes of the pig and dairy cow; (3) examine insulin binding to bovine milk fat globule membranes (MFGM) and evaluate this model's usefulness in assessing insulin receptor regulation in the mammary gland of the cow; (4) examine the effect of dietary fat in insulin binding by rat mammary and liver microsomes. The specificity and kinetics of 125 I-insulin binding of bovine mammary microsomes indicated the presence of insulin receptors in bovine mammary gland. Bovine liver and mammary microsomes specifically bound less 125 I-insulin than did the corresponding porcine microsomes, and mammary microsomes, regardless of species, specifically bound less 125 I-insulin than did liver microsomes. These differences in binding suggest differences in insulin responsiveness between pigs and cattle, as well as between the liver and mammary glands

  5. Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling

    DEFF Research Database (Denmark)

    Argetsinger, L S; Norstedt, G; Billestrup, Nils

    1996-01-01

    In this report, we demonstrate that insulin receptor substrate-2 (IRS-2) is tyrosyl-phosphorylated following stimulation of 3T3-F442A fibroblasts with growth hormone (GH), leukemia inhibitory factor and interferon-gamma. In response to GH and leukemia inhibitory factor, IRS-2 is immediately...... for GH is further demonstrated by the finding that GH stimulates association of IRS-2 with the 85-kDa regulatory subunit of phosphatidylinositol 3'-kinase and with the protein-tyrosine phosphatase SHP2. These results are consistent with the possibility that IRS-2 is a downstream signaling partner...

  6. Codon 972 polymorphism in the insulin receptor substrate-1 gene, obesity, and risk of noninsulin-dependent diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Sigal, R.J.; Doria, A.; Warram, J.H.; Krolewski, A.S. [Joslin Diabetes Center, Boston, MA (United States)

    1996-04-01

    Because of the role of insulin receptor substrate-1 in insulin action, the insulin receptor substrate-1 gene is a candidate gene for noninsulin-dependent diabetes mellitus (NIDDM). Modest associations between NIDDM and a GGG-AGG single base substitution (corresponding to a glycine-arginine amino acid substitution) in codon 972 of the gene have been found, but none reached statistical significance. To examine further how large a proportion of NIDDM cases could be caused by the mutation, we performed a stratified analysis combining the results from the 6 earlier studies and those from our panel of 192 unrelated NIDDM subjects and 104 healthy controls. In addition, we looked for a possibility that the codon 972 mutation plays a role only in the presence of certain conditions. Genomic DNA samples obtained from NIDDM cases and healthy controls were genotyped using a PCR-restriction fragment length polymorphism protocol modified for genomic DNA. The GGG{r_arrow}AGG substitution was found in 5.7% of the diabetic subjects (11 of 192) and 6.9% of the controls (7 of 104). The difference between groups was not statistically significant, and it was not different from the results of other studies. The Mantel-Haenszel summary odds ratio across all studies was 1.49 (P < 0.05; 95% confidence intervals, 1.01-2.2). This summary odds ratio is consistent with a small proportion of NIDDM cases ({approximately}3%) being caused by the mutation. Exploratory subgroup analyses on our panel suggested a clustering of NIDDM, the codon 972 mutation, and overweight, raising the hypothesis that the mutation may predispose to NIDDM only in the presence of excess body weight. 9 refs., 2 tabs.

  7. Studies on insulin receptor, 2. Studies on the influence of starvation and high fat diet on insulin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y [Hiroshima Univ. (Japan). School of Medicine

    1979-08-01

    The present study is to investigate an influence of starvation and high fat diet on insulin receptor of the plasma membrane by means of radioreceptor assay using /sup 125/I-labelled insulin. Male guinea pigs of Hartley strain were employed for the starvation study, and /sup 125/I-insulin binding capacity on the plasma membrane of the liver and kidney was determined at 24, 48 and 72 hours of the fast after the last meal. Male rats of Wistar strain were employed for the high fat study where the diet containing 35% of butter was fed ad libitum for 38 or 68 days. The animals were killed at the fast of 12 hours, and /sup 125/I-insulin binding capacity on the plasma membrane of the liver was determined. The results obtained are summarized as follows: 1) An increase in /sup 125/I-insulin binding capacity on the plasma membrane of the liver and kidney was observed by the starvation for 24 to 72 hours. 2) The mechanism of the increase by starvation was considered to be different by the organs; it was due to an increase in number of insulin receptor in the liver, and due to an increase in affinity of insulin receptor in the kidney. 3) In non-obese rats fed with high fat diet, the number of insulin receptor on the liver plasma membrane showed a decrease, and this observation clearly indicated that the decrease in number of the receptor did not depend on the obesity. 4) Obese rats also fed with high fat diet presented a decrease in number of insulin receptor without an elevation of insulin levels in the circulating blood. This indicated that at least in the obese rats fed with high fat diet, the decrease in number of the receptor was not due to hyperinsulinemia.

  8. Insulin receptor internalization defect in an insulin-resistant mouse melanoma cell line

    International Nuclear Information System (INIS)

    Androlewicz, M.J.; Straus, D.S.; Brandenburg, D.F.

    1989-01-01

    Previous studies from this laboratory demonstrated that the PG19 mouse melanoma cell line does not exhibit a biological response to insulin, whereas melanoma x mouse embryo fibroblast hybrids do respond to insulin. To investigate the molecular basis of the insulin resistance of the PG19 melanoma cells, insulin receptors from the insulin-resistant melanoma cells and insulin-sensitive fibroblast x melanoma hybrid cells were analyzed by the technique of photoaffinity labeling using the photoprobe 125 I-NAPA-DP-insulin. Photolabeled insulin receptors from the two cell types have identical molecular weights as determined by SDS gel electrophoresis under reducing and nonreducing conditions, indicating that the receptors on the two cell lines are structurally similar. Insulin receptor internalization studies revealed that the hybrid cells internalize receptors to a high degree at 37 degree C, whereas the melanoma cells internalize receptors to a very low degree or not at all. The correlation between ability to internalize insulin receptors and sensitivity to insulin action in this system suggests that uptake of the insulin-receptor complex may be required for insulin action in these cells. Insulin receptors from the two cell lines autophosphorylate in a similar insulin-dependent manner both in vitro and in intact cells, indicating that insulin receptors on the melanoma and hybrid cells have functional tyrosine protein kinase activity. Therefore, the block in insulin action in the PG19 melanoma cells appears to reside at a step beyond insulin-stimulated receptor autophosphorylation

  9. APPL1 potentiates insulin sensitivity by facilitating the binding of IRS1/2 to the insulin receptor.

    Science.gov (United States)

    Ryu, Jiyoon; Galan, Amanda K; Xin, Xiaoban; Dong, Feng; Abdul-Ghani, Muhammad A; Zhou, Lijun; Wang, Changhua; Li, Cuiling; Holmes, Bekke M; Sloane, Lauren B; Austad, Steven N; Guo, Shaodong; Musi, Nicolas; DeFronzo, Ralph A; Deng, Chuxia; White, Morris F; Liu, Feng; Dong, Lily Q

    2014-05-22

    Binding of insulin receptor substrate proteins 1 and 2 (IRS1/2) to the insulin receptor (IR) is essential for the regulation of insulin sensitivity and energy homeostasis. However, the mechanism of IRS1/2 recruitment to the IR remains elusive. Here, we identify adaptor protein APPL1 as a critical molecule that promotes IRS1/2-IR interaction. APPL1 forms a complex with IRS1/2 under basal conditions, and this complex is then recruited to the IR in response to insulin or adiponectin stimulation. The interaction between APPL1 and IR depends on insulin- or adiponectin-stimulated APPL1 phosphorylation, which is greatly reduced in insulin target tissues in obese mice. appl1 deletion in mice consistently leads to systemic insulin resistance and a significant reduction in insulin-stimulated IRS1/2, but not IR, tyrosine phosphorylation, indicating that APPL1 sensitizes insulin signaling by acting at a site downstream of the IR. Our study uncovers a mechanism regulating insulin signaling and crosstalk between the insulin and adiponectin pathways. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Metformin and insulin receptors

    International Nuclear Information System (INIS)

    Vigneri, R.; Gullo, D.; Pezzino, V.

    1984-01-01

    The authors evaluated the effect of metformin (N,N-dimethylbiguanide), a biguanide known to be less toxic than phenformin, on insulin binding to its receptors, both in vitro and in vivo. Specific 125 I-insulin binding to cultured IM-9 human lymphocytes and MCF-7 human breast cancer cells was determined after preincubation with metformin. Specific 125 I-insulin binding to circulating monocytes was also evaluated in six controls, eight obese subjects, and six obese type II diabetic patients before and after a short-term treatment with metformin. Plasma insulin levels and blood glucose were also measured on both occasions. Metformin significantly increased insulin binding in vitro to both IM-9 lymphocytes and MCF-7 cells; the maximum increment was 47.1% and 38.0%, respectively. Metformin treatment significantly increased insulin binding in vivo to monocytes of obese subjects and diabetic patients. Scatchard analysis indicated that the increased binding was mainly due to an increase in receptor capacity. Insulin binding to monocytes of normal controls was unchanged after metformin as were insulin levels in all groups; blood glucose was significantly reduced after metformin only in diabetic patients. These data indicate that metformin increases insulin binding to its receptors in vitro and in vivo. The effect in vivo is observed in obese subjects and in obese type II diabetic patients, paralleling the clinical effectiveness of this antidiabetic agent, and is not due to receptor regulation by circulating insulin, since no variation in insulin levels was recorded

  11. Insulin receptor binding and tyrosine kinase activity in skeletal muscle from normal pregnant women and women with gestational diabetes

    DEFF Research Database (Denmark)

    Damm, P.; Handberg, A.; Kühl, C.

    1993-01-01

    OBJECTIVE: To ascertain whether the decreased glucose tolerance and insulin resistance found in normal and gestational diabetic pregnancy might be associated with changes in insulin receptor function. METHODS: Eight nonpregnant healthy women (nonpregnant controls), eight healthy pregnant women...... (pregnant controls), and eight women with gestational diabetes were investigated. All were non-obese. Muscle biopsies were obtained from the vastus lateralis muscle, and insulin binding and tyrosine kinase activities in partially purified skeletal muscle insulin receptors were studied. The pregnant controls...... with gestational diabetes compared to nonpregnant controls (P pregnant women did not differ from the other two groups. Postpartum, no differences in insulin binding were found between the groups. Basal and maximal tyrosine kinase activities toward the exogenous substrate poly(Glu4Tyr1) were...

  12. Effects of Dioscorea esculenta and Eubacterium rectale on insulin receptor substrate 1 (Irs1 Expression in skeletal muscle and homeostatic model assessment-insulin resistance (HOMA-IR in diabetic rats

    Directory of Open Access Journals (Sweden)

    . Sunarti

    2017-01-01

    Full Text Available Low expression of insulin receptor substrate 1 (Irs1 is associated with insulin resistance and type 2 diabetes mellitus (type 2 DM. This study was performed to evaluate the effects of Dioscorea esculenta and Eubacterium rectale on the Irs1 expression in the skeletal muscle and the homeostatic model assessment-insulin resistance (HOMA-IR of diabetic rats. Twenty-five male Wistar rats were divided into five groups i.e. non diabetic rats Group 1; diabetic rats as Group 2; diabetic rats + D. esculenta as Group 3; diabetic rats + E.rectale as Group 4 and diabetic rats + both E. rectale and D. esculenta as Group 5. Rats were made diabetic with induction of intraperitoneally injection of nicotinamide and streptozotocin. After four weeks of the interventions, the blood and skeletal muscles were taken. The Irs1 expression was analyzed with immunohistochemical staining, plasma glucose levels was analyzed using a spectrophotometer, and insulin was analyzed using ELISA methods. All intervention groups reduced plasma glucose levels and HOMA-IRs (p<0.001 and increased Irs1 expression. The greatest reduction of  plasma glucose levels and increase of Irs1 expression in the skeletal muscle were found in Group 4, however, the lowest of HOMA-IR was seen in Group 5. These results suggested that D.esculenta, E.rectale, and the combination reduced plasma glucose levels and HOMA-IR by increasing Irs1 expression in skeletal muscle.

  13. The Proton-Activated Receptor GPR4 Modulates Glucose Homeostasis by Increasing Insulin Sensitivity

    Directory of Open Access Journals (Sweden)

    Luca Giudici

    2013-11-01

    Full Text Available Background: The proton-activated G protein-coupled receptor GPR4 is expressed in many tissues including white adipose tissue. GPR4 is activated by extracellular protons in the physiological pH range (i.e. pH 7.7 - 6.8 and is coupled to the production of cAMP. Methods: We examined mice lacking GPR4 and examined glucose tolerance and insulin sensitivity in young and aged mice as well as in mice fed with a high fat diet. Expression profiles of pro- and anti-inflammatory cytokines in white adipose tissue, liver and skeletal muscle was assessed. Results: Here we show that mice lacking GPR4 have an improved intraperitoneal glucose tolerance test and increased insulin sensitivity. Insulin levels were comparable but leptin levels were increased in GPR4 KO mice. Gpr4-/- showed altered expression of PPARα, IL-6, IL-10, TNFα, and TGF-1β in skeletal muscle, white adipose tissue, and liver. High fat diet abolished the differences in glucose tolerance and insulin sensitivity between Gpr4+/+ and Gpr4-/- mice. In contrast, in aged mice (12 months old, the positive effect of GPR4 deficiency on glucose tolerance and insulin sensitivity was maintained. Liver and adipose tissue showed no major differences in the mRNA expression of pro- and anti-inflammatory factors between aged mice of both genotypes. Conclusion: Thus, GPR4 deficiency improves glucose tolerance and insulin sensitivity. The effect may involve an altered balance between pro- and anti-inflammatory factors in insulin target tissues.

  14. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016 (China); Wang, Jianwei, E-mail: wangjianwei1968@gmail.com [Department of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016 (China); Gu, Tieguang [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia); Yamahara, Johji [Pharmafood Institute, Kyoto 602-8136 (Japan); Li, Yuhao, E-mail: yuhao@sitcm.edu.au [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia)

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  15. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    International Nuclear Information System (INIS)

    Li, Ying; Wang, Jianwei; Gu, Tieguang; Yamahara, Johji; Li, Yuhao

    2014-01-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  16. Changing the insulin receptor to possess insulin-like growth factor I ligand specificity

    International Nuclear Information System (INIS)

    Andersen, A.S.; Kjeldsen, T.; Wiberg, F.C.; Christensen, P.M.; Rasmussen, J.S.; Norris, K.; Moeller, K.B.; Moeller, N.P.H.

    1990-01-01

    To examine the role of the N-terminal part of the insulin-like growth factor I (IGF-I) receptor and insulin receptor in determining ligand specificity, the authors prepared an expression vector encoding a hybrid receptor where exon 1 (encoding the signal peptide and seven amino acids of the α-subunit), exon 2, and exon 3 of the insulin receptor were replaced with the corresponding IGF-I receptor cDNA (938 nucleotides). To allow direct quantitative comparison of the binding capabilities of this hybrid receptor with those of the human IGF-I receptor and the insulin receptor, all three receptors were expressed in baby hamster kidney (BHK) cells as soluble molecules and partially purified before characterization. The hybrid IGF-I/insulin receptor bound IGF-I with an affinity comparable to that of the wild-type IGF-I receptor. In contrast, the hybrid receptor no longer displayed high-affinity binding of insulin. These results directly demonstrate that it is possible to change the specificity of the insulin receptor to that of the IGF-I receptor and, furthermore, that the binding specificity for IGF-I is encoded within the nucleotide sequence from 135 to 938 of the IGF-I receptor cDNA. Since the hybrid receptor only bound insulin with low affinity, the insulin binding region is likely to be located within exons 2 and 3 of the insulin receptor

  17. Insulin receptor binding and protein kinase activity in muscles of trained rats

    International Nuclear Information System (INIS)

    Dohm, G.L.; Sinha, M.K.; Caro, J.F.

    1987-01-01

    Exercise has been shown to increase insulin sensitivity, and muscle is quantitatively the most important tissue of insulin action. Since the first step in insulin action is the binding to a membrane receptor, the authors postulated that exercise training would change insulin receptors in muscle and in this study they have investigated this hypothesis. Female rats initially weighing ∼ 100 g were trained by treadmill running for 2 h/day, 6 days/wk for 4 wk at 25 m/min (0 grade). Insulin receptors from vastus intermedius muscles were solubilized by homogenizing in a buffer containing 1% Triton X-100 and then partially purified by passing the soluble extract over a wheat germ agglutinin column. The 4 wk training regimen resulted in a 65% increase in citrate synthase activity in red vastus lateralis muscle, indicating an adaptation to exercise [ 125 I]. Insulin binding by the partially purified receptor preparations was approximately doubled in muscle of trained rats at all insulin concentrations, suggesting an increase in the number of receptors. Training did not alter insulin receptor structure as evidenced by electrophoretic mobility under reducing and nonreducing conditions. Basal insulin receptor protein kinase activity was higher in trained than untrained animals and this was likely due to the greater number of receptors. However, insulin stimulation of the protein kinase activity was depressed by training. These results demonstrate that endurance training does alter receptor number and function in muscle and these changes may be important in increasing insulin sensitivity after exercise training

  18. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state

    Science.gov (United States)

    Cabail, M. Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E.; Hubbard, Stevan R.; Miller, W. Todd

    2015-03-01

    The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.

  19. Expression of insulin signalling components in the sensory epithelium of the human saccule

    DEFF Research Database (Denmark)

    Degerman, Eva; Rauch, Uwe; Lindberg, Sven

    2013-01-01

    signalling components in the inner ear is sparce. Our immunohistochemistry approach has shown that the insulin receptor, insulin receptor substrate 1 (IRS1), protein kinase B (PKB) and insulin-sensitive glucose transporter (GLUT4) are expressed in the sensory epithelium of the human saccule, which also...

  20. Dipeptidyl peptidase-4 impairs insulin signaling and promotes lipid accumulation in hepatocytes

    International Nuclear Information System (INIS)

    Rufinatscha, Kerstin; Radlinger, Bernhard; Dobner, Jochen; Folie, Sabrina; Bon, Claudia; Profanter, Elisabeth; Ress, Claudia; Salzmann, Karin; Staudacher, Gabriele; Tilg, Herbert; Kaser, Susanne

    2017-01-01

    Dipeptidyl-peptidase 4 [DPP-4) has evolved into an important target in diabetes therapy due to its role in incretin hormone metabolism. In contrast to its systemic effects, cellular functions of membranous DPP-4 are less clear. Here we studied the role of DPP-4 in hepatic energy metabolism. In order to distinguish systemic from cellular effects we established a cell culture model of DPP-4 knockdown in human hepatoma cell line HepG2. DPP-4 suppression was associated with increased basal glycogen content due to enhanced insulin signaling as shown by increased phosphorylation of insulin-receptor substrate 1 (IRS-1), protein kinase B/Akt and mitogen-activated protein kinases (MAPK)/ERK, respectively. Additionally, glucose-6-phosphatase cDNA expression was significantly decreased in DPP-4 deficiency. Reduced triglyceride content in DPP-4 knockdown cells was paralleled by enhanced expressions of peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase −1 (CPT-1) while sterol regulatory element-binding protein 1c (SREBP-1c) expression was significantly decreased. Our data suggest that hepatic DPP-4 induces a selective pathway of insulin resistance with reduced glycogen storage, enhanced glucose output and increased lipid accumulation in the liver. Hepatic DPP-4 might be a novel target in fatty liver disease in patients with glucose intolerance. - Highlights: • DPP-IV knockdown results in increased insulin signaling in hepatocytes. • Increased fatty acid oxidation and decreased lipogenesis result in reduced hepatic triglyceride content in DPP-IV deficiency. • Hepatic DPP-IV induces a selective pathway of insulin resistance with increased triglyceride accumulation in the liver.

  1. Functional characterization of autophosphorylation sites of the activated insulin receptor-tyrosine kinase

    International Nuclear Information System (INIS)

    Flores-Riveros, J.R.; Lane, M.D.

    1987-01-01

    Insulin receptor, solubilized from 3T3-L1 cellular membranes and then purified, was autophosphorylated with [γ- 32 P]ATP in the absence or presence of insulin. Specific phosphopeptides generated by trypsin digestion of the 32 P-labeled β-subunit were identified and separated by reverse phase HPLC. In the absence of insulin, radioactivity of the phosphopeptides is evenly distributed among four major peaks designated as sites I, II, III and IV, according to their order of elution. This pattern is maintained for at least the first 30 min of autophosphorylation. When the reaction is carried out in the presence of insulin, > 50% of the total 32 P radioactivity is found in site I and the rate of 32 P incorporation into this site is markedly higher than into sites II, III and IV. Maximal activation of tyrosine kinase activity, as estimated by substrate phosphorylation, is coincident with the nearly complete phosphorylation of site I. Delayed activation of previously autophosphorylated receptor by insulin, but not by EGF or IGF-I, produced a similar pattern where phosphorylated site I predominates. These observations indicate that one major insulin-regulated autophosphorylation site in the β-subunit is responsible for activation of the insulin receptor tyrosine kinase. The isolation of this phosphopeptide on a preparative scale and its characterization are now in progress

  2. Development of real-time reverse transcription polymerase chain reaction assays to quantify insulin-like growth factor receptor and insulin receptor expression in equine tissue

    Directory of Open Access Journals (Sweden)

    Stephen B. Hughes

    2013-08-01

    Full Text Available The insulin-like growth factor system (insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor 1 receptor, insulin-like growth factor 2 receptor and six insulin-like growth factor-binding proteins and insulin are essential to muscle metabolism and most aspects of male and female reproduction. Insulin-like growth factor and insulin play important roles in the regulation of cell growth, differentiation and the maintenance of cell differentiation in mammals. In order to better understand the local factors that regulate equine physiology, such as muscle metabolism and reproduction (e.g., germ cell development and fertilisation, real-time reverse transcription polymerase chain reaction assays for quantification of equine insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were developed. The assays were sensitive: 192 copies/µLand 891 copies/µL for insulin-like growth factor 1 receptor, messenger ribonucleic acid and insulin receptor respectively (95%limit of detection, and efficient: 1.01 for the insulin-like growth factor 1 receptor assay and 0.95 for the insulin receptor assay. The assays had a broad linear range of detection (seven logs for insulin-like growth factor 1 receptor and six logs for insulin receptor. This allowed for analysis of very small amounts of messenger ribonucleic acid. Low concentrations of both insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were detected in endometrium, lung and spleen samples, whilst high concentrations were detected in heart, muscle and kidney samples, this was most likely due to the high level of glucose metabolism and glucose utilisation by these tissues. The assays developed for insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid expression have been shown to work on equine tissue and will contribute to the understanding of insulin and insulin-like growth factor 1

  3. Therapeutic actions of an insulin receptor activator and a novel peroxisome proliferator-activated receptor gamma agonist in the spontaneously hypertensive obese rat model of metabolic syndrome X.

    Science.gov (United States)

    Velliquette, Rodney A; Friedman, Jacob E; Shao, J; Zhang, Bei B; Ernsberger, Paul

    2005-07-01

    Insulin resistance clusters with hyperlipidemia, impaired glucose tolerance, and hypertension as metabolic syndrome X. We tested a low molecular weight insulin receptor activator, demethylasterriquinone B-1 (DMAQ-B1), and a novel indole peroxisome proliferator-activated receptor gamma agonist, 2-(2-(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid (PPEIA), in spontaneously hypertensive obese rats (SHROB), a genetic model of syndrome X. Agents were given orally for 19 days. SHROB showed fasting normoglycemia but impaired glucose tolerance after an oral load, as shown by increased glucose area under the curve (AUC) [20,700 mg x min/ml versus 8100 in lean spontaneously hypertensive rats (SHR)]. Insulin resistance was indicated by 20-fold excess fasting insulin and increased insulin AUC (6300 ng x min/ml versus 990 in SHR). DMAQ-B1 did not affect glucose tolerance (glucose AUC = 21,300) but reduced fasting insulin 2-fold and insulin AUC (insulin AUC = 4300). PPEIA normalized glucose tolerance (glucose AUC = 9100) and reduced insulin AUC (to 3180) without affecting fasting insulin. PPEIA also increased food intake, fat mass, and body weight gain (81 +/- 12 versus 45 +/- 8 g in untreated controls), whereas DMAQ-B1 had no effect on body weight but reduced subscapular fat mass. PPEIA but not DMAQ-B1 reduced blood pressure. In skeletal muscle, insulin-stimulated phosphorylation of the insulin receptor and insulin receptor substrate protein 1-associated phosphatidylinositol 3-kinase activity were decreased by 40 to 55% in SHROB relative to lean SHR. PPEIA, but not DMAQ-B1, enhanced both insulin actions. SHROB also showed severe hypertriglyceridemia (355 +/- 42 mg/dl versus 65 +/- 3 in SHR) attenuated by both agents (DMAQ-B1, 228 +/- 18; PPEIA, 79 +/- 3). Both these novel antidiabetic agents attenuate insulin resistance and hypertriglyceridemia associated with metabolic syndrome but via distinct mechanisms.

  4. Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects.

    Science.gov (United States)

    Reyna, Sara M; Ghosh, Sangeeta; Tantiwong, Puntip; Meka, C S Reddy; Eagan, Phyllis; Jenkinson, Christopher P; Cersosimo, Eugenio; Defronzo, Ralph A; Coletta, Dawn K; Sriwijitkamol, Apiradee; Musi, Nicolas

    2008-10-01

    OBJECTIVE- Tall-like receptor (TLR)4 has been implicated in the pathogenesis of free fatty acid (FFA)-induced insulin resistance by activating inflammatory pathways, including inhibitor of kappaB (IkappaB)/nuclear factor kappaB (NFkappaB). However, it is not known whether insulin-resistant subjects have abnormal TLR4 signaling. We examined whether insulin-resistant subjects have abnormal TLR4 expression and TLR4-driven (IkappaB/NFkappaB) signaling in skeletal muscle. RESEARCH DESIGN AND METHODS- TLR4 gene expression and protein content were measured in muscle biopsies in 7 lean, 8 obese, and 14 type 2 diabetic subjects. A primary human myotube culture system was used to examine whether FFAs stimulate IkappaB/NFkappaB via TLR4 and whether FFAs increase TLR4 expression/content in muscle. RESULTS- Obese and type 2 diabetic subjects had significantly elevated TLR4 gene expression and protein content in muscle. TLR4 muscle protein content correlated with the severity of insulin resistance. Obese and type 2 diabetic subjects also had lower IkappaBalpha content, an indication of elevated IkappaB/NFkappaB signaling. The increase in TLR4 and NFkappaB signaling was accompanied by elevated expression of the NFkappaB-regulated genes interleukin (IL)-6 and superoxide dismutase (SOD)2. In primary human myotubes, acute palmitate treatment stimulated IkappaB/NFkappaB, and blockade of TLR4 prevented the ability of palmitate to stimulate the IkappaB/NFkappaB pathway. Increased TLR4 content and gene expression observed in muscle from insulin-resistant subjects were reproduced by treating myotubes from lean, normal-glucose-tolerant subjects with palmitate. Palmitate also increased IL-6 and SOD2 gene expression, and this effect was prevented by inhibiting NFkappaB. CONCLUSIONS- Abnormal TLR4 expression and signaling, possibly caused by elevated plasma FFA levels, may contribute to the pathogenesis of insulin resistance in humans.

  5. Studies on interaction of insulin and insulin receptor in rat liver cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y; Hara, H; Kawate, R; Kawasaki, T [Hiroshima Univ. (Japan). School of Medicine

    1975-07-01

    Rat liver was homogenized with a Polytron PT 20 ST and fractionated by differential centrifugation. Prepared plasma membranes (100 ..mu..g protein) were incubated with enzymatically iodinated /sup 125/I-insulin (0.3 ng, specific activity 107 ..mu..Ci/..mu..g) in 25 mM Tris-HCl buffer, pH 7.5, containing 0.9% NaCl and 1% bovine serum albumin. The 12,000xg- and 17,000xg-sediments obtained after subfractionation of liver homogenates showed almost equally high specific binding activity with /sup 125/I-insulin and less activity was detected in the 600 g-, 5,000 g- and 40,000 g- sediments and the 40,000 g- supernatant. Specific binding of insulin with the membrane fraction was time-, temperature- and ionic strength-dependent. The highest binding was obtained under conditions in which the membrane fraction was incubated with insulin for 24 hours at 4/sup 0/C in the buffer containing 1 M NaCl. Under these conditions, specific binding of /sup 125/I-insulin was 26.8% of the total radioactivity. The effect of native insulin on the binding of /sup 125/I-insulin with the membrane fraction was studied in the range of 0--6.4 x 10/sup 5/ ..mu..U/ml of unlabeled insulin and a distinct competitive displacement of /sup 125/I-insulin with native insulin was observed between 10 and 10/sup 4/ ..mu..U/ml. Kinetic studies by Scatchard plot analysis of the above results revealed heterogeneity in insulin receptors or receptor sites, one with a high affinity of 10/sup 9/ M/sup -1/ order and the other with a low affinity of 10/sup 8/ M/sup -1/ order. Both affinities were also affected by temperature and ionic strength.

  6. Dithiothreitol activation of the insulin receptor/kinase does not involve subunit dissociation of the native α2β2 insulin receptor subunit complex

    International Nuclear Information System (INIS)

    Sweet, L.J.; Wilden, P.A.; Pessin, J.E.

    1986-01-01

    The subunit composition of the dithiothreitol- (DTT) activated insulin receptor/kinase was examined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and gel filtration chromatography under denaturing or nondenaturing conditions. Pretreatment of 32 P-labeled insulin receptors with 50 mM DTT followed by gel filtration chromatography in 0.1% SDS demonstrated the dissociation of the α 2 β 2 insulin receptor complex (M/sub r/ 400,000) into the monomeric 95,000 β subunit. In contrast, pretreatment of the insulin receptors with 1-50 mM DTT followed by gel filtration chromatography in 0.1% Triton X-100 resulted in no apparent alteration in mobility compared to the untreated insulin receptors. Resolution of this complex by nonreducing SDS-polyacrylamide gel electrophoresis and autoradiography demonstrated the existence of the α 2 β 2 heterotetrameric complex with essentially no αβ heterodimeric or free monomeric β subunit species present. This suggests that the insulin receptor can reoxidize into the M/sub r/ 400,000 complex after the removal of DTT by gel filtration chromatography. To prevent reoxidation, the insulin receptors were pretreated with 50 mM DTT. Under the conditions the insulin receptors migrated as the M/sub r/ 400,000 α 2 β 2 complex. These results demonstrate that treatment of the insulin receptors with high concentrations of DTT, followed by removal of DTT by gel filtration, results in reoxidation of the reduced α 2 β 2 insulin receptor complex. Further, these results document that although the DTT stimulation of the insulin receptor/kinase does involve reduction of the insulin receptor subunits, it does not result in dissociation of the native α 2 β 2 insulin receptor subunit complex

  7. Evaluation of organ-specific glucose metabolism by 18F-FDG in insulin receptor substrate-1 (IRS-1) knockout mice as a model of insulin resistance

    International Nuclear Information System (INIS)

    Cheng, Chao; Nakamura, Akinobu; Minamimoto, Ryogo; Shinoda, Kazuaki; Tateishi, Ukihide; Terauchi, Yasuo; Inoue, Tomio; Goto, Atsuhi; Kadowaki, Takashi

    2011-01-01

    Insulin resistance (IR) is a physiological condition in which the body produces insulin but does not result in a sufficient biological effect. Insulin resistance is usually asymptomatic but is associated with health problems and is a factor in the metabolic syndrome. The aim of the present study is to clarify organ-specific insulin resistance in normal daily conditions using [ 18 F]-2-fluoro-2-deoxy-D-glucose ([ 18 F]-FDG). The biodistribution of [ 18 F]-FDG was examined in insulin receptor substrate-1 (IRS-1) knockout mice, an animal model of skeletal muscle insulin resistance, and C57BL/6J (wild-type) mice with and without insulin loading. Mice received 0.5 MBq of [ 18 F]-FDG injected into the tail vein, immediately followed by nothing (control cohorts) or an intraperitoneal injection of 1.5 mU/g body weight of human insulin as an insulin loading test. Blood glucose concentrations for all of the experimental animals were assessed at 0, 20, 40, and 60 min post-injection. The mice were subsequently killed, and tissue was collected for evaluation of [ 18 F]-FDG biodistribution. The radioactivity of each organ was measured using a gamma counter. In the absence of insulin, the blood glucose concentrations of wild-type mice (132±26 mg/dl) and IRS-1 knockout mice (134±18 mg/dl) were not significantly different. Blood glucose concentrations decreased following insulin administration, with lower concentrations in wild-type mice than in knockout mice at 20, 40, and 60 min. A statistically significant difference in [ 18 F]-FDG uptake between wild-type mice and IRS-1 knockout mice was confirmed in the heart, abdominal muscle, and femoral muscle. With insulin loading, [ 18 F]-FDG uptake in the heart, back muscle, and abdominal muscle was significantly increased compared to without insulin loading in both wild-type mice and knockout mice. Our results showed that IR significantly affected [ 18 F]-FDG uptake in the heart in normal daily conditions. IR was associated with

  8. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR.

    Science.gov (United States)

    Yin, Yancun; Hua, Hui; Li, Minjing; Liu, Shu; Kong, Qingbin; Shao, Ting; Wang, Jiao; Luo, Yuanming; Wang, Qian; Luo, Ting; Jiang, Yangfu

    2016-01-01

    Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor(+/+) MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor(-/-) MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation.

  9. Insulin and insulin-like growth factor receptors and responses

    International Nuclear Information System (INIS)

    Roth, R.A.; Steele-Perkins, G.; Hari, J.; Stover, C.; Pierce, S.; Turner, J.; Edman, J.C.; Rutter, W.J.

    1988-01-01

    Insulin is a member of a family of structurally related hormones with diverse physiological functions. In humans, the best-characterized members of this family include insulin, insulin-like growth factor (IGF)-I, and IGF-II. Each of these three polypeptide hormones has its own distinct receptor. The structures of each of these receptors have now been deduced from analyses of isolated cDNA clones. To study further the responses mediated through these three different receptors, the authors have been studying cells expressing the proteins encoded by these three cDNAs. The isolated cDNAs have been transfected into Chinese hamster ovary (CHO) cells, and the resulting transfected cell lines have been characterized as to the ligand-binding activities and signal-transducing activities of the expressed proteins

  10. Absence of down-regulation of the insulin receptor by insulin. A possible mechanism of insulin resistance in the rat.

    OpenAIRE

    Walker, A P; Flint, D J

    1983-01-01

    Insulin resistance occurs in rat adipocytes during pregnancy and lactation despite increased or normal insulin binding respectively; this suggests that a post-receptor defect exists. The possibility has been examined that, although insulin binding occurs normally, internalization of insulin or its receptor may be impaired in these states. Insulin produced a dose-dependent reduction in the number of insulin receptors on adipocytes from virgin rats maintained in culture medium, probably due to ...

  11. The inability of phosphatidylinositol 3-kinase activation to stimulate GLUT4 translocation indicates additional signaling pathways are required for insulin-stimulated glucose uptake.

    Science.gov (United States)

    Isakoff, S J; Taha, C; Rose, E; Marcusohn, J; Klip, A; Skolnik, E Y

    1995-10-24

    Recent experimental evidence has focused attention to the role of two molecules, insulin receptor substrate 1 (IRS-1) and phosphatidylinositol 3-kinase (PI3-kinase), in linking the insulin receptor to glucose uptake; IRS-1 knockout mice are insulin resistant, and pharmacological inhibitors of PI3-kinase block insulin-stimulated glucose uptake. To investigate the role of PI3-kinase and IRS-1 in insulin-stimulated glucose uptake we examined whether stimulation of insulin-sensitive cells with platelet-derived growth factor (PDGF) or with interleukin 4 (IL-4) stimulates glucose uptake; the activated PDGF receptor (PDGFR) directly binds and activates PI3-kinase, whereas the IL-4 receptor (IL-4R) activates PI3-kinase via IRS-1 or the IRS-1-related molecule 4PS. We found that stimulation of 3T3-L1 adipocytes with PDGF resulted in tyrosine phosphorylation of the PDGFR and activation of PI3-kinase in these cells. To examine whether IL-4 stimulates glucose uptake, L6 myoblasts were engineered to overexpress GLUT4 as well as both chains of the IL-4R (L6/IL-4R/GLUT4); when these L6/IL-4R/GLUT4 myoblasts were stimulated with IL-4, IRS-1 became tyrosine phosphorylated and associated with PI3-kinase. Although PDGF and IL-4 can activate PI3-kinase in the respective cell lines, they do not possess insulin's ability to stimulate glucose uptake and GLUT4 translocation to the plasma membrane. These findings indicate that activation of PI3-kinase is not sufficient to stimulate GLUT4 translocation to the plasma membrane. We postulate that activation of a second signaling pathway by insulin, distinct from PI3-kinase, is necessary for the stimulation of glucose uptake in insulin-sensitive cells.

  12. Agonism and antagonism at the insulin receptor

    DEFF Research Database (Denmark)

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new...... insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been...... shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B'29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR...

  13. Angiotensin II receptor blocker ameliorates stress-induced adipose tissue inflammation and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Motoharu Hayashi

    Full Text Available A strong causal link exists between psychological stress and insulin resistance as well with hypertension. Meanwhile, stress-related responses play critical roles in glucose metabolism in hypertensive patients. As clinical trials suggest that angiotensin-receptor blocker delays the onset of diabetes in hypertensive patients, we investigated the effects of irbesartan on stress-induced adipose tissue inflammation and insulin resistance. C57BL/6J mice were subjected to 2-week intermittent restraint stress and orally treated with vehicle, 3 and 10 mg/kg/day irbesartan. The plasma concentrations of lipid and proinflammatory cytokines [Monocyte Chemoattractant Protein-1 (MCP-1, tumor necrosis factor-α, and interleukin-6] were assessed with enzyme-linked immunosorbent assay. Monocyte/macrophage accumulation in inguinal white adipose tissue (WAT was observed with CD11b-positive cell counts and mRNA expressions of CD68 and F4/80 using immunohistochemistry and RT-PCR methods respectively. The mRNA levels of angiotensinogen, proinflammatory cytokines shown above, and adiponectin in WAT were also assessed with RT-PCR method. Glucose metabolism was assessed by glucose tolerance tests (GTTs and insulin tolerance tests, and mRNA expression of insulin receptor substrate-1 (IRS-1 and glucose transporter 4 (GLUT4 in WAT. Restraint stress increased monocyte accumulation, plasma free fatty acids, expression of angiotensinogen and proinflammatory cytokines including MCP-1, and reduced adiponectin. Irbesartan reduced stress-induced monocyte accumulation in WAT in a dose dependent manner. Irbesartan treatment also suppressed induction of adipose angiotensinogen and proinflammatory cytokines in WAT and blood, and reversed changes in adiponectin expression. Notably, irbesartan suppressed stress-induced reduction in adipose tissue weight and free fatty acid release, and improved insulin tolerance with restoration of IRS-1 and GLUT4 mRNA expressions in WAT. The results

  14. Light regulation of the insulin receptor in the retina.

    Science.gov (United States)

    Rajala, Raju V S; Anderson, Robert E

    2003-10-01

    The peptide hormone insulin binds its cognate cell-surface receptors to activate a coordinated biochemical-signaling network and to induce intracellular events. The retina is an integral part of the central nervous system and is known to contain insulin receptors, although their function is unknown. This article, describes recent studies that link the photobleaching of rhodopsin to tyrosine phosphorylation of the insulin receptor and subsequent activation of phosphoinositide 3- kinase (PI3K). We recently found a light-dependent increase in tyrosine phosphorylation of the insulin receptor-beta-subunit (IR beta) and an increase in PI3K enzyme activity in isolated rod outer segments (ROS) and in anti-phosphotyrosine (PY) and anti-IR beta immunoprecipitates of retinal homogenates. The light effect, which was localized to photoreceptor neurons, is independent of insulin secretion. Our results suggest that light induces tyrosine phosphorylation of IR beta in outer-segment membranes, which leads to the binding of p85 through its N-terminal SH2 domain and the generation of PI-3,4,5-P3. We suggest that the physiological role of this process may be to provide neuroprotection of the retina against light damage by activating proteins that protect against stress-induced apoptosis. The studies linking PI3K activation through tyrosine phosphorylation of IR beta now provide physiological relevance for the presence of these receptors in the retina.

  15. Insulin receptor substrate proteins create a link between the tyrosine phosphorylation cascade and the Ca2+-ATPases in muscle and heart.

    Science.gov (United States)

    Algenstaedt, P; Antonetti, D A; Yaffe, M B; Kahn, C R

    1997-09-19

    Following phosphorylation by the insulin receptor kinase, the insulin receptor substrates (IRS)-1 and IRS-2 bind to and activate several Src homology 2 (SH2) domain proteins. To identify novel proteins that interact with IRS proteins in muscle, a human skeletal muscle cDNA expression library was created in the lambdaEXlox system and probed with baculovirus-produced and tyrosine-phosphorylated human IRS-1. One clone of the 10 clones which was positive through three rounds of screening represented the C terminus of the human homologue of the adult fast twitch skeletal muscle Ca2+-ATPase (SERCA1) including the cytoplasmic tail and part of transmembrane region 10. Western blot analysis of extracts of rat muscle demonstrated co-immunoprecipitation of both IRS-1 and IRS-2 with the skeletal muscle Ca2+-ATPase (SERCA1) and the cardiac muscle isoform (SERCA2). In both cases, injection of insulin stimulated a 2- to 6-fold increase in association of which was maximal within 5 min. In primary cultures of aortic smooth muscle cells and C2C12 cells, the insulin-stimulated interaction between IRS proteins and SERCA1 and -2 was dose-dependent with a maximum induction at 100 nM insulin. This interaction was confirmed in a "pull down" experiment using a glutathione S-transferase fusion protein containing the C terminus of the human SERCA isoform and phosphorylated IRS-1 in vitro and could be blocked by a FLVRES-like domain peptide present in the human SERCA sequence. Affinity chromatography of phosphopeptide libraries using the glutathione S-transferase fusion protein of the C terminus of SERCA1 indicated a consensus sequence for binding of XpYGSS; this is identical to potential tyrosine phosphorylation sites at position 431 of human IRS-1 and at position 500 of human IRS-2. In streptozotocin diabetic rats the interaction between IRS proteins and SERCA1 in skeletal muscle and SERCA2 in cardiac muscle was significantly reduced. Taken together, these results indicate that the IRS

  16. Nature and regulation of the insulin receptor: structure and function

    International Nuclear Information System (INIS)

    Czech, M.P.

    1985-01-01

    Native, cell-surface insulin receptor consists of two glycoprotein subunit types with apparent masses of about 125,000 daltons (alpha subunit) and 90,000 daltons (beta subunit). The alpha and beta insulin-receptor subunits seem to have distinct functions such that alpha appears to bind hormone whereas beta appears to possess intrinsic tyrosine kinase activity. In detergent extracts, insulin activates receptor autophosphorylation of tyrosine residues on its beta subunit, whereas in the presence of reductant, the alpha subunit is also phosphorylated. In intact cells, insulin activates serine/threonine phosphorylation of insulin receptor beta subunit as well as tyrosine phosphorylation. The biological role of the receptor-associated tyrosine kinase is not known. The insulin receptor kinase is regulated by beta-adrenergic agonists and other agents that elevate cAMP in adipocytes, presumably via the cAMP-dependent protein kinase. Such agents decrease receptor affinity for insulin and partially uncouple receptor tyrosine kinase activity from activation by insulin. These effects appear to contribute to the biological antagonism between insulin and beta-agonists. These data suggest the hypothesis that a complex network of tyrosine and serine/threonine phosphorylations on the insulin receptor modulate its binding and kinase activities in an antagonistic manner

  17. Hibiscus sabdariffa polyphenols prevent palmitate-induced renal epithelial mesenchymal transition by alleviating dipeptidyl peptidase-4-mediated insulin resistance.

    Science.gov (United States)

    Huang, Chien-Ning; Wang, Chau-Jong; Yang, Yi-Sun; Lin, Chih-Li; Peng, Chiung-Huei

    2016-01-01

    Diabetic nephropathy has a significant socioeconomic impact, but its mechanism is unclear and needs to be examined. Hibiscus sabdariffa polyphenols (HPE) inhibited high glucose-induced angiotensin II receptor-1 (AT-1), thus attenuating renal epithelial mesenchymal transition (EMT). Recently, we reported HPE inhibited dipeptidyl-peptidase-4 (DPP-4, the enzyme degrades type 1 glucagon-like peptide (GLP-1)), which mediated insulin resistance signals leading to EMT. Since free fatty acids can realistically bring about insulin resistance, using the palmitate-stimulated cell model in contrast with type 2 diabetic rats, in this study we examined if insulin resistance causes renal EMT, and the preventive effect of HPE. Our findings reveal that palmitate hindered 30% of glucose uptake. Treatment with 1 mg mL(-1) of HPE and the DPP-4 inhibitor linagliptin completely recovered insulin sensitivity and palmitate-induced signal cascades. HPE inhibited DPP-4 activity without altering the levels of DPP-4 and the GLP-1 receptor (GLP-1R). HPE decreased palmitate-induced phosphorylation of Ser307 of insulin receptor substrate-1 (pIRS-1 (S307)), AT-1 and vimentin, while increasing phosphorylation of phosphatidylinositol 3-kinase (pPI3K). IRS-1 knockdown revealed its essential role in mediating downstream AT-1 and EMT. In type 2 diabetic rats, it suggests that HPE concomitantly decreased the protein levels of DPP-4, AT-1, vimentin, and fibronectin, but reversed the in vivo compensation of GLP-1R. In conclusion, HPE improves insulin sensitivity by attenuating DPP-4 and the downstream signals, thus decreasing AT-1-mediated tubular-interstitial EMT. HPE could be an adjuvant to prevent diabetic nephropathy.

  18. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model

    Science.gov (United States)

    Canelles, Sandra; Argente, Jesús; Barrios, Vicente

    2016-01-01

    ABSTRACT Insulin receptor substrate-2-deficient (IRS2−/−) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  19. In vitro phosphorylation of insulin receptor substrate 1 by protein kinase C-zeta: functional analysis and identification of novel phosphorylation sites.

    Science.gov (United States)

    Sommerfeld, Mark R; Metzger, Sabine; Stosik, Magdalene; Tennagels, Norbert; Eckel, Jürgen

    2004-05-18

    Protein kinase C-zeta (PKC-zeta) participates both in downstream insulin signaling and in the negative feedback control of insulin action. Here we used an in vitro approach to identify PKC-zeta phosphorylation sites within insulin receptor substrate 1 (IRS-1) and to characterize the functional implications. A recombinant IRS-1 fragment (rIRS-1(449)(-)(664)) containing major tyrosine motifs for interaction with phosphatidylinositol (PI) 3-kinase strongly associated to the p85alpha subunit of PI 3-kinase after Tyr phosphorylation by the insulin receptor. Phosphorylation of rIRS-1(449)(-)(664) by PKC-zeta induced a prominent inhibition of this process with a mixture of classical PKC isoforms being less effective. Both PKC-zeta and the classical isoforms phosphorylated rIRS-1(449)(-)(664) on Ser(612). However, modification of this residue did not reduce the affinity of p85alpha binding to pTyr-containing peptides (amino acids 605-615 of rat IRS-1), as determined by surface plasmon resonance. rIRS-1(449)(-)(664) was then phosphorylated by PKC-zeta using [(32)P]ATP and subjected to tryptic phosphopeptide mapping based on two-dimensional HPLC coupled to mass spectrometry. Ser(498) and Ser(570) were identified as novel phosphoserine sites targeted by PKC-zeta. Both sites were additionally confirmed by phosphopeptide mapping of the corresponding Ser --> Ala mutants of rIRS-1(449)(-)(664). Ser(570) was specifically targeted by PKC-zeta, as shown by immunoblotting with a phosphospecific antiserum against Ser(570) of IRS-1. Binding of p85alpha to the S570A mutant was less susceptible to inhibition by PKC-zeta, when compared to the S612A mutant. In conclusion, our in vitro data demonstrate a strong inhibitory action of PKC-zeta at the level of IRS-1/PI 3-kinase interaction involving multiple serine phosphorylation sites. Whereas Ser(612) appears not to participate in the negative control of insulin signaling, Ser(570) may at least partly contribute to this process.

  20. NGA/Insulin receptor scanning

    International Nuclear Information System (INIS)

    Kurtaran, A.; Virgolini, I.

    1994-01-01

    Tc-99m-galactosyl-neoglycoalbumin (NGA) is one of the first receptor-based radiopharmaceuticals which specifically recognizes the hepatic binding protein (HBP) located on the surface of the hepatocytes. The exclusive interactin of NGA with HBP provided the basis for a kinetic model for the evaluation hepatocellular function. During the last years we have used NGA in more than 300 patients with various liver diseases including liver cirrhosis (Stages Child A to Child C), viral hepatitis, and carcinomas. In these studies, the calculated HBP densities, after i.v.-injection of Tc-99m-NGA, significantly correlated with the clinical course of the diseases. Furthermore, similar to conventional Tc-colloid, NGA provided excellent demonstration of 'cold spots' for hepatic masses. In a further approach we used another hepatocyte receptor-seeking radioligand, I-123-Tyr-A14- insulin, and found, that its in vitro-binding to hepatocellular carcinomas is greatly enhanced over normal hepatic tissue. On this basis, we developed a double-tracer method using NGA and insulin in a single study. Thus, areas of 'cold spots' identifying hepatic masses on NGA scans, take up I-123-Tyr-A14-insulin immediately after i.v.-injection. This was true for hepatocellular hepatomas, but not for adenocarcinomas. In conclusion, NGA/insulin receptor scanning could be a novel and save method for the demonstration of hepatocellular hepatomas. (author)

  1. NGA/Insulin receptor scanning

    Energy Technology Data Exchange (ETDEWEB)

    Kurtaran, A; Virgolini, I [Vienna Univ. (Austria). Abt. fuer Nuklearmedizin; Angelberger, P [Ludwig Boltzmann-Institut fuer Nuklearmedizin, Vienna (Austria)

    1994-10-01

    Tc-99m-galactosyl-neoglycoalbumin (NGA) is one of the first receptor-based radiopharmaceuticals which specifically recognizes the hepatic binding protein (HBP) located on the surface of the hepatocytes. The exclusive interactin of NGA with HBP provided the basis for a kinetic model for the evaluation hepatocellular function. During the last years we have used NGA in more than 300 patients with various liver diseases including liver cirrhosis (Stages Child A to Child C), viral hepatitis, and carcinomas. In these studies, the calculated HBP densities, after i.v.-injection of Tc-99m-NGA, significantly correlated with the clinical course of the diseases. Furthermore, similar to conventional Tc-colloid, NGA provided excellent demonstration of `cold spots` for hepatic masses. In a further approach we used another hepatocyte receptor-seeking radioligand, I-123-Tyr-A14- insulin, and found, that its in vitro-binding to hepatocellular carcinomas is greatly enhanced over normal hepatic tissue. On this basis, we developed a double-tracer method using NGA and insulin in a single study. Thus, areas of `cold spots` identifying hepatic masses on NGA scans, take up I-123-Tyr-A14-insulin immediately after i.v.-injection. This was true for hepatocellular hepatomas, but not for adenocarcinomas. In conclusion, NGA/insulin receptor scanning could be a novel and save method for the demonstration of hepatocellular hepatomas. (author).

  2. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    Science.gov (United States)

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  3. Common elements in interleukin 4 and insulin signaling pathways in factor-dependent hematopoietic cells.

    Science.gov (United States)

    Wang, L M; Keegan, A D; Li, W; Lienhard, G E; Pacini, S; Gutkind, J S; Myers, M G; Sun, X J; White, M F; Aaronson, S A

    1993-05-01

    Interleukin 4 (IL-4), insulin, and insulin-like growth factor I (IGF-I) efficiently induced DNA synthesis in the IL-3-dependent murine myeloid cell lines FDC-P1 and FDC-P2. Although these factors could not individually sustain long-term growth of these lines, a combination of IL-4 with either insulin or IGF-I did support continuous growth. The principal tyrosine-phosphorylated substrate observed in FDC cells stimulated with IL-4, previously designated 4PS, was of the same size (170 kDa) as the major substrate phosphorylated in response to insulin or IGF-I. These substrates had phosphopeptides of the same size when analyzed by digestion with Staphylococcus aureus V8 protease, and each tightly associated with the 85-kDa component of phosphatidylinositol 3-kinase after factor stimulation. IRS-1, the principal substrate phosphorylated in response to insulin or IGF-I stimulation in nonhematopoietic cells, is similar in size to 4PS. However, anti-IRS-1 antibodies failed to efficiently precipitate 4PS, and some phosphopeptides generated by V8 protease digestion of IRS-1 were distinct in size from the phosphopeptides of 4PS. Nevertheless, IL-4, insulin, and IGF-I were capable of stimulating tyrosine phosphorylation of IRS-1 in FDC cells that expressed this substrate as a result of transfection. These findings indicate that (i) IL-4, insulin, and IGF-I use signal transduction pathways in FDC lines that have at least one major feature in common, the rapid tyrosine phosphorylation of 4PS, and (ii) insulin and IGF-I stimulation of hematopoietic cell lines leads to the phosphorylation of a substrate that may be related to but is not identical to IRS-1.

  4. Insulin-receptors in diabetes and altered thyroidal status

    International Nuclear Information System (INIS)

    Chaujar, Meena; Subramanian, G.B.V.; Yadav, H.S.; Chauhan, U.P.S.

    1991-01-01

    Rats were made hypothyroid by treating with a single dose of 800 μCi of 131 I and hyperthyroid condition was created by administering 90 μg of thyroxine daily for 2 weeks. Diabetes was produced by administering single dose of alloxan monohydrate. Hypothyroid rats showed significant increase in 125 I-insulin binding with its liver plasma membrane receptors with respect to normal rats. In the case of hypothyroid diabetic rats such binding was greater as compared to hypothyroid rats without diabetes. Hyperthyroid rats with respect to normal control rats showed a decrease in 125 I-insulin binding to its liver plasma membrane receptors. When hyperthyroid rats were made diabetic, 125 I-insulin binding to its receptors was further decreased. The study infers that hyper-thyrodism further decreases insulin binding to its receptors which has already been decreased in diabetes. Hypothyroidism, on the other hand, improves upon the decreased insulin binding to its receptors in diabetes. (author). 16 refs., 6 figs., 2 tabs

  5. SH2-Balpha is an insulin-receptor adapter protein and substrate that interacts with the activation loop of the insulin-receptor kinase.

    OpenAIRE

    Kotani, K; Wilden, P; Pillay, T S

    1998-01-01

    We identified SH2-Balpha as an insulin-receptor-binding protein based on interaction screening in yeast hybrid systems and co-precipitation in cells. SH2-Balpha contains pleckstrin-homology ('PH') and Src homology 2 (SH2) domains and is closely related to APS (adapter protein with a PH domain and an SH2 domain) and lnk, adapter proteins first identified in lymphocytes. SH2-Balpha is ubiquitously expressed and is present in rat epididymal adipose tissue, liver and skeletal muscle, physiologica...

  6. Insulin resistance in uremia: Insulin receptor kinase activity in liver and muscle from chronic uremic rats

    International Nuclear Information System (INIS)

    Cecchin, F.; Ittoop, O.; Sinha, M.K.; Caro, J.F.

    1988-01-01

    The authors have studied the structure and function of the partially purified insulin receptors from liver and skeletal muscle in a rat model of severe chronic uremia. 125 I-insulin binding was higher in the liver from uremic rats when compared with ad libitum- and pair-fed controls. Furthermore, the ability of insulin to stimulate the autophosphorylation of the β-subunit and insulin receptor kinase activity using Glu 80 , Tyr 20 as exogenous phosphoacceptor was increased in the liver of the uremic animals. The structural characteristics of the receptors, as determined by electrophoretic mobilities of affinity labeled α-subunit and the phosphorylated β-subunit, were normal in uremia. 125 I-insulin binding and insulin receptor kinase activity were similar in the skeletal muscle from uremic and pair- and ad libitum-fed animals. Thus the data are supportive of the hypothesis that in liver and muscle of chronic uremic rats, insulin resistance is due to a defect(s) distal to the insulin receptor kinase

  7. Gestational Protein Restriction Impairs Insulin-Regulated Glucose Transport Mechanisms in Gastrocnemius Muscles of Adult Male Offspring

    Science.gov (United States)

    Blesson, Chellakkan S.; Sathishkumar, Kunju; Chinnathambi, Vijayakumar

    2014-01-01

    Type II diabetes originates from various genetic and environmental factors. Recent studies showed that an adverse uterine environment such as that caused by a gestational low-protein (LP) diet can cause insulin resistance in adult offspring. The mechanism of insulin resistance induced by gestational protein restriction is not clearly understood. Our aim was to investigate the role of insulin signaling molecules in gastrocnemius muscles of gestational LP diet–exposed male offspring to understand their role in LP-induced insulin resistance. Pregnant Wistar rats were fed a control (20% protein) or isocaloric LP (6%) diet from gestational day 4 until delivery and a normal diet after weaning. Only male offspring were used in this study. Glucose and insulin responses were assessed after a glucose tolerance test. mRNA and protein levels of molecules involved in insulin signaling were assessed at 4 months in gastrocnemius muscles. Muscles were incubated ex vivo with insulin to evaluate insulin-induced phosphorylation of insulin receptor (IR), Insulin receptor substrate-1, Akt, and AS160. LP diet-fed rats gained less weight than controls during pregnancy. Male pups from LP diet–fed mothers were smaller but exhibited catch-up growth. Plasma glucose and insulin levels were elevated in LP offspring when subjected to a glucose tolerance test; however, fasting levels were comparable. LP offspring showed increased expression of IR and AS160 in gastrocnemius muscles. Ex vivo treatment of muscles with insulin showed increased phosphorylation of IR (Tyr972) in controls, but LP rats showed higher basal phosphorylation. Phosphorylation of Insulin receptor substrate-1 (Tyr608, Tyr895, Ser307, and Ser318) and AS160 (Thr642) were defective in LP offspring. Further, glucose transporter type 4 translocation in LP offspring was also impaired. A gestational LP diet leads to insulin resistance in adult offspring by a mechanism involving inefficient insulin-induced IR, Insulin receptor

  8. Binding Mode of Insulin Receptor and Agonist Peptide

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Insulin is a protein hormone secreted by pancreatic β cells. One of its main functions is to keep the balance of glucose inside the body by regulating the absorption and metabolism of glucose in the periphery tissue, as well as the production and storage of hepatic glycogen. The insulin receptor is a transmembrane glycoprotein in which two α subunits with a molecular weight of 135 kD and twoβ subunits with a molecular weight of 95 kD are joined by a disulfide bond to form a β-α-α-β structure. The extracellular α subunit, especially, its three domains near the N-terminal are partially responsible for signal transduction or ligand-binding, as indicated by the experiments. The extracellular α subunits are involved in binding the ligands. The experimental results indicate that the three domains of the N-terminal of the α subunits are the main determinative parts of the insulin receptor to bind the insulin or mimetic peptide.We employed the extracellular domain (PDBID: 1IGR) of the insulin-like growth factor-1 receptor (IGF-1 R ) as the template to simulate and optimize the spatial structures of the three domains in the extracellular domain of the insulin receptor, which includes 468 residues. The work was accomplished by making use of the homology program in the Insight Ⅱ package on an Origin3800 server. The docking calculations of the insulin receptor obtained by homology with hexapeptides were carried out by means of the program Affinity. The analysis indicated that there were hydrogen bonding, and electrostatic and hydrophobic effects in the docking complex of the insulin receptor with hexapeptides.Moreover, we described the spatial orientation of a mimetic peptide with agonist activity in the docking complex. We obtained a rough model of binding of DLAPSQ or STIVYS with the insulin receptor, which provides the powerful theoretical support for designing the minimal insulin mimetic peptide with agonist activity, making it possible to develop oral small

  9. Receptor-mediated photo-cytotoxicity: synthesis of a photoactivatable psoralen derivative conjugated to insulin.

    Science.gov (United States)

    Gasparro, F P; Knobler, R M; Yemul, S S; Bisaccia, E; Edelson, R L

    1986-12-15

    4'-Aminomethyl-4,5',8-trimethylpsoralen has been chemically conjugated to insulin using a carbodiimide derivative. The psoralen moiety retains its photochemical reactivity as evidenced by its ability to crosslink DNA after exposure to long wavelength ultraviolet light (UVA, 320-400 nm). This chimeric molecule has been used to selectively kill a population of lymphocytes whose expression of insulin receptors has been stimulated with phytohemagglutinin. Insulin carries the psoralen into the cell via receptor-mediated endocytosis, where it is subsequently activated by exposure to UVA light. The UVA induced activity of AMT-insulin can be blocked by the presence of native insulin. The viability of unstimulated lymphocytes was not affected by AMT-insulin and UVA light. The hybrid insulin-psoralen molecule may be a prototype for a family of phototoxic drugs which can be selectively delivered to subsets of lymphocytes.

  10. Nature and regulation of the receptors for insulin-like growth factors

    International Nuclear Information System (INIS)

    Rechler, M.M.; Nissley, S.P.

    1985-01-01

    Two subtypes of IGF receptors have been identified. Type I IGF receptors have a Mr greater than 300,000 and are composed of disulfide-linked 130,000-dalton (alpha) and approximately 90,000-dalton (beta) subunits. Type I receptors preferentially bind IGF-I but also bind IGF-II and, more weakly, insulin. Type II IGF receptors consist of a 250,000-dalton protein that contains internal disulfide bonds but is not linked to other membrane components. Type II receptors bind IGF-II with higher affinity than IGF-I. They do not interact with even very high concentrations of insulin. Type I IGF receptors and insulin receptors are homologous structures. Type II IGF receptors do not appear to be homologous to type I receptors. Type II receptors do not appear to be downregulated. Insulin acutely upregulates type II IGF receptors in intact rat adipose cells by effecting a redistribution of receptors cycling between a large intracellular pool and the plasma membrane. Insulin and the IGFs elicit the same biological responses, either by cross-reacting with one of the receptors for the heterologous ligand or by concurrent activation of convergent effector pathways by binding to the homologous receptor. Which mechanism is utilized appears to depend more on the tissue than on the biological response. Insulin desensitizes rat hepatoma cells to the actions of insulin and IGFs, mediated by both insulin and IGF receptors, by mechanisms distal to hormone binding and possibly common to IGF and insulin effector pathways

  11. Glucose Induces Mouse β-Cell Proliferation via IRS2, MTOR, and Cyclin D2 but Not the Insulin Receptor

    Science.gov (United States)

    Stamateris, Rachel E.; Sharma, Rohit B.; Kong, Yahui; Ebrahimpour, Pantea; Panday, Deepika; Ranganath, Pavana; Zou, Baobo; Levitt, Helena; Parambil, Nisha Abraham; O’Donnell, Christopher P.; García-Ocaña, Adolfo

    2016-01-01

    An important goal in diabetes research is to understand the processes that trigger endogenous β-cell proliferation. Hyperglycemia induces β-cell replication, but the mechanism remains debated. A prime candidate is insulin, which acts locally through the insulin receptor. Having previously developed an in vivo mouse hyperglycemia model, we tested whether glucose induces β-cell proliferation through insulin signaling. By using mice lacking insulin signaling intermediate insulin receptor substrate 2 (IRS2), we confirmed that hyperglycemia-induced β-cell proliferation requires IRS2 both in vivo and ex vivo. Of note, insulin receptor activation was not required for glucose-induced proliferation, and insulin itself was not sufficient to drive replication. Glucose and insulin caused similar acute signaling in mouse islets, but chronic signaling differed markedly, with mammalian target of rapamycin (MTOR) and extracellular signal–related kinase (ERK) activation by glucose and AKT activation by insulin. MTOR but not ERK activation was required for glucose-induced proliferation. Cyclin D2 was necessary for glucose-induced β-cell proliferation. Cyclin D2 expression was reduced when either IRS2 or MTOR signaling was lost, and restoring cyclin D2 expression rescued the proliferation defect. Human islets shared many of these regulatory pathways. Taken together, these results support a model in which IRS2, MTOR, and cyclin D2, but not the insulin receptor, mediate glucose-induced proliferation. PMID:26740601

  12. Peripheral insulin resistance in ILK-depleted mice by reduction of GLUT4 expression.

    Science.gov (United States)

    Hatem-Vaquero, Marco; Griera, Mercedes; García-Jerez, Andrea; Luengo, Alicia; Álvarez, Julia; Rubio, José A; Calleros, Laura; Rodríguez-Puyol, Diego; Rodríguez-Puyol, Manuel; De Frutos, Sergio

    2017-08-01

    The development of insulin resistance is characterized by the impairment of glucose uptake mediated by glucose transporter 4 (GLUT4). Extracellular matrix changes are induced when the metabolic dysregulation is sustained. The present work was devoted to analyze the possible link between the extracellular-to-intracellular mediator integrin-linked kinase (ILK) and the peripheral tissue modification that leads to glucose homeostasis impairment. Mice with general depletion of ILK in adulthood (cKD-ILK) maintained in a chow diet exhibited increased glycemia and insulinemia concurrently with a reduction of the expression and membrane presence of GLUT4 in the insulin-sensitive peripheral tissues compared with their wild-type littermates (WT). Tolerance tests and insulin sensitivity indexes confirmed the insulin resistance in cKD-ILK, suggesting a similar stage to prediabetes in humans. Under randomly fed conditions, no differences between cKD-ILK and WT were observed in the expression of insulin receptor (IR-B) and its substrate IRS-1 expressions. The IR-B isoform phosphorylated at tyrosines 1150/1151 was increased, but the AKT phosphorylation in serine 473 was reduced in cKD-ILK tissues. Similarly, ILK-blocked myotubes reduced their GLUT4 promoter activity and GLUT4 expression levels. On the other hand, the glucose uptake capacity in response to exogenous insulin was impaired when ILK was blocked in vivo and in vitro , although IR/IRS/AKT phosphorylation states were increased but not different between groups. We conclude that ILK depletion modifies the transcription of GLUT4, which results in reduced peripheral insulin sensitivity and glucose uptake, suggesting ILK as a molecular target and a prognostic biomarker of insulin resistance. © 2017 Society for Endocrinology.

  13. Identification and characterization of insulin receptors on foetal-mouse brain-cortical cells.

    OpenAIRE

    Van Schravendijk, C F; Hooghe-Peters, E L; De Meyts, P; Pipeleers, D G

    1984-01-01

    The occurrence of insulin receptors was investigated in freshly dissociated brain-cortical cells from mouse embryos. By analogy with classical insulin-binding cell types, binding of 125I-insulin to foetal brain-cortical cells was time- and pH-dependent, only partially reversible, and competed for by unlabelled insulin and closely related peptides. Desalanine-desasparagine-insulin, pig proinsulin, hagfish insulin and turkey insulin were respectively 2%, 4%, 2% and 200% as potent as bovine insu...

  14. Comparison of solubilized and purified plasma membrane and nuclear insulin receptors

    International Nuclear Information System (INIS)

    Wong, K.Y.; Hawley, D.; Vigneri, R.; Goldfine, I.D.

    1988-01-01

    Prior studies have detected biochemical and immunological differences between insulin receptors in plasma membranes and isolated nuclei. To further investigate these receptors, they were solubilized in Triton X-100 partially purified by wheat germ agglutinin-agarose chromatography. In these preparations, the nuclear and plasma membrane receptors had very similar pH optima (pH 8.0) and reactivities to a group of polyclonal antireceptor antibodies. Further, both membrane preparations had identical binding activities when labeled insulin was competed for by unlabeled insulin (50% inhibition at 800 pM). Next, nuclear and plasma membranes were solubilized and purified to homogeneity by wheat germ agglutinin-agarose and insulin-agarose chromatography. In both receptors, labeled insulin was covalently cross-linked to a protein of 130 kilodaltons representing the insulin receptor α subunit. When preparations of both receptors were incubated with insulin and then adenosine 5'-[γ- 32 P]triphosphate, a protein of 95 kilodaltons representing the insulin receptor β subunit was phosphorylated in a dose-dependent manner. These studies indicate, therefore, that solubilized plasma membrane and nuclear insulin receptors have similar structures and biochemical properties, and they suggest that they are the same (or very similar) proteins

  15. Phospholipid environment alters hormone-sensitivity of the purified insulin receptor kinase.

    OpenAIRE

    Lewis, R E; Czech, M P

    1987-01-01

    Insulin receptor kinase, affinity-purified by adsorption and elution from immobilized insulin, is stimulated 2-3-fold by insulin in detergent solution. Reconstitution of the receptor kinase into leaky vesicles containing phosphatidylcholine and phosphatidylethanolamine (1:1, w/w) by detergent removal on Sephadex G-50 results in the complete loss of receptor kinase sensitivity to activation by insulin. Insulin receptors in these vesicles also exhibit an increase in their apparent affinity for ...

  16. Severe hypoglycaemia in a person with insulin autoimmune syndrome accompanied by insulin receptor anomaly type B.

    Science.gov (United States)

    Kato, T; Itoh, M; Hanashita, J; Itoi, T; Matsumoto, T; Ono, Y; Imamura, S; Hayakawa, N; Suzuki, A; Mizutani, Y; Uchigata, Y; Oda, N

    2007-11-01

    A rare case of the insulin autoimmune syndrome (IAS) accompanied by insulin receptor anomaly is reported. Antibodies to insulin and insulin receptor were determined in the patient with severe hypoglycaemia before and after the treatment with prednisolone. Titers of antibody to insulin and insulin receptors were 73.0% and 41.5%, respectively. Drug-induced lymphocyte stimulation tests were all negative for the suspicious drugs. Her HLA-DR was DRB1*0403/04051. Following steroid therapy, the formation of antibodies was suppressed and alleviated her symptoms. Scatchard analysis yielded findings specific to polyclonal antibodies. The changes in autoantibodies resulted in alleviation of the hypoglycemic symptoms as a result of steroid therapy.

  17. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling.

    Science.gov (United States)

    Na, Ha-Na; Hegde, Vijay; Dubuisson, Olga; Dhurandhar, Nikhil V

    2016-01-01

    Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR), and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1). In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown) with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling.

  18. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling.

    Directory of Open Access Journals (Sweden)

    Ha-Na Na

    Full Text Available Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR, and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1. In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling.

  19. Differential interaction of Apolipoprotein-E isoforms with insulin receptors modulates brain insulin signaling in mutant human amyloid precursor protein transgenic mice.

    Science.gov (United States)

    Chan, Elizabeth S; Chen, Christopher; Cole, Gregory M; Wong, Boon-Seng

    2015-09-08

    It is unclear how human apolipoprotein E4 (ApoE4) increases the risk for Alzheimer's disease (AD). Although Aβ levels can lead to insulin signaling impairment, these experiments were done in the absence of human ApoE. To examine ApoE role, we crossed the human ApoE-targeted replacement mice with mutant human amyloid precursor protein (APP) mice. In 26 week old mice with lower Aβ levels, the expression and phosphorylation of insulin signaling proteins remained comparable among APP, ApoE3xAPP and ApoE4xAPP mouse brains. When the mice aged to 78 weeks, these proteins were markedly reduced in APP and ApoE4xAPP mouse brains. While Aβ can bind to insulin receptor, how ApoE isoforms modulate this interaction remains unknown. Here, we showed that ApoE3 had greater association with insulin receptor as compared to ApoE4, regardless of Aβ42 concentration. In contrast, ApoE4 bound more Aβ42 with increasing peptide levels. Using primary hippocampal neurons, we showed that ApoE3 and ApoE4 neurons are equally sensitive to physiological levels of insulin. However, in the presence of Aβ42, insulin failed to elicit a downstream response only in ApoE4 hippocampal neurons. Taken together, our data show that ApoE genotypes can modulate this Aβ-mediated insulin signaling impairment.

  20. Characterization of insulin-like growth factor I and insulin receptors on cultured bovine adrenal fasciculata cells. Role of these peptides on adrenal cell function

    International Nuclear Information System (INIS)

    Penhoat, A.; Chatelain, P.G.; Jaillard, C.; Saez, J.M.

    1988-01-01

    We have characterized insulin-like growth factor I (IGF-I) and insulin receptors in cultured bovine adrenal cells by binding and cross-linking affinity experiments. At equilibrium the dissociation constant and the number of binding sites per cell for IGF-I were 1.4 +/- (SE) 0.3 x 10(-9) M and 19,200 +/- 2,100, respectively. Under reduction conditions, disuccinimidyl suberate cross-linked [ 125 I]iodo-IGF-I to one receptor complex with an Mr of 125,000. Adrenal cells also contain specific insulin receptors with an apparent dissociation constant (Kd) of 10(-9) M. Under reduction conditions [ 125 I]iodo-insulin binds to one band with an approximate Mr of 125,000. IGF-I and insulin at micromolar concentrations, but not at nanomolar concentrations, slightly stimulated DNA synthesis, but markedly potentiated the mitogenic action of fibroblast growth factor. Adrenal cells cultured in a serum-free medium containing transferrin, ascorbic acid, and insulin (5 micrograms/ml) maintained fairly constant angiotensin-II (A-II) receptor concentration per cell and increased cAMP release on response to ACTH and their steroidogenic response to both ACTH and A-II. When the cells were cultured in the same medium without insulin, the number of A-II receptors significantly decreased to 65% and the increased responsiveness was blunted. Treatment of such cells for 3 days with increasing concentrations of IGF-I (1-100 ng/ml) produced a 2- to 3-fold increase in A-II receptors and enhanced the cAMP response (3- to 4-fold) to ACTH and the steroidogenic response (4- to 6-fold) to ACTH and A-II. These effects were time and dose dependent (ED50 approximately equal to 10(-9) M). Insulin at micromolar concentrations produced an effect similar to that of IGF-I, but at nanomolar concentrations the effect was far less

  1. IGF-I, IGF-II, and Insulin Stimulate Different Gene Expression Responses through Binding to the IGF-I Receptor

    DEFF Research Database (Denmark)

    Versteyhe, Soetkin; Klaproth, Birgit; Borup, Rehannah

    2013-01-01

    Insulin and the insulin-like growth factors (IGF)-I and -II are closely related peptides important for regulation of metabolism, growth, differentiation, and development. The IGFs exert their main effects through the IGF-I receptor. Although the insulin receptor is the main physiological receptor...... for insulin, this peptide hormone can also bind at higher concentrations to the IGF-I receptor and exert effects through it. We used microarray gene expression profiling to investigate the gene expression regulated by IGF-I, IGF-II, and insulin after stimulation of the IGF-I receptor. Fibroblasts from mice......, knockout for IGF-II and the IGF-II/cation-independent mannose-6-phosphate receptor, and expressing functional IGF-I but no insulin receptors, were stimulated for 4 h with equipotent saturating concentrations of insulin, IGF-I, and IGF-II. Each ligand specifically regulated a group of transcripts...

  2. Myostatin induces insulin resistance via Casitas B-lineage lymphoma b (Cblb)-mediated degradation of insulin receptor substrate 1 (IRS1) protein in response to high calorie diet intake.

    Science.gov (United States)

    Bonala, Sabeera; Lokireddy, Sudarsanareddy; McFarlane, Craig; Patnam, Sreekanth; Sharma, Mridula; Kambadur, Ravi

    2014-03-14

    To date a plethora of evidence has clearly demonstrated that continued high calorie intake leads to insulin resistance and type-2 diabetes with or without obesity. However, the necessary signals that initiate insulin resistance during high calorie intake remain largely unknown. Our results here show that in response to a regimen of high fat or high glucose diets, Mstn levels were induced in muscle and liver of mice. High glucose- or fat-mediated induction of Mstn was controlled at the level of transcription, as highly conserved carbohydrate response and sterol-responsive (E-box) elements were present in the Mstn promoter and were revealed to be critical for ChREBP (carbohydrate-responsive element-binding protein) or SREBP1c (sterol regulatory element-binding protein 1c) regulation of Mstn expression. Further molecular analysis suggested that the increased Mstn levels (due to high glucose or fatty acid loading) resulted in increased expression of Cblb in a Smad3-dependent manner. Casitas B-lineage lymphoma b (Cblb) is an ubiquitin E3 ligase that has been shown to specifically degrade insulin receptor substrate 1 (IRS1) protein. Consistent with this, our results revealed that elevated Mstn levels specifically up-regulated Cblb, resulting in enhanced ubiquitin proteasome-mediated degradation of IRS1. In addition, over expression or knock down of Cblb had a major impact on IRS1 and pAkt levels in the presence or absence of insulin. Collectively, these observations strongly suggest that increased glucose levels and high fat diet, both, result in increased circulatory Mstn levels. The increased Mstn in turn is a potent inducer of insulin resistance by degrading IRS1 protein via the E3 ligase, Cblb, in a Smad3-dependent manner.

  3. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    Energy Technology Data Exchange (ETDEWEB)

    Vikram, Ajit [Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab 160 062 (India); Jena, Gopabandhu, E-mail: gbjena@gmail.com [Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab 160 062 (India)

    2010-07-23

    Research highlights: {yields}Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. {yields}Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. {yields}Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. {yields}Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia ({approx}18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPAR{gamma}) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 {+-} 16.32 vs. 126.37 {+-} 27.07 mg/dl) and glucose intolerance ({approx}78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  4. Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity.

    Science.gov (United States)

    Federici, M; Porzio, O; Lauro, D; Borboni, P; Giovannone, B; Zucaro, L; Hribal, M L; Sesti, G

    1998-08-01

    We reported that in noninsulin-dependent diabetes melitus (NIDDM) patients expression of insulin/insulin-like growth factor I (IGF-I) hybrid receptors is increased in insulin target tissues. Whether this is a defect associated with NIDDM or represents a generalized abnormality associated with insulin resistant states is still unsettled. To address this, we applied a microwell-based immunoassay to measure abundance of insulin receptors, type 1 IGF receptors, and hybrid receptors in muscle of eight normal and eight obese subjects. Maximal insulin binding to insulin receptors was lower in obese than in control subjects (B/T = 1.8 +/- 0.20 and 2.6 +/- 0.30; P < 0.03, respectively) and was negatively correlated with insulinemia (r = -0.60; P < 0.01). Maximal IGF-I binding to type 1 IGF receptors was higher in obese than in controls (B/T = 1.9 +/- 0.20 and 0.86 +/- 0.10; P < 0.0001, respectively) and was negatively correlated with plasma IGF-I levels (r = -0.69; P < 0.003). Hybrid receptor abundance was higher in obese than in normal subjects (B/T = 1.21 +/- 0.14 and 0.44 +/- 0.06; P < 0.0003, respectively) and was negatively correlated with insulin binding (r = -0.60; P < 0.01) and positively correlated with IGF-I binding (r = 0.92; P < 0.0001). Increased abundance of hybrids was correlated with insulinemia (r = 0.70; P < 0.002) and body mass index (r = 0.71; P < 0.0019), whereas it was negatively correlated with in vivo insulin sensitivity measured by ITT (r = -0.67; P < 0.016). These results indicate that downregulation of insulin receptors or upregulation of type 1 IGF receptors because of changes in plasma insulin and IGF-I levels may result in modifications in hybrid receptor abundance.

  5. Decreased autophosphorylation of EGF receptor in insulin-deficient diabetic rats

    International Nuclear Information System (INIS)

    Okamoto, M.; Kahn, C.R.; Maron, R.; White, M.F.

    1988-01-01

    The authors have previously reported that despite an increase in receptor concentration, there is a decrease in autophosphorylation and tyrosine kinase activity of the insulin receptor in insulin-deficient diabetic rats. To determine if other tyrosine kinases might be altered, they have studied the epidermal growth factor (EGF) receptor kinase in wheat germ agglutinin-purified, Triton X-100-solubilized liver membranes from streptozotocin (STZ)-induced diabetic rats and the insulin-deficient BB rat. They find that autophosphorylation of EGF receptor is decreased in proportion to the severity of the diabetic state in STZ rats with a maximal decrease of 67%. A similar decrease in autophosphorylation was observed in diabetic BB rats that was partially normalized by insulin treatment. Separation of tryptic phosphopeptides by reverse-phase high-performance liquid chromatography revealed a decrease in labeling at all sites of autophosphorylation. A parallel decrease in EGF receptor phosphorylation was also found by immunoblotting with an antiphosphotyrosine antibody. EGF receptor concentration, determined by Scatchard analysis of 125 I-labeled EGF binding, was decreased by 39% in the STZ rat and 27% in the diabetic BB rat. Thus autophosphorylation of EGF receptor, like that of the insulin receptor, is decreased in insulin-deficient rat liver. In the case of EGF receptor, this is due in part to a decrease in receptor number and in part to a decrease in the specific activity of the kinase

  6. High fructose-mediated attenuation of insulin receptor signaling does not affect PDGF-induced proliferative signaling in vascular smooth muscle cells.

    Science.gov (United States)

    Osman, Islam; Poulose, Ninu; Ganapathy, Vadivel; Segar, Lakshman

    2016-11-15

    Insulin resistance is associated with accelerated atherosclerosis. Although high fructose is known to induce insulin resistance, it remains unclear as to how fructose regulates insulin receptor signaling and proliferative phenotype in vascular smooth muscle cells (VSMCs), which play a major role in atherosclerosis. Using human aortic VSMCs, we investigated the effects of high fructose treatment on insulin receptor substrate-1 (IRS-1) serine phosphorylation, insulin versus platelet-derived growth factor (PDGF)-induced phosphorylation of Akt, S6 ribosomal protein, and extracellular signal-regulated kinase (ERK), and cell cycle proteins. In comparison with PDGF (a potent mitogen), neither fructose nor insulin enhanced VSMC proliferation and cyclin D1 expression. d-[ 14 C(U)]fructose uptake studies revealed a progressive increase in fructose uptake in a time-dependent manner. Concentration-dependent studies with high fructose (5-25mM) showed marked increases in IRS-1 serine phosphorylation, a key adapter protein in insulin receptor signaling. Accordingly, high fructose treatment led to significant diminutions in insulin-induced phosphorylation of downstream signaling components including Akt and S6. In addition, high fructose significantly diminished insulin-induced ERK phosphorylation. Nevertheless, high fructose did not affect PDGF-induced key proliferative signaling events including phosphorylation of Akt, S6, and ERK and expression of cyclin D1 protein. Together, high fructose dysregulates IRS-1 phosphorylation state and proximal insulin receptor signaling in VSMCs, but does not affect PDGF-induced proliferative signaling. These findings suggest that systemic insulin resistance rather than VSMC-specific dysregulation of insulin receptor signaling by high fructose may play a major role in enhancing atherosclerosis and neointimal hyperplasia. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    International Nuclear Information System (INIS)

    Vikram, Ajit; Jena, Gopabandhu

    2010-01-01

    Research highlights: →Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. →Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. →Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. →Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia (∼18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPARγ) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 ± 16.32 vs. 126.37 ± 27.07 mg/dl) and glucose intolerance (∼78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  8. Structural Perspectives of Insulin Receptor Isoform-Selective Insulin Analogs

    Czech Academy of Sciences Publication Activity Database

    Jiráček, Jiří; Žáková, Lenka

    2017-01-01

    Roč. 8, Jul 27 (2017), č. článku 167. ISSN 1664-2392 R&D Projects: GA ČR GA15-19018S Institutional support: RVO:61388963 Keywords : insulin receptor * insulin binding * analog * diabetes * glucose Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.675, year: 2016 http://journal.frontiersin.org/article/10.3389/fendo.2017.00167/full

  9. Differential Role of Insulin/IGF-1 Receptor Signaling in Muscle Growth and Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Brian T. O’Neill

    2015-05-01

    Full Text Available Insulin and insulin-like growth factor 1 (IGF-1 are major regulators of muscle protein and glucose homeostasis. To determine how these pathways interact, we generated mice with muscle-specific knockout of IGF-1 receptor (IGF1R and insulin receptor (IR. These MIGIRKO mice showed >60% decrease in muscle mass. Despite a complete lack of insulin/IGF-1 signaling in muscle, MIGIRKO mice displayed normal glucose and insulin tolerance. Indeed, MIGIRKO mice showed fasting hypoglycemia and increased basal glucose uptake. This was secondary to decreased TBC1D1 resulting in increased Glut4 and Glut1 membrane localization. Interestingly, overexpression of a dominant-negative IGF1R in muscle induced glucose intolerance in MIGIRKO animals. Thus, loss of insulin/IGF-1 signaling impairs muscle growth, but not whole-body glucose tolerance due to increased membrane localization of glucose transporters. Nonetheless, presence of a dominant-negative receptor, even in the absence of functional IR/IGF1R, induces glucose intolerance, indicating that interactions between these receptors and other proteins in muscle can impair glucose homeostasis.

  10. Cloning and characterisation of Schistosoma japonicum insulin receptors.

    Directory of Open Access Journals (Sweden)

    Hong You

    2010-03-01

    Full Text Available Schistosomes depend for growth and development on host hormonal signals, which may include the insulin signalling pathway. We cloned and assessed the function of two insulin receptors from Schistosoma japonicum in order to shed light on their role in schistosome biology.We isolated, from S. japonicum, insulin receptors 1 (SjIR-1 and 2 (SjIR-2 sharing close sequence identity to their S. mansoni homologues (SmIR-1 and SmIR-2. SjIR-1 is located on the tegument basal membrane and the internal epithelium of adult worms, whereas SjIR-2 is located in the parenchyma of males and the vitelline tissue of females. Phylogenetic analysis showed that SjIR-2 and SmIR-2 are close to Echinococcus multilocularis insulin receptor (EmIR, suggesting that SjIR-2, SmIR-2 and EmIR share similar roles in growth and development in the three taxa. Structure homology modelling recovered the conserved structure between the SjIRs and Homo sapiens IR (HIR implying a common predicted binding mechanism in the ligand domain and the same downstream signal transduction processing in the tyrosine kinase domain as in HIR. Two-hybrid analysis was used to confirm that the ligand domains of SjIR-1 and SjIR-2 contain the insulin binding site. Incubation of adult worms in vitro, both with a specific insulin receptor inhibitor and anti-SjIRs antibodies, resulted in a significant decrease in worm glucose levels, suggesting again the same function for SjIRs in regulating glucose uptake as described for mammalian cells.Adult worms of S. japonicum possess insulin receptors that can specifically bind to insulin, indicating that the parasite can utilize host insulin for development and growth by sharing the same pathway as mammalian cells in regulating glucose uptake. A complete understanding of the role of SjIRs in the biology of S. japonicum may result in their use as new targets for drug and vaccine development against schistosomiasis.

  11. Internalized insulin-receptor complexes are unidirectionally translocated to chloroquine-sensitive degradative sites. Dependence on metabolic energy

    International Nuclear Information System (INIS)

    Berhanu, P.

    1988-01-01

    Insulin receptors on the surface of isolated rat adipocytes were photoaffinity labeled at 12 degrees C with the iodinated photoreactive insulin analogue, 125I-B2 (2-nitro-4-azidophenylacetyl)-des-PheB1-insulin, and the pathways in the intracellular processing of the labeled receptors were studied at 37 degrees C. During 37 degrees C incubations, the labeled 440-kDa insulin receptors were continuously internalized (as assessed by trypsin inaccessibility) and degraded such that up to 50% of the initially labeled receptors were lost by 120 min. Metabolic poisons (0.125-0.75 mM 2,4-dinitrophenol (DNP) and 1-10 mM NaF), which led to dose-dependent depletion of adipocyte ATP pools, inhibited receptor loss, and caused up to 3-fold increase in intracellular receptor accumulation. This effect was due to inhibition of intracellular receptor degradation, and there was no apparent effect of the metabolic poisons on initial internalization of the receptors. Following maximal intracellular accumulation of labeled insulin receptors in the presence of NaF or DNP, removal of these agents resulted in a subsequent, time-dependent degradation of the accumulated receptors. However, when the lysosomotropic agent, chloroquine (0.2 mM), was added immediately following removal of the metabolic poisons, further degradation of the intracellularly accumulated receptors was prevented, suggesting that the chloroquine-sensitive degradation of insulin receptors occurs distal to the site of inhibition by NaF or DNP. To confirm this, maximal intracellular accumulation of labeled receptors was first allowed to occur in the presence of chloroquine and the cells were then washed and reincubated in chloroquine-free media in the absence or presence of NaF or DNP. Under these conditions, degradation of the intracellularly accumulated receptors continued to occur, and NaF or DNP failed to block the degradation

  12. Characterization of a second ligand binding site of the insulin receptor

    International Nuclear Information System (INIS)

    Hao Caili; Whittaker, Linda; Whittaker, Jonathan

    2006-01-01

    Insulin binding to its receptor is characterized by high affinity, curvilinear Scatchard plots, and negative cooperativity. These properties may be the consequence of binding of insulin to two receptor binding sites. The N-terminal L1 domain and the C-terminus of the α subunit contain one binding site. To locate a second site, we examined the binding properties of chimeric receptors in which the L1 and L2 domains and the first Fibronectin Type III repeat of the insulin-like growth factor-I receptor were replaced by corresponding regions of the insulin receptor. Substitutions of the L2 domain and the first Fibronectin Type III repeat together with the L1 domain produced 80- and 300-fold increases in affinity for insulin. Fusion of these domains to human immunoglobulin Fc fragment produced a protein which bound insulin with a K d of 2.9 nM. These data strongly suggest that these domains contain an insulin binding site

  13. Investigations on the insulin receptor of isolated fat cells

    International Nuclear Information System (INIS)

    Eichler, W.

    1980-01-01

    Fat cells, isolated from the epididymal adipose tissue of rats, were incubed with iodine 125 insulin after previous incubation with various antagonists. By varying the antagonist concentration, it was possible to determine the effect these substances have on the insulin receptor, i.e. the insulin similarity. By varying the preincubation time, toxicity of the test substances could be detected, which pretended repression effects; and by finally verying the incubation time the effects on the receptor via the membrane could be distinguished from direct receptor bindings of the antagonist. (orig./MG) [de

  14. The interleukin-4 receptor: signal transduction by a hematopoietin receptor.

    Science.gov (United States)

    Keegan, A D; Pierce, J H

    1994-02-01

    Over the last several years, the receptors for numerous cytokines have been molecularly characterized. Analysis of their amino acid sequences shows that some of these receptors bear certain motifs in their extracellular domains that define a family of receptors called the Hematopoietin receptor superfamily. Significant advances in characterizing the structure, function, and mechanisms of signal transduction have been made for several members of this family. The purpose of this review is to discuss the recent advances made for one of the family members, the interleukin (IL) 4 receptor. Other receptor systems have recently been reviewed elsewhere. The IL-4 receptor consists of, at the minimum, the cloned 140 kDa IL-4-binding chain with the potential for associating with other chains. The IL-4 receptor transduces its signal by activating a tyrosine kinase that phosphorylates cellular substrates, including the receptor itself, and the 170 kDa substrate called 4PS. Phosphorylated 4PS interacts with the SH2 domain of the enzyme PI-3'-kinase and increases its enzymatic activity. These early events in the IL-4 receptor initiated signaling pathway may trigger a series of signals that will ultimately lead to an IL-4 specific biologic outcome.

  15. New twist on neuronal insulin receptor signaling in health, disease, and therapeutics.

    Science.gov (United States)

    Wada, Akihiko; Yokoo, Hiroki; Yanagita, Toshihiko; Kobayashi, Hideyuki

    2005-10-01

    Long after the pioneering studies documenting the existence of insulin (year 1967) and insulin receptor (year 1978) in brain, the last decade has witnessed extraordinary progress in the understanding of brain region-specific multiple roles of insulin receptor signalings in health and disease. In the hypothalamus, insulin regulates food intake, body weight, peripheral fat deposition, hepatic gluconeogenesis, reproductive endocrine axis, and compensatory secretion of counter-regulatory hormones to hypoglycemia. In the hippocampus, insulin promotes learning and memory, independent of the glucoregulatory effect of insulin. Defective insulin receptor signalings are associated with the dementia in normal aging and patients with age-related neurodegenerative diseases (e.g., Alzheimer's disease); the cognitive impairment can be reversed with systemic administration of insulin in the euglycemic condition. Intranasal administration of insulin enhances memory and mood and decreases body weight in healthy humans, without causing hypoglycemia. In the hypothalamus, insulin-induced activation of the phosphoinositide 3-kinase pathway followed by opening of ATP-sensitive K+ channel has been shown to be related to multiple effects of insulin. However, the precise molecular mechanisms of insulin's pleiotropic effects still remain obscure. More importantly, much remains unknown about the quality control mechanisms ensuring correct conformational maturation of the insulin receptor, and the cellular mechanisms regulating density of cell surface functional insulin receptors.

  16. Structural analogs of human insulin-like growth factor I with reduced affinity for serum binding proteins and the type 2 insulin-like growth factor receptor

    International Nuclear Information System (INIS)

    Bayne, M.L.; Applebaum, J.; Chicchi, G.G.; Hayes, N.S.; Green, B.G.; Cascieri, M.A.

    1988-01-01

    Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. [Phe -1 , Val 1 , Asn 2 , Gln 3 , His 4 , Ser 8 , His 9 , Glu 12 , Tyr 15 , Leu 16 ]IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has >1000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. [Gln 3 , Ala 4 ] IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. [Tyr 15 , Leu 16 ] IGH-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. The peptide in which these four-point mutations are combined, [Gln 3 , Ala 4 , Tyr 15 ,Leu 16 ]IGF-I, has 600-fold reduced affinity for the serum binding proteins. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, These peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I

  17. Fundamental studies on the insulin receptor in rabbit erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Shinomiya, Y; Kagawa, S; Konishi, Y; Morimoto, H; Tsumura, Y [Hyogo Medical Coll. (Japan)

    1975-09-01

    The authors studied the binding of insulin to rabbit erythrocytes as a mode case in the hope of characterizing the physiologic role of the binding of insulin to receptor in both normal adults and patients. Specific binding sites for insulin were detected in rabbit erythrocytes. The characteristics of the binding were similar to those observed in other target tissues. The specific binding of /sup 125/I-labeled insulin was competitively inhibited by a small amount of unlabeled insulin and was completely inhibited by 1,000 ng/ml of unlabeled insulin. Glucagon, however, had no effect on the insulin binding to fat cells or liver membranes nor had it any effect on the binding of insulin to rabbit erythrocytes. Scatchard analysis of this binding reaction indicated two different binding sites with Ksub(aff)=3.2 x 10/sup 8//M, Ksub(diss)=3.1 x 10/sup -9/M; Ksub(aff)=1.4 x 10/sup 8//M, Ksub(diss)=7.1 x 10/sup -9/M respectively, and the binding capacities of each site were estimated at 0.011 ng/4 x 10/sup 8/ cells and 0.138 ng/4 x 10/sup 8/ cells. The binding of /sup 125/I-insulin to rabbit erythrocytes was a saturable function of the insulin concentration and was a linear function of cell concentration. The pH optimum for the reaction was 7.4 at 0/sup 0/C, the amount of insulin binding increased continuously under the reaction and this binding reaction reached a steady state after 10 to 15hr. On the other hand, the specific binding of insulin at higher temperatures showed maximal amounts after 20 to 30 min. and subsequently fell off at later time points.

  18. G protein-coupled receptors (GPCRs) That Signal via Protein Kinase A (PKA) Cross-talk at Insulin Receptor Substrate 1 (IRS1) to Activate the phosphatidylinositol 3-kinase (PI3K)/AKT Pathway.

    Science.gov (United States)

    Law, Nathan C; White, Morris F; Hunzicker-Dunn, Mary E

    2016-12-30

    G protein-coupled receptors (GPCRs) activate PI3K/v-AKT thymoma viral oncoprotein (AKT) to regulate many cellular functions that promote cell survival, proliferation, and growth. However, the mechanism by which GPCRs activate PI3K/AKT remains poorly understood. We used ovarian preantral granulosa cells (GCs) to elucidate the mechanism by which the GPCR agonist FSH via PKA activates the PI3K/AKT cascade. Insulin-like growth factor 1 (IGF1) is secreted in an autocrine/paracrine manner by GCs and activates the IGF1 receptor (IGF1R) but, in the absence of FSH, fails to stimulate YXXM phosphorylation of IRS1 (insulin receptor substrate 1) required for PI3K/AKT activation. We show that PKA directly phosphorylates the protein phosphatase 1 (PP1) regulatory subunit myosin phosphatase targeting subunit 1 (MYPT1) to activate PP1 associated with the IGF1R-IRS1 complex. Activated PP1 is sufficient to dephosphorylate at least four IRS1 Ser residues, Ser 318 , Ser 346 , Ser 612 , and Ser 789 , and promotes IRS1 YXXM phosphorylation by the IGF1R to activate the PI3K/AKT cascade. Additional experiments indicate that this mechanism also occurs in breast cancer, thyroid, and preovulatory granulosa cells, suggesting that the PKA-dependent dephosphorylation of IRS1 Ser/Thr residues is a conserved mechanism by which GPCRs signal to activate the PI3K/AKT pathway downstream of the IGF1R. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Hyperinsulinemia is associated with increased soluble insulin receptors release from hepatocytes

    Directory of Open Access Journals (Sweden)

    Marcia eHiriart

    2014-06-01

    Full Text Available It has been generally assumed that insulin circulates freely in blood. However it can also interact with plasma proteins. Insulin receptors are located in the membrane of target cells and consist of an alpha and beta subunits with a tyrosine kinase cytoplasmic domain. The ectodomain, called soluble insulin receptor (SIR has been found elevated in patients with diabetes mellitus. We explored if insulin binds to SIRs in circulation under physiological conditions and hypothesize that this SIR may be released by hepatocytes in response to high insulin concentrations. The presence of SIR in rat and human plasmas and the culture medium of hepatocytes was explored using Western blot analysis. A purification protocol was performed to isolated SIR using affinity, gel filtration and ion exchange chromatographies. A modified reverse hemolytic plaque assay was used to measure SIR release from cultured hepatocytes. Incubation with 1 nmol l-1 insulin induces the release of the insulin receptor ectodomains from normal rat hepatocytes. This effect can be partially prevented by blocking protease activity. Furthermore, plasma levels of SIR were higher in a model of metabolic syndrome, where rats are hyperinsulinemic. We also found increased SIR levels in hyperinsulinemic humans. SIR may be an important regulator of the amount of free insulin in circulation. In hyperinsulinemia the amount of this soluble receptor increases, this could lead to higher amounts of insulin bound to this receptor, rather than free insulin, which is the biologically active form of the hormone. This observation could enlighten the mechanisms of insulin resistance.

  20. Direct demonstration of rapid insulin-like growth factor II receptor internalization and recycling in rat adipocytes. Insulin stimulates 125I-insulin-like growth factor II degradation by modulating the IGF-II receptor recycling process

    International Nuclear Information System (INIS)

    Oka, Y.; Rozek, L.M.; Czech, M.P.

    1985-01-01

    The photoactive insulin-like growth factor (IGF)-II analogue 4-azidobenzoyl- 125 I-IGF-II was synthesized and used to label specifically and covalently the Mr = 250,000 Type II IGF receptor. When rat adipocytes are irradiated after a 10-min incubation with 4-azidobenzoyl- 125 I-IGF-II at 10 degrees C and immediately homogenized, most of the labeled IGF-II receptors are associated with the plasma membrane fraction, indicating that receptors accessible to the labeling reagent at low temperature are on the cell surface. However, when the photolabeled cells are incubated at 37 degrees C for various times before homogenization, labeled IGF-II receptors are rapidly internalized with a half-time of 3.5 min as evidenced by a loss from the plasma membrane fraction and a concomitant appearance in the low density microsome fraction. The steady state level of cell surface IGF-II receptors in the presence or absence of IGF-II remains constant under these conditions, demonstrating that IGF-II receptors rapidly recycle back to the cell surface at the same rate as receptor internalization. Using the above methodology, it is shown that acute insulin action: 1) increases the steady state number of cell surface IGF-II receptors; 2) increases the number of ligand-bound IGF-II receptors that are internalized per unit of time; and 3) increases the rate of cellular 125 I-IGF-II degradation by a process that is blocked by anti-IGF-II receptor antibody

  1. High-level expression of human insulin receptor cDNA in mouse NIH 3T3 cells

    International Nuclear Information System (INIS)

    Whittaker, J.; Okamoto, A.K.; Thys, R.; Bell, G.I.; Steiner, D.F.; Hofmann, C.A.

    1987-01-01

    In order to develop a simple, efficient system for the high-level expression of human insulin receptors in eukaryotic cells, a full-length human kidney insulin receptor cDNA was inserted into a bovine papilloma virus vector under the control of the mouse metallothionein promoter. After transfection of mouse NIH 3T3 cells with this construct, seven cell lines expressing insulin receptors were isolated; two cell lines had more than 10 6 receptors per cell. The cell line with the highest 125 I-insulin binding (NIH 3T3 HIR3.5) had 6 x 10 6 receptors with a K/sub d/ of 10 -9 M. This level was not dependent on exposure to metals but could be increased further to 2 x 10 7 receptors per cell by addition of sodium butyrate to the culture medium. The α and β subunits had apparent molecular weights of 147,000 and 105,000, respectively (compared to 135,000 and 95,000 in IM-9 human lymphocytes), values identical to those of the α and β subunits of the insulin receptors of nontransformed NIH 3T3 cells. This size difference was due to altered carbohydrate composition, as N-glycanase digestion reduced the apparent receptor subunit size of the transfected cells and IM-9 lymphocytes to identical values. The alteration in N-linked oligosaccharide composition could not be ascribed to differences in the kinetics of posttranslational processing of the insulin receptors, which was comparable to that of other cells studied. The basal rate of glycogen synthesis in the cells overexpressing insulin receptors was increased 4- to 5-fold compared with controls. Low levels of added insulin (0.1 nM) caused a 50% increase in the rate of glycogen synthesis

  2. Receptors for insulin-like growth factors I and II: autoradiographic localization in rat brain and comparison to receptors for insulin

    International Nuclear Information System (INIS)

    Lesniak, M.A.; Hill, J.M.; Kiess, W.; Rojeski, M.; Pert, C.B.; Roth, J.

    1988-01-01

    Receptors for insulin-like growth factor I (IGF-I) in rat brain were visualized using autoradiography with [125I]IGF-I. The binding of the labeled peptide was competed for fully by high concentrations of unlabeled IGF-I. At intermediate concentrations of unlabeled peptide the binding of [125I]IGF-I was competed for by unlabeled IGF-I more effectively than by IGF-II or insulin, which is typical of receptors for IGF-I. Essentially every brain section shows specific binding of IGF-I, and the pattern of binding of IGF-I to its receptors correlated well with the cytoarchitectonic structures. In parallel studies we showed that [125I]IGF-II was bound to tissue sections of rat brain and that the binding was competed for by an excess of unlabeled IGF-II. However, intermediate concentrations of unlabeled peptides gave inconclusive results. To confirm that the binding of [125I]IGF-II was to IGF-II receptors, we showed that antibodies specific for the IGF-II receptor inhibited the binding of labeled IGF-II. Furthermore, the binding of the antibody to regions of the brain section, visualized by the application of [125I]protein-A, gave patterns indistinguishable from those obtained with [125I]IGF-II alone. Again, the binding was very widely distributed throughout the central nervous system, and the patterns of distribution corresponded well to the underlying neural structures. Densitometric analysis of the receptors enabled us to compare the distribution of IGF-I receptors with that of IGF-II receptors as well as retrospectively with that of insulin receptors

  3. [Differences in dynamics of insulin and insulin-like growth I (IGF-I) receptors internalization in isolated rat hepatocytes].

    Science.gov (United States)

    Kolychev, A P; Ternovskaya, E E; Arsenieva, A V; Shapkina, E V

    2013-01-01

    Insulin and IGF-I are two related peptides performing in the mammalian body functionally different roles of the metabolic and growth hormones, respectively. Internalization of the insulin-receptor complex (IRC) is the most important chain of mechanism of the action of hormone. To elucidate differences in the main stages of internalization of the two related hormones, the internalization dynamics of 125I-insulin and 125I-IGF-I was traced in isolated rat hepatocytes at 37 and 12 degrees C. There were established marked differences in the process of internalization of labeled hormones, which is stimulated by insulin and IGF-I. At 37 degrees C the insulin-stimulated internalization, unlike the process initiated by IGF-I, did not reach the maximal level for 1 h of incubation. However, essential differences in the internalization course of these two related peptide were obvious at the temperature of 12 degrees C. The internalization level of insulin receptors at 12 degrees C decreased by one third in spite of a significant increase of the insulin receptor binding on the hepatocytes plasma membrane. At 12 degrees C a slight decrease of the proportion of intracellular 125I-IGF-I correlated with a decrease in the 125I-IGF-I binding to receptors on the cell membrane. Internalization of IGF-I receptors was not affected by low temperature, as neither its level, nor the rate changed at 12 degrees C. The paradoxical decrease of the insulin-stimulated internalization at low temperature seems to represent a peculiar "inhibition mechanism" of immersion of IRC into the cell, which leads to accumulation of the complexes on the cell surface and possibly to a readjustment of the insulin biological activity. The resistance of internalization of the IGF-I receptor to cold seems to be related to the more ancient origin of this mechanism in the poikilothermal vertebrates.

  4. Influence of metformin and insulin on myocardial substrate oxidation under conditions encountered during cardiac surgery.

    Science.gov (United States)

    Holmes, Cyonna; Powell, LaShondra; Clarke, Nicholas S; Jessen, Michael E; Peltz, Matthias

    2018-02-01

    The influence of diabetic therapies on myocardial substrate selection during cardiac surgery is unknown but may be important to ensure optimal surgical outcomes. We hypothesized that metformin and insulin alter myocardial substrate selection during cardiac surgery and may affect reperfusion cardiac function. Rat hearts (n = 8 per group) were evaluated under 3 metabolic conditions: normokalemia, cardioplegia, or bypass. Groups were perfused with Krebs-Henseleit buffer in the presence of no additives, metformin, insulin, or both insulin and metformin. Perfusion buffer containing physiologic concentrations of energetic substrates with different carbon-13 ( 13 C) labeling patterns were used to determine substrate oxidation preferences using 13 C magnetic resonance spectroscopy and glutamate isotopomer analysis. Rate pressure product and oxygen consumption were measured. Myocardial function was not different between groups. For normokalemia, ketone oxidation was reduced in the presence of insulin and the combination of metformin and insulin reduced fatty acid oxidation. Metformin reduced fatty acid and ketone oxidation during cardioplegia. Fatty acid oxidation was increased in the bypass group compared with all other conditions. Metformin and insulin affect substrate utilization and reduce fatty acid oxidation before reperfusion. These alterations in substrate oxidation did not affect myocardial function in otherwise normal hearts. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Comparative effects of several simple carbohydrates on erythrocyte insulin receptors in obese subjects.

    Science.gov (United States)

    Rizkalla, S W; Baigts, F; Fumeron, F; Rabillon, B; Bayn, P; Ktorza, A; Spielmann, D; Apfelbaum, M

    1986-09-01

    The effects of simple carbohydrates on erythrocyte insulin receptors, plasma insulin and plasma glucose were studied during four hypocaloric, hyperproteic, diets. One diet contained no carbohydrate; the other three contained 36 g of either glucose, galactose or fructose. These diets were given for a 14-day period to groups of moderately obese subjects. The hypocaloric carbohydrate-free diet produced a decrease in plasma insulin and glucose concentrations concomitant with an increase in the number of insulin receptors. A similar increase in insulin receptor number was found when the diet was supplemented with glucose or galactose, but not with fructose. The presence of fructose in the diet prevented any increase in insulin receptor number.

  6. Effects of the antitumor drug OSI-906, a dual inhibitor of IGF-1 receptor and insulin receptor, on the glycemic control, β-cell functions, and β-cell proliferation in male mice.

    Science.gov (United States)

    Shirakawa, Jun; Okuyama, Tomoko; Yoshida, Eiko; Shimizu, Mari; Horigome, Yuka; Tuno, Takayuki; Hayasaka, Moe; Abe, Shiori; Fuse, Masahiro; Togashi, Yu; Terauchi, Yasuo

    2014-06-01

    The IGF-1 receptor has become a therapeutic target for the treatment of cancer. The efficacy of OSI-906 (linstinib), a dual inhibitor of IGF-1 receptor and insulin receptor, for solid cancers has been examined in clinical trials. The effects of OSI-906, however, on the blood glucose levels and pancreatic β-cell functions have not yet been reported. We investigated the impact of OSI-906 on glycemic control, insulin secretion, β-cell mass, and β-cell proliferation in male mice. Oral administration of OSI-906 worsened glucose tolerance in a dose-dependent manner in the wild-type mice. OSI-906 at a dose equivalent to the clinical daily dose (7.5 mg/kg) transiently evoked glucose intolerance and hyperinsulinemia. Insulin receptor substrate (IRS)-2-deficient mice and mice with diet-induced obesity, both models of peripheral insulin resistance, exhibited more severe glucose intolerance after OSI-906 administration than glucokinase-haploinsufficient mice, a model of impaired insulin secretion. Phloridzin improved the hyperglycemia induced by OSI-906 in mice. In vitro, OSI-906 showed no effect on insulin secretion from isolated islets. After daily administration of OSI-906 for a week to mice, the β-cell mass and β-cell proliferation rate were significantly increased. The insulin signals in the β-cells were apparently unaffected in those mice. Taken together, the results suggest that OSI-906 could exacerbate diabetes, especially in patients with insulin resistance. On the other hand, the results suggest that the β-cell mass may expand in response to chemotherapy with this drug.

  7. Hibiscus sabdariffa polyphenols alleviate insulin resistance and renal epithelial to mesenchymal transition: a novel action mechanism mediated by type 4 dipeptidyl peptidase.

    Science.gov (United States)

    Peng, Chiung-Huei; Yang, Yi-Sun; Chan, Kuei-Chuan; Wang, Chau-Jong; Chen, Mu-Lin; Huang, Chien-Ning

    2014-10-08

    The epithelial to mesenchymal transition (EMT) is important in renal fibrosis. Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1 (S307)) is a hallmark of insulin resistance. We report that polyphenol extracts of Hibiscus sabdariffa (HPE) ameliorate diabetic nephropathy and EMT. Recently it has been observed that type 4 dipeptidyl peptidase (DPP-4) inhibitor linagliptin is effective for treating type 2 diabetes and albuminuria. We investigated if DPP-4 and insulin resistance are involved in renal EMT and explored the role of HPE. In high glucose-stimulated tubular cells, HPE, like linagliptin, inhibited DPP-4 activation, thereby regulating vimentin (EMT marker) and IRS-1 (S307). IRS-1 knockdown revealed its essential role in mediating downstream EMT. In type 2 diabetic rats, pIRS-1 (S307) abundantly surrounds the tubular region, with increased vimentin in kidney. Both the expressions were reduced by HPE. In conclusion, HPE exerts effects similar to those of linagliptin, which improves insulin resistance and EMT, and could be an adjuvant to prevent diabetic nephropathy.

  8. Interaction between the p21ras GTPase activating protein and the insulin receptor

    NARCIS (Netherlands)

    Pronk, G.J.; Medema, R.H.; Burgering, B.M.T.; Clark, R.; McCormick, F.; Bos, J.L.

    1992-01-01

    We investigated the involvement of the p21ras-GTPase activating protein (GAP) in insulin-induced signal transduction. In cells overexpressing the insulin receptor, we did not observe association between GAP and the insulin receptor after insulin treatment nor the phosphorylation of GAP on tyrosine

  9. Rat liver responsiveness to gluconeogenic substrates during insulin-induced hypoglycemia

    Directory of Open Access Journals (Sweden)

    H.M. de Souza

    2001-06-01

    Full Text Available Hepatic responsiveness to gluconeogenic substrates during insulin-induced hypoglycemia was investigated. For this purpose, livers were perfused with a saturating concentration of 2 mM glycerol, 5 mM L-alanine or 5 mM L-glutamine as gluconeogenic substrates. All experiments were performed 1 h after an ip injection of saline (CN group or 1 IU/kg of insulin (IN group. The IN group showed higher (P<0.05 hepatic glucose production from glycerol, L-alanine and L-glutamine and higher (P<0.05 production of L-lactate, pyruvate and urea from L-alanine and L-glutamine. In addition, ip injection of 100 mg/kg glycerol, L-alanine and L-glutamine promoted glucose recovery. The results indicate that the hepatic capacity to produce glucose from gluconeogenic precursors was increased during insulin-induced hypoglycemia.

  10. Effect of Scoparia dulcis extract on insulin receptors in streptozotocin induced diabetic rats: studies on insulin binding to erythrocytes.

    Science.gov (United States)

    Pari, Leelavinothan; Latha, Muniappan; Rao, Chippada Appa

    2004-01-01

    We investigated the insulin-receptor-binding effect of Scoparia dulcis plant extract in streptozotocin (STZ)-induced male Wistar rats, using circulating erythrocytes (ER) as a model system. An aqueous extract of S dulcis plant (SPEt) (200 mg/kg body weight) was administered orally. We measured blood levels of glucose and plasma insulin and the binding of insulin to cell-membrane ER receptors. Glibenclamide was used as standard reference drug. The mean specific binding of insulin to ER was significantly lower in diabetic control rats (DC) (55.0 +/- 2.8%) than in SPEt-treated (70.0 +/- 3.5%)- and glibenclamide-treated (65.0 +/- 3.3%) diabetic rats, resulting in a significant decrease in plasma insulin. Scatchard plot analysis demonstrated that the decrease in insulin binding was accounted for by a lower number of insulin receptor sites per cell in DC rats when compared with SPEt- and glibenclamide-treated rats. High-affinity (Kd1), low-affinity (Kd2), and kinetic analysis revealed an increase in the average receptor affinity in ER from SPEt and glibenclamide treated diabetic rats having 2.5 +/- 0.15 x 10(10) M(-1) (Kd1); 17.0 +/- 1.0 x 10(-8) M(-1) (Kd2), and 2.0 +/- 0.1 x 10(-10) M(-1) (Kd1); 12.3 +/- 0.9 x 10(-8) M(-1) (Kd2) compared with 1.0 +/- 0.08 x 10(-10) M(-1) (Kd1); 2.7 +/- 0.25 x 10(-8) M(-1) (Kd2) in DC rats. The results suggest an acute alteration in the number of insulin receptors on ER membranes in STZ-induced diabetic rats. Treatment with SPEt and glibenclamide significantly improved specific insulin binding, with receptor number and affinity binding (p < 0.001) reaching almost normal non-diabetic levels. The data presented here show that SPEt and glibenclamide increase total ER membrane insulin binding sites with a concomitant significant increase in plasma insulin.

  11. Receptor-isoform-selective insulin analogues give tissue-preferential effects

    DEFF Research Database (Denmark)

    Vienberg, Sara Gry; Bouman, Stephan D; Sørensen, Heidi

    2011-01-01

    The relative expression patterns of the two IR (insulin receptor) isoforms, +/- exon 11 (IR-B/IR-A respectively), are tissue-dependent. Therefore we have developed insulin analogues with different binding affinities for the two isoforms to test whether tissue-preferential biological effects can...... be attained. In rats and mice, IR-B is the most prominent isoform in the liver (> 95%) and fat (> 90%), whereas in muscles IR-A is the dominant isoform (> 95%). As a consequence, the insulin analogue INS-A, which has a higher relative affinity for human IR-A, had a higher relative potency [compared with HI...... (human insulin)] for glycogen synthesis in rat muscle strips (26%) than for glycogen accumulation in rat hepatocytes (5%) and for lipogenesis in rat adipocytes (4%). In contrast, the INS-B analogue, which has an increased affinity for human IR-B, had higher relative potencies (compared with HI...

  12. Cannabinoid 2 Receptor Agonist Improves Systemic Sensitivity to Insulin in High-Fat Diet/Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Xiuyuan Zhang

    2016-12-01

    Full Text Available Background/Aims: The endocannabinoid signalling (ECS system has been known to regulate glucose homeostasis. Previous studies have suggested that the cannabinoid 2 (CB2 receptor may play a regulatory role on insulin secretion, immune modulation and insulin resistance. Given that diabetes and insulin resistance are attributable to elevated inflammatory tone, we investigated the role of CB2 receptor on glucose tolerance and insulin sensitivity in high-fat diet (HFD/streptozotocin (STZ-induced mice. Methods: Diabetes was induced in male ICR mice by HFD/STZ and exposed to a CB2 receptor agonist, SER601, for 2- or 4-weeks via subcutaneous implantation of osmotic minipumps. Glucose and insulin tolerance tests were performed at the end of treatment. Islets were isolated for assessment of β-cell function. Pancreases and skeletal muscles were also obtained for histological analyses. Results: Despite a lack of impact on glucose tolerance, substantial improvement on insulin sensitivity was observed in SER601-treated mice, which could partly be attributed to improved islet β-cell function, shown as increased glucose-induced insulin secretion and insulin content. No changes on islet macrophage infiltration or skeletal muscle fat deposition were detectable from SER601-treated mice. However, a major decrease in body weight was recorded at the end of 4-week SER601 exposure, accompanied by a lack of epididymal adipose mass in SER601-treated mice. Conclusion: Our data suggest a lipolytic role of SER601 in HFD/STZ-induced diabetic mice, which results in significant improvement of systemic insulin sensitivity. Thus, the CB2 receptor may be considered a promising target for therapeutic development against insulin resistance and obesity-related diabetes.

  13. Insulin and 20-hydroxyecdysone action in Bombyx mori: Glycogen content and expression pattern of insulin and ecdysone receptors in fat body.

    Science.gov (United States)

    Keshan, Bela; Thounaojam, Bembem; Kh, Sanathoibi D

    2017-01-15

    Insulin and ecdysone signaling play a critical role on the growth and development of insects including Bombyx mori. Our previous study showed that Bombyx larvae reached critical weight for metamorphosis between day 3.5 and 4 of the fifth larval instar. The present study showed that the effect of insulin on the accumulation of glycogen in fat body of Bombyx larvae depends on the critical growth period. When larvae are in active growth period (before reaching critical weight), insulin caused increased accumulation of glycogen, while its treatment in larvae at terminal growth period (after critical period) resulted in an increased mobilization of glycogen. During terminal growth period, insulin and 20-hydroxyecdysone (20E) showed an antagonistic effect on the accumulation of fat body glycogen in fed, food deprived and decapitated larvae as well as in isolated abdomens. Insulin treatment decreased the glycogen content, whereas, 20E increased it. Food deprivation and decapitation caused an increase in the transcript levels of insulin receptor (InR) and this increase in InR expression might be attributed to a decrease in synthesis/secretion of insulin-like peptides, as insulin treatment in these larvae showed a down-regulation in InR expression. However, insulin showed an up-regulation in InR in isolated abdomens and it suggests that in food deprived and decapitated larvae, the exogenous insulin may interact with some head and/or thoracic factors in modulating the expression of InR. Moreover, in fed larvae, insulin-mediated increase in InR expression indicates that its regulation by insulin-like peptides also depends on the nutritional status of the larvae. The treatment of 20E in fed larvae showed an antagonistic effect on the transcript levels since a down-regulation in InR expression was observed. 20E treatment also led to a decreased expression of InR in food deprived and decapitated larvae as well as in isolated abdomens. Insulin and 20E also modulated the

  14. Expression of insulin-like growth factor-2 receptors on EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Farmer, John T; Weigent, Douglas A

    2007-01-01

    In the present study, we report the upregulation of functional IGF-2Rs in cells overexpressing growth hormone (GH). EL4 lymphoma cells stably transfected with an rGH cDNA overexpression vector (GHo) exhibited an increase in the binding of (125)I-IGF-2 with no change in the binding affinity compared to vector alone controls. An increase in the expression of the insulin-like growth factor-2 receptor (IGF-2R) in cells overexpressing GH was confirmed by Western blot analysis and IGF-2R promoter luciferase assays. EL4 cells produce insulin-like growth factor-2 (IGF-2) as detected by the reverse transcription-polymerase chain reaction (RT-PCR); however, no IGF-2 protein was detected by Western analysis. The increase in the expression of the IGF-2R resulted in greater levels of IGF-2 uptake in GHo cells compared to vector alone controls. The data suggest that one of the consequences of the overexpression of GH is an increase in the expression of the IGF-2R.

  15. Insulin rapidly stimulates phosphorylation of a 46-kDa membrane protein on tyrosine residues as well as phosphorylation of several soluble proteins in intact fat cells

    International Nuclear Information System (INIS)

    Haering, H.U.; White, M.F.; Machicao, F.; Ermel, B.; Schleicher, E.; Obermaier, B.

    1987-01-01

    It is speculated that the transmission of an insulin signal across the plasma membrane of cells occurs through activation of the tyrosine-specific receptor kinase, autophosphorylation of the receptor, and subsequent phosphorylation of unidentified substrates in the cell. In an attempt to identify possible substrates, the authors labeled intact rat fat cells with [ 32 P]orthophosphate and used an antiphosphotyrosine antibody to identify proteins that become phosphorylated on tyrosine residues in an insulin-stimulated way. In the membrane fraction of the fat cells, they found, in addition to the 95-kDa β-subunit of the receptor, a 46-kDa phosphoprotein that is phosphorylated exclusively on tyrosine residues. This protein is not immunoprecipitated by antibodies against different regions of the insulin receptor and its HPLC tryptic peptide map is different from the tryptic peptide map of the insulin receptor, suggesting that it is not derived from the receptor β-subunit. Insulin stimulates the tyrosine phosphorylation of the 46-kDa protein within 150 sec in the intact cell 3- to 4-fold in a dose-dependent way at insulin concentrations between 0.5 nM and 100 nM. Insulin (0.5 nM, 100 nM) stimulated within 2 min the 32 P incorporation into a 116-kDa band, a 62 kDa band, and three bands between 45 kDa and 50 kDa 2- to 10-fold. They suggest that the 46-kDa membrane protein and possibly also the soluble proteins are endogenous substrates of the receptor tyrosine kinase in fat cells and that their phosphorylation is an early step in insulin signal transmission

  16. Insulin and insulin-like growth factor receptors in the brain: physiological and pathological aspects.

    Science.gov (United States)

    Werner, Haim; LeRoith, Derek

    2014-12-01

    The involvement of insulin, the insulin-like growth factors (IGF1, IGF2) and their receptors in central nervous system development and function has been the focus of scientific interest for more than 30 years. The insulin-like peptides, both locally-produced proteins as well as those transported from the circulation into the brain via the blood-brain barrier, are involved in a myriad of biological activities. These actions include, among others, neuronal survival, neurogenes, angiogenesis, excitatory and inhibitory neurotransmission, regulation of food intake, and cognition. In recent years, a linkage between brain insulin/IGF1 and certain neuropathologies has been identified. Epidemiological studies have demonstrated a correlation between diabetes (mainly type 2) and Alzheimer׳s disease. In addition, an aberrant decline in IGF1 values was suggested to play a role in the development of Alzheimer׳s disease. The present review focuses on the expression and function of insulin, IGFs and their receptors in the brain in physiological and pathological conditions. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  17. Insulin receptor-related receptor as an extracellular pH sensor involved in the regulation of acid-base balance.

    Science.gov (United States)

    Petrenko, Alexander G; Zozulya, Sergey A; Deyev, Igor E; Eladari, Dominique

    2013-10-01

    Recent studies of insulin receptor-related receptor (IRR) revealed its unusual property to activate upon extracellular application of mildly alkaline media, pH>7.9. The activation of IRR with hydroxyl anion has typical features of ligand-receptor interaction; it is specific, dose-dependent, involves the IRR extracellular domain and is accompanied by a major conformational change. IRR is a member of the insulin receptor minifamily and has been long viewed as an orphan receptor tyrosine kinase since no peptide or protein agonist of IRR was found. In the evolution, IRR is highly conserved since its divergence from the insulin and insulin-like growth factor receptors in amphibia. The latter two cannot be activated by alkali. Another major difference between them is that unlike ubiquitously expressed insulin and insulin-like growth factor receptors, IRR is found in specific sets of cells of only some tissues, most of them being exposed to extracorporeal liquids of extreme pH. In particular, largest concentrations of IRR are in beta-intercalated cells of the kidneys. The primary physiological function of these cells is to excrete excessive alkali as bicarbonate into urine. When IRR is removed genetically, animals loose the property to excrete bicarbonate upon experimentally induced alkalosis. In this review, we will discuss the available in vitro and in vivo data that support the hypothesis of IRR role as a physiological alkali sensor that regulates acid-base balance. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Influence of Unweighting on Insulin Signal Transduction in Muscle

    Science.gov (United States)

    Tischler, Marc E.

    2002-01-01

    Unweighting of the juvenile soleus muscle is characterized by an increased binding capacity for insulin relative to muscle mass due to sparing of the receptors during atrophy. Although carbohydrate metabolism and protein degradation in the unweighted muscle develop increased sensitivity to insulin in vivo, protein synthesis in vivo and system A amino acid transport in vitro do not appear to develop such an enhanced response. The long-term goal is to identify the precise nature of this apparent resistance in the insulin signal transduction pathway and to consider how reduced weight-bearing may elicit this effect, by evaluating specific components of the insulin signalling pathway. Because the insulin-signalling pathway has components in common with the signal transduction pathway for insulin-like growth factor (IGF-1) and potentially other growth factors, the study could have important implications in the role of weight-bearing function on muscle growth and development. Since the insulin signalling pathway diverges following activation of insulin receptor tyrosine kinase, the immediate specific aims will be to study the receptor tyrosine kinase (IRTK) and those branches, which lead to phosphorylation of insulin receptor substrate-1 (IRS-1) and of Shc protein. To achieve these broader objectives, we will test in situ, by intramuscular injection, the responses of glucose transport, system A amino acid transport and protein synthesis to insulin analogues for which the receptor has either a weaker or much stronger binding affinity compared to insulin. Studies will include: (1) estimation of the ED(sub 50) for each analogue for these three processes; (2) the effect of duration (one to four days) of unweighting on the response of each process to all analogues tested; (3) the effect of unweighting and the analogues on IRTK activity; and (4) the comparative effects of unweighting and analogue binding on the tyrosine phosphorylation of IRTK, IRS-1, and Shc protein.

  19. Combining GLP-1 receptor agonists with insulin

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Vilsbøll, T

    2013-01-01

    Due to the increasing prevalence of type 2 diabetes mellitus (T2DM), the emergent trend towards diagnosis in younger patients and the progressive nature of this disease, many more patients than before now require insulin to maintain glycaemic control. However, there is a degree of inertia among...... physicians and patients regarding the initiation and intensification of insulin therapy, in part due to concerns about the associated weight gain and increased risk of hypoglycaemia. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) increase insulin release and suppress glucagon secretion in a glucose......, compared with insulin, the antihyperglycaemic efficacy of GLP-1RAs is limited. The combination of a GLP-1RA and insulin might thus be highly effective for optimal glucose control, ameliorating the adverse effects typically associated with insulin. Data from clinical studies support the therapeutic...

  20. The role of insulin receptor signaling in the brain.

    Science.gov (United States)

    Plum, Leona; Schubert, Markus; Brüning, Jens C

    2005-03-01

    The insulin receptor (IR) is expressed in various regions of the developing and adult brain, and its functions have become the focus of recent research. Insulin enters the central nervous system (CNS) through the blood-brain barrier by receptor-mediated transport to regulate food intake, sympathetic activity and peripheral insulin action through the inhibition of hepatic gluconeogenesis and reproductive endocrinology. On a molecular level, some of the effects of insulin converge with those of the leptin signaling machinery at the point of activation of phosphatidylinositol 3-kinase (PI3K), resulting in the regulation of ATP-dependent potassium channels. Furthermore, insulin inhibits neuronal apoptosis via activation of protein kinase B in vitro, and it regulates phosphorylation of tau, metabolism of the amyloid precursor protein and clearance of beta-amyloid from the brain in vivo. These findings indicate that neuronal IR signaling has a direct role in the link between energy homeostasis, reproduction and the development of neurodegenerative diseases.

  1. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice

    Science.gov (United States)

    Tanigaki, Keiji; Chambliss, Ken L.; Yuhanna, Ivan S.; Sacharidou, Anastasia; Ahmed, Mohamed; Atochin, Dmitriy N.; Huang, Paul L.

    2016-01-01

    Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis. PMID:27207525

  2. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells

    Directory of Open Access Journals (Sweden)

    Tobias Boothe

    2016-05-01

    Full Text Available Objective: The role and mechanisms of insulin receptor internalization remain incompletely understood. Previous trafficking studies of insulin receptors involved fluorescent protein tagging at their termini, manipulations that may be expected to result in dysfunctional receptors. Our objective was to determine the trafficking route and molecular mechanisms of functional tagged insulin receptors and endogenous insulin receptors in pancreatic beta-cells. Methods: We generated functional insulin receptors tagged with pH-resistant fluorescent proteins between domains. Confocal, TIRF and STED imaging revealed a trafficking pattern of inter-domain tagged insulin receptors and endogenous insulin receptors detected with antibodies. Results: Surprisingly, interdomain-tagged and endogenous insulin receptors in beta-cells bypassed classical Rab5a- or Rab7-mediated endocytic routes. Instead, we found that removal of insulin receptors from the plasma membrane involved tyrosine-phosphorylated caveolin-1, prior to trafficking within flotillin-1-positive structures to lysosomes. Multiple methods of inhibiting caveolin-1 significantly reduced Erk activation in vitro or in vivo, while leaving Akt signaling mostly intact. Conclusions: We conclude that phosphorylated caveolin-1 plays a role in insulin receptor internalization towards lysosomes through flotillin-1-positive structures and that caveolin-1 helps bias physiological beta-cell insulin signaling towards Erk activation. Author Video: Author Video Watch what authors say about their articles Keywords: Insulin receptor internalization, Insulin resistance, Pancreatic islet beta-cells, Autocrine insulin signaling

  3. Insulin and IGF receptors are developmentally regulated in the chick embry eye lens

    International Nuclear Information System (INIS)

    Bassas, L.; Zelenka, P.S.; Serrano, J.; de Pablo, F.

    1987-01-01

    The authors have previously reported that insulin-like growth factor (IGF) receptors appear to predominate over insulin receptors in early stages of embryogenesis in the chick (days 2-3 whole embryo membranes). Overall, [ 125 I]IGF and II binding to specific receptors was maximal when the rate of brain growth is highest. In the present study they used the embryonic chick lens, a well-defined tissue composed of a single type of cell, to analyze whether changes of insulin and IGFI binding are correlated with changes in growth rate and differentiation state of the cells. They show that both insulin receptors and IGF receptors are present in the lens epithelial cells, and that each type is distinctly regulated throughout development. While there is a direct correlation between IFG-binding capability and growth rate of the cells, there is less relation to differentiation status and embryo age. Insulin receptors, by contrast, appear to be mostly related to the differentiated state of cells, decreasing sharply in fibers, irrespective of their developmental age

  4. Hydroxylamine enhances glucose uptake in C2C12 skeletal muscle cells through the activation of insulin receptor substrate 1.

    Science.gov (United States)

    Kimura, Taro; Kato, Eisuke; Machikawa, Tsukasa; Kimura, Shunsuke; Katayama, Shinji; Kawabata, Jun

    2014-02-28

    Diabetes mellitus is a global disease, and the number of patients with it is increasing. Of various agents for treatment, those that directly act on muscle are currently attracting attention because muscle is one of the main tissues in the human body, and its metabolism is decreased in type II diabetes. In this study, we found that hydroxylamine (HA) enhances glucose uptake in C2C12 myotubes. Analysis of HA's mechanism revealed the involvement of IRS1, PI3K and Akt that is related to the insulin signaling pathway. Further investigation about the activation mechanism of insulin receptor or IRS1 by HA may provide a way to develop a novel anti-diabetic agent alternating to insulin. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Association of the insulin-receptor variant Met-985 with hyperglycemia and non-insulin-dependent diabetes mellitus in the Netherlands : A population-based study

    NARCIS (Netherlands)

    tHart, LM; Stolk, RP; Heine, RJ; Grobbee, DE; vanderDoes, FEE; Maassen, JA

    1996-01-01

    One of the characteristics of non-insulin-dependent diabetes mellitus (NIDDM) is the presence of insulin resistance. Most NIDDM patients have a normal sequence of the insulin receptor, indicating that, if insulin-receptor mutations contribute to the development of NIDDM, they will be present only in

  6. Association of the insulin-receptor variant Met-985 with hyperglycemia and non-insulin-dependent diabetes mellitus in the Netherlands : A population-based study

    NARCIS (Netherlands)

    tHart, LM; Stolk, RP; Heine, RJ; Grobbee, DE; vanderDoes, FEE; Maassen, JA

    One of the characteristics of non-insulin-dependent diabetes mellitus (NIDDM) is the presence of insulin resistance. Most NIDDM patients have a normal sequence of the insulin receptor, indicating that, if insulin-receptor mutations contribute to the development of NIDDM, they will be present only in

  7. Localization of insulin receptor mRNA in rat brain by in situ hybridization

    International Nuclear Information System (INIS)

    Marks, J.L.; Porte, D. Jr.; Stahl, W.L.; Baskin, D.G.

    1990-01-01

    Insulin receptor mRNA was demonstrated in rat brain slices by in situ hybridization with three 35 S-oligonucleotide probes and contact film autoradiography. Specificity was confirmed by showing that (a) excess unlabeled probe abolished the signal, (b) an oligonucleotide probe for rat neuropeptide Y mRNA showed a different distribution of hybridization signal, and (c) the distribution of insulin receptor binding was consistent with the distribution of insulin receptor mRNA. Insulin receptor mRNA was most abundant in the granule cell layers of the olfactory bulb, cerebellum and dentate gyrus, in the pyramidal cell body layers of the pyriform cortex and hippocampus, in the choroid plexus and in the arcuate nucleus of the hypothalamus

  8. The macrophage A2B adenosine receptor regulates tissue insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Hillary Johnston-Cox

    Full Text Available High fat diet (HFD-induced type 2 diabetes continues to be an epidemic with significant risk for various pathologies. Previously, we identified the A2b adenosine receptor (A2bAR, an established regulator of inflammation, as a regulator of HFD-induced insulin resistance. In particular, HFD was associated with vast upregulation of liver A2bAR in control mice, and while mice lacking this receptor showed augmented liver inflammation and tissue insulin resistance. As the A2bAR is expressed in different tissues, here, we provide the first lead to cellular mechanism by demonstrating that the receptor's influence on tissue insulin sensitivity is mediated via its expression in macrophages. This was shown using a newly generated transgenic mouse model expressing the A2bAR gene in the macrophage lineage on an otherwise A2bAR null background. Reinstatement of macrophage A2bAR expression in A2bAR null mice fed HFD restored insulin tolerance and tissue insulin signaling to the level of control mice. The molecular mechanism for this effect involves A2bAR-mediated changes in cyclic adenosine monophosphate in macrophages, reducing the expression and release of inflammatory cytokines, which downregulate insulin receptor-2. Thus, our results illustrate that macrophage A2bAR signaling is needed and sufficient for relaying the protective effect of the A2bAR against HFD-induced tissue inflammation and insulin resistance in mice.

  9. The potential role of SOCS-3 in the interleukin-1beta-induced desensitization of insulin signaling in pancreatic beta-cells

    DEFF Research Database (Denmark)

    Emanuelli, Brice; Glondu, Murielle; Filloux, Chantal

    2004-01-01

    insulin signaling is required for the optimal beta-cell function, we assessed the effect of IL-1beta on the insulin pathway in a rat pancreatic beta-cell line. We show that IL-1beta decreases insulin-induced tyrosine phosphorylation of the insulin receptor (IR) and insulin receptor substrate (IRS...

  10. Alteration in insulin action

    DEFF Research Database (Denmark)

    Tanti, J F; Gual, P; Grémeaux, T

    2004-01-01

    Insulin resistance, when combined with impaired insulin secretion, contributes to the development of type 2 diabetes. Insulin resistance is characterised by a decrease in insulin effect on glucose transport in muscle and adipose tIssue. Tyrosine phosphorylation of insulin receptor substrate 1 (IRS......-1) and its binding to phosphatidylinositol 3-kinase (PI 3-kinase) are critical events in the insulin signalling cascade leading to insulin-stimulated glucose transport. Modification of IRS-1 by serine phosphorylation could be one of the mechanisms leading to a decrease in IRS-1 tyrosine...... to phosphorylate these serine residues have been identified. These exciting results suggest that serine phosphorylation of IRS-1 is a possible hallmark of insulin resistance in biologically insulin responsive cells or tIssues. Identifying the pathways by which "diabetogenic" factors activate IRS-1 kinases...

  11. A novel PTP1B inhibitor extracted from Ganoderma lucidum ameliorates insulin resistance by regulating IRS1-GLUT4 cascades in the insulin signaling pathway.

    Science.gov (United States)

    Yang, Zhou; Wu, Fan; He, Yanming; Zhang, Qiang; Zhang, Yuan; Zhou, Guangrong; Yang, Hongjie; Zhou, Ping

    2018-01-24

    Insulin resistance caused by the overexpression of protein tyrosine phosphatase 1 B (PTP1B) as well as the dephosphorylation of its target is one of the main causes of type 2 diabetes (T2D). A newly discovered proteoglycan, Fudan-Yueyang Ganoderma lucidum (FYGL) extracted from Ganoderma lucidum, was first reported to be capable of competitively inhibiting PTP1B activity in vitro in our previous work. In the present study, we sought to reveal the mechanism of PTP1B inhibition by FYGL at the animal and cellular levels. We found that FYGL can decrease blood glucose, reduce body weight and ameliorate insulin resistance in ob/ob mice. Decrease of PTP1B expression and increase of the phosphorylation of PTP1B targets in the insulin signaling pathway of skeletal muscles were observed. In order to clearly reveal the underlying mechanism of the hypoglycemic effect caused by FYGL, we further investigated the effects of FYGL on the PTP1B-involved insulin signaling pathway in rat myoblast L6 cells. We demonstrated that FYGL had excellent cell permeability by using a confocal laser scanning microscope and a flow cytometer. We found that FYGL had a positive effect on insulin-stimulated glucose uptake by using the 2-deoxyglucose (2-DG) method. FYGL could inhibit PTP1B expression at the mRNA level, phosphorylating insulin receptor substrate-1 (IRS1), as well as activating phosphatidylinositol-3 kinase (PI3K) and protein kinase B (Akt). Finally, FYGL increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and consequently up-regulated the expression of glucose transporter type 4 (GLUT4), promoting GLUT4 transportation to the plasma membrane in PTP1B-transfected L6 cells. Our study provides theoretical evidence for FYGL to be potentially used in T2D management.

  12. Independent signaling by Drosophila insulin receptor for axon guidance and growth

    Directory of Open Access Journals (Sweden)

    Caroline Rita Li

    2014-01-01

    Full Text Available The Drosophila insulin receptor (DInR regulates a diverse array of biological processes including growth, axon guidance, and sugar homeostasis. Growth regulation by DInR is mediated by Chico, the Drosophila homolog of vertebrate insulin-receptor-substrate proteins IRS1-4. In contrast, DInR regulation of photoreceptor axon guidance in the developing visual system is mediated by the SH2-SH3 domain adaptor protein Dreadlocks (Dock. In vitro studies by others identified five NPXY motifs, one in the juxtamembrane region and four in the signaling C-terminal tail (C-tail, important for interaction with Chico. Here we used yeast two-hybrid assays to identify regions in the DInR C-tail that interact with Dock. These Dock-binding sites were in separate portions of the C-tail from the previously identified Chico-binding sites. To test whether these sites are required for growth or axon guidance in whole animals, a panel of DInR proteins, in which the putative Chico and Dock interaction sites had been mutated individually or in combination, were tested for their ability to rescue viability, growth, and axon guidance defects of dinr mutant flies. Sites required for viability were identified. Unexpectedly, mutation of both putative Dock binding sites, either individually or in combination, did not lead to defects in photoreceptor axon guidance. Thus, either sites also required for viability are necessary for DInR function in axon guidance and/or there is redundancy built into the DInR/Dock interaction such that Dock is able to interact with multiple regions of DInR. We also found that simultaneous mutation of all 5 NPXY motifs implicated in Chico interaction drastically decreased growth in both male and female adult flies. Mutation of these 5 NPXY motifs did not affect photoreceptor axon guidance, showing that different sites within DInR control growth and axon guidance.

  13. Designing peptide inhibitor of insulin receptor to induce diabetes mellitus type 2 in animal model Mus musculus.

    Science.gov (United States)

    Permatasari, Galuh W; Utomo, Didik H; Widodo

    2016-10-01

    A designing peptide as agent for inducing diabetes mellitus type 2 (T2DM) in an animal model is challenging. The computational approach provides a sophisticated tool to design a functional peptide that may block the insulin receptor activity. The peptide that able to inhibit the binding between insulin and insulin receptor is a warrant for inducing T2DM. Therefore, we designed a potential peptide inhibitor of insulin receptor as an agent to generate T2DM animal model by bioinformatics approach. The peptide has been developed based on the structure of insulin receptor binding site of insulin and then modified it to obtain the best properties of half life, hydrophobicity, antigenicity, and stability binding into insulin receptor. The results showed that the modified peptide has characteristics 100h half-life, high-affinity -95.1±20, and high stability 28.17 in complex with the insulin receptor. Moreover, the modified peptide has molecular weight 4420.8g/Mol and has no antigenic regions. Based on the molecular dynamic simulation, the complex of modified peptide-insulin receptor is more stable than the commercial insulin receptor blocker. This study suggested that the modified peptide has the promising performance to block the insulin receptor activity that potentially induce diabetes mellitus type 2 in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. How insulin engages its primary binding site on the insulin receptor

    Czech Academy of Sciences Publication Activity Database

    Menting, J. G.; Whittaker, J.; Margetts, M. B.; Whittaker, L. J.; Kong, G. K. W.; Smith, B. J.; Watson, C. J.; Žáková, Lenka; Kletvíková, Emília; Jiráček, Jiří; Chan, S. J.; Steiner, D. F.; Dodson, G. G.; Brzozowski, A. M.; Weiss, M. A.; Ward, C. W.; Lawrence, M. C.

    2013-01-01

    Roč. 493, č. 7431 (2013), s. 241-245 ISSN 0028-0836 R&D Projects: GA ČR GPP207/11/P430 Institutional support: RVO:61388963 Keywords : insulin * receptor * complex * crystal structure Subject RIV: CE - Biochemistry Impact factor: 42.351, year: 2013

  15. Dissociation between fat-induced in vivo insulin resistance and proximal insulin signaling in skeletal muscle in men at risk for type 2 diabetes

    DEFF Research Database (Denmark)

    Storgaard, Heidi; Jensen, Christine B; Björnholm, Marie

    2004-01-01

    The effect of short- (2 h) and long-term (24 h) low-grade Intralipid infusion on whole-body insulin action, cellular glucose metabolism, and proximal components of the insulin signal transduction cascade was studied in seven obese male glucose intolerant first degree relatives of type 2 diabetic...... h Intralipid infusion (0.4 ml.kg(-1).min(-1)). Insulin-stimulated glucose disposal decreased approximately 25% after short- and long-term fat infusion in both IGT relatives and controls. Glucose oxidation decreased and lipid oxidation increased after both short- and long-term fat infusion in both...... groups. Insulin-stimulated glucose oxidation was higher after long-term as compared with short-term fat infusion in control subjects. Short- or long-term infusion did not affect the absolute values of basal or insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation, tyrosine...

  16. Monoclonal antibody to the type I insulin-like growth factor (IGF-I) receptor blocks IGF-I receptor-mediated DNA synthesis: clarification of the mitogenic mechanisms of IGF-I and insulin in human skin fibroblasts

    International Nuclear Information System (INIS)

    Flier, J.S.; Usher, P.; Moses, A.C.

    1986-01-01

    Insulin and insulin-like growth factor type I (IGF-I) stimulate an overlapping spectrum of biological responses in human skin fibroblasts. Although insulin and IGF-I are known to stimulate the incorporation of [ 3 H]thymidine into DNA in these cells, the identify of the receptor(s) that mediates this effect has not been fully clarified. The mouse anti-human IGF-I receptor antibody αIR-3 binds with specificity to IGF-I but not to insulin receptors in human placental membranes; it also specifically inhibits the binding of 125 I-labeled IGF-I but not 125 I-labeled insulin to suspensions of human skin fibroblasts in a dose-dependent manner. αIR-3 competitively inhibits IGF-I-mediated stimulation of [ 3 H]thymidine incorporation into DNA. This inhibition is dependent on the concentration of αIR-3 and in the presence of a fixed antibody concentration can be partially overcome by high concentrations of IGF-I. In contrast, at concentrations of 3 H]thymidine incorporation is not inhibited by αIR-3. However, the incremental effects of higher concentrations (> 1 μg/ml) of insulin on [ 3 H]thymidine incorporation are inhibited by αIR-3. αIR-3 is a highly specific antagonist of IGF-I receptor-mediated mitogenesis in human skin fibroblasts. By using this antibody, it is shown directly that insulin can act through the IGF-I receptor to stimulate DNA synthesis but can also activate this effect through the insulin receptor itself

  17. Exercise Protects Against Defective Insulin Signaling and Insulin Resistance of Glucose Transport in Skeletal Muscle of Angiotensin II-Infused Rat

    Directory of Open Access Journals (Sweden)

    Juthamard Surapongchai

    2018-04-01

    Full Text Available Objectives: The present study investigated the impact of voluntary exercise on insulin-stimulated glucose transport and the protein expression and phosphorylation status of the signaling molecules known to be involved in the glucose transport process in the soleus muscle as well as other cardiometabolic risks in a rat model with insulin resistance syndrome induced by chronic angiotensin II (ANGII infusion.Materials and Methods: Male Sprague-Dawley rats were assigned to sedentary or voluntary wheel running (VWR groups. Following a 6-week period, rats in each group were subdivided and subcutaneously administered either normal saline or ANGII at 100 ng/kg/min for 14 days. Blood pressure, glucose tolerance, insulin-stimulated glucose transport and signaling proteins, including insulin receptor (IR, insulin receptor substrate 1 (IRS-1, Akt, Akt substrate of 160 kDa (AS160, AMPKα, c-Jun NH2-terminal kinase (JNK, p38 MAPK, angiotensin converting enzyme (ACE, ANGII type 1 receptor (AT1R, ACE2, Mas receptor (MasR and oxidative stress marker in the soleus muscle, were evaluated.Results: Exercise protected against the insulin resistance of glucose transport and defective insulin signaling molecules in the soleus muscle; this effect was associated with a significant increase in AMPK Thr172 (43% and decreases in oxidative stress marker (31% and insulin-induced p38 MAPK Thr180/Tyr182 (45% and SAPK/JNK Thr183/Tyr185 (25%, without significant changes in expression of AT1R, AT2R, ACE, ACE2, and MasR when compared to the sedentary rats given ANGII infusion. At the systemic level, VWR significantly decreased body weight, fat weight, and systolic blood pressure as well as improved serum lipid profiles.Conclusion: Voluntary exercise can alleviate insulin resistance of glucose transport and impaired insulin signaling molecules in the soleus muscle and improve whole-body insulin sensitivity in rats chronically administered with ANGII.

  18. Alternate Phosphorylation/O-GlcNAc Modification on Human Insulin IRSs: A Road towards Impaired Insulin Signaling in Alzheimer and Diabetes

    Directory of Open Access Journals (Sweden)

    Zainab Jahangir

    2014-01-01

    Full Text Available Impaired insulin signaling has been thought of as important step in both Alzheimer’s disease (AD and type 2 diabetes mellitus (T2DM. Posttranslational modifications (PTMs regulate functions and interaction of insulin with insulin receptors substrates (IRSs and activate insulin signaling downstream pathways via autophosphorylation on several tyrosine (TYR residues on IRSs. Two important insulin receptor substrates 1 and 2 are widely expressed in human, and alternative phosphorylation on their serine (Ser and threonine (Thr residues has been known to block the Tyr phosphorylation of IRSs, thus inhibiting insulin signaling and promoting insulin resistance. Like phosphorylation, O-glycosylation modification is important PTM and inhibits phosphorylation on same or neighboring Ser/Thr residues, often called Yin Yang sites. Both IRS-1 and IRS-2 have been shown to be O-glycosylated; however exact sites are not determined yet. In this study, by using neuronal network based prediction methods, we found more than 50 Ser/Thr residues that have potential to be O-glycosylated and may act as possible sites as well. Moreover, alternative phosphorylation and O-glycosylation on IRS-1 Ser-312, 984, 1037, and 1101 may act as possible therapeutic targets to minimize the risk of AD and T2DM.

  19. Roles of oxidative stress, adiponectin, and nuclear hormone receptors in obesity-associated insulin resistance and cardiovascular risk.

    Science.gov (United States)

    Matsuda, Morihiro; Shimomura, Iichiro

    2014-08-01

    Obesity leads to the development of type 2 diabetes mellitus, which is a strong risk factor for cardiovascular disease. A better understanding of the molecular basis of obesity will lead to the establishment of effective prevention strategies for cardiovascular diseases. Adipocytes have been shown to generate a variety of endocrine factors termed adipokines/adipocytokines. Obesity-associated changes to these adipocytokines contribute to the development of cardiovascular diseases. Adiponectin, which is one of the most well-characterized adipocytokines, is produced exclusively by adipocytes and exerts insulin-sensitizing and anti-atherogenic effects. Obese subjects have lower levels of circulating adiponectin, and this is recognized as one of the factors involved in obesity-induced insulin resistance and atherosclerosis. Another pathophysiological feature of obesity may involve the low-grade chronic inflammation in adipose tissue. This inflammatory process increases oxidative stress in adipose tissue, which may affect remote organs, leading to the development of diabetes, hypertension, and atherosclerosis. Nuclear hormone receptors (NRs) regulate the transcription of the target genes in response to binding with their ligands, which include metabolic and nutritional substrates. Among the various NRs, peroxisome proliferator-activated receptor γ promotes the transcription of adiponectin and antioxidative enzymes, whereas mineralocorticoid receptor mediates the effects of aldosterone and glucocorticoid to induce oxidative stress in adipocytes. It is hypothesized that both play crucial roles in the pathophysiology of obesity-associated insulin resistance and cardiovascular diseases. Thus, reduced adiponectin and increased oxidative stress play pathological roles in obesity-associated insulin resistance to increase the cardiovascular disease risk, and various NRs may be involved in this pathogenesis.

  20. Mechanical stress regulates insulin sensitivity through integrin-dependent control of insulin receptor localization.

    Science.gov (United States)

    Kim, Jung; Bilder, David; Neufeld, Thomas P

    2018-01-15

    Insulin resistance, the failure to activate insulin signaling in the presence of ligand, leads to metabolic diseases, including type 2 diabetes. Physical activity and mechanical stress have been shown to protect against insulin resistance, but the molecular mechanisms remain unclear. Here, we address this relationship in the Drosophila larval fat body, an insulin-sensitive organ analogous to vertebrate adipose tissue and livers. We found that insulin signaling in Drosophila fat body cells is abolished in the absence of physical activity and mechanical stress even when excess insulin is present. Physical movement is required for insulin sensitivity in both intact larvae and fat bodies cultured ex vivo. Interestingly, the insulin receptor and other downstream components are recruited to the plasma membrane in response to mechanical stress, and this membrane localization is rapidly lost upon disruption of larval or tissue movement. Sensing of mechanical stimuli is mediated in part by integrins, whose activation is necessary and sufficient for mechanical stress-dependent insulin signaling. Insulin resistance develops naturally during the transition from the active larval stage to the immotile pupal stage, suggesting that regulation of insulin sensitivity by mechanical stress may help coordinate developmental programming with metabolism. © 2018 Kim et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Substrate utilization/insulin resistance in sepsis/trauma.

    Science.gov (United States)

    Wolfe, R R

    1997-12-01

    Endogenous substrate metabolism is markedly altered in critically ill patients. Glucose production is elevated not only in the post-absorptive state, but the normal suppressive effect of exogenous glucose and glucose production is greatly diminished. In the post-absorptive state, glucose clearance is generally elevated, potentially causing hypoglycaemia in extreme cases. Somewhat paradoxically, the ability of insulin to stimulate glucose uptake is diminished, so that hyperglycaemia is often evident during nutritional intake. Lipolysis, the breakdown of peripheral fat, is accelerated, meaning that free fatty acids are released into plasma at a rate far exceeding their oxidation. Some of the excess fatty acids are re-esterified in the liver, leading to accelerated hepatic triglyceride formation. A large increase in hepatic triglyceride stores can ensue if the rate of excretion of triglycerides in very low density lipoproteins is not accelerated commensurately with the increased triglyceride production. Indirect calorimetry measurements support the notion that the large increase in availability of fatty acids may lead to a greater reliance on fatty acids as energy substrates. Nonetheless, carbohydrates should be the predominant source of non-protein calories, because the accompanying insulin response effectively enhances protein synthesis. There is already ample fat available via endogenous lipolysis, and more fat given exogenously provides little further benefit.

  2. Consolidation of long-term memory by insulin in Lymnaea is not brought about by changing the number of insulin receptors.

    Science.gov (United States)

    Hatakeyama, Dai; Okuta, Akiko; Otsuka, Emi; Lukowiak, Ken; Ito, Etsuro

    2013-05-01

    The pond snail Lymnaea stagnalis learns taste aversion and consolidates it into long-term memory (LTM). This is referred to as conditioned taste aversion (CTA). The superfusion of molluscan insulin-related peptides (MIPs) over the isolated snail brain causes a long-term enhancement of synaptic input between the cerebral giant cell and the B1 buccal motor neuron. This enhancement is hypothesized to underlie CTA. The synaptic enhancement caused by the superfusion of MIPs can be blocked by the application of human insulin receptor antibody, which recognizes the extracellular domain of human insulin receptor and acts as an antagonist even for MIP receptors. An injection of the human insulin receptor antibody into the abdominal cavity of trained snails blocks the consolidation process leading to LTM, even though the snails acquire taste aversion. Here, we examined whether or not taste-aversion training changes the mRNA expression level of MIP receptor in the snail brain and found that it does not. This result, taken together with previous findings, suggest that the MIPs' effect on synaptic function in the snail brain is attributable to a change in the MIP concentration, and not to a change in the mRNA expression level of MIP receptor, which is thought to reflect the number of MIP receptors.

  3. Gender differences in skeletal muscle substrate metabolism - molecular mechanisms and insulin sensitivity

    DEFF Research Database (Denmark)

    Lundsgaard, Annemarie; Kiens, Bente

    2014-01-01

    higher insulin sensitivity of female skeletal muscle can be related to gender-specific regulation of molecular metabolism will be topic for discussion. Gender differences in muscle fiber type distribution and substrate availability to and in skeletal muscle are highly relevant for substrate metabolism...

  4. Theoretical and Computational Studies of Peptides and Receptors of the Insulin Family

    Directory of Open Access Journals (Sweden)

    Harish Vashisth

    2015-02-01

    Full Text Available Synergistic interactions among peptides and receptors of the insulin family are required for glucose homeostasis, normal cellular growth and development, proliferation, differentiation and other metabolic processes. The peptides of the insulin family are disulfide-linked single or dual-chain proteins, while receptors are ligand-activated transmembrane glycoproteins of the receptor tyrosine kinase (RTK superfamily. Binding of ligands to the extracellular domains of receptors is known to initiate signaling via activation of intracellular kinase domains. While the structure of insulin has been known since 1969, recent decades have seen remarkable progress on the structural biology of apo and liganded receptor fragments. Here, we review how this useful structural information (on ligands and receptors has enabled large-scale atomically-resolved simulations to elucidate the conformational dynamics of these biomolecules. Particularly, applications of molecular dynamics (MD and Monte Carlo (MC simulation methods are discussed in various contexts, including studies of isolated ligands, apo-receptors, ligand/receptor complexes and intracellular kinase domains. The review concludes with a brief overview and future outlook for modeling and computational studies in this family of proteins.

  5. Insulin signaling inhibits the 5-HT2C receptor in choroid plexus via MAP kinase

    Directory of Open Access Journals (Sweden)

    Guan Kunliang

    2003-06-01

    Full Text Available Abstract Background G protein-coupled receptors (GPCRs interact with heterotrimeric GTP-binding proteins (G proteins to modulate acute changes in intracellular messenger levels and ion channel activity. In contrast, long-term changes in cellular growth, proliferation and differentiation are often mediated by tyrosine kinase receptors and certain GPCRs by activation of mitogen-activated protein (MAP kinases. Complex interactions occur between these signaling pathways, but the specific mechanisms of such regulatory events are not well-understood. In particular it is not clear whether GPCRs are modulated by tyrosine kinase receptor-MAP kinase pathways. Results Here we describe tyrosine kinase receptor regulation of a GPCR via MAP kinase. Insulin reduced the activity of the 5-HT2C receptor in choroid plexus cells which was blocked by the MAP kinase kinase (MEK inhibitor, PD 098059. We demonstrate that the inhibitory effect of insulin and insulin-like growth factor type 1 (IGF-1 on the 5-HT2C receptor is dependent on tyrosine kinase, RAS and MAP kinase. The effect may be receptor-specific: insulin had no effect on another GPCR that shares the same G protein signaling pathway as the 5-HT2C receptor. This effect is also direct: activated MAP kinase mimicked the effect of insulin, and removing a putative MAP kinase site from the 5-HT2C receptor abolished the effect of insulin. Conclusion These results show that insulin signaling can inhibit 5-HT2C receptor activity and suggest that MAP kinase may play a direct role in regulating the function of a specific GPCR.

  6. β1-adrenergic receptor stimulation by agonist Compound 49b restores insulin receptor signal transduction in vivo

    Science.gov (United States)

    Jiang, Youde; Zhang, Qiuhua; Ye, Eun-Ah

    2014-01-01

    Purpose Determine whether Compound 49b treatment ameliorates retinal changes due to the lack of β2-adrenergic receptor signaling. Methods Using retinas from 3-month-old β2-adrenergic receptor-deficient mice, we treated mice with our novel β1-/β2-adrenergic receptor agonist, Compound 49b, to assess the effects of adrenergic agonists acting only on β1-adrenergic receptors due to the absence of β2-adrenergic receptors. Western blotting or enzyme-linked immunosorbent assay (ELISA) analyses were performed for β1- and β2-adrenergic receptors, as well as key insulin resistance proteins, including TNF-α, SOCS3, IRS-1Ser307, and IRTyr960. Analyses were also performed on key anti- and proapoptotic proteins: Akt, Bcl-xL, Bax, and caspase 3. Electroretinogram analyses were conducted to assess functional changes, while histological assessment was conducted for changes in retinal thickness. Results A 2-month treatment of β2-adrenergic receptor-deficient mice with daily eye drops of 1 mM Compound 49b, a novel β1- and β2-adrenergic receptor agonist, reversed the changes in insulin resistance markers (TNF-α and SOCS3) observed in untreated β2-adrenergic receptor-deficient mice, and concomitantly increased morphological integrity (retinal thickness) and functional responses (electroretinogram amplitude). These results suggest that stimulating β1-adrenergic receptors on retinal endothelial cells or Müller cells can compensate for the loss of β2-adrenergic receptor signaling on Müller cells, restore insulin signal transduction, reduce retinal apoptosis, and enhance retinal function. Conclusions Since our previous studies with β1-adrenergic receptor knockout mice confirmed that the reverse also occurs (β2-adrenergic receptor stimulation can compensate for the loss of β1-adrenergic receptor activity), it appears that increased activity in either of these pathways alone is sufficient to block insulin resistance–based retinal cell apoptosis. PMID:24966659

  7. Effect of hypothermia on the insulin-receptor interaction in skeletal muscle plasma membranes

    International Nuclear Information System (INIS)

    Torlinska T, Mackowiak P.; Nogowski L, Kozlik J.

    1996-01-01

    The aim of the study was to investigate the effect of hypothermia on (125-I)-insulin binding to rat skeletal muscle membranes and to determine whether the decrease in blood insulin concentration could be related to changes in the number or in the affinity of insulin receptor sites according to the down-regulation theory. Rat skeletal muscle membranes were prepared from control, normothermic rats (Tr = 35.6 ± 0.3 degree C) and hypothermic rats (Tr = 26.0 ± 0.5 deg C) and purified according to Havrankowa. In order to determine the kinetic parameters of the hormone-receptor interaction the data from the competition binding studies were analysed by the method of Scatchard using the LIGAND Pc.v.3.1. computer program of Munson and Rodbard. We have shown that under hypothermic conditions insulin receptors number is significantly increased in specific hindlimb skeletal muscles but the changes take place mainly in the low affinity receptors class. The phenomenon probably results from the lack of spare high affinity insulin receptors in skeletal muscle as shown recently by Camps et al. (author). 36 refs., 3 figs, 2 tabs

  8. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte

    Directory of Open Access Journals (Sweden)

    Christine M. Kusminski

    2015-10-01

    Conclusion: We conclude that E4orf1 expression in the adipocyte leads to enhanced baseline activation of the distal insulin signaling node, yet impaired insulin receptor stimulation in the presence of insulin, with important implications for the regulation of adiponectin secretion. The resulting systemic phenotype is complex, yet highlights the powerful nature of manipulating selective branches of the insulin signaling network within the adipocyte.

  9. Dihydrotestosterone deteriorates cardiac insulin signaling and glucose transport in the rat model of polycystic ovary syndrome.

    Science.gov (United States)

    Tepavčević, Snežana; Vojnović Milutinović, Danijela; Macut, Djuro; Žakula, Zorica; Nikolić, Marina; Božić-Antić, Ivana; Romić, Snježana; Bjekić-Macut, Jelica; Matić, Gordana; Korićanac, Goran

    2014-05-01

    It is supposed that women with polycystic ovary syndrome (PCOS) are prone to develop cardiovascular disease as a consequence of multiple risk factors that are mostly related to the state of insulin resistance and consequent hyperinsulinemia. In the present study, we evaluated insulin signaling and glucose transporters (GLUT) in cardiac cells of dihydrotestosterone (DHT) treated female rats as an animal model of PCOS. Expression of proteins involved in cardiac insulin signaling pathways and glucose transporters, as well as their phosphorylation or intracellular localization were studied by Western blot analysis in DHT-treated and control rats. Treatment with DHT resulted in increased body mass, absolute mass of the heart, elevated plasma insulin concentration, dyslipidemia and insulin resistance. At the molecular level, DHT treatment did not change protein expression of cardiac insulin receptor and insulin receptor substrate 1, while phosphorylation of the substrate at serine 307 was increased. Unexpectedly, although expression of downstream Akt kinase and its phosphorylation at threonine 308 were not altered, phosphorylation of Akt at serine 473 was increased in the heart of DHT-treated rats. In contrast, expression and phosphorylation of extracellular signal regulated kinases 1/2 were decreased. Plasma membrane contents of GLUT1 and GLUT4 were decreased, as well as the expression of GLUT4 in cardiac cells at the end of androgen treatment. The obtained results provide evidence for alterations in expression and especially in functional characteristics of insulin signaling molecules and glucose transporters in the heart of DHT-treated rats with PCOS, indicating impaired cardiac insulin action. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Ultrastructural evidence for the accumulation of insulin in nuclei of intact 3T3-L1 adipocytes by an insulin-receptor mediated process

    International Nuclear Information System (INIS)

    Smith, R.M.; Jarett, L.

    1987-01-01

    Monomeric ferritin-labeled insulin (F/sub m/-Ins), a biologically active, electron-dense marker of occupied insulin receptors, was used to characterize the internalization of insulin in 3T3-L1 adipocytes. F/sub m/-Ins bound specifically to insulin receptors and was internalized in a time- and temperature-dependent manner. In the nucleus, several F/sub m/-Ins particles usually were found in the same general location-near nuclear pores, associated with the periphery of the condensed chromatin. Addition of a 250-fold excess of unlabeled insulin or incubation at 15 0 C reduced the number of F/sub m/-Ins particles found in nuclei after 90 min by 99% or 92%, respectively. Nuclear accumulation of unlabeled ferritin was only 2% of that found with F/sub m/-Ins after 90 min at 37 0 C. Biochemical experiments utilizing 125 I-labeled insulin and subcellular fractionation indicated that intact 3T3-L1 adipocytes internalized insulin rapidly and that ≅ 3% of the internalized ligand accumulated in nuclei after 1 hr. These data provide biochemical and high-resolution ultrastructural evidence that 3T3-L1 adipocytes accumulate potentially significant amounts of insulin in nuclei by an insulin receptor-mediated process. The transport of insulin or the insulin-receptor complex to nuclei in this cell or in others may be directly involved in the long-term biological effects of insulin - in particular, in the control of DNA and RNA synthesis

  11. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas tranplant recipient

    DEFF Research Database (Denmark)

    Bouzakri, K; Karlsson, HRK; Vestergaard, Henrik

    2006-01-01

    Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied...... by altered signal transduction, skeletal muscle biopsies were obtained from pancreas-kidney transplant recipients (n = 4), nondiabetic kidney transplant recipients (receiving the same immunosuppressive drugs; n = 5), and healthy subjects (n = 6) before and during a euglycemic-hyperinsulinemic clamp. Basal...... insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1-associated phosphatidylinositol 3-kinase activity, and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal...

  12. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas transplant recipients

    DEFF Research Database (Denmark)

    Bouzakri, Karim; Karlsson, Håkan K R; Vestergaard, Henrik

    2006-01-01

    Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied...... by altered signal transduction, skeletal muscle biopsies were obtained from pancreas-kidney transplant recipients (n = 4), nondiabetic kidney transplant recipients (receiving the same immunosuppressive drugs; n = 5), and healthy subjects (n = 6) before and during a euglycemic-hyperinsulinemic clamp. Basal...... insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1-associated phosphatidylinositol 3-kinase activity, and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal...

  13. Expression of insulin-like growth factor-1 and insulin-like growth factor-1 receptors in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Weigent, Douglas A; Arnold, Robyn E

    2005-03-01

    Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.

  14. Effect of Peroral Administration of Chromium on Insulin Signaling Pathway in Skeletal Muscle Tissue of Holstein Calves.

    Science.gov (United States)

    Jovanović, Ljubomir; Pantelić, Marija; Prodanović, Radiša; Vujanac, Ivan; Đurić, Miloje; Tepavčević, Snežana; Vranješ-Đurić, Sanja; Korićanac, Goran; Kirovski, Danijela

    2017-12-01

    The objective of this study was to investigate the effects of peroral administration of chromium-enriched yeast on glucose tolerance in Holstein calves, assessed by insulin signaling pathway molecule determination and intravenous glucose tolerance test (IVGTT). Twenty-four Holstein calves, aged 1 month, were chosen for the study and divided into two groups: the PoCr group (n = 12) that perorally received 0.04 mg of Cr/kg of body mass daily, for 70 days, and the NCr group (n = 12) that received no chromium supplementation. Skeletal tissue samples from each calf were obtained on day 0 and day 70 of the experiment. Chromium supplementation increased protein content of the insulin β-subunit receptor, phosphorylation of insulin receptor substrate 1 at Tyrosine 632, phosphorylation of Akt at Serine 473, glucose transporter-4, and AMP-activated protein kinase in skeletal muscle tissue, while phosphorylation of insulin receptor substrate 1 at Serine 307 was not affected by chromium treatment. Results obtained during IVGTT, which was conducted on days 0, 30, 50, and 70, suggested an increased insulin sensitivity and, consequently, a better utilization of glucose in the PoCr group. Lower basal concentrations of glucose and insulin in the PoCr group on days 30 and 70 were also obtained. Our results indicate that chromium supplementation improves glucose utilization in calves by enhancing insulin intracellular signaling in the skeletal muscle tissue.

  15. Founder effect in the Horn of Africa for an insulin receptor mutation that may impair receptor recycling

    DEFF Research Database (Denmark)

    Raffan, E; Soos, M A; Rocha, N

    2011-01-01

    Genetic insulin receptoropathies are a rare cause of severe insulin resistance. We identified the Ile119Met missense mutation in the insulin receptor INSR gene, previously reported in a Yemeni kindred, in four unrelated patients with Somali ancestry. We aimed to investigate a possible genetic...

  16. Implications of compound heterozygous insulin receptor mutations in congenital muscle fibre type disproportion myopathy for the receptor kinase activation

    DEFF Research Database (Denmark)

    Klein, H H; Müller, R; Vestergaard, H

    1999-01-01

    We studied insulin receptor kinase activation in two brothers with congenital muscle fibre type disproportion myopathy and compound heterozygous mutations of the insulin receptor gene, their parents, and their unaffected brother. In the father who has a heterozygote Arg1174-->Gln mutation, in sit...

  17. Insulin-like growth factor-II receptors in cultured rat hepatocytes: regulation by cell density

    International Nuclear Information System (INIS)

    Scott, C.D.; Baxter, R.C.

    1987-01-01

    Insulin-like growth factor-II (IGF-II) receptors in primary cultures of adult rat hepatocytes were characterized and their regulation by cell density examined. In hepatocytes cultured at 5 X 10(5) cells per 3.8 cm2 plate [ 125 I]IGF-II bound to specific, high affinity receptors (Ka = 4.4 +/- 0.5 X 10(9) l/mol). Less than 1% cross-reactivity by IGF-I and no cross-reactivity by insulin were observed. IGF-II binding increased when cells were permeabilized with 0.01% digitonin, suggesting the presence of an intracellular receptor pool. Determined by Scatchard analysis and by polyacrylamide gel electrophoresis after affinity labeling, the higher binding was due solely to an increase in binding sites present on 220 kDa type II IGF receptors. In hepatocytes cultured at low densities, the number of cell surface receptors increased markedly, from 10-20,000 receptors per cell at a culture density of 6 X 10(5) cells/well to 70-80,000 receptors per cell at 0.38 X 10(5) cells/well. The increase was not due simply to the exposure of receptors from the intracellular pool, as a density-related increase in receptors was also seen in cells permeabilized with digitonin. There was no evidence that IGF binding proteins, either secreted by hepatocytes or present in fetal calf serum, had any effect on the measurement of receptor concentration or affinity. We conclude that rat hepatocytes in primary culture contain specific IGF-II receptors and that both cell surface and intracellular receptors are regulated by cell density

  18. Elevation of serum insulin concentration during euglycemic hyperinsulinemic clamp studies leads to similar activation of insulin receptor kinase in skeletal muscle of subjects with and without NIDDM

    DEFF Research Database (Denmark)

    Klein, H H; Vestergaard, H; Kotzke, G

    1995-01-01

    The role of skeletal muscle insulin receptor kinase in the pathogenesis of non-insulin-dependent diabetes mellitus (NIDDM) was investigated. Muscle biopsies from 13 patients with NIDDM and 10 control subjects at fasting serum insulin concentrations and approximately 1,000 pmol/l steady-state serum...... insulin during euglycemic hyperinsulinemic clamps were immediately frozen. The biopsies were then solubilized, and the receptors were immobilized to anti-insulin receptor antibody-coated microwells. Receptor kinase and binding activities were consecutively measured in these wells. The increase in serum...... and control groups, respectively). Moreover, by selecting only the receptors that bound to anti-phosphotyrosine antibody, we found similar hyperinsulinemia-induced increases of this receptor fraction and its kinase activity in both study groups. In vitro activation of the immobilized receptors with 2 mmol...

  19. Autoimmune Hypoglycemia in a Patient with Characterization of Insulin Receptor Autoantibodies

    Directory of Open Access Journals (Sweden)

    Suk Chon

    2011-02-01

    Full Text Available BackgroundType B insulin resistance syndrome is a manifestation of autoantibodies to the insulin receptor that results in severe hyperglycemia and acanthosis nigricans. However, the mechanisms by which these autoantibodies induce hypoglycemia are largely unknown. In this paper, we report the case of patient with type B insulin resistance syndrome who presented with frequent severe fasting hypoglycemia and acanthosis nigricans.MethodsTo evaluate the mechanism of hypoglycemia, we measured the inhibition of insulin binding to erythrocytes and IM9 lymphocytes in a sample of the patient's dialyzed serum before and after immunosuppressive therapy.ResultsIn the patient's pre-treatment serum IgG, the binding of 125I-insulin to erythrocytes was markedly inhibited in a dose-dependent manner until the cold insulin level reached 10-9 mol/L. We also observed dose-dependent inhibition of insulin binding to IM9 lymphocytes, which reached approximately 82% inhibition and persisted even when diluted 1:20. After treatment with glucocorticoids, insulin-erythrocyte binding activity returned to between 70% and 80% of normal, while the inhibition of insulin-lymphocyte binding was reduced by 17%.ConclusionWe treated a patient with type B insulin resistance syndrome showing recurrent fasting hypoglycemia with steroids and azathioprine. We characterized the patient's insulin receptor antibodies by measuring the inhibition of insulin binding.

  20. Dual pathways for the intracellular processing of insulin. Relationship between retroendocytosis of intact hormone and the recycling of insulin receptors

    International Nuclear Information System (INIS)

    Marshall, S.

    1985-01-01

    Adipocytes process insulin through either of two pathways: a retroendocytotic pathway that culminates in the release of intact insulin, and a degradative pathway that terminates in the intracellular catabolism and release of degraded ligand. Mechanistically, these pathways were found to differ in several ways. First, temporal differences were found in the rate at which intact and degraded products were extruded. After 125 I-insulin was preloaded into the cell interior, intact ligand was completely released during the first 10 min (t 1/2 = 2 min), whereas degraded insulin was released at a much slower rate over 1 h (t 1/2 greater than 8 min). Secondly, it was found that chloroquine profoundly inhibited the insulin degradative pathway, resulting in the intracellular accumulation of intact ligand and a reduction in the release of degraded products. In contrast, however, chloroquine was without effect on the retroendocytotic processing of insulin. Based on the known actions of chloroquine, it appears that retroendocytosis of insulin does not involve vesicular acidification or dissociation of the insulin-receptor complex and that insulin is most likely carried to the cell exterior in the same vesicles (either receptor-bound or free) as those mediating recycling receptors. Interestingly, accumulation of undergraded insulin within chloroquine-treated cells did not result in the release of additional intact ligand, suggesting that once insulin enters the degradative compartment it is committed to catabolism and cannot exit the cell through the retroendocytotic pathway. A third difference was revealed by the finding that extracellular unlabeled insulin (100 ng/ml) markedly accelerated the rate at which preloaded 125 I-insulin was released from adipocytes (t 1/2 of 3 min versus 7 min in controls cells)

  1. Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction.

    Science.gov (United States)

    Kirk, Erik; Reeds, Dominic N; Finck, Brian N; Mayurranjan, S Mitra; Mayurranjan, Mitra S; Patterson, Bruce W; Klein, Samuel

    2009-05-01

    We determined the effects of acute and chronic calorie restriction with either a low-fat, high-carbohydrate (HC) diet or a low-carbohydrate (LC) diet on hepatic and skeletal muscle insulin sensitivity. Twenty-two obese subjects (body mass index, 36.5 +/- 0.8 kg/m2) were randomized to an HC (>180 g/day) or LC (vs 8.9% +/- 1.4%; P vs 7.2% +/- 1.4%; P vs 7.9% +/- 1.2%; P < .05). Insulin-mediated glucose uptake did not change at 48 hours but increased similarly in both groups after 7% weight loss (48.4% +/- 14.3%; P < .05). In both groups, insulin-stimulated phosphorylation of c-Jun-N-terminal kinase decreased by 29% +/- 13% and phosphorylation of Akt and insulin receptor substrate 1 increased by 35% +/- 9% and 36% +/- 9%, respectively, after 7% weight loss (all P < .05). Moderate calorie restriction causes temporal changes in liver and skeletal muscle metabolism; 48 hours of calorie restriction affects the liver (IHTG content, hepatic insulin sensitivity, and glucose production), whereas moderate weight loss affects muscle (insulin-mediated glucose uptake and insulin signaling).

  2. Relation between the insulin receptor number in cells, autophosphorylation and insulin-stimulated Ras.GTP formation

    NARCIS (Netherlands)

    Osterop, A.P.R.M.; Medema, R.H.; Bos, J.L.; Zon, G.C.M. van der; Moller, D.E.; Flier, J.S.; Möller, W.; Maassen, J.A.

    1992-01-01

    We showed previously that upon insulin stimulation of an insulin receptor overexpressing cell linme,o st of the p2lras warsa pidly converted into the GTP bound state (Burgering, B. M. T., Medema, R. H., Maassen, J. A., Van de Wetering, M. L., Van der Eb, A. J., McCormick, F., and Bos, J. L.

  3. Changes in erythrocyte insulin receptors in normal dogs and keeshond dogs with inheritable, early onset, insulin dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Klaassen, J.K.

    1986-01-01

    Validation of a procedure to evaluate insulin receptors on erythrocytes (RBC-IR) in dogs is described. The specific binding of ( 125 I)iodoinsulin to RBC-IR of normal dogs is significantly greater than binding in keeshonds with an inheritable form of early onset diabetes mellitus. This decreased binding was due to a significant decrease in RBC-IR affinity in the diabetic keeshonds. To determine the effect on RBC-IR, normal dogs were treated with either dexamethasone (0.1 mg/kg) or prednisone (0.3 mg/kg) for 10 days: concentrations of plasma cortisol, glucose, and insulin, plus binding characteristics of RBC-IR were determined. In the dexamethasone treated group, plasma glucose concentrations were elevated significantly by day 6 and continued through day 10. Insulin concentrations were elevated significantly by day 3 and remained elevated through day 10. In the prednisone treated group, glucose concentrations were elevated significantly by day 3, while insulin concentrations were elevated significantly by day 8. Maximum binding of RBC-IR was unaffected by prednisone and neither affinities nor receptor numbers were significantly different from day 1. No changes in plasma cortisol concentration were seen. Diabetic keeshonds on daily insulin treatment were removed from exogenous insulin therapy for 48 hours. Significant increases in glucose concentrations were observed, but no significant changes in cortisol, insulin, average receptor binding affinity, or RBC-IR number per cell occurred

  4. Alternative translation initiation of Caveolin-2 desensitizes insulin signaling through dephosphorylation of insulin receptor by PTP1B and causes insulin resistance.

    Science.gov (United States)

    Kwon, Hayeong; Jang, Donghwan; Choi, Moonjeong; Lee, Jaewoong; Jeong, Kyuho; Pak, Yunbae

    2018-06-01

    Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2β isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2β-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2β is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Assembly of high-affinity insulin receptor agonists and antagonists from peptide building blocks

    Science.gov (United States)

    Schäffer, Lauge; Brissette, Renee E.; Spetzler, Jane C.; Pillutla, Renuka C.; Østergaard, Søren; Lennick, Michael; Brandt, Jakob; Fletcher, Paul W.; Danielsen, Gillian M.; Hsiao, Ku-Chuan; Andersen, Asser S.; Dedova, Olga; Ribel, Ulla; Hoeg-Jensen, Thomas; Hansen, Per Hertz; Blume, Arthur J.; Markussen, Jan; Goldstein, Neil I.

    2003-01-01

    Insulin is thought to elicit its effects by crosslinking the two extracellular α-subunits of its receptor, thereby inducing a conformational change in the receptor, which activates the intracellular tyrosine kinase signaling cascade. Previously we identified a series of peptides binding to two discrete hotspots on the insulin receptor. Here we show that covalent linkage of such peptides into homodimers or heterodimers results in insulin agonists or antagonists, depending on how the peptides are linked. An optimized agonist has been shown, both in vitro and in vivo, to have a potency close to that of insulin itself. The ability to construct such peptide derivatives may offer a path for developing agonists or antagonists for treatment of a wide variety of diseases. PMID:12684539

  6. Growth factor receptor-binding protein 10 (Grb10) as a partner of phosphatidylinositol 3-kinase in metabolic insulin action.

    Science.gov (United States)

    Deng, Youping; Bhattacharya, Sujoy; Swamy, O Rama; Tandon, Ruchi; Wang, Yong; Janda, Robert; Riedel, Heimo

    2003-10-10

    The regulation of the metabolic insulin response by mouse growth factor receptor-binding protein 10 (Grb10) has been addressed in this report. We find mouse Grb10 to be a critical component of the insulin receptor (IR) signaling complex that provides a functional link between IR and p85 phosphatidylinositol (PI) 3-kinase and regulates PI 3-kinase activity. This regulatory mechanism parallels the established link between IR and p85 via insulin receptor substrate (IRS) proteins. A direct association was demonstrated between Grb10 and p85 but was not observed between Grb10 and IRS proteins. In addition, no effect of mouse Grb10 was observed on the association between IRS-1 and p85, on IRS-1-associated PI 3-kinase activity, or on insulin-mediated activation of IR or IRS proteins. A critical role of mouse Grb10 was observed in the regulation of PI 3-kinase activity and the resulting metabolic insulin response. Dominant-negative Grb10 domains, in particular the SH2 domain, eliminated the metabolic response to insulin in differentiated 3T3-L1 adipocytes. This was consistently observed for glycogen synthesis, glucose and amino acid transport, and lipogenesis. In parallel, the same metabolic responses were substantially elevated by increased levels of Grb10. A similar role of Grb10 was confirmed in mouse L6 cells. In addition to the SH2 domain, the Pro-rich amino-terminal region of Grb10 was implicated in the regulation of PI 3-kinase catalytic activity. These regulatory roles of Grb10 were extended to specific insulin mediators downstream of PI 3-kinase including PKB/Akt, glycogen synthase kinase, and glycogen synthase. In contrast, a regulatory role of Grb10 in parallel insulin response pathways including p70 S6 kinase, ubiquitin ligase Cbl, or mitogen-activated protein kinase p38 was not observed. The dissection of the interaction of mouse Grb10 with p85 and the resulting regulation of PI 3-kinase activity should help elucidate the complexity of the IR signaling

  7. Reduced Insulin Receptor Expression Enhances Proximal Tubule Gluconeogenesis.

    Science.gov (United States)

    Pandey, Gaurav; Shankar, Kripa; Makhija, Ekta; Gaikwad, Anil; Ecelbarger, Carolyn; Mandhani, Anil; Srivastava, Aneesh; Tiwari, Swasti

    2017-02-01

    Reduced insulin receptor protein levels have been reported in the kidney cortex from diabetic humans and animals. We recently reported that, targeted deletion of insulin receptor (IR) from proximal tubules (PT) resulted in hyperglycemia in non-obese mice. To elucidate the mechanism, we examined human proximal tubule cells (hPTC) and C57BL/6 mice fed with high-fat diet (HFD, 60% fat for 20 weeks). Immunoblotting revealed a significantly lower protein level of IR in HFD compare to normal chow diet (NCD). Furthermore, a blunted rise in p-AKT 308 levels in the kidney cortex of HFD mice was observed in response to acute insulin (0.75 IU/kg body weight, i.p) relative to NCD n = 8/group, P gluconeogenesis. Transcript levels of the gluconeogenic enzyme PEPCK were significantly increased in cAMP/DEXA-stimulated hPTC cells (n = 3, P gluconeogenesis and PEPCK induction was significantly attenuated in IR (siRNA) silenced hPTC (n = 3, P gluconeogenesis. Thus reduced insulin signaling of the proximal tubule may contribute to hyperglycemia in the metabolic syndrome via elevated gluconeogenesis. J. Cell. Biochem. 118: 276-285, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Molecular Mechanisms of Insulin Resistance in Chronic Kidney Disease

    Science.gov (United States)

    Thomas, Sandhya S.; Zhang, Liping; Mitch, William E.

    2015-01-01

    Insulin resistance refers to reduced sensitivity of organs to insulin-initiated biologic processes that result in metabolic defects. Insulin resistance is common in patients with end-stage renal disease but also occurs in patients with chronic kidney disease (CKD), even when the serum creatinine is minimally increased. Following insulin binding to its receptor, auto-phosphorylation of the insulin receptor is followed by kinase reactions that phosphorylate insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase (PI3K) and Akt. In fact, low levels of Akt phosphorylation (p-Akt) identifies the presence of the insulin resistance that leads to metabolic defects in insulin-initiated metabolism of glucose, lipids and muscle proteins. Besides CKD, other complex conditions (e.g., inflammation, oxidative stress, metabolic acidosis, aging and excess angiotensin II) reduce p-Akt resulting in insulin resistance. Insulin resistance in each of these conditions is due to activation of different, E3 ubiquitin ligases which specifically conjugate ubiquitin to IRS-1 marking it for degradation in the ubiquitin-proteasome system (UPS). Consequently, IRS-1 degradation suppresses insulin-induced intracellular signaling, causing insulin resistance. Understanding mechanisms of insulin resistance could lead to therapeutic strategies that improve the metabolism of patients with CKD. PMID:26444029

  9. Autophagy downregulation contributes to insulin resistance mediated injury in insulin receptor knockout podocytes in vitro

    Directory of Open Access Journals (Sweden)

    Ying Xu

    2016-04-01

    Full Text Available It is unknown whether autophagy activity is altered in insulin resistant podocytes and whether autophagy could be a therapeutic target for diabetic nephropathy (DN. Here we used shRNA transfection to knockdown the insulin receptor (IR gene in cultured human immortalized podocytes as an in vitro insulin resistant model. Autophagy related proteins LC3, Beclin, and p62 as well as nephrin, a podocyte injury marker, were assessed using western blot and immunofluorescence staining. Our results show that autophagy is suppressed when podocytes lose insulin sensitivity and that treatment of rapamycin, an mTOR specific inhibitor, could attenuate insulin resistance induced podocytes injury via autophagy activation. The present study deepens our understanding of the role of autophagy in the pathogenesis of DN.

  10. TAK-242, a small-molecule inhibitor of Toll-like receptor 4 signalling, unveils similarities and differences in lipopolysaccharide- and lipidinduced inflammation and insulin resistance in muscle cells

    Science.gov (United States)

    Hussey, Sophie E.; Liang, Hanyu; Costford, Sheila R.; Klip, Amira; DeFronzo, Ralph A.; Sanchez-Avila, Alicia; Ely, Brian; Musi, Nicolas

    2012-01-01

    Emerging evidence suggests that TLR (Toll-like receptor) 4 and downstream pathways [MAPKs (mitogen-activated protein kinases) and NF-κB (nuclear factor κB)] play an important role in the pathogenesis of insulin resistance. LPS (lipopolysaccharide) and saturated NEFA (non-esterified fatty acids) activate TLR4, and plasma concentrations of these TLR4 ligands are elevated in obesity and Type 2 diabetes. Our goals were to define the role of TLR4 on the insulin resistance caused by LPS and saturated NEFA, and to dissect the independent contribution of LPS and NEFA to the activation of TLR4-driven pathways by employing TAK-242, a specific inhibitor of TLR4. LPS caused robust activation of the MAPK and NF-κB pathways in L6 myotubes, along with impaired insulin signalling and glucose transport. TAK-242 completely prevented the inflammatory response (MAPK and NF-κB activation) caused by LPS, and, in turn, improved LPS-induced insulin resistance. Similar to LPS, stearate strongly activated MAPKs, although stimulation of the NF-κB axis was modest. As seen with LPS, the inflammatory response caused by stearate was accompanied by impaired insulin action. TAK-242 also blunted stearate-induced inflammation; yet, the protective effect conferred by TAK-242 was partial and observed only on MAPKs. Consequently, the insulin resistance caused by stearate was only partially improved by TAK-242. In summary, TAK-242 provides complete and partial protection against LPS- and NEFA-induced inflammation and insulin resistance, respectively. Thus, LPS-induced insulin resistance depends entirely on TLR4, whereas NEFA works through TLR4-dependent and -independent mechanisms to impair insulin action. PMID:23050932

  11. Insulin receptor membrane retention by a traceable chimeric mutant

    OpenAIRE

    Giudice, Jimena; Jares, Elizabeth Andrea; Coluccio Leskow, Federico

    2015-01-01

    Background: The insulin receptor (IR) regulates glucose homeostasis, cell growth and differentiation. It has been hypothesized that the specific signaling characteristics of IR are in part determined by ligand-receptor complexes localization. Downstream signaling could be triggered from the plasma membrane or from endosomes. Regulation of activated receptor's internalization has been proposed as the mechanism responsible for the differential isoform and ligand-specific signaling. Re...

  12. Insulin and insulin-like growth factor-I (IGF-I) receptor phosphorylation in µ-calpain knockout mice

    Science.gov (United States)

    Numerous cellular processes are controlled by insulin and IGF-I signaling pathways. Due to previous work in our laboratories, we hypothesized that insulin (IR) and type 1 IGF-I (IGF-IR) receptor signaling is decreased due to increased protein tyrosine phosphatase 1B (PTP1B) activity. C57BL/6J mice...

  13. Fucosterol activates the insulin signaling pathway in insulin resistant HepG2 cells via inhibiting PTP1B.

    Science.gov (United States)

    Jung, Hyun Ah; Bhakta, Himanshu Kumar; Min, Byung-Sun; Choi, Jae Sue

    2016-10-01

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. This study investigated the modulatory effects of fucosterol on the insulin signaling pathway in insulin-resistant HepG2 cells by inhibiting protein tyrosine phosphatase 1B (PTP1B). In addition, molecular docking simulation studies were performed to predict binding energies, the specific binding site of fucosterol to PTP1B, and to identify interacting residues using Autodock 4.2 software. Glucose uptake was determined using a fluorescent D-glucose analogue and the glucose tracer 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose, and the signaling pathway was detected by Western blot analysis. We found that fucosterol enhanced insulin-provoked glucose uptake and conjointly decreased PTP1B expression level in insulin-resistant HepG2 cells. Moreover, fucosterol significantly reduced insulin-stimulated serine (Ser307) phosphorylation of insulin receptor substrate 1 (IRS1) and increased phosphorylation of Akt, phosphatidylinositol-3-kinase, and extracellular signal- regulated kinase 1 at concentrations of 12.5, 25, and 50 µM in insulin-resistant HepG2 cells. Fucosterol inhibited caspase-3 activation and nuclear factor kappa B in insulin-resistant hepatocytes. These results suggest that fucosterol stimulates glucose uptake and improves insulin resistance by downregulating expression of PTP1B and activating the insulin signaling pathway. Thus, fucosterol has potential for development as an anti-diabetic agent.

  14. Insufficient insulin administration to diabetic rats increases substrate utilization and maintains lactate production in the kidney

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Lipsø, Hans Kasper Wigh; Østergaard, Jakob Appel

    2014-01-01

    with insulin, resulting in poor glycemic control, has an additional effect on progression of late diabetic complications, than poor glycemic control on its own. We therefore compared renal metabolic alterations during conditions of poor glycemic control with and without suboptimal insulin administration, which...... administration increased pyruvate utilization and metabolic flux via both anaerobic and aerobic pathways in diabetic rats even though insulin did not affect kidney oxygen availability, HbA1c, or oxidative stress. These results imply direct effects of insulin in the regulation of cellular substrate utilization...... and metabolic fluxes during conditions of poor glycemic control. The study demonstrates that poor glycemic control in combination with suboptimal insulin administration accelerates metabolic alterations by increasing both anaerobic and aerobic metabolism resulting in increased utilization of energy substrates...

  15. Mechanisms of action of brain insulin against neurodegenerative diseases.

    Science.gov (United States)

    Ramalingam, Mahesh; Kim, Sung-Jin

    2014-06-01

    Insulin, a pancreatic hormone, is best known for its peripheral effects on the metabolism of glucose, fats and proteins. There is a growing body of evidence linking insulin action in the brain to neurodegenerative diseases. Insulin present in central nervous system is a regulator of central glucose metabolism nevertheless this glucoregulation is not the main function of insulin in the brain. Brain is known to be specifically vulnerable to oxidative products relative to other organs and altered brain insulin signaling may cause or promote neurodegenerative diseases which invalidates and reduces the quality of life. Insulin located within the brain is mostly of pancreatic origin or is produced in the brain itself crosses the blood-brain barrier and enters the brain via a receptor-mediated active transport system. Brain Insulin, insulin receptor and insulin receptor substrate-mediated signaling pathways play important roles in the regulation of peripheral metabolism, feeding behavior, memory and maintenance of neural functions such as neuronal growth and differentiation, neuromodulation and neuroprotection. In the present review, we would like to summarize the novel biological and pathophysiological roles of neuronal insulin in neurodegenerative diseases and describe the main signaling pathways in use for therapeutic strategies in the use of insulin to the cerebral tissues and their biological applications to neurodegenerative diseases.

  16. Independent signaling by Drosophila insulin receptor for axon guidance and growth.

    Science.gov (United States)

    Li, Caroline R; Guo, Dongyu; Pick, Leslie

    2013-01-01

    The Drosophila insulin receptor (DInR) regulates a diverse array of biological processes including growth, axon guidance, and sugar homeostasis. Growth regulation by DInR is mediated by Chico, the Drosophila homolog of vertebrate insulin receptor substrate proteins IRS1-4. In contrast, DInR regulation of photoreceptor axon guidance in the developing visual system is mediated by the SH2-SH3 domain adaptor protein Dreadlocks (Dock). In vitro studies by others identified five NPXY motifs, one in the juxtamembrane region and four in the signaling C-terminal tail (C-tail), important for interaction with Chico. Here we used yeast two-hybrid assays to identify regions in the DInR C-tail that interact with Dock. These Dock binding sites were in separate portions of the C-tail from the previously identified Chico binding sites. To test whether these sites are required for growth or axon guidance in whole animals, a panel of DInR proteins, in which the putative Chico and Dock interaction sites had been mutated individually or in combination, were tested for their ability to rescue viability, growth and axon guidance defects of dinr mutant flies. Sites required for viability were identified. Unexpectedly, mutation of both putative Dock binding sites, either individually or in combination, did not lead to defects in photoreceptor axon guidance. Thus, either sites also required for viability are necessary for DInR function in axon guidance and/or there is redundancy built into the DInR/Dock interaction such that Dock is able to interact with multiple regions of DInR. We also found that simultaneous mutation of all five NPXY motifs implicated in Chico interaction drastically decreased growth in both male and female adult flies. These animals resembled chico mutants, supporting the notion that DInR interacts directly with Chico in vivo to control body size. Mutation of these five NPXY motifs did not affect photoreceptor axon guidance, segregating the roles of DInR in the

  17. Gene expression of tumour necrosis factor and insulin signalling-related factors in subcutaneous adipose tissue during the dry period and in early lactation in dairy cows.

    Science.gov (United States)

    Sadri, H; Bruckmaier, R M; Rahmani, H R; Ghorbani, G R; Morel, I; van Dorland, H A

    2010-10-01

    Gene expression of adipose factors, which may be part of the mechanisms that underlie insulin sensitivity, were studied in dairy cows around parturition. Subcutaneous fat biopsies and blood samples were taken from 27 dairy cows in week 8 antepartum (a.p.), on day 1 postpartum (p.p.) and in week 5 p.p. In the adipose tissue samples, mRNA was quantified by real-time reverse transcription polymerase chain reaction for tumour necrosis factor alpha (TNFα), insulin-independent glucose transporter (GLUT1), insulin-responsive glucose transporter (GLUT4), insulin receptor, insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), regulatory subunit of phosphatidylinositol-3 kinase (p85) and catalytic subunit of phosphatidylinositol-3 kinase. Blood plasma was assayed for concentrations of glucose, β-hydroxybutyric acid, non-esterified fatty acids (NEFA) and insulin. Plasma parameters followed a pattern typically observed in dairy cows. Gene expression changes were observed, but there were no changes in TNFα concentrations, which may indicate its local involvement in catabolic adaptation of adipose tissue. Changes in GLUT4 and GLUT1 mRNA abundance may reflect their involvement in reduced insulin sensitivity and in sparing glucose for milk synthesis in early lactation. Unchanged gene expression of IRS1, IRS2 and p85 over time may imply a lack of their involvement in terms of insulin sensitivity dynamics. Alternatively, it may indicate that post-transcriptional modifications of these factors came into play and may have concealed an involvement. © 2010 Blackwell Verlag GmbH.

  18. Grb-IR: A SH2-Domain-Containing Protein that Binds to the Insulin Receptor and Inhibits Its Function

    Science.gov (United States)

    Liu, Feng; Roth, Richard A.

    1995-10-01

    To identify potential signaling molecules involved in mediating insulin-induced biological responses, a yeast two-hybrid screen was performed with the cytoplasmic domain of the human insulin receptor (IR) as bait to trap high-affinity interacting proteins encoded by human liver or HeLa cDNA libraries. A SH2-domain-containing protein was identified that binds with high affinity in vitro to the autophosphorylated IR. The mRNA for this protein was found by Northern blot analyses to be highest in skeletal muscle and was also detected in fat by PCR. To study the role of this protein in insulin signaling, a full-length cDNA encoding this protein (called Grb-IR) was isolated and stably expressed in Chinese hamster ovary cells overexpressing the human IR. Insulin treatment of these cells resulted in the in situ formation of a complex of the IR and the 60-kDa Grb-IR. Although almost 75% of the Grb-IR protein was bound to the IR, it was only weakly tyrosine-phosphorylated. The formation of this complex appeared to inhibit the insulin-induced increase in tyrosine phosphorylation of two endogenous substrates, a 60-kDa GTPase-activating-protein-associated protein and, to a lesser extent, IR substrate 1. The subsequent association of this latter protein with phosphatidylinositol 3-kinase also appeared to be inhibited. These findings raise the possibility that Grb-IR is a SH2-domain-containing protein that directly complexes with the IR and serves to inhibit signaling or redirect the IR signaling pathway.

  19. Partial rescue of in vivo insulin signalling in skeletal muscle by impaired insulin clearance in heterozygous carriers of a mutation in the insulin receptor gene

    DEFF Research Database (Denmark)

    Højlund, K.; Wojtaszewski, Jørgen; Birk, Jesper Bratz

    2006-01-01

    AIMS/HYPOTHESIS: Recently we reported the coexistence of postprandial hypoglycaemia and moderate insulin resistance in heterozygous carriers of the Arg1174Gln mutation in the insulin receptor gene (INSR). Controlled studies of in vivo insulin signalling in humans with mutant INSR are unavailable,...

  20. Expression, receptor binding, and biophysical characterization of guinea pig insulin desB30

    DEFF Research Database (Denmark)

    Engholm, Ebbe; Hansen, Thomas Hesselhøj; Johansson, Eva

    2015-01-01

    Here we report, for the first time, the heterologous expression of desB30 guinea pig insulin (GI desB30) in the yeast Saccharomyces cerevisiae. The affinities of GI desB30 for the insulin receptor A and the IGF-I receptor were also quantified for the first time. Small-angle X-ray scattering...

  1. TAK-242, a small-molecule inhibitor of Toll-like receptor 4 signalling, unveils similarities and differences in lipopolysaccharide- and lipid-induced inflammation and insulin resistance in muscle cells.

    Science.gov (United States)

    Hussey, Sophie E; Liang, Hanyu; Costford, Sheila R; Klip, Amira; DeFronzo, Ralph A; Sanchez-Avila, Alicia; Ely, Brian; Musi, Nicolas

    2012-11-30

    Emerging evidence suggests that TLR (Toll-like receptor) 4 and downstream pathways [MAPKs (mitogen-activated protein kinases) and NF-κB (nuclear factor κB)] play an important role in the pathogenesis of insulin resistance. LPS (lipopolysaccharide) and saturated NEFA (non-esterified fatty acids) activate TLR4, and plasma concentrations of these TLR4 ligands are elevated in obesity and Type 2 diabetes. Our goals were to define the role of TLR4 on the insulin resistance caused by LPS and saturated NEFA, and to dissect the independent contribution of LPS and NEFA to the activation of TLR4-driven pathways by employing TAK-242, a specific inhibitor of TLR4. LPS caused robust activation of the MAPK and NF-κB pathways in L6 myotubes, along with impaired insulin signalling and glucose transport. TAK-242 completely prevented the inflammatory response (MAPK and NF-κB activation) caused by LPS, and, in turn, improved LPS-induced insulin resistance. Similar to LPS, stearate strongly activated MAPKs, although stimulation of the NF-κB axis was modest. As seen with LPS, the inflammatory response caused by stearate was accompanied by impaired insulin action. TAK-242 also blunted stearate-induced inflammation; yet, the protective effect conferred by TAK-242 was partial and observed only on MAPKs. Consequently, the insulin resistance caused by stearate was only partially improved by TAK-242. In summary, TAK-242 provides complete and partial protection against LPS- and NEFA-induced inflammation and insulin resistance, respectively. Thus, LPS-induced insulin resistance depends entirely on TLR4, whereas NEFA works through TLR4-dependent and -independent mechanisms to impair insulin action.

  2. Site-Directed Mutagenesis of the Fibronectin Domains in Insulin Receptor-Related Receptor

    Directory of Open Access Journals (Sweden)

    Igor E. Deyev

    2017-11-01

    Full Text Available The orphan insulin receptor-related receptor (IRR, in contrast to its close homologs, the insulin receptor (IR and insulin-like growth factor receptor (IGF-IR can be activated by mildly alkaline extracellular medium. We have previously demonstrated that IRR activation is defined by its extracellular region, involves multiple domains, and shows positive cooperativity with two synergistic sites. By the analyses of point mutants and chimeras of IRR with IR in, we now address the role of the fibronectin type III (FnIII repeats in the IRR pH-sensing. The first activation site includes the intrinsically disordered subdomain ID (646–716 within the FnIII-2 domain at the C-terminus of IRR alpha subunit together with closely located residues L135, G188, R244, H318, and K319 of L1 and C domains of the second subunit. The second site involves residue T582 of FnIII-1 domain at the top of IRR lambda-shape pyramid together with M406, V407, and D408 from L2 domain within the second subunit. A possible importance of the IRR carbohydrate moiety for its activation was also assessed. IRR is normally less glycosylated than IR and IGF-IR. Swapping both FnIII-2 and FnIII-3 IRR domains with those of IR shifted beta-subunit mass from 68 kDa for IRR to about 100 kDa due to increased glycosylation and abolished the IRR pH response. However, mutations of four asparagine residues, potential glycosylation sites in chimera IRR with swapped FnIII-2/3 domains of IR, decreased the chimera glycosylation and resulted in a partial restoration of IRR pH-sensing activity, suggesting that the extensive glycosylation of FnIII-2/3 provides steric hindrance for the alkali-induced rearrangement of the IRR ectodomain.

  3. Adipose tissue insulin receptor and glucose transporter 4 expression, and blood glucose and insulin responses during glucose tolerance tests in transition Holstein cows with different body condition.

    Science.gov (United States)

    Jaakson, H; Karis, P; Ling, K; Ilves-Luht, A; Samarütel, J; Henno, M; Jõudu, I; Waldmann, A; Reimann, E; Pärn, P; Bruckmaier, R M; Gross, J J; Kaart, T; Kass, M; Ots, M

    2018-01-01

    Glucose uptake in tissues is mediated by insulin receptor (INSR) and glucose transporter 4 (GLUT4). The aim of this study was to examine the effect of body condition during the dry period on adipose tissue mRNA and protein expression of INSR and GLUT4, and on the dynamics of glucose and insulin following the i.v. glucose tolerance test in Holstein cows 21 d before (d -21) and after (d 21) calving. Cows were grouped as body condition score (BCS) ≤3.0 (thin, T; n = 14), BCS = 3.25 to 3.5 (optimal, O; n = 14), and BCS ≥3.75 (overconditioned, OC; n = 14). Blood was analyzed for glucose, insulin, fatty acids, and β-hydroxybutyrate concentrations. Adipose tissue was analyzed for INSR and GLUT4 mRNA and protein concentrations. During the glucose tolerance test 0.15 g/kg of body weight glucose was infused; blood was collected at -5, 5, 10, 20, 30, 40, 50, and 60 min, and analyzed for glucose and insulin. On d -21 the area under the curve (AUC) of glucose was smallest in group T (1,512 ± 33.9 mg/dL × min) and largest in group OC (1,783 ± 33.9 mg/dL × min), and different between all groups. Basal insulin on d -21 was lowest in group T (13.9 ± 2.32 µU/mL), which was different from group OC (24.9 ± 2.32 µU/mL. On d -21 the smallest AUC 5-60 of insulin in group T (5,308 ± 1,214 µU/mL × min) differed from the largest AUC in group OC (10,867 ± 1,215 µU/mL × min). Time to reach basal concentration of insulin in group OC (113 ± 14.1 min) was longer compared with group T (45 ± 14.1). The INSR mRNA abundance on d 21 was higher compared with d -21 in groups T (d -21: 3.3 ± 0.44; d 21: 5.9 ± 0.44) and O (d -21: 3.7 ± 0.45; d 21: 4.7 ± 0.45). The extent of INSR protein expression on d -21 was highest in group T (7.3 ± 0.74 ng/mL), differing from group O (4.6 ± 0.73 ng/mL), which had the lowest expression. The amount of GLUT4 protein on d -21 was lowest in group OC (1.2 ± 0.14 ng/mL), different from group O (1.8 ± 0.14 ng/mL), which had the highest amount

  4. Dopamine D2 receptors in the pathophysiology of insulin resistance

    NARCIS (Netherlands)

    Leeuw van Weenen, Judith Elisabeth de

    2011-01-01

    Extensive literature links the dopamine receptor D2 to insulin resistance and diabetes mellitus type 2. However, many aspects of the functional relationship remain unclear. In this thesis we focused on unraveling the characteristics of the interplay between dopamine D2 receptors and glucose

  5. Relaxin, its receptor (RXFP1), and insulin-like peptide 4 expression through gestation and in placenta accreta.

    Science.gov (United States)

    Goh, William; Yamamoto, Sandra Y; Thompson, Karen S; Bryant-Greenwood, Gillian D

    2013-08-01

    This study was designed to show whether placental relaxin (RLN), its receptor (RXFP1), or insulin-like peptide 4 (INSL4) might have altered expression in patients with placenta accreta. The baseline expression of their genes through gestation (n = 34) was quantitated in the placental basal plate (BP) and villous trophoblast (TR), and compared to their expression in placenta accreta (n = 6). The proteins were also immunolocalized and quantitated in the accreta tissues. The messenger RNAs (mRNAs) of matrix metalloproteinase 9, -2, and tissue inhibitors of matrix metalloproteinase (TIMP)-1 were also measured. Results demonstrated that the BP and TR expressed low levels of RLN/RXFP1 and INSL4 through gestation. In accreta, increased RLN gene and protein in BP were associated with antepartum bleeding whereas INSL4 expression decreased throughout the TR. There were no changes in mRNAs for MMPs, but TIMP-1 was increased only in the invasive TR.

  6. Development of receptors for insulin and insulin-like growth factor-I in head and brain of chick embryos: Autoradiographic localization

    International Nuclear Information System (INIS)

    Bassas, L.; Girbau, M.; Lesniak, M.A.; Roth, J.; de Pablo, F.

    1989-01-01

    In whole brain of chick embryos insulin receptors are highest at the end of embryonic development, while insulin-like growth factor-I (IGF-I) receptors dominate in the early stages. These studies provided evidence for developmental regulation of both types of receptors, but they did not provide information on possible differences between brain regions at each developmental stage or within one region at different embryonic ages. We have now localized the specific binding of [125I]insulin and [125I]IGF-I in sections of head and brain using autoradiography and computer-assisted densitometric analysis. Embryos have been studied from the latter part of organogenesis (days 6 and 12) through late development (day 18, i.e. 3 days before hatching), and the binding patterns have been compared with those in the adult brain. At all ages the binding of both ligands was to discrete anatomical regions. Interestingly, while in late embryos and adult brain the patterns of [125I]insulin and [125I] IGF-I binding were quite distinct, in young embryos both ligands showed very similar localization of binding. In young embryos the retina and lateral wall of the growing encephalic vesicles had the highest binding of both [125I]insulin and [125I]IGF-I. In older embryos, as in the adult brain, insulin binding was high in the paleostriatum augmentatum and molecular layer of the cerebellum, while IGF-I binding was prominent in the hippocampus and neostriatum. The mapping of receptors in a vertebrate embryo model from early prenatal development until adulthood predicts great overlap in any possible function of insulin and IGF-I in brain development, while it anticipates differential localized actions of the peptides in the mature brain

  7. Insulin resistance and improvements in signal transduction.

    Science.gov (United States)

    Musi, Nicolas; Goodyear, Laurie J

    2006-02-01

    Type 2 diabetes and obesity are common metabolic disorders characterized by resistance to the actions of insulin to stimulate skeletal muscle glucose disposal. Insulin-resistant muscle has defects at several steps of the insulin-signaling pathway, including decreases in insulin-stimulated insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation, and phosphatidylinositol 3-kinase (PI 3-kinase) activation. One approach to increase muscle glucose disposal is to reverse/improve these insulin-signaling defects. Weight loss and thiazolidinediones (TZDs) improve glucose disposal, in part, by increasing insulin-stimulated insulin receptor and IRS-1 tyrosine phosphorylation and PI 3-kinase activity. In contrast, physical training and metformin improve whole-body glucose disposal but have minimal effects on proximal insulin-signaling steps. A novel approach to reverse insulin resistance involves inhibition of the stress-activated protein kinase Jun N-terminal kinase (JNK) and the protein tyrosine phosphatases (PTPs). A different strategy to increase muscle glucose disposal is by stimulating insulin-independent glucose transport. AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge and becomes activated in situations of energy consumption, such as muscle contraction. Several studies have shown that pharmacologic activation of AMPK increases glucose transport in muscle, independent of the actions of insulin. AMPK activation is also involved in the mechanism of action of metformin and adiponectin. Moreover, in the hypothalamus, AMPK regulates appetite and body weight. The effect of AMPK to stimulate muscle glucose disposal and to control appetite makes it an important pharmacologic target for the treatment of type 2 diabetes and obesity.

  8. Insulin stimulates the tyrosine phosphorylation of a Mr = 160,000 glycoprotein in adipocyte plasma membranes

    International Nuclear Information System (INIS)

    Yu, K.T.; Khalaf, N.; Czech, M.P.

    1986-01-01

    In an attempt to identify putative substrates for the insulin receptor kinase, adipocyte plasma membranes were incubated with [γ- 32 P]ATP in the presence and absence of insulin. Insulin stimulates the tyrosine phosphorylation of its receptor β subunit but does not detectably alter the phosphorylation of other membrane proteins. In contrast, when plasma membranes from insulin-treated adipocytes are phosphorylated, the 32 P-labeling of a Mr=160,000 species (p160) and insulin receptor β subunit are markedly increased when compared to controls. p160 exhibits a rapid response (max. at 1 min) and high sensitivity (ED 50 = 2 x 10 -10 M) to insulin. The stimulatory effect of insulin on the phosphorylation of p160 is rapidly reversed following the addition of anti-insulin serum. Cold chase experiments indicate that insulin promotes the phosphorylation of p160 rather than inhibiting its dephosphorylation. p160 is a glycoprotein as evidenced by its adsorption to immobilized lectins and does not represent the insulin receptor precursor. The action of insulin on p160 tyrosine phosphorylation is mimicked by concanavalin A but not by EGF and other insulin-like agents such as hydrogen peroxide and vanadate. These results suggest that p160 tyrosine phosphorylation is an insulin receptor-mediated event and may participate in signalling by the insulin receptor

  9. Differential Effects of Camel Milk on Insulin Receptor Signaling – Towards Understanding the Insulin-like Properties of Camel Milk

    Directory of Open Access Journals (Sweden)

    Abdulrasheed O Abdulrahman

    2016-01-01

    Full Text Available Previous studies on the Arabian camel (Camelus dromedarius showed beneficial effects of its milk reported in diverse models of human diseases including a substantial hypoglycemic activity. However, the cellular and molecular mechanisms involved in such effects remain completely unknown. In this study, we hypothesized that camel milk may act at the level of human insulin receptor (hIR and its related intracellular signaling pathways. Therefore, we examined the effect of camel milk on the activation of hIR transiently expressed in human embryonic kidney 293 (HEK293 cells using bioluminescence resonance energy transfer (BRET technology. BRET was used to assess, in live cells and real-time, the physical interaction between hIR and insulin receptor signaling proteins (IRS1 and the growth factor receptor-bound protein 2 (Grb2. Our data showed that camel milk did not promote any increase in the BRET signal between hIR and IRS1 or Grb2 in the absence of insulin stimulation. However, it significantly potentiated the maximal insulin-promoted BRET signal between hIR and Grb2 but not IRS1. Interestingly, camel milk appears to differentially impact the downstream signaling since it significantly activated ERK1/2 and potentiated the insulin-induced ERK1/2 but not Akt activation. These observations are to some extent consistent with the BRET data since ERK1/2 and Akt activation are known to reflect the engagement of Grb2 and IRS1 pathways, respectively. The preliminary fractionation of camel milk suggests the peptide/protein nature of the active component in camel milk. Together, our study demonstrates for the first time an allosteric effect of camel milk on insulin receptor conformation and activation with differential effects on its intracellular signaling. These findings should help to shed more light on the hypoglycemic activity of camel milk with potential therapeutic applications.

  10. Interleukin 4 signals through two related pathways.

    Science.gov (United States)

    Pernis, A; Witthuhn, B; Keegan, A D; Nelms, K; Garfein, E; Ihle, J N; Paul, W E; Pierce, J H; Rothman, P

    1995-08-15

    The interleukin 4 (IL-4) signaling pathway involves activation, by tyrosine phosphorylation, of two distinct substrates, a signal-transducing factor (STF-IL4) and the IL-4-induced phosphotyrosine substrate (4PS). It is not known whether the IL-4-mediated activation of these substrates occurs via related or distinct signaling pathways. We report that 32D cells, an IL-3-dependent myeloid progenitor cell line in which no phosphorylated 4PS is found, activate high levels of STF-IL4 in response to IL-4. Consistent with the known requirement for 4PS or insulin receptor substrate 1 (IRS-1) in IL-4-mediated mitogenesis, activation of STF-IL4 in 32D cells is not sufficient for IL-4-inducible c-myc expression. In addition, we have examined the ability of 32D cells transfected with different truncation mutants of the human IL-4 receptor to activate Jak-3 kinase and STF-IL4 in response to human IL-4. As in the case of 4PS/IRS-1, we have found that activation of both Jak-3 and STF-IL4 requires the presence of the IL-4 receptor region comprising aa 437-557. The finding that the same region of the IL-4 receptor is required for the induction of both 4PS/IRS-1 and STF-IL4 suggests that the IL-4-stimulated activation of these two substrates might involve common factors.

  11. Expression of the growth hormone receptor gene in insulin producing cells

    DEFF Research Database (Denmark)

    Møldrup, Annette; Billestrup, N; Nielsen, Jens Høiriis

    1990-01-01

    Growth hormone (GH) plays a dual role in glucose homeostasis. On the one hand, it exerts an insulin antagonistic effect on the peripheral tissue, on the other hand, it stimulates insulin biosynthesis and beta-cell proliferation. The expression of GH-receptors on the rat insulinoma cell line RIN-5...

  12. Peroxisome Proliferator-Activated Receptors and Hepatitis C Virus-Induced Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Francesco Negro

    2009-01-01

    Full Text Available Insulin resistance and type 2 diabetes are associated with hepatitis C virus infection. A wealth of clinical and experimental data suggests that the virus is directly interfering with the insulin signalling in hepatocytes. In the case of at least one viral genotype (the type 3a, insulin resistance seems to be directly mediated by the downregulation of the peroxisome proliferator-activated receptor γ. Whether and how this interaction may be manipulated pharmacologically, in order to improve the responsiveness to antivirals of insulin resistant chronic hepatitis C, patients remain to be fully explored.

  13. Receptor-mediated endocytosis and intracellular trafficking of insulin and low-density lipoprotein by retinal vascular endothelial cells.

    Science.gov (United States)

    Stitt, A W; Anderson, H R; Gardiner, T A; Bailie, J R; Archer, D B

    1994-08-01

    The authors investigated the receptor-mediated endocytosis (RME) and intracellular trafficking of insulin and low-density lipoprotein (LDL) in cultured retinal vascular endothelial cells (RVECs). Low-density lipoprotein and insulin were conjugated to 10 nm colloidal gold, and these ligands were added to cultured bovine RVECs for 20 minutes at 4 degrees C. The cultures were then warmed to 37 degrees C and fixed after incubation times between 30 seconds and 1 hour. Control cells were incubated with unconjugated gold colloid at times and concentrations similar to those of the ligands. Additional control cells were exposed to several concentrations of anti-insulin receptor antibody or a saturating solution of unconjugated insulin before incubation with gold insulin. Using transmission electron microscopy, insulin gold and LDL gold were both observed at various stages of RME. Insulin-gold particles were first seen to bind to the apical plasma membrane (PM) before clustering in clathrin-coated pits and internalization in coated vesicles. Gold was later visualized in uncoated cytoplasmic vesicles, corresponding to early endosomes and multivesicular bodies (MVBs) or late endosomes. In several instances, localized regions of the limiting membrane of the MVBs appeared coated, a feature of endosomal membranes not previously described. After RME at the apical PM and passage through the endosomal system, the greater part of both insulin- and LDL-gold conjugates was seen to accumulate in large lysosome-like compartments. However, a small but significant proportion of the internalized ligands was transcytosed and released as discrete membrane-associated quanta at the basal cell surface. The uptake of LDL gold was greatly increased in highly vacuolated, late-passage RVECs. In controls, anti-insulin receptor antibody and excess unconjugated insulin caused up to 89% inhibition in gold-insulin binding and internalization. These results illustrate the internalization and intracellular

  14. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation.

    Science.gov (United States)

    Tudurí, Eva; Beiroa, Daniel; Stegbauer, Johannes; Fernø, Johan; López, Miguel; Diéguez, Carlos; Nogueiras, Rubén

    2016-11-01

    Pancreatic insulin-secreting β-cells express opioid receptors, whose activation by opioid peptides modulates hormone secretion. Opioid receptors are also expressed in multiple brain regions including the hypothalamus, where they play a role in feeding behavior and energy homeostasis, but their potential role in central regulation of glucose metabolism is unknown. Here, we investigate whether central opioid receptors participate in the regulation of insulin secretion and glucose homeostasis in vivo. C57BL/6J mice were acutely treated by intracerebroventricular (i.c.v.) injection with specific agonists for the three main opioid receptors, kappa (KOR), delta (DOR) and mu (MOR) opioid receptors: activation of KOR and DOR did not alter glucose tolerance, whereas activation of brain MOR with the specific agonist DAMGO blunted glucose-stimulated insulin secretion (GSIS), reduced insulin sensitivity, increased the expression of gluconeogenic genes in the liver and, consequently, impaired glucose tolerance. Pharmacological blockade of α2A-adrenergic receptors prevented DAMGO-induced glucose intolerance and gluconeogenesis. Accordingly, DAMGO failed to inhibit GSIS and to impair glucose tolerance in α2A-adrenoceptor knockout mice, indicating that the effects of central MOR activation on β-cells are mediated via sympathetic innervation. Our results show for the first time a new role of the central opioid system, specifically the MOR, in the regulation of insulin secretion and glucose metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Activation of JAK3, but not JAK1, is critical to interleukin-4 (IL4) stimulated proliferation and requires a membrane-proximal region of IL4 receptor alpha.

    Science.gov (United States)

    Malabarba, M G; Kirken, R A; Rui, H; Koettnitz, K; Kawamura, M; O'Shea, J J; Kalthoff, F S; Farrar, W L

    1995-04-21

    The tyrosine kinases JAK1 and JAK3 have been shown to undergo tyrosine phosphorylation in response to interleukin-2 (IL), IL4, IL7, and IL9, cytokines which share the common IL2 receptor gamma-chain (IL2R gamma), and evidence has been found for a preferential coupling of JAK3 to IL2R gamma and JAK1 to IL2R beta. Here we show, using human premyeloid TF-1 cells, that IL4 stimulates JAK3 to a larger extent than JAK1, based upon three different evaluation criteria. These include a more vigorous tyrosine phosphorylation of JAK3 as measured by anti-phosphotyrosine immunoblotting, a more marked activation of JAK3 as determined by in vitro tyrosine kinase assays and a more manifest presence of JAK3 in activated IL4-receptor complexes. These observations suggest that IL4 receptor signal transduction does not depend on equimolar heterodimerization of JAK1 and JAK3 following IL4-induced heterodimerization of IL4R alpha and IL2R gamma. Indeed, when human IL4R alpha was stably expressed in mouse BA/F3 cells, robust IL4-induced proliferation and JAK3 activation occurred without detectable involvement of JAK1, JAK2, or TYK2. The present study suggests that JAK1 plays a subordinate role in IL4 receptor signaling, and that in certain cells exclusive JAK3 activation may mediate IL4-induced cell growth. Moreover, mutational analysis of human IL4R alpha showed that a membrane-proximal cytoplasmic region was critical for JAK3 activation, while the I4R motif was not, which is compatible with a role of JAK3 upstream of the recruitment of the insulin receptor substrate-1/4PS signaling proteins by IL4 receptors.

  16. Autoradiographic visualization of insulin-like growth factor-II receptors in rat brain

    International Nuclear Information System (INIS)

    Mendelsohn, L.G.; Kerchner, G.A.; Clemens, J.A.; Smith, M.C.

    1986-01-01

    The documented presence of IGF-II in brain and CSF prompted us to investigate the distribution of receptors for IGF-II in rat brain slices. Human 125 -I-IGF-II (10 pM) was incubated for 16 hrs at 4 0 C with slide-mounted rat brain slices in the absence and presence of unlabeled human IGF-II (67 nM) or human insulin (86 nM). Slides were washed, dried, and exposed to X-ray film for 4-7 days. The results showed dense labeling in the granular layers of the olfactory bulbs, deep layers of the cerebral cortex, pineal gland, anterior pituitary, hippocampus (pyramidal cells CA 1 -CA 2 and dentate gyrus), and the granule cell layers of the cerebellum. Unlabeled IGF-II eliminated most of the binding of these brain regions while insulin produced only a minimal reduction in the amount of 125 I-IGF-II bound. These results indicate that a specific neural receptor for IGS-II is uniquely distributed in rat brain tissue and supports the notion that this peptide might play an important role in normal neuronal functioning

  17. Functional labeling of insulin receptor subunits in live cells. Alpha 2 beta 2 species is the major autophosphorylated form

    International Nuclear Information System (INIS)

    Le Marchand-Brustel, Y.; Ballotti, R.; Gremeaux, T.; Tanti, J.F.; Brandenburg, D.; Van Obberghen, E.

    1989-01-01

    Both receptor subunits were functionally labeled in order to provide methods allowing, in live cells and in broken cell systems, concomitant evaluation of the insulin receptor dual function, hormone binding, and kinase activity. In cell-free systems, insulin receptors were labeled on their alpha-subunit with 125I-photoreactive insulin, and on their beta-subunit by autophosphorylation. Thereafter, phosphorylated receptors were separated from the complete set of receptors by means of anti-phosphotyrosine antibodies. Using this approach, a subpopulation of receptors was found which had bound insulin, but which were not phosphorylated. Under nonreducing conditions, receptors appeared in three oligomeric species identified as alpha 2 beta 2, alpha 2 beta, and alpha 2. Mainly the alpha 2 beta 2 receptor species was found to be phosphorylated while insulin was bound to alpha 2 beta 2, alpha 2 beta, and alpha 2 forms. In live cells, biosynthetic labeling of insulin receptors was used. Receptors were first labeled with [35S]methionine. Subsequently, the addition of insulin led to receptor autophosphorylation by virtue of the endogenous ATP pool. The total amount of [35S]methionine-labeled receptors was precipitated with antireceptor antibodies, whereas with anti-phosphotyrosine antibodies, only the phosphorylated receptors were isolated. Using this approach we made the two following key findings: (1) Both receptor species, alpha 2 beta 2 and alpha 2 beta, are present in live cells and in comparable amounts. This indicates that the alpha 2 beta form is not a degradation product of the alpha 2 beta 2 form artificially generated during receptor preparation. (2) The alpha 2 beta 2 species is the prevalently autophosphorylated form

  18. Exendin-4 reduces tau hyperphosphorylation in type 2 diabetic rats via increasing brain insulin level.

    Science.gov (United States)

    Yang, Yan; Ma, Delin; Xu, Weijie; Chen, Fuqiong; Du, Tingting; Yue, Wenzhu; Shao, Shiying; Yuan, Gang

    2016-01-01

    Type 2 diabetes (T2D) is a high risk factor for Alzheimer's disease (AD). Our previous study identified that hyperphosphorylation of tau protein, which is one of the pathophysiologic hallmarks of AD, also occurred in T2D rats' brain; while glucagon-like peptide-1 (GLP-1) mimetics, a type of drug used in T2D, could decrease the phosphorylation of tau, probably via augmenting insulin signaling pathway. The purpose of this study was to further explore the mechanisms that underlie the effect of exendin-4 (ex-4, a GLP-1 receptor agonist) in reducing tau phosphorylation. We found that peripheral ex-4 injection in T2D rats reduced hyperphosphorylation of tau protein in rat hippocampus, probably via increasing hippocampal insulin which activated insulin signaling. Furthermore, we found that ex-4 could neither activate insulin signaling, nor reduce tau phosphorylation in HT22 neuronal cells in the absence of insulin. These results suggested that insulin is required in reduction of tau hyperphosphorylation by ex-4 in brain rats with T2D. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Insulin Responsiveness in Metabolic Syndrome after Eight Weeks of Cycle Training

    Science.gov (United States)

    Stuart, Charles A.; South, Mark A.; Lee, Michelle L.; McCurry, Melanie P.; Howell, Mary E. A.; Ramsey, Michael W.; Stone, Michael H.

    2013-01-01

    Introduction Insulin resistance in obesity is decreased after successful diet and exercise. Aerobic exercise training alone was evaluated as an intervention in subjects with the metabolic syndrome. Methods Eighteen non-diabetic, sedentary subjects, eleven with the metabolic syndrome, participated in eight weeks of increasing intensity stationary cycle training. Results Cycle training without weight loss did not change insulin resistance in metabolic syndrome subjects or sedentary control subjects. Maximal oxygen consumption (VO2max), activated muscle AMP-dependent kinase, and muscle mitochondrial marker ATP synthase all increased. Strength, lean body mass, and fat mass did not change. Activated mammalian target of rapamycin was not different after training. Training induced a shift in muscle fiber composition in both groups but in opposite directions. The proportion of 2x fibers decreased with a concomitant increase in 2a mixed fibers in the control subjects, but in metabolic syndrome, 2x fiber proportion increased and type 1 fibers decreased. Muscle fiber diameters increased in all three fiber types in metabolic syndrome subjects. Muscle insulin receptor expression increased in both groups and GLUT4 expression increased in the metabolic syndrome subjects. Excess phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser337 in metabolic syndrome muscle tended to increase further after training in spite of a decrease in total IRS-1. Conclusion In the absence of weight loss, cycle training of metabolic syndrome subjects resulted in enhanced mitochondrial biogenesis, and increased expression of insulin receptors and GLUT4 in muscle, but did not decrease the insulin resistance. The failure for the insulin signal to proceed past IRS-1 tyrosine phosphorylation may be related to excess serine phosphorylation at IRS-1 Ser337 and this is not ameliorated by eight weeks of endurance exercise training. PMID:23669880

  20. Adiponectin release and insulin receptor targeting share trans-Golgi-dependent endosomal trafficking routes

    Directory of Open Access Journals (Sweden)

    Maria Rödiger

    2018-02-01

    Full Text Available Objective: Intracellular vesicle trafficking maintains cellular structures and functions. The assembly of cargo-laden vesicles at the trans-Golgi network is initiated by the ARF family of small GTPases. Here, we demonstrate the role of the trans-Golgi localized monomeric GTPase ARFRP1 in endosomal-mediated vesicle trafficking of mature adipocytes. Methods: Control (Arfrp1flox/flox and inducible fat-specific Arfrp1 knockout (Arfrp1iAT−/− mice were metabolically characterized. In vitro experiments on mature 3T3-L1 cells and primary mouse adipocytes were conducted to validate the impact of ARFRP1 on localization of adiponectin and the insulin receptor. Finally, secretion and transferrin-based uptake and recycling assays were performed with HeLa and HeLa M-C1 cells. Results: We identified the ARFRP1-based sorting machinery to be involved in vesicle trafficking relying on the endosomal compartment for cell surface delivery. Secretion of adiponectin from fat depots was selectively reduced in Arfrp1iAT−/− mice, and Arfrp1-depleted 3T3-L1 adipocytes revealed an accumulation of adiponectin in Rab11-positive endosomes. Plasma adiponectin deficiency of Arfrp1iAT−/− mice resulted in deteriorated hepatic insulin sensitivity, increased gluconeogenesis and elevated fasting blood glucose levels. Additionally, the insulin receptor, undergoing endocytic recycling after ligand binding, was less abundant at the plasma membrane of adipocytes lacking Arfrp1. This had detrimental effects on adipose insulin signaling, followed by insufficient suppression of basal lipolytic activity and impaired adipose tissue expansion. Conclusions: Our findings suggest that adiponectin secretion and insulin receptor surface targeting utilize the same post-Golgi trafficking pathways that are essential for an appropriate systemic insulin sensitivity and glucose homeostasis. Keywords: Adiponectin, ARFRP1, Exocytosis, Insulin receptor, trans-Golgi

  1. The Role of Insulin, Insulin Growth Factor, and Insulin-Degrading Enzyme in Brain Aging and Alzheimer's Disease

    OpenAIRE

    Messier, Claude; Teutenberg, Kevin

    2005-01-01

    Most brain insulin comes from the pancreas and is taken up by the brain by what appears to be a receptor-based carrier. Type 2 diabetes animal models associated with insulin resistance show reduced insulin brain uptake and content. Recent data point to changes in the insulin receptor cascade in obesity-related insulin resistance, suggesting that brain insulin receptors also become less sensitive to insulin, which could reduce synaptic plasticity. Insulin transport to the brain is reduced in a...

  2. Human blood-brain barrier insulin-like growth factor receptor

    International Nuclear Information System (INIS)

    Duffy, K.R.; Pardridge, W.M.; Rosenfeld, R.G.

    1988-01-01

    Insulin-like growth factor (IGF)-1 and IGF-2, may be important regulatory molecules in the CNS. Possible origins of IGFs in brain include either de novo synthesis or transport of circulating IGFs from blood into brain via receptor mediated transcytosis mechanisms at the brain capillary endothelial wall, ie, the blood-brain barrier (BBB). In the present studies, isolated human brain capillaries are used as an in vitro model system of the human BBB and the characteristics of IGF-1 or IGF-2 binding to this preparation were assessed. The total binding of IGF-2 at 37 degrees C exceeded 130% per mg protein and was threefold greater than the total binding for IGF-1. However, at 37 degrees C nonsaturable binding equaled total binding, suggesting that endocytosis is rate limiting at physiologic temperatures. Binding studies performed at 4 degrees C slowed endocytosis to a greater extent than membrane binding, and specific binding of either IGF-1 or IGF-2 was detectable. Scatchard plots for either peptide were linear and the molar dissociation constant of IGF-1 and IGF-2 binding was 2.1 +/- 0.4 and 1.1 +/- 0.1 nmol/L, respectively. Superphysiologic concentrations of porcine insulin inhibited the binding of both IGF-1 (ED50 = 2 micrograms/mL) and IGF-2 (ED50 = 0.5 microgram/mL). Affinity cross linking of 125 I-IGF-1, 125 I-IGF-2, and 125 I-insulin to isolated human brain capillaries was performed using disuccinimidylsuberate (DSS). These studies revealed a 141 kd binding site for both IGF-1 and IGF-2, and a 133 kd binding site for insulin

  3. Effect of insulin analogues on insulin/IGF1 hybrid receptors: increased activation by glargine but not by its metabolites M1 and M2.

    Directory of Open Access Journals (Sweden)

    Cécile Pierre-Eugene

    Full Text Available BACKGROUND: In diabetic patients, the pharmacokinetics of injected human insulin does not permit optimal control of glycemia. Fast and slow acting insulin analogues have been developed, but they may have adverse properties, such as increased mitogenic or anti-apoptotic signaling. Insulin/IGF1 hybrid receptors (IR/IGF1R, present in most tissues, have been proposed to transmit biological effects close to those of IGF1R. However, the study of hybrid receptors is difficult because of the presence of IR and IGF1R homodimers. Our objective was to perform the first study on the pharmacological properties of the five marketed insulin analogues towards IR/IGF1R hybrids. METHODOLOGY: To study the effect of insulin analogues on IR/IGF1R hybrids, we used our previously developed Bioluminescence Resonance Energy Transfer (BRET assay that permits specific analysis of the pharmacological properties of hybrid receptors. Moreover, we have developed a new, highly sensitive BRET-based assay to monitor phophatidylinositol-3 phosphate (PIP(3 production in living cells. Using this assay, we performed a detailed pharmacological analysis of PIP(3 production induced by IGF1, insulin and insulin analogues in living breast cancer-derived MCF-7 and MDA-MB231 cells. RESULTS: Among the five insulin analogues tested, only glargine stimulated IR/IGF1R hybrids with an EC50 that was significantly lower than insulin and close to that of IGF1. Glargine more efficiently stimulated PIP(3 production in MCF-7 cells but not in MDA-MB231 cells as compared to insulin. In contrast, glargine metabolites M1 and M2 showed lower potency for hybrid receptors stimulation, PIP(3 production, Akt and Erk1/2 phosphorylation and DNA synthesis in MCF-7 cells, compared to insulin. CONCLUSION: Glargine, possibly acting through IR/IGF1R hybrids, displays higher potency, whereas its metabolites M1 and M2 display lower potency than insulin for the stimulation of proliferative/anti-apoptotic pathways in

  4. Insulin/insulin like growth factors in cancer: new roles for the aryl hydrocarbon receptor, tumor resistance mechanisms and new blocking strategies

    Directory of Open Access Journals (Sweden)

    Travis B Salisbury

    2015-02-01

    Full Text Available The insulin-like growth factor 1 receptor (IGF1R and the insulin receptor (IR are receptor tyrosine kinases (RTKs that are expressed in cancer cells. The results of different studies indicate that tumor proliferation and survival is dependent on the IGF1R and IR, and that their inhibition leads to reductions in proliferation and increases in cell death. Molecular targeting therapies that have been used in solid tumors include: anti-IGF1R antibodies, anti-IGF1/IGF2 antibodies and small molecule inhibitors that suppress IGF1R and IR kinase activity. New advances in the molecular basis of anti-IGF1R blocking antibodies reveal they are biased agonists and promote the binding of IGF1 to integrin β3 receptors in some cancer cells. Our recent reports indicate that pharmacological aryl hydrocarbon receptor (AHR ligands inhibit breast cancer cell responses to IGFs, suggesting that targeting AHR may have benefit in cancers whose proliferation and survival are dependent on insulin/IGF signaling. Novel aspects of IGF1R/IR in cancer, such as biased agonism, integrin β3 signaling, AHR and new therapeutic targeting strategies will be discussed.

  5. IL-4 function can be transferred to the IL-2 receptor by tyrosine containing sequences found in the IL-4 receptor alpha chain.

    Science.gov (United States)

    Wang, H Y; Paul, W E; Keegan, A D

    1996-02-01

    IL-4 binds to a cell surface receptor complex that consists of the IL-4 binding protein (IL-4R alpha) and the gamma chain of the IL-2 receptor complex (gamma c). The receptors for IL-4 and IL-2 have several features in common; both use the gamma c as a receptor component, and both activate the Janus kinases JAK-1 and JAK-3. In spite of these similarities, IL-4 evokes specific responses, including the tyrosine phosphorylation of 4PS/IRS-2 and the induction of CD23. To determine whether sequences within the cytoplasmic domain of the IL-4R alpha specify these IL-4-specific responses, we transplanted the insulin IL-4 receptor motif (I4R motif) of the huIL-4R alpha to the cytoplasmic domain of a truncated IL-2R beta. In addition, we transplanted a region that contains peptide sequences shown to block Stat6 binding to DNA. We analyzed the ability of cells expressing these IL-2R-IL-4R chimeric constructs to respond to IL-2. We found that IL-4 function could be transplanted to the IL-2 receptor by these regions and that proliferative and differentiative functions can be induced by different receptor sequences.

  6. DNA methylation and histone deacetylation regulating insulin sensitivity due to chronic cold exposure.

    Science.gov (United States)

    Wang, Xiaoqing; Wang, Lai; Sun, Yizheng; Li, Ruiping; Deng, Jinbo; Deng, Jiexin

    2017-02-01

    In this study, we investigated the causal relationship between chronic cold exposure and insulin resistance and the mechanisms of how DNA methylation and histone deacetylation regulate cold-reduced insulin resistance. 46 adult male mice from postnatal day 90-180 were randomly assigned to control group and cold-exposure group. Mice in cold-exposure group were placed at temperature from -1 to 4 °C for 30 days to mimic chronic cold environment. Then, fasting blood glucose, blood insulin level and insulin resistance index were measured with enzymatic methods. Immunofluorescent labeling was carried out to visualize the insulin receptor substrate 2 (IRS2), Obese receptor (Ob-R, a leptin receptor), voltage-dependent anion channel protein 1 (VDAC1), cytochrome C (cytC), 5-methylcytosine (5-mC) positive cells in hippocampal CA1 area. Furthermore, the expressions of some proteins mentioned above were detected with Western blot. The results showed: ① Chronic cold exposure could reduce the insulin resistance index (P cold-exposure group than in control group with both immunohistochemical staining and Western blot (P cold exposure increased DNA methylation and histone deacetylation in the pyramidal cells of CA1 area and led to an increase in the expression of histone deacetylase 1 (HDAC1) and DNA methylation relative enzymes (P cold exposure can improve insulin sensitivity, with the involvement of DNA methylation, histone deacetylation and the regulation of mitochondrial energy metabolism. These epigenetic modifications probably form the basic mechanism of cold-reduced insulin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct

    Science.gov (United States)

    Pavlov, Tengis S.; Ilatovskaya, Daria V.; Levchenko, Vladislav; Li, Lijun; Ecelbarger, Carolyn M.; Staruschenko, Alexander

    2013-01-01

    The epithelial sodium channel (ENaC) is one of the central effectors involved in regulation of salt and water homeostasis in the kidney. To study mechanisms of ENaC regulation, we generated knockout mice lacking the insulin receptor (InsR KO) specifically in the collecting duct principal cells. Single-channel analysis in freshly isolated split-open tubules demonstrated that the InsR-KO mice have significantly lower ENaC activity compared to their wild-type (C57BL/6J) littermates when animals were fed either normal or sodium-deficient diets. Immunohistochemical and Western blot assays demonstrated no significant changes in expression of ENaC subunits in InsR-KO mice compared to wild-type littermates. Insulin treatment caused greater ENaC activity in split-open tubules isolated from wild-type mice but did not have this effect in the InsR-KO mice. Thus, these results suggest that insulin increases ENaC activity via its own receptor affecting the channel open probability. To further determine the mechanism of the action of insulin on ENaC, we used mouse mpkCCDc14 principal cells. Insulin significantly augmented amiloride-sensitive transepithelial flux in these cells. Pretreatment of the mpkCCDc14 cells with phosphatidylinositol 3-kinase (LY294002; 10 μM) or mTOR (PP242; 100 nM) inhibitors precluded this effect. This study provides new information about the importance of insulin receptors expressed in collecting duct principal cells for ENaC activity.—Pavlov, T. S., Ilatovskaya, D. V., Levchenko, V., Li, L., Ecelbarger, C. M., Staruschenko, A. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct. PMID:23558339

  8. Glycine Increases Insulin Sensitivity and Glutathione Biosynthesis and Protects against Oxidative Stress in a Model of Sucrose-Induced Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Mohammed El-Hafidi

    2018-01-01

    Full Text Available Oxidative stress and redox status play a central role in the link between insulin resistance (IR and lipotoxicity in metabolic syndrome. This mechanistic link may involve alterations in the glutathione redox state. We examined the effect of glycine supplementation to diet on glutathione biosynthesis, oxidative stress, IR, and insulin cell signaling in liver from sucrose-fed (SF rats characterized by IR and oxidative stress. Our hypothesis is that the correction of glutathione levels by glycine treatment leads to reduced oxidative stress, a mechanism associated with improved insulin signaling and IR. Glycine treatment decreases the levels of oxidative stress markers in liver from SF rats and increases the concentrations of glutathione (GSH and γ-glutamylcysteine and the amount of γ-glutamylcysteine synthetase (γ-GCS, a key enzyme of GSH biosynthesis in liver from SF rats. In liver from SF rats, glycine also decreases the insulin-induced phosphorylation of insulin receptor substrate-1 (ISR-1 in serine residue and increases the phosphorylation of insulin receptor β-subunit (IR-β in tyrosine residue. Thus, supplementing diets with glycine to correct GSH deficiency and to reduce oxidative stress provides significant metabolic benefits to SF rats by improving insulin sensitivity.

  9. Neuroprotective Effect of Insulin-like Growth Factor-II on 1- Methyl-4 ...

    African Journals Online (AJOL)

    Purpose: To evaluate the receptor-mediated neuroprotective effect of insulin-like growth factor-II (IGFII) on 1-methyl-4-phenyl pyridinium (MPP) induced oxidative damage in adult cortical neuronal cultures. Methods: Adult rats were randomly divided into 5 groups. Cortical neurons were prepared from rats. The cells were ...

  10. Biodistribution and receptor imaging studies of insulin labelled with radioiodine in mice bearing H22 hepatocellular cacinoma

    International Nuclear Information System (INIS)

    Tang Gongshun; Kuang Anren; Liang Zenlu

    2004-01-01

    Objectives: It has been demonstrated that insulin receptor of hepatocellular carcinoma cells is overexpression. The biodistribution of 125I-insulin and receptor imaging studies of 131I-insulin in mice bearing solid liver tumor comprised of hepatic carcinoma H22 cells were performed to develop insulin as a carder of radioiodine. Methods: 1 )Insulin was radiolabeled with iodine-125 or iodine-131 using a Chloramines T method. Twenty mice bearing tumor were divided into 4 groups (n = 5 each) randomly. They were killed at 5, 15, 30, 60 min after 125I-insulin administered intravenously. The percentage of injected dose of 125I-insulin per gram of tissue(%ID/gdis) in mice bearing tumor were determined. 2) Another ten mice bearing tumor were selected to be as a inhibition group. They received cold insulin 2 mg intravenously 2 min ahead of administration of 125I-insulin and they were killed at 30 min (n=5) and 60 rain (n=5) randomly post 125I-insulin injection. The %ID/ginh and the inhibited rates[(%ID/gdis-%iD/ginh) %ID/gdis 100%] were obtained. 3) One tumor-mouse received 7.4 Mbq 13II-insulin intravenously, another received cold insulin 2 mg injection before 13II-insulin injection. Whole body images were carded out and the radioactivity ratios of tumor/normal were accounted at 60 min. Results: 1) The radiochemical purities of 125I-insulin and 13II-insulin were 96.7%-98.9%. The tumors uptake of the 125I-insulin increased gradually, its peak (%ID/gdis) was 3.44% 0.42% at 30 min, when the normal tissues uptake decreased sharply post-injection. The radioactivity ratio of the tumor/blood and tumor/muscle reached to 1.44 and 3.62 respectively at 60 min. 2)The tumor-inhibition rate was 32.07% at 30 min and 37.42% at 60 min. 3) A high radioactivity accumulation in tumor region could be seen in the mouse at 60 min post 131I-insulin injection. The radioactivity ratio of the tumor/normal tissue was 2.13 and it declined to 1.37 after received insulin 2 mg intervention. Conclusions

  11. Substrate Metabolism and Insulin Sensitivity During Fasting in Obese Human Subjects: Impact of GH Blockade.

    Science.gov (United States)

    Pedersen, Morten Høgild; Svart, Mads Vandsted; Lebeck, Janne; Bidlingmaier, Martin; Stødkilde-Jørgensen, Hans; Pedersen, Steen Bønløkke; Møller, Niels; Jessen, Niels; Jørgensen, Jens O L

    2017-04-01

    Insulin resistance and metabolic inflexibility are features of obesity and are amplified by fasting. Growth hormone (GH) secretion increases during fasting and GH causes insulin resistance. To study the metabolic effects of GH blockade during fasting in obese subjects. Nine obese males were studied thrice in a randomized design: (1) after an overnight fast (control), (2) after 72 hour fasting (fasting), and (3) after 72 hour fasting with GH blockade (pegvisomant) [fasting plus GH antagonist (GHA)]. Each study day consisted of a 4-hour basal period followed by a 2-hour hyperinsulinemic, euglycemic clamp combined with indirect calorimetry, assessment of glucose and palmitate turnover, and muscle and fat biopsies. GH levels increased with fasting (P fasting-induced reduction of serum insulin-like growth factor I was enhanced by GHA (P Fasting increased lipolysis and lipid oxidation independent of GHA, but fasting plus GHA caused a more pronounced suppression of lipid intermediates in response to hyperinsulinemic, euglycemic clamp. Fasting-induced insulin resistance was abrogated by GHA (P Fasting plus GHA also caused elevated glycerol levels and reduced levels of counterregulatory hormones. Fasting significantly reduced the expression of antilipolytic signals in adipose tissue independent of GHA. Suppression of GH activity during fasting in obese subjects reverses insulin resistance and amplifies insulin-stimulated suppression of lipid intermediates, indicating that GH is an important regulator of substrate metabolism, insulin sensitivity, and metabolic flexibility also in obese subjects. Copyright © 2017 by the Endocrine Society

  12. Porcine insulin receptor substrate 4 (IRS4) gene: cloning, polymorphism and association study

    Czech Academy of Sciences Publication Activity Database

    Masopust, Martin; Vykoukalová, Z.; Knoll, Aleš; Bartenschlager, H.; Mileham, A.; Deeb, N.; Rohrer, G. A.; Čepica, Stanislav

    2010-01-01

    Roč. 38, - (2010), 2611-2617 ISSN 0301-4851 R&D Projects: GA ČR GA523/07/0353; GA ČR GAP502/10/1216 Institutional research plan: CEZ:AV0Z50450515 Keywords : PCR cloning * Polymorphism * IRS4 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.875, year: 2010

  13. Tartary buckwheat flavonoids ameliorate high fructose-induced insulin resistance and oxidative stress associated with the insulin signaling and Nrf2/HO-1 pathways in mice.

    Science.gov (United States)

    Hu, Yuanyuan; Hou, Zuoxu; Yi, Ruokun; Wang, Zhongming; Sun, Peng; Li, Guijie; Zhao, Xin; Wang, Qiang

    2017-08-01

    The present study was conducted to explore the effects of a purified tartary buckwheat flavonoid fraction (TBF) on insulin resistance and hepatic oxidative stress in mice fed high fructose in drinking water (20%) for 8 weeks. The results indicated that continuous administration of TBF dose-dependently improved the insulin sensitivity and glucose intolerance in high fructose-fed mice. TBF treatment also reversed the reduced level of insulin action on the phosphorylation of insulin receptor substrate-1 (IRS-1), protein kinase B (Akt) and phosphatidylinositol 3-kinase (PI3K), as well as the translocation of glucose transporter type 4 (GLUT4) in the insulin-resistant liver. Furthermore, TBF was found to exert high antioxidant capacity as it acts as a shield against oxidative stress induced by high fructose by restoring the antioxidant status, and modulating nuclear factor E2 related factor 2 (Nrf2) translocation to the nucleus with subsequently up-regulated antioxidative enzyme protein expression. Histopathological examinations revealed that impaired pancreatic/hepatic tissues were effectively restored in high fructose-fed mice following TBF treatment. Our results show that TBF intake is effective in preventing the conversion of high fructose-induced insulin resistance and hepatic oxidative stress in mice by improving the insulin signaling molecules and the Nrf2 signal pathway in the liver.

  14. Antibodies to the α-subunit of insulin receptor from eggs of immunized hens

    International Nuclear Information System (INIS)

    Song, C.; Yu, J.; Bai, D.H.; Hester, P.Y.; Kim, K.

    1985-01-01

    Simple methods for the generation, purification, and assay of antibodies to the α-subunit of insulin receptor from eggs of immunized hen have been described. Chicken antibodies against the α-subunit inhibit insulin binding to the receptor and stimulate glucose oxidation as well as autophosphorylation of the β-subunit. Thus the properties of chicken antibodies are very similar to those of antibodies found in human autoimmune diseases and different from rabbit antibodies obtained against the same antigen

  15. Cannabinoid CB2 receptor potentiates obesity-associated inflammation, insulin resistance and hepatic steatosis.

    Directory of Open Access Journals (Sweden)

    Vanessa Deveaux

    Full Text Available BACKGROUND: Obesity-associated inflammation is of critical importance in the development of insulin resistance and non-alcoholic fatty liver disease. Since the cannabinoid receptor CB2 regulates innate immunity, the aim of the present study was to investigate its role in obesity-induced inflammation, insulin resistance and fatty liver. METHODOLOGY: Murine obesity models included genetically leptin-deficient ob/ob mice and wild type (WT mice fed a high fat diet (HFD, that were compared to their lean counterparts. Animals were treated with pharmacological modulators of CB2 receptors. Experiments were also performed in mice knock-out for CB2 receptors (Cnr2 -/-. PRINCIPAL FINDINGS: In both HFD-fed WT mice and ob/ob mice, Cnr2 expression underwent a marked induction in the stromal vascular fraction of epididymal adipose tissue that correlated with increased fat inflammation. Treatment with the CB2 agonist JWH-133 potentiated adipose tissue inflammation in HFD-fed WT mice. Moreover, cultured fat pads isolated from ob/ob mice displayed increased Tnf and Ccl2 expression upon exposure to JWH-133. In keeping, genetic or pharmacological inactivation of CB2 receptors decreased adipose tissue macrophage infiltration associated with obesity, and reduced inductions of Tnf and Ccl2 expressions. In the liver of obese mice, Cnr2 mRNA was only weakly induced, and CB2 receptors moderately contributed to liver inflammation. HFD-induced insulin resistance increased in response to JWH-133 and reduced in Cnr2 -/- mice. Finally, HFD-induced hepatic steatosis was enhanced in WT mice treated with JWH-133 and blunted in Cnr2 -/- mice. CONCLUSION/SIGNIFICANCE: These data unravel a previously unrecognized contribution of CB2 receptors to obesity-associated inflammation, insulin resistance and non-alcoholic fatty liver disease, and suggest that CB2 receptor antagonists may open a new therapeutic approach for the management of obesity-associated metabolic disorders.

  16. Mechanisms for greater insulin-stimulated glucose uptake in normal and insulin-resistant skeletal muscle after acute exercise

    Science.gov (United States)

    2015-01-01

    Enhanced skeletal muscle and whole body insulin sensitivity can persist for up to 24–48 h after one exercise session. This review focuses on potential mechanisms for greater postexercise and insulin-stimulated glucose uptake (ISGU) by muscle in individuals with normal or reduced insulin sensitivity. A model is proposed for the processes underlying this improvement; i.e., triggers initiate events that activate subsequent memory elements, which store information that is relayed to mediators, which translate memory into action by controlling an end effector that directly executes increased insulin-stimulated glucose transport. Several candidates are potential triggers or memory elements, but none have been conclusively verified. Regarding potential mediators in both normal and insulin-resistant individuals, elevated postexercise ISGU with a physiological insulin dose coincides with greater Akt substrate of 160 kDa (AS160) phosphorylation without improved proximal insulin signaling at steps from insulin receptor binding to Akt activity. Causality remains to be established between greater AS160 phosphorylation and improved ISGU. The end effector for normal individuals is increased GLUT4 translocation, but this remains untested for insulin-resistant individuals postexercise. Following exercise, insulin-resistant individuals can attain ISGU values similar to nonexercising healthy controls, but after a comparable exercise protocol performed by both groups, ISGU for the insulin-resistant group has been consistently reported to be below postexercise values for the healthy group. Further research is required to fully understand the mechanisms underlying the improved postexercise ISGU in individuals with normal or subnormal insulin sensitivity and to explain the disparity between these groups after similar exercise. PMID:26487009

  17. Insulin-Mimetic Action of Rhoifolin and Cosmosiin Isolated from Citrus grandis (L. Osbeck Leaves: Enhanced Adiponectin Secretion and Insulin Receptor Phosphorylation in 3T3-L1 Cells

    Directory of Open Access Journals (Sweden)

    Yerra Koteswara Rao

    2011-01-01

    Full Text Available Citrus grandis (L. Osbeck (red wendun leaves have been used in traditional Chinese medicine to treat several illnesses including diabetes. However, there is no scientific evidence supporting these actions and its active compounds. Two flavone glycosides, rhoifolin and cosmosiin were isolated for the first time from red wendun leaves and, identified these leaves are rich source for rhoifolin (1.1%, w/w. In differentiated 3T3-L1 adipocytes, rhoifolin and cosmosiin showed dose-dependent response in concentration range of o.oo1–5 μM and 1–20 μM, respectively, in biological studies beneficial to diabetes. Particularly, rhoifolin and cosmosiin at 0.5 and 20 μM, respectively showed nearly similar response to that 10 nM of insulin, on adiponectin secretion level. Furthermore, 5 μM of rhoifolin and 20 μM of cosmosiin showed equal potential with 10 nM of insulin to increase the phosphorylation of insulin receptor-β, in addition to their positive effect on GLUT4 translocation. These findings indicate that rhoifolin and cosmosiin from red wendun leaves may be beneficial for diabetic complications through their enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and GLUT4 translocation.

  18. Fructose induced neurogenic hypertension mediated by overactivation of p38 MAPK to impair insulin signaling transduction caused central insulin resistance.

    Science.gov (United States)

    Cheng, Pei-Wen; Lin, Yu-Te; Ho, Wen-Yu; Lu, Pei-Jung; Chen, Hsin-Hung; Lai, Chi-Cheng; Sun, Gwo-Ching; Yeh, Tung-Chen; Hsiao, Michael; Tseng, Ching-Jiunn; Liu, Chun-Peng

    2017-11-01

    Type 2 diabetes are at a high risk of complications related to hypertension, and reports have indicated that insulin levels may be associated with blood pressure (BP). Fructose intake has recently been reported to promote insulin resistance and superoxide formation. The aim of this study is to investigate whether fructose intake can enhance superoxide generation and impair insulin signaling in the NTS and subsequently elevate BP in rats with fructose-induced hypertension. Treatment with fructose for 4 weeks increased the BP, serum fasting insulin, glucose, homeostatic model assessment-insulin resistance, and triglyceride levels and reduced the serum direct high-density lipoprotein level in the fructose group. The Tempol treatment recovered the fructose-induced decrease in nitric oxide production in the NTS. Immunoblotting and immunofluorescence analyses further showed that fructose increased the p38- and fructose-induced phosphorylation of insulin receptor substrate 1 (IRS1 S307 ) and suppressed Akt S473 and neuronal nitric oxide synthase phosphorylation. Similarly, fructose was able to impair insulin sensitivity and increase insulin levels in the NTS. Fructose intake also increased the production of superoxide in the NTS. The results of this study suggest that fructose might induce central insulin resistance and elevate BP by enhancing superoxide production and activating p38 phosphorylation in the NTS. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Insulin Resistance Induced by Hyperinsulinemia Coincides with a Persistent Alteration at the Insulin Receptor Tyrosine Kinase Domain

    Science.gov (United States)

    Catalano, Karyn J.; Maddux, Betty A.; Szary, Jaroslaw; Youngren, Jack F.; Goldfine, Ira D.; Schaufele, Fred

    2014-01-01

    Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR) activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK) domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered ‘insulin refractory’ IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated) levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based ‘memory’ of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states. PMID:25259572

  20. Insulin resistance induced by hyperinsulinemia coincides with a persistent alteration at the insulin receptor tyrosine kinase domain.

    Directory of Open Access Journals (Sweden)

    Karyn J Catalano

    Full Text Available Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered 'insulin refractory' IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based 'memory' of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states.

  1. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia

    DEFF Research Database (Denmark)

    Rung, Johan; Cauchi, Stéphane; Albrechtsen, Anders

    2009-01-01

    sample of 4,977 French individuals. We then selected the 28 best hits for replication in 7,698 Danish subjects and identified 4 SNPs showing strong association with T2D, one of which (rs2943641, P = 9.3 x 10(-12), OR = 1.19) was located adjacent to the insulin receptor substrate 1 gene (IRS1). Unlike...... previously reported T2D risk loci, which predominantly associate with impaired beta cell function, the C allele of rs2943641 was associated with insulin resistance and hyperinsulinemia in 14,358 French, Danish and Finnish participants from population-based cohorts; this allele was also associated...... with reduced basal levels of IRS1 protein and decreased insulin induction of IRS1-associated phosphatidylinositol-3-OH kinase activity in human skeletal muscle biopsies....

  2. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling

    Science.gov (United States)

    Wang, Linlin; Schulz, Thomas C.; Sherrer, Eric S.; Dauphin, Derek S.; Shin, Soojung; Nelson, Angelique M.; Ware, Carol B.; Zhan, Mei; Song, Chao-Zhong; Chen, Xiaoji; Brimble, Sandii N.; McLean, Amanda; Galeano, Maria J.; Uhl, Elizabeth W.; D'Amour, Kevin A.; Chesnut, Jonathan D.; Rao, Mahendra S.

    2007-01-01

    Despite progress in developing defined conditions for human embryonic stem cell (hESC) cultures, little is known about the cell-surface receptors that are activated under conditions supportive of hESC self-renewal. A simultaneous interrogation of 42 receptor tyrosine kinases (RTKs) in hESCs following stimulation with mouse embryonic fibroblast (MEF) conditioned medium (CM) revealed rapid and prominent tyrosine phosphorylation of insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R); less prominent tyrosine phosphorylation of epidermal growth factor receptor (EGFR) family members, including ERBB2 and ERBB3; and trace phosphorylation of fibroblast growth factor receptors. Intense IGF1R and IR phosphorylation occurred in the absence of MEF conditioning (NCM) and was attributable to high concentrations of insulin in the proprietary KnockOut Serum Replacer (KSR). Inhibition of IGF1R using a blocking antibody or lentivirus-delivered shRNA reduced hESC self-renewal and promoted differentiation, while disruption of ERBB2 signaling with the selective inhibitor AG825 severely inhibited hESC proliferation and promoted apoptosis. A simple defined medium containing an IGF1 analog, heregulin-1β (a ligand for ERBB2/ERBB3), fibroblast growth factor-2 (FGF2), and activin A supported long-term growth of multiple hESC lines. These studies identify previously unappreciated RTKs that support hESC proliferation and self-renewal, and provide a rationally designed medium for the growth and maintenance of pluripotent hESCs. PMID:17761519

  3. Fuel-Stimulated Insulin Secretion Depends upon Mitochondria Activation and the Integration of Mitochondrial and Cytosolic Substrate Cycles

    Directory of Open Access Journals (Sweden)

    Gary W. Cline

    2011-10-01

    Full Text Available The pancreatic islet β-cell is uniquely specialized to couple its metabolism and rates of insulin secretion with the levels of circulating nutrient fuels, with the mitochondrial playing a central regulatory role in this process. In the β-cell, mitochondrial activation generates an integrated signal reflecting rates of oxidativephosphorylation, Kreb's cycle flux, and anaplerosis that ultimately determines the rate of insulin exocytosis. Mitochondrial activation can be regulated by proton leak and mediated by UCP2, and by alkalinization to utilize the pH gradient to drive substrate and ion transport. Converging lines of evidence support the hypothesis that substrate cycles driven by rates of Kreb's cycle flux and by anaplerosis play an integral role in coupling responsive changes in mitochondrial metabolism with insulin secretion. The components and mechanisms that account for the integrated signal of ATP production, substrate cycling, the regulation of cellular redox state, and the production of other secondary signaling intermediates are operative in both rodent and human islet β-cells.

  4. Chronic Alcohol Consumption Alters Mammalian Target of Rapamycin (mTOR), Reduces Ribosomal p70S6 Kinase and p4E-BP1 Levels in Mouse Cerebral Cortex

    OpenAIRE

    Li, Qun; Ren, Jun

    2007-01-01

    Reduced insulin sensitivity following chronic alcohol consumption may contribute to alcohol-induced brain damage although the underlying mechanism(s) has not been elucidated. This study was designed to examine the effect of chronic alcohol intake on insulin signaling in mouse cerebral cortex. FVB mice were fed with a 4% alcohol diet for 16 weeks. Insulin receptor substrates (IRS-1, IRS-2) and post-receptor signaling molecules Akt, mammalian target of rapamycin (mTOR), ribosomal p70s6 kinase (...

  5. Characterization of the growth of murine fibroblasts that express human insulin receptors. II. Interaction of insulin with other growth factors

    International Nuclear Information System (INIS)

    Randazzo, P.A.; Jarett, L.

    1990-01-01

    The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetal calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity

  6. Adiponectin, Leptin, and Leptin Receptor in Obese Patients with Type 2 Diabetes Treated with Insulin Detemir

    Directory of Open Access Journals (Sweden)

    Paweł Olczyk

    2017-07-01

    Full Text Available The aim of the present study is to quantitatively assess the expression of selected regulatory molecules, such as leptin, leptin receptor, and adiponectin in the blood of obese patients with type 2 diabetes both before treatment and after six months of pharmacological therapy with the long-lasting insulin analogue, insulin detemir. A significant decrease in the analysed regulatory molecules, i.e., leptin receptor and adiponectin, was found in blood plasma of the patients with untreated type 2 diabetes. These changes were accompanied by an increase in plasma leptin concentrations. Insulin treatment resulted in the normalization of plasma leptin receptor and adiponectin concentrations. The circulating leptin level did not change following anti-diabetic therapy with insulin detemir. Gender was a significant factor modifying the circulating level of all the analysed regulatory active compounds. Bioinformatic analysis was performed using Matlab with the Signal Processing Toolbox. The conducted discriminant analysis revealed that the leptin receptor, Δw(19, and adiponectin, Δw(21, were the parameters undergoing the most significant quantitative changes during the six-month therapy with insulin detemir. The conducted examinations indicated the contribution of adipocytokines—the biologically-active mediators of systemic metabolism, such as leptin and adiponectin in the pathomechanism of disorders being the basis for obesity which leads to development of insulin resistance, which, in turn, results in the occurrence of type 2 diabetes.

  7. Insulin-like growth factor-I and insulin-like growth factor binding proteins in the bovine mammary gland: Receptors, endogenous secretion, and appearance in milk

    International Nuclear Information System (INIS)

    Campbell, P.G.

    1988-01-01

    This is the first study to characterize both insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding proteins (IGFBPs) in bovine milk, to characterize the IGF-I receptor in the dry and lactating mammary gland, and to report de novo synthesis and secretion of IGF-I and IGFBP from normal mammary tissue. Immunoreactive IGF-I was principally associated with 45 kDa IGFBP in milk. Multiparous cows had a higher IGF-I concentration of 307 ng/ml than primiparous cows at 147 ng/ml. IGF-I concentration on day 56 of lactation was 34 ng/ml for combined parity groups. At parturition, IGF-I mass in blood and milk pools was 1.4 and 1.2 mg, respectively. Binding of 125 I-IGF-I was specific for IGF-I with anIC 50 of 2.2 ng which was a 10- and 1273-fold greater affinity than IGF-II and insulin, respectively. Association constants, as determined by Scatchard analysis, were similar for both pregnant and lactating cows at 3.5 and 4.0 L/nM, respectively. In addition, estimated mean receptor concentration was 0.25 and 0.23 pM/mg protein for pregnant and lactating cows, respectively. In a survey of mammary microscomes prepared from 48 cows, 125 I-IGF-I binding declined with progressing lactation and a similar trend was observed during pregnancy

  8. Regulation of Blood Pressure, Appetite, and Glucose by Leptin After Inactivation of Insulin Receptor Substrate 2 Signaling in the Entire Brain or in Proopiomelanocortin Neurons.

    Science.gov (United States)

    do Carmo, Jussara M; da Silva, Alexandre A; Wang, Zhen; Freeman, Nathan J; Alsheik, Ammar J; Adi, Ahmad; Hall, John E

    2016-02-01

    Insulin receptor substrate 2 (IRS2) is one of the 3 major leptin receptor signaling pathways, but its role in mediating the chronic effects of leptin on blood pressure, food intake, and glucose regulation is unclear. We tested whether genetic inactivation of IRS2 in the entire brain (IRS2/Nestin-cre mice) or specifically in proopiomelanocortin (POMC) neurons (IRS2/POMC-cre mice) attenuates the chronic cardiovascular, metabolic, and antidiabetic effects of leptin. Mice were instrumented with telemetry probes for measurement of blood pressure and heart rate and with venous catheters for intravenous infusions. After a 5-day control period, mice received leptin infusion (2 μg/kg per minute) for 7 days. Compared with control IRS2(flox/flox) mice, IRS2/POMC-cre mice had similar body weight and food intake (33±1 versus 35±1 g and 3.6±0.5 versus 3.8±0.2 g per day) but higher mean arterial pressure (MAP) and heart rate (110±2 versus 102±2 mm Hg and 641±9 versus 616±5 bpm). IRS2/Nestin-cre mice were heavier (38±2 g), slightly hyperphagic (4.5±1.0 g per day), and had higher MAP and heart rate (108±2 mm Hg and 659±9 bpm) compared with control mice. Leptin infusion gradually increased MAP despite decreasing food intake by 31% in IRS2(flox/flox) and in Nestin-cre control mice. In contrast, leptin infusion did not change MAP in IRS2/Nestin-cre or IRS2/POMC-cre mice. The anorexic and antidiabetic effects of leptin, however, were similar in all 3 groups. These results indicate that IRS2 signaling in the central nervous system, and particularly in POMC neurons, is essential for the chronic actions of leptin to raise MAP but not for its anorexic or antidiabetic effects. © 2015 American Heart Association, Inc.

  9. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion.

    Directory of Open Access Journals (Sweden)

    Yuko Nakagawa

    Full Text Available BACKGROUND: Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. METHODOLOGY/PRINCIPAL FINDINGS: The expression of the sweet taste receptor was determined by RT-PCR and immunohistochemistry. Changes in cytoplasmic Ca(2+ ([Ca(2+](c and cAMP ([cAMP](c were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca(2+](c. The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca(2+](c response. The effect of sucralose on [Ca(2+](c was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a G(q inhibitor. Sucralose also induced sustained elevation of [cAMP](c, which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. CONCLUSIONS: Sweet taste receptor is expressed in beta-cells, and activation of this receptor induces insulin secretion by Ca(2+ and cAMP-dependent mechanisms.

  10. Insulin-like growth factor-II (IGF II) receptor from rat brain is of lower apparent molecular weight than the IGF II receptor from rat liver

    International Nuclear Information System (INIS)

    McElduff, A.; Poronnik, P.; Baxter, R.C.

    1987-01-01

    The binding subunits of the insulin and insulin-like growth factor-I (IGF I) receptors from rat brain are of lower molecular weight than the corresponding receptor in rat liver, possibly due to variations in sialic acid content. We have compared the IGF II receptor from rat brain and rat liver. The brain receptor is of smaller apparent mol wt (about 10 K) on sodium dodecyl sulfate polyacrylamide gel electrophoresis. This size difference is independent of ligand binding as it persists in iodinated and specifically immunoprecipitated receptors. From studies of wheat germ agglutinin binding and the effect of neuraminidase on receptor mobility, we conclude that this difference is not simply due to variations in sialic acid content. Treatment with endoglycosidase F results in reduction in the molecular size of both liver and brain receptors and after this treatment the aglycoreceptors are of similar size. We conclude that in rat brain tissue the IGF II receptor like the binding subunits of the insulin and IGF I receptors is of lower molecular size than the corresponding receptors in rat liver. This difference is due to differences in N-linked glycosylation

  11. The A-chain of insulin contacts the insert domain of the insulin receptor. Photo-cross-linking and mutagenesis of a diabetes-related crevice.

    Science.gov (United States)

    Huang, Kun; Chan, Shu Jin; Hua, Qing-xin; Chu, Ying-Chi; Wang, Run-ying; Klaproth, Birgit; Jia, Wenhua; Whittaker, Jonathan; De Meyts, Pierre; Nakagawa, Satoe H; Steiner, Donald F; Katsoyannis, Panayotis G; Weiss, Michael A

    2007-11-30

    The contribution of the insulin A-chain to receptor binding is investigated by photo-cross-linking and nonstandard mutagenesis. Studies focus on the role of Val(A3), which projects within a crevice between the A- and B-chains. Engineered receptor alpha-subunits containing specific protease sites ("midi-receptors") are employed to map the site of photo-cross-linking by an analog containing a photoactivable A3 side chain (para-azido-Phe (Pap)). The probe cross-links to a C-terminal peptide (residues 703-719 of the receptor A isoform, KTFEDYLHNVVFVPRPS) containing side chains critical for hormone binding (underlined); the corresponding segment of the holoreceptor was shown previously to cross-link to a Pap(B25)-insulin analog. Because Pap is larger than Val and so may protrude beyond the A3-associated crevice, we investigated analogs containing A3 substitutions comparable in size to Val as follows: Thr, allo-Thr, and alpha-aminobutyric acid (Aba). Substitutions were introduced within an engineered monomer. Whereas previous studies of smaller substitutions (Gly(A3) and Ser(A3)) encountered nonlocal conformational perturbations, NMR structures of the present analogs are similar to wild-type insulin; the variant side chains are accommodated within a native-like crevice with minimal distortion. Receptor binding activities of Aba(A3) and allo-Thr(A3) analogs are reduced at least 10-fold; the activity of Thr(A3)-DKP-insulin is reduced 5-fold. The hormone-receptor interface is presumably destabilized either by a packing defect (Aba(A3)) or by altered polarity (allo-Thr(A3) and Thr(A3)). Our results provide evidence that Val(A3), a site of mutation causing diabetes mellitus, contacts the insert domain-derived tail of the alpha-subunit in a hormone-receptor complex.

  12. The influence of short-term endurance training on the insulin blood level, binding, and degradation of 125I-insulin by erythrocyte receptors in patients after myocardial infarction.

    Science.gov (United States)

    Dylewicz, P; Przywarska, I; Szcześniak, L; Rychlewski, T; Bieńkowska, S; Długiewicz, I; Wilk, M

    1999-01-01

    This study was directed toward establishing whether and to what extent, short-term endurance training influences the insulin blood level, and the binding and degradation of 125I-insulin by erythrocyte receptors in patients undergoing rehabilitation after myocardial infarction. The study was conducted in a group of 60 patients who had had myocardial infarction within the past 1.5 to 3 months and who did not have arterial hypertension and diabetes mellitus. All the patients took a symptom-limited cardiopulmonary exercise test. Before and after the test, venous blood was collected to determine lactic acid and insulin blood levels as well as the binding and degradation of 125I-insulin. The study group was randomized into two subgroups. One subgroup entered into a 3-week in-patient rehabilitation course. The control group was discharged from the hospital and was given no recommendations for physical exercise. The same investigation was repeated 3 weeks later. In the patients (50%) with hyperinsulinemia (insulin resistance index, > 10 microIU/mL), which was detected during the first investigation, insulin blood level decreased from 23.9 +/- 4.4 to 15.0 +/- 1.9 microIU/mL (P endurance training period during rehabilitation after myocardial infarction reduces insulin resistance in patients with hyperinsulinemia.

  13. Pharmacodynamic/Pharmacogenomic Modeling of Insulin Resistance Genes in Rat Muscle After Methylprednisolone Treatment: Exploring Regulatory Signaling Cascades

    Directory of Open Access Journals (Sweden)

    Zhenling Yao

    2008-01-01

    Full Text Available Corticosteroids (CS effects on insulin resistance related genes in rat skeletal muscle were studied. In our acute study, adrenalectomized (ADX rats were given single doses of 50 mg/kg methylprednisolone (MPL intravenously. In our chronic study, ADX rats were implanted with Alzet mini-pumps giving zero-order release rates of 0.3 mg/kg/h MPL and sacrificed at various times up to 7 days. Total RNA was extracted from gastrocnemius muscles and hybridized to Affymetrix GeneChips. Data mining and literature searches identified 6 insulin resistance related genes which exhibited complex regulatory pathways. Insulin receptor substrate-1 (IRS-1, uncoupling protein 3 (UCP3, pyruvate dehydrogenase kinase isoenzyme 4 (PDK4, fatty acid translocase (FAT and glycerol-3-phosphate acyltransferase (GPAT dynamic profiles were modeled with mutual effects by calculated nuclear drug-receptor complex (DR(N and transcription factors. The oscillatory feature of endothelin-1 (ET-1 expression was depicted by a negative feedback loop. These integrated models provide test- able quantitative hypotheses for these regulatory cascades.

  14. Unique expression pattern of the three insulin receptor family members in the rat mammary gland

    DEFF Research Database (Denmark)

    Hvid, Henning; Klopfleisch, Robert; Vienberg, Sara Gry

    2011-01-01

    mammary gland. Using laser micro-dissection, quantitative RT-PCR and immunohistochemistry, we examined the expression of IR (insulin receptor), IGF-1R (IGF-1 receptor), IRR (insulin receptor-related receptor), ERα (estrogen receptor alpha), ERβ (estrogen receptor beta) and PR (progesteron receptor......) in young, virgin, female Sprague-Dawley rats and compared to expression in reference organs. The mammary gland displayed the highest expression of IRR and IGF-1R. In contrast, low expression of IR transcripts was observed in the mammary gland tissue with expression of the IR-A isoform being 5-fold higher...... than the expression of the IR-B. By immunohistochemistry, expression of IR and IGF-1R was detected in all mammary gland epithelial cells. Expression of ERα and PR was comparable between mammary gland and ovary, whereas expression of ERβ was lower in mammary gland than in the ovary. Finally, expression...

  15. Effects of age and insulin-like growth factor-1 on rat neurotrophin receptor expression after nerve injury.

    Science.gov (United States)

    Luo, T David; Alton, Timothy B; Apel, Peter J; Cai, Jiaozhong; Barnwell, Jonathan C; Sonntag, William E; Smith, Thomas L; Li, Zhongyu

    2016-10-01

    Neurotrophin receptors, such as p75(NTR) , direct neuronal response to injury. Insulin-like growth factor-1 receptor (IGF-1R) mediates the increase in p75(NTR) during aging. The aim of this study was to examine the effect of aging and insulin-like growth factor-1 (IGF-1) treatment on recovery after peripheral nerve injury. Young and aged rats underwent tibial nerve transection with either local saline or IGF-1 treatment. Neurotrophin receptor mRNA and protein expression were quantified. Aged rats expressed elevated baseline IGF-1R (34% higher, P = 0.01) and p75(NTR) (68% higher, P < 0.01) compared with young rats. Post-injury, aged animals expressed significantly higher p75(NTR) levels (68.5% above baseline at 4 weeks). IGF-1 treatment suppressed p75(NTR) gene expression at 4 weeks (17.2% above baseline, P = 0.002) post-injury. Local IGF-1 treatment reverses age-related declines in recovery after peripheral nerve injuries by suppressing p75(NTR) upregulation and pro-apoptotic complexes. IGF-1 may be considered a viable adjuvant therapy to current treatment modalities. Muscle Nerve 54: 769-775, 2016. © 2016 Wiley Periodicals, Inc.

  16. Role of the Insulin-Like Growth Factor Type 1 Receptor in the Pathogenesis of Diabetic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Duo Zhang

    2015-01-01

    Full Text Available Defective cognitive function is common in patients with diabetes, suggesting that insulin normally exerts anabolic actions in neuron, namely, diabetic encephalopathy. However, because insulin can cross-activate the insulin-like growth factor type 1 receptor (IGF-1R, which also functions in most of tissues, such as muscle and bone, it has been difficult to establish the direct (IGF-1-independent actions of insulin in the pathogenesis of diabetic encephalopathy. To overcome this problem, we examined insulin signaling and action in primary PC-12 cells engineered for conditional disruption of the IGF-1 receptor (ΔIGF-1R. The results showed that the lower glucose metabolism and high expression of IGF-1R occurred in the brain of the DE rat model. The results also showed the defect of IGF-1R could significantly improve the ability of glucose consumption and enhance sensitivity to insulin-induced IR and Akt phosphorylation in PC12 cells. And meanwhile, IGF-1R allele gene knockout (IGF-1Rneo mice treated with HFD/STZ had better cognitive abilities than those of wild mice. Those results indicate that insulin exerts direct anabolic actions in neuron-like cells by activation of its cognate receptor and prove that IGF-1R plays an important role in the pathogenesis of diabetic encephalopathy.

  17. A highly phosphorylated subpopulation of insulin-like growth factor II/mannose 6-phosphate receptors is concentrated in a clathrin-enriched plasma membrane fraction

    International Nuclear Information System (INIS)

    Corvera, S.; Folander, K.; Clairmont, K.B.; Czech, M.P.

    1988-01-01

    Insulin-like growth factor II (IGF-II)/mannose 6-phosphate (Man-6-P) receptors immunoprecipitated from purified plasma membranes of 32 P-labeled rat adipocytes are markedly heterogenous in their phosphorylation state. Approximately 80% of the plasma membrane receptors are solubilized in 1% (vol/vol) Triton X-100 and are phosphorylated on serine residues at a stoichiometry of ∼ 0.1-0.2 mol of phosphate per mol of receptor. In contrast, 15-20% of the receptors are Triton X-100-insoluble and are phosphorylated on serine and threonine residues at ∼ 4 or 5 mol of phosphate per mol of receptor. This Triton X-100-insoluble membrane subfraction contains only 5% of the total plasma membrane protein and yet contains all of the clathrin heavy chain associated with plasma membrane. Based on the relative yields of protein in the detergent-insoluble material, IGF-II/Man-6-P receptors are concentrated ∼ 3-fold in this clathrin-enriched subfraction. Taken together, these results indicate that insulin decreases the phosphorylation state of a highly phosphorylated subpopulation of IGF-II/Man-6-P receptors on the plasma membrane. In addition, insulin action may prevent the concentration of these receptors in a clathrin-enriched membrane subfraction

  18. Alternative splicing, gene localization, and binding of SH2-B to the insulin receptor kinase domain

    OpenAIRE

    Nelms, Keats; O'Neill, Thomas J.; Li, Shiqing; Hubbard, Stevan R.; Gustafson, Thomas A.; Paul, William E.

    1999-01-01

    . The SH2-B protein is an SH2-domain-containing molecule that interacts with a number of phosphorylated kinase and receptor molecules including the insulin receptor. Two isoforms of the SH2-B have been identified and have been proposed to arise through alternate splicing. Here we have identified a third isoform of the SH2-B protein, SH2-Bγ, that interacts specifically with the insulin receptor. This interaction required phosphorylation of residue Y1146 in the triple tyrosine motif within the ...

  19. Insulin-Like Growth Factor (IGF Binding Protein-2, Independently of IGF-1, Induces GLUT-4 Translocation and Glucose Uptake in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Biruhalem Assefa

    2017-01-01

    Full Text Available Insulin-like growth factor binding protein-2 (IGFBP-2 is the predominant IGF binding protein produced during adipogenesis and is known to increase the insulin-stimulated glucose uptake (GU in myotubes. We investigated the IGFBP-2-induced changes in basal and insulin-stimulated GU in adipocytes and the underlying mechanisms. We further determined the role of insulin and IGF-1 receptors in mediating the IGFBP-2 and the impact of IGFBP-2 on the IGF-1-induced GU. Fully differentiated 3T3-L1 adipocytes were treated with IGFBP-2 in the presence and absence of insulin and IGF-1. Insulin, IGF-1, and IGFBP-2 induced a dose-dependent increase in GU. IGFBP-2 increased the insulin-induced GU after long-term incubation. The IGFBP-2-induced impact on GU was neither affected by insulin or IGF-1 receptor blockage nor by insulin receptor knockdown. IGFBP-2 significantly increased the phosphorylation of PI3K, Akt, AMPK, TBC1D1, and PKCζ/λ and induced GLUT-4 translocation. Moreover, inhibition of PI3K and AMPK significantly reduced IGFBP-2-stimulated GU. In conclusion, IGFBP-2 stimulates GU in 3T3-L1 adipocytes through activation of PI3K/Akt, AMPK/TBC1D1, and PI3K/PKCζ/λ/GLUT-4 signaling. The stimulatory effect of IGFBP-2 on GU is independent of its binding to IGF-1 and is possibly not mediated through the insulin or IGF-1 receptor. This study highlights the potential role of IGFBP-2 in glucose metabolism.

  20. Interleukin-1β inhibits insulin signaling and prevents insulin-stimulated system A amino acid transport in primary human trophoblasts.

    Science.gov (United States)

    Aye, Irving L M H; Jansson, Thomas; Powell, Theresa L

    2013-12-05

    Interleukin-1β (IL-1β) promotes insulin resistance in tissues such as liver and skeletal muscle; however the influence of IL-1β on placental insulin signaling is unknown. We recently reported increased IL-1β protein expression in placentas of obese mothers, which could contribute to insulin resistance. In this study, we tested the hypothesis that IL-1β inhibits insulin signaling and prevents insulin-stimulated amino acid transport in cultured primary human trophoblast (PHT) cells. Cultured trophoblasts isolated from term placentas were treated with physiological concentrations of IL-1β (10pg/ml) for 24h. IL-1β increased the phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser307 (inhibitory) and decreased total IRS-1 protein abundance but did not affect insulin receptor β expression. Furthermore, IL-1β inhibited insulin-stimulated phosphorylation of IRS-1 (Tyr612, activation site) and Akt (Thr308) and prevented insulin-stimulated increase in PI3K/p85 and Grb2 protein expression. IL-1β alone stimulated cRaf (Ser338), MEK (Ser221) and Erk1/2 (Thr202/Tyr204) phosphorylation. The inflammatory pathways nuclear factor kappa B and c-Jun N-terminal kinase, which are involved in insulin resistance, were also activated by IL-1β treatment. Moreover, IL-1β inhibited insulin-stimulated System A, but not System L amino acid uptake, indicating functional impairment of insulin signaling. In conclusion, IL-1β inhibited the insulin signaling pathway by inhibiting IRS-1 signaling and prevented insulin-stimulated System A transport, thereby promoting insulin resistance in cultured PHT cells. These findings indicate that conditions which lead to increased systemic maternal or placental IL-1β levels may attenuate the effects of maternal insulin on placental function and consequently fetal growth. Published by Elsevier Ireland Ltd.

  1. The IRS-1 signaling system.

    Science.gov (United States)

    Myers, M G; Sun, X J; White, M F

    1994-07-01

    Insulin-receptor substrate 1 (IRS-1) is a principal substrate of the receptor tyrosine kinase for insulin and insulin-like growth factor 1, and a substrate for a tyrosine kinase activated by interleukin 4. IRS-1 undergoes multisite tyrosine phosphorylation and mediates downstream signals by 'docking' various proteins that contain Src homology 2 domains. IRS-1 appears to be a unique molecule; however, 4PS, a protein found mainly in hemopoietic cells, may represent another member of this family.

  2. Nigella sativa Relieves the Altered Insulin Receptor Signaling in Streptozotocin-Induced Diabetic Rats Fed with a High-Fat Diet.

    Science.gov (United States)

    Balbaa, Mahmoud; El-Zeftawy, Marwa; Ghareeb, Doaa; Taha, Nabil; Mandour, Abdel Wahab

    2016-01-01

    The black cumin (Nigella sativa) "NS" or the black seeds have many pharmacological activities such as antioxidant, anticarcinogenic, antihypertensive, and antidiabetic properties. In this work, streptozotocin-induced diabetic rats fed with a high-fat diet were treated daily with NS oil (NSO) in order to study the effect on the blood glucose, lipid profile, oxidative stress parameters, and the gene expression of some insulin receptor-induced signaling molecules. This treatment was combined also with some drugs (metformin and glimepiride) and the insulin receptor inhibitor I-OMe-AG538. The administration of NSO significantly induced the gene expression of insulin receptor compared to rats that did not receive NSO. Also, it upregulated the expression of insulin-like growth factor-1 and phosphoinositide-3 kinase, whereas the expression of ADAM-17 was downregulated. The expression of ADAM-17 is corroborated by the analysis of TIMP-3 content. In addition, the NSO significantly reduced blood glucose level, components of the lipid profile, oxidative stress parameters, serum insulin/insulin receptor ratio, and the tumor necrosis factor-α, confirming that NSO has an antidiabetic activity. Thus, the daily NSO treatment in our rat model indicates that NSO has a potential in the management of diabetes as well as improvement of insulin-induced signaling.

  3. Nigella sativa Relieves the Altered Insulin Receptor Signaling in Streptozotocin-Induced Diabetic Rats Fed with a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Mahmoud Balbaa

    2016-01-01

    Full Text Available The black cumin (Nigella sativa “NS” or the black seeds have many pharmacological activities such as antioxidant, anticarcinogenic, antihypertensive, and antidiabetic properties. In this work, streptozotocin-induced diabetic rats fed with a high-fat diet were treated daily with NS oil (NSO in order to study the effect on the blood glucose, lipid profile, oxidative stress parameters, and the gene expression of some insulin receptor-induced signaling molecules. This treatment was combined also with some drugs (metformin and glimepiride and the insulin receptor inhibitor I-OMe-AG538. The administration of NSO significantly induced the gene expression of insulin receptor compared to rats that did not receive NSO. Also, it upregulated the expression of insulin-like growth factor-1 and phosphoinositide-3 kinase, whereas the expression of ADAM-17 was downregulated. The expression of ADAM-17 is corroborated by the analysis of TIMP-3 content. In addition, the NSO significantly reduced blood glucose level, components of the lipid profile, oxidative stress parameters, serum insulin/insulin receptor ratio, and the tumor necrosis factor-α, confirming that NSO has an antidiabetic activity. Thus, the daily NSO treatment in our rat model indicates that NSO has a potential in the management of diabetes as well as improvement of insulin-induced signaling.

  4. Influence of Flavonoids on Mechanism of Modulation of Insulin Secretion.

    Science.gov (United States)

    Soares, Juliana Mikaelly Dias; Pereira Leal, Ana Ediléia Barbosa; Silva, Juliane Cabral; Almeida, Jackson R G S; de Oliveira, Helinando Pequeno

    2017-01-01

    -dependent protein kinase II, GSIS: Glucose-stimulated insulin secretion, Insig-1: Insulin-induced gene 1, IRS-2: Insulin receptor substrate 2, PDX-1: Pancreatic and duodenal homeobox 1, SREBP-1c: Sterol regulatory element binding protein-1c, DMC: Dihydroxy-6'-methoxy-3',5'-dimethylchalcone, GLP-1: Glucagon-like peptide-1, GLP-1R: Glucagon-like peptide 1 receptor.

  5. Deletion of skeletal muscle SOCS3 prevents insulin resistance in obesity

    DEFF Research Database (Denmark)

    Beck Jørgensen, Sebastian; O'Neill, Hayley M; Sylow, Lykke

    2013-01-01

    Obesity is associated with chronic low-grade inflammation that contributes to defects in energy metabolism and insulin resistance. Suppressor of cytokine signaling (SOCS)-3 expression is increased in skeletal muscle of obese humans. SOCS3 inhibits leptin signaling in the hypothalamus and insulin...... of hyperinsulinemia and insulin resistance because of enhanced skeletal muscle insulin receptor substrate 1 (IRS1) and Akt phosphorylation that resulted in increased skeletal muscle glucose uptake. These data indicate that skeletal muscle SOCS3 does not play a critical role in regulating muscle development or energy...... expenditure, but it is an important contributing factor for inhibiting insulin sensitivity in obesity. Therapies aimed at inhibiting SOCS3 in skeletal muscle may be effective in reversing obesity-related glucose intolerance and insulin resistance....

  6. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas tranplant recipient

    DEFF Research Database (Denmark)

    Bouzakri, K; Karlsson, HRK; Vestergaard, Henrik

    2006-01-01

    Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied....... In conclusion, peripheral insulin resistance in pancreas-kidney transplant recipients may arise from a negative feedback regulation of the canonical insulin-signaling cascade from excessive serine phosphorylation of IRS-1, possibly as a consequence of immunosuppressive therapy and hyperinsulinemia....... insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1-associated phosphatidylinositol 3-kinase activity, and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal...

  7. Selective Insulin Resistance in the Kidney

    Science.gov (United States)

    Horita, Shoko; Nakamura, Motonobu; Suzuki, Masashi; Satoh, Nobuhiko; Suzuki, Atsushi; Seki, George

    2016-01-01

    Insulin resistance has been characterized as attenuation of insulin sensitivity at target organs and tissues, such as muscle and fat tissues and the liver. The insulin signaling cascade is divided into major pathways such as the PI3K/Akt pathway and the MAPK/MEK pathway. In insulin resistance, however, these pathways are not equally impaired. For example, in the liver, inhibition of gluconeogenesis by the insulin receptor substrate (IRS) 2 pathway is impaired, while lipogenesis by the IRS1 pathway is preserved, thus causing hyperglycemia and hyperlipidemia. It has been recently suggested that selective impairment of insulin signaling cascades in insulin resistance also occurs in the kidney. In the renal proximal tubule, insulin signaling via IRS1 is inhibited, while insulin signaling via IRS2 is preserved. Insulin signaling via IRS2 continues to stimulate sodium reabsorption in the proximal tubule and causes sodium retention, edema, and hypertension. IRS1 signaling deficiency in the proximal tubule may impair IRS1-mediated inhibition of gluconeogenesis, which could induce hyperglycemia by preserving glucose production. In the glomerulus, the impairment of IRS1 signaling deteriorates the structure and function of podocyte and endothelial cells, possibly causing diabetic nephropathy. This paper mainly describes selective insulin resistance in the kidney, focusing on the proximal tubule. PMID:27247938

  8. Conjugated Linoleic Acids Mediate Insulin Release through Islet G Protein-coupled Receptor FFA1/GPR40

    DEFF Research Database (Denmark)

    Schmidt, Johannes; Liebscher, Kathrin; Merten, Nicole

    2011-01-01

    of insulin resistance and the risk of developing diabetes. However, the mechanisms accounting for the effects of CLAs on glucose homeostasis are incompletely understood. Herein we provide evidence that CLAs specifically activate the cell surface receptor FFA1, an emerging therapeutic target to treat type 2...... found to activate FFA1 in vitro at concentrations sufficient to also account for FFA1 activation in vivo. Each CLA isomer markedly increased glucose-stimulated insulin secretion in insulin-producing INS-1E cells that endogenously express FFA1 and in primary pancreatic β-cells of wild type but not FFA1......(-/-) knock-out mice. Our findings establish a clear mechanistic link between CLAs and insulin production and identify the cell surface receptor FFA1 as a molecular target for CLAs, explaining their acute stimulatory effects on insulin secretion in vivo. CLAs are also revealed as insulinotropic components...

  9. Hepatocyte DACH1 Is Increased in Obesity via Nuclear Exclusion of HDAC4 and Promotes Hepatic Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Lale Ozcan

    2016-06-01

    Full Text Available Defective insulin signaling in hepatocytes is a key factor in type 2 diabetes. In obesity, activation of calcium/calmodulin-dependent protein kinase II (CaMKII in hepatocytes suppresses ATF6, which triggers a PERK-ATF4-TRB3 pathway that disrupts insulin signaling. Elucidating how CaMKII suppresses ATF6 is therefore essential to understanding this insulin resistance pathway. We show that CaMKII phosphorylates and blocks nuclear translocation of histone deacetylase 4 (HDAC4. As a result, HDAC4-mediated SUMOylation of the corepressor DACH1 is decreased, which protects DACH1 from proteasomal degradation. DACH1, together with nuclear receptor corepressor (NCOR, represses Atf6 transcription, leading to activation of the PERK-TRB3 pathway and defective insulin signaling. DACH1 is increased in the livers of obese mice and humans, and treatment of obese mice with liver-targeted constitutively nuclear HDAC4 or DACH1 small hairpin RNA (shRNA increases ATF6, improves hepatocyte insulin signaling, and protects against hyperglycemia and hyperinsulinemia. Thus, DACH1-mediated corepression in hepatocytes emerges as an important link between obesity and insulin resistance.

  10. Liver protein profiles in insulin receptor-knockout mice reveal novel molecules involved in the diabetes pathophysiology.

    Science.gov (United States)

    Capuani, Barbara; Della-Morte, David; Donadel, Giulia; Caratelli, Sara; Bova, Luca; Pastore, Donatella; De Canio, Michele; D'Aguanno, Simona; Coppola, Andrea; Pacifici, Francesca; Arriga, Roberto; Bellia, Alfonso; Ferrelli, Francesca; Tesauro, Manfredi; Federici, Massimo; Neri, Anna; Bernardini, Sergio; Sbraccia, Paolo; Di Daniele, Nicola; Sconocchia, Giuseppe; Orlandi, Augusto; Urbani, Andrea; Lauro, Davide

    2015-05-01

    Liver has a principal role in glucose regulation and lipids homeostasis. It is under a complex control by substrates such as hormones, nutrients, and neuronal impulses. Insulin promotes glycogen synthesis, lipogenesis, and lipoprotein synthesis and inhibits gluconeogenesis, glycogenolysis, and VLDL secretion by modifying the expression and enzymatic activity of specific molecules. To understand the pathophysiological mechanisms leading to metabolic liver disease, we analyzed liver protein patterns expressed in a mouse model of diabetes by proteomic approaches. We used insulin receptor-knockout (IR(-/-)) and heterozygous (IR(+/-)) mice as a murine model of liver metabolic dysfunction associated with diabetic ketoacidosis and insulin resistance. We evaluated liver fatty acid levels by microscopic examination and protein expression profiles by orthogonal experimental strategies using protein 2-DE MALDI-TOF/TOF and peptic nLC-MS/MS shotgun profiling. Identified proteins were then loaded into Ingenuity Pathways Analysis to find possible molecular networks. Twenty-eight proteins identified by 2-DE analysis and 24 identified by nLC-MS/MS shotgun were differentially expressed among the three genotypes. Bioinformatic analysis revealed a central role of high-mobility group box 1/2 and huntigtin never reported before in association with metabolic and related liver disease. A different modulation of these proteins in both blood and hepatic tissue further suggests their role in these processes. These results provide new insight into pathophysiology of insulin resistance and hepatic steatosis and could be useful in identifying novel biomarkers to predict risk for diabetes and its complications. Copyright © 2015 the American Physiological Society.

  11. The immune-endocrine loop during aging: role of growth hormone and insulin-like growth factor-I.

    Science.gov (United States)

    Burgess, W; Liu, Q; Zhou, J; Tang, Q; Ozawa, A; VanHoy, R; Arkins, S; Dantzer, R; Kelley, K W

    1999-01-01

    Why a primary lymphoid organ such as the thymus involutes during aging remains a fundamental question in immunology. Aging is associated with a decrease in plasma growth hormone (somatotropin) and IGF-I, and this somatopause of aging suggests a connection between the neuroendocrine and immune systems. Several investigators have demonstrated that treatment with either growth hormone or IGF-I restores architecture of the involuted thymus gland by reversing the loss of immature cortical thymocytes and preventing the decline in thymulin synthesis that occurs in old or GH-deficient animals and humans. The proliferation, differentiation and functions of other components of the immune system, including T and B cells, macrophages and neutrophils, also demonstrate age-associated decrements that can be restored by IGF-I. Knowledge of the mechanism by which cytokines and hormones influence hematopoietic cells is critical to improving the health of aged individuals. Our laboratory has recently demonstrated that IGF-I prevents apoptosis in promyeloid cells, which subsequently permits these cells to differentiate into neutrophils. We also demonstrated that IL-4 acts much like IGF-I to promote survival of promyeloid cells and to activate the enzyme phosphatidylinositol 3'-kinase (PI 3-kinase). However, the receptors for IGF-I and IL-4 are completely different, with the intracellular beta chains of the IGF receptor possessing intrinsic tyrosine kinase activity and the alpha and gammac subunit of the heterodimeric IL-4 receptor utilizing the Janus kinase family of nonreceptor protein kinases to tyrosine phosphorylate downstream targets. Both receptors share many of the components of the PI 3-kinase signal transduction pathway, converging at the level of insulin receptor substrate-1 or insulin receptor subtrate-2 (formally known as 4PS, or IL-4 Phosphorylated Substrate). Our investigations with IGF-I and IL-4 suggest that PI 3-kinase inhibits apoptosis by maintaining high levels of

  12. Insulin binding and stimulation of hexose and amino acid transport by normal and receptor-defective human fibroblasts

    International Nuclear Information System (INIS)

    Longo, N.; Nagata, N.; Danner, D.; Priest, J.; Elsas, L.

    1986-01-01

    The authors analyzed insulin receptors in cells cultured from a sibship of related parents who had two offspring with severe insulin resistance (Leprechaunism). 124 I-Insulin (1 ng/ml) binding to skin fibroblasts from the proband, mother, and father was 9, 60 and 62% of control cells, respectively, at equilibrium, Non-linear regression analysis, utilizing a two receptors model, of curvilinear Scatchard plots indicated a reduced number of high-affinity binding sites in both parents. Influx of L-Proline (System A), L-Serine (ASC) and L-Leucine (L) was similar in control and mutant cells. Similarly, during the depletion of intracellular amino acid pools, there was a release from transinhibition for System A and a decrease of transstimulation of Systems ASC and L in both cell lines. Surprisingly, insulin augmented, normally, A system influx with an ED 50 = 70 ng/ml at 24 0 C and 7 ng/ml at 37 0 C. By contrast insulin failed to simulated 3-0-methyl-D-glucose influx into the proband's cells, while normal cells were stimulated 30% with an ED 50 of 6 ng/ml. These results indicate that defective high-affinity insulin binding is inherited as an autosomal recessive trait; that general membrane functions are intact; that insulin regulates A system amino acid and hexose transport by two different mechanisms; and, that the latter mechanism is impaired by this family's receptor mutation

  13. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte.

    Science.gov (United States)

    Kusminski, Christine M; Gallardo-Montejano, Violeta I; Wang, Zhao V; Hegde, Vijay; Bickel, Perry E; Dhurandhar, Nikhil V; Scherer, Philipp E

    2015-10-01

    Type 2 diabetes remains a worldwide epidemic with major pathophysiological changes as a result of chronic insulin resistance. Insulin regulates numerous biochemical pathways related to carbohydrate and lipid metabolism. We have generated a novel mouse model that allows us to constitutively activate, in an inducible fashion, the distal branch of the insulin signaling transduction pathway specifically in adipocytes. Using the adenoviral 36 E4orf1 protein, we chronically stimulate locally the Ras-ERK-MAPK signaling pathway. At the whole body level, this leads to reduced body-weight gain under a high fat diet challenge. Despite overlapping glucose tolerance curves, there is a reduced requirement for insulin action under these conditions. The mice further exhibit reduced circulating adiponectin levels that ultimately lead to impaired lipid clearance, and inflamed and fibrotic white adipose tissues. Nevertheless, they are protected from diet-induced hepatic steatosis. As we observe constitutively elevated p-Akt levels in the adipocytes, even under conditions of low insulin levels, this pinpoints enhanced Ras-ERK-MAPK signaling in transgenic adipocytes as a potential alternative route to bypass proximal insulin signaling events. We conclude that E4orf1 expression in the adipocyte leads to enhanced baseline activation of the distal insulin signaling node, yet impaired insulin receptor stimulation in the presence of insulin, with important implications for the regulation of adiponectin secretion. The resulting systemic phenotype is complex, yet highlights the powerful nature of manipulating selective branches of the insulin signaling network within the adipocyte.

  14. Insulin Resistance and the Polycystic Ovary Syndrome Revisited: An Update on Mechanisms and Implications

    Science.gov (United States)

    Diamanti-Kandarakis, Evanthia

    2012-01-01

    Polycystic ovary syndrome (PCOS) is now recognized as an important metabolic as well as reproductive disorder conferring substantially increased risk for type 2 diabetes. Affected women have marked insulin resistance, independent of obesity. This article summarizes the state of the science since we last reviewed the field in the Endocrine Reviews in 1997. There is general agreement that obese women with PCOS are insulin resistant, but some groups of lean affected women may have normal insulin sensitivity. There is a post-binding defect in receptor signaling likely due to increased receptor and insulin receptor substrate-1 serine phosphorylation that selectively affects metabolic but not mitogenic pathways in classic insulin target tissues and in the ovary. Constitutive activation of serine kinases in the MAPK-ERK pathway may contribute to resistance to insulin's metabolic actions in skeletal muscle. Insulin functions as a co-gonadotropin through its cognate receptor to modulate ovarian steroidogenesis. Genetic disruption of insulin signaling in the brain has indicated that this pathway is important for ovulation and body weight regulation. These insights have been directly translated into a novel therapy for PCOS with insulin-sensitizing drugs. Furthermore, androgens contribute to insulin resistance in PCOS. PCOS may also have developmental origins due to androgen exposure at critical periods or to intrauterine growth restriction. PCOS is a complex genetic disease, and first-degree relatives have reproductive and metabolic phenotypes. Several PCOS genetic susceptibility loci have been mapped and replicated. Some of the same susceptibility genes contribute to disease risk in Chinese and European PCOS populations, suggesting that PCOS is an ancient trait. PMID:23065822

  15. Activation and regulation of the pattern recognition receptors in obesity-induced adipose tissue inflammation and insulin resistance.

    Science.gov (United States)

    Watanabe, Yasuharu; Nagai, Yoshinori; Takatsu, Kiyoshi

    2013-09-23

    Obesity-associated chronic tissue inflammation is a key contributing factor to type 2 diabetes mellitus, and a number of studies have clearly demonstrated that the immune system and metabolism are highly integrated. Recent advances in deciphering the various immune cells and signaling networks that link the immune and metabolic systems have contributed to our understanding of the pathogenesis of obesity-associated inflammation. Other recent studies have suggested that pattern recognition receptors in the innate immune system recognize various kinds of endogenous and exogenous ligands, and have a crucial role in initiating or promoting obesity-associated chronic inflammation. Importantly, these mediators act on insulin target cells or on insulin-producing cells impairing insulin sensitivity and its secretion. Here, we discuss how various pattern recognition receptors in the immune system underlie the etiology of obesity-associated inflammation and insulin resistance, with a particular focus on the TLR (Toll-like receptor) family protein Radioprotective 105 (RP105)/myeloid differentiation protein-1 (MD-1).

  16. Activation and Regulation of the Pattern Recognition Receptors in Obesity-Induced Adipose Tissue Inflammation and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Kiyoshi Takatsu

    2013-09-01

    Full Text Available Obesity-associated chronic tissue inflammation is a key contributing factor to type 2 diabetes mellitus, and a number of studies have clearly demonstrated that the immune system and metabolism are highly integrated. Recent advances in deciphering the various immune cells and signaling networks that link the immune and metabolic systems have contributed to our understanding of the pathogenesis of obesity-associated inflammation. Other recent studies have suggested that pattern recognition receptors in the innate immune system recognize various kinds of endogenous and exogenous ligands, and have a crucial role in initiating or promoting obesity-associated chronic inflammation. Importantly, these mediators act on insulin target cells or on insulin-producing cells impairing insulin sensitivity and its secretion. Here, we discuss how various pattern recognition receptors in the immune system underlie the etiology of obesity-associated inflammation and insulin resistance, with a particular focus on the TLR (Toll-like receptor family protein Radioprotective 105 (RP105/myeloid differentiation protein-1 (MD-1.

  17. Drosophila insulin release is triggered by adipose Stunted ligand to brain Methuselah receptor.

    Science.gov (United States)

    Delanoue, Renald; Meschi, Eleonora; Agrawal, Neha; Mauri, Alessandra; Tsatskis, Yonit; McNeill, Helen; Léopold, Pierre

    2016-09-30

    Animals adapt their growth rate and body size to available nutrients by a general modulation of insulin-insulin-like growth factor signaling. In Drosophila, dietary amino acids promote the release in the hemolymph of brain insulin-like peptides (Dilps), which in turn activate systemic organ growth. Dilp secretion by insulin-producing cells involves a relay through unknown cytokines produced by fat cells. Here, we identify Methuselah (Mth) as a secretin-incretin receptor subfamily member required in the insulin-producing cells for proper nutrient coupling. We further show, using genetic and ex vivo organ culture experiments, that the Mth ligand Stunted (Sun) is a circulating insulinotropic peptide produced by fat cells. Therefore, Sun and Mth define a new cross-organ circuitry that modulates physiological insulin levels in response to nutrients. Copyright © 2016, American Association for the Advancement of Science.

  18. An insulin receptor mutant (Asp707 → Ala), involved in leprechaunism, is processed and transported to the cell surface but unable to bind insulin

    NARCIS (Netherlands)

    L.M. 't Hart (Leen); D. Lindhout (Dick); G.C.M. van der Zon (Gerard); H. Kayserilli (Hülya); M.Y. Apak (Memnune); W.J. Kleijer (Wim); E.R. van der Vorm (Eric); J.A. Maassen (Johannes)

    1996-01-01

    textabstractWe have identified a homozygous mutation near the carboxyl terminus of the insulin receptor (IR) α subunit from a leprechaun patient, changing Asp707 into Ala. Fibroblasts from this patient had no high affinity insulin binding sites. To examine the effect of the mutation on IR

  19. Context-dependent regulation of feeding behaviour by the insulin receptor, DAF-2, in Caenorhabditis elegans.

    Science.gov (United States)

    Dillon, James; Holden-Dye, Lindy; O'Connor, Vincent; Hopper, Neil A

    2016-06-01

    Insulin signalling plays a significant role in both developmental programmes and pathways modulating the neuronal signalling that controls adult behaviour. Here, we have investigated insulin signalling in food-associated behaviour in adult C. elegans by scoring locomotion and feeding on and off bacteria, the worm's food. This analysis used mutants (daf-2, daf-18) of the insulin signalling pathway, and we provide evidence for an acute role for insulin signalling in the adult nervous system distinct from its impact on developmental programmes. Insulin receptor daf-2 mutants move slower than wild type both on and off food and showed impaired locomotory responses to food deprivation. This latter behaviour is manifest as a failure to instigate dispersal following prolonged food deprivation and suggests a role for insulin signalling in this adaptive response. Insulin receptor daf-2 mutants are also deficient in pharyngeal pumping on food and off food. Pharmacological analysis showed the pharynx of daf-2 is selectively compromised in its response to 5-HT compared to the excitatory neuropeptide FLP-17. By comparing the adaptive pharyngeal behaviour in intact worms and isolated pharyngeal preparations, we determined that an insulin-dependent signal extrinsic to the pharyngeal system is involved in feeding adaptation. Hence, we suggest that reactive insulin signalling modulates both locomotory foraging and pharyngeal pumping as the animal adapts to the absence of food. We discuss this in the context of insulin signalling directing a shift in the sensitivity of neurotransmitter systems to regulate the worm's response to changes in food availability in the environment.

  20. Sex differences in insulin resistance in GABAB1 knockout mice.

    Science.gov (United States)

    Bonaventura, M M; Rodriguez, D; Ferreira, M L; Crivello, M; Repetto, E M; Bettler, B; Libertun, C; Lux-Lantos, V A

    2013-02-27

    We have previously demonstrated that the absence of functional GABA B receptors (GABABRs) disturbs glucose homeostasis in GABAB1KO mice. The aim of this work was to extend our studies of these alterations in GABAB1KO mice and investigate the sexual differences therein. Male and female, GABAB1KO and WT mice were used. Glucose and insulin tolerance tests (GTT and ITT), and insulin and glucagon secretion tests (IST and GST) were performed. Blood glucose, serum insulin and hyperglycemic hormones were determined, and HOMA-IR calculated. Skeletal muscle insulin receptor β subunit (IRβ), insulin receptor substrates 1/2 (IRS1, IRS2) and hexokinase-II levels were determined by Western blot. Skeletal muscle insulin sensitivity was assessed by in vivo insulin-induced Akt phosphorylation (Western blot). Food intake and hypothalamic NPY mRNA expression (by qPCR) were also evaluated. Fasted insulin and HOMA-IR were augmented in GABAB1KO males, with no alterations in females. Areas under the curve (AUC) for GTT and ITT were increased in GABAB1KO mice of both genders, indicating compromised insulin sensitivity. No genotype differences were observed in IST, GST or in IRβ, IRS1, IRS2 and hexokinase-II expression. Akt activation was severely impaired in GABAB1KO males while no alterations were observed in females. GABAB1KO mice showed increased food intake and NPY expression. Glucose metabolism and energy balance disruptions were more pronounced in GABAB1KO males, which develop peripheral insulin resistance probably due to augmented insulin secretion. Metabolic alterations in females were milder and possibly due to previously described reproductive disorders, such as persistent estrus. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Developmental aspects of the rat brain insulin receptor: loss of sialic acid and fluctuation in number characterize fetal development

    International Nuclear Information System (INIS)

    Brennan, W.A. Jr.

    1988-01-01

    In this study, I have investigated the structure of the rat brain insulin receptor during fetal development. There is a progressive decrease in the apparent molecular size of the brain alpha-subunit during development: 130K on day 16 of gestation, 126K at birth, and 120K in the adult. Glycosylation was investigated as a possible reason for the observed differences in the alpha-subunit molecular size. The results show that the developmental decrease in the brain alpha-subunit apparent molecular size is due to a parallel decrease in sialic acid content. This was further confirmed by measuring the retention of autophosphorylated insulin receptors on wheat germ agglutinin (WGA)-Sepharose. An inverse correlation between developmental age and retention of 32 P-labeled insulin receptors on the lectin column was observed. Insulin binding increases 6-fold between 16 and 20 days of gestation [61 +/- 25 (+/- SE) fmol/mg protein and 364 +/- 42 fmol/mg, respectively]. Thereafter, binding in brain membranes decreases to 150 +/- 20 fmol/mg by 2 days after birth, then reaches the adult level of 63 +/- 15 fmol/mg. In addition, the degree of insulin-stimulated autophosphorylation closely parallels the developmental changes in insulin binding. Between 16 and 20 days of fetal life, insulin-stimulated phosphorylation of the beta-subunit increases 6-fold. Thereafter, the extent of phosphorylation decreases rapidly, reaching adult values identical with those in 16-day-old fetal brain. These results suggest that the embryonic brain possesses competent insulin receptors whose expression changes markedly during fetal development. This information should be important in defining the role of insulin in the developing nervous system

  2. Insulin modulates energy and substrate sensing and protein catabolism induced by chronic peritonitis in skeletal muscle of neonatal pigs

    Science.gov (United States)

    Acute infection promotes skeletal muscle wasting and insulin resistance, but the effect of insulin on energy and substrate sensing in skeletal muscle of chronically infected neonates has not been studied. Eighteen 2-d-old pigs underwent cecal ligation and puncture (CLP) or sham surgery (CON) to ind...

  3. The existence of an insulin-stimulated glucose and non-essential but not essential amino acid substrate interaction in diabetic pigs

    Directory of Open Access Journals (Sweden)

    Wijdenes Jan

    2011-05-01

    Full Text Available Abstract Background The generation of energy from glucose is impaired in diabetes and can be compensated by other substrates like fatty acids (Randle cycle. Little information is available on amino acids (AA as alternative energy-source in diabetes. To study the interaction between insulin-stimulated glucose and AA utilization in normal and diabetic subjects, intraportal hyperinsulinaemic euglycaemic euaminoacidaemic clamp studies were performed in normal (n = 8 and streptozotocin (120 mg/kg induced diabetic (n = 7 pigs of ~40-45 kg. Results Diabetic vs normal pigs showed basal hyperglycaemia (19.0 ± 2.0 vs 4.7 ± 0.1 mmol/L, P P P P P P P . Essential AA clearance was largely unchanged (72.9 ± 8.5 vs 63.3 ± 8.5 mL/kg· min, however clearances of threonine (P P Conclusions The ratio of insulin-stimulated glucose versus AA clearance was decreased 5.4-fold in diabetic pigs, which was caused by a 3.6-fold decrease in glucose clearance and a 2.0-fold increase in non-essential AA clearance. In parallel with the Randle concept (glucose - fatty acid cycle, the present data suggest the existence of a glucose and non-essential AA substrate interaction in diabetic pigs whereby reduced insulin-stimulated glucose clearance seems to be partly compensated by an increase in non-essential AA clearance whereas essential AA are preferentially spared from an increase in clearance.

  4. Relationship between tyrosine phosphorylation and protein expression of insulin receptor and insulin resistance in gestational diabetes mellitus.

    Science.gov (United States)

    Chu, Yong-li; Gong, Yu-dian; Su, Zhi-hui; Yu, Hong-na; Cui, Qing; Jiang, Hai-yang; Qu, Hong-mei

    2014-06-01

    The relationship between tyrosine phosphorylation (TP) and protein expression of insulin receptor (InsR) and insulin resistance (IR) in patients with gestational diabetes mellitus (GDM) was investigated. The InsR expression and TP in skeleton muscle tissue were determined by Western blotting and immunoprecipitation in women with GDM (GDM group, n=22), normal pregnant women (normal pregnancy group, n=22) and normal non-pregnant women (normal non-pregnant group, n=13). Fasting plasma glucose (FPG) and fasting insulin (FINS) were measured by oxidase assay and immunoradioassay. The results showed that the levels of FPG (5.61±0.78 mmol/L), FINS (15.42±5.13 mU/L) and Homeostasis model assessment-IR (HOMA-IR) (1.21±0.52) in GDM group were significantly higher than those in normal pregnancy group (4.43±0.46 mmol/L, 10.56±3.07 mU/L and 0.80±0.31 respectively) (Ppregnant group (7.56±2.31 mU/L and 0.47±0.26 respectively) (P0.05). TP of InsR with insulin stimulation was significantly decreased in GDM group (0.20±0.05) as compared with normal pregnancy group (0.26±0.06) (Pinsulin stimulation in normal pregnancy group was lower than that in normal non-pregnant group (0.31±0.06) (Pinsulin stimulation was negatively related with HOMA-IR in GDM group (r=-0.525, P0.05). It was suggested that there is no significant correlation between the protein expression of InsR in skeletal muscle and IR in GDM, but changes in TP of InsR are associated with IR in GDM.

  5. Loss-of-function myostatin mutation increases insulin sensitivity and browning of white fat in Meishan pigs.

    Science.gov (United States)

    Cai, Chunbo; Qian, Lili; Jiang, Shengwang; Sun, Youde; Wang, Qingqing; Ma, Dezun; Xiao, Gaojun; Li, Biao; Xie, Shanshan; Gao, Ting; Chen, Yaoxing; Liu, Jie; An, Xiaorong; Cui, Wentao; Li, Kui

    2017-05-23

    Myostatin-deficient mice showed a remarkable hypertrophy of skeletal muscle, with a decreased fat mass and enhanced insulin sensitivity. Currently, it is unclear if the inhibition of myostatin could be used as an approach to treat human obesity and insulin resistance. In this study, we investigated if the inhibition of porcine myostatin has any effect on fat deposition and insulin sensitivity using genetically engineered Meishan pigs containing a myostatin loss-of-function mutation (Mstn -/- ). Our results indicated that, when compared with wild-type pigs, the amount of subcutaneous fat and leaf fat of Mstn -/- pigs were significantly decreased mainly due to the browning of subcutaneous adipose tissue. Additionally, the serum insulin level decreased and the insulin sensitivity increased significantly in Mstn -/- pigs. Moreover, we found a significant increase in levels of insulin receptor and insulin receptor substrate proteins in skeletal muscle of Mstn -/- pigs, which then activating the insulin signaling pathway. Irisin-mediated regulation is not the only pathway for the activation of insulin signal in Mstn -/- skeletal muscle. This study provides valuable insight for the treatment of human obesity and diabetes mellitus.

  6. Relationships between endothelin and insulin receptor of red blood cell and insulin resistance in patients with hypertension

    International Nuclear Information System (INIS)

    Tong Qian; Zheng Yang; Xu Hui

    2004-01-01

    Objective: To find the relationships between endothelin (ET) and insulin resistance (IR) and insulin receptor (INSR) in patients with essential hypertension. Methods: Forty patients including 20 cases of essential hypertension disease (EHD) and 20 health persons were divided into experimental group and control group. Blood glucose, serum insulin, ET and the number of erythrocyte INSR in all patients during fasting condition were detected by radioimmunoassay and radiometric analysis. Results: Both insulin sensitivity index (ISI) and the number of INSR in EHD group were much less than that of control group, on the contrary, ET level of EHD group was significantly higher than that of control group (P<0.05). Statistical analysis demonstrated a negative correlation between ET and ISI and INSR number existed in EHD group. Conclusion: IR is a common phenomenon in patient with EHD and possibly due to decrease of INSR number. The ET levels are higher in patients with EHD than that in health people and correlate with INSR, and the change of INSR number is the possible mediator for their relationship

  7. Leptin rapidly improves glucose homeostasis in obese mice by increasing hypothalamic insulin sensitivity.

    Science.gov (United States)

    Koch, Christiane; Augustine, Rachael A; Steger, Juliane; Ganjam, Goutham K; Benzler, Jonas; Pracht, Corinna; Lowe, Chrishanthi; Schwartz, Michael W; Shepherd, Peter R; Anderson, Greg M; Grattan, David R; Tups, Alexander

    2010-12-01

    Obesity is associated with resistance to the actions of both leptin and insulin via mechanisms that remain incompletely understood. To investigate whether leptin resistance per se contributes to insulin resistance and impaired glucose homeostasis, we investigated the effect of acute leptin administration on glucose homeostasis in normal as well as leptin- or leptin receptor-deficient mice. In hyperglycemic, leptin-deficient Lep(ob/ob) mice, leptin acutely and potently improved glucose metabolism, before any change of body fat mass, via a mechanism involving the p110α and β isoforms of phosphatidylinositol-3-kinase (PI3K). Unlike insulin, however, the anti-diabetic effect of leptin occurred independently of phospho-AKT, a major downstream target of PI3K, and instead involved enhanced sensitivity of the hypothalamus to insulin action upstream of PI3K, through modulation of IRS1 (insulin receptor substrate 1) phosphorylation. These data suggest that leptin resistance, as occurs in obesity, reduces the hypothalamic response to insulin and thereby impairs peripheral glucose homeostasis, contributing to the development of type 2 diabetes.

  8. Study of prevalence and effects of insulin resistance in patients with chronic hepatitis C genotype 4.

    Science.gov (United States)

    Amer, A F; Baddour, M M; Elshazly, M A; Fadally, G; Hanafi, N F; Assar, S L

    2016-02-01

    There is strong epidemiological evidence linking hepatitis C virus (HCV) infection and diabetes. Our aim was to evaluate the prevalence of insulin resistance in Egyptian patients with chronic HCV genotype 4 infection, to assess factors associated with insulin resistance and to test the impact of insulin resistance on outcomes of treatment with pegylated interferon/ribavirin. Insulin resistance [homeostasis model assessmentinsulin resistance (HOMA-IR) score > 3.0] was detected in 31 of 100 nondiabetic patients. The relationship between elevated HOMA-IR and baseline viral load and degree of fibrosis was statistically significant (r = 0.218 and r = 0.223). Follow-up of patients with complete early virological response until the end of treatment showed a statistically significant decrease in HOMA-IR score. Out of 29 liver tissue sections examined, 14 had a low level of expression of insulin receptor type 1 by immunohistochemical studies. This study confirms that insulin resistance affects treatment outcome, and thus HOMA-IR testing before initiation of therapy may be a cost-effective tool.

  9. Peroxynitrite mediates muscle insulin resistance in mice via nitration of IRβ/IRS-1 and Akt

    International Nuclear Information System (INIS)

    Zhou Jun; Huang Kaixun

    2009-01-01

    Accumulating evidence suggests that peroxynitrite (ONOO - ) is involved in the pathogenesis of insulin resistance. In the current study, we investigated whether insulin resistance in vivo could be mediated by nitration of proteins involved in the early steps of the insulin signal transduction pathway. Exogenous peroxynitrite donated by 3-morpholinosydnonimine hydrochloride (SIN-1) induced in vivo nitration of the insulin receptor β subunit (IRβ), insulin receptor substrate (IRS)-1, and protein kinase B/Akt (Akt) in skeletal muscle of mice and dramatically reduced whole-body insulin sensitivity and muscle insulin signaling. Moreover, in high-fat diet (HFD)-fed insulin-resistant mice, we observed enhanced nitration of IRβ and IRS-1 in skeletal muscle, in parallel with impaired whole-body insulin sensitivity and muscle insulin signaling. Reversal of nitration of these proteins by treatment with the peroxynitrite decomposition catalyst FeTPPS yielded an improvement in whole-body insulin sensitivity and muscle insulin signaling in HFD-fed mice. Taken together, these findings provide new mechanistic insights for the involvement of peroxynitrite in the development of insulin resistance and suggest that nitration of proteins involved in the early steps of insulin signal transduction is a novel molecular mechanism of HFD-induced muscle insulin resistance.

  10. The role of G-protein-coupled receptors in mediating the effect of fatty acids on inflammation and insulin sensitivity.

    Science.gov (United States)

    Oh, Da Young; Lagakos, William S

    2011-07-01

    Chronic activation of inflammatory pathways mediates the pathogenesis of insulin resistance, and the macrophage/adipocyte nexus provides a key mechanism underlying decreased insulin sensitivity. Free fatty acids are important in the pathogenesis of insulin resistance, although their precise mechanisms of action have yet to be fully elucidated. Recently, a family of G-protein-coupled receptors has been identified that exhibits high affinity for fatty acids. This review summarizes recent findings on six of these receptors, their ligands, and their potential physiological functions in vivo. Upon activation, the free fatty acid receptors affect inflammation, glucose metabolism, and insulin sensitivity. Genetic deletion of GPR40 and GPR41, receptors for long-chain and short-chain fatty acids, respectively, results in resistance to diet-induced obesity. Deletion of GPR43 and GPR84 exacerbates inflammation, and deletion of the long-chain fatty acid receptors GPR119 and GPR120 reduces or is predicted to reduce glucose tolerance. These studies provide a new understanding of the general biology of gastric motility and also shed valuable insight into some potentially beneficial therapeutic targets. Furthermore, highly selective agonists or antagonists for the free fatty acid receptors have been developed and look promising for treating various metabolic diseases.

  11. Insulin-like growth factor receptor inhibitors: baby or the bathwater?

    Science.gov (United States)

    Yee, Douglas

    2012-07-03

    The success of targeted therapies for cancer is undisputed; strong preclinical evidence has resulted in the approval of several new agents for cancer treatment. The type I insulin-like growth factor receptor (IGF1R) appeared to be one of these promising new targets. Substantial population and preclinical data have all pointed toward this pathway as an important regulator of tumor cell biology. Although early results from clinical trials that targeted the IGF1R showed some evidence of response, larger randomized phase III trials have not shown clear clinical benefit of targeting this pathway in combination with conventional strategies. These disappointing results have resulted in the discontinuation of several anti-IGF1R programs. However, the conduct of these trials has brought to the forefront several important factors that need to be considered in the conduct of future clinical trials. The need to develop biomarkers, a clearer understanding of insulin receptor function, and defining rational combination regimens all require further consideration. In this commentary, the current state of IGF1R inhibitors in cancer therapy is reviewed.

  12. Recruitment of GABA(A) receptors and fearfulness in chicks: modulation by systemic insulin and/or epinephrine.

    Science.gov (United States)

    Cid, Mariana Paula; Toledo, Carolina Maribel; Salvatierra, Nancy Alicia

    2013-02-01

    One-day-old chicks were individually assessed on their latency to peck pebbles, and categorized as low latency (LL) or high latency (HL) according to fear. Interactions between acute stress and systemic insulin and epinephrine on GABA(A) receptor density in the forebrain were studied. At 10 days of life, LL and HL chicks were intraperitoneally injected with insulin, epinephrine or saline, and immediately after stressed by partial water immersion for 15 min and killed by decapitation. Forebrains were dissected and the GABA(A) receptor density was measured ex vivo by the (3)[H]-flunitrazepam binding assay in synaptosomes. In non-stressed chicks, insulin (non-hypoglycemic dose) at 2.50 IU/kg of body weight incremented the Bmax by 40.53% in the HL chicks compared to saline group whereas no significant differences were observed between individuals in the LL subpopulation. Additionally, insulin increased the Bmax (23.48%) in the HL group with respect to the LL ones, indicating that the insulin responses were different according to the anxiety of each category. Epinephrine administration (0.25 and 0.50mg/kg) incremented the Bmax in non-stressed chicks, in the LL group by about 37% and 33%, respectively, compared to ones injected with saline. In the stressed chicks, 0.25mg/kg bw epinephrine increased the Bmax significantly in the HL group by about 24% compared to saline, suggesting that the effect of epinephrine was only observed in the HL group under acute stress conditions. Similarly, the same epinephrine doses co-administered with insulin increased the receptor density in both subpopulations and also showed that the highest dose of epinephrine did not further increase the maximum density of GABA(A)R in HL chicks. These results suggest that systemic epinephrine, perhaps by evoking central norepinephrine release, modulated the increase in the forebrain GABA(A) receptor recruitment induced by both insulin and stress in different ways depending on the subpopulation

  13. The Role of PTP1B O-GlcNAcylation in Hepatic Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Yun Zhao

    2015-09-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B, which can directly dephosphorylate both the insulin receptor and insulin receptor substrate 1 (IRS-1, thereby terminating insulin signaling, reportedly plays an important role in insulin resistance. Accumulating evidence has demonstrated that O-GlcNAc modification regulates functions of several important components of insulin signal pathway. In this study, we identified that PTP1B is modified by O-GlcNAcylation at three O-GlcNAc sites (Ser104, Ser201, and Ser386. Palmitate acid (PA impaired the insulin signaling, indicated by decreased phosphorylation of both serine/threonine-protein kinase B (Akt and glycogen synthase kinase 3 beta (GSK3β following insulin administration, and upregulated PTP1B O-GlcNAcylation in HepG2 cells. Compared with the wild-type, intervention PTP1B O-GlcNAcylation by site-directed gene mutation inhibited PTP1B phosphatase activity, resulted in a higher level of phosphorylated Akt and GSK3β, recovered insulin sensitivity, and improved lipid deposition in HepG2 cells. Taken together, our research showed that O-GlcNAcylation of PTP1B can influence insulin signal transduction by modulating its own phosphatase activity, which participates in the process of hepatic insulin resistance.

  14. Overexpression of Lnk in the Ovaries Is Involved in Insulin Resistance in Women With Polycystic Ovary Syndrome.

    Science.gov (United States)

    Hao, Meihua; Yuan, Feng; Jin, Chenchen; Zhou, Zehong; Cao, Qi; Xu, Ling; Wang, Guanlei; Huang, Hui; Yang, Dongzi; Xie, Meiqing; Zhao, Xiaomiao

    2016-10-01

    Polycystic ovary syndrome (PCOS) progression involves abnormal insulin signaling. SH2 domain-containing adaptor protein (Lnk) may be an important regulator of the insulin signaling pathway. We investigated whether Lnk was involved in insulin resistance (IR). Thirty-seven women due to receive laparoscopic surgery from June 2011 to February 2012 were included from the gynecologic department of the Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University. Samples of polycystic and normal ovary tissues were examined by immunohistochemistry. Ovarian cell lines underwent insulin stimulation and Lnk overexpression. Expressed Lnk underwent coimmunoprecipitation tests with green fluorescent protein-labeled insulin receptor and His-tagged insulin receptor substrate 1 (IRS1), and their colocalization in HEK293T cells was examined. Ovarian tissues from PCOS patients with IR exhibited higher expression of Lnk than ovaries from normal control subjects and PCOS patients without IR; mainly in follicular granulosa cells, the follicular fluid and plasma of oocytes in secondary follicles, and atretic follicles. Lnk was coimmunoprecipitated with insulin receptor and IRS1. Lnk and insulin receptor/IRS1 locations overlapped around the nucleus. IR, protein kinase B (Akt), and ERK1/2 activities were inhibited by Lnk overexpression and inhibited further after insulin stimulation, whereas IRS1 serine activity was increased. Insulin receptor (Tyr1150/1151), Akt (Thr308), and ERK1/2 (Thr202/Tyr204) phosphorylation was decreased, whereas IRS1 (Ser307) phosphorylation was increased with Lnk overexpression. In conclusion, Lnk inhibits the phosphatidylinositol 3 kinase-AKT and MAPK-ERK signaling response to insulin. Higher expression of Lnk in PCOS suggests that Lnk probably plays a role in the development of IR.

  15. A chimeric receptor of the insulin-like growth factor receptor type 1 (IGFR1) and a single chain antibody specific to myelin oligodendrocyte glycoprotein activates the IGF1R signalling cascade in CG4 oligodendrocyte progenitors

    NARCIS (Netherlands)

    Annenkov, A.; Rigby, A.; Amor, S.; Zhou, D.M.; Yousaf, N.; Hemmer, B.; Chernajovsky, Y.

    2011-01-01

    In order to generate neural stem cells with increased ability to survive after transplantation in brain parenchyma we developed a chimeric receptor (ChR) that binds to myelin oligodendrocyte glycoprotein (MOG) via its ectodomain and activates the insulin-like growth factor receptor type 1 (IGF1R)

  16. SH2-B promotes insulin receptor substrate 1 (IRS1)- and IRS2-mediated activation of the phosphatidylinositol 3-kinase pathway in response to leptin.

    Science.gov (United States)

    Duan, Chaojun; Li, Minghua; Rui, Liangyou

    2004-10-15

    Leptin regulates energy homeostasis primarily by binding and activating its long form receptor (LRb). Deficiency of either leptin or LRb causes morbid obesity. Leptin stimulates LRb-associated JAK2, thus initiating multiple pathways including the Stat3 and phosphatidylinositol (PI) 3-kinase pathways that mediate leptin biological actions. Here we report that SH2-B, a JAK2-interacting protein, promotes activation of the PI 3-kinase pathway by recruiting insulin receptor substrate 1 (IRS1) and IRS2 in response to leptin. SH2-B directly bound, via its PH and SH2 domain, to both IRS1 and IRS2 both in vitro and in intact cells and mediated formation of a JAK2/SH2-B/IRS1 or IRS2 tertiary complex. Consequently, SH2-B dramatically enhanced leptin-stimulated tyrosine phosphorylation of IRS1 and IRS2 in HEK293 cells stably expressing LRb, thus promoting association of IRS1 and IRS2 with the p85 regulatory subunit of PI 3-kinase and phosphorylation and activation of Akt. SH2-B mutants with lower affinity for IRS1 and IRS2 exhibited reduced ability to promote association of JAK2 with IRS1, tyrosine phosphorylation of IRS1, and association of IRS1 with p85 in response to leptin. Moreover, deletion of the SH2-B gene impaired leptin-stimulated tyrosine phosphorylation of endogenous IRS1 in mouse embryonic fibroblasts (MEF), which was reversed by reintroduction of SH2-B. Similarly, SH2-B promoted growth hormone-stimulated tyrosine phosphorylation of IRS1 in both HEK293 and MEF cells. Our data suggest that SH2-B is a novel mediator of the PI 3-kinase pathway in response to leptin or other hormones and cytokines that activate JAK2.

  17. The C-terminus of the B-chain of human insulin-like peptide 5 is critical for cognate RXFP4 receptor activity.

    Science.gov (United States)

    Patil, Nitin A; Bathgate, Ross A D; Kocan, Martina; Ang, Sheng Yu; Tailhades, Julien; Separovic, Frances; Summers, Roger; Grosse, Johannes; Hughes, Richard A; Wade, John D; Hossain, Mohammed Akhter

    2016-04-01

    Insulin-like peptide 5 (INSL5) is an orexigenic peptide hormone belonging to the relaxin family of peptides. It is expressed primarily in the L-cells of the colon and has a postulated key role in regulating food intake. Its G protein-coupled receptor, RXFP4, is a potential drug target for treating obesity and anorexia. We studied the effect of modification of the C-terminus of the A and B-chains of human INSL5 on RXFP4 binding and activation. Three variants of human INSL5 were prepared using solid phase peptide synthesis and subsequent sequential regioselective disulfide bond formation. The peptides were synthesized as C-terminal acids (both A- and B-chains with free C-termini, i.e., the native form), amides (both chains as the C-terminal amide) and one analog with the C-terminus of its A-chain as the amide and the C-terminus of the B-chain as the acid. The results showed that C-terminus of the B-chain is more important than that of the A-chain for RXFP4 binding and activity. Amidation of the A-chain C-terminus does not have any effect on the INSL5 activity. The difference in RXFP4 binding and activation between the three peptides is believed to be due to electrostatic interaction of the free carboxylate of INSL5 with a positively charged residue (s), either situated within the INSL5 molecule itself or in the receptor extracellular loops.

  18. Drosophila Insulin receptor regulates the persistence of injury-induced nociceptive sensitization

    Science.gov (United States)

    Patel, Atit A.

    2018-01-01

    ABSTRACT Diabetes-associated nociceptive hypersensitivity affects diabetic patients with hard-to-treat chronic pain. Because multiple tissues are affected by systemic alterations in insulin signaling, the functional locus of insulin signaling in diabetes-associated hypersensitivity remains obscure. Here, we used Drosophila nociception/nociceptive sensitization assays to investigate the role of Insulin receptor (Insulin-like receptor, InR) in nociceptive hypersensitivity. InR mutant larvae exhibited mostly normal baseline thermal nociception (absence of injury) and normal acute thermal hypersensitivity following UV-induced injury. However, their acute thermal hypersensitivity persists and fails to return to baseline, unlike in controls. Remarkably, injury-induced persistent hypersensitivity is also observed in larvae that exhibit either type 1 or type 2 diabetes. Cell type-specific genetic analysis indicates that InR function is required in multidendritic sensory neurons including nociceptive class IV neurons. In these same nociceptive sensory neurons, only modest changes in dendritic morphology were observed in the InRRNAi-expressing and diabetic larvae. At the cellular level, InR-deficient nociceptive sensory neurons show elevated calcium responses after injury. Sensory neuron-specific expression of InR rescues the persistent thermal hypersensitivity of InR mutants and constitutive activation of InR in sensory neurons ameliorates the hypersensitivity observed with a type 2-like diabetic state. Our results suggest that a sensory neuron-specific function of InR regulates the persistence of injury-associated hypersensitivity. It is likely that this new system will be an informative genetically tractable model of diabetes-associated hypersensitivity. PMID:29752280

  19. Insulin receptor in mouse neuroblastoma cell line N18TG2: binding properties and visualization with colloidal gold.

    Science.gov (United States)

    Sartori, C; Stefanini, S; Bernardo, A; Augusti-Tocco, G

    1992-08-01

    Insulin function in the nervous system is still poorly understood. Possible roles as a neuromodulator and as a growth factor have been proposed (Baskin et al., 1987, Ann. Rev. Physiol. 49, 335-347). Stable cell lines may provide an appropriate experimental system for the analysis of insulin action on the various cellular components of the central nervous system. We report here a study to investigate the presence and the properties of insulin specific binding sites in the murine neuroblastoma line, N18TG2, together with insulin action on cell growth and metabolism. Also, receptor internalization has been studied. Binding experiments, carried out in standard conditions at 20 degrees C, enabled us to demonstrate that these cells bind insulin in a specific manner, thus confirming previous findings on other cell lines. Saturation curves showed the presence of two binding sites with Kd 0.3 and 9.7 nM. Competition experiments with porcine and bovine insulin showed an IC50 of 1 and 10 nM, respectively. Competition did not occur in the presence of the unrelated hormones ACTH and FSH. Dissociation experiments indicated the existence of an internalization process of the ligand-receptor complex; this was confirmed by an ultrastructural study using gold conjugated insulin. As far as the insulin action in N18TG2 cells is concerned, physiological concentrations stimulate cell proliferation, whereas no stimulation of glucose uptake was observed, indicating that insulin action in these cells is not mediated by general metabolic effects. On the basis of these data, N18TG2 line appears to be a very suitable model for further studies of the neuronal type insulin receptors, and possibly insulin specific action on the nervous system.

  20. Study of NSILA-s (nonsuppressible insulin-like activity soluble in acid ethanol) by a new radio-receptor assay

    International Nuclear Information System (INIS)

    Megyeri, K.

    1977-01-01

    The insulin-like activity nonsuppressible with insulin-antibodies (NSILA) accounts for 90% of the insulin activity of the blood plasma. A peptid, soluble in acid ethanol, was purified (NSILA-s) and specific NSILA-s receptors were found on the plasma membrane of liver cells. The specificity, kinetics, affinity and pH-optimum of NSILA-s receptors significantly differed from those of insulin-receptors. A new, highly specific radio-receptor assay was developed, applying 125 I NSILA-s and liver cell membranes or lymphocytes. By this means the NSILA-s concentration of blood plasma was determined under normal and pathological (hypoglycaemizing tumours, hypopituritarism, acromegaly, anorexia nervosa, etc.) conditions. It is concluded that, 90% of the NSILA-s concentration of blood plasma is bound. In cases of hypoglycaemizing tumours increased NSILA-s activity was demonstrated both in blood serum and in the extracts of the tumour-tissue. Pharmacological doses of growth hormon (GH) increased plasma NSILA-s concentration, however, in the case of stimulation- and inhibition-tests carried out in normal patients, no unambiguous relationship could be demonstrated between plasma GH- and NSILA-s-levels. (L.E.)

  1. Systemic administration of kainic acid induces selective time dependent decrease in [125I]insulin-like growth factor I, [125I]insulin-like growth factor II and [125I]insulin receptor binding sites in adult rat hippocampal formation

    International Nuclear Information System (INIS)

    Quirion, R.; Chabot, J.-G.; Dore, S.; Seto, D.; Kar, S.

    1997-01-01

    Administration of kainic acid evokes acute seizure in hippocampal pathways that results in a complex sequence of functional and structural alterations resembling human temporal lobe epilepsy. The structural alterations induced by kainic acid include selective loss of neurones in CA1-CA3 subfields and the hilar region of the dentate gyrus followed by sprouting and permanent reorganization of the synaptic connections of the mossy fibre pathways. Although the neuronal degeneration and process of reactive synaptogenesis have been extensively studied, at present little is known about means to prevent pathological conditions leading to kainate-induced cell death. In the present study, to address the role of insulin-like growth factors I and II, and insulin in neuronal survival as well as synaptic reorganization following kainate-induced seizure, the time course alterations of the corresponding receptors were evaluated. Additionally, using histological preparations, the temporal profile of neuronal degeneration and hypertrophy of resident astroglial cells were also studied. [ 125 I]Insulin-like growth factor I binding was found to be decreased transiently in almost all regions of the hippocampal formation at 12 h following treatment with kainic acid. The dentate hilar region however, exhibited protracted decreases in [ 125 I]insulin-like growth factor I receptor sites throughout (i.e. 30 days) the study. [ 125 I]Insulin-like growth factor II receptor binding sites in the hippocampal formation were found to be differentially altered following systemic administration of kainic acid. A significant decrease in [ 125 I]insulin-like growth factor II receptor sites was observed in CA1 subfield and the pyramidal cell layer of the Ammon's horn at all time points studied whereas the hilar region and the stratum radiatum did not exhibit alteration at any time. A kainate-induced decrease in [ 125 I]insulin receptor binding was noted at all time points in the molecular layer of the

  2. Insulin-like growth factor II: complexity of biosynthesis and receptor binding

    DEFF Research Database (Denmark)

    Gammeltoft, S; Christiansen, Jan; Nielsen, F C

    1991-01-01

    Insulin-like growth factor II (IGF-II) belongs to the insulin family of peptides and acts as a growth factor in many fetal tissues and tumors. The gene expression of IGF-II is initiated at three different promoters which gives rise to multiple transcripts. In a human rhabdomyosarcoma cell line......, Man-6-P induces cellular responses. We have studied rat brain neuronal precursor cells where Man-6-P acted as a mitogen suggesting that phosphomannosylated proteins may act as growth factors via the Man-6-P/IGF-II receptor. In conclusion, the gene expression and mechanism of action of IGF-II is very...

  3. Impaired insulin-induced site-specific phosphorylation of TBC1 domain family, member 4 (TBC1D4) in skeletal muscle of type 2 diabetes patients is restored by endurance exercise-training

    DEFF Research Database (Denmark)

    Vind, B. F.; Pehmøller, Christian; Treebak, Jonas Thue

    2011-01-01

    AIMS/HYPOTHESIS: Insulin-mediated glucose disposal rates (R (d)) are reduced in type 2 diabetic patients, a process in which intrinsic signalling defects are thought to be involved. Phosphorylation of TBC1 domain family, member 4 (TBC1D4) is at present the most distal insulin receptor signalling...... event linked to glucose transport. In this study, we examined insulin action on site-specific phosphorylation of TBC1D4 and the effect of exercise training on insulin action and signalling to TBC1D4 in skeletal muscle from type 2 diabetic patients. METHODS: During a 3 h euglycaemic-hyperinsulinaemic (80...... mU min(-1) m(-2)) clamp, we obtained M. vastus lateralis biopsies from 13 obese type 2 diabetic and 13 obese, non-diabetic control individuals before and after 10 weeks of endurance exercise-training. RESULTS: Before training, reductions in insulin-stimulated R (d), together with impaired insulin...

  4. Fibroblast growth factor 21 improves insulin sensitivity and synergizes with insulin in human adipose stem cell-derived (hASC adipocytes.

    Directory of Open Access Journals (Sweden)

    Darwin V Lee

    Full Text Available Fibroblast growth factor 21 (FGF21 has evolved as a major metabolic regulator, the pharmacological administration of which causes weight loss, insulin sensitivity and glucose control in rodents and humans. To understand the molecular mechanisms by which FGF21 exerts its metabolic effects, we developed a human in vitro model of adipocytes to examine crosstalk between FGF21 and insulin signaling. Human adipose stem cell-derived (hASC adipocytes were acutely treated with FGF21 alone, insulin alone, or in combination. Insulin signaling under these conditions was assessed by measuring tyrosine phosphorylation of insulin receptor (InsR, insulin receptor substrate-1 (IRS-1, and serine 473 phosphorylation of Akt, followed by a functional assay using 14C-2-deoxyglucose [14C]-2DG to measure glucose uptake in these cells. FGF21 alone caused a modest increase of glucose uptake, but treatment with FGF21 in combination with insulin had a synergistic effect on glucose uptake in these cells. The presence of FGF21 also effectively lowered the insulin concentration required to achieve the same level of glucose uptake compared to the absence of FGF21 by 10-fold. This acute effect of FGF21 on insulin signaling was not due to IR, IGF-1R, or IRS-1 activation. Moreover, we observed a substantial increase in basal S473-Akt phosphorylation by FGF21 alone, in contrast to the minimal shift in basal glucose uptake. Taken together, our data demonstrate that acute co-treatment of hASC-adipocytes with FGF21 and insulin can result in a synergistic improvement in glucose uptake. These effects were shown to occur at or downstream of Akt, or separate from the canonical insulin signaling pathway.

  5. Phosphatidylcholine Transfer Protein Interacts with Thioesterase Superfamily Member 2 to Attenuate Insulin Signaling

    OpenAIRE

    Ersoy, Baran A.; Tarun, Akansha; D’Aquino, Katharine; Hancer, Nancy J.; Ukomadu, Chinweike; White, Morris F.; Michel, Thomas; Manning, Brendan D.; Cohen, David E.

    2013-01-01

    Phosphatidylcholine transfer protein (PC-TP) is a phospholipid-binding protein that is enriched in liver and that interacts with thioesterase superfamily member 2 (THEM2). Mice lacking either protein exhibit improved hepatic glucose homeostasis and are resistant to diet-induced diabetes. Insulin receptor substrate 2 (IRS2) and mammalian target of rapamycin complex 1 (mTORC1) are key effectors of insulin signaling, which is attenuated in diabetes. We found that PC-TP inhibited IRS2, as evidenc...

  6. The Biased G-Protein-Coupled Receptor Agonism Bridges the Gap between the Insulin Receptor and the Metabolic Syndrome

    Science.gov (United States)

    Liauchonak, Iryna; Dawoud, Fady; Riat, Yatin; Sambi, Manpreet; Jain, Justin; Kalaydina, Regina-Veronicka; Mendonza, Nicole; Bajwa, Komal

    2018-01-01

    Insulin signaling, as mediated through the insulin receptor (IR), plays a critical role in metabolism. Aberrations in this signaling cascade lead to several pathologies, the majority of which are classified under the umbrella term “metabolic syndrome”. Although many of these pathologies are associated with insulin resistance, the exact mechanisms are not well understood. One area of current interest is the possibility of G-protein-coupled receptors (GPCRs) influencing or regulating IR signaling. This concept is particularly significant, because GPCRs have been shown to participate in cross-talk with the IR. More importantly, GPCR signaling has also been shown to preferentially regulate specific downstream signaling targets through GPCR agonist bias. A novel study recently demonstrated that this GPCR-biased agonism influences the activity of the IR without the presence of insulin. Although GPCR-IR cross-talk has previously been established, the notion that GPCRs can regulate the activation of the IR is particularly significant in relation to metabolic syndrome and other pathologies that develop as a result of alterations in IR signaling. As such, we aim to provide an overview of the physiological and pathophysiological roles of the IR within metabolic syndrome and its related pathologies, including cardiovascular health, gut microflora composition, gastrointestinal tract functioning, polycystic ovarian syndrome, pancreatic cancer, and neurodegenerative disorders. Furthermore, we propose that the GPCR-biased agonism may perhaps mediate some of the downstream signaling effects that further exacerbate these diseases for which the mechanisms are currently not well understood. PMID:29462993

  7. Aerobic exercise regulates blood lipid and insulin resistance via the toll‑like receptor 4‑mediated extracellular signal‑regulated kinases/AMP‑activated protein kinases signaling pathway.

    Science.gov (United States)

    Wang, Mei; Li, Sen; Wang, Fubaihui; Zou, Jinhui; Zhang, Yanfeng

    2018-06-01

    Diabetes mellitus is a complicated metabolic disease with symptoms of hyperglycemia, insulin resistance, chronic damage and dysfunction of tissues, and metabolic syndrome for insufficient insulin production. Evidence has indicated that exercise treatments are essential in the progression of type‑ІІ diabetes mellitus, and affect insulin resistance and activity of islet β‑cells. In the present study, the efficacy and signaling mechanism of aerobic exercise on blood lipids and insulin resistance were investigated in the progression of type‑ІІ diabetes mellitus. Body weight, glucose metabolism and insulin serum levels were investigated in mouse models of type‑ІІ diabetes mellitus following experienced aerobic exercise. Expression levels of inflammatory factors, interleukin (IL)‑6, high‑sensitivity C‑reactive protein, tumor necrosis factor‑α and leucocyte differentiation antigens, soluble CD40 ligand in the serum were analyzed in the experimental mice. In addition, expression levels of toll‑like receptor 4 (TLR‑4) were analyzed in the liver cells of experimental mice. Changes of oxidative stress indicators, including reactive oxygen species, superoxide dismutase, glutathione and catalase were examined in the liver cells of experimental mice treated by aerobic exercise. Expression levels and activity of extracellular signal‑regulated kinases (ERK) and AMP‑activated protein kinase (AMPK) signaling pathways were investigated in the liver cells of mouse models of type‑ІІ diabetes mellitus after undergoing aerobic exercise. Aerobic exercise decreased the expression levels of inflammatory factors in the serum of mouse models of type‑ІІ diabetes mellitus. The results indicated that aerobic exercise downregulated oxidative stress indicators in liver cells from mouse models of type‑ІІ diabetes mellitus. In addition, the ERK and AMPK signaling pathways were inactivated by aerobic exercise in liver cells in mouse models of type

  8. Odontella aurita-enriched diet prevents high fat diet-induced liver insulin resistance.

    Science.gov (United States)

    Amine, Hamza; Benomar, Yacir; Haimeur, Adil; Messaouri, Hafida; Meskini, Nadia; Taouis, Mohammed

    2016-01-01

    The beneficial effect of polyunsaturated omega-3 fatty acid (w-3 FA) consumption regarding cardiovascular diseases, insulin resistance and inflammation has been widely reported. Fish oil is considered as the main source of commercialized w-3 FAs, and other alternative sources have been reported such as linseed or microalgae. However, despite numerous reports, the underlying mechanisms of action of w-3 FAs on insulin resistance are still not clearly established, especially those from microalgae. Here, we report that Odontella aurita, a microalga rich in w-3 FAs eicosapentaenoic acid, prevents high fat diet-induced insulin resistance and inflammation in the liver of Wistar rats. Indeed, a high fat diet (HFD) increased plasma insulin levels associated with the impairment of insulin receptor signaling and the up-regulation of toll-like receptor 4 (TLR4) expressions. Importantly, Odontella aurita-enriched HFD (HFOA) reduces body weight and plasma insulin levels and maintains normal insulin receptor expression and responsiveness. Furthermore, HFOA decreased TLR4 expression, JNK/p38 phosphorylation and pro-inflammatory factors. In conclusion, we demonstrate for the first time, to our knowledge, that diet supplementation with whole Ondontella aurita overcomes HFD-induced insulin resistance through the inhibition of TLR4/JNK/p38 MAP kinase signaling pathways. © 2016 Society for Endocrinology.

  9. Insulin and the brain.

    Science.gov (United States)

    Derakhshan, Fatemeh; Toth, Cory

    2013-03-01

    Mainly known for its role in peripheral glucose homeostasis, insulin has also significant impact within the brain, functioning as a key neuromodulator in behavioral, cellular, biochemical and molecular studies. The brain is now regarded as an insulin-sensitive organ with widespread, yet selective, expression of the insulin receptor in the olfactory bulb, hypothalamus, hippocampus, cerebellum, amygdala and cerebral cortex. Insulin receptor signaling in the brain is important for neuronal development, glucoregulation, feeding behavior, body weight, and cognitive processes such as with attention, executive functioning, learning and memory. Emerging evidence has demonstrated insulin receptor signaling to be impaired in several neurological disorders. Moreover, insulin receptor signaling is recognized as important for dendritic outgrowth, neuronal survival, circuit development, synaptic plasticity and postsynaptic neurotransmitter receptor trafficking. We review the multiple roles of insulin in the brain, as well as its endogenous trafficking to the brain or its exogenous intervention. Although insulin can be directly targeted to the brain via intracerebroventricular (ICV) or intraparenchymal delivery, these invasive techniques are with significant risk, necessitating repeated surgical intervention and providing potential for systemic hypoglycemia. Another method, intranasal delivery, is a non-invasive, safe, and alternative approach which rapidly targets delivery of molecules to the brain while minimizing systemic exposure. Over the last decades, the delivery of intranasal insulin in animal models and human patients has evolved and expanded, permitting new hope for associated neurodegenerative and neurovascular disorders.

  10. Expression of transient receptor potential ankyrin 1 (TRPA1 and its role in insulin release from rat pancreatic beta cells.

    Directory of Open Access Journals (Sweden)

    De-Shou Cao

    Full Text Available Several transient receptor potential (TRP channels are expressed in pancreatic beta cells and have been proposed to be involved in insulin secretion. However, the endogenous ligands for these channels are far from clear. Here, we demonstrate the expression of the transient receptor potential ankyrin 1 (TRPA1 ion channel in the pancreatic beta cells and its role in insulin release. TRPA1 is an attractive candidate for inducing insulin release because it is calcium permeable and is activated by molecules that are produced during oxidative glycolysis.Immunohistochemistry, RT-PCR, and Western blot techniques were used to determine the expression of TRPA1 channel. Ca²⁺ fluorescence imaging and electrophysiology (voltage- and current-clamp techniques were used to study the channel properties. TRPA1-mediated insulin release was determined using ELISA.TRPA1 is abundantly expressed in a rat pancreatic beta cell line and freshly isolated rat pancreatic beta cells, but not in pancreatic alpha cells. Activation of TRPA1 by allyl isothiocyanate (AITC, hydrogen peroxide (H₂O₂, 4-hydroxynonenal (4-HNE, and cyclopentenone prostaglandins (PGJ₂ and a novel agonist methylglyoxal (MG induces membrane current, depolarization, and Ca²⁺ influx leading to generation of action potentials in a pancreatic beta cell line and primary cultured pancreatic beta cells. Activation of TRPA1 by agonists stimulates insulin release in pancreatic beta cells that can be inhibited by TRPA1 antagonists such as HC030031 or AP-18 and by RNA interference. TRPA1-mediated insulin release is also observed in conditions of voltage-gated Na⁺ and Ca²⁺ channel blockade as well as ATP sensitive potassium (K(ATP channel activation.We propose that endogenous and exogenous ligands of TRPA1 cause Ca²⁺ influx and induce basal insulin release and that TRPA1-mediated depolarization acts synergistically with K(ATP channel blockade to facilitate insulin release.

  11. One week treatment with the IL-1 receptor antagonist anakinra leads to a sustained improvement in insulin sensitivity in insulin resistant patients with type 1 diabetes mellitus

    NARCIS (Netherlands)

    Asseldonk, van E.J.P.; Poppel, van P.C.M.; Ballak, D.B.; Stienstra, Rinke; Netea, M.G.; Tack, C.J.

    2015-01-01

    Inflammation associated with obesity is involved in the development of insulin resistance. We hypothesized that anti-inflammatory treatment with the Interleukin-1 receptor antagonist anakinra would improve insulin sensitivity.In an open label proof-of-concept study, we included overweight

  12. Targeting non-small cell lung cancer cells by dual inhibition of the insulin receptor and the insulin-like growth factor-1 receptor.

    Directory of Open Access Journals (Sweden)

    Emma E Vincent

    Full Text Available Phase III trials of the anti-insulin-like growth factor-1 receptor (IGF1R antibody figitumumab in non-small cell lung cancer (NSCLC patients have been discontinued owing to lack of survival benefit. We investigated whether inhibition of the highly homologous insulin receptor (IR in addition to the IGF1R would be more effective than inhibition of the IGF1R alone at preventing the proliferation of NSCLC cells. Signalling through IGF1R and IR in the NSCLC cell lines A549 and Hcc193 was stimulated by a combination of IGF1, IGF2 and insulin. It was inhibited by antibodies that block ligand binding, αIR3 (IGF1R and IR47-9 (IR, and by the ATP-competitive small molecule tyrosine kinase inhibitors AZ12253801 and NVPAWD742 which inhibit both IGF1R and IR tyrosine kinases. The effect of inhibitors was determined by an anchorage-independent proliferation assay and by analysis of Akt phosphorylation. In Hcc193 cells the reduction in cell proliferation and Akt phosphorylation due to anti-IGF1R antibody was enhanced by antibody-mediated inhibition of the IR whereas in A549 cells, with a relatively low IR:IGF1R expression ratio, it was not. In each cell line proliferation and Akt phosphorylation were more effectively inhibited by AZ12253801 and NVPAWD742 than by combined αIR3 and IR47-9. When the IGF1R alone is inhibited, unencumbered signalling through the IR can contribute to continued NSCLC cell proliferation. We conclude that small molecule inhibitors targeting both the IR and IGF1R more effectively reduce NSCLC cell proliferation in a manner independent of the IR:IGF1R expression ratio, providing a therapeutic rationale for the treatment of this disease.

  13. Bloqueo del receptor del factor de crecimiento semejante a la Insulina Tipo I utilizando oligodeoxinucleótidos antisentido en cáncer de mama experimental Type I insulin-like growth factor receptor antisense strategies in experimental breast cancer

    Directory of Open Access Journals (Sweden)

    Mariana Salatino

    2004-04-01

    Full Text Available Evaluamos el efecto del bloqueo de la expresión del receptor del factor de crecimiento semejante a la insulina tipo I (IGF-IR sobre el crecimiento in vivo de cáncer de mama empleando una estrategia "antisentido". Utilizamos el adenocarcinoma mamario murino progestágeno-dependiente C4HD. La administración intratumoral o sistémica de oligodeoxinucleótidos antisentido fosfotiolados al ARNm del IGF-IR (AS[S]ODN inhibió el crecimiento tumoral. El efecto antitumoral fue específico debido a su dosis-dependencia y a la falta de efecto en ratones tratados con el S[S]ODN "sentido". Los tumores obtenidos de ratones tratados con AS[S]ODN mostraron: disminución en la expresión de IGF-IR y en la fosforilación del sustrato del receptor de insulina-1, inhibición de la activación de PI-3K/Akt, p42/p44MAPK y ErbB-2, mientras que la expresión y activación del receptor de progesterona no se afectó. Es la primera demostración que el crecimiento de cáncer de mama puede ser inhibido por la administración in vivo de AS[S]ODN al IGF-IR.We addressed the effect of targeting type I insulin-like growth factor receptor (IGF-IR, with antisense strategies in in vivo growth of breast cancer cells. We used C4HD tumors from an experimental model of hormonal carcinogenesis in which medroxyprogesterone acetate induced mammary adenocarcinomas in Balb/c mice. Intratumor or systemic administration of phosphorothiolated antisense oligodeoxynucleotides (AS[S]ODN to IGF-IR mRNA resulted in a significant inhibition of C4HD tumor growth. The antitumor effect was specific since inhibition of tumor growth was dose-dependent and no effect was observed in mice treated with sense S[S]ODN. Tumors from AS[S]ODN-treated mice showed a decrease in IGF-IR expression and in insulin receptor substrate-1 tyrosine phosphorylation. Activation of PI-3K/Akt, p42/p44 MAPK and ErbB-2 was abolished in tumors treated with AS[S]ODN. Progesterone receptor expression or activity remained

  14. Association between Single Nucleotide Polymorphisms in Gamma-Aminobutyric Acid B Receptor, Insulin Receptor Substrate-1, and Hypocretin Neuropeptide Precursor Genes and Susceptibility to Obstructive Sleep Apnea Hypopnea Syndrome in a Chinese Han Population.

    Science.gov (United States)

    Li, Zhijun; Tang, Tingyu; Du, Jianzong; Wu, Wenjuan; Zhou, Xiaoxi; Qin, Guangyue

    2016-01-01

    To investigate genotype-phenotype changes between rs29230 in γ-aminobutyric acid B receptor (GABBR1), rs1801278 in insulin receptor substrate-1 (IRS-1), and rs9902709 in hypocretin neuropeptide precursor (HCRT) and obstructive sleep apnea hypopnea syndrome (OSAHS) in Chinese Han individuals. A total of 130 patients with OSAHS and 136 age- and gender-matched healthy controls were enrolled in this study. A brief description of DNA extraction and genotyping is given. Multivariate unconditional logistic regression analysis adjusted for gender and age was used to estimate the associations of single nucleotide polymorphisms (SNPs) rs29230 (GABBR1), rs1801278 (IRS-1), and rs9902709 (HCRT) with OSAHS risk. Subgroup analysis was performed to evaluate differences in these SNPs among subgroups according to gender, body mass index (BMI), and severity of disease. Genotype and allele frequencies of rs29230 were significantly different between cases and controls (p = 0.0205 and p = 0.0191, respectively; odds ratio = 0.493, 95% confidence interval = 0.271-0.896), especially for male patients (p = 0.0259 and p = 0.0202, respectively). Subgroup analysis according to BMI also revealed a significant allele difference for rs29230 between cases and controls in the overweight subgroup (p = 0.0333). Furthermore, allele and genotype frequencies of rs1801278 showed significant differences between cases and controls (p = 0.0488 and p = 0.0471, respectively). However, no association was observed between rs9902709 and OSAHS risk (p = 0.2762), and no differences were identified in other subgroups. In this study, there was an association between variants of rs29230 and rs1801278 and OSAHS risk in the Chinese Han population but not for rs9902709. © 2016 S. Karger AG, Basel.

  15. Studies on binding and mitogenic effect of insulin and insulin-like growth factor I in glomerular mesangial cells

    International Nuclear Information System (INIS)

    Conti, F.G.; Striker, L.J.; Lesniak, M.A.; MacKay, K.; Roth, J.; Striker, G.E.

    1988-01-01

    The mesangial cells are actively involved in regulating glomerular hemodynamics. Their overlying endothelium is fenestrated; therefore, these cells are directly exposed to plasma substances, including hormones such as insulin and insulin-like growth factor I (IGF-I). These peptides may contribute to the mesangial sclerosis and cellular hyperplasia that characterize diabetic glomerulopathy. We report herein the characterization of the receptors and the mitogenic effects of IGF-I and insulin on mouse glomerular mesangial cells in culture. The IGF-I receptor was characterized on intact cells. The Kd of the IGF-I receptor was 1.47 X 10(-9) M, and the estimated number of sites was 64,000 receptors/cell. The binding was time, temperature, and pH dependent, and the receptor showed down-regulation after exposure to serum. The expression of the receptor did not change on cells at different densities. The specific binding for insulin was too low to allow characterization of the insulin receptor on intact cells. However, it was possible to identify the insulin receptor in a wheat germ agglutinin-purified preparation of solubilized mesangial cells. This receptor showed the characteristic features of the insulin receptor, including pH dependence of binding and a curvilinear Scatchard plot. The mitogenic effects of insulin and IGF-I on mesangial cells were measured by the incorporation of [3H]thymidine into DNA. IGF-I was more potent than insulin. The half-maximal response to IGF-I stimulation occurred at 1.3 X 10(-10) M, and a similar increase with insulin was observed at concentrations in the range of 10(-7) M, suggesting that this insulin action was mediated through the IGF-I receptor. These data show that the mouse microvascular smooth muscle cells of the glomerulus express a cell surface receptor for IGF-I in vitro and that this peptide is a potent mitogen for these mesangial cells

  16. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    International Nuclear Information System (INIS)

    Fujii, Masakazu; Inoguchi, Toyoshi; Batchuluun, Battsetseg; Sugiyama, Naonobu; Kobayashi, Kunihisa; Sonoda, Noriyuki; Takayanagi, Ryoichi

    2013-01-01

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophage polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent

  17. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Masakazu, E-mail: masakazu731079@yahoo.co.jp [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Inoguchi, Toyoshi, E-mail: toyoshi@intmed3.med.kyushu-u.ac.jp [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Batchuluun, Battsetseg, E-mail: battsetseg.batchuluun@gmail.com [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Sugiyama, Naonobu, E-mail: nao1@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Kobayashi, Kunihisa, E-mail: nihisak@fukuoka-u.ac.jp [Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyoin, Chikushino, Fukuoka 818-8502 (Japan); Sonoda, Noriyuki, E-mail: noriyuki@intmed3.med.kyushu-u.ac.jp [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Takayanagi, Ryoichi, E-mail: takayana@intmed3.med.kyushu-u.ac.jp [Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2013-08-16

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophage polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.

  18. Ginseng Berry Extract Supplementation Improves Age-Related Decline of Insulin Signaling in Mice

    Directory of Open Access Journals (Sweden)

    Eunhui Seo

    2015-04-01

    Full Text Available The aim of this study was to evaluate the effects of ginseng berry extract on insulin sensitivity and associated molecular mechanisms in aged mice. C57BL/6 mice (15 months old were maintained on a regular diet (CON or a regular diet supplemented with 0.05% ginseng berry extract (GBD for 24 or 32 weeks. GBD-fed mice showed significantly lower serum insulin levels (p = 0.016 and insulin resistance scores (HOMA-IR (p = 0.012, suggesting that GBD improved insulin sensitivity. Pancreatic islet hypertrophy was also ameliorated in GBD-fed mice (p = 0.007. Protein levels of tyrosine phosphorylated insulin receptor substrate (IRS-1 (p = 0.047, and protein kinase B (AKT (p = 0.037, were up-regulated in the muscle of insulin-injected GBD-fed mice compared with CON-fed mice. The expressions of forkhead box protein O1 (FOXO1 (p = 0.036 and peroxisome proliferator-activated receptor gamma (PPARγ (p = 0.032, which are known as aging- and insulin resistance-related genes, were also increased in the muscle of GBD-fed mice. We conclude that ginseng berry extract consumption might increase activation of IRS-1 and AKT, contributing to the improvement of insulin sensitivity in aged mice.

  19. Adipokines and their relation to maternal energy substrate production, insulin resistance and fetal size.

    Science.gov (United States)

    Ahlsson, Fredrik; Diderholm, Barbro; Ewald, Uwe; Jonsson, Björn; Forslund, Anders; Stridsberg, Mats; Gustafsson, Jan

    2013-05-01

    The role of adipokines in the regulation of energy substrate production in non-diabetic pregnant women has not been elucidated. We hypothesize that serum concentrations of adiponectin are related to fetal growth via maternal fat mass, insulin resistance and glucose production, and further, that serum levels of leptin are associated with lipolysis and that this also influences fetal growth. Hence, we investigated the relationship between adipokines, energy substrate production, insulin resistance, body composition and fetal weight in non-diabetic pregnant women in late gestation. Twenty pregnant women with normal glucose tolerance were investigated at 36 weeks of gestation at Uppsala University Hospital. Levels of adipokines were related to rates of glucose production and lipolysis, maternal body composition, insulin resistance, resting energy expenditure and estimated fetal weights. Rates of glucose production and lipolysis were estimated by stable isotope dilution technique. Median (range) rate of glucose production was 805 (653-1337) μmol/min and that of glycerol production, reflecting lipolysis, was 214 (110-576) μmol/min. HOMA insulin resistance averaged 1.5 ± 0.75 and estimated fetal weights ranged between 2670 and 4175 g (-0.2 to 2.7 SDS). Mean concentration of adiponectin was 7.2 ± 2.5mg/L and median level of leptin was 47.1 (9.9-58.0) μg/L. Adiponectin concentrations (7.2 ± 2.5mg/L) correlated inversely with maternal fat mass, insulin resistance, glucose production and fetal weight, r=-0.50, pinsulin resistance, r=0.76, pinsulin resistance as well as endogenous glucose production rates indicate that low levels of adiponectin in obese pregnant women may represent one mechanism behind increased fetal size. Maternal levels of leptin are linked to maternal fat mass and its metabolic consequences, but the data indicate that leptin lacks a regulatory role with regard to maternal lipolysis in late pregnancy. Copyright © 2012 Elsevier Ireland Ltd. All rights

  20. Alternative splicing of exon 17 and a missense mutation in exon 20 of the insulin receptor gene in two brothers with a novel syndrome of insulin resistance (congenital fiber-type disproportion myopathy)

    DEFF Research Database (Denmark)

    Vorwerk, P; Christoffersen, C T; Müller, J

    1999-01-01

    The insulin receptor (IR) in two brothers with a rare syndrome of congenital muscle fiber type disproportion myopathy (CFTDM) associated with diabetes and severe insulin resistance was studied. By direct sequencing of Epstein-Barr virus-transformed lymphocytes both patients were found...... either of the two mutated receptors lacked basal or stimulated IR beta-subunit autophosphorylation. A third brother who inherited both normal alleles has an normal muscle phenotype and insulin sensitivity, suggesting a direct linkage of these IR mutations with the CFTDM phenotype....

  1. Probing Receptor Specificity by Sampling the Conformational Space of the Insulin-like Growth Factor II C-domain

    Czech Academy of Sciences Publication Activity Database

    Hexnerová, Rozálie; Křížková, Květoslava; Fábry, Milan; Sieglová, Irena; Kedrová, Kateřina; Collinsová, Michaela; Ullrichová, P.; Srb, Pavel; Williams, C.; Crump, M. P.; Tošner, Z.; Jiráček, Jiří; Veverka, Václav; Žáková, Lenka

    2016-01-01

    Roč. 291, č. 40 (2016), s. 21234-21245 ISSN 0021-9258 R&D Projects: GA ČR GA15-19018S; GA MŠk(CZ) LK11205; GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 ; RVO:68378050 Keywords : insulin * IGF-2 * receptor Subject RIV: CE - Biochemistry Impact factor: 4.125, year: 2016 http://www.jbc.org/content/291/40/21234.full

  2. Mice lacking the p43 mitochondrial T3 receptor become glucose intolerant and insulin resistant during aging.

    Directory of Open Access Journals (Sweden)

    Christelle Bertrand

    Full Text Available Thyroid hormones (TH play an important regulatory role in energy expenditure regulation and are key regulators of mitochondrial activity. We have previously identified a mitochondrial triiodothyronine (T3 receptor (p43 which acts as a mitochondrial transcription factor of the organelle genome, which leads in vitro and in vivo, to a stimulation of mitochondrial biogenesis. Recently, we generated mice carrying a specific p43 invalidation. At 2 months of age, we reported that p43 depletion in mice induced a major defect in insulin secretion both in vivo and in isolated pancreatic islets, and a loss of glucose-stimulated insulin secretion. The present study was designed to determine whether p43 invalidation influences life expectancy and modulates blood glucose and insulin levels as well as glucose tolerance or insulin sensitivity during aging. We report that from 4 months old onwards, mice lacking p43 are leaner than wild-type mice. p43-/- mice also have a moderate reduction of life expectancy compared to wild type. We found no difference in blood glucose levels, excepted at 24 months old where p43-/- mice showed a strong hyperglycemia in fasting conditions compared to controls animals. However, the loss of glucose-stimulated insulin secretion was maintained whatever the age of mice lacking p43. If up to 12 months old, glucose tolerance remained unchanged, beyond this age p43-/- mice became increasingly glucose intolerant. In addition, if up to 12 months old p43 deficient animals were more sensitive to insulin, after this age we observed a loss of this capacity, culminating in 24 months old mice with a decreased sensitivity to the hormone. In conclusion, we demonstrated that during aging the depletion of the mitochondrial T3 receptor p43 in mice progressively induced an increased glycemia in the fasted state, glucose intolerance and an insulin-resistance several features of type-2 diabetes.

  3. Postreceptor defects causing insulin resistance in normoinsulinemic non-insulin-dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Bolinder, J.; Ostman, J.; Arner, P.

    1982-01-01

    The mechanisms of the diminished hypoglycemic response to insulin in non-insulin-dependent diabetes mellitus (NIDDM) with normal levels of circulating plasma insulin were investigated. Specific binding of mono- 125 I (Tyr A14)-insulin to isolated adipocytes and effects of insulin (5--10,000 microunits/ml) on glucose oxidation and lipolysis were determined simultaneously in subcutaneous adipose tissue of seven healthy subjects of normal weight and seven untreated NIDDM patients with normal plasma insulin levels. The two groups were matched for age, sex, and body weight. Insulin binding, measured in terms of receptor number and affinity, was normal in NIDDM, the total number of receptors averaging 350,000 per cell. Neither sensitivity nor the maximum antilipolytic effect of insulin was altered in NIDDM patients as compared with control subjects; the insulin concentration producing half the maximum effect (ED50) was 10 microunits/ml. As regards the effect of insulin on glucose oxidation, for the control subjects ED50 was 30 microunits/ml, whereas in NIDDM patients, insulin exerted no stimulatory effect. The results obtained suggest that the effect of insulin on glucose utilization in normoinsulinemic NIDDM may be diminished in spite of normal insulin binding to receptors. The resistance may be due solely to postreceptor defects, and does not involve antilipolysis

  4. Dynamic Metabolomics Reveals that Insulin Primes the Adipocyte for Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    James R. Krycer

    2017-12-01

    Full Text Available Insulin triggers an extensive signaling cascade to coordinate adipocyte glucose metabolism. It is considered that the major role of insulin is to provide anabolic substrates by activating GLUT4-dependent glucose uptake. However, insulin stimulates phosphorylation of many metabolic proteins. To examine the implications of this on glucose metabolism, we performed dynamic tracer metabolomics in cultured adipocytes treated with insulin. Temporal analysis of metabolite concentrations and tracer labeling revealed rapid and distinct changes in glucose metabolism, favoring specific glycolytic branch points and pyruvate anaplerosis. Integrating dynamic metabolomics and phosphoproteomics data revealed that insulin-dependent phosphorylation of anabolic enzymes occurred prior to substrate accumulation. Indeed, glycogen synthesis was activated independently of glucose supply. We refer to this phenomenon as metabolic priming, whereby insulin signaling creates a demand-driven system to “pull” glucose into specific anabolic pathways. This complements the supply-driven regulation of anabolism by substrate accumulation and highlights an additional role for insulin action in adipocyte glucose metabolism.

  5. Influence of reductive diet and physical aerobic training on binding and degradation of 125J-insulin by erythrocyte receptors in children with simple obesity

    International Nuclear Information System (INIS)

    Szczesniak, L.; Rychlewski, T.; Kasprzak, Z.; Banaszak, F.

    1994-01-01

    Insuline resistance, expressed by lower insuline binding by receptors, is related to the obesity. Improvement of the binding was observed together with reduction of body weight and in result of physical exercise. In the work was investigated an influence of complex result of reductive diet at the level of 1300-1500 kcal and systematic half-an-hour aerobic exercise on binding and degradation of 125 J-insulin by erythrocyte receptors in children with simple obesity. The rest binding of insulin by erythrocyte receptors in obese children was compared with the result observed in the children having normal body weight. Results of these researches confirm that systematic physical exercise connected with reductive diet improves the indexes of lipid balance, increases efficiency of the organism, estimated by maximal oxygen absorption, decreases body weight and improves binding of 125 J-insulin to erythrocyte receptors. (authors)

  6. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice.

    Science.gov (United States)

    Liu, Jun-Li; Coschigano, Karen T; Robertson, Katie; Lipsett, Mark; Guo, Yubin; Kopchick, John J; Kumar, Ujendra; Liu, Ye Lauren

    2004-09-01

    Growth hormone, acting through its receptor (GHR), plays an important role in carbohydrate metabolism and in promoting postnatal growth. GHR gene-deficient (GHR(-/-)) mice exhibit severe growth retardation and proportionate dwarfism. To assess the physiological relevance of growth hormone actions, GHR(-/-) mice were used to investigate their phenotype in glucose metabolism and pancreatic islet function. Adult GHR(-/-) mice exhibited significant reductions in the levels of blood glucose and insulin, as well as insulin mRNA accumulation. Immunohistochemical analysis of pancreatic sections revealed normal distribution of the islets despite a significantly smaller size. The average size of the islets found in GHR(-/-) mice was only one-third of that in wild-type littermates. Total beta-cell mass was reduced 4.5-fold in GHR(-/-) mice, significantly more than their body size reduction. This reduction in pancreatic islet mass appears to be related to decreases in proliferation and cell growth. GHR(-/-) mice were different from the human Laron syndrome in serum insulin level, insulin responsiveness, and obesity. We conclude that growth hormone signaling is essential for maintaining pancreatic islet size, stimulating islet hormone production, and maintaining normal insulin sensitivity and glucose homeostasis.

  7. Effects of Steaming Time and Frequency for Manufactured Red Liriope platyphylla on the Insulin Secretion Ability and Insulin Receptor Signaling Pathway.

    Science.gov (United States)

    Choi, Sun Il; Lee, Hye Ryun; Goo, Jun Seo; Kim, Ji Eun; Nam, So Hee; Hwang, In Sik; Lee, Young Ju; Prak, So Hae; Lee, Hee Seob; Lee, Jong Sup; Jang, In Surk; Son, Hong Ju; Hwang, Dae Youn

    2011-06-01

    In oriental medicine, Liriope platyphylla (LP) has long been regarded as a curative herb useful for the treatment of diabetes, asthma, and neurodegenerative disorders. The principal objective of this study was to assess the effects of steaming time and frequency for manufactured Red LP (RLP) on insulin secretion ability and insulin receptor signaling pathway. To achieve our goal, several types of LPs manufactured under different conditions were applied to INS cells and streptozotocin (STZ)-induced diabetic ICR mice, after which alterations in insulin concentrations were detected in the culture supernatants and sera. The optimal concentration for the investigation of insulin secretion ability was found to be 50 ug/mL of LP. At this concentration, maximum insulin secretion was observed in the INS cells treated with LP extract steamed for 3 h (3-SLP) with two repeated steps (3 h steaming and 24 h air-dried) carried out 9 times (9-SALP); no significant changes in viability were detected in any of the treated cells. Additionally, the expression and phosphorylation levels of most components in the insulin receptor signaling pathway were increased significantly in the majority of cells treated with steaming-processed LP as compared to the cells treated with LP prepared without steaming. With regard to glucose transporter (GLUT) expression, alterations of steaming time induced similar responses on the expression levels of GLUT-2 and GLUT-3. However, differences in steaming frequency were also shown to induce dose-dependent responses in the expression level of GLUT-2 only; no significant differences in GLUT-3 expression were detected under these conditions. Furthermore, these responses observed in vitro were similarly detected in STZ-induced diabetic mice. 24-SLP and 9-SALP treatment applied for 14 days induced the down-regulation of glucose concentration and upregulation of insulin concentration. Therefore, these results indicated that the steaming processed LP may

  8. Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity.

    Science.gov (United States)

    Eisenstein, Sarah A; Gredysa, Danuta M; Antenor-Dorsey, Jo Ann; Green, Leonard; Arbeláez, Ana Maria; Koller, Jonathan M; Black, Kevin J; Perlmutter, Joel S; Moerlein, Stephen M; Hershey, Tamara

    2015-01-01

    Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30) and non-obese (n = 20; body mass indexmonetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methyl)benperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting). Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting). In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding and metabolic factors, including β-cell function, interact to affect reward discounting in humans.

  9. Effects of Bisphenol A on glucose homeostasis and brain insulin signaling pathways in male mice.

    Science.gov (United States)

    Fang, Fangfang; Chen, Donglong; Yu, Pan; Qian, Wenyi; Zhou, Jing; Liu, Jingli; Gao, Rong; Wang, Jun; Xiao, Hang

    2015-02-01

    The potential effects of Bisphenol A (BPA) on peripheral insulin resistance have recently gained more attention, however, its functions on brain insulin resistance are still unknown. The aim of the present study was to investigate the effects of BPA on insulin signaling and glucose transport in mouse brain. The male mice were administrated of 100 μg/kg/day BPA or vehicle for 15 days then challenged with glucose and insulin tolerance tests. The insulin levels were detected with radioimmunoassay (RIA), and the insulin signaling pathways were investigated by Western blot. Our results revealed that BPA significantly increased peripheral plasma insulin levels, and decreased the insulin signals including phosphorylated insulin receptor (p-IR), phosphorylated insulin receptor substrate 1 (p-IRS1), phosphorylated protein kinase B (p-AKT), phosphorylated glycogen synthase kinase 3β (p-GSK3β) and phosphorylated extracellular regulated protein kinases (p-ERK1/2) in the brain, though insulin expression in both hippocampus and profrontal cortex was increased. In parallel, BPA exposure might contribute to glucose transport disturbance in the brain since the expression of glucose transporters were markedly decreased. In conclusion, BPA exposure perturbs the insulin signaling and glucose transport in the brain, therefore, it might be a risk factor for brain insulin resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Responses of the insulin signaling pathways in the brown adipose tissue of rats following cold exposure.

    Science.gov (United States)

    Wang, Xiaofei; Wahl, Richard

    2014-01-01

    The insulin signaling pathway is critical for the control of blood glucose levels. Brown adipose tissue (BAT) has also been implicated as important in glucose homeostasis. The effect of short-term cold exposure on this pathway in BAT has not been explored. We evaluated the effect of 4 hours of cold exposure on the insulin pathway in the BAT of rats. Whole genomic microarray chips were used to examine the transcripts of the pathway in BAT of rats exposed to 4°C and 22°C for 4 hours. The 4 most significantly altered pathways following 4 hours of cold exposure were the insulin signaling pathway, protein kinase A, PI3K/AKT and ERK/MAPK signaling. The insulin signaling pathway was the most affected. In the documented 142 genes of the insulin pathway, 42 transcripts (29.6%) responded significantly to this cold exposure with the least false discovery rate (Benjamini-Hochberg Multiple Testing: -log10 (p-value)  = 7.18). Twenty-seven genes (64%) were up-regulated, including the insulin receptor (Insr), insulin substrates 1 and 2 (Irs1 and Irs2). Fifteen transcripts (36%) were down-regulated. Multiple transcripts of the primary target and secondary effector targets for the insulin signaling were also up-regulated, including those for carbohydrate metabolism. Using western blotting, we demonstrated that the cold induced higher Irs2, Irs1, and Akt-p protein levels in the BAT than in the BAT of controls maintained at room temperature, and higher Akt-p protein level in the muscle. this study demonstrated that 4 hours of cold exposure stimulated the insulin signaling pathway in the BAT and muscle of overnight fasted rats. This raises the possibility that acute cold stimulation may have potential to improve glucose clearance and insulin sensitivity.

  11. Effect of Kaiyu Qingwei Granule (开郁清胃颗粒) on Insulin Receptor in Liver and Skeletal Muscular Cell Membrane in Diabetes Mellitus Rats

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-fang (柳红芳); TONG Xiao-lin(仝小林); WANG Qing-guo(王庆国); ZUO Ping-ping(左萍萍); GUO An-chen(郭安臣); LIU Hong-xing(刘红星)

    2003-01-01

    Objective: To investigate the effect of Kaiyu Qingwei granule (KYQWG,开郁清胃颗粒) on the insulin binding capacity of liver and skeletal muscular cell membrane and serum insulin-like growth factor-1 (IGF-1) in streptozotocin-induced diabetic rats. Methods:Rats in four experimental groups were investigated: the control group, the model group, the KYQWG group and the Metformin group. The insulin binding rate (IBR) of liver and skeletal muscular cell membrane was detected by receptor-ligand radiometric method and changes of serum levels of glucose, insulin and IGF-1 were observed before and after 4 weeks of medication. Results: The KYQWG group had a lower blood glucose level and IBR of liver and muscular cell membrane, as compared with those in the model group (P<0.01 or P<0.05), and a higher level of IGF-1 than that in the model group(P<0.01), but had no obvious changes in the serum level of insulin. Conclusion: KYQWG may increase the serum level of IGF-1 in diabetic rats, thus to decrease the insulin resistance at ante-receptor sites and improve the sugar metabolic disturbance in rats with diabetes mellitus.

  12. Hepatic Insulin Resistance and Altered Gluconeogenic Pathway in Premature Baboons.

    Science.gov (United States)

    McGill-Vargas, Lisa; Gastaldelli, Amalia; Liang, Hanyu; Anzueto Guerra, Diana; Johnson-Pais, Teresa; Seidner, Steven; McCurnin, Donald; Muscogiuri, Giovanna; DeFronzo, Ralph; Musi, Nicolas; Blanco, Cynthia

    2017-05-01

    Premature infants have altered glucose regulation early in life and increased risk for diabetes in adulthood. Although prematurity leads to an increased risk of diabetes and metabolic syndrome in adult life, the role of hepatic glucose regulation and adaptation to an early extrauterine environment in preterm infants remain unknown. The purpose of this study was to investigate developmental differences in glucose metabolism, hepatic protein content, and gene expression of key insulin-signaling/gluconeogenic molecules. Fetal baboons were delivered at 67%, 75%, and term gestational age and euthanized at birth. Neonatal baboons were delivered prematurely (67% gestation), survived for two weeks, and compared with similar postnatal term animals and underwent serial hyperinsulinemic-euglycemic clamp studies. Premature baboons had decreased endogenous glucose production (EGP) compared with term animals. Consistent with these results, the gluconeogenic molecule, phosphoenolpyruvate carboxykinase messenger RNA, was decreased in preterm baboons compared with terms. Hepatic insulin signaling was altered by preterm birth as evidenced by decreased insulin receptor-β, p85 subunit of phosphoinositide 3-kinase, phosphorylated insulin receptor substrate 1, and Akt-1 under insulin-stimulated conditions. Furthermore, preterm baboons failed to have the normal increase in glycogen synthase kinase-α from fetal to postnatal life. The blunted responses in hepatic insulin signaling may contribute to the hyperglycemia of prematurity, while impaired EGP leads to hypoglycemia of prematurity. Copyright © 2017 Endocrine Society.

  13. Cell-Cell Adhesion and Insulin-Like Growth Factor I Receptor in Breast Cancer

    National Research Council Canada - National Science Library

    Bartucci, Monica

    2001-01-01

    .... Our goal was to study the role of the insulin-like growth factor I receptor (IGF-IR) in breast cancer. The IGF-IR is a multifunctional tyrosine kinase that has been recently implicated in breast tumor development and progression...

  14. Insulin Resistance

    DEFF Research Database (Denmark)

    Jensen, Benjamin Anderschou Holbech

    Insulin resistance (IR) is escalating with alarming pace and is no longer restricted to westernized countries. As a forerunner for some of the most serious threats to human health including metabolic syndrome, cardiovascular diseases, and type 2-diabetes, the need for new treatment modalities...... interventions. We further show that improving the inflammatory toning, using fish oil as fat source, protects mice against diet induced obesity and -inflammation while preserving insulin sensitivity, even in the absence of free fatty acid receptor 4. Conversely, HFD-induced intestinal dysbiosis is associated...

  15. Insulin, IGF-1, and GH Receptors Are Altered in an Adipose Tissue Depot-Specific Manner in Male Mice With Modified GH Action.

    Science.gov (United States)

    Hjortebjerg, Rikke; Berryman, Darlene E; Comisford, Ross; Frank, Stuart J; List, Edward O; Bjerre, Mette; Frystyk, Jan; Kopchick, John J

    2017-05-01

    Growth hormone (GH) is a determinant of glucose homeostasis and adipose tissue (AT) function. Using 7-month-old transgenic mice expressing the bovine growth hormone (bGH) gene and growth hormone receptor knockout (GHR-/-) mice, we examined whether changes in GH action affect glucose, insulin, and pyruvate tolerance and AT expression of proteins involved in the interrelated signaling pathways of GH, insulinlike growth factor 1 (IGF-1), and insulin. Furthermore, we searched for AT depot-specific differences in control mice. Glycated hemoglobin levels were reduced in bGH and GHR-/- mice, and bGH mice displayed impaired gluconeogenesis as judged by pyruvate tolerance testing. Serum IGF-1 was elevated by 90% in bGH mice, whereas IGF-1 and insulin were reduced by 97% and 61% in GHR-/- mice, respectively. Igf1 RNA was increased in subcutaneous, epididymal, retroperitoneal, and brown adipose tissue (BAT) depots in bGH mice (mean increase ± standard error of the mean in all five depots, 153% ± 27%) and decreased in all depots in GHR-/- mice (mean decrease, 62% ± 4%). IGF-1 receptor expression was decreased in all AT depots of bGH mice (mean decrease, 49% ± 6%) and increased in all AT depots of GHR-/- mice (mean increase, 94% ± 8%). Insulin receptor expression was reduced in retroperitoneal, mesenteric, and BAT depots in bGH mice (mean decrease in all depots, 56% ± 4%) and augmented in subcutaneous, retroperitoneal, mesenteric, and BAT depots in GHR-/- mice (mean increase: 51% ± 1%). Collectively, our findings indicate a role for GH in influencing hormone signaling in AT in a depot-dependent manner. Copyright © 2017 Endocrine Society.

  16. Increased mitochondrial substrate sensitivity in skeletal muscle of patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Larsen, S; Stride, N; Hey-Mogensen, Martin

    2011-01-01

    AIMS/HYPOTHESIS: Mitochondrial respiration has been linked to insulin resistance. We studied mitochondrial respiratory capacity and substrate sensitivity in patients with type 2 diabetes (patients), and obese and lean control participants. METHODS: Mitochondrial respiration was measured.......4). Substrate sensitivity for octanoyl-carnitine did not differ between groups. CONCLUSIONS/INTERPRETATION: Increased mitochondrial substrate sensitivity is seen in skeletal muscle from type 2 diabetic patients and is confined to non-lipid substrates. Respiratory capacity per mitochondrion is not decreased...... and maximal oxygen uptake (VO2) were also determined. Insulin sensitivity was determined with the isoglycaemic-hyperinsulinaemic clamp technique. RESULTS: Insulin sensitivity was different (p

  17. Retinol binding protein 4, obesity, and insulin resistance in adolescents

    Directory of Open Access Journals (Sweden)

    Ronaldi Noor

    2017-02-01

    Full Text Available Background Obesity is a global problem. Even in poor and developing countries, obesity has reached alarming levels. In childhood, obesity may lead to insulin resistance. Retinol binding protein (RBP4, secreted primarily by liver and adipose tissues, was recently proposed as a link between obesity and insulin resistance. The role of RBP4 in pediatric obesity and its relationship with insulin resistance have not been well elucidated. Objective To compare RBP4 levels in obese and lean adolescents and to assess for a relationship between RBP4 levels and insulin resistance. Method This cross-sectional study was conducted in three senior high schools in Padang, West Sumatera, Indonesia. Subjects were adolescents aged 14-18 years, who were obese or normal weight (n=56. We measured subjects’ body mass index (BMI and serum RBP4 concentrations. Insulin resistance was assessed using the homeostasis model assessment of insulin resistance (HOMA-IR index. Results Similar RBP4 levels were found in the obese and normoweight groups (P>0.05. Higher RBP4 levels were found in the insulin resistant compared to the non-insulin resistant group, but the difference was not significant (P > 0.05. Conclusion There is no significant difference in mean RBP4 levels in obese adolescents compared to normoweight adolescents. Nor are mean RBP4 levels significantly different between obese adolescents with and without insulin resistance.

  18. Glucose-Dependent Insulin Secretion in Pancreatic β-Cell Islets from Male Rats Requires Ca2+ Release via ROS-Stimulated Ryanodine Receptors.

    Directory of Open Access Journals (Sweden)

    Paola Llanos

    Full Text Available Glucose-stimulated insulin secretion (GSIS from pancreatic β-cells requires an increase in intracellular free Ca2+ concentration ([Ca2+]. Glucose uptake into β-cells promotes Ca2+ influx and reactive oxygen species (ROS generation. In other cell types, Ca2+ and ROS jointly induce Ca2+ release mediated by ryanodine receptor (RyR channels. Therefore, we explored here if RyR-mediated Ca2+ release contributes to GSIS in β-cell islets isolated from male rats. Stimulatory glucose increased islet insulin secretion, and promoted ROS generation in islets and dissociated β-cells. Conventional PCR assays and immunostaining confirmed that β-cells express RyR2, the cardiac RyR isoform. Extended incubation of β-cell islets with inhibitory ryanodine suppressed GSIS; so did the antioxidant N-acetyl cysteine (NAC, which also decreased insulin secretion induced by glucose plus caffeine. Inhibitory ryanodine or NAC did not affect insulin secretion induced by glucose plus carbachol, which engages inositol 1,4,5-trisphosphate receptors. Incubation of islets with H2O2 in basal glucose increased insulin secretion 2-fold. Inhibitory ryanodine significantly decreased H2O2-stimulated insulin secretion and prevented the 4.5-fold increase of cytoplasmic [Ca2+] produced by incubation of dissociated β-cells with H2O2. Addition of stimulatory glucose or H2O2 (in basal glucose to β-cells disaggregated from islets increased RyR2 S-glutathionylation to similar levels, measured by a proximity ligation assay; in contrast, NAC significantly reduced the RyR2 S-glutathionylation increase produced by stimulatory glucose. We propose that RyR2-mediated Ca2+ release, induced by the concomitant increases in [Ca2+] and ROS produced by stimulatory glucose, is an essential step in GSIS.

  19. Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents

    International Nuclear Information System (INIS)

    Arakawa, Masayuki; Ebato, Chie; Mita, Tomoya; Hirose, Takahisa; Kawamori, Ryuzo; Fujitani, Yoshio; Watada, Hirotaka

    2009-01-01

    Beta-cell proliferation is regulated by various metabolic demands including peripheral insulin resistance, obesity, and hyperglycemia. In addition to enhancement of glucose-induced insulin secretion, agonists for glucagon-like peptide-1 receptor (GLP-1R) stimulate proliferation and inhibit apoptosis of beta-cells, thereby probably preserve beta-cell mass. To evaluate the beta-cell preserving actions of GLP-1R agonists, we assessed the acute and chronic effects of exendin-4 on beta-cell proliferation, mass and glucose tolerance in C57BL/6J mice under various conditions. Short-term administration of high-dose exendin-4 transiently stimulated beta-cell proliferation. Comparative transcriptomic analysis showed upregulation of IGF-1 receptor and its downstream effectors in islets. Treatment of mice with exendin-4 daily for 4 weeks (long-term administration) and feeding high-fat diet resulted in significant inhibition of weight gain and improvement of glucose tolerance with reduced insulin secretion and beta-cell mass. These findings suggest that long-term GLP-1 treatment results in insulin sensitization of peripheral organs, rather than enhancement of beta-cell proliferation and function, particularly when animals are fed high-fat diet. Thus, the effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation largely depend on treatment dose, duration of treatment and meal contents. While GLP-1 enhances proliferation of beta-cells in some diabetic mice models, our results suggest that GLP-1 stimulates beta-cell growth only when expansion of beta-cell mass is required to meet metabolic demands.

  20. Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, Masayuki; Ebato, Chie; Mita, Tomoya [Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo (Japan); Hirose, Takahisa [Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo (Japan); Center for Therapeutic Innovations in Diabetes, Juntendo University School of Medicine, Tokyo (Japan); Kawamori, Ryuzo [Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo (Japan); Center for Therapeutic Innovations in Diabetes, Juntendo University School of Medicine, Tokyo (Japan); Center for Beta Cell Biology and Regeneration, Juntendo University School of Medicine, Tokyo (Japan); Sportology Center, Juntendo University School of Medicine, Tokyo (Japan); Fujitani, Yoshio, E-mail: fujitani@juntendo.ac.jp [Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo (Japan); Center for Therapeutic Innovations in Diabetes, Juntendo University School of Medicine, Tokyo (Japan); Watada, Hirotaka, E-mail: hwatada@juntendo.ac.jp [Department of Medicine, Metabolism and Endocrinology, Juntendo University School of Medicine, Tokyo (Japan); Sportology Center, Juntendo University School of Medicine, Tokyo (Japan)

    2009-12-18

    Beta-cell proliferation is regulated by various metabolic demands including peripheral insulin resistance, obesity, and hyperglycemia. In addition to enhancement of glucose-induced insulin secretion, agonists for glucagon-like peptide-1 receptor (GLP-1R) stimulate proliferation and inhibit apoptosis of beta-cells, thereby probably preserve beta-cell mass. To evaluate the beta-cell preserving actions of GLP-1R agonists, we assessed the acute and chronic effects of exendin-4 on beta-cell proliferation, mass and glucose tolerance in C57BL/6J mice under various conditions. Short-term administration of high-dose exendin-4 transiently stimulated beta-cell proliferation. Comparative transcriptomic analysis showed upregulation of IGF-1 receptor and its downstream effectors in islets. Treatment of mice with exendin-4 daily for 4 weeks (long-term administration) and feeding high-fat diet resulted in significant inhibition of weight gain and improvement of glucose tolerance with reduced insulin secretion and beta-cell mass. These findings suggest that long-term GLP-1 treatment results in insulin sensitization of peripheral organs, rather than enhancement of beta-cell proliferation and function, particularly when animals are fed high-fat diet. Thus, the effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation largely depend on treatment dose, duration of treatment and meal contents. While GLP-1 enhances proliferation of beta-cells in some diabetic mice models, our results suggest that GLP-1 stimulates beta-cell growth only when expansion of beta-cell mass is required to meet metabolic demands.

  1. Insulin signal transduction in skeletal muscle from glucose-intolerant relatives of type 2 diabetic patients [corrected

    DEFF Research Database (Denmark)

    Storgaard, H; Song, X M; Jensen, C B

    2001-01-01

    before and during a euglycemic-hyperinsulinemic clamp. IGT relatives were insulin-resistant in oxidative and nonoxidative pathways for glucose metabolism. In vivo insulin infusion increased skeletal muscle insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation (P = 0.01) and phosphatidylinositide......To determine whether defects in the insulin signal transduction cascade are present in skeletal muscle from prediabetic individuals, we excised biopsies from eight glucose-intolerant male first-degree relatives of patients with type 2 diabetes (IGT relatives) and nine matched control subjects...... 3-kinase (PI 3-kinase) activity (phosphotyrosine and IRS-1 associated) in control subjects (P increase in insulin action on IRS-1 tyrosine phosphorylation was lower in IGT relatives versus control subjects (P

  2. A nonsense mutation causing decreased levels of insulin receptor mRNA: Detection by a simplified technique for direct sequencing of genomic DNA amplified by the polymerase chain reaction

    International Nuclear Information System (INIS)

    Kadowaki, T.; Kadowaki, H.; Taylor, S.I.

    1990-01-01

    Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. The authors have studied a patient with leprechaunism (leprechaun/Minn-1), a genetic syndrome associated with intrauterine growth retardation and extreme insulin resistance. Genomic DNA from the patient was amplified by the polymerase chain reaction catalyzed by Thermus aquaticus (Taq) DNA polymerase, and the amplified DNA was directly sequenced. A nonsense mutations was identified at codon 897 in exon 14 in the paternal allele of the patient's insulin receptor gene. Levels of insulin receptor mRNA are decreased to <10% of normal in Epstein-Barr virus-transformed lymphoblasts and cultured skin fibroblasts from this patient. Thus, this nonsense mutation appears to cause a decrease in the levels of insulin receptor mRNA. In addition, they have obtained indirect evidence that the patient's maternal allele of the insulin receptor gene contains a cis-acting dominant mutation that also decreases the level of mRNA, but by a different mechanism. The nucleotide sequence of the entire protein-coding domain and the sequences of the intron-exon boundaries for all 22 exons of the maternal allele were normal. Presumably, the mutation in the maternal allele maps elsewhere in the insulin receptor gene. Thus, they conclude that the patient is a compound heterozygote for two cis-acting dominant mutations in the insulin receptor gene: (i) a nonsense mutation in the paternal allel that reduces the level of insulin receptor mRNA and (ii) an as yet unidentified mutation in the maternal allele that either decreases the rate of transcription or decreases the stability of the mRNA

  3. The LDL Receptor-Related Protein 1: At the Crossroads of Lipoprotein Metabolism and Insulin Signaling

    Directory of Open Access Journals (Sweden)

    Dianaly T. Au

    2017-01-01

    Full Text Available The metabolic syndrome is an escalating worldwide public health concern. Defined by a combination of physiological, metabolic, and biochemical factors, the metabolic syndrome is used as a clinical guideline to identify individuals with a higher risk for type 2 diabetes and cardiovascular disease. Although risk factors for type 2 diabetes and cardiovascular disease have been known for decades, the molecular mechanisms involved in the pathophysiology of these diseases and their interrelationship remain unclear. The LDL receptor-related protein 1 (LRP1 is a large endocytic and signaling receptor that is widely expressed in several tissues. As a member of the LDL receptor family, LRP1 is involved in the clearance of chylomicron remnants from the circulation and has been demonstrated to be atheroprotective. Recently, studies have shown that LRP1 is involved in insulin receptor trafficking and regulation and glucose metabolism. This review summarizes the role of tissue-specific LRP1 in insulin signaling and its potential role as a link between lipoprotein and glucose metabolism in diabetes.

  4. Restraint stress impairs glucose homeostasis through altered insulin ...

    African Journals Online (AJOL)

    The study investigated the potential alteration in the level of insulin and adiponectin, as well as the expression of insulin receptors (INSR) and glucose transporter 4 GLUT-4 in chronic restraint stress rats. Sprague-Dawley rats were randomly divided into two groups: the control group and stress group in which the rats were ...

  5. Type-I Insulin-Like Growth Factor Receptor (IGF1R)-Estrogen Receptor (ER) Crosstalk Contributes to Antiestrogen Therapy Resistance in Breast Cancer Cells

    Science.gov (United States)

    2013-02-01

    vitro have downregulated J GF1R making antibodies directed agai nst th is receptor ineffective. Inhlbition of IH may be necessary to manage ...monoclonal antibody to insulin-like growth factor receptor 1. J Clin Oncol 2009;27:580Q-7. 31. Drury s. Detre s. Leary A, Salter J, Reis-Filho J

  6. Comparative evaluation of optical methods and conventional isotope techniques for the detection of insulin receptors in heterogenous cell systems

    International Nuclear Information System (INIS)

    Thun, C.

    1984-01-01

    The findings of studies using radioactively labelled (I-125) insulin to characterise its binding to various heterogenous cell systems had led to a classification of the relevant receptors with those of high affinity and low capacity or vice versa. This, in turn, raised questions as to the binding properties of each individual cell or cell material of a heterogenous nature. Apparently homogenous (lymphocytes) and heterogenous (blood and islet cells) cell populations were investigated on the basis of various techniques for the separate evaluation of individual cells, which were cytofluorometry using FITC insulin and the analysis of gold insulin under the electron microscope. For the association kinetics and equilibration analysis or affinity and receptor quantity a radioactive tracer and light microscope were used. Insulin was shown to bind to erythrocytes, reticulocytes, monocytes and lymphocytes and this result finds confirmation in the relevant literature. Furthermore, binding parameters could be determined for isolated islet cells. Cytofluorometry pointed to the fact that the insulin receptors of an apparently homogenous cell system differed in affinity and number and permitted the use of a multiple parameter procedure. Thus, it holds out promise as a method to be routinely used in the clinical diagnosis of binding parameters, without requiring previous separation procedures that are complicated or involve a loss of material. Transmission electron microscopy permitted conclusions to be drawn as to the type of cell to which insulin is attached. Owing to the use of gold insulin it was possible to throw some light on the factors determining the fate of membrane-bound insulin during its uptake into the cell. (TRV) [de

  7. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells

    DEFF Research Database (Denmark)

    Billestrup, N; Møldrup, A; Serup, P

    1990-01-01

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, we have transfected ...

  8. Synthesis and Evaluation of a Library of Trifunctional Scaffold-Derived Compounds as Modulators of the Insulin Receptor.

    Science.gov (United States)

    Fabre, Benjamin; Pícha, Jan; Vaněk, Václav; Selicharová, Irena; Chrudinová, Martina; Collinsová, Michaela; Žáková, Lenka; Buděšínský, Miloš; Jiráček, Jiří

    2016-12-12

    We designed a combinatorial library of trifunctional scaffold-derived compounds, which were derivatized with 30 different in-house-made azides. The compounds were proposed to mimic insulin receptor (IR)-binding epitopes in the insulin molecule and bind to and activate this receptor. This work has enabled us to test our synthetic and biological methodology and to prove its robustness and reliability for the solid-phase synthesis and testing of combinatorial libraries of the trifunctional scaffold-derived compounds. Our effort resulted in the discovery of two compounds, which were able to weakly induce the autophosphorylation of IR and weakly bind to this receptor at a 0.1 mM concentration. Despite these modest biological results, which well document the well-known difficulty in modulating protein-protein interactions, this study represents a unique example of targeting the IR with a set of nonpeptide compounds that were specifically designed and synthesized for this purpose. We believe that this work can open new perspectives for the development of next-generation insulin mimetics based on the scaffold structure.

  9. Adipose Tissue Insulin Resistance in Gestational Diabetes.

    Science.gov (United States)

    Tumurbaatar, Batbayar; Poole, Aaron T; Olson, Gayle; Makhlouf, Michel; Sallam, Hanaa S; Thukuntla, Shwetha; Kankanala, Sucharitha; Ekhaese, Obos; Gomez, Guillermo; Chandalia, Manisha; Abate, Nicola

    2017-03-01

    Gestational diabetes mellitus (GDM) is a metabolic disorder characterized by insulin resistance (IR) and altered glucose-lipid metabolism. We propose that ectonucleotide pyrophosphate phosphodiesterase-1 (ENPP1), a protein known to induce adipocyte IR, is a determinant of GDM. Our objective was to study ENPP1 expression in adipose tissue (AT) of obese pregnant women with or without GDM, as well as glucose tolerance in pregnant transgenic (Tg) mice with AT-specific overexpression of human ENPP1. AT biopsies and blood were collected from body mass index-matched obese pregnant women non-GDM (n = 6), GDM (n = 7), and nonpregnant controls (n = 6) undergoing cesarian section or elective surgeries, respectively. We measured the following: (1) Expression of key molecules involved in insulin signaling and glucose-lipid metabolism in AT; (2) Plasma glucose and insulin levels and calculation of homeostasis model assessment of IR (HOMA-IR); (3) Intraperitoneal glucose tolerance test in AtENPP1 Tg pregnant mice. We found that: (1) Obese GDM patients have higher AT ENPP1 expression than obese non-GDM patients, or controls (P = 0.01-ANOVA). (2) ENPP1 expression level correlated negatively with glucose transporter 4 (GLUT4) and positively with insulin receptor substrate-1 (IRS-1) serine phosphorylation, and to other adipocyte functional proteins involved in glucose and lipid metabolism (P Pregnant AT ENPP1 Tg mice showed higher plasma glucose than wild type animals (P = 0.046-t test on area under curve [AUC] glucose ). Our results provide evidence of a causative link between ENPP1 and alterations in insulin signaling, glucose uptake, and lipid metabolism in subcutaneous abdominal AT of GDM, which may mediate IR and hyperglycemia in GDM.

  10. Converting Insulin-like Growth Factors 1 and 2 into High-Affinity Ligands for Insulin Receptor Isoform A by the Introduction of an Evolutionarily Divergent Mutation

    Czech Academy of Sciences Publication Activity Database

    Macháčková, Kateřina; Chrudinová, Martina; Radosavljević, Jelena; Potalitsyn, Pavlo; Křížková, Květoslava; Fábry, Milan; Selicharová, Irena; Collinsová, Michaela; Brzozowski, A. M.; Žáková, Lenka; Jiráček, Jiří

    2018-01-01

    Roč. 57, č. 16 (2018), s. 2373-2382 ISSN 0006-2960 R&D Projects: GA ČR GA15-19018S Institutional support: RVO:61388963 ; RVO:68378050 Keywords : insulin-like growth factor * insulin * receptor * analog Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 2.938, year: 2016 https://pubs.acs.org/doi/10.1021/acs.biochem.7b01260

  11. Role of aryl hydrocarbon receptor nuclear translocator in KATP channel-mediated insulin secretion in INS-1 insulinoma cells

    International Nuclear Information System (INIS)

    Kim, Ji-Seon; Zheng Haifeng; Kim, Sung Joon; Park, Jong-Wan; Park, Kyong Soo; Ho, Won-Kyung; Chun, Yang-Sook

    2009-01-01

    Aryl hydrocarbon receptor nuclear translocator (ARNT) has been known to participate in cellular responses to xenobiotic and hypoxic stresses, as a common partner of aryl hydrocarbon receptor and hypoxia inducible factor-1/2α. Recently, it was reported that ARNT is essential for adequate insulin secretion in response to glucose input and that its expression is downregulated in the pancreatic islets of diabetic patients. In the present study, the authors addressed the mechanism by which ARNT regulates insulin secretion in the INS-1 insulinoma cell line. In ARNT knock-down cells, basal insulin release was elevated, but insulin secretion was not further stimulated by a high-glucose challenge. Electrophysiological analyses revealed that glucose-dependent membrane depolarization was impaired in these cells. Furthermore, K ATP channel activity and expression were reduced. Of two K ATP channel subunits, Kir6.2 was found to be positively regulated by ARNT at the mRNA and protein levels. Based on these results, the authors suggest that ARNT expresses K ATP channel and by so doing regulates glucose-dependent insulin secretion.

  12. Clinical study on insulin receptors of mononuclear cells in diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Dalimunthe, D [Hiroshima Univ. (Japan). School of Medicine

    1980-12-01

    /sup 125/I-insulin binding activity to mononuclear cells was studied in 75 noninsulin-dependent diabetic subjects and 31 normal subjects and the following results were obtained. 1. /sup 125/I-insulin binding is directly proportional to the mononuclear cell concentrations. There is a linear increase of specific /sup 125/I-insulin binding. 2. The binding of /sup 125/I-insulin to mononuclear cells is displaced by the increasing concentration of native insulin. 3. The /sup 125/I-insulin degradation in the incubation medium after incubation of mononuclear cells for 24 hours at 4/sup 0/C was almost 5% in this study. 4. The insulin binding activity in diabetic subjects was lower than that in normal subjects (P < 0.001) without any significant difference in affinity constant. 5. The relationship of binding activity to age of diabetics (r = 0.06, N.S), relative body weitht (r = 0.06, N.S) and duration of diabetes from onset was not significant. 6. In untreated noninsulin-dependent diabetics the insulin binding activity was inversely correlated to fasting blood glucose level (r = 0.78, P < 0.001) and slightly inversely correlated to serum insulin level (r = 0.47, P < 0.01). A slight inverse correlation was also observed in serum triglyceride level (r = 0.53, P < 0.01) and in total cholesterol level (r = 0.29, P < 0.05). 7. No significant difference between the binding activity was observed by grade of diabetic retinopathy. 8. After treatment with diet and/or sulfonylurea, the diabetics exhibited a significant increase in insulin binding activity (P < 0.005) but no significant difference in plasma insulin level, body weight and plasma lipid levels was observed.

  13. Tobacco Smoke Exposure Impairs Brain Insulin/IGF Signaling: Potential Co-Factor Role in Neurodegeneration.

    Science.gov (United States)

    Deochand, Chetram; Tong, Ming; Agarwal, Amit R; Cadenas, Enrique; de la Monte, Suzanne M

    2016-01-01

    Human studies suggest tobacco smoking is a risk factor for cognitive impairment and neurodegeneration, including Alzheimer's disease (AD). However, experimental data linking tobacco smoke exposures to underlying mediators of neurodegeneration, including impairments in brain insulin and insulin-like growth factor (IGF) signaling in AD are lacking. This study tests the hypothesis that cigarette smoke (CS) exposures can impair brain insulin/IGF signaling and alter expression of AD-associated proteins. Adult male A/J mice were exposed to air for 8 weeks (A8), CS for 4 or 8 weeks (CS4, CS8), or CS8 followed by 2 weeks recovery (CS8+R). Gene expression was measured by qRT-PCR analysis and proteins were measured by multiplex bead-based or direct binding duplex ELISAs. CS exposure effects on insulin/IGF and insulin receptor substrate (IRS) proteins and phosphorylated proteins were striking compared with the mRNA. The main consequences of CS4 or CS8 exposures were to significantly reduce insulin R, IGF-1R, IRS-1, and tyrosine phosphorylated insulin R and IGF-1R proteins. Paradoxically, these effects were even greater in the CS8+R group. In addition, relative levels of S312-IRS-1, which inhibits downstream signaling, were increased in the CS4, CS8, and CS8+R groups. Correspondingly, CS and CS8+R exposures inhibited expression of proteins and phosphoproteins required for signaling through Akt, PRAS40, and/or p70S6K, increased AβPP-Aβ, and reduced ASPH protein, which is a target of insulin/IGF-1 signaling. Secondhand CS exposures caused molecular and biochemical abnormalities in brain that overlap with the findings in AD, and many of these effects were sustained or worsened despite short-term CS withdrawal.

  14. Selective Insulin Resistance in Adipocytes*

    Science.gov (United States)

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H.; Fazakerley, Daniel J.; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C.; Coster, Adelle C. F.; Stöckli, Jacqueline; James, David E.

    2015-01-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. PMID:25720492

  15. Retinol-Binding Protein 4 and Insulin Resistance in Polycystic Ovary Syndrome

    OpenAIRE

    Hutchison, Samantha K.; Harrison, Cheryce; Stepto, Nigel; Meyer, Caroline; Teede, Helena J.

    2008-01-01

    OBJECTIVE?Polycystic ovary syndrome (PCOS) is an insulin-resistant state with insulin resistance being an established therapeutic target; however, measurement of insulin resistance remains challenging. We aimed to 1) determine serum retinol-binding protein 4 (RBP4) levels (purported to reflect insulin resistance) in women with PCOS and control subjects, 2) examine the relationship of RBP4 to conventional markers of insulin resistance, and 3) examine RBP4 changes with interventions modulating ...

  16. Mechanisms of estradiol-induced insulin secretion by the G protein-coupled estrogen receptor GPR30/GPER in pancreatic beta-cells.

    Science.gov (United States)

    Sharma, Geetanjali; Prossnitz, Eric R

    2011-08-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes.

  17. Mechanisms of Estradiol-Induced Insulin Secretion by the G Protein-Coupled Estrogen Receptor GPR30/GPER in Pancreatic β-Cells

    Science.gov (United States)

    Sharma, Geetanjali

    2011-01-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes. PMID:21673097

  18. Fatty acid represses insulin receptor gene expression by impairing HMGA1 through protein kinase Cε

    International Nuclear Information System (INIS)

    Dey, Debleena; Bhattacharya, Anirban; Roy, SibSankar; Bhattacharya, Samir

    2007-01-01

    It is known that free fatty acid (FFA) contributes to the development of insulin resistance and type2 diabetes. However, the underlying mechanism in FFA-induced insulin resistance is still unclear. In the present investigation we have demonstrated that palmitate significantly (p < 0.001) inhibited insulin-stimulated phosphorylation of PDK1, the key insulin signaling molecule. Consequently, PDK1 phosphorylation of plasma membrane bound PKCε was also inhibited. Surprisingly, phosphorylation of cytosolic PKCε was greatly stimulated by palmitate; this was then translocated to the nuclear region and associated with the inhibition of insulin receptor (IR) gene transcription. A PKCε translocation inhibitor peptide, εV1, suppressed this inhibitory effect of palmitate, suggesting requirement of phospho-PKCε migration to implement palmitate effect. Experimental evidences indicate that phospho-PKCε adversely affected HMGA1. Since HMGA1 regulates IR promoter activity, expression of IR gene was impaired causing reduction of IR on cell surface and that compromises with insulin sensitivity

  19. Insulin-induced tyrosine phosphorylation of a M(r) 70,000 protein revealed by association with the Src homology 2 (SH2) and SH3 domains of p120GAP and Grb2

    NARCIS (Netherlands)

    Medema, J. P.; Pronk, G. J.; de Vries-Smits, A. M.; Clark, R.; McCormick, F.; Bos, J. L.

    1996-01-01

    We have used two approaches to identify possible substrates of the insulin receptor (IR) tyrosine kinase. First, we used a potent tyrosine phosphatase inhibitor, phenylarsine oxide (PAO), which is reported to be specific for the insulin-induced signal transduction route, to augment tyrosine

  20. Fixed ratio combinations of glucagon like peptide 1 receptor agonists with basal insulin: a systematic review and meta-analysis.

    Science.gov (United States)

    Liakopoulou, Paraskevi; Liakos, Aris; Vasilakou, Despoina; Athanasiadou, Eleni; Bekiari, Eleni; Kazakos, Kyriakos; Tsapas, Apostolos

    2017-06-01

    Basal insulin controls primarily fasting plasma glucose but causes hypoglycaemia and weight gain, whilst glucagon like peptide 1 receptor agonists induce weight loss without increasing risk for hypoglycaemia. We conducted a systematic review and meta-analysis of randomised controlled trials to investigate the efficacy and safety of fixed ratio combinations of basal insulin with glucagon like peptide 1 receptor agonists. We searched Medline, Embase, and the Cochrane Library as well as conference abstracts up to December 2016. We assessed change in haemoglobin A 1c , body weight, and incidence of hypoglycaemia and gastrointestinal adverse events. We included eight studies with 5732 participants in the systematic review. Switch from basal insulin to fixed ratio combinations with a glucagon like peptide 1 receptor agonist was associated with 0.72% reduction in haemoglobin A 1c [95% confidence interval -1.03 to -0.41; I 2  = 93%] and 2.35 kg reduction in body weight (95% confidence interval -3.52 to -1.19; I 2  = 93%), reducing also risk for hypoglycaemia [odds ratio 0.70; 95% confidence interval 0.57 to 0.86; I 2  = 85%] but increasing incidence of nausea (odds ratio 6.89; 95% confidence interval 3.73-12.74; I 2  = 79%). Similarly, switching patients from treatment with a glucagon like peptide 1 receptor agonist to a fixed ratio combination with basal insulin was associated with 0.94% reduction in haemoglobin A 1c (95% confidence interval -1.11 to -0.77) and an increase in body weight by 2.89 kg (95% confidence interval 2.17-3.61). Fixed ratio combinations of basal insulin with glucagon like peptide 1 receptor agonists improve glycaemic control whilst balancing out risk for hypoglycaemia and gastrointestinal side effects.

  1. Swimming training induces liver adaptations to oxidative stress and insulin sensitivity in rats submitted to high-fat diet.

    Science.gov (United States)

    Zacarias, Aline Cruz; Barbosa, Maria Andrea; Guerra-Sá, Renata; De Castro, Uberdan Guilherme Mendes; Bezerra, Frank Silva; de Lima, Wanderson Geraldo; Cardoso, Leonardo M; Santos, Robson Augusto Souza Dos; Campagnole-Santos, Maria José; Alzamora, Andréia Carvalho

    2017-11-01

    Oxidative stress, physical inactivity and high-fat (FAT) diets are associated with hepatic disorders such as metabolic syndrome (MS). The therapeutic effects of physical training (PT) were evaluated in rats with MS induced by FAT diet for 13 weeks, on oxidative stress and insulin signaling in the liver, during the last 6 weeks. FAT-sedentary (SED) rats increased body mass, retroperitoneal fat, mean arterial pressure (MAP) and heart rate (HR), and total cholesterol, serum alanine aminotransferase, glucose and insulin. Livers of FAT-SED rats increased superoxide dismutase activity, thiobarbituric acid-reactive substances, protein carbonyl and oxidized glutathione (GSSG); and decreased catalase activity, reduced glutathione/GSSG ratio, and the mRNA expression of insulin receptor substrate 1 (IRS-1) and serine/threonine kinase 2. FAT-PT rats improved in fitness and reduced their body mass, retroperitoneal fat, and glucose, insulin, total cholesterol, MAP and HR; and their livers increased superoxide dismutase and catalase activities, the reduced glutathione/GSSG ratio and the expression of peroxisome proliferator-activated receptor gamma and insulin receptor compared to FAT-SED rats. These findings indicated adaptive responses to PT by restoring the oxidative balance and insulin signaling in the liver and certain biometric and biochemical parameters as well as MAP in MS rats.

  2. Insulin: its binding to specific receptors and its stimulation of DNA synthesis and 2',3'-cyclic nucleotide phosphohydrolase in embryonic mouse brain cell cultures

    International Nuclear Information System (INIS)

    Shanker, G.; Pieringer, R.A.

    1986-01-01

    Previously, the authors demonstrated that ornithine decarboxylase was stimulated by insulin in cultures of embryonic mouse brain cells. In the present work, they have investigated the presence and specificity of insulin receptors in these cultures. A time study showed that maximum binding of 125 [I] labelled insulin was around 75 min. Other studies measured the influence of concentration and age on insulin binding. A displacement study using increasing concentrations of cold insulin, glucagon or growth hormone demonstrated that the specificity of the receptors for insulin was rather high. It was also found that insulin displayed a clear dose-dependent stimulation of thymidine incorporation into the brain cells. Insulin also stimulated the glial enzyme 2':3'-cyclic nucleotide phosphohydrolase (CNP-ase). The results suggest a dual role for insulin; it regulates both cell proliferation as well as differentiation

  3. Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity.

    Directory of Open Access Journals (Sweden)

    Sarah A Eisenstein

    Full Text Available Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30 and non-obese (n = 20; body mass index<30 adults were assessed for percent body fat with dual-energy X-ray absorptiometry and for β-cell function using disposition index. Choice of larger, but delayed or less certain, monetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methylbenperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting. Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting. In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding

  4. Quasi-Steady-State Analysis based on Structural Modules and Timed Petri Net Predict System’s Dynamics: The Life Cycle of the Insulin Receptor

    Directory of Open Access Journals (Sweden)

    Jennifer Scheidel

    2015-12-01

    Full Text Available The insulin-dependent activation and recycling of the insulin receptor play an essential role in the regulation of the energy metabolism, leading to a special interest for pharmaceutical applications. Thus, the recycling of the insulin receptor has been intensively investigated, experimentally as well as theoretically. We developed a time-resolved, discrete model to describe stochastic dynamics and study the approximation of non-linear dynamics in the context of timed Petri nets. Additionally, using a graph-theoretical approach, we analyzed the structure of the regulatory system and demonstrated the close interrelation of structural network properties with the kinetic behavior. The transition invariants decomposed the model into overlapping subnetworks of various sizes, which represent basic functional modules. Moreover, we computed the quasi-steady states of these subnetworks and demonstrated that they are fundamental to understand the dynamic behavior of the system. The Petri net approach confirms the experimental results of insulin-stimulated degradation of the insulin receptor, which represents a common feature of insulin-resistant, hyperinsulinaemic states.

  5. Functional insulin receptors are overexpressed in thyroid tumors: is this an early event in thyroid tumorigenesis?

    Science.gov (United States)

    Frittitta, L; Sciacca, L; Catalfamo, R; Ippolito, A; Gangemi, P; Pezzino, V; Filetti, S; Vigneri, R

    1999-01-15

    Insulin receptor (IR), a member of the receptor tyrosine kinase family, is expressed in normal thyroid cells and affects thyroid cell proliferation and differentiation. The authors measured IR content in benign and malignant thyroid tumors by three independent methods: a specific radioimmunoassay, 125I-insulin binding studies, and immunohistochemistry. The results obtained were compared with the IR content in paired, adjacent, normal thyroid tissue. To assess IR function in thyroid carcinoma cells, glucose uptake responsiveness to insulin was also studied in a human transformed thyroid cell line (B-CPAP) and in follicular carcinoma cells in primary culture. In 9 toxic adenomas, the average IR content was similar to that observed in the 9 paired normal thyroid tissue specimens from the same patients (2.2+/-0.3 vs. 2.1+/-0.3). In 13 benign nonfunctioning, or "cold," adenomas, the average IR content was significantly higher (P thyroid tissue (4.0+/-0.4 vs. 1.6+/-0.2 and 5.6+/-1.0 vs. 1.8+/-0.2, respectively). The finding of a higher IR content in benign "cold" adenomas and in thyroid carcinomas was confirmed by both binding and immunostaining studies. The current studies indicate that 1) IR content is elevated in most follicular and papillary differentiated thyroid carcinomas, and 2) IR content is also elevated in most benign follicular adenomas ("cold" nodules) but not in highly differentiated, hyperfunctioning follicular adenomas ("hot" nodules), which very rarely become malignant. This observation suggests that increased IR expression is not restricted to the thyroid malignant phenotype but is already present in the premalignant "cold" adenomas. It may contribute, therefore, to thyroid tumorigenesis and/or represent an early event that gives a selective growth advantage to transformed thyroid cells.

  6. Neuroprotective Effect of Insulin-like Growth Factor-II on 1- Methyl-4 ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research July 2015; 14 (7): 1191-1197 ... Abstract. Purpose: To evaluate the receptor-mediated neuroprotective effect of insulin-like growth factor-II (IGF- ... catecholamines, reduces levels of dopamine and.

  7. Effects of Bariatric Surgery on Adipokine-Induced Inflammation and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Zeynep eGoktas

    2013-06-01

    Full Text Available Over a third of the US population is obese and at high risk for developing type 2 diabetes, insulin resistance and other metabolic disorders. Obesity is considered a chronic low grade inflammatory condition that is primarily attributed to expansion and inflammation of adipose tissues. Indeed, adipocytes produce and secrete numerous proinflammatory and anti-inflammatory cytokines known as adipokines. When the balance of these adipokines is shifted towards higher production of proinflammatory factors, local inflammation within adipose tissues and subsequently systemic inflammation occur. These adipokines including leptin, visfatin, resistin, apelin, vaspin, and retinol binding protein-4 can regulate inflammatory responses and contribute to the pathogenesis of diabetes. These effects are mediated by key inflammatory signaling molecules including activated serine kinases such as c-Jun N-terminal kinase (JNK and serine kinases inhibitor κB kinase (IKK and insulin signaling molecules including insulin receptor substrates, protein kinase B (PKB, also known as Akt, and nuclear factor kappa B (NF-kB. Bariatric surgery can decrease body weight and improve insulin resistance in morbidly obese subjects. However, despite reports suggesting reduced inflammation and weight-independent effects of bariatric surgery on glucose metabolism, mechanisms behind such improvements are not yet well understood. This review article focuses on some of these novel adipokines and discusses their changes after bariatric surgery and their relationship to insulin resistance, fat mass, inflammation, and glucose homeostasis.

  8. Insulin modulates hippocampally-mediated spatial working memory via glucose transporter-4.

    Science.gov (United States)

    Pearson-Leary, J; Jahagirdar, V; Sage, J; McNay, E C

    2018-02-15

    The insulin-regulated glucose transporter, GluT4, is a key molecule in peripheral insulin signaling. Although GluT4 is abundantly expressed in neurons of specific brain regions such as the hippocampus, the functional role of neuronal GluT4 is unclear. Here, we used pharmacological inhibition of GluT4-mediated glucose uptake to determine whether GluT4 mediates insulin-mediated glucose uptake in the hippocampus. Consistent with previous reports, we found that glucose utilization increased in the dorsal hippocampus of male rats during spontaneous alternation (SA), a hippocampally-mediated spatial working memory task. We previously showed that insulin signaling within the hippocampus is required for processing this task, and that administration of exogenous insulin enhances performance. At baseline levels of hippocampal insulin, inhibition of GluT4-mediated glucose uptake did not affect SA performance. However, inhibition of an upstream regulator of GluT4, Akt, did impair SA performance. Conversely, when a memory-enhancing dose of insulin was delivered to the hippocampus prior to SA-testing, inhibition of GluT4-mediated glucose transport prevented cognitive enhancement. These data suggest that baseline hippocampal cognitive processing does not require functional hippocampal GluT4, but that cognitive enhancement by supra-baseline insulin does. Consistent with these findings, we found that in neuronal cell culture, insulin increases glucose utilization in a GluT4-dependent manner. Collectively, these data demonstrate a key role for GluT4 in transducing the procognitive effects of elevated hippocampal insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Compensatory insulin receptor (IR) activation on inhibition of insulin-like growth factor-1 receptor (IGF-1R): rationale for cotargeting IGF-1R and IR in cancer.

    Science.gov (United States)

    Buck, Elizabeth; Gokhale, Prafulla C; Koujak, Susan; Brown, Eric; Eyzaguirre, Alexandra; Tao, Nianjun; Rosenfeld-Franklin, Maryland; Lerner, Lorena; Chiu, M Isabel; Wild, Robert; Epstein, David; Pachter, Jonathan A; Miglarese, Mark R

    2010-10-01

    Insulin-like growth factor-1 receptor (IGF-1R) is a receptor tyrosine kinase (RTK) and critical activator of the phosphatidylinositol 3-kinase-AKT pathway. IGF-1R is required for oncogenic transformation and tumorigenesis. These observations have spurred anticancer drug discovery and development efforts for both biological and small-molecule IGF-1R inhibitors. The ability for one RTK to compensate for another to maintain tumor cell viability is emerging as a common resistance mechanism to antitumor agents targeting individual RTKs. As IGF-1R is structurally and functionally related to the insulin receptor (IR), we asked whether IR is tumorigenic and whether IR-AKT signaling contributes to resistance to IGF-1R inhibition. Both IGF-1R and IR(A) are tumorigenic in a mouse mammary tumor model. In human tumor cells coexpressing IGF-1R and IR, bidirectional cross talk was observed following either knockdown of IR expression or treatment with a selective anti-IGF-1R antibody, MAB391. MAB391 treatment resulted in a compensatory increase in phospho-IR, which was associated with resistance to inhibition of IRS1 and AKT. In contrast, treatment with OSI-906, a small-molecule dual inhibitor of IGF-1R/IR, resulted in enhanced reduction in phospho-IRS1/phospho-AKT relative to MAB391. Insulin or IGF-2 activated the IR-AKT pathway and decreased sensitivity to MAB391 but not to OSI-906. In tumor cells with an autocrine IGF-2 loop, both OSI-906 and an anti-IGF-2 antibody reduced phospho-IR/phospho-AKT, whereas MAB391 was ineffective. Finally, OSI-906 showed superior efficacy compared with MAB391 in human tumor xenograft models in which both IGF-1R and IR were phosphorylated. Collectively, these data indicate that cotargeting IGF-1R and IR may provide superior antitumor efficacy compared with targeting IGF-1R alone.

  10. PGBR extract ameliorates TNF-α induced insulin resistance in hepatocytes

    Directory of Open Access Journals (Sweden)

    Fu-Chih Chen

    2018-01-01

    Full Text Available Pre-germinated brown rice (PGBR could ameliorate metabolic syndrome, however, not much research estimates the effect of PGBR extract on insulin resistance. The aim of this study is to examine the effects of PGBR extract in TNF-α induced insulin resistance. HepG2 cells, hepatocytes, were cultured in DMEM medium and added with 5 μM insulin or with insulin and 30 ng/ml TNF-α or with insulin, TNF-α and PGBR extract (50, 100, 300 μg/ml. The glucose levels of the medium were decreased by insulin, demonstrating insulin promoted glucose uptake into cell. However, TNF-α inhibited glucose uptake into cells treated with insulin. Moreover, insulin increased the protein expressions of AMP-activated protein kinase (AMPK, insulin receptor substrate-1 (IRS-1, phosphatidylinositol-3-kinase-α (PI3K-α, serine/threonine kinase PI3K-linked protein kinase B (Akt/PKB, glucose transporter-2 (GLUT-2, glucokinase (GCK, peroxisome proliferator activated receptor-α (PPAR-α and PPAR-γ. TNF-α activated p65 and MAPKs (JNK1/2 and ERK1/2 which worsened the expressions of AMPK, IRS-1, PI3K-α, Akt/PKB, GLUT-2, GCK, glycogen synthase kinase-3 (GSK-3, PPAR-α and PPAR-γ. Once this relationship was established, we added PGBR extract to cell with insulin and TNF-α. We found glucose levels of medium were lowered and that the protein expressions of AMPK, IRS-1, PI3K-α, Akt/PKB, GLUT-2, GCK, GSK-3, PPAR-α, PPAR-γ and p65, JNK1/2 were also recovered. In conclusion, this study found that TNF-α inhibited insulin stimulated glucose uptake and aggravated related proteins expressions, suggesting that it might cause insulin resistance. PGBR extract was found to ameliorate this TNF-α induced insulin resistance, suggesting that it might be used in the future to help control insulin resistance.

  11. MED25 is a mediator component of HNF4α-driven transcription leading to insulin secretion in pancreatic beta-cells.

    Directory of Open Access Journals (Sweden)

    Eun Hee Han

    Full Text Available Unique nuclear receptor Hepatocyte Nuclear Factor 4α (HNF4α is an essential transcriptional regulator for early development and proper function of pancreatic ß-cells, and its mutations are monogenic causes of a dominant inherited form of diabetes referred to as Maturity Onset Diabetes of the Young 1 (MODY1. As a gene-specific transcription factor, HNF4α exerts its function through various molecular interactions, but its protein recruiting network has not been fully characterized. Here we report the identification of MED25 as one of the HNF4α binding partners in pancreatic ß-cells leading to insulin secretion which is impaired in MODY patients. MED25 is one of the subunits of the Mediator complex that is required for induction of RNA polymerase II transcription by various transcription factors including nuclear receptors. This HNF4α-MED25 interaction was initially identified by a yeast-two-hybrid method, confirmed by in vivo and in vitro analyses, and proven to be mediated through the MED25-LXXLL motif in a ligand-independent manner. Reporter-gene based transcription assays and siRNA/shRNA-based gene silencing approaches revealed that this interaction is crucial for full activation of HNF4α-mediated transcription, especially expression of target genes implicated in glucose-stimulated insulin secretion. Selected MODY mutations at the LXXLL motif binding pocket disrupt these interactions and cause impaired insulin secretion through a 'loss-of-function' mechanism.

  12. Synthesis and Evaluation of a Library of Trifunctional Scaffold-Derived Compounds as Modulators of the Insulin Receptor

    Czech Academy of Sciences Publication Activity Database

    Fabre, Benjamin; Pícha, Jan; Vaněk, Václav; Selicharová, Irena; Chrudinová, Martina; Collinsová, Michaela; Žáková, Lenka; Buděšínský, Miloš; Jiráček, Jiří

    2016-01-01

    Roč. 18, č. 12 (2016), s. 710-722 ISSN 2156-8952 R&D Projects: GA ČR GA14-17305S Institutional support: RVO:61388963 Keywords : insulin mimetics * insulin receptor * library * protein-protein interactions * scaffold * trifunctional Subject RIV: CE - Biochemistry Impact factor: 3.168, year: 2016 http://pubs.acs.org/doi/full/10.1021/acscombsci.6b00132

  13. Phenolic Compounds from Fermented Berry Beverages Modulated Gene and Protein Expression To Increase Insulin Secretion from Pancreatic β-Cells in Vitro.

    Science.gov (United States)

    Johnson, Michelle H; de Mejia, Elvira Gonzalez

    2016-03-30

    Berries are a rich source of bioactive phenolic compounds that are able to bind and inhibit the enzyme dipeptidyl peptidase-IV (DPP-IV), a current target for type-2 diabetes therapy. The objectives were to determine the role of berry phenolic compounds to modulate incretin-cleaving DPP-IV and its substrate glucagon-like peptide-1 (GLP-1), insulin secretion from pancreatic β-cells, and genes and proteins involved in the insulin secretion pathway using cell culture. Anthocyanins (ANC) from 50% blueberry-50% blackberry (Blu-Bla) and 100% blackberry (Bla) fermented beverages at 50 μM cyanidin-3-glucoside equivalents increased (p beverages have the potential to modulate DPP-IV and its substrate GLP-1, to increase insulin secretion, and to upregulate expression of mRNA of insulin-receptor associated genes and proteins in pancreatic β-cells.

  14. High-Fat Diet Augments VPAC1 Receptor-Mediated PACAP Action on the Liver, Inducing LAR Expression and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Masanori Nakata

    2016-01-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP acts on multiple processes of glucose and energy metabolism. PACAP potentiates insulin action in adipocytes and insulin release from pancreatic β-cells, thereby enhancing glucose tolerance. Contrary to these effects at organ levels, PACAP null mice exhibit hypersensitivity to insulin. However, this apparent discrepancy remains to be solved. We aimed to clarify the mechanism underlying the antidiabetic phenotype of PACAP null mice. Feeding with high-fat diet (HFD impaired insulin sensitivity and glucose tolerance in wild type mice, whereas these changes were prevented in PACAP null mice. HFD also impaired insulin-induced Akt phosphorylation in the liver in wild type mice, but not in PACAP null mice. Using GeneFishing method, HFD increased the leukocyte common antigen-related (LAR protein tyrosine phosphatase in the liver in wild type mice. Silencing of LAR restored the insulin signaling in the liver of HFD mice. Moreover, the increased LAR expression by HFD was prevented in PACAP null mice. HFD increased the expression of VPAC1 receptor (VPAC1-R, one of three PACAP receptors, in the liver of wild type mice. These data indicate that PACAP-VPAC1-R signaling induces LAR expression and insulin resistance in the liver of HFD mice. Antagonism of VPAC1-R may prevent progression of HFD-induced insulin resistance in the liver, providing a novel antidiabetic strategy.

  15. The importance of α-CT and Salt bridges in the Formation of Insulin and its Receptor Complex by Computational Simulation.

    Science.gov (United States)

    Dehghan-Shasaltaneh, Marzieh; Lanjanian, Hossein; Riazi, Gholam Hossein; Masoudi-Nejad, Ali

    2018-01-01

    Insulin hormone is an important part of the endocrine system. It contains two polypeptide chains and plays a pivotal role in regulating carbohydrate metabolism. Insulin receptors (IR) located on cell surface interacts with insulin to control the intake of glucose. Although several studies have tried to clarify the interaction between insulin and its receptor, the mechanism of this interaction remains elusive because of the receptor's structural complexity and structural changes during the interaction. In this work, we tried to fractionate the interactions. Therefore, sequential docking method utilization of HADDOCK was used to achieve the mentioned goal, so the following processes were done: the first, two pdb files of IR i.e., 3LOH and 3W11 were concatenated using modeller. The second, flexible regions of IR were predicted by HingeProt. Output files resulting from HingeProt were uploaded into HADDOCK. Our results predict new salt bridges in the complex and emphasize on the role of salt bridges to maintain an inverted V structure of IR. Having an inverted V structure leads to activate intracellular signaling pathway. In addition to presence salt bridges to form a convenient structure of IR, the importance of α-chain of carboxyl terminal (α-CT) to interact with insulin was surveyed and also foretokened new insulin/IR contacts, particularly at site 2 (rigid parts 2 and 3). Finally, several conformational changes in residues Asn711-Val715 of α-CT were occurred, we suggest that α-CT is a suitable situation relative to insulin due to these conformational alterations.

  16. Radioreceptor assay for insulin

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazuo [Tokyo Univ. (Japan). Faculty of Medicine

    1975-04-01

    Radioreceptor assay of insulin was discussed from the aspects of the measuring method, its merits and problems to be solved, and its clinical application. Rat liver 10 x g pellet was used as receptor site, and enzymatic degradation of insulin by the system contained in this fraction was inhibited by adding 1 mM p-CMB. /sup 125/I-labelled porcine insulin was made by lactoperoxidase method under overnight incubation at 4/sup 0/C and later purification by Sephadex G-25 column and Whatman CF-11 cellulose powder. Dog pancreatic vein serum insulin during and after the glucose load was determined by radioreceptor assay and radioimmunoassay resulting that both measurements accorded considerably. Radioreceptor assay would clarify the pathology of disorders of glucose metabolism including diabetes.

  17. Expression of an insulin/interleukin-1 receptor antagonist hybrid gene in insulin-producing cell lines (HIT-T15 and NIT-1) confers resistance against interleukin-1-induced nitric oxide production.

    Science.gov (United States)

    Welsh, N; Bendtzen, K; Welsh, M

    1995-01-01

    A hybrid gene consisting of the insulin gene enhancer/promoter region, the signal sequence, the insulin B- and C-chains, and the human interleukin-1 receptor antagonist (IL-1ra) gene was constructed. This hybrid gene was transfected together with the pSV2-neo construct into the insulin-producing cell lines HIT-T15 and NIT-1. One of the geneticin-selected clones, HITra2, expressed a 1.4-kb mRNA, which hybridized both to insulin and IL-1ra-cDNA in Northern blot analysis. Three proteins, with the mol wt 23, 17, and 14 kD, were immunoprecipitated with anti-IL-1ra antibodies from [35S]methionine-labeled HITra2 cells. Both at a low and at a high glucose concentration, 4-5 ng of IL-1ra/10(6) cells (ELISA) was released from these cells. On the other hand, a high glucose concentration evoked a three-fold increase in the release of insulin, suggesting that IL-1ra was released constitutively. Measured by nitrite production, transfected HIT, and NIT-1 cells exhibited a more than 10-fold decrease in IL-1 beta sensitivity. Since the conditioned culture media from the HITra2 cells exhibited an anti-IL-1 beta activity of only 0.5 U/ml, and mixed culture of HITra2 cells and isolated rat islets prevented IL-1 beta induced inhibition of insulin release, it is likely that IL-1ra acts locally at the cell surface. It is concluded that expression of a hybrid insulin/IL-1ra gene confers resistance to IL-1 and that this technique may be used to elucidate the role of IL-1 in autoimmune disorders such as insulin-dependent diabetes mellitus. Images PMID:7706480

  18. Deletion of interleukin 1 receptor-associated kinase 1 (Irak1) improves glucose tolerance primarily by increasing insulin sensitivity in skeletal muscle.

    Science.gov (United States)

    Sun, Xiao-Jian; Kim, Soohyun Park; Zhang, Dongming; Sun, Helen; Cao, Qi; Lu, Xin; Ying, Zhekang; Li, Liwu; Henry, Robert R; Ciaraldi, Theodore P; Taylor, Simeon I; Quon, Michael J

    2017-07-21

    Chronic inflammation may contribute to insulin resistance via molecular cross-talk between pathways for pro-inflammatory and insulin signaling. Interleukin 1 receptor-associated kinase 1 (IRAK-1) mediates pro-inflammatory signaling via IL-1 receptor/Toll-like receptors, which may contribute to insulin resistance, but this hypothesis is untested. Here, we used male Irak1 null (k/o) mice to investigate the metabolic role of IRAK-1. C57BL/6 wild-type (WT) and k/o mice had comparable body weights on low-fat and high-fat diets (LFD and HFD, respectively). After 12 weeks on LFD (but not HFD), k/o mice ( versus WT) had substantially improved glucose tolerance (assessed by the intraperitoneal glucose tolerance test (IPGTT)). As assessed with the hyperinsulinemic euglycemic glucose clamp technique, insulin sensitivity was 30% higher in the Irak1 k/o mice on chow diet, but the Irak1 deletion did not affect IPGTT outcomes in mice on HFD, suggesting that the deletion did not overcome the impact of obesity on glucose tolerance. Moreover, insulin-stimulated glucose-disposal rates were higher in the k/o mice, but we detected no significant difference in hepatic glucose production rates (± insulin infusion). Positron emission/computed tomography scans indicated higher insulin-stimulated glucose uptake in muscle, but not liver, in Irak1 k/o mice in vivo Moreover, insulin-stimulated phosphorylation of Akt was higher in muscle, but not in liver, from Irak1 k/o mice ex vivo In conclusion, Irak1 deletion improved muscle insulin sensitivity, with the effect being most apparent in LFD mice. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Insulin binding to erythrocytes after acute 16-methyleneprednisolone ingestion.

    Science.gov (United States)

    Dwenger, A; Holle, W; Zick, R; Trautschold, I

    1982-10-01

    The binding of [125I]insulin to erythrocytes, glucose and insulin were determined before and 1, 7 and 35 days after ingestion of 2 X 60-methyleneprednisolone. None of two groups of volunteers (7 males, 4 females showed clear alterations of the insulin binding parameters (Ka and R0), or of the fasting cortisol, glucose and insulin concentrations. These results exclude the possibility that the diabetogenic effect of glucocorticoides is accompanied by an alteration of the insulin receptor characteristics of erythrocytes.

  20. Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3-kinase- dependent mechanism.

    Science.gov (United States)

    Benomar, Yacir; Naour, Nadia; Aubourg, Alain; Bailleux, Virginie; Gertler, Arieh; Djiane, Jean; Guerre-Millo, Michèle; Taouis, Mohammed

    2006-05-01

    The insulin-sensitive glucose transporter Glut4 is expressed in brain areas that regulate energy homeostasis and body adiposity. In contrast with peripheral tissues, however, the impact of insulin on Glut4 plasma membrane (PM) translocation in neurons is not known. In this study, we examined the role of two anorexic hormones (leptin and insulin) on Glut4 translocation in a human neuronal cell line that express endogenous insulin and leptin receptors. We show that insulin and leptin both induce Glut4 translocation to the PM of neuronal cells and activate glucose uptake. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, totally abolished insulin- and leptin-dependent Glut4 translocation and stimulation of glucose uptake. Thus, Glut4 translocation is a phosphatidylinositol 3-kinase-dependent mechanism in neuronal cells. Next, we investigated the impact of chronic insulin and leptin treatments on Glut4 expression and translocation. Chronic exposure of neuronal cells to insulin or leptin down-regulates Glut4 proteins and mRNA levels and abolishes the acute stimulation of glucose uptake in response to acute insulin or leptin. In addition, chronic treatment with either insulin or leptin impaired Glut4 translocation. A cross-desensitization between insulin and leptin was apparent, where exposure to insulin affects leptin-dependent Glut4 translocation and vice versa. This cross-desensitization could be attributed to the increase in suppressor of cytokine signaling-3 expression, which was demonstrated in response to each hormone. These results provide evidence to suggest that Glut4 translocation to neuronal PM is regulated by both insulin and leptin signaling pathways. These pathways might contribute to an in vivo glucoregulatory reflex involving a neuronal network and to the anorectic effect of insulin and leptin.

  1. A novel insulin receptor-binding protein from Momordica charantia enhances glucose uptake and glucose clearance in vitro and in vivo through triggering insulin receptor signaling pathway.

    Science.gov (United States)

    Lo, Hsin-Yi; Ho, Tin-Yun; Li, Chia-Cheng; Chen, Jaw-Chyun; Liu, Jau-Jin; Hsiang, Chien-Yun

    2014-09-10

    Diabetes, a common metabolic disorder, is characterized by hyperglycemia. Insulin is the principal mediator of glucose homeostasis. In a previous study, we identified a trypsin inhibitor, named Momordica charantia insulin receptor (IR)-binding protein (mcIRBP) in this study, that might interact with IR. The physical and functional interactions between mcIRBP and IR were clearly analyzed in the present study. Photo-cross-linking coupled with mass spectrometry showed that three regions (17-21, 34-40, and 59-66 residues) located on mcIRBP physically interacted with leucine-rich repeat domain and cysteine-rich region of IR. IR-binding assay showed that the binding behavior of mcIRBP and insulin displayed a cooperative manner. After binding to IR, mcIRBP activated the kinase activity of IR by (5.87 ± 0.45)-fold, increased the amount of phospho-IR protein by (1.31 ± 0.03)-fold, affected phosphoinositide-3-kinase/Akt pathways, and consequently stimulated the uptake of glucose in 3T3-L1 cells by (1.36 ± 0.12)-fold. Intraperitoneal injection of 2.5 nmol/kg mcIRBP significantly decreased the blood glucose levels by 20.9 ± 3.2% and 10.8 ± 3.6% in normal and diabetic mice, respectively. Microarray analysis showed that mcIRBP affected genes involved in insulin signaling transduction pathway in mice. In conclusion, our findings suggest that mcIRBP is a novel IRBP that binds to sites different from the insulin-binding sites on IR and stimulates both the glucose uptake in cells and the glucose clearance in mice.

  2. High Uric Acid Induces Insulin Resistance in Cardiomyocytes In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Li Zhi

    Full Text Available Clinical studies have shown hyperuricemia strongly associated with insulin resistance as well as cardiovascular disease. Direct evidence of how high uric acid (HUA affects insulin resistance in cardiomyocytes, but the pathological mechanism of HUA associated with cardiovascular disease remains to be clarified. We aimed to examine the effect of HUA on insulin sensitivity in cardiomyocytes and on insulin resistance in hyperuricemic mouse model. We exposed primary cardiomyocytes and a rat cardiomyocyte cell line, H9c2 cardiomyocytes, to HUA, then quantified glucose uptake with a fluorescent glucose analog, 2-NBDG, after insulin challenge and detected reactive oxygen species (ROS production. Western blot analysis was used to examine the levels of insulin receptor (IR, phosphorylated insulin receptor substrate 1 (IRS1, Ser307 and phospho-Akt (Ser473. We monitored the impact of HUA on insulin resistance, insulin signaling and IR, phospho-IRS1 (Ser307 and phospho-Akt levels in myocardial tissue of an acute hyperuricemia mouse model established by potassium oxonate treatment. HUA inhibited insulin-induced glucose uptake in H9c2 and primary cardiomyocytes. It increased ROS production; pretreatment with N-acetyl-L-cysteine (NAC, a ROS scavenger, reversed HUA-inhibited glucose uptake induced by insulin. HUA exposure directly increased the phospho-IRS1 (Ser307 response to insulin and inhibited that of phospho-Akt in H9C2 cardiomyocytes, which was blocked by NAC. Furthermore, the acute hyperuricemic mice model showed impaired glucose tolerance and insulin tolerance accompanied by increased phospho-IRS1 (Ser307 and inhibited phospho-Akt response to insulin in myocardial tissues. HUA inhibited insulin signaling and induced insulin resistance in cardiomyocytes in vitro and in vivo, which is a novel potential mechanism of hyperuricemic-related cardiovascular disease.

  3. Insulin-like Growth Factor Receptor Inhibitors: Baby or the Bathwater?

    OpenAIRE

    Yee, Douglas

    2012-01-01

    The success of targeted therapies for cancer is undisputed; strong preclinical evidence has resulted in the approval of several new agents for cancer treatment. The type I insulin-like growth factor receptor (IGF1R) appeared to be one of these promising new targets. Substantial population and preclinical data have all pointed toward this pathway as an important regulator of tumor cell biology. Although early results from clinical trials that targeted the IGF1R showed some evidence of response...

  4. GQ-16, a Novel Peroxisome Proliferator-activated Receptor gamma (PPAR gamma) Ligand, Promotes Insulin Sensitization without Weight Gain

    NARCIS (Netherlands)

    Amato, Angelica A.; Rajagopalan, Senapathy; Lin, Jean Z.; Carvalho, Bruno M.; Figueira, Ana C. M.; Lu, Jenny; Ayers, Stephen D.; Mottin, Melina; Silveira, Rodrigo L.; Telles de Souza, Paulo; Mourao, Rosa H. V.; Saad, Mario J. A.; Togashi, Marie; Simeoni, Luiz A.; Abdalla, Dulcineia S. P.; Skaf, Munir S.; Polikparpov, Igor; Lima, Maria C. A.; Galdino, Suely L.; Brennan, Richard G.; Baxter, John D.; Pitta, Ivan R.; Webb, Paul; Phillips, Kevin J.; Neves, Francisco A. R.

    2012-01-01

    The recent discovery that peroxisome proliferator-activated receptor gamma (PPAR gamma) targeted anti-diabetic drugs function by inhibiting Cdk5-mediated phosphorylation of the receptor has provided a new viewpoint to evaluate and perhaps develop improved insulin-sensitizing agents. Herein we report

  5. Uteroplacental insufficiency down regulates insulin receptor and affects expression of key enzymes of long-chain fatty acid (LCFA metabolism in skeletal muscle at birth

    Directory of Open Access Journals (Sweden)

    Puglianiello Antonella

    2008-05-01

    Full Text Available Abstract Background Epidemiological studies have revealed a relationship between early growth restriction and the subsequent development of insulin resistance and type 2 diabetes. Ligation of the uterine arteries in rats mimics uteroplacental insufficiency and serves as a model of intrauterine growth restriction (IUGR and subsequent developmental programming of impaired glucose tolerance, hyperinsulinemia and adiposity in the offspring. The objective of this study was to investigate the effects of uterine artery ligation on the skeletal muscle expression of insulin receptor and key enzymes of LCFA metabolism. Methods Bilateral uterine artery ligation was performed on day 19 of gestation in Sprague-Dawley pregnant rats. Muscle of the posterior limb was dissected at birth and processed by real-time RT-PCR to analyze the expression of insulin receptor, ACCα, ACCβ (acetyl-CoA carboxylase alpha and beta subunits, ACS (acyl-CoA synthase, AMPK (AMP-activated protein kinase, alpha2 catalytic subunit, CPT1B (carnitine palmitoyltransferase-1 beta subunit, MCD (malonyl-CoA decarboxylase in 14 sham and 8 IUGR pups. Muscle tissue was treated with lysis buffer and Western immunoblotting was performed to assay the protein content of insulin receptor and ACC. Results A significant down regulation of insulin receptor protein (p Conclusion Our data suggest that uteroplacental insufficiency may affect skeletal muscle metabolism down regulating insulin receptor and reducing the expression of key enzymes involved in LCFA formation and oxidation.

  6. Mactosylceramide Prevents Glial Cell Overgrowth by Inhibiting Insulin and Fibroblast Growth Factor Receptor Signaling

    DEFF Research Database (Denmark)

    Gerdøe-Kristensen, Stine; Lund, Viktor K; Wandall, Hans H

    2017-01-01

    , in which the mannosyltransferase Egghead controls conversion of glucosylceramide (GlcCer) to mactosylceramide (MacCer). Lack of elongated GSL in egghead (egh) mutants causes overgrowth of subperineurial glia (SPG), largely due to aberrant activation of phosphatidylinositol 3-kinase (PI3K). However, to what...... of the Drosophila Insulin Receptor (InR) and the FGFR homolog Heartless (Htl) in wild type SPG, and is suppressed by inhibiting Htl and InR activity in egh. Knockdown of GlcCer synthase in the SPG fails to suppress glial overgrowth in egh nerves, and slightly promotes overgrowth in wild type, suggesting that RTK...... hyperactivation is caused by absence of MacCer and not by GlcCer accumulation. We conclude that an early product in GSL biosynthesis, MacCer, prevents inappropriate activation of Insulin and Fibroblast Growth Factor Receptors in Drosophila glia. This article is protected by copyright. All rights reserved....

  7. Characterization of the growth of murine fibroblasts that express human insulin receptors. I. The effect of insulin in the absence of other growth factors

    International Nuclear Information System (INIS)

    Randazzo, P.A.; Morey, V.A.; Polishook, A.K.; Jarett, L.

    1990-01-01

    The effect of insulin on the growth of murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental cells (NIH/3T3) was characterized. Insulin in the absence of other mitogens increased the rate of incorporation of thymidine into NIH 3T3/HIR cells with a half-maximal response occurring at an insulin concentration of 35 ng/ml and a maximal response that was equivalent to that elicited by 10% fetal calf serum. The thymidine incorporation rate was increased by 12 h, was maximal at approximately 16 h, and returned to basal rates at 24 h after the addition of insulin. Insulin induced a maximum of 65% of cells to incorporate thymidine. The increased DNA synthesis was accompanied by net growth. Addition of insulin to the NIH 3T3/HIR cells resulted in increased DNA content with a half-maximal response occurring at approximately 30 ng/ml insulin and a maximal response equivalent to that elicited by serum. An increase in cell number detected after the addition of insulin to the NIH 3T3/HIR suggests that the cells had progressed through mitosis. Insulin did not increase the rate of thymidine incorporation, DNA content, or number of the parental NIH 3T3 cells. These data show that insulin, in the absence of a second mitogen, is able to induce NIH 3T3/HIR fibroblasts to traverse the cell cycle

  8. Inhibition of central insulin-receptor signaling by S961 causes hyperglycemia and glucose intolerance in rats

    OpenAIRE

    Ajit Vikram; Gopabandhu Jena

    2011-01-01

    Genetic ablation studies confirmed the role of central insulin-receptor signaling (CIRS) in fuel metabolism. However, the need to examine the role of CIRS in glucose homeostasis under normal physiological condition is indispensable, as insulin affects the neuronal growth, differentiation and synaptic plasticity. Intracerebral administration of S961 induced hyperglycemia and glucose intolerance in normal rats, and provided direct evidence for the involvement of CIRS in the regulation of glucos...

  9. One week treatment with the IL-1 receptor antagonist anakinra leads to a sustained improvement in insulin sensitivity in insulin resistant patients with type 1 diabetes mellitus.

    Science.gov (United States)

    van Asseldonk, Edwin J P; van Poppel, Pleun C M; Ballak, Dov B; Stienstra, Rinke; Netea, Mihai G; Tack, Cees J

    2015-10-01

    Inflammation associated with obesity is involved in the development of insulin resistance. We hypothesized that anti-inflammatory treatment with the Interleukin-1 receptor antagonist anakinra would improve insulin sensitivity. In an open label proof-of-concept study, we included overweight patients diagnosed with type 1 diabetes with an HbA1c level over 7.5%. Selecting insulin resistant patients with longstanding type 1 diabetes allowed us to study the effects of anakinra on insulin sensitivity. Patients were treated with 100mg anakinra daily for one week. Insulin sensitivity, insulin need and blood glucose profiles were measured before, after one week and after four weeks of follow-up. Fourteen patients completed the study. One week of anakinra treatment led to an improvement of insulin sensitivity, an effect that was sustained for four weeks. Similarly, glucose profiles, HbA1c levels and insulin needs improved. In conclusion, one week of treatment with anakinra improves insulin sensitivity in patients with type 1 diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. (+-Rutamarin as a dual inducer of both GLUT4 translocation and expression efficiently ameliorates glucose homeostasis in insulin-resistant mice.

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    Full Text Available Glucose transporter 4 (GLUT4 is a principal glucose transporter in response to insulin, and impaired translocation or decreased expression of GLUT4 is believed to be one of the major pathological features of type 2 diabetes mellitus (T2DM. Therefore, induction of GLUT4 translocation or/and expression is a promising strategy for anti-T2DM drug discovery. Here we report that the natural product (+-Rutamarin (Rut functions as an efficient dual inducer on both insulin-induced GLUT4 translocation and expression. Rut-treated 3T3-L1 adipocytes exhibit efficiently enhanced insulin-induced glucose uptake, while diet-induced obese (DIO mice based assays further confirm the Rut-induced improvement of glucose homeostasis and insulin sensitivity in vivo. Subsequent investigation of Rut acting targets indicates that as a specific protein tyrosine phosphatase 1B (PTP1B inhibitor Rut induces basal GLUT4 translocation to some extent and largely enhances insulin-induced GLUT4 translocation through PI3 kinase-AKT/PKB pathway, while as an agonist of retinoid X receptor α (RXRα, Rut potently increases GLUT4 expression. Furthermore, by using molecular modeling and crystallographic approaches, the possible binding modes of Rut to these two targets have been also determined at atomic levels. All our results have thus highlighted the potential of Rut as both a valuable lead compound for anti-T2DM drug discovery and a promising chemical probe for GLUT4 associated pathways exploration.

  11. Gene expression of insulin signal-transduction pathway intermediates is lower in rats fed a beef tallow diet than in rats fed a safflower oil diet.

    Science.gov (United States)

    Kim, Y B; Nakajima, R; Matsuo, T; Inoue, T; Sekine, T; Komuro, M; Tamura, T; Tokuyama, K; Suzuki, M

    1996-09-01

    To elucidate the effects of dietary fatty acid composition on the insulin signaling pathway, we measured the gene expression of the earliest steps in the insulin action pathway in skeletal muscle of rats fed a safflower oil diet or a beef tallow diet. Rats were meal-fed an isoenergetic diet based on either safflower oil or beef tallow for 8 weeks. Both diets provided 45%, 35%, and 20% of energy as fat, carbohydrate, and protein, respectively. Insulin resistance, assessed from the diurnal rhythm of plasma glucose and insulin and the oral glucose tolerance test (OGTT), developed in rats fed a beef tallow diet. Body fat content was greater in rats fed a beef tallow diet versus a safflower oil diet. The level of insulin receptor mRNA, relative expression of the insulin receptor mRNA isoforms, and receptor protein were not affected by the composition of dietary fatty acids. The abundance of insulin receptor substrate-1 (IRS-1) and phosphatidylinositol (PI) 3-kinase mRNA and protein was significantly lower in rats fed a beef tallow diet versus a safflower oil diet. We conclude that long-term feeding of a high-fat diet with saturated fatty acids induces decrease in IRS-1 and PI 3-kinase mRNA and protein levels, causing insulin resistance in skeletal muscle.

  12. Effects of insulin analogs and glucagon-like peptide-1 receptor agonists on proliferation and cellular energy metabolism in papillary thyroid cancer

    Directory of Open Access Journals (Sweden)

    He L

    2017-11-01

    Full Text Available Liang He,1,* Siliang Zhang,2,* Xiaowen Zhang,3 Rui Liu,2 Haixia Guan,2 Hao Zhang1 1Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 2Department of Endocrinology and Metabolism, The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning, 3Department of Endocrinology and Metabolism, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, People’s Republic of China *These authors contributed equally to this work Purpose: This study was aimed to investigate the expressions of the insulin receptor (IR, insulin-like growth factor receptor (IGF-1R, and glucagon-like peptide-1 receptor (GLP-1R in normal thyroid tissue, papillary thyroid cancer (PTC tissues, and PTC cells, and to examine the possible role of insulin analogs and GLP-1R agonists in cell proliferation and energy metabolism in PTC cells.Methods: The expressions of IR, IGF-1R, and GLP-1R in PTC tissues and PTC cell lines were detected by immunohistochemistry and western blotting, respectively. Cell proliferation was evaluated by the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Levels of members of the phosphoinositol-3 kinase/AKT serine/threonine kinase (Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (Erk signaling pathways were measured by western blotting. Energy metabolism of PTC cell lines was analyzed using a Seahorse Extracellular Flux analyzer.Results: Three receptors could be detected in both PTC tissues and PTC cell lines. Expressions of IGF-1R and GLP-1R were more obvious in PTC than in normal thyroid cells. Neither insulin, four insulin analogs, and two GLP-1R agonists showed significant effects on the proliferation of PTC cells, nor did they influence the levels of Akt/p-Akt and Erk/p-Erk. None of these antidiabetic agents could change the mitochondrial

  13. Insulin receptor substrate-1 prevents autophagy-dependent cell death caused by oxidative stress in mouse NIH/3T3 cells

    Directory of Open Access Journals (Sweden)

    Chan Shih-Hung

    2012-07-01

    Full Text Available Abstract Background Insulin receptor substrate (IRS-1 is associated with tumorigenesis; its levels are elevated in several human cancers. IRS-1 protein binds to several oncogene proteins. Oxidative stress and reactive oxygen species (ROS are involved in the initiation and progression of cancers. Cancer cells produce greater levels of ROS than normal cells do because of increased metabolic stresses. However, excessive production of ROS kills cancer cells. Autophagy usually serves as a survival mechanism in response to stress conditions, but excessive induction of autophagy results in cell death. In addition to inducing necrosis and apoptosis, ROS induces autophagic cell death. ROS inactivates IRS-1 mediated signaling and reduces intracellular IRS-1 concentrations. Thus, there is a complex relationship between IRS-1, ROS, autophagy, and cancer. It is not fully understood how cancer cells grow rapidly and survive in the presence of high ROS levels. Methods and results In this study, we established mouse NIH/3T3 cells that overexpressed IRS-1, so mimicking cancers with increased IRS-1 expression levels; we found that the IRS-1 overexpressing cells grow more rapidly than control cells do. Treatment of cells with glucose oxidase (GO provided a continuous source of ROS; low dosages of GO promoted cell growth, while high doses induced cell death. Evidence for GO induced autophagy includes increased levels of isoform B-II microtubule-associated protein 1 light chain 3 (LC3, aggregation of green fluorescence protein-tagged LC3, and increased numbers of autophagic vacuoles in cells. Overexpression of IRS-1 resulted in inhibition of basal autophagy, and reduced oxidative stress-induced autophagy and cell death. ROS decreased the mammalian target of rapamycin (mTOR/p70 ribosomal protein S6 kinase signaling, while overexpression of IRS-1 attenuated this inhibition. Knockdown of autophagy-related gene 5 inhibited basal autophagy and diminished oxidative stress

  14. Additional disulfide bonds in insulin

    DEFF Research Database (Denmark)

    Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper

    2015-01-01

    The structure of insulin, a glucose homeostasis-controlling hormone, is highly conserved in all vertebrates and stabilized by three disulfide bonds. Recently, we designed a novel insulin analogue containing a fourth disulfide bond located between positions A10-B4. The N-terminus of insulin's B......-chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had...... in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus...

  15. A clinical study on insulin receptors of mononuclear cells in diabetes

    International Nuclear Information System (INIS)

    Dalimunthe, D.

    1980-01-01

    125 I-insulin binding activity to mononuclear cells was studied in 75 noninsulin-dependent diabetic subjects and 31 normal subjects and the following results were obtained. 1. 125 I-insulin binding is directly proportional to the mononuclear cell concentrations. There is a linear increase of specific 125 I-insulin binding. 2. The binding of 125 I-insulin to mononuclear cells is displaced by the increasing concentration of native insulin. 3. The 125 I-insulin degradation in the incubation medium after incubation of mononuclear cells for 24 hours at 4 0 C was almost 5% in this study. 4. The insulin binding activity in diabetic subjects was lower than that in normal subjects (P < 0.001) without any significant difference in affinity constant. 5. The relationship of binding activity to age of diabetics (r = 0.06, N.S), relative body weitht (r = 0.06, N.S) and duration of diabetes from onset was not significant. 6. In untreated noninsulin-dependent diabetics the insulin binding activity was inversely correlated to fasting blood glucose level (r = 0.78, P < 0.001) and slightly inversely correlated to serum insulin level (r = 0.47, P < 0.01). A slight inverse correlation was also observed in serum triglyceride level (r = 0.53, P < 0.01) and in total cholesterol level (r = 0.29, P < 0.05). 7. No significant difference between the binding activity was observed by grade of diabetic retinopathy. 8. After treatment with diet and/or sulfonylurea, the diabetics exhibited a significant increase in insulin binding activity (P < 0.005) but no significant difference in plasma insulin level, body weight and plasma lipid levels was observed. (author)

  16. Identification and transcriptional modulation of the largemouth bass, Micropterus salmoides, vitellogenin receptor during oocyte development by insulin and sex steroids.

    Science.gov (United States)

    Dominguez, Gustavo A; Quattro, Joseph M; Denslow, Nancy D; Kroll, Kevin J; Prucha, Melinda S; Porak, Wesley F; Grier, Harry J; Sabo-Attwood, Tara L

    2012-09-01

    Fish vitellogenin synthesized and released from the liver of oviparous animals is taken up into oocytes by the vitellogenin receptor. This is an essential process in providing nutrient yolk to developing embryos to ensure successful reproduction. Here we disclose the full length vtgr cDNA sequence for largemouth bass (LMB) that reveals greater than 90% sequence homology with other fish vtgr sequences. We classify LMB Vtgr as a member of the low density lipoprotein receptor superfamily based on conserved domains and categorize as the short variant that is devoid of the O-glycan segment. Phylogenetic analysis places LMB Vtgr sequence into a well-supported monophyletic group of fish Vtgr. Real-time PCR showed that the greatest levels of LMB vtgr mRNA expression occurred in previtellogenic ovarian tissues. In addition, we reveal the effects of insulin, 17beta-estradiol (E(2)), and 11-ketotestosterone (11-KT) in modulation of vtgr, esr, and ar mRNAs in previtellogenic oocytes. Insulin increased vtgr expression levels in follicles ex vivo while exposure to E(2) or 11-KT did not result in modulation of expression. However, both steroids were able to repress insulin-induced vtgr transcript levels. Coexposure with insulin and E(2) or of insulin and 11-KT increased ovarian esr2b and ar mRNA levels, respectively, which suggest a role for these nuclear receptors in insulin-mediated signaling pathways. These data provide the first evidence for the ordered stage-specific expression of LMB vtgr during the normal reproductive process and the hormonal influence of insulin and sex steroids on controlling vtgr transcript levels in ovarian tissues.

  17. The phosphatidylinositol-3 kinase pathway is not essential for insulin-like growth factor I receptor-mediated clonogenic radioresistance

    International Nuclear Information System (INIS)

    Yu, Dong; Watanabe, Hiroshi; Shibuya, Hitoshi; Miura, Masahiko

    2002-01-01

    The insulin-like growth factor I receptor (IGF-IR) is known to induce clonogenic radioresistance in cells following ionizing irradiation. To explore the downstream signaling pathways, we focused on the phosphatidylinositol-3 kinase (PI3-K) pathway, which is thought to be the primary cell survival signal originating from the receptor. For this purpose, R- cells deficient in the endogenous IGF-IR were used as a recipient of the human IGF-IR with or without mutations at potential PI3-K activation sites: NPXY 950 and Y 1316 XXM. Mutats with double mutation at Y950/Y1316 exhibited not abrogated, but reduced activation of insulin receptor substance-1 (IRS-1), PI3-K, and Akt upon IGF-I stimulation. However, the mutants had the same clonogenic radioresistance as cells with wild type (WT) receptors. Neither wortmannin nor LY294002, specific inhibitors of PI3-K, affected the radioresistance of cells with WT receptors at concentrations specific for PI3-K. Collectively, these results indicate that the PI3-K pathway is not essential for IGF-IR-mediated clonogenic radioresistance. (author)

  18. A chimeric receptor of the insulin-like growth factor receptor type 1 (IGFR1) and a single chain antibody specific to myelin oligodendrocyte glycoprotein activates the IGF1R signalling cascade in CG4 oligodendrocyte progenitors.

    Science.gov (United States)

    Annenkov, Alexander; Rigby, Anne; Amor, Sandra; Zhou, Dun; Yousaf, Nasim; Hemmer, Bernhard; Chernajovsky, Yuti

    2011-08-01

    In order to generate neural stem cells with increased ability to survive after transplantation in brain parenchyma we developed a chimeric receptor (ChR) that binds to myelin oligodendrocyte glycoprotein (MOG) via its ectodomain and activates the insulin-like growth factor receptor type 1 ‎‎(IGF1R) signalling cascade. Activation of this pro-survival pathway in response to ligand broadly available in the brain might increase neuroregenerative potential of transplanted precursors. The ChR was produced by fusing a MOG-specific single ‎chain antibody with the extracellular boundary of the IGF1R transmembrane segment. The ChR is expressed on the cellular surface, predominantly as a monomer, and is not N-glycosylated. To show MOG-dependent functionality of the ChR, neuroblastoma cells B104 expressing this ChR were stimulated with monolayers of cells expressing recombinant MOG. The ChR undergoes MOG-dependent tyrosine phosphorylation and homodimerisation. It promotes insulin and IGF-independent growth of the oligodendrocyte progenitor cell line CG4. The proposed mode of the ChR activation is by MOG-induced dimerisation which promotes kinase domain transphosphorylation, by-passing the requirement of conformation changes known to be important for IGF1R activation. Another ChR, which contains a segment of the β-chain ectodomain, was produced in an attempt to recapitulate some of these conformational changes, but proved non-functional. 2011 Elsevier B.V. All rights reserved.

  19. Studies of relationships between variation of the human G protein-coupled receptor 40 Gene and Type 2 diabetes and insulin release

    DEFF Research Database (Denmark)

    Hamid, Y H; Vissing, H; Holst, B

    2005-01-01

    AIMS: Recently, a novel human G protein-coupled receptor 40 (GPR40), which is predominantly expressed in pancreatic islets, was shown to mediate an amplifying effect of long-chain fatty acids on glucose-induced insulin secretion. The present aim was to examine the coding region of GPR40 for varia......AIMS: Recently, a novel human G protein-coupled receptor 40 (GPR40), which is predominantly expressed in pancreatic islets, was shown to mediate an amplifying effect of long-chain fatty acids on glucose-induced insulin secretion. The present aim was to examine the coding region of GPR40...... compared with the wild type (P = 0.01). The Arg211His polymorphism had a similar allele frequency among 1384 Type 2 diabetic patients [MAF%; 23.4 (95% CI: 21.8-25.0)] and 4424 middle-aged glucose-tolerant subjects [24.1% (23.2-25.0)]. A genotype-quantitative trait study of 5597 non-diabetic, middle...

  20. Anti hyperglycaemic study of natural inhibitors for Insulin receptor.

    Science.gov (United States)

    Chatterjee, Subhojyoti; Narasimhaiah, Akshaya Lakshmi; Kundu, Sanjay; Anand, Santosh

    2012-01-01

    Diabetes is a metabolic disorder associated with either improper functioning of the beta-cells or wherein cells fail to use insulin properly. Insulin, the principal hormone regulates uptake of glucose from the blood into most of the cells except central nervous system. Therefore, deficiency of insulin or the insensitivity of its receptors plays a key role in all forms of diabetes. In the present work, attempt has been made to find out plant sources which show anti hyperglycaemic activity (AhG) (i.e. compounds that bring down the blood glucose level in the body). Ayurvedic plants showing AhG activity formed the basis of our study by using the platform of Computer Aided Drug Designing (CADD). Among 600 plants showing AhG activity, 500 compounds were selected and screened, out of which 243 compounds showed drug likeness property that can be used as therapeutic ligand/drug. Initial screening of such compounds was done based on their drug likeness or biochemical properties. Dynamic interaction of these molecules was captured through Protein-Ligand study. It also gave an insight of the binding pockets involved. Bench marking of all the parameters were done using the diabetic inhibitor drug, Glipizide. Pharmacokinetic studies of the compounds such as Aloins, Capparisine, Funiculosin and Rhein exhibited less toxicity on various levels of the body. As a conclusion these ligands can lay a foundation for a better anti-diabetic therapy. AhG - Anti hyperglycaemic, CADD - Computer Aided Drug Designing.

  1. Pterocarpan-Enriched Soy Leaf Extract Ameliorates Insulin Sensitivity and Pancreatic β-Cell Proliferation in Type 2 Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Un-Hee Kim

    2014-11-01

    Full Text Available In Korea, soy (Glycine max (L. Merr. leaves are eaten as a seasonal vegetable or pickled in soy sauce. Ethyl acetate extracts of soy leaves (EASL are enriched in pterocarpans and have potent α-glucosidase inhibitory activity. This study investigated the molecular mechanisms underlying the anti-diabetic effect of EASL in C57BL/6J mice with high-fat diet (HFD-induced type 2 diabetes. Mice were randomly divided into normal diet (ND, HFD (60 kcal% fat diet, EASL (HFD with 0.56% (wt/wt EASL, and Pinitol (HFD with 0.15% (wt/wt pinitol groups. Weight gain and abdominal fat accumulation were significantly suppressed by EASL. Levels of plasma glucose, HbA1c, and insulin in the EASL group were significantly lower than those of the HFD group, and the pancreatic islet of the EASL group had greater size than those of the HFD group. EASL group up-regulated neurogenin 3 (Ngn3, paired box 4 (Pax4, and v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA, which are markers of pancreatic cell development, as well as insulin receptor substrate 1 (IRS1, IRS2, and glucose transporter 4 (GLUT4, which are related to insulin sensitivity. Furthermore, EASL suppressed genes involved in hepatic gluconeogenesis and steatosis. These results suggest that EASL improves plasma glucose and insulin levels in mice with HDF-induced type 2 diabetes by regulating β-cell proliferation and insulin sensitivity.

  2. Chemokine-like receptor 1 deficiency does not affect the development of insulin resistance and nonalcoholic fatty liver disease in mice.

    Directory of Open Access Journals (Sweden)

    Nanda Gruben

    Full Text Available The adipokine chemerin and its receptor, chemokine-like receptor 1 (Cmklr1, are associated with insulin resistance and nonalcoholic fatty liver disease (NAFLD, which covers a broad spectrum of liver diseases, ranging from simple steatosis to nonalcoholic steatohepatitis (NASH. It is possible that chemerin and/or Cmklr1 exert their effects on these disorders through inflammation, but so far the data have been controversial. To gain further insight into this matter, we studied the effect of whole-body Cmklr1 deficiency on insulin resistance and NAFLD. In view of the primary role of macrophages in hepatic inflammation, we also transplanted bone marrow from Cmklr1 knock-out (Cmklr1-/- mice and wild type (WT mice into low-density lipoprotein receptor knock-out (Ldlr-/- mice, a mouse model for NASH. All mice were fed a high fat, high cholesterol diet containing 21% fat from milk butter and 0.2% cholesterol for 12 weeks. Insulin resistance was assessed by an oral glucose tolerance test, an insulin tolerance test, and by measurement of plasma glucose and insulin levels. Liver pathology was determined by measuring hepatic inflammation, fibrosis, lipid accumulation and the NAFLD activity score (NAS. Whole-body Cmklr1 deficiency did not affect body weight gain or food intake. In addition, we observed no differences between WT and Cmklr1-/- mice for hepatic inflammatory and fibrotic gene expression, immune cell infiltration, lipid accumulation or NAS. In line with this, we detected no differences in insulin resistance. In concordance with whole-body Cmklr1 deficiency, the absence of Cmklr1 in bone marrow-derived cells in Ldlr-/- mice did not affect their insulin resistance or liver pathology. Our results indicate that Cmklr1 is not involved in the pathogenesis of insulin resistance or NAFLD. Thus, we recommend that the associations reported between Cmklr1 and insulin resistance or NAFLD should be interpreted with caution.

  3. Insulin internalization in isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Galan, J.; Trankina, M.; Noel, R.; Ward, W.

    1990-01-01

    This project was designed to determine whether neomycin, an aminoglycoside antibiotic, has a significant effect upon the pathways of ligand endocytosis in isolated rat hepatocytes. The pathways studied include receptor-mediated endocytosis and fluid-phase endocytosis. Neomycin causes a dose-dependent acceleration of 125 I-insulin internalization. Since fluid-phase endocytosis can also be a significant factor in 125 I-insulin internalization, lucifer yellow (LY), a marker for fluid-phase endocytosis, was incorporated into an assay similar to the 125 I-insulin internalization procedure. In the presence of 5 mM neomycin, a significant increase in LY uptake was evident at 0.2 and 0.4 mg/ml of LY. At 0.8 mg/ml, a decrease in LY uptake was observed. The increased rate of 125 I-insulin internalization in the presence of neomycin was intriguing. Since one action of neomycin is to inhibit phosphoinositidase C, it suggests that the phosphotidylinositol cycle may be involved in ligand internalization by hepatocytes. At low insulin concentrations, receptor-mediated uptake predominates. Fluid-phase uptake can become an important uptake route as insulin concentrations are increased. Since neomycin stimulates fluid-phase endocytosis, it must also be taken into account when measuring ligand internalization

  4. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    International Nuclear Information System (INIS)

    Naidoo, C.

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, 125 I-insulin binding to the solubilized erythrocyte membrane receptor and 125 I-insulin binding to fibroblasts in culture

  5. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, C

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, /sup 125/I-insulin binding to the solubilized erythrocyte membrane receptor and /sup 125/I-insulin binding to fibroblasts in culture.

  6. Novel covalently linked insulin dimer engineered to investigate the function of insulin dimerization.

    Directory of Open Access Journals (Sweden)

    Tine N Vinther

    Full Text Available An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers in the circulation, and it is stabilized by hexamer formation in the presence of zinc ions during storage in the pancreatic β-cell. Due to the transient nature of insulin dimer, direct investigation of this important form is inherently difficult. To address the relationship between insulin oligomerization and insulin stability and function, we engineered a covalently linked insulin dimer in which two monomers were linked by a disulfide bond. The structure of this covalent dimer was identical to the self-association dimer of human insulin. Importantly, this covalent dimer was capable of further oligomerization to form the structural equivalent of the classical hexamer. The covalently linked dimer neither bound to the insulin receptor, nor induced a metabolic response in vitro. However, it was extremely thermodynamically stable and did not form amyloid fibrils when subjected to mechanical stress, underlining the importance of oligomerization for insulin stability.

  7. Familial hyperinsulinemia associated with secretion of an abnormal insulin, and coexistence of insulin resistance in the propositus.

    Science.gov (United States)

    Vinik, A I; Seino, S; Funakoshi, A; Schwartz, J; Matsumoto, M; Schteingart, D E; Fu, Z Z; Tsai, S T

    1986-04-01

    A 45-yr-old muscular nonobese white man who had a 9-yr history of syncopal episodes was studied on several occasions between April 1979 and August 1984. Fasting glucose concentrations ranged between 74-115 mg/dl, and those of insulin ranged between 14-64 microU/ml. Reactive hypoglycemia 3-4 h after ingestion of glucose occurred in the first 2 yr. Glucose tolerance was impaired in 1979, from February 1982 through September 1983, and again in August 1984. The maximum plasma insulin response to glucose ranged between 475-1630 microU/ml. When studied in November 1982, insulin (0.1 U/kg) caused a fall in blood glucose concentration of only 25% (normal, greater than 50%), and maximal glucose utilization during the euglycemic hyperinsulinemic clamp was 7.5 mg/kg . min (normal, greater than 12 mg/kg . min). Plasma counterregulatory hormone concentrations were normal, and antibodies to insulin and the insulin receptor were absent. Binding of exogenous insulin to the patient's cellular receptors (monocytes, red blood cells, and skin fibroblasts) was normal. Insulin was purified from plasma by immunoaffinity and molecular sieve chromatography and was found to elute later than human insulin on reversed phase high performance liquid chromatography. It was more hydrophobic than normal human insulin and had only 10% of the activity of normal insulin in terms of ability to bind to and stimulate glucose metabolism in isolated rat adipocytes. The abnormal insulin was identified in two of three sons and a sister, but not in the mother, brother, or niece. Sensitivity to insulin was normal in the two sons who had abnormal insulin. These results suggest that in this family the abnormal insulin was due to a biosynthetic defect, inherited as an autosomal dominant trait. The hyperinsulinemia was not associated with diabetes in family members who had no insulin resistance.

  8. Insulin Resistance in Alzheimer's Disease

    Science.gov (United States)

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  9. Wortmannin inhibits both insulin- and contraction-stimulated glucose uptake and transport in rat skeletal muscle

    DEFF Research Database (Denmark)

    Wojtaszewski, Jørgen; Hansen, B F; Ursø, Birgitte

    1996-01-01

    The role of phosphatidylinositol (PI) 3-kinase for insulin- and contraction-stimulated muscle glucose transport was investigated in rat skeletal muscle perfused with a cell-free perfusate. The insulin receptor substrate-1-associated PI 3-kinase activity was increased sixfold upon insulin...... stimulation but was unaffected by contractions. In addition, the insulin-stimulated PI 3-kinase activity and muscle glucose uptake and transport in individual muscles were dose-dependently inhibited by wortmannin with one-half maximal inhibition values of approximately 10 nM and total inhibition at 1 micro......M. This concentration of wortmannin also decreased the contraction-stimulated glucose transport and uptake by approximately 30-70% without confounding effects on contractility or on muscle ATP and phosphocreatine concentrations. At higher concentrations (3 and 10 microM), wortmannin completely blocked the contraction...

  10. Curcumin ameliorates insulin signalling pathway in brain of Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Feng, Hui-Li; Dang, Hui-Zi; Fan, Hui; Chen, Xiao-Pei; Rao, Ying-Xue; Ren, Ying; Yang, Jin-Duo; Shi, Jing; Wang, Peng-Wen; Tian, Jin-Zhou

    2016-12-01

    Deficits in glucose, impaired insulin signalling and brain insulin resistance are common in the pathogenesis of Alzheimer's disease (AD); therefore, some scholars even called AD type 3 diabetes mellitus. Curcumin can reduce the amyloid pathology in AD. Moreover, it is a well-known fact that curcumin has anti-oxidant and anti-inflammatory properties. However, whether or not curcumin could regulate the insulin signal transduction pathway in AD remains unclear. In this study, we used APPswe/PS1dE9 double transgenic mice as the AD model to investigate the mechanisms and the effects of curcumin on AD. Immunohistochemical (IHC) staining and a western blot analysis were used to test the major proteins in the insulin signal transduction pathway. After the administration of curcumin for 6 months, the results showed that the expression of an insulin receptor (InR) and insulin receptor substrate (IRS)-1 decreased in the hippocampal CA1 area of the APPswe/PS1dE9 double transgenic mice, while the expression of phosphatidylinositol-3 kinase (PI3K), phosphorylated PI3K (p-PI3K), serine-threonine kinase (AKT) and phosphorylated AKT (p-AKT) increased. Among the curcumin groups, the medium-dose group was the most effective one. Thus, we believe that curcumin may be a potential therapeutic agent that can regulate the critical molecules in brain insulin signalling pathways. Furthermore, curcumin could be adopted as one of the AD treatments to improve a patient's learning and memory ability. © The Author(s) 2016.

  11. Maternal protein restriction induces alterations in insulin signaling and ATP sensitive potassium channel protein in hypothalami of intrauterine growth restriction fetal rats.

    Science.gov (United States)

    Liu, Xiaomei; Qi, Ying; Gao, Hong; Jiao, Yisheng; Gu, Hui; Miao, Jianing; Yuan, Zhengwei

    2013-01-01

    It is well recognized that intrauterine growth restriction leads to the development of insulin resistance and type 2 diabetes mellitus in adulthood. To investigate the mechanisms behind this "metabolic imprinting" phenomenon, we examined the impact of maternal undernutrition on insulin signaling pathway and the ATP sensitive potassium channel expression in the hypothalamus of intrauterine growth restriction fetus. Intrauterine growth restriction rat model was developed through maternal low protein diet. The expression and activated levels of insulin signaling molecules and K(ATP) protein in the hypothalami which were dissected at 20 days of gestation, were analyzed by western blot and real time PCR. The tyrosine phosphorylation levels of the insulin receptor substrate 2 and phosphatidylinositol 3'-kinase p85α in the hypothalami of intrauterine growth restriction fetus were markedly reduced. There was also a downregulation of the hypothalamic ATP sensitive potassium channel subunit, sulfonylurea receptor 1, which conveys the insulin signaling. Moreover, the abundances of gluconeogenesis enzymes were increased in the intrauterine growth restriction livers, though no correlation was observed between sulfonylurea receptor 1 and gluconeogenesis enzymes. Our data suggested that aberrant intrauterine milieu impaired insulin signaling in the hypothalamus, and these alterations early in life might contribute to the predisposition of the intrauterine growth restriction fetus toward the adult metabolic disorders.

  12. α-Helical element at the hormone-binding surface of the insulin receptor functions as a signaling element to activate its tyrosine kinase.

    Science.gov (United States)

    Whittaker, Jonathan; Whittaker, Linda J; Roberts, Charles T; Phillips, Nelson B; Ismail-Beigi, Faramarz; Lawrence, Michael C; Weiss, Michael A

    2012-07-10

    The primary hormone-binding surface of the insulin receptor spans one face of the N-terminal β-helix of the α-subunit (the L1 domain) and an α-helix in its C-terminal segment (αCT). Crystallographic analysis of the free ectodomain has defined a contiguous dimer-related motif in which the αCT α-helix packs against L1 β-strands 2 and 3. To relate structure to function, we exploited expanded genetic-code technology to insert photo-activatable probes at key sites in L1 and αCT. The pattern of αCT-mediated photo-cross-linking within the free and bound receptor is in accord with the crystal structure and prior mutagenesis. Surprisingly, L1 photo-probes in β-strands 2 and 3, predicted to be shielded by αCT, efficiently cross-link to insulin. Furthermore, anomalous mutations were identified on neighboring surfaces of αCT and insulin that impair hormone-dependent activation of the intracellular receptor tyrosine kinase (contained within the transmembrane β-subunit) disproportionately to their effects on insulin binding. Taken together, these results suggest that αCT, in addition to its hormone-recognition role, provides a signaling element in the mechanism of receptor activation.

  13. Insulin-increased L-arginine transport requires A(2A adenosine receptors activation in human umbilical vein endothelium.

    Directory of Open Access Journals (Sweden)

    Enrique Guzmán-Gutiérrez

    Full Text Available Adenosine causes vasodilation of human placenta vasculature by increasing the transport of arginine via cationic amino acid transporters 1 (hCAT-1. This process involves the activation of A(2A adenosine receptors (A(2AAR in human umbilical vein endothelial cells (HUVECs. Insulin increases hCAT-1 activity and expression in HUVECs, and A(2AAR stimulation increases insulin sensitivity in subjects with insulin resistance. However, whether A(2AAR plays a role in insulin-mediated increase in L-arginine transport in HUVECs is unknown. To determine this, we first assayed the kinetics of saturable L-arginine transport (1 minute, 37°C in the absence or presence of nitrobenzylthioinosine (NBTI, 10 µmol/L, adenosine transport inhibitor and/or adenosine receptors agonist/antagonists. We also determined hCAT-1 protein and mRNA expression levels (Western blots and quantitative PCR, and SLC7A1 (for hCAT-1 reporter promoter activity. Insulin and NBTI increased the extracellular adenosine concentration, the maximal velocity for L-arginine transport without altering the apparent K(m for L-arginine transport, hCAT-1 protein and mRNA expression levels, and SLC7A1 transcriptional activity. An A2AAR antagonist ZM-241385 blocked these effects. ZM241385 inhibited SLC7A1 reporter transcriptional activity to the same extent in cells transfected with pGL3-hCAT-1(-1606 or pGL3-hCAT-1(-650 constructs in the presence of NBTI + insulin. However, SLC7A1 reporter activity was increased by NBTI only in cells transfected with pGL3-hCAT-1(-1606, and the ZM-241385 sensitive fraction of the NBTI response was similar in the absence or in the presence of insulin. Thus, insulin modulation of hCAT-1 expression and activity requires functional A(2AAR in HUVECs, a mechanism that may be applicable to diseases associated with fetal insulin resistance, such as gestational diabetes.

  14. Quality control of insulin radioreceptor assay for human erythrocytes. Effect of ageing of mono-125I-Tyr-A14-insulin preparation

    International Nuclear Information System (INIS)

    Marttinen, A.; Pasternack, A.; Koivula, T.; Jokela, H.; Lehtinen, M.

    1984-01-01

    The quality control of insulin radioreceptor assay for human erythrocytes is based on the storage of erythrocyte preparations in Hepes buffer of pH 8.0, containing 10 g/l of albumin and 20 mmol/l of glucose. The change of erythrocytes into spherocytes and crenated cells reduces the apparent number of insulin receptors in a relatively constant way by less than 8% a week after 10 days of storage. At the same time the dissociation constants of the insulin-receptor complex increase rapidly. Thus the use of a preparation must be limited to controlling the determination of the insulin binding sites of erythrocytes, and not to the measurement of the affinities of the receptors. When mono- 125 I-Tyr-A14-insulin gets old, a slow decrease in the insulin binding sites can be measured, but the dissociation constants of the insulin receptor complex are not affected. (author)

  15. Identification of residues in the insulin molecule important for binding to insulin-degrading enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Affholter, J.A.; Roth, R.A. (Stanford Univ. School of Medicine, CA (USA)); Cascieri, M.A.; Bayne, M.L. (Merck Sharp and Dohme Research Labs., Rahway, NJ (USA)); Brange, J. (Novo Research Institute, Bagsvaerd (Denmark)); Casaretto, M. (Deutsches Wollforschungsinstitut an der Technischen, Aachen (West Germany))

    1990-08-21

    Insulin-degrading enzyme (IDE) hydrolyzes insulin at a limited number of sites. Although the positions of these cleavages are known, the residues of insulin important in its binding to IDE have not been defined. To this end, the authors have studied the binding of a variety of insulin analogues to the protease in a solid-phase binding assay using immunoimmobilized IDE. Since IDE binds insulin with 600-fold greater affinity than it does insulin-like growth factor, the first set of analogues studied were hybrid molecules of insulin and IGF I. Removal of the eight amino acid D-chain region of IGF I (which has been predicted to interfere with binding to the 23-25 region) results in a 25-fold increase in affinity for IDE, confirming the importance of residues 23-25 in the high-affinity recognition of IDE. A similar role for the corresponding (B24-26) residues of insulin is supported by the use of site-directed mutant and semisynthetic insulin analogues. Insulin mutants (B25-Asp)insulin and (B25-His)insulin display 16- and 20-fold decreases in IDE affinity versus wild-type insulin. Similar decreases in affinity are observed with the C-terminal truncation mutants (B1-24-His{sup 25}-NH{sub 2})insulin and (B1-24-Leu{sup 25}-NH{sub 2})insulin, but not (B1-24-Trp{sup 25}-NH{sub 2})insulin and (B1-24-Tyr{sup 25}-NH{sub 2})insulin. The truncated analogue with the lowest affinity for IDE ((B1-24-His{sup 25}-NH{sub 2})insulin) has one of the highest affinities for the insulin receptor. Therefore, they have identified a region of the insulin molecule responsible for its high-affinity interaction with IDE. Although the same region has been implicated in the binding of insulin to its receptor, the data suggest that the structural determinants required for binding to receptor and IDE differ.

  16. Identification of residues in the insulin molecule important for binding to insulin-degrading enzyme

    International Nuclear Information System (INIS)

    Affholter, J.A.; Roth, R.A.; Cascieri, M.A.; Bayne, M.L.; Brange, J.; Casaretto, M.

    1990-01-01

    Insulin-degrading enzyme (IDE) hydrolyzes insulin at a limited number of sites. Although the positions of these cleavages are known, the residues of insulin important in its binding to IDE have not been defined. To this end, the authors have studied the binding of a variety of insulin analogues to the protease in a solid-phase binding assay using immunoimmobilized IDE. Since IDE binds insulin with 600-fold greater affinity than it does insulin-like growth factor, the first set of analogues studied were hybrid molecules of insulin and IGF I. Removal of the eight amino acid D-chain region of IGF I (which has been predicted to interfere with binding to the 23-25 region) results in a 25-fold increase in affinity for IDE, confirming the importance of residues 23-25 in the high-affinity recognition of IDE. A similar role for the corresponding (B24-26) residues of insulin is supported by the use of site-directed mutant and semisynthetic insulin analogues. Insulin mutants [B25-Asp]insulin and [B25-His]insulin display 16- and 20-fold decreases in IDE affinity versus wild-type insulin. Similar decreases in affinity are observed with the C-terminal truncation mutants [B1-24-His 25 -NH 2 ]insulin and [B1-24-Leu 25 -NH 2 ]insulin, but not [B1-24-Trp 25 -NH 2 ]insulin and [B1-24-Tyr 25 -NH 2 ]insulin. The truncated analogue with the lowest affinity for IDE ([B1-24-His 25 -NH 2 ]insulin) has one of the highest affinities for the insulin receptor. Therefore, they have identified a region of the insulin molecule responsible for its high-affinity interaction with IDE. Although the same region has been implicated in the binding of insulin to its receptor, the data suggest that the structural determinants required for binding to receptor and IDE differ

  17. Cost-effectiveness of once daily GLP-1 receptor agonist lixisenatide compared to bolus insulin both in combination with basal insulin for the treatment of patients with type 2 diabetes in Norway.

    Science.gov (United States)

    Huetson, Pernilla; Palmer, James L; Levorsen, Andrée; Fournier, Marie; Germe, Maeva; McLeod, Euan

    2015-01-01

    Lixisenatide is a potent, selective and short-acting once daily prandial glucagon-like peptide-1 receptor agonist which lowers glycohemoglobin and body weight by clinically significant amounts in patients with type 2 diabetes treated with basal insulin, with limited risk of hypoglycemia. To assess the cost-effectiveness of lixisenatide versus bolus insulin, both in combination with basal insulin, in patients with type 2 diabetes in Norway. The IMS CORE Diabetes Model, a non-product-specific and validated simulation model, was used to make clinical and cost projections. Transition probabilities, risk adjustments and the progression of complication risk factors were derived from the UK Prospective Diabetes Study, supplemented with Norwegian data. Patients were assumed to receive combination treatment with basal insulin, lixisenatide or bolus insulin therapy for 3 years, followed by intensification of a basal-bolus insulin regimen for their remaining lifetime. Simulated healthcare costs, taken from the public payer perspective, were derived from microcosting and diagnosis related groups, discounted at 4% per annum and reported in Norwegian krone (NOK). Productivity costs were also captured based on extractions from the Norwegian Labor and Welfare Administration. Health state utilities were derived from a systematic literature review. Sensitivity and scenario analyses were performed. Lixisenatide in combination with basal insulin was associated with increased quality-adjusted life years (QALYs) and reduced lifetime healthcare costs compared to bolus insulin in combination with basal insulin in patients with Type 2 diabetes, and can be considered dominant. The net monetary benefit of lixisenatide versus bolus insulin was NOK 39,369 per patient. Results were sensitive to discounting, the application of excess body weight associated disutility and uncertainty surrounding the changes in HbA1c. Lixisenatide may be considered an economically efficient therapy in combination

  18. Human circulating monocytes internalize 125I-insulin in a similar fashion to rat hepatocytes: relevance to receptor regulation in target and nontarget tissues

    International Nuclear Information System (INIS)

    Grunberger, G.; Robert, A.; Carpentier, J.L.; Dayer, J.M.; Roth, A.; Stevenson, H.C.; Orci, L.; Gorden, P.

    1985-01-01

    Circulating monocytes bind 125 I-insulin in a specific fashion and have been used to analyze the ambient receptor status in humans. When freshly isolated circulating monocytes are incubated with 125 I-insulin and examined by electron microscopic autoradiography, approximately 18% of the labeled material is internalized after 15 minutes at 37 degrees C. By 2 hours at 37 degrees C, approximately one half of the 125 I-insulin is internalized. Internalization occurs also at 15 degrees C but at a slower rate. Furthermore, the monocytes bind and internalize 125 I-insulin in a manner that mirrors that of major target tissues, such as rat hepatocytes. These data suggest that the insulin receptor of the circulating monocyte might be regulated by adsorptive endocytosis in a manner analogous to that of target tissue, such as the liver

  19. Cross-talk between insulin and Wnt signaling in preadipocytes

    DEFF Research Database (Denmark)

    Palsgaard, Jane; Emanuelli, Brice; Winnay, Jonathon N

    2012-01-01

    and appears to be due to an inducible interaction between LRP5 and the insulin receptor as demonstrated by co-immunoprecipitation. These data demonstrate that Wnt and insulin signaling pathways exhibit cross-talk at multiple levels. Wnt induces phosphorylation of Akt, ERK1/2, and GSK3β, and this is dependent...... and LRP6 and with and without knock-out of insulin and IGF-1 receptors. We find that Wnt stimulation leads to phosphorylation of insulin signaling key mediators, including Akt, GSK3β, and ERK1/2, although with a lower fold stimulation and slower time course than observed for insulin. These Wnt effects...... are insulin/IGF-1 receptor-dependent and are lost in insulin/IGF-1 receptor double knock-out cells. Conversely, in LRP5 knockdown preadipocytes, insulin-induced phosphorylation of IRS1, Akt, GSK3β, and ERK1/2 is highly reduced. This effect is specific to insulin, as compared with IGF-1, stimulation...

  20. Cardiac Insulin Resistance and MicroRNA Modulators

    Directory of Open Access Journals (Sweden)

    Lakshmi Pulakat

    2012-01-01

    Full Text Available Cardiac insulin resistance is a metabolic and functional disorder that is often associated with obesity and/or the cardiorenal metabolic syndrome (CRS, and this disorder may be accentuated by chronic alcohol consumption. In conditions of over-nutrition, increased insulin (INS and angiotensin II (Ang II activate mammalian target for rapamycin (mTOR/p70 S6 kinase (S6K1 signaling, whereas chronic alcohol consumption inhibits mTOR/S6K1 activation in cardiac tissue. Although excessive activation of mTOR/S6K1 induces cardiac INS resistance via serine phosphorylation of INS receptor substrates (IRS-1/2, it also renders cardioprotection via increased Ang II receptor 2 (AT2R upregulation and adaptive hypertrophy. In the INS-resistant and hyperinsulinemic Zucker obese (ZO rat, a rodent model for CRS, activation of mTOR/S6K1signaling in cardiac tissue is regulated by protective feed-back mechanisms involving mTOR↔AT2R signaling loop and profile changes of microRNA that target S6K1. Such regulation may play a role in attenuating progressive heart failure. Conversely, alcohol-mediated inhibition of mTOR/S6K1, down-regulation of INS receptor and growth-inhibitory mir-200 family, and upregulation of mir-212 that promotes fetal gene program may exacerbate CRS-related cardiomyopathy.

  1. Identification and Transcriptional Modulation of the Largemouth Bass, Micropterus salmoides, Vitellogenin Receptor During Oocyte Development by Insulin and Sex Steroids1

    Science.gov (United States)

    Dominguez, Gustavo A.; Quattro, Joseph M.; Denslow, Nancy D.; Kroll, Kevin J.; Prucha, Melinda S.; Porak, Wesley F.; Grier, Harry J.; Sabo-Attwood, Tara L.

    2012-01-01

    ABSTRACT Fish vitellogenin synthesized and released from the liver of oviparous animals is taken up into oocytes by the vitellogenin receptor. This is an essential process in providing nutrient yolk to developing embryos to ensure successful reproduction. Here we disclose the full length vtgr cDNA sequence for largemouth bass (LMB) that reveals greater than 90% sequence homology with other fish vtgr sequences. We classify LMB Vtgr as a member of the low density lipoprotein receptor superfamily based on conserved domains and categorize as the short variant that is devoid of the O-glycan segment. Phylogenetic analysis places LMB Vtgr sequence into a well-supported monophyletic group of fish Vtgr. Real-time PCR showed that the greatest levels of LMB vtgr mRNA expression occurred in previtellogenic ovarian tissues. In addition, we reveal the effects of insulin, 17beta-estradiol (E2), and 11-ketotestosterone (11-KT) in modulation of vtgr, esr, and ar mRNAs in previtellogenic oocytes. Insulin increased vtgr expression levels in follicles ex vivo while exposure to E2 or 11-KT did not result in modulation of expression. However, both steroids were able to repress insulin-induced vtgr transcript levels. Coexposure with insulin and E2 or of insulin and 11-KT increased ovarian esr2b and ar mRNA levels, respectively, which suggest a role for these nuclear receptors in insulin-mediated signaling pathways. These data provide the first evidence for the ordered stage-specific expression of LMB vtgr during the normal reproductive process and the hormonal influence of insulin and sex steroids on controlling vtgr transcript levels in ovarian tissues. PMID:22786822

  2. Implication of low level inflammation in the insulin resistance of adipose tissue at late pregnancy.

    Science.gov (United States)

    de Castro, J; Sevillano, J; Marciniak, J; Rodriguez, R; González-Martín, C; Viana, M; Eun-suk, O H; de Mouzon, S Hauguel; Herrera, E; Ramos, M P

    2011-11-01

    Insulin resistance is a characteristic of late pregnancy, and adipose tissue is one of the tissues that most actively contributes to the reduced maternal insulin sensitivity. There is evidence that pregnancy is a condition of moderate inflammation, although the physiological role of this low-grade inflammation remains unclear. The present study was designed to validate whether low-grade inflammation plays a role in the development of insulin resistance in adipose tissue during late pregnancy. To this end, we analyzed proinflammatory adipokines and kinases in lumbar adipose tissue of nonpregnant and late pregnant rats at d 18 and 20 of gestation. We found that circulating and tissue levels of adipokines, such as IL-1β, plasminogen activator inhibitor-1, and TNF-α, were increased at late pregnancy, which correlated with insulin resistance. The observed increase in adipokines coincided with an enhanced activation of p38 MAPK in adipose tissue. Treatment of pregnant rats with the p38 MAPK inhibitor SB 202190 increased insulin-stimulated tyrosine phosphorylation of the insulin receptor (IR) and IR substrate-1 in adipose tissue, which was paralleled by a reduction of IR substrate-1 serine phosphorylation and an enhancement of the metabolic actions of insulin. These results indicate that activation of p38 MAPK in adipose tissue contributes to adipose tissue insulin resistance at late pregnancy. Furthermore, the results of the present study support the hypothesis that physiological low-grade inflammation in the maternal organism is relevant to the development of pregnancy-associated insulin resistance.

  3. Insulin use, hormone receptor status and hematopoietic cytokines׳ circulation in women with diabetes mellitus and breast cancer

    Directory of Open Access Journals (Sweden)

    Zachary A.P. Wintrob

    2017-04-01

    The data presented here is among the first to show a relationship between pre-existing use of injectable insulin in women diagnosed with breast cancer and type 2 diabetes mellitus, hematopoietic cytokine profiles at time of breast cancer diagnosis, and subsequent cancer outcomes. A Pearson correlation analysis evaluating the relationship between G-CSF, GM-CSF, and IL-7 stratified by insulin use, controls, as well as by estrogen and progesterone receptor status is also provided.

  4. Quality control of insulin radioreceptor assay for human erythrocytes. Effect of ageing of mono-/sup 125/I-Tyr-A14-insulin preparation

    Energy Technology Data Exchange (ETDEWEB)

    Marttinen, A; Pasternack, A [Tampere Univ. (Finland). Dept. of Clinical Sciences; Koivula, T; Jokela, H; Lehtinen, M [Tampere Univ. Central Hospital (Finland). Dept. of Clinical Chemistry

    1984-09-01

    The quality control of insulin radioreceptor assay for human erythrocytes is based on the storage of erythrocyte preparations in Hepes buffer of pH 8.0, containing 10 g/l of albumin and 20 mmol/l of glucose. The change of erythrocytes into spherocytes and crenated cells reduces the apparent number of insulin receptors in a relatively constant way by less than 8% a week after 10 days of storage. At the same time the dissociation constants of the insulin-receptor complex increase rapidly. Thus the use of a preparation must be limited to controlling the determination of the insulin binding sites of erythrocytes, and not to the measurement of the affinities of the receptors. When mono-/sup 125/I-Tyr-A14-insulin gets old, a slow decrease in the insulin binding sites can be measured, but the dissociation constants of the insulin receptor complex are not affected.

  5. Identification of the bioactive and consensus peptide motif from Momordica charantia insulin receptor-binding protein.

    Science.gov (United States)

    Lo, Hsin-Yi; Li, Chia-Cheng; Ho, Tin-Yun; Hsiang, Chien-Yun

    2016-08-01

    Many food bioactive peptides with diverse functions have been discovered by studying plant proteins. We have previously identified a 68-residue insulin receptor (IR)-binding protein (mcIRBP) from Momordica charantia that exhibits hypoglycemic effects in mice via interaction with IR. By in vitro digestion, we found that mcIRBP-19, spanning residues 50-68 of mcIRBP, enhanced the binding of insulin to IR, stimulated the phosphorylation of PDK1 and Akt, induced the expression of glucose transporter 4, and stimulated both the uptake of glucose in cells and the clearance of glucose in diabetic mice. Furthermore, mcIRBP-19 homologs were present in various plants and shared similar β-hairpin structures and IR kinase-activating abilities to mcIRBP-19. In conclusion, our findings suggested that mcIRBP-19 is a blood glucose-lowering bioactive peptide that exhibits IR-binding potentials. Moreover, we newly identified novel IR-binding bioactive peptides in various plants which belonged to different taxonomic families. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Dual Regulation of Gluconeogenesis by Insulin and Glucose in the Proximal Tubules of the Kidney.

    Science.gov (United States)

    Sasaki, Motohiro; Sasako, Takayoshi; Kubota, Naoto; Sakurai, Yoshitaka; Takamoto, Iseki; Kubota, Tetsuya; Inagi, Reiko; Seki, George; Goto, Moritaka; Ueki, Kohjiro; Nangaku, Masaomi; Jomori, Takahito; Kadowaki, Takashi

    2017-09-01

    Growing attention has been focused on the roles of the proximal tubules (PTs) of the kidney in glucose metabolism, including the mechanism of regulation of gluconeogenesis. In this study, we found that PT-specific insulin receptor substrate 1/2 double-knockout mice, established by using the newly generated sodium-glucose cotransporter 2 (SGLT2)-Cre transgenic mice, exhibited impaired insulin signaling and upregulated gluconeogenic gene expression and renal gluconeogenesis, resulting in systemic insulin resistance. In contrast, in streptozotocin-treated mice, although insulin action was impaired in the PTs, the gluconeogenic gene expression was unexpectedly downregulated in the renal cortex, which was restored by administration of an SGLT1/2 inhibitor. In the HK-2 cells, the gluconeogenic gene expression was suppressed by insulin, accompanied by phosphorylation and inactivation of forkhead box transcription factor 1 (FoxO1). In contrast, glucose deacetylated peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), a coactivator of FoxO1, via sirtuin 1, suppressing the gluconeogenic gene expression, which was reversed by inhibition of glucose reabsorption. These data suggest that both insulin signaling and glucose reabsorption suppress the gluconeogenic gene expression by inactivation of FoxO1 and PGC1α, respectively, providing insight into novel mechanisms underlying the regulation of gluconeogenesis in the PTs. © 2017 by the American Diabetes Association.

  7. Co-targeting the HER and IGF/insulin receptor axis in breast cancer, with triple targeting with endocrine therapy for hormone-sensitive disease.

    Science.gov (United States)

    Chakraborty, Ashok; Hatzis, Christos; DiGiovanna, Michael P

    2017-05-01

    Interactions between HER2, estrogen receptor (ER), and insulin-like growth factor I receptor (IGF1R) are implicated in resistance to monotherapies targeting these receptors. We have previously shown in pre-clinical studies synergistic anti-tumor effects for co-targeting each pairwise combination of HER2, IGF1R, and ER. Strikingly, synergy for HER2/IGF1R targeting occurred not only in a HER2+ model, but also in a HER2-normal model. The purpose of the current study was therefore to determine the generalizability of synergistic anti-tumor effects of co-targeting HER2/IGF1R, the anti-tumor activity of triple-targeting HER2/IGF1R/ER in hormone-dependent cell lines, and the effect of using the multi-targeting drugs neratinib (pan-HER) and BMS-754807 (dual IGF1R/insulin receptor). Proliferation and apoptosis assays were performed in a large panel of cell lines representing varying receptor expression levels. Mechanistic effects were studied using phospho-protein immunoblotting. Analyses of drug interaction effects were performed using linear mixed-effects regression models. Enhanced anti-proliferative effects of HER/IGF-insulin co-targeting were seen in most, though not all, cell lines, including HER2-normal lines. For ER+ lines, triple targeting with inclusion of anti-estrogen generally resulted in the greatest anti-tumor effects. Double or triple targeting generally resulted in marked increases in apoptosis in the sensitive lines. Mechanistic studies demonstrated that the synergy between drugs was correlated with maximal inhibition of Akt and ERK pathway signaling. Dual HER/IGF-insulin targeting, and triple targeting with inclusion of anti-estrogen drugs, shows striking anti-tumor activity across breast cancer types, and drugs with broader receptor specificity may be more effective than single receptor selective drugs, particularly for ER- cells.

  8. Association of abdominal obesity, insulin resistance, and oxidative stress in adipose tissue in women with polycystic ovary syndrome.

    Science.gov (United States)

    Chen, Li; Xu, Wen Ming; Zhang, Dan

    2014-10-01

    To study the expression of insulin signaling-related genes and oxidative stress markers in the visceral adipose tissue obtained from polycystic ovary syndrome (PCOS) patients and healthy control subjects and to investigate the relationships among abdominal obesity, insulin resistance, and oxidative stress at the tissue level. Case-control study. University teaching hospital. In total, 30 PCOS patients and 30 healthy control subjects, who underwent laparoscopic surgery, were included in the study. Abdominal obesity was defined based on waist circumference (WC). The homeostasis model index was used to assess insulin resistance (HOMA-IR). Gene expression of glucose transporter 4 (GLUT4) and insulin receptor substrate 1 (IRS1) in visceral adipose tissue (VAT) and the parameters of oxidative stress, such as superoxide dismutase, enzyme glutathione reductase, and dimethylarginine, were measured, and the expression of protein oxidative damage product 3-nitro-tyrosine residues (nitrotyrosine) in VAT was identified with the use of immunohistochemistry. PCOS was associated with lower expression of GLUT4 and IRS1 and a higher level of oxidative stress in VAT, which was strongly correlated with WC and HOMA-IR. Presence of abdominal obesity further intensified the correlations observed in our measurements. The nitrotyrosine expression in VAT was stronger in PCOS patients. The strong correlation of insulin resistance with oxidative stress at the VAT level suggests that local oxidative stress and abnormalities of insulin signaling in adipose tissue play critical roles in the pathogenesis of PCOS. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. Testosterone treatment increases androgen receptor and aromatase gene expression in myotubes from patients with PCOS and controls, but does not induce insulin resistance.

    Science.gov (United States)

    Eriksen, Mette Brandt; Glintborg, Dorte; Nielsen, Michael Friberg Bruun; Jakobsen, Marianne Antonius; Brusgaard, Klaus; Tan, Qihua; Gaster, Michael

    2014-09-05

    Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity is conserved in cultured myotubes (in vitro) from patients with PCOS, but the effect of testosterone on this insulin sensitivity is unknown. We investigated the effect of 7days testosterone treatment (100nmol/l) on glucose transport and gene expression levels of hormone receptors and enzymes involved in the synthesis and conversion of testosterone (HSD17B1, HSD17B2, CYP19A1, SRD5A1-2, AR, ER-α, HSD17B6 and AKR1-3) in myotubes from ten patients with PCOS and ten matched controls. Testosterone treatment significantly increased aromatase and androgen receptor gene expression levels in patients and controls. Glucose transport in myotubes was comparable in patients with PCOS vs. controls and was unchanged by testosterone treatment (p=0.21 PCOS vs. controls). These results suggest that testosterone treatment of myotubes increases the aromatase and androgen receptor gene expression without affecting insulin sensitivity and if testosterone is implicated in muscular insulin resistance in PCOS, this is by and indirect mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Common polymorphisms within the NR4A3 locus, encoding the orphan nuclear receptor Nor-1, are associated with enhanced β-cell function in non-diabetic subjects

    Directory of Open Access Journals (Sweden)

    Kuusisto Johanna

    2009-08-01

    Full Text Available Abstract Background Neuron-derived orphan receptor (Nor 1, nuclear receptor (Nur 77, and nuclear receptor-related protein (Nurr 1 constitute the NR4A family of orphan nuclear receptors which were recently found to modulate hepatic glucose production, insulin signalling in adipocytes, and oxidative metabolism in skeletal muscle. In this study, we assessed whether common genetic variation within the NR4A3 locus, encoding Nor-1, contributes to the development of prediabetic phenotypes, such as glucose intolerance, insulin resistance, or β-cell dysfunction. Methods We genotyped 1495 non-diabetic subjects from Southern Germany for the five tagging single nucleotide polymorphisms (SNPs rs7047636, rs1526267, rs2416879, rs12686676, and rs10819699 (minor allele frequencies ≥ 0.05 covering 100% of genetic variation within the NR4A3 locus (with D' = 1.0, r2 ≥ 0.9 and assessed their association with metabolic data derived from the fasting state, an oral glucose tolerance test (OGTT, and a hyperinsulinemic-euglycemic clamp (subgroup, N = 506. SNPs that revealed consistent associations with prediabetic phenotypes were subsequently genotyped in a second cohort (METSIM Study; Finland; N = 5265 for replication. Results All five SNPs were in Hardy-Weinberg equilibrium (p ≥ 0.7, all. The minor alleles of three SNPs, i.e., rs1526267, rs12686676, and rs10819699, consistently tended to associate with higher insulin release as derived from plasma insulin at 30 min(OGTT, AUCC-peptide-to-AUCGluc ratio and the AUCIns30-to-AUCGluc30 ratio with rs12686676 reaching the level of significance (p ≤ 0.03, all; additive model. The association of the SNP rs12686676 with insulin secretion was replicated in the METSIM cohort (p ≤ 0.03, additive model. There was no consistent association with glucose tolerance or insulin resistance in both study cohorts. Conclusion We conclude that common genetic variation within the NR4A3 locus determines insulin secretion. Thus, NR4A3

  11. Brain Insulin Signaling Is Increased in Insulin-Resistant States and Decreases in FOXOs and PGC-1α and Increases in Aβ1–40/42 and Phospho-Tau May Abet Alzheimer Development

    Science.gov (United States)

    Sajan, Mini; Hansen, Barbara; Ivey, Robert; Sajan, Joshua; Ari, Csilla; Song, Shijie; Braun, Ursula; Leitges, Michael; Farese-Higgs, Margaret

    2016-01-01

    Increased coexistence of Alzheimer disease (AD) and type 2 diabetes mellitus (T2DM) suggests that insulin resistance abets neurodegenerative processes, but linkage mechanisms are obscure. Here, we examined insulin signaling factors in brains of insulin-resistant high-fat–fed mice, ob/ob mice, mice with genetically impaired muscle glucose transport, and monkeys with diet-dependent long-standing obesity/T2DM. In each model, the resting/basal activities of insulin-regulated brain protein kinases, Akt and atypical protein kinase C (aPKC), were maximally increased. Moreover, Akt hyperactivation was accompanied by hyperphosphorylation of substrates glycogen synthase kinase-3β and mammalian target of rapamycin and FOXO proteins FOXO1, FOXO3A, and FOXO4 and decreased peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α) expression. Akt hyperactivation was confirmed in individual neurons of anterocortical and hippocampal regions that house cognition/memory centers. Remarkably, β-amyloid (Aβ1–40/42) peptide levels were as follows: increased in the short term by insulin in normal mice, increased basally in insulin-resistant mice and monkeys, and accompanied by diminished amyloid precursor protein in monkeys. Phosphorylated tau levels were increased in ob/ob mice and T2DM monkeys. Importantly, with correction of hyperinsulinemia by inhibition of hepatic aPKC and improvement in systemic insulin resistance, brain insulin signaling normalized. As FOXOs and PGC-1α are essential for memory and long-term neuronal function and regeneration and as Aβ1–40/42 and phospho-tau may increase interneuronal plaques and intraneuronal tangles, presently observed aberrations in hyperinsulinemic states may participate in linking insulin resistance to AD. PMID:26895791

  12. Vitamin C and E chronic supplementation differentially affect hepatic insulin signaling in rats.

    Science.gov (United States)

    Ali, Mennatallah A; Eid, Rania M H M; Hanafi, Mervat Y

    2018-02-01

    Vitamin C and vitamin E supplementations and their beneficial effects on type 2 diabetes mellitus (T2DM) have been subjected to countless controversial data. Hence, our aim is to investigate the hepatic molecular mechanisms of any diabetic predisposing risk of the chronic administration of different doses of vitamin E or vitamin C in rats. The rats were supplemented with different doses of vitamin C or vitamin E for eight months. Vitamin C and vitamin E increased fasting blood glucose, insulin, and homeostasis model assessment index for insulin resistance (HOMA). Vitamin C disrupted glucose tolerance by attenuating upstream hepatic insulin action through impairing the phosphorylation and activation of insulin receptor and its subsequent substrates; however, vitamin E showed its effect downstream insulin receptor in the insulin signaling pathway, reducing hepatic glucose transporter-2 (GLUT2) and phosphorylated protein kinase (p-Akt). Moreover, both vitamins showed their antioxidant capabilities [nuclear factor-erythroid-2-related factor 2 (Nrf2), total and reduced glutathione] and their negative effect on Wnt pathway [phosphorylated glycogen synthase kinase-3β (p-GSK-3β)], by altering the previously mentioned parameters, inevitably leading to severe reduction of reactive oxygen species (ROS) below the physiological levels. In conclusion, a detrimental effect of chronic antioxidant vitamins supplementation was detected; leading to insulin resistance and impaired glucose tolerance obviously through different mechanisms. Overall, these findings indicate that the conventional view that vitamins promote health benefits and delay chronic illnesses and aging should be modified or applied with caution. Copyright © 2017. Published by Elsevier Inc.

  13. IGF-II receptors and IGF-II-stimulated glucose transport in human fat cells

    International Nuclear Information System (INIS)

    Sinha, M.K.; Buchanan, C.; Raineri-Maldonado, C.; Khazanie, P.; Atkinson, S.; DiMarchi, R.; Caro, J.F.

    1990-01-01

    Insulin-like growth factor II (IGF-II) receptors have been described in rat but not in human adipocytes. In both species, IGF-II has been reported to stimulate glucose transport by interacting with the insulin receptor. In this study, we have unequivocally demonstrated the presence of IGF-II receptors in human adipocytes. 125I-labeled IGF-II specifically binds to intact adipocytes, membranes, and lectin-purified detergent solubilized extracts. Through the use of 0.5 mM disuccinimidyl suberate, 125I-IGF-II is cross-linked to a 260-kDa protein that is identified as the IGF-II receptor by displacement experiments with unlabeled IGF-II, IGF-I, and insulin and either by immunoprecipitation or by Western blot analysis with mannose 6-phosphate receptor antibodies. The concentrations of IGF-II required for half-maximal and maximal stimulation of glucose transport in human adipocytes are 35 and 100 times more than that of insulin. The possibility of IGF-II stimulating glucose transport by interacting predominantly with the insulin receptor is suggested by the following: (1) the concentration of IGF-II that inhibits half of insulin binding is only 20 times more than that of insulin; (2) the lack of an additive effect of IGF-II and insulin for maximal stimulation of glucose transport; (3) the ability of monoclonal insulin receptor antibodies to decrease glucose transport stimulated by submaximal concentrations of both IGF-II and insulin; and (4) the ability of IGF-II to stimulate insulin receptor autophosphorylation albeit at a reduced potency when compared with insulin

  14. Periparturient dairy cows do not exhibit hepatic insulin resistance, yet adipose-specific insulin resistance occurs in cows prone to high weight loss.

    Science.gov (United States)

    Zachut, M; Honig, H; Striem, S; Zick, Y; Boura-Halfon, S; Moallem, U

    2013-09-01

    The periparturient period in dairy cows is associated with alterations in insulin action in peripheral tissues; however, the molecular mechanism underlying this process is not completely understood. The objective was to examine the response to a glucose tolerance test (GTT) and to analyze insulin signaling in liver and adipose tissues in pre- and postpartum dairy cows. Liver and adipose tissue biopsies were taken before and after GTT, at 17d prepartum and again at 3 to 5d postpartum from 8 high-yielding Israeli Holstein dairy cows. Glucose clearance rate after GTT was similar pre- and postpartum. Basal insulin concentrations and the insulin response to GTT were approximately 4-fold higher prepartum than postpartum. In accordance, phosphorylation of the hepatic insulin receptor after GTT was higher prepartum than postpartum. Across periods, a positive correlation was observed between the basal and peak plasma insulin and phosphorylated insulin receptor after GTT in the liver. Hepatic phosphorylation of protein kinase B after GTT was elevated pre- and postpartum. Conversely, in adipose tissue, phosphorylation of protein kinase B after GTT pre- and postpartum was increased only in 4 out of 8 cows that lost less body weight postpartum. Our results demonstrate that hepatic insulin signaling is regulated by plasma insulin concentrations as part of the homeorhetic adjustments toward calving, and do not support a model of hepatic insulin resistance in periparturient cows. Nevertheless, we suggest that specific insulin resistance in adipose tissue occurs pre- and postpartum only in cows prone to high weight loss. The different responses among these cows imply that genetic background may affect insulin responsiveness in adipose tissue pre- and postpartum. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Insulin and Insulin-like Growth Factor II Differentially Regulate Endocytic Sorting and Stability of Insulin Receptor Isoform A

    Czech Academy of Sciences Publication Activity Database

    Morcavallo, A.; Genua, M.; Palummo, A.; Kletvíková, Emília; Jiráček, Jiří; Brzozowski, A. M.; Lozzo, R. V.; Belfiore, A.; Morrione, A.

    2012-01-01

    Roč. 287, č. 14 (2012), s. 11422-11436 ISSN 0021-9258 Institutional research plan: CEZ:AV0Z40550506 Keywords : insulin * IGF -II * mitogenic response * IR-A Subject RIV: CE - Biochemistry Impact factor: 4.651, year: 2012

  16. Characterization of the insulin sensitivity of ghrelin receptor KO mice using glycemic clamps

    Directory of Open Access Journals (Sweden)

    Morgan Kristen

    2011-01-01

    Full Text Available Abstract Background We and others have demonstrated previously that ghrelin receptor (GhrR knock out (KO mice fed a high fat diet (HFD have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG and hyperinsulinemic-euglycemic (HI-E clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity. Results Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd, and decreased hepatic glucose production (HGP. HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice. Conclusions These results indicate that improved glucose homeostasis of GhrR KO mice is

  17. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling

    OpenAIRE

    Na, Ha-Na; Hegde, Vijay; Dubuisson, Olga; Dhurandhar, Nikhil V.

    2016-01-01

    Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a ...

  18. EGb761, an extract of Ginkgo biloba leaves, reduces insulin resistance in a high-fat-fed mouse model

    Directory of Open Access Journals (Sweden)

    Wei-na Cong

    2011-06-01

    Full Text Available EGb761, a standardized and well-defined product extract of Ginkgo biloba leaves, has beneficial effects on the treatment of multiple diseases, including diabetes and dyslipidemia. However, it is still unclear whether EGb761 can increase insulin sensitivity. The objectives of the present study are to evaluate the effects of EGb761 on insulin sensitivity in an obese and insulin-resistant mouse model, established through chronic feeding of C57BL/6J mice with a high-fat diet (HFD, and to explore potential mechanisms. Mice fed with HFD for 18 weeks (starting from 4 weeks of age developed obesity, dyslipidemia (as indicated by biochemical measurements of blood glucose, triglyceride (TG, total cholesterol (TC, and free fatty acids (FFA, and insulin resistance (as determined by the oral glucose tolerance test (OGTT and the homeostasis model assessment of insulin resistance (HOMA-IR index, compared to control mice fed with a standard laboratory chow. Oral treatment of the HFD-fed mice with EGb761, at low (100 mg/kg, medium (200 mg/kg, or high (400 mg/kg doses, via oral gavage (once daily for 8 weeks (starting from 26 weeks of age dose-dependently enhanced glucose tolerance in OGTT, and decreased both the insulin levels (by 29%, 55%, and 70%, respectively, and the HOMA-IR index values (by 50%, 69%, and 80%, respectively. EGb761 treatment also ameliorated HFD-induced obesity, dyslipidemia, and liver injury, as indicated by decreases in body weight (by 4%, 11%, and 16%, respectively, blood TC levels (by 23%, 32%, and 37%, respectively, blood TG levels (by 17%, 23%, and 33%, respectively, blood FAA levels (by 35%, 38%, and 46%, respectively, and liver index (liver weight/body weight values (by 12.8%, 25%, and 28%, respectively in the low, medium, and high EGb761 dose groups, respectively. In further mechanism studies, EGb761 was found to protect hepatic insulin receptor β and insulin receptor substrate 1 from HFD-induced degradation, and to keep the AMP

  19. Drosophila insulin-producing cells are differentially modulated by serotonin and octopamine receptors and affect social behavior.

    Directory of Open Access Journals (Sweden)

    Jiangnan Luo

    Full Text Available A set of 14 insulin-producing cells (IPCs in the Drosophila brain produces three insulin-like peptides (DILP2, 3 and 5. Activity in IPCs and release of DILPs is nutrient dependent and controlled by multiple factors such as fat body-derived proteins, neurotransmitters, and neuropeptides. Two monoamine receptors, the octopamine receptor OAMB and the serotonin receptor 5-HT1A, are expressed by the IPCs. These receptors may act antagonistically on adenylate cyclase. Here we investigate the action of the two receptors on activity in and output from the IPCs. Knockdown of OAMB by targeted RNAi led to elevated Dilp3 transcript levels in the brain, whereas 5-HT1A knockdown resulted in increases of Dilp2 and 5. OAMB-RNAi in IPCs leads to extended survival of starved flies and increased food intake, whereas 5-HT1A-RNAi produces the opposite phenotypes. However, knockdown of either OAMB or 5-HT1A in IPCs both lead to increased resistance to oxidative stress. In assays of carbohydrate levels we found that 5-HT1A knockdown in IPCs resulted in elevated hemolymph glucose, body glycogen and body trehalose levels, while no effects were seen after OAMB knockdown. We also found that manipulations of the two receptors in IPCs affected male aggressive behavior in different ways and 5-HT1A-RNAi reduced courtship latency. Our observations suggest that activation of 5-HT1A and OAMB signaling in IPCs generates differential effects on Dilp transcription, fly physiology, metabolism and social interactions. However the findings do not support an antagonistic action of the two monoamines and their receptors in this particular system.

  20. Drosophila insulin-producing cells are differentially modulated by serotonin and octopamine receptors and affect social behavior.

    Science.gov (United States)

    Luo, Jiangnan; Lushchak, Oleh V; Goergen, Philip; Williams, Michael J; Nässel, Dick R

    2014-01-01

    A set of 14 insulin-producing cells (IPCs) in the Drosophila brain produces three insulin-like peptides (DILP2, 3 and 5). Activity in IPCs and release of DILPs is nutrient dependent and controlled by multiple factors such as fat body-derived proteins, neurotransmitters, and neuropeptides. Two monoamine receptors, the octopamine receptor OAMB and the serotonin receptor 5-HT1A, are expressed by the IPCs. These receptors may act antagonistically on adenylate cyclase. Here we investigate the action of the two receptors on activity in and output from the IPCs. Knockdown of OAMB by targeted RNAi led to elevated Dilp3 transcript levels in the brain, whereas 5-HT1A knockdown resulted in increases of Dilp2 and 5. OAMB-RNAi in IPCs leads to extended survival of starved flies and increased food intake, whereas 5-HT1A-RNAi produces the opposite phenotypes. However, knockdown of either OAMB or 5-HT1A in IPCs both lead to increased resistance to oxidative stress. In assays of carbohydrate levels we found that 5-HT1A knockdown in IPCs resulted in elevated hemolymph glucose, body glycogen and body trehalose levels, while no effects were seen after OAMB knockdown. We also found that manipulations of the two receptors in IPCs affected male aggressive behavior in different ways and 5-HT1A-RNAi reduced courtship latency. Our observations suggest that activation of 5-HT1A and OAMB signaling in IPCs generates differential effects on Dilp transcription, fly physiology, metabolism and social interactions. However the findings do not support an antagonistic action of the two monoamines and their receptors in this particular system.

  1. Insulin Action in Brain Regulates Systemic Metabolism and Brain Function

    OpenAIRE

    Kleinridders, Andr?; Ferris, Heather A.; Cai, Weikang; Kahn, C. Ronald

    2014-01-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in t...

  2. Developmental programming: effect of prenatal steroid excess on intraovarian components of insulin signaling pathway and related proteins in sheep.

    Science.gov (United States)

    Ortega, Hugo H; Rey, Florencia; Velazquez, Melisa M L; Padmanabhan, Vasantha

    2010-06-01

    Prenatal testosterone (T) excess increases ovarian follicular recruitment, follicular persistence, insulin resistance, and compensatory hyperinsulinemia. Considering the importance of insulin in ovarian physiology, in this study, using prenatal T- and dihydrotestosterone (DHT, a nonaromatizable androgen)-treated female sheep, we tested the hypothesis that prenatal androgen excess alters the intraovarian insulin signaling cascade and metabolic mediators that have an impact on insulin signaling. Changes in ovarian insulin receptor (INSRB), insulin receptor substrate 1 (IRS1), mammalian target of rapamycin (MTOR), phosphatidylinositol 3-kinase (PIK3), peroxisome proliferator-activated receptor-gamma (PPARG), and adiponectin proteins were determined at fetal (Days 90 and 140), postpubertal (10 mo), and adult (21 mo) ages by immunohistochemistry. Results indicated that these proteins were expressed in granulosa, theca, and stromal compartments, with INSRB, IRS1, PPARG, and adiponectin increasing in parallel with advanced follicular differentiation. Importantly, prenatal T excess induced age-specific changes in PPARG and adiponectin expression, with increased PPARG expression evident during fetal life and decreased antral follicular adiponectin expression during adult life. Comparison of developmental changes in prenatal T and DHT-treated females found that the effects on PPARG were programmed by androgenic actions of T, whereas the effects on adiponectin were likely by its estrogenic action. These results suggest a role for PPARG in the programming of ovarian disruptions by prenatal T excess, including a decrease in antral follicular adiponectin expression and a contributory role for adiponectin in follicular persistence and ovulatory failure.

  3. Testosterone treatment increases androgen receptor and aromatase gene expression in myotubes from patients with PCOS and controls, but does not induce insulin resistance

    DEFF Research Database (Denmark)

    Eriksen, Mette Brandt; Glintborg, Dorte; Nielsen, Michael Friberg Bruun

    2014-01-01

    Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity is conse......Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity...... is conserved in cultured myotubes (in vitro) from patients with PCOS, but the effect of testosterone on this insulin sensitivity is unknown. We investigated the effect of 7days testosterone treatment (100nmol/l) on glucose transport and gene expression levels of hormone receptors and enzymes involved...... in the synthesis and conversion of testosterone (HSD17B1, HSD17B2, CYP19A1, SRD5A1-2, AR, ER-α, HSD17B6 and AKR1-3) in myotubes from ten patients with PCOS and ten matched controls. Testosterone treatment significantly increased aromatase and androgen receptor gene expression levels in patients and controls...

  4. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    Czech Academy of Sciences Publication Activity Database

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, C. J.; Turkenburg, J. P.; Jiráček, Jiří; Brzozowski, A. M.

    2014-01-01

    Roč. 70, č. 10 (2014), s. 2765-2774 ISSN 0907-4449 R&D Projects: GA ČR GPP207/11/P430; GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : insulin * insulin receptor * complex * active form * analog * structure Subject RIV: CE - Biochemistry Impact factor: 7.232, year: 2013

  5. Novel Zn2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents.

    Directory of Open Access Journals (Sweden)

    Ola Fjellström

    Full Text Available Type 2 diabetes (T2D occurs when there is insufficient insulin release to control blood glucose, due to insulin resistance and impaired β-cell function. The GPR39 receptor is expressed in metabolic tissues including pancreatic β-cells and has been proposed as a T2D target. Specifically, GPR39 agonists might improve β-cell function leading to more adequate and sustained insulin release and glucose control. The present study aimed to test the hypothesis that GPR39 agonism would improve glucose stimulated insulin secretion in vivo. A high throughput screen, followed by a medicinal chemistry program, identified three novel potent Zn2+ modulated GPR39 agonists. These agonists were evaluated in acute rodent glucose tolerance tests. The results showed a lack of glucose lowering and insulinotropic effects not only in lean mice, but also in diet-induced obese (DIO mice and Zucker fatty rats. It is concluded that Zn2+ modulated GPR39 agonists do not acutely stimulate insulin release in rodents.

  6. Ligand binding affinity at the insulin receptor isoform A (IR-A and subsequent IR-A tyrosine phosphorylation kinetics are important determinants of mitogenic biological outcomes.

    Directory of Open Access Journals (Sweden)

    Harinda eRajapaksha

    2015-07-01

    Full Text Available The insulin receptor (IR is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A arises from alternative splicing of exon 11 and has different ligand binding and signalling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival and migration by activating some unique signalling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signalling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signalling (MAPK and Akt and receptor internalisation rates (related to mitogenic signalling. We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic ([His4, Tyr15, Thr49, Ile51] IGF-I, qIGF-I or metabolic (S597 peptide biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signalling through the IR-A. The 3-fold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316 and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and the kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I.

  7. Short-Term Exercise Training Improves Insulin Sensitivity but Does Not Inhibit Inflammatory Pathways in Immune Cells from Insulin-Resistant Subjects

    Directory of Open Access Journals (Sweden)

    Sara M. Reyna

    2013-01-01

    Full Text Available Background. Exercise has an anti-inflammatory effect against, and immune cells play critical roles in the development, of insulin resistance and atherosclerotic vascular disease (AVD. Thus, the goal of this study was to determine whether exercise improves insulin sensitivity in insulin-resistant subjects by downregulating proinflammatory signaling in immune cells. Methods. Seventeen lean, 8 obese nondiabetic, and 11 obese type 2 diabetic individuals underwent an aerobic exercise program for 15 days and an insulin clamp before and after exercise. Peripheral mononuclear cells (PMNC were obtained for determination of Toll-like receptor (TLR 2 and 4 protein content and mitogen-activated protein kinase phosphorylation. Results. Compared with that in lean individuals, TLR4 protein content was increased by 4.2-fold in diabetic subjects. This increase in TLR4 content was accompanied by a 3.0-fold increase in extracellular signal-regulated kinase (ERK phosphorylation. Exercise improved insulin sensitivity in the lean, obese, and type 2 diabetes groups. However, exercise did not affect TLR content or ERK phosphorylation. Conclusions. TLR4 content and ERK phosphorylation are increased in PMNC of type 2 diabetic individuals. While exercise improves insulin sensitivity, this effect is not related to changes in TLR2/TLR4 content or ERK phosphorylation in PMNC of type 2 diabetic individuals.

  8. Short-term exercise training improves insulin sensitivity but does not inhibit inflammatory pathways in immune cells from insulin-resistant subjects.

    Science.gov (United States)

    Reyna, Sara M; Tantiwong, Puntip; Cersosimo, Eugenio; Defronzo, Ralph A; Sriwijitkamol, Apiradee; Musi, Nicolas

    2013-01-01

    Background. Exercise has an anti-inflammatory effect against, and immune cells play critical roles in the development, of insulin resistance and atherosclerotic vascular disease (AVD). Thus, the goal of this study was to determine whether exercise improves insulin sensitivity in insulin-resistant subjects by downregulating proinflammatory signaling in immune cells. Methods. Seventeen lean, 8 obese nondiabetic, and 11 obese type 2 diabetic individuals underwent an aerobic exercise program for 15 days and an insulin clamp before and after exercise. Peripheral mononuclear cells (PMNC) were obtained for determination of Toll-like receptor (TLR) 2 and 4 protein content and mitogen-activated protein kinase phosphorylation. Results. Compared with that in lean individuals, TLR4 protein content was increased by 4.2-fold in diabetic subjects. This increase in TLR4 content was accompanied by a 3.0-fold increase in extracellular signal-regulated kinase (ERK) phosphorylation. Exercise improved insulin sensitivity in the lean, obese, and type 2 diabetes groups. However, exercise did not affect TLR content or ERK phosphorylation. Conclusions. TLR4 content and ERK phosphorylation are increased in PMNC of type 2 diabetic individuals. While exercise improves insulin sensitivity, this effect is not related to changes in TLR2/TLR4 content or ERK phosphorylation in PMNC of type 2 diabetic individuals.

  9. mTORC2 Regulation of Muscle Metabolism and Insulin Sensitivity

    DEFF Research Database (Denmark)

    Kleinert, Maximilian

    and skeletal muscle to take up blood glucose, ultimately lowering blood glucose levels. A hallmark of T2D is decreased organ sensitivity to the effects of the insulin. Therefore, an early event in the pathogenesis of T2D is an increase in insulin secretion in response to eating a meal, as more insulin....... In the absence of insulin, the majority of GLUT4 resides within the muscle. Conversely, insulin stimulation increases the muscle’s permeability to glucose, by triggering GLUT4 translocation to the plasma membrane. The effect of insulin on GLUT4 translocation is mediated by a chain of molecular signaling events...... that mTORC2 controls skeletal muscle glycolysis and lipid storage. In agreement, Ric mKO mice exhibited reduced muscle glycolytic flux, greater reliance on fat as an energy substrate, re-partitioning of lean to fat mass and higher intramyocellular triacylglycerol (IMTG) levels compared to Ric WT mice...

  10. The existence of an insulin-stimulated glucose and non-essential but not essential amino acid substrate interaction in diabetic pigs

    NARCIS (Netherlands)

    Koopmans, S.J.; Meulen, van der J.; Wijdenes, J.W.; Corbijn, H.; Dekker, R.A.

    2011-01-01

    Background The generation of energy from glucose is impaired in diabetes and can be compensated by other substrates like fatty acids (Randle cycle). Little information is available on amino acids (AA) as alternative energy-source in diabetes. To study the interaction between insulin-stimulated

  11. STAT6: its role in interleukin 4-mediated biological functions.

    Science.gov (United States)

    Takeda, K; Kishimoto, T; Akira, S

    1997-05-01

    Interleukin (IL) 4 is known to be a cytokine which plays a central role in the regulation of immune response. Studies on cytokine signal transduction have clarified the mechanism by which IL4 exerts its functions. Two cytoplasmic proteins, signal transducer and activator of transcription (STAT) 6 and IL4-induced phosphotyrosine substrate/insulin receptor substrate 2 (4PS/IRS2), are activated in IL4 signal transduction. Recent studies from STAT6-deficient mice have revealed the essential role of STAT6 in IL4-mediated biological actions. In addition, STAT6 has also been demonstrated to be important for the functions mediated by IL13, which is related to IL4. IL4 and IL13 have been shown to induce the production of IgE, which is a major mediator in an allergic response. These findings indicate that STAT6 activation is involved in IL4- and IL13-mediated disorders such as allergy.

  12. Decoding P4-ATPase substrate interactions.

    Science.gov (United States)

    Roland, Bartholomew P; Graham, Todd R

    Cellular membranes display a diversity of functions that are conferred by the unique composition and organization of their proteins and lipids. One important aspect of lipid organization is the asymmetric distribution of phospholipids (PLs) across the plasma membrane. The unequal distribution of key PLs between the cytofacial and exofacial leaflets of the bilayer creates physical surface tension that can be used to bend the membrane; and like Ca 2+ , a chemical gradient that can be used to transduce biochemical signals. PL flippases in the type IV P-type ATPase (P4-ATPase) family are the principle transporters used to set and repair this PL gradient and the asymmetric organization of these membranes are encoded by the substrate specificity of these enzymes. Thus, understanding the mechanisms of P4-ATPase substrate specificity will help reveal their role in membrane organization and cell biology. Further, decoding the structural determinants of substrate specificity provides investigators the opportunity to mutationally tune this specificity to explore the role of particular PL substrates in P4-ATPase cellular functions. This work reviews the role of P4-ATPases in membrane biology, presents our current understanding of P4-ATPase substrate specificity, and discusses how these fundamental aspects of P4-ATPase enzymology may be used to enhance our knowledge of cellular membrane biology.

  13. Insulin binding properties of normal and transformed human epidermal cultured keratinocytes

    International Nuclear Information System (INIS)

    Verrando, P.; Ortonne, J.P.

    1985-01-01

    Insulin binding to its receptors was studied in cultured normal and transformed (A431 line) human epidermal keratinocytes. The specific binding was a temperature-dependent, saturable process. Normal keratinocytes possess a mean value of about 80,000 receptors per cell. Fifteen hours exposure of the cells to insulin lowered their receptor number (about 65% loss in available sites); these reappeared when the hormone was removed from the culture medium. In the A431 epidermoid carcinoma cell line, there is a net decrease in insulin binding (84% of the initial bound/free hormone ratio in comparison with normal cells) essentially related to a loss in receptor affinity for insulin. Thus, cultured human keratinocytes which express insulin receptors may be a useful tool in understanding skin pathology related to insulin disorders

  14. Insulin receptors mediate growth effects in cultured fetal neurons. I. Rapid stimulation of protein synthesis

    International Nuclear Information System (INIS)

    Heidenreich, K.A.; Toledo, S.P.

    1989-01-01

    In this study we have examined the effects of insulin on protein synthesis in cultured fetal chick neurons. Protein synthesis was monitored by measuring the incorporation of [3H]leucine (3H-leu) into trichloroacetic acid (TCA)-precipitable protein. Upon addition of 3H-leu, there was a 5-min lag before radioactivity occurred in protein. During this period cell-associated radioactivity reached equilibrium and was totally recovered in the TCA-soluble fraction. After 5 min, the incorporation of 3H-leu into protein was linear for 2 h and was inhibited (98%) by the inclusion of 10 micrograms/ml cycloheximide. After 24 h of serum deprivation, insulin increased 3H-leu incorporation into protein by approximately 2-fold. The stimulation of protein synthesis by insulin was dose dependent (ED50 = 70 pM) and seen within 30 min. Proinsulin was approximately 10-fold less potent than insulin on a molar basis in stimulating neuronal protein synthesis. Insulin had no effect on the TCA-soluble fraction of 3H-leu at any time and did not influence the uptake of [3H]aminoisobutyric acid into neurons. The isotope ratio of 3H-leu/14C-leu in the leucyl tRNA pool was the same in control and insulin-treated neurons. Analysis of newly synthesized proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that insulin uniformly increased the incorporation of 14C-leu into all of the resolved neuronal proteins. We conclude from these data that (1) insulin rapidly stimulates overall protein synthesis in fetal neurons independent of amino acid uptake and aminoacyl tRNA precursor pools; (2) stimulation of protein synthesis is mediated by the brain subtype of insulin receptor; and (3) insulin is potentially an important in vivo growth factor for fetal central nervous system neurons

  15. Novel nuclear localization and potential function of insulin-like growth factor-1 receptor/insulin receptor hybrid in corneal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yu-Chieh Wu

    Full Text Available BACKGROUND: Type I insulin-like growth factor receptor (IGF-1R and insulin receptor (INSR are highly homologous molecules, which can heterodimerize to form an IGF-1R/INSR hybrid (Hybrid-R. The presence and biological significance of the Hybrid-R in human corneal epithelium has not yet been established. In addition, while nuclear localization of IGF-1R was recently reported in cancer cells and human corneal epithelial cells, the function and profile of nuclear IGF-1R is unknown. In this study, we characterized the nuclear localization and function of the Hybrid-R and the role of IGF-1/IGF-1R and Hybrid-R signaling in the human corneal epithelium. METHODOLOGY/PRINCIPLE FINDINGS: IGF-1-mediated signaling and cell growth were examined in a human telomerized corneal epithelial (hTCEpi cell line using co-immunoprecipitation, immunoblotting and cell proliferation assays. The presence of Hybrid-R in hTCEpi and primary cultured human corneal epithelial cells was confirmed by immunofluorescence and reciprocal immunoprecipitation of whole cell lysates. We found that IGF-1 stimulated Akt and promoted cell growth through IGF-1R activation, which was independent of the Hybrid-R. The presence of Hybrid-R, but not IGF-1R/IGF-1R, was detected in nuclear extracts. Knockdown of INSR by small interfering RNA resulted in depletion of the INSR/INSR and preferential formation of Hybrid-R. Chromatin-immunoprecipitation sequencing assay with anti-IGF-1R or anti-INSR was subsequently performed to identify potential genomic targets responsible for critical homeostatic regulatory pathways. CONCLUSION/SIGNIFICANCE: In contrast to previous reports on nuclear localized IGF-1R, this is the first report identifying the nuclear localization of Hybrid-R in an epithelial cell line. The identification of a nuclear Hybrid-R and novel genomic targets suggests that IGF-1R traffics to the nucleus as an IGF-1R/INSR heterotetrameric complex to regulate corneal epithelial homeostatic

  16. Brain Insulin Signaling Is Increased in Insulin-Resistant States and Decreases in FOXOs and PGC-1α and Increases in Aβ1-40/42 and Phospho-Tau May Abet Alzheimer Development.

    Science.gov (United States)

    Sajan, Mini; Hansen, Barbara; Ivey, Robert; Sajan, Joshua; Ari, Csilla; Song, Shijie; Braun, Ursula; Leitges, Michael; Farese-Higgs, Margaret; Farese, Robert V

    2016-07-01

    Increased coexistence of Alzheimer disease (AD) and type 2 diabetes mellitus (T2DM) suggests that insulin resistance abets neurodegenerative processes, but linkage mechanisms are obscure. Here, we examined insulin signaling factors in brains of insulin-resistant high-fat-fed mice, ob/ob mice, mice with genetically impaired muscle glucose transport, and monkeys with diet-dependent long-standing obesity/T2DM. In each model, the resting/basal activities of insulin-regulated brain protein kinases, Akt and atypical protein kinase C (aPKC), were maximally increased. Moreover, Akt hyperactivation was accompanied by hyperphosphorylation of substrates glycogen synthase kinase-3β and mammalian target of rapamycin and FOXO proteins FOXO1, FOXO3A, and FOXO4 and decreased peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression. Akt hyperactivation was confirmed in individual neurons of anterocortical and hippocampal regions that house cognition/memory centers. Remarkably, β-amyloid (Aβ1-40/42) peptide levels were as follows: increased in the short term by insulin in normal mice, increased basally in insulin-resistant mice and monkeys, and accompanied by diminished amyloid precursor protein in monkeys. Phosphorylated tau levels were increased in ob/ob mice and T2DM monkeys. Importantly, with correction of hyperinsulinemia by inhibition of hepatic aPKC and improvement in systemic insulin resistance, brain insulin signaling normalized. As FOXOs and PGC-1α are essential for memory and long-term neuronal function and regeneration and as Aβ1-40/42 and phospho-tau may increase interneuronal plaques and intraneuronal tangles, presently observed aberrations in hyperinsulinemic states may participate in linking insulin resistance to AD. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  17. I-123-insulin: A new marker for hepatoma

    International Nuclear Information System (INIS)

    Sodoyez, J.C.; Goffaux, F.S.; Fallais, C.; Bourgeois, P.

    1984-01-01

    Previous studies have demonstrated that carrier-free I-123-Tyr Al4 insulin was taken up by the liver (by a saturable mechanism) and by the kidneys (by a non saturable mechanism). Autoradiographs of rat liver after injection of I-125-insulin showed that binding specifically occurred at the plasma membrane of the hepatocytes. I-123-Insulin binding to the hepatocyte plasma membrane appeared mediated by specific receptors. Indeed it was blocked by antibodies to the insulin receptors and by an excess of native insulin. Futhermore insulin derivatives with low biological potency (proinsulin and desoctapeptide insulin) did not inhibit I-123-insulin binding to the hepatocytes. I-123-Insulin (1.3 mCi) was I.V. injected into a patient in whom the right liver lobe was normal (normal uptake of Tc-99m-colloid sulfur) but the left liver lobe was occupied by a voluminous hepatoma (no uptake of Tc-99m-colloid sulfur). Liver blood supply was also studied by Tc-99m-pyrophosphate-labeled red cells. Computer analysis of the data revealed that compared to the normal liver lobe, binding of I-123-insulin to the hepatoma was more precocious (vascularization through the hepatic artery and not the portal vein), more intense and more prolonged (half-lives were 6 min in the normal liver and 14 min in the hepatoma). These results are consistent with characteristics of hepatoma cells in culture in which high insulin binding capacity contrasts with a markedly decreased insulin degrading activity. It is concluded that I-123-insulin may be used as a specific marker of hepatoma in man

  18. Skeletal muscle and hepatic insulin signaling is maintained in heat-stressed lactating Holstein cows.

    Science.gov (United States)

    Xie, G; Cole, L C; Zhao, L D; Skrzypek, M V; Sanders, S R; Rhoads, M L; Baumgard, L H; Rhoads, R P

    2016-05-01

    Multiparous cows (n=12; parity=2; 136±8 d in milk, 560±32kg of body weight) housed in climate-controlled chambers were fed a total mixed ration (TMR) consisting primarily of alfalfa hay and steam-flaked corn. During the first experimental period (P1), all 12 cows were housed in thermoneutral conditions (18°C, 20% humidity) with ad libitum intake for 9 d. During the second experimental period (P2), half of the cows were fed for ad libitum intake and subjected to heat-stress conditions [WFHS, n=6; cyclical temperature 31.1 to 38.9°C, 20% humidity: minimum temperature humidity index (THI)=73, maximum THI=80.5], and half of the cows were pair-fed to match the intake of WFHS cows in thermal neutral conditions (TNPF, n=6) for 9 d. Rectal temperature and respiration rate were measured thrice daily at 0430, 1200, and 1630 h. To evaluate muscle and liver insulin responsiveness, biopsies were obtained immediately before and after an insulin tolerance test on the last day of each period. Insulin receptor (IR), insulin receptor substrate 1 (IRS-1), AKT/protein kinase B (AKT), and phosphorylated AKT (p-AKT) were measured by Western blot analyses for both tissues. During P2, WFHS increased rectal temperature and respiration rate by 1.48°C and 2.4-fold, respectively. Heat stress reduced dry matter intake by 8kg/d and, by design, TNPF cows had similar intake reductions. Milk yield was decreased similarly (30%) in WFHS and TNPF cows, and both groups entered into a similar (-4.5 Mcal/d) calculated negative energy balance during P2. Insulin infusion caused a less rapid glucose disposal in P2 compared with P1, but glucose clearance did not differ between environments in P2. In liver, insulin increased p-AKT protein content in each period. Phosphorylation ratio of AKT increased 120% in each period after insulin infusion. In skeletal muscle, protein abundance of the IR, IRS, and AKT remained stable between periods and environment. Insulin increased skeletal muscle p-AKT in each

  19. In vitro and in vivo potency of insulin analogues designed for clinical use.

    Science.gov (United States)

    Vølund, A; Brange, J; Drejer, K; Jensen, I; Markussen, J; Ribel, U; Sørensen, A R; Schlichtkrull, J

    1991-11-01

    Analogues of human insulin designed to have improved absorption properties after subcutaneous injection have been prepared by recombinant DNA technology. Five rapidly absorbed analogues, being predominantly in mono- or di-meric states in the pharmaceutical preparation, and a hexameric analogue with very low solubility at neutral pH and slow absorption, were studied. Receptor binding assays with HEP-G2 cells showed overall agreement with mouse free adipocyte assays. Two analogues, B28Asp and A21Gly + B27Arg + B30Thr-NH2, had nearly the same molar in vitro potency as human insulin. Another two showed increased adipocyte potency and receptor binding, B10Asp 194% and 333% and A8His + B4His + B10Glu + B27His 575% and 511%, while B9Asp + B27Glu showed 29% and 18% and the B25Asp analogue only 0.12% and 0.05% potency. Bioassays in mice or rabbits of the analogues except B25Asp showed that they had the same in vivo potency as human insulin 1.00 IU = 6.00 nmol. Thus the variation had the same in vivo potency as human insulin 1.00 IU = 6.00 nmol. Thus the variation in in vivo potency reflects the differences in receptor binding affinity. Relative to human insulin a low concentration is sufficient for a high affinity analogue to produce a given receptor complex formation and metabolic response. In conclusion, human insulin and analogues with markedly different in vitro potencies were equipotent in terms of hypoglycaemic effect. This is in agreement with the concept that elimination of insulin from blood and its subsequent degradation is mediated by insulin receptors.

  20. Insulin-sparing and fungible effects of E4orf1 combined with an adipocyte-targeting sequence in mouse models of type 1 and type 2 diabetes.

    Science.gov (United States)

    Yoon, I-S; Park, S; Kim, R-H; Ko, H L; Nam, J-H

    2017-10-01

    Obesity impairs glycemic control and causes insulin resistance and type 2 diabetes. Adenovirus 36 (Ad36) infection can increase the uptake of excess glucose from blood into adipocytes by increasing GLUT4 translocation through the Ras-Akt signaling pathway, which bypasses PI3K-Akt-mediated insulin receptor signaling. E4orf1, a viral gene expressed early during Ad36 infection, is responsible for this insulin-sparing effect and may be an alternative target for improving insulin resistance. To deliver the gene to adipocytes only, we connected the adipocyte-targeting sequence (ATS) to the 5' end of E4orf1 (ATS-E4orf1). In vitro transfection of ATS-E4orf1 into preadipocytes activated factors for GLUT4 translocation and adipogenesis to the same extent as did Hemagglutinin (HA)-E4orf1 transfection as positive reference. Moreover, the Transwell migration assay also showed that ATS-E4orf1 secreted by liver cells activated Akt in preadipocytes. We used a hydrodynamic gene delivery technique to deliver ATS-E4orf1 into high-fat diet-fed and streptozotocin-injected mice (disease models of type 2 and type 1 diabetes, respectively). ATS-E4orf1 improved the ability to eliminate excess glucose from the blood and ameliorated liver function in both disease models. These findings suggest that ATS-E4orf1 has insulin-sparing and fungible effects in type 2 and 1 diabetes independent of the presence of insulin.

  1. Structural analysis of the interaction of IGF I with the IGF types 1 and 2 and insulin receptors

    International Nuclear Information System (INIS)

    Cascieri, M.A.; Chicchi, G.G.; Hayes, N.S.; Green, B.G.; Applebaum, J.A.; Bayne, M.L.

    1987-01-01

    A synthetic gene for human IGF I has been synthesized which directs the synthesis and secretion of fully active human IGF I (rIGF I) from yeast. rIGF I inhibits binding of 125 I-IGF I to type 1 IGF receptors from human placenta (IGF-R1, IC50 = 4 nM), binding of 125 I-insulin to insulin receptors (IR, IC50 = 881 nM), binding of 125 I-MSA to type 2 IGF receptors from rat liver (IGF-R2, IC50 = 80 nM), and binding of 125 I-IGF I to crude human serum binding protein (hBP, IC50 = 0.42 nM). rIGF I is equipotent to human IGF I in stimulating glucose transport in murine BC3H1 cells and in stimulating DNA synthesis in rat A10 cells. Site directed mutagenesis of the synthetic gene is being used to characterize the structural requirements for binding to these receptors. IGF I (FFY) B(23-25) is equipotent to rIGF I at the IGF-R1 (6.9 nM), the IGF-R2 (36 nM), and the IR (841 nM) and is less potent at the hBP (1.7 nM). In contrast, IGF I(SFY) B(23-25) is 20-fold less potent than rIGF I at the IGF-R1 and is 10-fold less potent than rIGF I at hBP. This peptide is greater than 10-fold less active at the IGF-R2 and the IR. This peptide is a full agonist in the cell assays but 20-50 fold less potent than rIGF I. These data are consistent with the hypothesis that the F to S change destabilizes the tertiary structure of IGF I

  2. Phosphatidylcholine transfer protein interacts with thioesterase superfamily member 2 to attenuate insulin signaling.

    Science.gov (United States)

    Ersoy, Baran A; Tarun, Akansha; D'Aquino, Katharine; Hancer, Nancy J; Ukomadu, Chinweike; White, Morris F; Michel, Thomas; Manning, Brendan D; Cohen, David E

    2013-07-30

    Phosphatidylcholine transfer protein (PC-TP) is a phospholipid-binding protein that is enriched in liver and that interacts with thioesterase superfamily member 2 (THEM2). Mice lacking either protein exhibit improved hepatic glucose homeostasis and are resistant to diet-induced diabetes. Insulin receptor substrate 2 (IRS2) and mammalian target of rapamycin complex 1 (mTORC1) are key effectors of insulin signaling, which is attenuated in diabetes. We found that PC-TP inhibited IRS2, as evidenced by insulin-independent IRS2 activation after knockdown, genetic ablation, or chemical inhibition of PC-TP. In addition, IRS2 was activated after knockdown of THEM2, providing support for a role for the interaction of PC-TP with THEM2 in suppressing insulin signaling. Additionally, we showed that PC-TP bound to tuberous sclerosis complex 2 (TSC2) and stabilized the components of the TSC1-TSC2 complex, which functions to inhibit mTORC1. Preventing phosphatidylcholine from binding to PC-TP disrupted interactions of PC-TP with THEM2 and TSC2, and disruption of the PC-TP-THEM2 complex was associated with increased activation of both IRS2 and mTORC1. In livers of mice with genetic ablation of PC-TP or that had been treated with a PC-TP inhibitor, steady-state amounts of IRS2 were increased, whereas those of TSC2 were decreased. These findings reveal a phospholipid-dependent mechanism that suppresses insulin signaling downstream of its receptor.

  3. Impaired insulin signaling pathway in ovarian follicles of cows with cystic ovarian disease.

    Science.gov (United States)

    Hein, G J; Panzani, C G; Rodríguez, F M; Salvetti, N R; Díaz, P U; Gareis, N C; Benítez, G A; Ortega, H H; Rey, F

    2015-05-01

    Cystic ovarian disease (COD) is an important cause of infertility in dairy cattle. Follicular cell steroidogenesis and proliferation in ovulatory follicles is stimulated by hormones such as insulin and its necessary post-receptor response. The aim of this study was to determine the expression of insulin receptor (IR), IR substrate-1 (IRS1) and phosphatidylinositol 3-kinase (PI3K), key intermediates in the insulin pathway, in control cows and cows with spontaneous COD and ACTH-induced COD. IR and IRS1 mRNA levels were greater in granulosa cells and lower in follicular cysts than in control tertiary follicles. PI3K mRNA levels were similar in all follicles evaluated, whereas the expression of IR, IRS1 and PI3K was similar in theca cells. Protein expression of IR was higher in control tertiary follicles than in the same structures in animals with COD and with cysts. IRS1 and PI3K protein expression showed the same pattern in tertiary and cystic follicles. However, the protein expression of subunit alpha p85 of PI3K was greater in theca cells from tertiary follicles than in cystic follicles. These results provide new insights into the insulin response in cows with COD. The lower gene and protein expressions of some insulin downstream effectors at an early stage of the signaling pathway could negatively influence the functionality of ovaries and contribute to follicle persistence. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Divergent effects of insulin-like growth factor-1 receptor expression on prognosis of estrogen receptor positive versus triple negative invasive ductal breast carcinoma

    NARCIS (Netherlands)

    Hartog, Hermien; Horlings, Hugo M; van der Vegt, Bert; Kreike, Bas; Ajouaou, Abderrahim; van de Vijver, Marc J; Boezen, Hendrika; de Bock, Geertruida H; van der Graaf, Wilhelmina; Wesseling, Jelle

    2011-01-01

    The insulin-like growth factor type 1 receptor (IGF1R) is involved in progression of breast cancer and resistance to systemic treatment. Targeting IGF1R signaling may, therefore, be beneficial in systemic treatment. We report the effect of IGF1R expression on prognosis in invasive ductal breast

  5. The GLP-1 Receptor Agonist Exendin-4 and Diazepam Differentially Regulate GABAA Receptor-Mediated Tonic Currents in Rat Hippocampal CA3 Pyramidal Neurons.

    Directory of Open Access Journals (Sweden)

    Sergiy V Korol

    Full Text Available Glucagon-like peptide-1 (GLP-1 is a metabolic hormone that is secreted in a glucose-dependent manner and enhances insulin secretion. GLP-1 receptors are also found in the brain where their signalling affects neuronal activity. We have previously shown that the GLP-1 receptor agonists, GLP-1 and exendin-4 enhanced GABA-activated synaptic and tonic currents in rat hippocampal CA3 pyramidal neurons. The hippocampus is the centre for memory and learning and is important for cognition. Here we examined if exendin-4 similarly enhanced the GABA-activated currents in the presence of the benzodiazepine diazepam. In whole-cell recordings in rat brain slices, diazepam (1 μM, an allosteric positive modulator of GABAA receptors, alone enhanced the spontaneous inhibitory postsynaptic current (sIPSC amplitude and frequency by a factor of 1.3 and 1.6, respectively, and doubled the tonic GABAA current normally recorded in the CA3 pyramidal cells. Importantly, in the presence of exendin-4 (10 nM plus diazepam (1 μM, only the tonic but not the sIPSC currents transiently increased as compared to currents recorded in the presence of diazepam alone. The results suggest that exendin-4 potentiates a subpopulation of extrasynaptic GABAA receptors in the CA3 pyramidal neurons.

  6. Dock/Nck facilitates PTP61F/PTP1B regulation of insulin signalling.

    Science.gov (United States)

    Wu, Chia-Lun; Buszard, Bree; Teng, Chun-Hung; Chen, Wei-Lin; Warr, Coral G; Tiganis, Tony; Meng, Tzu-Ching

    2011-10-01

    PTP1B (protein tyrosine phosphatase 1B) is a negative regulator of IR (insulin receptor) activation and glucose homoeostasis, but the precise molecular mechanisms governing PTP1B substrate selectivity and the regulation of insulin signalling remain unclear. In the present study we have taken advantage of Drosophila as a model organism to establish the role of the SH3 (Src homology 3)/SH2 adaptor protein Dock (Dreadlocks) and its mammalian counterpart Nck in IR regulation by PTPs. We demonstrate that the PTP1B orthologue PTP61F dephosphorylates the Drosophila IR in S2 cells in vitro and attenuates IR-induced eye overgrowth in vivo. Our studies indicate that Dock forms a stable complex with PTP61F and that Dock/PTP61F associate with the IR in response to insulin. We report that Dock is required for effective IR dephosphorylation and inactivation by PTP61F in vitro and in vivo. Furthermore, we demonstrate that Nck interacts with PTP1B and that the Nck/PTP1B complex inducibly associates with the IR for the attenuation of IR activation in mammalian cells. Our studies reveal for the first time that the adaptor protein Dock/Nck attenuates insulin signalling by recruiting PTP61F/PTP1B to its substrate, the IR.

  7. Reevaluation of Fatty acid receptor 1 (FFAR1/GPR40) as drug target for the stimulation of insulin secretion in humans

    DEFF Research Database (Denmark)

    Wagner, Robert; Kaiser, Gabriele; Gerst, Felicia

    2013-01-01

    The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are under investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes...... risk variants in FFAR1. We reevaluated the role of FFAR1 in insulin secretion using a specific agonist, FFAR1-knockout mice and human islets. Nondiabetic individuals were metabolically phenotyped and genotyped. In vitro experiments indicated that palmitate and a specific FFAR1-agonist, TUG-469......, stimulate glucose-induced insulin secretion through FFAR1. The pro-apoptotic effect of chronic exposure of beta-cells to palmitate was independent of FFAR1. TUG-469 was protective, while inhibition of FFAR1 promoted apoptosis. In accordance with the pro-apoptotic effect of palmitate, in vivo crosssectional...

  8. No association of the IRS1 and PAX4 genes with type I diabetes

    DEFF Research Database (Denmark)

    Bergholdt, R.; Brorsson, C.; Boehm, B.

    2009-01-01

    To reassess earlier suggested type I diabetes (T1D) associations of the insulin receptor substrate 1 (IRS1) and the paired domain 4 gene (PAX4) genes, the Type I Diabetes Genetics Consortium (T1DGC) evaluated single-nucleotide polymorphisms (SNPs) covering the two genomic regions. Sixteen SNPs we...... of tagging SNPs, more than one genotyping platform in high throughput studies, and sufficient power to draw solid conclusions in genetic studies of human complex diseases. Genes and Immunity (2009) 10, S49-S53; doi:10.1038/gene.2009.91 Udgivelsesdato: 2009/12...

  9. Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor.

    Science.gov (United States)

    Mulvihill, Mark J; Cooke, Andrew; Rosenfeld-Franklin, Maryland; Buck, Elizabeth; Foreman, Ken; Landfair, Darla; O'Connor, Matthew; Pirritt, Caroline; Sun, Yingchaun; Yao, Yan; Arnold, Lee D; Gibson, Neil W; Ji, Qun-Sheng

    2009-09-01

    The IGF-1 receptor (IGF-1R) has been implicated in the promotion of tumorigenesis, metastasis and resistance to cancer therapies. Therefore, this receptor has become a major focus for the development of anticancer agents. Our lead optimization efforts that blended structure-based design and empirical medicinal chemistry led to the discovery of OSI-906, a novel small-molecule dual IGF-1R/insulin receptor (IR) kinase inhibitor. OSI-906 potently and selectively inhibits autophosphorylation of both human IGF-1R and IR, displays in vitro antiproliferative effects in a variety of tumor cell lines and shows robust in vivo anti-tumor efficacy in an IGF-1R-driven xenograft model when administered orally once daily. OSI-906 is a novel, potent, selective and orally bioavailable dual IGF-1R/IR kinase inhibitor with favorable preclinical drug-like properties, which has demonstrated in vivo efficacy in tumor models and is currently in clinical testing.

  10. Insulin regulates Glut4 confinement in plasma membrane clusters in adipose cells.

    Science.gov (United States)

    Lizunov, Vladimir A; Stenkula, Karin; Troy, Aaron; Cushman, Samuel W; Zimmerberg, Joshua

    2013-01-01

    Insulin-stimulated delivery of glucose transporter-4 (GLUT4) to the plasma membrane (PM) is the hallmark of glucose metabolism. In this study we examined insulin's effects on GLUT4 organization in PM of adipose cells by direct microscopic observation of single monomers tagged with photoswitchable fluorescent protein. In the basal state, after exocytotic delivery only a fraction of GLUT4 is dispersed into the PM as monomers, while most of the GLUT4 stays at the site of fusion and forms elongated clusters (60-240 nm). GLUT4 monomers outside clusters diffuse freely and do not aggregate with other monomers. In contrast, GLUT4 molecule collision with an existing cluster can lead to immediate confinement and association with that cluster. Insulin has three effects: it shifts the fraction of dispersed GLUT4 upon delivery, it augments the dissociation of GLUT4 monomers from clusters ∼3-fold and it decreases the rate of endocytic uptake. All together these three effects of insulin shift most of the PM GLUT4 from clustered to dispersed states. GLUT4 confinement in clusters represents a novel kinetic mechanism for insulin regulation of glucose homeostasis.

  11. Insulin regulates Glut4 confinement in plasma membrane clusters in adipose cells.

    Directory of Open Access Journals (Sweden)

    Vladimir A Lizunov

    Full Text Available Insulin-stimulated delivery of glucose transporter-4 (GLUT4 to the plasma membrane (PM is the hallmark of glucose metabolism. In this study we examined insulin's effects on GLUT4 organization in PM of adipose cells by direct microscopic observation of single monomers tagged with photoswitchable fluorescent protein. In the basal state, after exocytotic delivery only a fraction of GLUT4 is dispersed into the PM as monomers, while most of the GLUT4 stays at the site of fusion and forms elongated clusters (60-240 nm. GLUT4 monomers outside clusters diffuse freely and do not aggregate with other monomers. In contrast, GLUT4 molecule collision with an existing cluster can lead to immediate confinement and association with that cluster. Insulin has three effects: it shifts the fraction of dispersed GLUT4 upon delivery, it augments the dissociation of GLUT4 monomers from clusters ∼3-fold and it decreases the rate of endocytic uptake. All together these three effects of insulin shift most of the PM GLUT4 from clustered to dispersed states. GLUT4 confinement in clusters represents a novel kinetic mechanism for insulin regulation of glucose homeostasis.

  12. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery.

    Science.gov (United States)

    Sajeesh, S; Sharma, Chandra P

    2006-11-15

    Present investigation was aimed at developing an oral insulin delivery system based on hydroxypropyl beta cyclodextrin-insulin (HPbetaCD-I) complex encapsulated polymethacrylic acid-chitosan-polyether (polyethylene glycol-polypropylene glycol copolymer) (PMCP) nanoparticles. Nanoparticles were prepared by the free radical polymerization of methacrylic acid in presence of chitosan and polyether in a solvent/surfactant free medium. Dynamic light scattering (DLS) experiment was conducted with particles dispersed in phosphate buffer (pH 7.4) and size distribution curve was observed in the range of 500-800 nm. HPbetaCD was used to prepare non-covalent inclusion complex with insulin and complex was analyzed by Fourier transform infrared (FTIR) and fluorescence spectroscopic studies. HPbetaCD complexed insulin was encapsulated into PMCP nanoparticles by diffusion filling method and their in vitro release profile was evaluated at acidic/alkaline pH. PMCP nanoparticles displayed good insulin encapsulation efficiency and release profile was largely dependent on the pH of the medium. Enzyme linked immunosorbent assay (ELISA) study demonstrated that insulin encapsulated inside the particles was biologically active. Trypsin inhibitory effect of PMCP nanoparticles was evaluated using N-alpha-benzoyl-L-arginine ethyl ester (BAEE) and casein as substrates. Mucoadhesive studies of PMCP nanoparticles were conducted using freshly excised rat intestinal mucosa and the particles were found fairly adhesive. From the preliminary studies, cyclodextrin complexed insulin encapsulated mucoadhesive nanoparticles appear to be a good candidate for oral insulin delivery.

  13. Cross-talk between Integrin α6β4 and Insulin-like Growth Factor-1 Receptor (IGF1R) through Direct α6β4 Binding to IGF1 and Subsequent α6β4-IGF1-IGF1R Ternary Complex Formation in Anchorage-independent Conditions*

    OpenAIRE

    Fujita, Masaaki; Ieguchi, Katsuaki; Davari, Parastoo; Yamaji, Satoshi; Taniguchi, Yukimasa; Sekiguchi, Kiyotoshi; Takada, Yoko K.; Takada, Yoshikazu

    2012-01-01

    Background: Integrin αvβ3-extracellular matrix interaction and/or αvβ3 binding to insulin-like growth factor-1 (IGF1; and integrin-IGF1-IGF1 receptor ternary complex formation) is critical for IGF signaling.

  14. Effect of single physical exercise at 35% VO2 max. intensity on secretion activity of pancreas β-cells and 125J-insulin binding and degradation ability by erythrocyte receptors in children with diabetes mellitus

    International Nuclear Information System (INIS)

    Szczesniak, L.; Rychlewski, T.; Banaszak, F.; Kasprzak, Z.; Walczak, M.

    1994-01-01

    In this report we showed research results of effect of single physical exercise on cycloergometer at 35% VO 2 max. intensity on 125 J-insulin binding and degradation ability by erythrocyte receptors in children with diabetes mellitus, secreting and non-secreting endogenous insulin. Insulin secretion was evaluated by measurement of C-peptide by Biodet test (Serono) of sensitivity threshold at 0.3 μg/ml. We indicated in children non-secreting endogenous insulin (n=32) there is statistically essential lower 125 J-insulin binding with erythrocyte receptor in comparison to children group with C-peptide. Physical exercise on cycloergometer at 35% VO 2 max. intensity caused different reaction in range of physiological indices, like acid-base parameters, level of glucose and 125 J-insulin binding and degradation. In children devoid of endogenous insulin we indicated statistically nonessential changes in 125 J-insulin degradation by non-impaired erythrocytes and by hemolizate, as well. 125 J-insulin binding after physical exercise increased in both groups, though change amplitude was different. Obtained research results allowed us to conclude, in children with I-type diabetes, that in dependence of impairment degree of pancreas βcells sensitivity of insulin receptor and/or number of receptors on erythrocyte surface is different

  15. Characterising pharmacological ligands to study the long chain fatty acid receptors GPR40/FFA1 and GPR120/FFA4

    DEFF Research Database (Denmark)

    Milligan, G; Alvarez-Curto, E; Watterson, K R

    2015-01-01

    The G protein-coupled receptors FFA1 (previously designated GPR40) and FFA4 (previously GPR120) are both activated by saturated and unsaturated longer-chain free fatty acids. With expression patterns and functions anticipated to directly or indirectly promote insulin secretion, provide homeostati...

  16. Insulin transport into the brain and cerebrospinal fluid.

    Science.gov (United States)

    Begg, Denovan P

    2015-01-01

    The pancreatic hormone insulin plays a well-described role in the periphery, based principally on its ability to lower circulating glucose levels via activation of glucose transporters. However, insulin also acts within the central nervous system (CNS) to alter a number of physiological outcomes ranging from energy balance and glucose homeostasis to cognitive performance. Insulin is transported into the CNS by a saturable receptor-mediated process that is proposed to be dependent on the insulin receptor. Transport of insulin into the brain is dependent on numerous factors including diet, glycemia, a diabetic state and notably, obesity. Obesity leads to a marked decrease in insulin transport from the periphery into the CNS and the biological basis of this reduction of transport remains unresolved. Despite decades of research into the effects of central insulin on a wide range of physiological functions and its transport from the periphery to the CNS, numerous questions remain unanswered including which receptor is responsible for transport and the precise mechanisms of action of insulin within the brain. © 2015 Elsevier Inc. All rights reserved.

  17. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance

    DEFF Research Database (Denmark)

    Højlund, Kurt

    2014-01-01

    . These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes...... described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance....... Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin...

  18. Effect of intensive vs conventional insulin therapy on perioperative nutritional substrates metabolism in patients undergoing gastrectomy

    Institute of Scientific and Technical Information of China (English)

    Han-Cheng Liu; Yan-Bing Zhou; Dong Chen; Zhao-Jian Niu; Yang Yu

    2012-01-01

    AIM:To investigate the effect of intensive vs conventional insulin therapy on perioperative nutritional substrates metabolism in patients undergoing radical distal gastrectomy.METHODS:Within 24 h of intensive care unit management,patients with gastric cancer were enrolled after written informed consent and randomized to the intensive insulin therapy (IIT) group to keep glucose levels from 4.4 to 6.1 mmol/L or the conventional insulin therapy (CIT) group to keep levels less than 10 mmol/L.Resting energy expenditure (REE),respiratory quotient (RQ),resting energy expenditure per kilogram (REE/kg),and the lipid oxidation rate were monitored by the indirect calorimeter of calcium citrate malate nutrition metabolism investigation system.The changes in body composition were analyzed by multi-frequency bioimpedance analysis.Blood fasting glucose and insulin concentration were measured for assessment of Homeostasis model assessment of insulin resistance.RESULTS:Sixty patients were enrolled.Compared with preoperative baseline,postoperative REE increased by over 22.15% and 11.07%; REE/kg rose up to 27.22 ± 1.33 kcal/kg and 24.72 ± 1.43 kcal/kg; RQ decreased to 0.759 ± 0.034 and 0.791 ± 0.037; the lipid oxidation ratio was up to 78.25% ± 17.74% and 67.13% ± 12.76% supported by parenteral nutrition solutions from 37.56% ± 11.64% at the baseline; the level of Ln-HOMA-IR went up dramatically (P < 0.05,respectively) on postoperative days 1 and 3 in the IIT group.Meanwhile the concentration of total protein,albumin and triglyceride declined significantly on postoperative days 1 and 3 compared with pre-operative levels (P < 0.05,respectively).Compared with the CIT group,IIT reduced the REE/kg level (27.22 ± 1.33 kcal/kg vs 29.97 ± 1.47 kcal/kg,P =0.008; 24.72 ± 1.43 kcal/kg vs 25.66 ± 1.63 kcal/kg,P =0.013); and decreased the Ln-HOMA-IR score (P =0.019,0.028) on postoperative days 1 and 3; IIT decreased the level of CRP on postoperative days 1 and 3 (P

  19. PTP1B deficiency improves hypothalamic insulin sensitivity resulting in the attenuation of AgRP mRNA expression under high-fat diet conditions.

    Science.gov (United States)

    Sugiyama, Mariko; Banno, Ryoichi; Mizoguchi, Akira; Tominaga, Takashi; Tsunekawa, Taku; Onoue, Takeshi; Hagiwara, Daisuke; Ito, Yoshihiro; Morishita, Yoshiaki; Iwama, Shintaro; Goto, Motomitsu; Suga, Hidetaka; Arima, Hiroshi

    2017-06-17

    Hypothalamic insulin receptor signaling regulates energy balance and glucose homeostasis via agouti-related protein (AgRP). While protein tyrosine phosphatase 1B (PTP1B) is classically known to be a negative regulator of peripheral insulin signaling by dephosphorylating both insulin receptor β (IRβ) and insulin receptor substrate, the role of PTP1B in hypothalamic insulin signaling remains to be fully elucidated. In the present study, we investigated the role of PTP1B in hypothalamic insulin signaling using PTP1B deficient (KO) mice in vivo and ex vivo. For the in vivo study, hypothalamic insulin resistance induced by a high-fat diet (HFD) improved in KO mice compared to wild-type (WT) mice. Hypothalamic AgRP mRNA expression levels were also significantly decreased in KO mice independent of body weight changes. In an ex vivo study using hypothalamic organotypic cultures, insulin treatment significantly increased the phosphorylation of both IRβ and Akt in the hypothalamus of KO mice compared to WT mice, and also significantly decreased AgRP mRNA expression levels in KO mice. While incubation with inhibitors of phosphatidylinositol-3 kinase (PI3K) had no effect on basal levels of Akt phosphorylation, these suppressed insulin induction of Akt phosphorylation to almost basal levels in WT and KO mice. The inhibition of the PI3K-Akt pathway blocked the downregulation of AgRP mRNA expression in KO mice treated with insulin. These data suggest that PTP1B acts on the hypothalamic insulin signaling via the PI3K-Akt pathway. Together, our results suggest a deficiency of PTP1B improves hypothalamic insulin sensitivity resulting in the attenuation of AgRP mRNA expression under HFD conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice

    Science.gov (United States)

    González-Rodríguez, Águeda; Gutierrez, Jose A. Mas; Sanz-González, Silvia; Ros, Manuel; Burks, Deborah J.; Valverde, Ángela M.

    2010-01-01

    OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2−/− mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2−/− and IRS2−/−/PTP1B−/− mice. Additionally, hepatic insulin signaling was assessed in control and IRS2−/− mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2−/− mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2−/− mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action. PMID:20028942