WorldWideScience

Sample records for insulin gene vntr

  1. Increased prevalence of VNTR III of the insulin gene in women with gestational diabetes mellitus (GDM).

    Science.gov (United States)

    Litou, Hariklia; Anastasiou, Eleni; Thalassinou, Louminitsa; Sarika, Helen-Leda; Philippou, George; Alevizaki, Maria

    2007-05-01

    The VNTR polymorphism in the promoter region of the insulin gene (INS-VNTR) affects transcription rate and has been associated with insulin resistance and DM2. Gestational diabetes mellitus (GDM) is a multifactorial disorder, where both impaired insulin secretion and action may be involved. The aim of the study was to examine the distribution of the INS-VNTRs in women with GDM and to investigate possible associations with features of beta cell function and glycaemic control in this population. One hundred and sixty-one women with GDM and 111 normal pregnant women (n) were genotyped for INS-VNTR during the 24th-32nd pregnancy week. Glucose and insulin levels were determined during the diagnostic OGTT. The majority of the previous GDM women were also examined at 3-6 months post-partum. VNTR class III/III genotype was significantly more frequent in the GDM group 8.7% versus 2.7%, p=0.02 giving an OR of 3.97 (1.1-14.29). An increased frequency of the VNTR class III allele was found in those GDM women who required insulin for treatment compared to those controlled with diet alone (12.4% versus 4%, pwomen homozygous for the class III allele without reaching statistical significance (p=0.09). The INS-VNTR class III is more frequent in women who develop GDM, and may be associated with decreased ability of the beta cell to meet the increased insulin requirements as reflected by the need for insulin supplementation for adequate glycaemic control.

  2. Linkage of the VNTR/insulin-gene and type I diabetes mellitus: Increased gene sharing in affected sibling pairs

    Energy Technology Data Exchange (ETDEWEB)

    Owerbach, D.; Gabbay, K.H. (Baylor College of Medicine, Houston, TX (United States))

    1994-05-01

    Ninety-six multiplex type I diabetic families were typed at the 5' flanking region of the insulin gene by using a PCR assay that better resolves the VNTR into multiple alleles. Affected sibling pairs shared 2, 1, and 0 VNTR alleles - identical by descent - at a frequency of .47, .45, and .08, respectively, a ratio that deviated from the expected 1:2:1 ratio (P<.001). These results confirm linkage of the chromosome 11p15.5 region with type I diabetes mellitus susceptibility. 20 refs., 2 tabs.

  3. Lack of support for a role of the insulin gene variable number of tandem repeats minisatellite (INS-VNTR) locus in fetal growth or type 2 diabetes-related intermediate traits in United Kingdom populations.

    Science.gov (United States)

    Mitchell, Simon M S; Hattersley, Andrew T; Knight, Beatrice; Turner, Tina; Metcalf, Bradley S; Voss, Linda D; Davies, David; McCarthy, Anne; Wilkin, Terence J; Smith, George Davey; Ben-Shlomo, Yoav; Frayling, Timothy M

    2004-01-01

    The insulin gene variable number of tandem repeats minisatellite (INS-VNTR) class III allele is associated with altered fetal growth, type 2 diabetes risk (especially when paternally inherited), and insulin and IGF2 gene expression. Further studies are needed to establish the role of the INS-VNTR in fetal growth and assess whether its effects depend on the parent of origin. We analyzed the INS-VNTR-linked -23 Hph1 polymorphism in 2283 subjects, comprising 1184 children and 1099 parents. There were no differences (P VNTR was nominally associated (P VNTR in fetal growth and nominal association with type 2 diabetes-related intermediate traits.

  4. Insulin VNTR and IGF-1 promoter region polymorphisms are not associated with body composition in early childhood: The generation R study

    NARCIS (Netherlands)

    J.A.J.B.M. Maas (Janneke); D.O. Mook-Kanamori (Dennis); L. Ay (Lamise); R.P.M. Steegers-Theunissen (Régine); P. Tikka-Kleemola (Päivi); A. Hofman (Albert); A.C.S. Hokken-Koelega (Anita); V.W.V. Jaddoe (Vincent)

    2010-01-01

    textabstractObjective: The objective of this study was to examine the associations between insulin gene variable number of tandem repeats (INS VNTR) and insulin-like growth factor 1 (IGF1) gene promoter region polymorphisms with body composition in early childhood. Methods: This study was embedded

  5. The influence of INS VNTR class III allele on auxological parameters, glucose, insulin, lipids, and adipocytokines secretion in prepubertal children born small for gestational age.

    Science.gov (United States)

    Stawerska, Renata; Szałapska, Małgorzata; Borowiec, Maciej; Antosik, Karolina; Młynarski, Wojciech; Lewiński, Andrzej

    2016-01-01

    The insulin gene variable number of tandem repeats (INS VNTR) class III allele has been implicated in lower birth weight, obesity, and insulin resistance. We assessed its influence on birth weight in the Polish population and on the current body mass and metabolic profile in prepubertal children born small for gestational age (SGA). DNA for genotyping of INS VNTR was available for 123 subjects born SGA and 132 born appropriate for gestational age (AGA). We identified two alleles: class I and class III. Next, in 112 prepubertal (aged: 6.8 ± 1.38 years) SGA children, the auxological measurements, fasting serum C-peptide, triglycerides, cholesterol, ghrelin, leptin, adiponectin, resistin, cortisol, and insulin-like growth factor type I (IGF-I) concentrations, as well as glucose and insulin during oral glucose tolerance test (OGTT), were assessed and insulin resistance indices were calculated. The results were analysed depending on INS VNTR variants. The occurrence of individual INS VNTR variants were similar in the SGA and AGA groups. In prepubertal SGA children, we did not observe any statistical differences as regards birth weight, body mass, lipids, or adipocytokine concentrations among I/I, I/III, and III/III class groups. The concentration of insulin in 120' of OGTT was significantly higher in class III homozygous than in class I homozygous individuals. Variant INS VNTR class III was shown not to be associated in any essential way with birth weight in the Polish population. Among prepubertal SGA children, the presence of INS VNTR class III is related to higher insulin secretion during OGTT. (Endokrynol Pol 2016; 67 (6): 585-591).

  6. Large-scale studies of the HphI insulin gene variable-number-of-tandem-repeats polymorphism in relation to Type 2 diabetes mellitus and insulin release

    DEFF Research Database (Denmark)

    Hansen, S K; Gjesing, A P; Rasmussen, S K

    2004-01-01

    The class III allele of the variable-number-of-tandem-repeats polymorphism located 5' of the insulin gene (INS-VNTR) has been associated with Type 2 diabetes and altered birthweight. It has also been suggested, although inconsistently, that the class III allele plays a role in glucose-induced ins......The class III allele of the variable-number-of-tandem-repeats polymorphism located 5' of the insulin gene (INS-VNTR) has been associated with Type 2 diabetes and altered birthweight. It has also been suggested, although inconsistently, that the class III allele plays a role in glucose...

  7. INS VNTR is not associated with childhood obesity in 1,023 families: a family-based study.

    Science.gov (United States)

    Bouatia-Naji, Nabila; De Graeve, Franck; Brönner, Günter; Lecoeur, Cécile; Vatin, Vincent; Durand, Emmanuelle; Lichtner, Peter; Nguyen, Thuy T; Heude, Barbara; Weill, Jacques; Lévy-Marchal, Claire; Hebebrand, Johannes; Froguel, Philippe; Meyre, David

    2008-06-01

    Previous studies have described genetic associations of the insulin gene variable number tandem repeat (INS VNTR) variant with childhood obesity and associated phenotypes. We aimed to assess the contribution of INS VNTR genotypes to childhood obesity and variance of insulin resistance, insulin secretion, and birth weight using family-based design. Participants were either French or German whites. We used transmission disequilibrium tests (TDTs) for assessing binary traits and quantitative pedigree disequilibrium tests for assessing continuous traits. In contrast to previous findings, we did not observe any familial association with childhood obesity (T = 50%, P = 0.77) in the 1,023 families tested. In French obese children, INS VNTR did not associate with fasting insulin levels (P = 0.23) and class I allele showed only borderline association with increased insulin secretion index at 30 min (P = 0.03). INS VNTR did not associate with birth weight in obese children (P = 0.98) and TDT analyses in 350 French families with history of low birth weight (LBW) showed no association with this condition (P = 0.92). In summary, our study, the largest performed so far, does not support the previously reported associations between INS VNTR and childhood obesity, insulin resistance, or birth weight, and does not suggest any major role for this variant in modulating these traits.

  8. Significant association of interleukin-4 gene intron 3 VNTR polymorphism with susceptibility to knee osteoarthritis.

    Science.gov (United States)

    Yigit, Serbulent; Inanir, Ahmet; Tekcan, Akın; Tural, Ercan; Ozturk, Gokhan Tuna; Kismali, Gorkem; Karakus, Nevin

    2014-03-01

    Interleukin-4 (IL-4) is a strong chondroprotective cytokine and polymorphisms within this gene may be a risk factor for osteoarthritis (OA). We aimed to investigate genotype and allele frequencies of IL-4 gene intron 3 variable number of tandem repeats (VNTR) polymorphism in patients with knee OA in a Turkish population. The study included 202 patients with knee OA and 180 healthy controls. Genomic DNA was isolated and IL-4 gene 70 bp VNTR polymorphism determined by using polymerase chain reaction (PCR) with specific primers followed by restriction fragment length polymorphism (RFLP) analysis. Our result show that there was statistically significant difference between knee OA patients and control group with respect to IL-4 genotype distribution and allele frequencies (p=0.000, OR: 0.20, 95% CI: 0.10-0.41, OR: 0.22, 95% CI: 0.12-0.42, respectively). Our findings suggest that there is an association of IL-4 gene intron 3 VNTR polymorphism with susceptibility of a person for development of knee OA. As a result, IL-4 gene intron 3 VNTR polymorphism could be a genetic marker in OA in a Turkish study population. This is the first association study that evaluates the associations between IL-4 gene VNTR polymorphism and knee OA. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  9. Association between INS-VNTR polymorphism and polycystic ovary syndrome in a Korean population.

    Science.gov (United States)

    Yun, Ji-Hyun; Gu, Bon-Hee; Kang, Yu-Bin; Choi, Bum-Chae; Song, Sangjin; Baek, Kwang-Hyun

    2012-07-01

    Polycystic ovary syndrome (PCOS) is a common disorder in women of reproductive ages. But its etiology is not fully understood yet. Variability in the number of tandem repeats of the insulin gene (INS-VNTR) is known to associate with PCOS, and it is associated with an increased risk of diabetes mellitus and other cardiovascular diseases. The aim of our study was to analyze an association between the INS-VNTR polymorphism and PCOS in a Korean population. The -23/Hph I polymorphism was used as a surrogate marker for INS-VNTR polymorphism and a total of 218 PCOS patient and 141 control DNAs were analyzed by restriction fragment length polymorphism method. Statistical analysis of genotyping results were performed using HapAnalyzer. χ² test and logistic regression were used to analyze the association between two groups. A p value VNTR polymorphism (p = 0.0544, odds ratio = 1.69). Our present data demonstrate that INS-VNTR polymorphism is not related with PCOS in Korean women. Thus, it is suggested that INS-VNTR polymorphism is not a key factor in the etiology and the pathogenesis of PCOS in a Korean population.

  10. The evaluation of angiotensin-converting enzyme (ACE) gene I/D and IL-4 gene intron 3 VNTR polymorphisms in coronary artery disease.

    Science.gov (United States)

    Basol, Nursah; Celik, Atac; Karakus, Nevin; Ozturk, Sibel Demir; Ozsoy, Sibel Demir; Yigit, Serbulent

    2014-01-01

    Genetic polymorphism is a strong risk factor for coronary artery disease (CAD). In the present study, our aim was to evaluate angiotensin-converting enzyme (ACE) gene I/D polymorphism and interleukin-4 (IL-4) gene Intron 3 variable number of tandem repeat (VNTR) polymorphism in CAD. One hundred and twenty-four CAD patients and one hundred and twenty-three controls were enrolled. Genomic DNA was isolated and genotyped using polymerase chain reaction (PCR) analyses. The risk associated with inheriting the combined genotypes for the two polymorphisms were evaluated and it was found that the individuals who were P2P2-homozygous at IL-4 gene intron 3 VNTR and DD-homozygous at ACE gene I/D have a higher risk of developing CAD. Although, there is no correlation between IL4 VNTR polymorphism and ACE gene polymorphism and CAD, there is a strong association between CAD and co-existence of IL-4 VNTR and ACE gene polymorphisms in the Turkish population. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Interleukin 6 variable number of tandem repeats (VNTR) gene polymorphism in centenarians.

    Science.gov (United States)

    Capurso, C; Solfrizzi, V; D'Introno, A; Colacicco, A M; Capurso, S A; Semeraro, C; Capurso, A; Panza, F

    2007-11-01

    Recent population-based studies identified the magnitude of interleukin 6 (IL6) serum levels as a marker for functional disability, and a predictor of disability and mortality among the elderly. We investigated whether there was evidence in Southern Italy of an association between the IL6 gene variable number of tandem repeats (VNTR) polymorphism and extreme longevity, and tested for the possible interaction of apolipoprotein E (APOE) alleles with the IL6 VNTR alleles. Four alleles coding for variants of four different lengths have been identified: allele A [760 base pairs (bp)], allele B (680 bp), allele C (640 bp), and allele D (610 bp). IL6 VNTR and APOE allele and genotype frequencies were studied in a total of 61 centenarians and 94 middle-aged subjects from Southern Italy. The IL6 VNTR allele B was overrepresented in the younger control group compared with centenarians (odds ratio: 0.56, 95% confidence interval: 0.35-0.88, Bonferroni p-value VNTR alleles and APOE alleles on the odds ratios to reach extreme longevity were evaluated for the smallest number of subjects in centenarians and younger controls. Our findings suggested that the presence of the IL6 VNTR allele B could be detrimental for reaching extreme longevity.

  12. Effect of ATRX and G-Quadruplex Formation by the VNTR Sequence on α-Globin Gene Expression.

    Science.gov (United States)

    Li, Yue; Syed, Junetha; Suzuki, Yuki; Asamitsu, Sefan; Shioda, Norifumi; Wada, Takahito; Sugiyama, Hiroshi

    2016-05-17

    ATR-X (α-thalassemia/mental retardation X-linked) syndrome is caused by mutations in chromatin remodeler ATRX. ATRX can bind the variable number of tandem repeats (VNTR) sequence in the promoter region of the α-globin gene cluster. The VNTR sequence, which contains the potential G-quadruplex-forming sequence CGC(GGGGCGGGG)n , is involved in the downregulation of α-globin expression. We investigated G-quadruplex and i-motif formation in single-stranded DNA and long double-stranded DNA. The promoter region without the VNTR sequence showed approximately twofold higher luciferase activity than the promoter region harboring the VNTR sequence. G-quadruplex stabilizers hemin and TMPyP4 reduced the luciferase activity, whereas expression of ATRX led to a recovery in reporter activity. Our results demonstrate that stable G-quadruplex formation by the VNTR sequence downregulates the expression of α-globin genes and that ATRX might bind to and resolve the G-quadruplex. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Mutations in the VNTR of the carboxyl-ester lipase gene (CEL) are a rare cause of monogenic diabetes

    DEFF Research Database (Denmark)

    Torsvik, Janniche; Johansson, Stefan; Johansen, Anders

    2009-01-01

    of the VNTR, and determined the VNTR-length of each allele. When blindly testing 56 members of the two families with known single-base deletions in the CEL VNTR, the method correctly assessed the mutation carriers. Screening of 241 probands from suspected maturity-onset diabetes of the young (MODY) families...... negative for mutations in known MODY genes (95 individuals from Denmark and 146 individuals from UK) revealed no deletions in the proximal repeats of the CEL VNTR. However, we found one Danish patient with a short, novel CEL allele containing only three VNTR repeats (normal range 7-23 in healthy controls......). This allele co-segregated with diabetes or impaired glucose tolerance in the patient's family as six of seven mutation carriers were affected. We also identified individuals who had three copies of a complete CEL VNTR. In conclusion, the CEL gene is highly polymorphic, but mutations in CEL are likely...

  14. Associations between mutations and a VNTR in the human phenylalanine hydroxylase gene

    Energy Technology Data Exchange (ETDEWEB)

    Goltsov, A.A.; Eisensmith, R.C.; Woo, S.L.C. (Baylor College of Medicine, Houston, TX (United States)); Konecki, D.S.; Lichter-Konecki, U.

    1992-09-01

    The HindIII RFLP in the human phenylalanine hydroxylase (PAH) gene is caused by the presence of an AT-rich (70%) minisatellite region. This region contains various multiples of 30-bp tandem repeats and is located 3 kb downstream of the final exon of the gene. PCR-mediated amplification of this region from haplotyped PAH chromosomes indicates that the previously reported 4.0-kb HindIII allele contains three of these repeats, while the 4.4-kb HindIII allele contains 12 of these repeats. The 4.2-kb HindIII fragment can contain six, seven, eight, or nine copies of this repeat. These variations permit more detailed analysis of mutant haplotypes 1, 5, 6, and, possibly, others. Kindred analysis in phenylketonuria families demonstrates Mendelian segregation of these VNTR alleles, as well as associations between theses alleles and certain PAH mutations. The R261Q mutation, associated with haplotype 1, is associated almost exclusively with an allele containing eight repeats; the R408W mutation, when occurring on a haplotype 1 background, may also be associated with the eight-repeat VNTR allele. Other PAH mutations associated with haplotype 1, R252W and P281L, do not appear to segregate with specific VNTR alleles. The IVS-10 mutation, when associated with haplotype 6, is associated exclusively with an allele containing seven repeats. The combined use of this VNTR system and the existing RFLP haplotype system will increase the performance of prenatal diagnostic tests based on haplotype analysis. In addition, this VNTR may prove useful in studies concerning the origins and distributions of PAH mutations in different human populations. 32 refs., 3 figs., 3 tabs.

  15. The association between Interleukin (IL)-4 gene intron 3 VNTR polymorphism and alopecia areata (AA) in Turkish population.

    Science.gov (United States)

    Kalkan, Göknur; Karakus, Nevin; Baş, Yalçın; Takçı, Zennure; Ozuğuz, Pınar; Ateş, Omer; Yigit, Serbulent

    2013-09-25

    Alopecia areata (AA) is hypothesized to be an organ-specific autoimmune disease of hair follicles mediated by T cells. As immunological and genetic factors have been implicated in the pathogenesis of AA, the purpose of the present study was to investigate possible associations between the functional Interleukin (IL)-4 gene intron 3 VNTR polymorphism and AA susceptibility and disease progression in Turkish population. The study group consisted of 116 unrelated patients with AA and 125 unrelated healthy controls. Genomic DNA was isolated and IL-4 gene 70 bp VNTR polymorphism determined by using polymerase chain reaction (PCR) with specific primers. No association was observed between AA patients and controls according to genotype distribution (p=0.051). The allele distribution of IL-4 gene intron 3 VNTR polymorphism was statistically different between AA patients and control group (p=0.026). The frequency of P1 allele in patients was significantly higher than that in the control group. When the P2P2 genotype was compared with P1P2+P1P1 genotypes, a statistically significant difference was observed between patients and controls (p=0.036). Intron 3 VNTR polymorphism in the IL-4 gene was found to be associated with AA susceptibility in Turkish population. The results suggest that IL-4 VNTR polymorphism in the intron 3 region may be a risk factor for the development of AA among Turkish population. This is the first to report that intron 3 VNTR polymorphism in the IL-4 gene is associated with AA susceptibility. © 2013.

  16. Mutations in the VNTR of the carboxyl-ester lipase gene (CEL) are a rare cause of monogenic diabetes.

    Science.gov (United States)

    Torsvik, Janniche; Johansson, Stefan; Johansen, Anders; Ek, Jakob; Minton, Jayne; Raeder, Helge; Ellard, Sian; Hattersley, Andrew; Pedersen, Oluf; Hansen, Torben; Molven, Anders; Njølstad, Pål R

    2010-01-01

    We have previously shown that heterozygous single-base deletions in the carboxyl-ester lipase (CEL) gene cause exocrine and endocrine pancreatic dysfunction in two multigenerational families. These deletions were found in the first and fourth repeats of a variable number of tandem repeats (VNTR), which has proven challenging to sequence due to high GC-content and considerable length variation. We have therefore developed a screening method consisting of a multiplex PCR followed by fragment analysis. The method detected putative disease-causing insertions and deletions in the proximal repeats of the VNTR, and determined the VNTR-length of each allele. When blindly testing 56 members of the two families with known single-base deletions in the CEL VNTR, the method correctly assessed the mutation carriers. Screening of 241 probands from suspected maturity-onset diabetes of the young (MODY) families negative for mutations in known MODY genes (95 individuals from Denmark and 146 individuals from UK) revealed no deletions in the proximal repeats of the CEL VNTR. However, we found one Danish patient with a short, novel CEL allele containing only three VNTR repeats (normal range 7-23 in healthy controls). This allele co-segregated with diabetes or impaired glucose tolerance in the patient's family as six of seven mutation carriers were affected. We also identified individuals who had three copies of a complete CEL VNTR. In conclusion, the CEL gene is highly polymorphic, but mutations in CEL are likely to be a rare cause of monogenic diabetes.

  17. Insulin gene VNTR polymorphisms -2221MspI and -23HphI are associated with type 1 diabetes and latent autoimmune diabetes in adults: a meta-analysis.

    Science.gov (United States)

    Zhang, Na; Huang, Weihuang; Dong, Fang; Liu, Yang; Zhang, Baohuan; Jing, Lipeng; Wang, Man; Yang, Guang; Jing, Chunxia

    2015-12-01

    A variable number of tandem repeat (VNTRs) region in the insulin gene (INS) possibly influences the progression of type 1 diabetes (T1D) and latent autoimmune diabetes in adults (LADA). However, effects of INS VNTR polymorphisms in these contexts remain inconclusive. We performed a systematic review of work on the INS VNTR -2221MspI and -23HphI polymorphisms to estimate the overall effects thereof on disease susceptibility; we included 17,498 T1D patients and 24,437 controls, and 1960 LADA patients and 5583 controls. For T1D, the C allele at -2221MspI and the A allele at -23HphI were associated with estimated relative risks of 2.13 (95 % CI 1.94, 2.35) and 0.46 (95 % CI 0.44, 0.48), which contributed to absolute increases of 46.76 and 46.98 % in the risk of all T1D, respectively. The estimated lambda values were 0.44 and 0.42, respectively, suggesting that a co-dominant model most likely explained the effects of -2221MspI and -23HphI on T1D. For -23HphI, the A allele carried an estimated relative risk of 0.55 (95 % CI 0.50, 0.61) for LADA and increased the risk of all LADA by 36.94 %. The λ value was 0.43, suggesting that a co-dominant model most likely explained the effect of -23HphI on LADA. Our results support the existence of associations of INS with T1D and LADA.

  18. Short rare hTERT-VNTR2-2nd alleles are associated with prostate cancer susceptibility and influence gene expression

    International Nuclear Information System (INIS)

    Yoon, Se-Lyun; Cheon, Sang-Hyeon; Leem, Sun-Hee; Jung, Se-Il; Do, Eun-Ju; Lee, Se-Ra; Lee, Sang-Yeop; Chu, In-Sun; Kim, Wun-Jae; Jung, Jaeil; Kim, Choung Soo

    2010-01-01

    The hTERT (human telomerase reverse transcriptase) gene contains five variable number tandem repeats (VNTR) and previous studies have described polymorphisms for hTERT-VNTR2-2 nd . We investigated how allelic variation in hTERT-VNTR2-2 nd may affect susceptibility to prostate cancer. A case-control study was performed using DNA from 421 cancer-free male controls and 329 patients with prostate cancer. In addition, to determine whether the VNTR polymorphisms have a functional consequence, we examined the transcriptional levels of a reporter gene linked to these VNTRs and driven by the hTERT promoter in cell lines. Three new rare alleles were detected from this study, two of which were identified only in cancer subjects. A statistically significant association between rare hTERT-VNTR2-2 nd alleles and risk of prostate cancer was observed [OR, 5.17; 95% confidence interval (CI), 1.09-24.43; P = 0.021]. Furthermore, the results indicated that these VNTRs inserted in the enhancer region could influence the expression of hTERT in prostate cancer cell lines. This is the first study to report that rare hTERT VNTRs are associated with prostate cancer predisposition and that the VNTRs can induce enhanced levels of hTERT promoter activity in prostate cancer cell lines. Thus, the hTERT-VNTR2-2 nd locus may function as a modifier of prostate cancer risk by affecting gene expression

  19. The role of IL-4 gene 70 bp VNTR and ACE gene I/D variants in Familial Mediterranean fever.

    Science.gov (United States)

    Yigit, Serbülent; Tural, Sengul; Tekcan, Akın; Tasliyurt, Turker; Inanir, Ahmet; Uzunkaya, Süheyla; Kismali, Gorkem

    2014-05-01

    Familial Mediterranean fever (FMF) is characterized by recurrent attacks of fever and inflammation in the peritoneum, synovium, or pleura, accompanied by pain. It is an autosomal recessive disease caused by mutations in the MEFV (MEditerranean FeVer) gene. Patients with similar genotypes exhibit phenotypic diversity. As a result, the variations in different genes could be responsible for the clinical findings of this disease. In previous studies genes encoding Angiotensin-Converting Enzyme (ACE) and IL-4 (Interleukin-4) were found to be associated with rheumatologic and autoimmune diseases. In the present study we hypothesized whether ACE I/D or IL-4 70 bp variable tandem repeats (VNTR) genes are associated with FMF and its clinical findings in Turkish patients. Genomic DNA obtained from 670 persons (339 patients with FMF and 331 healthy controls) was used in the study. Genotypes for an ACE gene I/D polymorphism and IL-4 gene 70 bp VNTR were determined by polymerase chain reaction with specific primers. To our knowledge, this is the first study examining ACE gene I/D polymorphism and IL-4 gene 70 bp VNTR polymorphism in FMF patients. As a result, there was a statistically significant difference between the groups with respect to genotype distribution (pACE gene DD genotype was associated with an increased risk in FMF [pACE genotype frequencies according to the clinical characteristics, we found a statistically significant association between DD+ID genotype and fever (p=0.04). In addition IL-4 gene P1P1 genotype was associated with FMF (pACE gene and P1 allele or P1P1 genotype of IL-4 gene may be important molecular markers for susceptibility of FMF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The interaction between aggrecan gene VNTR polymorphism and obesity in predicting incident symptomatic lumbar disc herniation.

    Science.gov (United States)

    Cong, Lin; Zhu, Yue; Pang, Hao; Guanjun, T U

    2014-01-01

    An association between aggrecan gene variable number of tandem repeats polymorphism (VNTR) and symptomatic lumbar disc herniation (LDH) has been reported in Chinese Han of Northern China, and obesity had previously been suspected of causing severe LDH. However, the interaction between aggrecan VNTR and obesity in symptomatic LDH has not been well studied. To examine the interaction between aggrecan VNTR and obesity in the susceptibility of symptomatic LDH, 259 participants participated in this study and donated a blood sample. The disease group comprised 61 patients already diagnosed with symptomatic LDH. The control group consisted of 198 healthy blood donors without symptoms of LDH who were not diagnosed with LDH. The aggrecan gene VNTR region was analyzed using polymerase chain reaction. The data indicated that between the two groups, participants carrying one or two alleles ≤25 repeats who were non-obese people showed a 1.057-fold increase in risk for symptomatic LDH (p = 0.895, changing the number of repeat alleles to 25 repeats who were obese people showed an 1.061-fold higher risk (p = 0.885, adding obesity to the mix alone did not demonstrably increase the risk of LDH), while participants carrying one or two alleles ≤25 repeats who were obese people showed a 4.667-fold increase in risk for symptomatic LDH (p = 0.0003, adding obesity plus changing the repeat allele number significantly increased the risk of LDH by 4.667). Overall, the findings suggest an underlying interaction between aggrecan VNTR and obesity in symptomatic LDH.

  1. Interleukin 6-174 G/C promoter and variable number of tandem repeats (VNTR) gene polymorphisms in sporadic Alzheimer's disease.

    Science.gov (United States)

    Capurso, Cristiano; Solfrizzi, Vincenzo; Colacicco, Anna Maria; D'Introno, Alessia; Frisardi, Vincenza; Imbimbo, Bruno P; Lorusso, Maria; Vendemiale, Gianluigi; Denitto, Marta; Santamato, Andrea; Seripa, Davide; Pilotto, Alberto; Fiore, Pietro; Capurso, Antonio; Panza, Francesco

    2010-02-01

    Previous studies examining the association between the interleukin 6 (IL-6)-174 C/G polymorphism and Alzheimer's disease (AD) have yielded conflicting results. Furthermore, the C allele of the IL-6 variable number of tandem repeats (VNTR) polymorphism was associated with a delayed onset and a decreased risk of AD. A total sample of 149 AD patients, and 298 age- and sex-matched unrelated caregivers from Apulia, southern Italy, were genotyped for the apolipoprotein E (APOE) polymorphism, the VNTR polymorphism in the 3' flanking region, and the -174G/C single-nucleotide polymorphism (SNP) in the promoter region of IL-6 gene on chromosome 7. Furthermore, we performed a haplotype analysis on these two polymorphisms on IL-6 locus. IL-6 VNTR and -174G/C allele and genotype frequencies were similar between AD patients and controls, also after stratification for late-onset (> or =65 years) and early-onset (VNTR and -174G/C polymorphisms, not supporting a previous reported additive effect of both IL-6 polymorphisms on AD risk. Our findings did not support a role of IL-6-174 G/C and IL-6 VNTR polymorphisms in the risk of sporadic AD in southern Italy, suggesting that these polymorphisms of IL-6 gene were at most weak genetic determinants of AD. Copyright 2009 Elsevier Inc. All rights reserved.

  2. Association between interleukin 1 receptor antagonist gene 86-bp VNTR polymorphism and sepsis: a meta-analysis.

    Science.gov (United States)

    Fang, Fang; Pan, Jian; Li, Yiping; Xu, Lixiao; Su, Guanghao; Li, Gang; Wang, Jian

    2015-01-01

    Many studies have focused on the relationship between interleukin 1 receptor antagonist (IL1RN) gene 86-bp VNTR polymorphism and sepsis, but the results remain inconsistent. Thus, a meta-analysis was carried out to derive a more precise estimation of the association between IL1RN 86-bp VNTR polymorphism and risk of sepsis and sepsis-related mortality. Relevant publications were searched in several widely used databases and six eligible studies were included in the meta-analysis. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the association between IL1RN 86-bp VNTR polymorphism and risk of sepsis and sepsis-related mortality. Significant associations between IL1RN 86-bp VNTR polymorphism and sepsis risk were observed in both overall meta-analysis for L2 versus 22 (OR=0.75, 95% CI=0.59-0.94) and severe sepsis subgroup for LL+L2 versus 22 (OR=0.67, 95% CI=0.47-0.93). L stands for long alleles containing three to six repeats; 2 stands for short allele containing two repeats. However, no significant sepsis mortality variation was detected for all genetic models. According to the results of our meta-analysis, the IL1RN 86-bp VNTR polymorphism probably associates with sepsis risk but not with sepsis-related mortality. Copyright © 2014. Published by Elsevier Inc.

  3. Per3 VNTR polymorphism and chronic heart failure.

    Science.gov (United States)

    Lipkova, Jolana; Bienertova-Vasku, Julie Anna; Spinarova, Lenka; Bienert, Petr; Hlavna, Marian; Pavkova Goldbergova, Monika; Parenica, Jiri; Spinar, Jindrich; Vasku, Anna

    2014-01-01

    The aim of this study was to investigate the relationship between gene Period3 (Per3) variable number tandem repeat (VNTR) polymorphism and chronic heart failure (CHF). The study subjects (372 patients of Caucasian origin with CHF and 332 healthy controls) were genotyped for Per3 VNTR polymorphism using an allele-specific PCR. No significant differences in genotype or Per3 VNTR allele frequencies were found between CHF cases and controls (Pg=0.30, Pa=0.52). No significant differences were uncovered either between CHF cases according to etiology (DCMP vs. IHD; Pg=0.87, Pa=0.91). In the multivariate regression modeling, no predictive function of VNTR Per3 polymorphism on ejection fraction or NYHA class, hyperlipidaemia or type II diabetes risk was found. Per3 VNTR polymorphism is not a major risk factor for chronic heart failure or a factor modulating the severity of the CHF in this population.

  4. [Study on VNTR diversity of clinical Mycobacterium tuberculosis isolates from Qinghai].

    Science.gov (United States)

    Li, Bin; Liu, Haican; Wang, Zhaofen; Ma, Yongcheng; Su, Xiaodong; Jiang, Mingxia; Wan, Kanglin; Liu, Shou; Zhao, Xiuqin; Qu, Shugen

    2015-10-01

    To investigate the variable number tandem repeats (VNTR) genetic polymorphisms, genotyping and distribution pattern of clinical Mycobacterium (M.) tuberculosis isolates from Qinghai province. The clinical M. tuberculosis strains isolated from the patients with tuberculosis and related background data were collected from Qinghai Provincial Center for Disease Control and Prevention from 2009 to 2012. Genotyping was conducted by using multiple locus VNTR analysis (MLVA). Genomic DNA was extracted and 15 VNTR loci were amplified with PCR and the PCR products were detected with gel electrophoresis. The VNTR diversity and clusters of genotyping were analyzed with BioNumerics (Version 5.0). A total of 251 clinical M. tuberculosis isolates were analyzed with 15 VNTR loci showing that there were great genetic diversity in these isolates. Six of the 15 VNTR loci, showed that the Hunter-Gaston index (HGI) were higher than 0.6, in which the highest resolution was MIRU26. The clusters of genotyping showed that these isolates could be categorized into four gene clusters and 238 genotypes. The four gene clusters accounted for 4.9%, 91.9%, 1.6% and 1.6% of the clinical isolates, respectively. The results showed that there is great variety of VNTR genetic polymorphisms in clinical M. tuberculosis isolates in Qinghai province.

  5. Copy number variants and VNTR length polymorphisms of the carboxyl-ester lipase (CEL) gene as risk factors in pancreatic cancer.

    Science.gov (United States)

    Dalva, Monica; El Jellas, Khadija; Steine, Solrun J; Johansson, Bente B; Ringdal, Monika; Torsvik, Janniche; Immervoll, Heike; Hoem, Dag; Laemmerhirt, Felix; Simon, Peter; Lerch, Markus M; Johansson, Stefan; Njølstad, Pål R; Weiss, Frank U; Fjeld, Karianne; Molven, Anders

    We have recently described copy number variants (CNVs) of the human carboxyl-ester lipase (CEL) gene, including a recombined deletion allele (CEL-HYB) that is a genetic risk factor for chronic pancreatitis. Associations with pancreatic disease have also been reported for the variable number of tandem repeat (VNTR) region located in CEL exon 11. Here, we examined if CEL CNVs and VNTR length polymorphisms affect the risk for developing pancreatic cancer. CEL CNVs and VNTR were genotyped in a German family with non-alcoholic chronic pancreatitis and pancreatic cancer, in 265 German and 197 Norwegian patients diagnosed with pancreatic adenocarcinoma, and in 882 controls. CNV screening was performed using PCR assays followed by agarose gel electrophoresis whereas VNTR lengths were determined by DNA fragment analysis. The investigated family was CEL-HYB-positive. However, an association of CEL-HYB or a duplication CEL allele with pancreatic cancer was not seen in our two patient cohorts. The frequency of the 23-repeat VNTR allele was borderline significant in Norwegian cases compared to controls (1.2% vs. 0.3%; P = 0.05). For all other VNTR lengths, no statistically significant difference in frequency was observed. Moreover, no association with pancreatic cancer was detected when CEL VNTR lengths were pooled into groups of short, normal or long alleles. We could not demonstrate an association between CEL CNVs and pancreatic cancer. An association is also unlikely for CEL VNTR lengths, although analyses in larger materials are necessary to completely exclude an effect of rare VNTR alleles. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  6. Identification of GATA2 and AP-1 activator elements within the enhancer VNTR occurring in intron 5 of the human SIRT3 gene

    Science.gov (United States)

    Human SIRT3 gene contains an intronic VNTR enhancer. A T > C transition occurring in the second repeat of each VNTR allele implies the presence/absence of a putative GATA binding motif. A partially overlapping AP-1 site, not affected by the transition, was also identified. Aims of the present study ...

  7. Haplotype and nucleotide variation in the exon 3-VNTR of the DRD4 gene from indigenous and urban populations of Mexico.

    Science.gov (United States)

    Aguirre-Samudio, Ana Julia; Cruz-Fuentes, Carlos Sabás; González-Sobrino, Blanca Zoila; Gutiérrez-Pérez, Verónica; Medrano-González, Luis

    2014-01-01

    To describe the population structure of the 48-bp variable number of tandem repeats (VNTR), located in exon 3 of the dopamine receptor D4 gene (DRD4), in 41 Tarahumara from northern Mexico, 20 Mixe from southern Mexico, and 169 people from Mexico City. Genotypes for the DRD4-VNTR were determined, from which 15 Tarahumara, eight Mixe, and 37 urban homozygous individuals were sequenced. Repeat-allele frequencies were compared with other world populations. The DRD4-VNTR variation in Mexico City appeared similar to the world mean. For the Mixe and Maya, DRD4-VNTR diversity appeared closer to South American groups whereas the Tarahumara were similar to North American groups. People from Mexico City and the Mixe exhibited attributes of a large and admixed population and an isolated population, respectively. The Tarahumara showed endogamy associated with a substructure as suggested by a preliminary regional differentiation. For the DRD4-VNTR and/or the adjacent 5'-173 bp sequence, the three populations exhibited negative Tajima's D. Two new VNTR haplotypes were discovered: one in Mexico City and another among the Tarahumara. A differentiation in the DRD4-VNTR of global relevance occurs between northern and southern populations of Mexico suggesting that the Mexican Trans-volcanic Belt has been a major frontier for human dispersion in the Americas. Ancient trespass of this barrier appears thus related to a major change in the population structure of the DRD4-VNTR. Distinctive and independent patterns of DRD4-VNTR diversity occur among the two Mexican indigenous populations by a still undefined combination of drift and selection. © 2014 Wiley Periodicals, Inc.

  8. [Association between MAOA-u VNTR polymorphism and its interaction with stressful life events and major depressive disorder in adolescents].

    Science.gov (United States)

    Ma, Jing; Yu, Shun-Ying; Liang, Shan; Ding, Jun; Feng, Zhe; Yang, Fan; Gao, Wei-Jia; Lin, Jia-Ni; Huang, Chun-Xiang; Liu, Xue-Jun; Su, Lin-Yan

    2013-07-01

    To investigate whether the genetic polymorphism, upstream variable number of tandem repeats (uVNTR), in the monoamine oxidase A (MAOA) gene, is associated with major depressive disorder (MDD) in adolescents and to test whether there is gene-environment interaction between MAOA-uVNTR polymorphism and stressful life events (SLEs). A total of 394 Chinese Han subjects, including 187 adolescent patients with MDD and 207 normal students as a control group, were included in the study. Genotyping was performed by SNaP-shot assay. SLEs in the previous 12 months were evaluated. The groups were compared in terms of the frequency distributions of MAOA-uVNTR genotypes and alleles using statistical software. The binary logistic regression model of gene-environment interaction was established to analyze the association of the gene-environment interaction between MAOA-u VNTR genotypes and SLEs with adolescent MDD. The distribution profiles of MAOA-u VNTR genotypes and alleles were not related to the onset of MDD, severity of depression, comorbid anxiety and suicidal ideation/behavior/attempt in adolescents. The gene-environment interaction between MAOA-u VNTR genotypes and SLEs was not associated with MDD in male or female adolescents. It is not proven that MAOA-u VNTR polymorphism is associated with adolescent MDD. There is also no gene-environment interaction between MAOA-u VNTR polymorphism and SLEs that is associated with adolescent MDD.

  9. Distribution of the 3' VNTR polymorphism in the human dopamine transporter gene in world populations.

    Science.gov (United States)

    Mitchell, R J; Howlett, S; Earl, L; White, N G; McComb, J; Schanfield, M S; Briceno, I; Papiha, S S; Osipova, L; Livshits, G; Leonard, W R; Crawford, M H

    2000-04-01

    A polymorphism with a variable number of tandem repeats (VNTR) found in the 3' untranslated region of the human dopamine transporter gene (DAT1) was scored in unrelated individuals drawn from 10 geographically widely dispersed populations in order to assess this marker's usefulness in human population genetics. The populations that were analyzed in this study included 4 indigenous groups of Siberia, natives of North and South America, as well as Caucasian and Oceanic groups, most of which represented small-scale societies. A total of 5 DAT1 alleles were seen overall, but only in one Siberian population, the Altai-Kizhi, were all 5 present, and in the Native Americans of Colombia the locus was monomorphic. The most common allele, DAT1*10, ranged in frequency from 52% in Greeks to 100% in South Americans. The high frequency of the DAT1*10 allele (approximately 90%) among Mongoloid groups of north and east Asia distinguishes them from most Caucasian groups. The presence of the rare DAT1*7 allele in relatively high frequency (approximately 5%) among all Siberian groups suggests a close affinity with north Asian groups, especially Mongolians. The presence of the even rarer DAT1*13 allele in one Siberian population, the Altai-Kizhi, reflects this group's long historical contact with Mongolians. The results demonstrated that the DAT1 VNTR polymorphism is useful in investigating population relationships, and that rare alleles at this locus may be particularly valuable in understanding the extent of genetic affinity between neighboring groups and in situations where admixture is suspected. However, because of both the association and linkage of this VNTR locus with attention-deficit hyperactivity disorder (ADHD) in children, and its highly restricted polymorphism (usually 3 alleles) in most human groups, the possibility of selection constraints on the DAT1 gene cannot be ignored.

  10. Might there be a link between intron 3 VNTR polymorphism in the XRCC4 DNA repair gene and the etiopathogenesis of rheumatoid arthritis?

    Science.gov (United States)

    Pehlivan, Sacide; Balci, Sibel Oguzkan; Aydeniz, Ali; Pehlivan, Mustafa; Sever, Tugce; Gursoy, Savas

    2015-01-01

    DNA repair genes are involved in several diseases such as cancers and autoimmune diseases. Previous studies indicated that a DNA repair system was involved in the development of rheumatoid arthritis (RA). In this study, we aimed to examine whether four polymorphisms in the DNA repair genes (xeroderma pigmentosum complementation group D [XPD], X-ray repair cross-complementing group 1 [XRCC1], and X-ray repair cross-complementing group 4 [XRCC4]) were associated with RA. Sixty-five patients with RA and 70 healthy controls (HCs) were examined for XPD (A-751G), XRCC1 (A399G), and XRCC4 (intron 3 VNTR and G-1394T) polymorphisms. All polymorphisms were genotyped by PCR and/or PCR-RFLP. The association between the polymorphisms and RA was analyzed using the chi-square test and de Finetti program. The intron 3 VNTR polymorphism in the XRCC4 gene showed an association with RA patients. The DI genotype was found lower in RA patients (χ(2)=8.227; p=0.0021), while the II genotype was higher in RA patients (χ(2)=5.285; p=0.010). There were deviations from the Hardy-Weinberg Equilibrium (HWE) in both intron 3 VNTR and G-1394T polymorphisms in the XRCC4 gene and in the polymorphism in the XRCC1 gene, and the observed genotype counts deviated from those expected according to the HWE (p=0.027, 0.004, and 0.002, respectively); however, there was no deviation in the other gene polymorphisms. There is no statistical difference between the RA patients and HCs for XPD (A-751G), XRCC1 (A399G), and XRCC4 (G-1394T) gene polymorphisms (p>0.05). Although XPD (A-751G), XRCC1 (A399G), and XRCC4 (G-1394T) gene polymorphisms have been extensively investigated in different clinical pictures, this is the first study to evaluate the role of these polymorphisms in the genetic etiopathogenesis of RA in Turkish patients. In conclusion, we suggested that the intron 3 VNTR polymorphism in the XRCC4 gene may be associated with the etiopathogenesis of RA as a marker of immune aging.

  11. Genotypes do not confer risk for delinquency but rather alter susceptibility to positive and negative environmental factors: gene-environmentinteractions of BDNF Val66Met, 5-HTTLPR, and MAOA-uVNTR [corrected].

    Science.gov (United States)

    Nilsson, Kent W; Comasco, Erika; Hodgins, Sheilagh; Oreland, Lars; Åslund, Cecilia

    2014-12-10

    Previous evidence of gene-by-environment interactions associated with emotional and behavioral disorders is contradictory. Differences in findings may result from variation in valence and dose of the environmental factor, and/or failure to take account of gene-by-gene interactions. The present study investigated interactions between the brain-derived neurotrophic factor gene (BDNF Val66Met), the serotonin transporter gene-linked polymorphic region (5-HTTLPR), the monoamine oxidase A (MAOA-uVNTR) polymorphisms, family conflict, sexual abuse, the quality of the child-parent relationship, and teenage delinquency. In 2006, as part of the Survey of Adolescent Life in Västmanland, Sweden, 1 337 high-school students, aged 17-18 years, anonymously completed questionnaires and provided saliva samples for DNA analyses. Teenage delinquency was associated with two-, three-, and four-way interactions of each of the genotypes and the three environmental factors. Significant four-way interactions were found for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × family conflicts and for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × sexual abuse. Further, the two genotype combinations that differed the most in expression levels (BDNF Val66Met Val, 5-HTTLPR LL, MAOA-uVNTR LL [girls] and L [boys] vs BDNF Val66Met Val/Met, 5-HTTLPR S/LS, MAOA-uVNTR S/SS/LS) in interaction with family conflict and sexual abuse were associated with the highest delinquency scores. The genetic variants previously shown to confer vulnerability for delinquency (BDNF Val66Met Val/Met × 5-HTTLPR S × MAOA-uVNTR S) were associated with the lowest delinquency scores in interaction with a positive child-parent relationship. Functional variants of the MAOA-uVNTR, 5-HTTLPR, and BDNF Val66Met, either alone or in interaction with each other, may be best conceptualized as modifying sensitivity to environmental factors that confer either risk or protection for teenage delinquency. © The Author 2015. Published by Oxford University

  12. Genotypes Do Not Confer Risk For Delinquency ut Rather Alter Susceptibility to Positive and Negative Environmental Factors: Gene-Environment Interactions of BDNF Val66Met, 5-HTTLPR, and MAOA-uVNTR

    Science.gov (United States)

    Comasco, Erika; Hodgins, Sheilagh; Oreland, Lars; Åslund, Cecilia

    2015-01-01

    Background: Previous evidence of gene-by-environment interactions associated with emotional and behavioral disorders is contradictory. Differences in findings may result from variation in valence and dose of the environmental factor, and/or failure to take account of gene-by-gene interactions. The present study investigated interactions between the brain-derived neurotrophic factor gene (BDNF Val66Met), the serotonin transporter gene-linked polymorphic region (5-HTTLPR), the monoamine oxidase A (MAOA-uVNTR) polymorphisms, family conflict, sexual abuse, the quality of the child-parent relationship, and teenage delinquency. Methods: In 2006, as part of the Survey of Adolescent Life in Västmanland, Sweden, 1 337 high-school students, aged 17–18 years, anonymously completed questionnaires and provided saliva samples for DNA analyses. Results: Teenage delinquency was associated with two-, three-, and four-way interactions of each of the genotypes and the three environmental factors. Significant four-way interactions were found for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × family conflicts and for BDNF Val66Met × 5-HTTLPR×MAOA-uVNTR × sexual abuse. Further, the two genotype combinations that differed the most in expression levels (BDNF Val66Met Val, 5-HTTLPR LL, MAOA-uVNTR LL [girls] and L [boys] vs BDNF Val66Met Val/Met, 5-HTTLPR S/LS, MAOA-uVNTR S/SS/LS) in interaction with family conflict and sexual abuse were associated with the highest delinquency scores. The genetic variants previously shown to confer vulnerability for delinquency (BDNF Val66Met Val/Met × 5-HTTLPR S × MAOA-uVNTR S) were associated with the lowest delinquency scores in interaction with a positive child-parent relationship. Conclusions: Functional variants of the MAOA-uVNTR, 5-HTTLPR, and BDNF Val66Met, either alone or in interaction with each other, may be best conceptualized as modifying sensitivity to environmental factors that confer either risk or protection for teenage delinquency. PMID

  13. Association of a 31 bp VNTR in the CBS gene with postload homocysteine concentrations in the Framingham Offspring Study.

    NARCIS (Netherlands)

    Lievers, K.J.; Kluijtmans, L.A.J.; Blom, H.J.; Wilson, P.W.; Selhub, J.; Ordovas, J.M.

    2006-01-01

    Elevated total plasma homocysteine concentrations (tHcy), both fasting and post-methionine load, have been established as risk factors for vascular disease. Recently, we described the association of a 31 bp variable number of tandem repeats (VNTR) in the cystathionine beta-synthase (CBS) gene with

  14. A VNTR element associated with steroid sulfatase gene deletions stimulates recombination in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Y.; Li, X.M.; Shapiro, L.J. [UCSF School of Medicine, San Francisco, CA (United States)] [and others

    1994-09-01

    Steroid sulfatase deficiency is a common genetic disorder, with a prevalence of approximately one in every 3500 males world wide. About 90% of these patients have complete gene deletions, which appear to result from recombination between members of a low-copy repeat family (CRI-232 is the prototype) that flank the gene. RU1 and RU2 are two VNTR elements found within each of these family members. RU1 consists of 30 bp repeating units and its length shows minimal variation among individuals. The RU2 element consists of repeating sequences which are highly asymmetric, with about 90% purines and no C`s on one strand, and range from 0.6 kb to over 23 kb among different individuals. We conducted a study to determine if the RU1 or RU2 elements can promote recombination in an in vivo test system. We inserted these elements adjacent to the neo gene in each of two pSV2neo derivatives, one of which has a deletion in the 5{prime} portion of the neo gene and the other having a deletion in the 3{prime} portion. These plasmids were combined and used to transfect EJ cells. Survival of cells in G418 indicates restoration of a functional neo gene by recombination between two deletion constructs. Thus counting G418 resistant colonies gives a quantitative measure of the enhancement of recombination by the inserted VNTR elements. The results showed no effect on recombination by the inserted RU1 element (compared to the insertion of a nonspecific sequence), while the RU2 element stimulated recombination by 3.5-fold (P<0.01). A separate set of constructs placed RU1 or RU2 within the intron of an exon trapping vector. Following tranfection of cells, recombination events were monitored by a PCR assay that detected the approximation of primer binding sites (as a result of recombination). These studies showed that, as in the first set of experiments, the highly variable RU2 element is capable of stimulating somatic recombination in mammalian cells.

  15. Possible Association of IL-4 VNTR Polymorphism with Susceptibility to Preeclampsia

    Directory of Open Access Journals (Sweden)

    Saeedeh Salimi

    2014-01-01

    Full Text Available Preeclampsia (PE is a pregnancy-specific disorder that results in maternal mortality and morbidity. Growing evidence indicated that cytokines are involved in the pathogenesis of PE and interleukin-4 VNTR polymorphism could be implicated in altering the PE risk. The aim of this study was to evaluate the possible association between IL-4 VNTR polymorphism and susceptibility to PE in Iranian population for the first time. Genetic polymorphism was evaluated in 192 PE and 186 healthy control women by polymerase chain reaction method. We found that the VNTR polymorphism of IL-4 gene has significantly increased the risk of preeclampsia (RP2/RP1 versus RP1/RP1, OR, 2.8 [95% CI, 1.7 to 8.8]; P=0.0001 and RP2/RP2 versus RP1/RP1; P=0.002. The results showed that carriage of IL-4 VNTR RP2 allele has positive association with preeclampsia susceptibility.

  16. [Identification of novel variable number tandem repeat (VNTR) loci in Mycobacterium avium and development of an effective means of VNTR typing].

    Science.gov (United States)

    Kurokawa, Kazuhiro; Uchiya, Kei-Ichi; Yagi, Tetsuya; Takahashi, Hiroyasu; Niimi, Masaki; Ichikawa, Kazuya; Inagaki, Takayuki; Moriyama, Makoto; Nikai, Toshiaki; Hayashi, Yuta; Nakagawa, Taku; Ogawa, Kenji

    2012-07-01

    To make more effective use of variable number tandem repeat (VNTR) typing, we identified novel VNTR loci in Mycobacterium avium and used them for modified M. avium tandem repeat-VNTR (MATR-VNTR) typing. Analysis of a DNA sample extracted from a clinical isolate (strain HN135) with the FLX system genome sequencer (Roche Diagnostic System) led to discovery of several novel VNTR loci. The allelic diversity of the novel VNTR loci was evaluated for 71 clinical isolates and compared with the diversity of the MATR-VNTR loci. To improve efficacy of MATR-VNTR typing, we tested typing using 2 sets of loci selected from the newly identified loci and the MATR loci, i.e., one set containing 7 and another 16 loci. Hunter Gaston's discriminatory index (HGDI) was calculated for these sets. Six VNTR loci were newly identified, of which 5 showed a high diversity. The HGDI was 0.980 for the improved new typing using a set of 7 loci, and 0.995 for another set of 16 loci, while it was 0.992 for the conventional MATR-VNTR typing. VNTR typing with the set of the 7 loci enabled a rapid analysis, and another set of 16 loci enabled a precise analysis, as compared with conventional MATR-VNTR typing. A method that uses only VNTR loci with relatively high allelic diversity is considered to be a useful tool for VNTR typing of MAC isolates.

  17. [VNTR-genotyping of Vibrio cholerae strains isolated from objects in the territory of Russian Federation in 2012].

    Science.gov (United States)

    Vodop'ianov, A S; Mazrukho, A B; Vodop'ianov, S O; Mishan'kin, B N; Kruglikov, V D; Apkhangel'skaia, I V; Oleĭnikov, I P; Zubkova, D A; Monakhova, E V; Grigorenko, L V

    2014-01-01

    VNTR-typing of Vibrio cholerae strains isolated in the territory of Russian Federation in 2012. 71 Vibrio cholerae O3 and 3 V cholerae O1/O139 strains were used in the study. Genotyping was performed by using PCR for 5 VNTR-loci. Multilocus VNTR-typing allowed to group the strains into 31 VNTR-genotypes. Genotypes were divided among 10 discrete clusters by results of a cluster analysis. The presence of tcpA gene is clearly linked with the presence of VcB locus. Each geographic region was characterized by their own VNTR-genotypes. In the course of the carried out VNTR-genotyping of V. cholerae isolated in 2012, 2 types of vibrio population formation were detected. A geographic attachment to specific regions was characteristic for most of the genotypes.

  18. Evolutionary history of the PER3 variable number of tandem repeats (VNTR): idiosyncratic aspect of primate molecular circadian clock.

    Science.gov (United States)

    Sabino, Flávia Cal; Ribeiro, Amanda Oliveira; Tufik, Sérgio; Torres, Laila Brito; Oliveira, José Américo; Mello, Luiz Eugênio Araújo Moraes; Cavalcante, Jeferson Souza; Pedrazzoli, Mario

    2014-01-01

    The PER3 gene is one of the clock genes, which function in the core mammalian molecular circadian system. A variable number of tandem repeats (VNTR) locus in the 18th exon of this gene has been strongly associated to circadian rhythm phenotypes and sleep organization in humans, but it has not been identified in other mammals except primates. To better understand the evolution and the placement of the PER3 VNTR in a phylogenetical context, the present study enlarges the investigation about the presence and the structure of this variable region in a large sample of primate species and other mammals. The analysis of the results has revealed that the PER3 VNTR occurs exclusively in simiiforme primates and that the number of copies of the primitive unit ranges from 2 to 11 across different primate species. Two transposable elements surrounding the 18th exon of PER3 were found in primates with published genome sequences, including the tarsiiforme Tarsius syrichta, which lacks the VNTR. These results suggest that this VNTR may have evolved in a common ancestor of the simiiforme branch and that the evolutionary copy number differentiation of this VNTR may be associated with primate simiiformes sleep and circadian phenotype patterns.

  19. Evolutionary history of the PER3 variable number of tandem repeats (VNTR: idiosyncratic aspect of primate molecular circadian clock.

    Directory of Open Access Journals (Sweden)

    Flávia Cal Sabino

    Full Text Available The PER3 gene is one of the clock genes, which function in the core mammalian molecular circadian system. A variable number of tandem repeats (VNTR locus in the 18th exon of this gene has been strongly associated to circadian rhythm phenotypes and sleep organization in humans, but it has not been identified in other mammals except primates. To better understand the evolution and the placement of the PER3 VNTR in a phylogenetical context, the present study enlarges the investigation about the presence and the structure of this variable region in a large sample of primate species and other mammals. The analysis of the results has revealed that the PER3 VNTR occurs exclusively in simiiforme primates and that the number of copies of the primitive unit ranges from 2 to 11 across different primate species. Two transposable elements surrounding the 18th exon of PER3 were found in primates with published genome sequences, including the tarsiiforme Tarsius syrichta, which lacks the VNTR. These results suggest that this VNTR may have evolved in a common ancestor of the simiiforme branch and that the evolutionary copy number differentiation of this VNTR may be associated with primate simiiformes sleep and circadian phenotype patterns.

  20. [[Length polymorphism of minisatellite repeat B2-VNTR of the bradykinin B2 receptor gene in healthy Russians and in patients with coronary heart disease].

    Science.gov (United States)

    Suchkova, I O; Pavlinova, L I; Larionova, E E; Alenina, N V; Solov'ev, K V; Baranova, T V; Belotserkovskaia, E V; Sasina, L K; Bader, M; Denisenko, A D; Mustafina, O E; Khusnutdinova, E K; Patkin, E L

    2014-01-01

    Bradykinin B2 receptor is involved in many processes, including the regulation of blood pressure and smooth muscle contraction, vasodilation, inflammation, edema, cell proliferation, pain. It is suggested that this receptor may be one of the factors that have cardioprotective and infarct-limiting effects. It is assumed that certain genetic variants in both coding and non-coding regions ofBDKRB2 gene may influence its expression. In the 3'-untranslated region of BDKRB2 exon 3 the minisatellite repeat B2-VNTR is located. B2-VNTR has previously been shown to affect the BDKRB2 mRNA stability. Therefore, it is important to perform the molecular genetic analysis of this minisatellite in patients with different forms of coronary heart disease in order to reveal possible associations between specific B2-VNTR alleles and certain clinical forms of coronary heart disease. In the present study, a comparative analysis of the allele and genotype frequencies of B2-VNTR was carried out in groups of healthy individuals and patients with two clinical forms of coronary heart disease (angina pectoris and myocardial infarction), ethnically Russian. The results of the B2-VNTR length polymorphism analysis indicate that this tandem repeat may be attributed to a class of low polymorphic and non-hypervariable minisatellite. In all analyzed groups we revealed three B2-VNTR alleles, consisting of 43, 38 and 33 repeat units. Alleles of 43 and 33 repeats were major in all investigated groups. No statistically significant differences were found in the B2-VNTR allele and genotype frequencies between men and women in control group, and also between healthy men and men with angina pectoris and myocardial infarction. Thus, B2-VNTR length polymorphism was not associated with these clinical forms of coronary heart disease in Russian men. However, we do not exclude the possibility of association between the B2-VNTR short alleles (38 and 33 repeats) and cardioprotective effects of bradykinin B2 receptor

  1. The VNTR Polymorphism of the DC-SIGNR Gene and Susceptibility to HIV-1 Infection: A Meta-Analysis

    OpenAIRE

    Li, Hui; Yu, Xiao-Min; Wang, Jia-Xin; Hong, Ze-Hui; Tang, Nelson Leung-Sang

    2012-01-01

    BACKGROUND: Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin related (DC-SIGNR) can bind to the human immunodeficiency virus-1 (HIV-1) gp120 envelope glycoprotein and is thus important for the host-pathogen interaction in HIV-1 infection. Studies of the association between the variable number tandem repeat (VNTR) polymorphism of the DC-SIGNR gene and HIV-1 susceptibility have produced controversial results. METHODS AND FINDINGS: We conducted a meta-analysis of th...

  2. New approach for isolation of VNTR markers.

    OpenAIRE

    Nakamura, Y; Carlson, M; Krapcho, K; Kanamori, M; White, R

    1988-01-01

    Elsewhere we have reported an efficient method for isolating VNTR (Variable Number of Tandem Repeats) markers. Several of the VNTR markers isolated in those experiments were sequenced, and a DNA sequence of 9 bp (GNNGTGGG) emerged as an apparent consensus sequence for VNTR markers. To confirm this result and to develop more VNTR markers, we synthesized nine different 18-base-long oligonucleotides whose sequences each included GNNGTGGG. When 102 cosmid clones selected by these oligonucleotides...

  3. Association of STin2 VNTR Polymorphism of Serotonin Transporter Gene with Lifelong Premature Ejaculation: A Case-Control Study in Han Chinese Subjects.

    Science.gov (United States)

    Huang, Yuanyuan; Zhang, Xiansheng; Gao, Jingjing; Tang, Dongdong; Gao, Pan; Peng, Dangwei; Liang, Chaozhao

    2016-10-07

    BACKGROUND The STin2 VNTR polymorphism has a variable number of tandem repeats in intron 2 of the serotonin transporter gene. We aimed to explore the relationship between STin2 VNTR polymorphism and lifelong premature ejaculation (LPE). MATERIAL AND METHODS We recruited a total of 115 outpatients who complained of ejaculating prematurely and who were diagnosed as LPE, and 101 controls without PE complaint. Allelic variations of STin2 VNTR were genotyped using PCR-based technology. We evaluated the associations between STin2 VNTR allelic and genotypic frequencies and LPE, as well as the intravaginal ejaculation latency time (IELT) of different STin2 VNTR genotypes among LPE patients. RESULTS The patients and controls did not differ significantly in terms of any characteristic except age. A significantly higher frequency of STin2.12/12 genotype was found among LPE patients versus controls (P=0.026). Frequency of patients carrying at least 1 copy of the 10-repeat allele was significantly lower compared to the control group (28.3% vs. 41.8%, OR=0.55; 95%CI=0.31-0.97, P=0.040). In the LPE group, the mean IELT showed significant difference in STin2.12/12 genotype when compared to those with STin2.12/10 and STin2.10/10 genotypes. The mean IELT in10-repeat allele carriers was 50% longer compared to homozygous carriers of the STin2.12 allele. CONCLUSIONS Our results indicate the presence of STin2.10 allele is a protective factor for LPE. Men carrying the higher expression genotype STin2. 12/12 have shorter IELT than 10-repeat allele carriers.

  4. VNTR polymorphisms of the IL-4 and IL-1RN genes and their relationship with frailty syndrome in Mexican community-dwelling elderly.

    Science.gov (United States)

    Pérez-Suárez, Thalía Gabriela; Gutiérrez-Robledo, Luis Miguel; Ávila-Funes, José Alberto; Acosta, José Luis; Escamilla-Tilch, Mónica; Padilla-Gutiérrez, Jorge Ramón; Torres-Carrillo, Norma; Torres-Castro, Sara; López-Ortega, Mariana; Muñoz-Valle, José Francisco; Torres-Carrillo, Nora Magdalena

    2016-10-01

    Inflammation is a key event that is closely associated with the pathophysiology of frailty. The relationship of genetic polymorphisms into inflammatory cytokines with frailty remains poorly understood. The aim of this study was to investigate the association between VNTR polymorphisms of the IL-4 and IL-1RN genes with the risk of frailty. We included a sample of 630 community-dwelling elderly aged 70 and older. Both IL-4 and IL-1RN VNTR polymorphisms were genotyped by the polymerase chain reaction (PCR) method. Mean age was 77.7 years (SD = 6.0) and 52.5 % were women. The participants classified as frail were more likely to be older, had lower MMSE score (p VNTR polymorphism did not show significant differences between study groups (p > 0.05). However, we just observed a significant difference in the allelic frequencies for the A2 allele of the IL-1RN VNTR polymorphism between frail and nonfrail groups (OR 1.84, 95 % CI 1.08-3.12, p = 0.02). In addition, we analyzed the combined effect of the IL-4 and IL-1RN VNTR polymorphisms and their possible association with frailty, where the combined IL-4 (low) -IL-1Ra (high) genotype was identified as a marker of risk to frailty syndrome (OR 7.86, 95 % CI 1.83-33.69, p = 0.006). Our results suggest that both A2 allele and the combined IL-4 (low) -IL-1Ra (high) genotype might be genetic markers of susceptibility to frailty in Mexican elderly.

  5. Linkage disequilibrium in the insulin gene region: Size variation at the 5{prime} flanking polymorphism and bimodality among {open_quotes}Class I{close_quotes} alleles

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis, R.E.; Spielman, R.S. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)

    1994-09-01

    The 5{prime} flanking polymorphism (5{prime}FP), a hypervariable region at the 5{prime} end of the insulin gene, has {open_quotes}class 1{close_quotes} alleles (650-900 bp long) that are in positive linkage disequilibrium with insulin-dependent diabetes mellitus (IDDM). The authors report that precise sizing of the 5{prime}FP yields a bimodal frequency distribution of class 1 allele lengths. Class 1 alleles belonging to the lower component (650-750 bp) of the bimodal distribution were somewhat more highly associated with IDDM than were alleles from the upper component (760-900 bp), but the difference was not statistically significant. They also examined 5{prime}FP length variation in relation to allelic variation at nearby polymorphisms. At biallelic RFLPs on both sides of the 5{prime}FP, they found that one allele exhibits near-total association with the upper component of the 5FP class 1 distribution. Such associations represent a little-known but potentially wide-spread form of linkage disequilibrium. In this type of disequilibrium, a flanking allele has near-complete association with a single mode of VNTR alleles whose lengths represent consecutive numbers of tandem repeats (CNTR). Such extreme disequilibrium between a CNTR mode and flanking alleles may originate and persist because length mutations at some VNTR loci usually add or delete only one or two repeat units. 22 refs., 5 figs., 6 tabs.

  6. O papel do polimorfismo funcional VNTR da região promotora do gene MAOA nos transtornos psiquiátricos

    Directory of Open Access Journals (Sweden)

    Sílvia A. Nishioka

    2011-01-01

    Full Text Available INTRODUÇÃO: Muitos estudos têm investigado a associação do polimorfismo VNTR (número variável de repetições em série localizado na região promotora do gene da enzima monoamina oxidase A (MAOA com alterações no comportamento humano e em diversos transtornos psiquiátricos. OBJETIVO: O objetivo do presente trabalho foi revisar a literatura sobre a participação desse polimorfismo funcional na modulação do comportamento humano para o desenvolvimento dos transtornos psiquiátricos. MÉTODO: A pesquisa foi realizada na literatura em inglês, de janeiro de 1998 a junho de 2009, disponível no Medline, Embase, Web of Science e na base de dados PsycInfo, utilizando os seguintes termos: "MAOA e comportamento humano" e "MAOA e psiquiatria". RESULTADOS: Foram encontrados 3.873 estudos. Desses, 109 foram selecionados e incluídos na revisão. Encontrou-se associação de alelos de baixa atividade do VNTR com transtorno de personalidade antissocial, transtorno de conduta, transtorno de déficit de atenção e hiperatividade, jogo patológico e dependência de substâncias. Alelos da alta atividade da MAOA foram associados a depressão, ansiedade, neuroticismo e anorexia nervosa. Não se encontrou associação entre polimorfismos da MAOA e esquizofrenia e transtorno bipolar. CONCLUSÃO: Os principais achados dão suporte ao papel do polimorfismo VNTR da região promotora do gene da MAOA em alguns transtornos psiquiátricos, apesar das divergências encontradas devidas às dificuldades metodológicas de estudos em genética. De modo geral, os estudos associam os alelos de baixa atividade da MAOA com comportamentos impulsivos e agressivos ("comportamentos hiperativos", enquanto os alelos de alta atividade do gene são mais associados a "comportamentos hipoativos".

  7. Identification of the Rare, Four Repeat Allele of IL-4 Intron-3 VNTR Polymorphism in Indian Populations.

    Science.gov (United States)

    Verma, Henu Kumar; Jha, Aditya Nath; Khodiar, Prafulla Kumar; Patra, Pradeep Kumar; Bhaskar, Lakkakula Venkata Kameswara Subrahmanya

    2016-06-01

    Cytokines are cell signaling molecules which upon release by cells facilitate the recruitment of immune-modulatory cells towards the sites of inflammation. Genetic variations in cytokine genes are shown to regulate their production and affect the risk of infectious as well as autoimmune diseases. Intron-3 of interleukin-4 gene (IL-4) harbors 70-bp variable number of tandem repeats (VNTR) that may alter the expression level of IL-4 gene. To determine the distribution of IL-4 70-bp VNTR polymorphism in seven genetically heterogeneous populations of Chhattisgarh, India and their comparison with the finding of other Indian and world populations. A total of 371 healthy unrelated individuals from 5 caste and 2 tribal populations were included in the present study. The IL-4 70-bp VNTR genotyping was carried out using PCR and electrophoresis. Overall, 3 alleles of IL-4 70-bp VNTR (a2, a3 and a4) were detected. The results demonstrated the variability of the IL-4 70-bp VNTR polymorphism in Chhattisgarh populations. Allele a3 was the most common allele at the 70-bp VNTR locus in all populations followed by a2 allele. This study reports the presence four repeat allele a4 at a low frequency in the majority of the Chhattisgarh populations studied. Further, the frequency of the minor allele (a2) in Chhattisgarh populations showed similarity with the frequencies of European populations but not with the East Asian populations where the a2 allele is a major allele. Our study provides a baseline for future research into the role of the IL-4 locus in diseases linked to inflammation in Indian populations.

  8. Association between Interleukin-1 Receptor Antagonist (IL1RN) Variable Number of Tandem Repeats (VNTR) Polymorphism and Pulmonary Tuberculosis.

    Science.gov (United States)

    Hashemi, Mohammad; Naderi, Mohammad; Ebrahimi, Mahboubeh; Amininia, Shadi; Bahari, Gholamreza; Taheri, Mohsen; Eskandari-Nasab, Ebrahim; Ghavami, Saeid

    2015-02-01

    Macrophages and T-lymphocytes are involved in immune response to Mycobacterium tuberculosis. Macrophage produces interleukin (IL)-1 as an inflammatory mediator. IL-1 receptor antagonist (IL1-Ra) is a natural antagonist of IL-1 receptors. In this study we aimed to examine the possible association between the variable number of tandem repeats (VNTR) of the IL-1 receptor antagonist (IL1RN) gene and pulmonary tuberculosis (TB) in a sample of Iranian population. Our study is a case-control study and we examined the VNTR of the IL1RN gene in 265 PTB and 250 healthy subjects by PCR. Neither the overall chi-square comparison of PTB and control subjects nor the logistic regression analysis indicated any association between VNTR IL1RN polymorphism and PTB. Our data suggest that VNTR IL1RN polymorphism may not be associated with the risk of PTB in a sample of Iranian population. Larger studies with different ethnicities are needed to find out the impact of IL1RN VNTR polymorphism on risk of developing TB.

  9. The DRD4 exon III VNTR, bupropion, and associations with prospective abstinence.

    Science.gov (United States)

    Bergen, Andrew W; Javitz, Harold S; Su, Li; He, Yungang; Conti, David V; Benowitz, Neal L; Tyndale, Rachel F; Lerman, Caryn; Swan, Gary E

    2013-07-01

    DRD4 Exon III Variable Number of Tandem Repeat (VNTR) variation was found to interact with bupropion to influence prospective smoking abstinence, in a recently published longitudinal analyses of N = 331 individuals from a randomized double-blind placebo-controlled trial of bupropion and intensive cognitive-behavioral mood management therapy. We used univariate, multivariate, and longitudinal logistic regression to evaluate gene, treatment, time, and interaction effects on point prevalence and continuous abstinence at end of treatment, 6 months, and 12 months, respectively, in N = 416 European ancestry participants in a double-blind pharmacogenetic efficacy trial randomizing participants to active or placebo bupropion. Participants received 10 weeks of pharmacotherapy and 7 sessions of behavioral therapy, with a target quit date 2 weeks after initiating both therapies. VNTR genotypes were coded with the long allele dominant resulting in 4 analysis categories. Covariates included demographics, dependence measures, depressive symptoms, and genetic ancestry. We also performed genotype-stratified secondary analyses. We observed significant effects of time in longitudinal analyses of both abstinence outcomes, of treatment in individuals with VNTR long allele genotypes for both abstinence outcomes, and of covariates in some analyses. We observed non-significantly larger differences in active versus placebo effect sizes in individuals with VNTR long allele genotypes than in individuals without the VNTR long allele, in the directions previously reported. VNTR by treatment interaction differences between these and previous analyses may be attributable to insufficient size of the replication sample. Analyses of multiple randomized clinical trials will enable identification and validation of factors mediating treatment response.

  10. A 40-bp VNTR polymorphism in the 3'-untranslated region of DAT1/SLC6A3 is associated with ADHD but not with alcoholism.

    Science.gov (United States)

    Šerý, Omar; Paclt, Ivo; Drtílková, Ivana; Theiner, Pavel; Kopečková, Marta; Zvolský, Petr; Balcar, Vladimir J

    2015-06-11

    ADHD and alcoholism are psychiatric diseases with pathophysiology related to dopamine system. DAT1 belongs to the SLC6 family of transporters and is involved in the regulation of extracellular dopamine levels. A 40 bp variable number tandem repeat (VNTR) polymorphism in the 3'-untranslated region of DAT1/SLC6A3 gene was previously reported to be associated with various phenotypes involving disturbed regulation of dopaminergic neurotransmission. A total of 1312 subjects were included and genotyped for 40 bp VNTR polymorphism of DAT1/SLC6A3 gene in this study (441 alcoholics, 400 non-alcoholic controls, 218 ADHD children and 253 non ADHD children). Using miRBase software, we have performed a computer analysis of VNTR part of DAT1 gene for presence of miRNA binding sites. We have found significant relationships between ADHD and the 40 bp VNTR polymorphisms of DAT1/SLC6A3 gene (P VNTR polymorphism of DAT1/SLC6A3 gene has been detected. We have found an association between 40 bp VNTR polymorphism of DAT1/SLC6A3 gene and ADHD in the Czech population; in a broad agreement with studies in other population samples. Furthermore, we detected rare genotypes 8/10, 7/10 and 10/11 present in ADHD boys only and identified miRNAs that should be looked at as potential novel targets in the research on ADHD.

  11. Frequencies of VNTR and RFLP polymorphisms associated with factor VIII gene in Singapore

    Energy Technology Data Exchange (ETDEWEB)

    Fong, I.; Lai, P.S.; Ouah, T.C. [National Univ. of Singapore (Malaysia)] [and others

    1994-09-01

    The allelic frequency of any polymorphism within a population determines its usefulness for genetic counselling. This is important in populations of non-Caucasian origin as RFLPs may significantly differ among ethnic groups. We report a study of five intragenic polymorphisms in factor VIII gene carried out in Singapore. The three PCR-based RFLP markers studied were Intron 18/Bcl I, Intron 19/Hind III and Intron 22/Xba I. In an analysis of 148 unrelated normal X chromosomes, the allele frequencies were found to be A1 = 0.18, A2 = 0.82 (Bcl I RFLP), A1 = 0.80, A2 = 0.20 (Hind III RFLP) and A1 = 0.58, and A2 = 0.42 (Xba I RFLP). The heterozygosity rates of 74 females analyzed separately were 31%, 32% and 84.2%, respectively. Linkage disequilibrium was also observed to some degree between Bcl I and Hind III polymorphism in our population. We have also analyzed a sequence polymorphism in Intron 7 using hybridization with radioactive-labelled {sup 32}P allele-specific oligonucleotide probes. This polymorphism was not very polymorphic in our population with only 2% of 117 individuals analyzed being informative. However, the use of a hypervariable dinucleotide repeat sequence (VNTR) in Intron 13 showed that 25 of our of 27 (93%) females were heterozygous. Allele frequencies ranged from 1 to 55 %. We conclude that a viable strategy for molecular analysis of Hemophilia A families in our population should include the use of Intron 18/Bcl I and Intron 22/Xba I RFLP markers and the Intron 13 VNTR marker.

  12. Lack of association between VNTR polymorphism of dopamine transporter gene (SLC6A3 and schizophrenia in a Brazilian sample Ausência de associação entre o polimorfismo VNTR do gene do transportador de dopamina (SLC6A3 e esquizofrenia em uma população brasileira

    Directory of Open Access Journals (Sweden)

    Quirino Cordeiro

    2004-12-01

    Full Text Available A role of dopaminergic dysfunction has been postulated in the aetiology of schizophrenia. We hypothesized that variations in the dopamine transporter gene (SLC6A3 may be associated with schizophrenia. We conducted case-control and family based analysis on the polymorphic SLC6A3 variable number tandem repeat (VNTR in a sample of 220 schizophrenic patients, 226 gender and ethnic matched controls, and 49 additional case-parent trios. No differences were found in allelic or genotypic distributions between cases and controls and no significant transmission distortions from heterozygous parents to schizophrenic offspring were detected. Thus, our results do not support an association of the SLC6A3 VNTR with schizophrenia in our sample.Genes do sistema dopaminérgico são de escolha para a pesquisa de susceptibilidade para a esquizofrenia. Desse modo, possível contribuição do polimorfismo do gene do transportador de dopamina (SLC6A3 no aumento da vulnerabilidade para a esquizofrenia foi investigada no presente estudo. Analisou-se a distribuição do sítio polimórfico do gene do transportador de dopamina (VNTR em uma população de 220 pacientes com esquizofrenia (critério diagnóstico: DSM-IV e comparou-se com a distribuição em uma população controle de 226 indivíduos pareados para sexo e etnia. Nenhuma diferença foi observada na distribuição dos alelos entre casos e controles. O mesmo polimorfismo também foi investigado em uma segunda amostra composta por 49 trios (pais e probando. O resultado também foi negativo. Tais dados não dão suporte para a participação do polimorfismo do gene do transportador de dopamina no aumento de susceptibilidade para esquizofrenia na amostra estudada.

  13. Association between VNTR polymorphism in promoter region of prodynorphin (PDYN) gene and heroin dependence.

    Science.gov (United States)

    Saify, Khyber; Saadat, Iraj; Saadat, Mostafa

    2014-11-30

    Within the core promoter region of prodynorphin (PDYN), a 68-bp sequence was found to occur as a polymorphism element, either singular or as tandemly repeated two, three or four times. We report the sequence of a novel allele (5-repeats). Our study revealed the existence of an ancestral nucleotide (A) at 29th position of the VNTR in human. In total, 442 heroin addicts and 799 controls were included in this study. The present findings revealed a male-limited association between VNTR polymorphism and heroin dependence risk. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. [Rapid, simple genotyping method by the variable numbers of tandem repeats (VNTR) for Mycobacterium tuberculosis isolates in Japan--analytical procedure of JATA (12)-VNTR].

    Science.gov (United States)

    Maeda, Shinji; Murase, Yoshiro; Mitarai, Satoshi; Sugawara, Isamu; Kato, Seiya

    2008-10-01

    The discriminatory power of each locus in variable numbers of tandem repeats (VNTR) analyses was evaluated for development of the genotyping method of Mycobacterium tuberculosis (TB) in Japan. By using 325 TB strains collected from whole Japan and 24 mass infection cases (74 isolates), IS6110 restriction fragment length polymorphism (RFLP), spoligotyping and VNTR (35 loci) were analyzed. We excluded 4 loci (VNTRs 2163a, 3232, 3820, and 4120) and selected in top 12 loci (VNTRs 0424, 0960, 1955, 2074, 2163b, 2372, 2996, 3155, 3192, 3336, 4052, and 4156). The cluster rate of IS6110 RFLP was higher than that of 12-locus [Japan Anti-Tuberculosis Association (JATA)] VNTR. And in comparison of the discriminatory power of 12-locus JATA VNTR and that of Supply (15)-VNTR, the JATA (12)-VNTR was superior, even though less loci analyses. Therefore, this JATA (12)-VNTR could be used for TB genotyping in areas where Beijing strains are prevalent.

  15. Insulin gene therapy for type 1 diabetes mellitus.

    Science.gov (United States)

    Handorf, Andrew M; Sollinger, Hans W; Alam, Tausif

    2015-04-01

    Type 1 diabetes mellitus is an autoimmune disease resulting from the destruction of pancreatic β cells. Current treatments for patients with type 1 diabetes mellitus include daily insulin injections or whole pancreas transplant, each of which are associated with profound drawbacks. Insulin gene therapy, which has shown great efficacy in correcting hyperglycemia in animal models, holds great promise as an alternative strategy to treat type 1 diabetes mellitus in humans. Insulin gene therapy refers to the targeted expression of insulin in non-β cells, with hepatocytes emerging as the primary therapeutic target. In this review, we present an overview of the current state of insulin gene therapy to treat type 1 diabetes mellitus, including the need for an alternative therapy, important features dictating the success of the therapy, and current obstacles preventing the translation of this treatment option to a clinical setting. In so doing, we hope to shed light on insulin gene therapy as a viable option to treat type 1 diabetes mellitus.

  16. Susceptibility to large-joint osteoarthritis (hip and knee) is associated with BAG6 rs3117582 SNP and the VNTR polymorphism in the second exon of the FAM46A gene on chromosome 6.

    Science.gov (United States)

    Etokebe, Godfrey E; Jotanovic, Zdravko; Mihelic, Radovan; Mulac-Jericevic, Biserka; Nikolic, Tamara; Balen, Sanja; Sestan, Branko; Dembic, Zlatko

    2015-01-01

    Family with sequence similarity 46, member A (FAM46A) gene VNTR and BCL2-Associated Athanogene 6 (BAG6) gene rs3117582 polymorphisms were genotyped in a case-control study with 474 large-joint (hip and knee) osteoarthritis (OA) patients and 568 controls in Croatian population by candidate-gene approach for association with OA. We found that BAG6 rs3117582 SNP genotypes were associated with protection (major allele homozygote) and susceptibility (major-minor allele heterozygote) to OA. BAG6 rs3117582 major allele (A) was associated with reduced risk to OA while the minor allele (C) was associated with increased risk to OA. We identified 6 alleles harboring 2 to 7 repeats making 20 genotypes for FAM46A. A rare FAM46A VNTR genotype comprising VNTR alleles with four and seven repeats (c/f) was associated with increased OA risk in both genders. The genotype with four and six repeats (c/e) was also associated with increased risk to OA in males. A polymorphic FAM46A allele with six repeats (e) was associated with reduced risk to OA in females. Our results suggest association between the FAM46A gene, BAG6 gene and OA in Croatian population, respectively. This is the first study to show associations between these genetic loci and OA. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Association of STin2 Variable Number of Tandem Repeat (VNTR) Polymorphism of Serotonin Transporter Gene with Lifelong Premature Ejaculation: A Case-Control Study in Han Chinese Subjects

    Science.gov (United States)

    Huang, Yuanyuan; Zhang, Xiansheng; Gao, Jingjing; Tang, Dongdong; Gao, Pan; Peng, Dangwei; Liang, Chaozhao

    2016-01-01

    Background The STin2 VNTR polymorphism has a variable number of tandem repeats in intron 2 of the serotonin transporter gene. We aimed to explore the relationship between STin2 VNTR polymorphism and lifelong premature ejaculation (LPE). Material/Methods We recruited a total of 115 outpatients who complained of ejaculating prematurely and who were diagnosed as LPE, and 101 controls without PE complaint. Allelic variations of STin2 VNTR were genotyped using PCR-based technology. We evaluated the associations between STin2 VNTR allelic and genotypic frequencies and LPE, as well as the intravaginal ejaculation latency time (IELT) of different STin2 VNTR genotypes among LPE patients. Results The patients and controls did not differ significantly in terms of any characteristic except age. A significantly higher frequency of STin2.12/12 genotype was found among LPE patients versus controls (P=0.026). Frequency of patients carrying at least 1 copy of the 10-repeat allele was significantly lower compared to the control group (28.3% vs. 41.8%, OR=0.55; 95%CI=0.31–0.97, P=0.040). In the LPE group, the mean IELT showed significant difference in STin2.12/12 genotype when compared to those with STin2.12/10 and STin2.10/10 genotypes. The mean IELT in10-repeat allele carriers was 50% longer compared to homozygous carriers of the STin2.12 allele. Conclusions Our results indicate the presence of STin2.10 allele is a protective factor for LPE. Men carrying the higher expression genotype STin2. 12/12 have shorter IELT than 10-repeat allele carriers. PMID:27713390

  18. Comparison of semi-automated commercial rep-PCR fingerprinting, spoligotyping, 12-locus MIRU-VNTR typing and single nucleotide polymorphism analysis of the embB gene as molecular typing tools for Mycobacterium bovis.

    Science.gov (United States)

    Armas, Federica; Camperio, Cristina; Coltella, Luana; Selvaggini, Serena; Boniotti, Maria Beatrice; Pacciarini, Maria Lodovica; Di Marco Lo Presti, Vincenzo; Marianelli, Cinzia

    2017-08-04

    Highly discriminatory genotyping strategies are essential in molecular epidemiological studies of tuberculosis. In this study we evaluated, for the first time, the efficacy of the repetitive sequence-based PCR (rep-PCR) DiversiLab Mycobacterium typing kit over spoligotyping, 12-locus mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing and embB single nucleotide polymorphism (SNP) analysis for Mycobacterium bovis typing. A total of 49 M. bovis animal isolates were used. DNA was extracted and genomic DNA was amplified using the DiversiLab Mycobacterium typing kit. The amplified fragments were separated and detected using a microfluidics chip with Agilent 2100. The resulting rep-PCR-based DNA fingerprints were uploaded to and analysed using web-based DiversiLab software through Pearson's correlation coefficient. Rep-PCR DiversiLab grouped M. bovis isolates into ten different clusters. Most isolates sharing identical spoligotype, MIRU-VNTR profile or embB gene polymorphism were grouped into different rep-PCR clusters. Rep-PCR DiversiLab displayed greater discriminatory power than spoligotyping and embB SNP analysis but a lower resolution power than the 12-locus MIRU-VNTR analysis. MIRU-VNTR confirmed that it is superior to the other PCR-based methods tested here. In combination with spoligotyping and 12-locus MIRU-VNTR analysis, rep-PCR improved the discriminatory power for M. bovis typing.

  19. The interactive effect of the MAOA-VNTR genotype and childhood abuse on aggressive behaviors in Chinese male adolescents.

    Science.gov (United States)

    Zhang, Yun; Ming, Qingsen; Wang, Xiang; Yao, Shuqiao

    2016-06-01

    Gene-environment interactions that moderate aggressive behavior have been identified in association with the MAOA (monoamine oxidase A) gene. The present study examined the moderating effect of MAOA-VNTR (variable number of tandem repeats) on aggression behavior relating to child abuse among Chinese adolescents. A sample of 507 healthy Chinese male adolescents completed the Child Trauma Questionnaire-Short Form (CTQ-SF) and Youth Self-report of the Child Behavior Checklist. The participants' buccal cells were sampled and subjected to DNA analysis. The effects of childhood abuse (CTQ-SF scores), MAOA-VNTR [high-activity allele (H) versus low-activity allele (L)], and their interaction in aggressive behaviors were analyzed by linear regression. Child maltreatment was found to be a significant independent factor in the manifestation of aggressive behavior, whereas MAOA activity was not. There was a significant interaction between MAOA-VNTR and childhood maltreatment in the exhibition of aggressive behaviors. In the context of physical or emotional abuse, boys in the MAOA-L group showed a greater tendency toward aggression than those in the MAOA-H group. Aggressive behavior arising from childhood maltreatment is moderated by MAOA-VNTR, which may be differentially sensitive to the subtype of childhood maltreatment experienced, among Chinese adolescents.

  20. Role of the functional MNS16A VNTR-243 variant of the human telomerase reverse transcriptase gene in progression and response to therapy of patients with non-Hodgkin's B-cell lymphomas.

    Science.gov (United States)

    Wysoczanska, B; Wrobel, T; Dobrzynska, O; Mazur, G; Bogunia-Kubik, K

    2015-04-01

    MNS16A is a functional polymorphic tandem repeat within the human telomerase reverse transcriptase (hTERT) gene. To investigate whether any of the MNS16A repeats represents a genetic risk factor for NHL susceptibility, progression of or response to therapy in 75 patients with non-Hodgkin's lymphomas (NHLs) and 126 healthy individuals were genotyped using the PCR-VNTR technique. A slightly higher frequency of the MNS16A VNTR-243 variant was detected among patients who did not respond to treatment (NR) as compared to patients with complete or partial remission (0.83 vs. 0.51, P = 0.055). NR patients more frequently developed aggressive than indolent type of the disease (0.92 vs. 0.41, P = 0.001). The VNTR-243 allele was more frequently detected among patients with an intermediate-high/high International Prognostic Index (IPI 3-4) score (P = 0.063), especially in patients with advanced age and IPI 3-4 (P = 0.040). In multivariate analysis, higher IPI 3-4 score (OR = 11.364, P = 0.051) and aggressive type of the disease (OR = 18.182, P = 0.012) were found to be independent genetic markers associated with nonresponse to treatment. Presence of the MNS16A VNTR-243 variant also strongly tended to affect the risk of a less favourable response to therapy and was more frequently present among nonresponders (OR = 5.848, P = 0.059). Genetic variation within the hTERT gene may affect the progression and treatment of lymphoproliferative disorders. © 2015 John Wiley & Sons Ltd.

  1. Lack of Association between a 3'UTR VNTR Polymorphism of Dopamine Transporter Gene (SLC6A3) and ADHD in a Brazilian Sample of Adult Patients

    Science.gov (United States)

    Aperecida da Silva, Maria; Cordeiro, Quirino; Louza, Mario; Vallada, Homero

    2011-01-01

    Objective: To investigate a possible association between a 3'UTR VNTR polymorphism of the dopamine transporter gene (SLC6A3) and ADHD in a Brazilian sample of adult patients. Method: Study Case-control with 102 ADHD adult outpatients ("DSM-IV" criteria) and 479 healthy controls. The primers' sequence used were: 3'UTR-Forward: 5' TGT GGT…

  2. Mycobacterial Interspersed Repetitive-Unit–Variable-Number Tandem-Repeat (MIRU-VNTR) Genotyping of Mycobacterium intracellulare for Strain Comparison with Establishment of a PCR-Based Database

    Science.gov (United States)

    Iakhiaeva, Elena; McNulty, Steven; Brown Elliott, Barbara A.; Falkinham, Joseph O.; Williams, Myra D.; Vasireddy, Ravikiran; Wilson, Rebecca W.; Turenne, Christine

    2013-01-01

    Strain comparison is important to population genetics and to evaluate relapses in patients with Mycobacterium avium complex (MAC) lung disease, but the “gold standard” of pulsed-field gel electrophoresis (PFGE) is time-consuming and complex. We used variable-number tandem repeats (VNTR) for fingerprinting of respiratory isolates of M. intracellulare from patients with underlying bronchiectasis, to establish a nonsequence-based database for population analysis. Different genotypes identified by PFGE underwent species identification using a 16S rRNA gene multiplex PCR. Genotypes of M. intracellulare were confirmed by internal transcribed spacer 1 (ITS1) sequencing and characterized using seven VNTR primers. The pattern of VNTR amplicon sizes and repeat number defined each specific VNTR type. Forty-two VNTR types were identified among 84 genotypes. PFGE revealed most isolates with the same VNTR type to be clonal or exhibit similar grouping of bands. Repetitive sequence-based PCR (rep-PCR) showed minimal pattern diversity between VNTR types compared to PFGE. Fingerprinting of relapse isolates from 31 treated patients using VNTR combined with 16S multiplex PCR unambiguously and reliably distinguished different genotypes from the same patient, with results comparable to those of PFGE. VNTR for strain comparison is easier and faster than PFGE, is as accurate as PFGE, and does not require sequencing. Starting with a collection of 167 M. intracellulare isolates, VNTR distinguished M. intracellulare into 42 clonal groups. Comparison of isolates from different geographic areas, habitats, and clinical settings is now possible. PMID:23175249

  3. Mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) genotyping of mycobacterium intracellulare for strain comparison with establishment of a PCR-based database.

    Science.gov (United States)

    Iakhiaeva, Elena; McNulty, Steven; Brown Elliott, Barbara A; Falkinham, Joseph O; Williams, Myra D; Vasireddy, Ravikiran; Wilson, Rebecca W; Turenne, Christine; Wallace, Richard J

    2013-02-01

    Strain comparison is important to population genetics and to evaluate relapses in patients with Mycobacterium avium complex (MAC) lung disease, but the "gold standard" of pulsed-field gel electrophoresis (PFGE) is time-consuming and complex. We used variable-number tandem repeats (VNTR) for fingerprinting of respiratory isolates of M. intracellulare from patients with underlying bronchiectasis, to establish a nonsequence-based database for population analysis. Different genotypes identified by PFGE underwent species identification using a 16S rRNA gene multiplex PCR. Genotypes of M. intracellulare were confirmed by internal transcribed spacer 1 (ITS1) sequencing and characterized using seven VNTR primers. The pattern of VNTR amplicon sizes and repeat number defined each specific VNTR type. Forty-two VNTR types were identified among 84 genotypes. PFGE revealed most isolates with the same VNTR type to be clonal or exhibit similar grouping of bands. Repetitive sequence-based PCR (rep-PCR) showed minimal pattern diversity between VNTR types compared to PFGE. Fingerprinting of relapse isolates from 31 treated patients using VNTR combined with 16S multiplex PCR unambiguously and reliably distinguished different genotypes from the same patient, with results comparable to those of PFGE. VNTR for strain comparison is easier and faster than PFGE, is as accurate as PFGE, and does not require sequencing. Starting with a collection of 167 M. intracellulare isolates, VNTR distinguished M. intracellulare into 42 clonal groups. Comparison of isolates from different geographic areas, habitats, and clinical settings is now possible.

  4. Obesity genes and insulin resistance.

    Science.gov (United States)

    Belkina, Anna C; Denis, Gerald V

    2010-10-01

    The exploding prevalence of insulin resistance and Type 2 diabetes (T2D) linked to obesity has become an alarming public health concern. Worldwide, approximately 171 million people suffer from obesity-induced diabetes and public health authorities expect this situation to deteriorate rapidly. An interesting clinical population of 'metabolically healthy but obese' (MHO) cases is relatively protected from T2D and its associated cardiovascular risk. The molecular basis for this protection is not well understood but is likely to involve reduced inflammatory responses. The inflammatory cells and pathways that respond to overnutrition are the primary subject matter for this review. The chance discovery of a genetic mutation in the Brd2 gene, which is located in the class II major histocompatibility complex and makes mice enormously fat but protects them from diabetes, offers revolutionary new insights into the cellular mechanisms that link obesity to insulin resistance and T2D. These Brd2-hypomorphic mice have reduced inflammation in fat that is normally associated with insulin resistance, and resemble MHO patients, suggesting novel therapeutic pathways for obese patients at risk for T2D. Deeper understanding of the functional links between genes that control inflammatory responses to diet-induced obesity is crucial to the development of therapies for obese, insulin-resistant patients.

  5. Evolution of the vertebrate insulin receptor substrate (Irs) gene family.

    Science.gov (United States)

    Al-Salam, Ahmad; Irwin, David M

    2017-06-23

    Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.

  6. Meta-analysis of the association of the SLC6A3 3'-UTR VNTR with cognition.

    Science.gov (United States)

    Ettinger, Ulrich; Merten, Natascha; Kambeitz, Joseph

    2016-01-01

    The gene coding for the dopamine transporter (DAT), SLC6A3, contains a 40-base pair variable number of tandem repeats (VNTR) polymorphism (rs28363170) in its 3' untranslated region. This VNTR has been associated with attention deficit hyperactivity disorder (ADHD) and has been investigated in relation to cognition and brain function. Here, we report the results of a comprehensive meta-analysis with meta-regression examining the association of the VNTR with different domains of cognition in healthy adults. We extracted data from 28 independent studies and carried out meta-analyses for associations with working memory (k=10 samples, N=1193 subjects), inhibition (k=8 samples, N=829 subjects), executive functions including inhibition (k=10 samples, N=984 subjects), attention (k=6 samples, N=742 subjects) and declarative long-term memory (k=5 samples, N=251 subjects). None of the investigated dimensions showed significant associations with the VNTR (all p>0.26). Meta-regression including year of publication, gender, age, ethnicity and percentage of 10R-homozygotes similarly did not attain significance. We conclude that there is no evidence that rs28363170 may be a significant predictor of cognitive function in healthy adults. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Evaluated the Up –regulation in Gene ‎Expression of Hepatic Insulin Gene and ‎Hepatic Insulin Receptor Gene in Type 1 ‎Diabetic Rats Treated with Cuscuta chinesis ‎Lam.‎

    Directory of Open Access Journals (Sweden)

    Fadia ‎ H. Al-Sultany

    2018-02-01

    Full Text Available         This research was conducted to study the hypoglycemic activity of C. chinesis Lam on type 1 diabetic disease and investigate the  molecular and histological mechanism of  its action .many parameters was investigated , Fasting blood glucose (FBG, Fasting serum insulin,Hepatic Insulin Gene Expression, pancreas Insulin Gene Expression ,Hepatic Insulin  Receptors Gene expression  and histological sections of pancrease and liver.54 Rattus rattus male rats weighting(180 -200g were divided into 3 groups: A normal control daily administrated with Dw, B Diabetic control daily administrated with Dw  and C  diabetic group daily administrated with 400 mg/Kg body weight of C. chinesis  Lam. methanolic extract, each group consisted of  18 rats and further divided into (3 sub- groups 1 ,2  and 3. According to the period of administration  30, 60 and  90 days respectively. The results showing  the daily administration of 400 mg/Kg body weight of C. chinesis  Lam. methanolic extract for 60 day causing significance  decrease  in FBG and In the other hand each of fasting serum insulin, hepatic Insulin gene expression,pancreas Insulin gene expression and hepatic Insulin receptor gene expression was increased in group C in compare to B group and return all studied parameters involving pancrease and liver texture to the normal state ,which were statically morphologically  not appeared any significant difference from A group .this study concluded that the daily administration type 1 diabetic rats with 400 mg/Kg body weight of C. chinesis  Lam. extract for 60 day was return  fasting serum insulin and FBG to normal value by  upregulated  the gene expression of hepatic INS Gene ,INSR gene , pancreas INS Gene ,regenerate pancreatic beta- cell and returnthe texture of both liver and pancrease to the normal state

  8. Efficient Differentiation of Mycobacterium tuberculosis Strains of the W-Beijing Family from Russia using Highly Polymorphic VNTR Loci

    International Nuclear Information System (INIS)

    Surikova, O. V.; Voitech, D. S.; Kuzmicheva, G.; Tatkov, S. I.; Mokrousov, I. V.; Narvskaya, O. V.; Rot, M. A.; Soolingen, D. van; Filipenko, M. L.

    2005-01-01

    The W-Beijing family is a widespread Mycobacterium tuberculosis clonal lineage that frequently causes epidemic outbreaks. This family is genetically homogeneous and conserved, so ETR-VNTR (exact tandem repeat-variable number of tandem repeats) typing is insufficient for strain differentiation, due to a common ETR-A to E profile (42435). This leads to the false clustering in molecular epidemiological studies, especially in the regions of predominance of the W-Beijing family. In this study, we searched for VNTR loci with a high evolutionary rate of polymorphism in the W-Beijing genome. Here we further evaluated VNTR typing on a set of 99 Mycobacterium tuberculosis clinical isolates and reference strains. These isolates were characterized and classified into several genotype families based on three ETR loci (A, C, E) and eight additional loci [previously described as QUB (Queen's University Belfast) or MIRU (Mycobacterial Interspersed Repetitive Units) or Mtubs]. Ninety-nine strains were divided into 74 VNTR-types, 51 isolates of the W-Beijing family identified by IS6110 RFLP-typing (the restriction fragment length polymorphism-typing) and/or spoligotyping were subdivided into 30 VNTR-types. HGDI (the Hunter-Gaston discriminatory index) for all studied loci was close to that of IS6110 RFLP typing, a 'gold standard' method for subtyping M. tuberculosis complex strains. The QUB 26 and QUB 18 loci located in the PPE genes were highly polymorphic and more discriminative than other loci (HGDI is 0.8). Statistically significant increase of tandem repeats number in loci ETR-A, -E, QUB 26, QUB 18, QUB 11B, Mtub21 was revealed in the W-Beijing group compared to genetically divergent non-W-Beijing strains. Thirty-six isolates were subjected to IS6110 RFLP typing. The congruence between results of the IS6110 RFLP typing and 11-loci VNTR typing was estimated on 23 isolates of the W-Beijing family. These isolates were subdivided into 9 IS6110-RFLP types and 13 VNTR types. The poor

  9. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    Science.gov (United States)

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  10. [Usefulness of the variable numbers of tandem repeats (VNTR) analysis for complex infections of Mycobacterium avium and Mycobacterium intracellulare].

    Science.gov (United States)

    Tsunematsu, Noriko; Goto, Mieko; Saiki, Yumiko; Baba, Michiko; Udagawa, Tadashi; Kazumi, Yuko

    2008-09-01

    The bacilli which were isolated from a patient suspected of the mixed infections with Mycobacterium avium and Mycobacterium intracellulare, were analyzed. The genotypes of M. avium in the sedimented fractions of treated sputum and in some colonies isolated from Ogawa medium were compared by the Variable Numbers of Tandem Repeats (VNTR). A woman, aged 57. Mycobacterial species isolated from some colonies by culture in 2004 and 2006 and from the treated sputum in 2006, were determined by DNA sequencing analysis of the 16S rRNA gene. Also, by using VNTR, the genotype of mycobacteria was analyzed. [Results] (1) The colony isolated from Ogawa medium in 2004 was monoclonal M. avium. (2) By VNTR analyses of specimens in 2006, multiple acid-fast bacteria were found in the sputum sediment and in isolated bacteria from Ogawa medium. (3) By analyses of 16S rRNA DNA sequence, M. avium and M. intracellulare were found in the colonies isolated from the sputum sediment and the Ogawa medium in 2006. (4) The same VNTR patterns were obtained in M. avium in 2004 and 2006 when single colony was analyzed. (5) From the showerhead and culvert of the bathroom in the patient's house, M. avium was not detected. By VNTR analyses, it was considered that the mixed infections of M. avium and M. intracellulare had been generated during treatment in this case. Therefore, in the case of suspected complex infection, VNTR analysis would be a useful genotyping method in M. avium complex infection.

  11. Identification of Variable-Number Tandem-Repeat (VNTR) Sequences in Acinetobacter pittii and Development of an Optimized Multiple-Locus VNTR Analysis Typing Scheme.

    Science.gov (United States)

    Hu, Yuan; Li, Bo Qing; Jin, Da Zhi; He, Li Hua; Tao, Xiao Xia; Zhang, Jian Zhong

    2015-12-01

    To develop a multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) assay for Acinetobacter pittii typing. Polymorphic VNTRs were searched by Tandem Repeats Finder. The distribution and polymorphism of each VNTR locus were analyzed in all the A. pittii genomes deposited in the NCBI genome database by BLAST and were evaluated with a collection of 20 well-characterized clinical A. pittii strains and one reference strain. The MLVA assay was compared with pulsed-field gel electrophoresis (PFGE) for discriminating A. pittii isolates. Ten VNTR loci were identified upon bioinformatic screening of A. pittii genomes, but only five of them showed full amplifiability and good polymorphism. Therefore, an MLVA assay composed of five VNTR loci was developed. The typeability, reproducibility, stability, discriminatory power, and epidemiological concordance were excellent. Compared with PFGE, the new optimized MLVA typing scheme provided the same and even greater discrimination. Compared with PFGE, MLVA typing is a faster and more standardized alternative for studying the genetic relatedness of A. pittii isolates in disease surveillance and outbreak investigation. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  12. Comparison of a Variable-Number Tandem-Repeat (VNTR) Method for Typing Mycobacterium avium with Mycobacterial Interspersed Repetitive-Unit-VNTR and IS1245 Restriction Fragment Length Polymorphism Typing▿ †

    OpenAIRE

    Inagaki, Takayuki; Nishimori, Kei; Yagi, Tetsuya; Ichikawa, Kazuya; Moriyama, Makoto; Nakagawa, Taku; Shibayama, Takami; Uchiya, Kei-ichi; Nikai, Toshiaki; Ogawa, Kenji

    2009-01-01

    Mycobacterium avium complex (MAC) infections are increasing annually in various countries, including Japan, but the route of transmission and pathophysiology of the infection remain unclear. Currently, a variable-number tandem-repeat (VNTR) typing method using the Mycobacterium avium tandem repeat (MATR) loci (MATR-VNTR) is employed in Japan for epidemiological studies using clinical isolates of M. avium. In this study, the usefulness of this MATR-VNTR typing method was compared with that of ...

  13. Single molecule real time sequencing in ADTKD-MUC1 allows complete assembly of the VNTR and exact positioning of causative mutations

    NARCIS (Netherlands)

    Wenzel, Andrea; Altmueller, Janine; Ekici, Arif B.; Popp, Bernt; Stueber, Kurt; Thiele, Holger; Pannes, Alois; Staubach, Simon; Salido, Eduardo; Nuernberg, Peter; Reinhardt, Richard; Reis, Andre; Rump, Patrick; Hanisch, Franz-Georg; Wolf, Matthias T. F.; Wiesener, Michael; Huettel, Bruno; Beck, Bodo B.

    2018-01-01

    Recently, the Mucin-1 (MUC1) gene has been identified as a causal gene of autosomal dominant tubulointerstitial kidney disease (ADTKD). Most causative mutations are buried within a GC-rich 60 basepair variable number of tandem repeat (VNTR), which escapes identification by massive parallel

  14. Effect of the 3'APOB-VNTR polymorphism on the lipid profiles in the Guangxi Hei Yi Zhuang and Han populations

    Science.gov (United States)

    Ruixing, Yin; Guangqin, Chen; Yong, Wang; Weixiong, Lin; Dezhai, Yang; Shangling, Pan

    2007-01-01

    Background Apolipoprotein (Apo) B is the major component of low-density lipoprotein (LDL), very low-density lipoprotein (VLDL) and chylomicrons. Many genetic polymorphisms of the Apo B have been described, associated with variation of lipid levels. However, very few studies have evaluated the effect of the variable number of tandem repeats region 3' of the Apo B gene (3'APOB-VNTR) polymorphism on the lipid profiles in the special minority subgroups in China. Thus, the present study was undertaken to study the effect of the 3'APOB-VNTR polymorphism on the serum lipid levels in the Guangxi Hei Yi Zhuang and Han populations. Methods A total of 548 people of Hei Yi Zhuang were surveyed by a stratified randomized cluster sampling. The epidemiological survey was performed using internationally standardized methods. Serum lipid and apolipoprotein levels were measured. The 3'APOB-VNTR alleles were determined by polymerase chain reaction (PCR) followed by electrophoresis in polyacrylamide gels, and classified according to the number of repeats of a 15-bp hypervariable elements (HVE). The sequence of the most common allele was determined using the PCR and direct sequencing. The possible association between alleles of the 3'APOB-VNTR and lipid variables was examined. The results were compared with those in 496 people of Han who also live in that district. Results Nineteen alleles ranging from 24 to 64 repeats were detected in both Hei Yi Zhuang and Han. HVE56 and HVE58 were not be detected in Hei Yi Zhuang whereas HVE48 and HVE62 were totally absent in Han. The frequencies of HVE26, HVE30, HVE46, heterozygote, and short alleles (VNTR-LS (carrier of one long and one short alleles) than in VNTR-LL (the individual carrying two long alleles) genotypes. The levels of TC, triglycerides (TG), LDL cholesterol, and Apo B in Hei Yi Zhuang were higher in both HVE34 and HVE36 alleles than in HVE32 allele. The levels of TC, TG, HDL-C and Apo B in Hei Yi Zhuang were also higher in

  15. Hardy–Weinberg equilibrium analysis of the 48 bp VNTR in the III exon of the DRD4 gene in a sample of parents of ADHD cases

    Directory of Open Access Journals (Sweden)

    Trejo S

    2015-06-01

    Full Text Available Salvador Trejo, José J Toscano-Flores, Esmeralda Matute, María de Lourdes Ramírez-Dueñas Laboratorio de Neuropsicología y Neurolingüística, Instituto de Neurociencias CUCBA, Guadalajara, Jalisco, Mexico Abstract: The aim of this study was to obtain the genotype and gene frequency from parents of children with attention-deficit/hyperactivity disorder (ADHD and then assess the Hardy–Weinberg equilibrium of genotype frequency of the variable number tandem repeat (VNTR III exon of the dopamine receptor D4 (DRD4 gene. The genotypes of the III exon of 48 bp VNTR repeats of the DRD4 gene were determined by polymerase chain reaction in a sample of 30 parents of ADHD cases. In the 60 chromosomes analyzed, the following frequencies of DRD4 gene polymorphisms were observed: six chromosomes (c with two repeat alleles (r (10%; 1c with 3r (1.5%; 36c with 4r (60%; 1c with 5r (1.5%; and 16c with 7r (27%. The genotypic distribution of the 30 parents was two parents (p with 2r/2r (6.67%; 1p with 2r/4r (3.33%; 1p with 2r/5r (3.33%; 1p with 3r/4r (3.33%; 15p with 4r/4r (50%; 4p with 4r/7r (13.33; and 6p with 7r/7r (20%. A Hardy–Weinberg disequilibrium (χ2=13.03, P<0.01 was found due to an over-representation of the 7r/7r genotype. These results suggest that the 7r polymorphism of the DRD4 gene is associated with the ADHD condition in a Mexican population. Keywords: ADHD, parents, DRD4, HWE

  16. Different Mycobacterium avium subsp. paratuberculosis MIRU-VNTR patterns coexist within cattle herds.

    Science.gov (United States)

    van Hulzen, K J E; Heuven, H C M; Nielen, M; Hoeboer, J; Santema, W J; Koets, A P

    2011-03-24

    A better understanding of the biodiversity of Mycobacterium avium subsp. paratuberculosis (MAP) offers more insight in the epidemiology of paratuberculosis and therefore may contribute to the control of the disease. The aim of this study was to investigate the genetic diversity in bovine MAP isolates using PCR-based methods detecting genetic elements called Variable-Number Tandem Repeats (VNTRs) and Mycobacterial Interspersed Repetitive Units (MIRUs) to determine if multiple MAP strains can coexist on farms with endemic MAP infection. For 52 temporal isolates originating from infected cattle from 32 commercial dairy herds with known trading history, MIRU-VNTR analysis was applied at 10 loci of which six showed variation. Within the group of 52 isolates, 17 different MIRU-VNTR patterns were detected. One MIRU-VNTR pattern was found in 29 isolates, one pattern in four isolates, one pattern in three isolates, two times one MIRU-VNTR pattern was found occurring in two isolates, and 12 patterns were found only once. Eleven herds provided multiple isolates. In five herds a single MIRU-VNTR pattern was detected among multiple isolates whereas in six herds more than one pattern was found. This study confirms that between dairy farms as well as within dairy farms, infected animals shed MAP with different MIRU-VNTR patterns. Analysis of trading history and age within herds indicated that cows born within the same birth cohort can be infected with MAP strains exhibiting variations in the number of MIRU-VNTR repeats. These data indicate that such multiple genotypes of MAP can coexist within one herd. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. VNTR analysis reveals unexpected genetic diversity within Mycoplasma agalactiae, the main causative agent of contagious agalactia

    Directory of Open Access Journals (Sweden)

    Ayling Roger D

    2008-11-01

    Full Text Available Abstract Background Mycoplasma agalactiae is the main cause of contagious agalactia, a serious disease of sheep and goats, which has major clinical and economic impacts. Previous studies of M. agalactiae have shown it to be unusually homogeneous and there are currently no available epidemiological techniques which enable a high degree of strain differentiation. Results We have developed variable number tandem repeat (VNTR analysis using the sequenced genome of the M. agalactiae type strain PG2. The PG2 genome was found to be replete with tandem repeat sequences and 4 were chosen for further analysis. VNTR 5 was located within the hypothetical protein MAG6170 a predicted lipoprotein. VNTR 14 was intergenic between the hypothetical protein MAG3350 and the hypothetical protein MAG3340. VNTR 17 was intergenic between the hypothetical protein MAG4060 and the hypothetical protein MAG4070 and VNTR 19 spanned the 5' end of the pseudogene for a lipoprotein MAG4310 and the 3' end of the hypothetical lipoprotein MAG4320. We have investigated the genetic diversity of 88 M. agalactiae isolates of wide geographic origin using VNTR analysis and compared it with pulsed field gel electrophoresis (PFGE and random amplified polymorphic DNA (RAPD analysis. Simpson's index of diversity was calculated to be 0.324 for PFGE and 0.574 for VNTR analysis. VNTR analysis revealed unexpected diversity within M. agalactiae with 9 different VNTR types discovered. Some correlation was found between geographical origin and the VNTR type of the isolates. Conclusion VNTR analysis represents a useful, rapid first-line test for use in molecular epidemiological analysis of M. agalactiae for outbreak tracing and control.

  18. Association of the MAOA promoter uVNTR polymorphism with suicide attempts in patients with major depressive disorder

    Directory of Open Access Journals (Sweden)

    Tzeng Dong-Sheng

    2011-05-01

    Full Text Available Abstract Background The MAOA uVNTR polymorphism has been documented to affect the MAOA gene at the transcriptional level and is associated with aggressive impulsive behaviors, depression associated with suicide (depressed suicide, and major depressive disorder (MDD. We hypothesized that the uVNTR polymorphism confers vulnerability to MDD, suicide or both. The aim of this study was to explore the association between the MAOA uVNTR and depressed suicide, using multiple controls. Methods Four different groups were included: 432 community controls, 385 patients with MDD who had not attempted suicide, 96 community subjects without mental disorders who had attempted suicide, and 109 patients with MDD who had attempted suicide. The MAOA uVNTR polymorphism was genotyped by a PCR technique. The symptom profiles and personal characteristics in each group were also compared. Results The MAOA 4R allele was more frequent in males with MDD than in male community controls (χ2 = 4.182, p = 0.041. Logistic regression analysis showed that, among the depressed subjects, those younger in age, more neurotic or who smoked had an increased risk of suicide (β = -0.04, p = 0.002; β = 0.15, p = 0.017; β = 0.79, p = 0.031, respectively. Moreover, among those who had attempted suicide, those younger in age, with more paternal overprotection, and more somatic symptoms were more likely to be in the MDD group than in the community group (β = -0.11, p Conclusion The MAOA 4R allele is associated with enhanced vulnerability to suicide in depressed males, but not in community subjects. The MAOA 4R allele affects vulnerability to suicide through the mediating factor of depressive symptoms. Further large-scale studies are needed to verify the psychopathology of the relationships among MAOA uVNTR polymorphism, symptom profiles, and suicidal behavior.

  19. Optimal Combination of VNTR Typing for Discrimination of Isolated Mycobacterium tuberculosis in Korea

    OpenAIRE

    Lee, Jihye; Kang, Heeyoon; Kim, Sarang; Yoo, Heekyung; Kim, Hee Jin; Park, Young Kil

    2014-01-01

    Background Variable-number tandem repeat (VNTR) typing is a promising method to discriminate the Mycobacterium tuberculosis isolates in molecular epidemiology. The purpose of this study is to determine the optimal VNTR combinations for discriminating isolated M. tuberculosis strains in Korea. Methods A total of 317 clinical isolates collected throughout Korea were genotyped by using the IS6110 restriction fragment length polymorphism (RFLP), and then analysed for the number of VNTR copies fro...

  20. [Effect of transcription activity regulated by VNTR-ZNF and -14C/T variants in the promoter region of ATP-binding cassette transporter 1 in HepG2 cells].

    Science.gov (United States)

    Gao, Shenxia; Zhao, Lili; Zhang, Ying; Mao, Yongmin

    2016-10-01

    To explore the effect of VNTR-ZNF and -14C/T variants of the promoter region of the ABCA1 gene on the transcription activity of genes in vitro. The recombinants were constructed by ligating DNA fragment containing VNTR-ZNF ACCCC inserted/deleted allele with or without -14C/T substitution fragments with a PGL2-basic vector containing luciferase reporter gene. The recombinants were then transfected into HepG2 cells using the cationic lipid method. After 48 h, transfected cells were collected and used to detect the luciferase activity. Luciferase activity of PGL2-ZNF-ACCCCDel was greater than that of PGL2-ZNF-ACCCCIns. Luciferase activity of PGL2-ZNFDel-14C was greater than that of PGL2-ZNFDel-14T, PGL2-ZNFIns-14C, PGL2-ZNFIns-14T. Compared with the insertion type, the ACCCC-deleted type of VNTR-ZNF can significantly enhance the transcription activity of ABCA1. And co-transfection of -14 C allele can further enhance this activity.

  1. Genetic Diversity of the Mycobacterium tuberculosis Beijing Family Based on SNP and VNTR Typing Profiles in Asian Countries

    Science.gov (United States)

    Chen, Yih-Yuan; Chang, Jia-Ru; Huang, Wei-Feng; Kuo, Shu-Chen; Su, Ih-Jen; Sun, Jun-Ren; Chiueh, Tzong-Shi; Huang, Tsi-Shu; Chen, Yao-Shen; Dou, Horng-Yunn

    2012-01-01

    The Mycobacterium tuberculosis (MTB) Beijing strain is highly virulent, drug resistant, and endemic over Asia. To explore the genetic diversity of this family in several different regions of eastern Asia, 338 Beijing strains collected in Taiwan (Republic of China) were analyzed by mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing and compared with published MIRU-VNTR profiles and by the Hunter-Gaston diversity index (HGDI) of Beijing strains from Japan and South Korea. The results revealed that VNTR2163b (HGDI>0.6) and five other loci (VNTR424, VNTR4052, VNTR1955, VNTR4156 and VNTR 2996; HGDI>0.3) could be used to discriminate the Beijing strains in a given geographic region. Analysis based on the number of VNTR repeats showed three VNTRs (VNTR424, 3192, and 1955) to be phylogenetically informative loci. In addition, to determine the geographic variation of sequence types in MTB populations, we also compared sequence type (ST) data of our strains with published ST profiles of Beijing strains from Japan and Thailand. ST10, ST22, and ST19 were found to be prevalent in Taiwan (82%) and Thailand (92%). Furthermore, classification of Beijing sublineages as ancient or modern in Taiwan was found to depend on the repeat number of VNTR424. Finally, phylogenetic relationships of MTB isolates in Taiwan, South Korea, and Japan were revealed by a minimum spanning tree based on MIRU-VNTR genotyping. In this topology, the MIRU-VNTR genotypes of the respective clusters were tightly correlated to other genotypic characters. These results are consistent with the hypothesis that clonal evolution of these MTB lineages has occurred. PMID:22808061

  2. Genetic diversity of the Mycobacterium tuberculosis Beijing family based on SNP and VNTR typing profiles in Asian countries.

    Directory of Open Access Journals (Sweden)

    Yih-Yuan Chen

    Full Text Available The Mycobacterium tuberculosis (MTB Beijing strain is highly virulent, drug resistant, and endemic over Asia. To explore the genetic diversity of this family in several different regions of eastern Asia, 338 Beijing strains collected in Taiwan (Republic of China were analyzed by mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR typing and compared with published MIRU-VNTR profiles and by the Hunter-Gaston diversity index (HGDI of Beijing strains from Japan and South Korea. The results revealed that VNTR2163b (HGDI>0.6 and five other loci (VNTR424, VNTR4052, VNTR1955, VNTR4156 and VNTR 2996; HGDI>0.3 could be used to discriminate the Beijing strains in a given geographic region. Analysis based on the number of VNTR repeats showed three VNTRs (VNTR424, 3192, and 1955 to be phylogenetically informative loci. In addition, to determine the geographic variation of sequence types in MTB populations, we also compared sequence type (ST data of our strains with published ST profiles of Beijing strains from Japan and Thailand. ST10, ST22, and ST19 were found to be prevalent in Taiwan (82% and Thailand (92%. Furthermore, classification of Beijing sublineages as ancient or modern in Taiwan was found to depend on the repeat number of VNTR424. Finally, phylogenetic relationships of MTB isolates in Taiwan, South Korea, and Japan were revealed by a minimum spanning tree based on MIRU-VNTR genotyping. In this topology, the MIRU-VNTR genotypes of the respective clusters were tightly correlated to other genotypic characters. These results are consistent with the hypothesis that clonal evolution of these MTB lineages has occurred.

  3. Evaluation of Genetic Pattern of Non-Tuberculosis Mycobacterium Using VNTR Method

    Directory of Open Access Journals (Sweden)

    Noorozi J

    2011-06-01

    Full Text Available Background and Objectives: Epidemiological studies of Non-tuberculosis Mycobacterium is important because of the drug resistance pattern and worldwide dissemination of these organisms. One of genetic fingerprinting methods for epidemiological studies is VNTR (Variable Number Tandem Repeat. In this study genetic pattern of atypical Mycobacterium was evaluated by VNTR method for epidemiologic studies. Methods: 48 pulmonary and non pulmonary specimens separated from patients with the symptoms of pulmonary tuberculosis (PTB and identified as Non-tuberculosis Mycobacteriumby phenotypic and PCR-RFLP methods were selected for this study. Clinical samples and their standard strains were evaluated according to VNTR pattern using the 7 genetic loci including ETR-B. ETR-F. ETR-C. MPTR-A. ETR-A. ETR-E. ETR-D.Results: The results of VNTR method showed that none of the 7 loci had any polymorphism in the standard strains of atypical mycobacterium. Some of these variable number tandem repeat in 42 clinical samples of non-tuberculosis Mycobacterium were polymorphic while the PCR product (for any loci was not found in the remaining 6 specimens. Conclusion: Although the used genetic loci of this study were suitable for epidemiological studies of Mycobacterium tuberculosis, these loci were not able to determine the diversity of genetics of non-tuberculosis Mycobacterium Therefore, it seems necessary that other loci be studied using VNTR method.

  4. Evaluation of spoligotyping, SNPs and customised MIRU-VNTR combination for genotyping Mycobacterium tuberculosis clinical isolates in Madagascar.

    Science.gov (United States)

    Rasoahanitralisoa, Rondroarivelo; Rakotosamimanana, Niaina; Stucki, David; Sola, Christophe; Gagneux, Sebastien; Rasolofo Razanamparany, Voahangy

    2017-01-01

    Combining different molecular typing methods for Mycobacterium tuberculosis complex (MTBC) can be a powerful tool for molecular epidemiology-based investigation of TB. However, the current standard method that provides high discriminatory power for such a combination, mycobacterial interspersed repetitive units-variable numbers of tandem repeats typing (MIRU-VNTR), is laborious, time-consuming and often too costly for many resource-limited laboratories. We aimed to evaluate a reduced set of loci for MIRU-VNTR typing in combination with spoligotyping and SNP-typing for routine molecular epidemiology of TB. Spoligotyping and SNP-typing, in combination with the 15 loci MIRU-VNTR typing, were first used to type clinical MTBC isolates (n = 158) from Madagascar. A step by step reduction of MIRU-VNTR loci number was then performed according to the Hunter and Gaston Discriminatory Index (HGDI) and to the Principal component analysis (PCA) correlation with the spoligotype profiles to evaluate the discrimination power inside the generated spoligotype clusters. The 15 MIRU-VNTR was used as reference and SNP-typing was used to determine the main MTBC lineages. Of the 158 clinical isolates studied, the SNP-typing classified 23 into Lineage 1 (14.6%), 31 into Lineage 2 (19.6%), 23 into Lineage 3 (14.6%) and 81 into Lineage 4 strains (51.3%). 37 different spoligotypes profiles were obtained, 15 of which were unique and 20 in clusters. 15-loci MIRU-VNTR typing revealed 144 different genotypes: 132 isolates had a unique MIRU-VNTR profile and 27 isolates were grouped into 12 clusters. After a stepwise reduction of the MIRU-VNTR loci number within each main spoligotype families, three different sets composed of 5 customised MIRU-VNTR loci had a similar discrimination level to the reference 15 loci MIRU-VNTR in lineage 1, lineage 2 and lineage 3. For lineage 4, a set of 4 and 3 MIRU-VNTR loci were proposed to subtype the Harleem and LAM spoligotype families, respectively. For the T

  5. Effect of adrenomedullin gene delivery on insulin resistance in type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Hoda Y. Henein

    2011-01-01

    Full Text Available Type 2 diabetes mellitus is one of the common metabolic disorders that ultimately afflicts large number of individuals. Adrenomedullin (AM is a potent vasodilator peptide; previous studies reported development of insulin resistance in aged AM deficient mice. In this study, we employed a gene delivery approach to explore its potential role in insulin resistance. Four groups were included: control, diabetic, non-diabetic injected with the AM gene and diabetic injected with the AM gene. One week following gene delivery, serum glucose, insulin, triglycerides, leptin, adiponectin and corticosterone were measured as well as the insulin resistance index (HOMA-IR. Soleus muscle glucose uptake and RT-PCR of both AM and glucose transporter-4 (GLUT 4 gene expressions were assessed. A single tail vein injection of adrenomedullin gene in type 2 diabetic rats improved skeletal muscle insulin responsiveness with significant improvement of soleus muscle glucose uptake, HOMA-IR, serum glucose, insulin and triglycerides and significant increase in muscle GLUT 4 gene expression (P < 0.05 compared with the non-injected diabetic rats. The beneficial effects of AM gene delivery were accompanied by a significant increase in the serum level of adiponectin (2.95 ± 0.09 versus 2.33 ± 0.17 μg/ml in the non-injected diabetic group as well as a significant decrease in leptin and corticosterone levels (7.51 ± 0.51 and 262.88 ± 10.34 versus 10.63 ± 1.4 and 275.86 ± 11.19 ng/ml respectively in the non-injected diabetic group. The conclusion of the study is that AM gene delivery can improve insulin resistance and may have significant therapeutic applications in type 2 diabetes mellitus.

  6. [Evaluation of variable number of tandem repeats (VNTR) isolates of Mycobacterium bovis in Algeria].

    Science.gov (United States)

    Sahraoui, Naima; Muller, Borna; Djamel, Yala; Fadéla, Boulahbal; Rachid, Ouzrout; Jakob, Zinsstag; Djamel, Guetarni

    2010-01-01

    The discriminatory potency of variable number of tandem repeats (VNTR), based on 7 loci (MIRU 26, 27 and 5 ETRs A, B, C, D, E) was assayed on Mycobacterium bovis strains obtained from samples due to tuberculosis in two slaughterhouses in Algeria. The technique of MIRU-VNTR has been evaluated on 88 strains of M. bovis and one strain of M. caprea and shows 41 different profiles. Results showed that the VNTR were highly discriminatory with an allelic diversity of 0.930 when four loci (ETR A, B, C and MIRU 27) were highly discriminatory (h>0.25) and three loci (ETR D and E MIRU 26) moderately discriminatory (0.11VNTR loci were highly discriminatory be adequate for the first proper differentiation of strains of M. bovis in Algeria. The VNTR technique has proved a valuable tool for further development and application of epidemiological research for the of tuberculosis transmission in Algeria.

  7. Immature transformed rat islet beta-cells differentially express C-peptides derived from the genes coding for insulin I and II as well as a transfected human insulin gene

    DEFF Research Database (Denmark)

    Blume, N; Petersen, J S; Andersen, L C

    1992-01-01

    is induced in the transformed heterogeneous rat islet cell clone, NHI-6F, by transient in vivo passage. During this process a transfected human insulin gene is coactivated with the endogenous nonallelic rat insulin I and II genes. Newly established cultures from NHI-6F insulinomas having a high frequency...

  8. Comparison between RFLP and MIRU-VNTR genotyping of Mycobacterium tuberculosis strains isolated in Stockholm 2009 to 2011.

    Science.gov (United States)

    Jonsson, Jerker; Hoffner, Sven; Berggren, Ingela; Bruchfeld, Judith; Ghebremichael, Solomon; Pennhag, Alexandra; Groenheit, Ramona

    2014-01-01

    Our aim was to analyze the difference between methods for genotyping of Mycobacterium tuberculosis complex isolates. We collected genotyping results from Restriction Fragment Length Polymorphism (RFLP) and Mycobacterial Interspersed Repetitive Units-Variable Numbers of Tandem Repeat (MIRU-VNTR) in a geographically limited area (Stockholm) during a period of three years. The number and proportion of isolates belonging to clusters was reduced by 45 and 35% respectively when combining the two methods compared with using RFLP or MIRU-VNTR only. The mean size of the clusters was smaller when combining methods and smaller with RFLP compared to MIRU-VNTR. In clusters with confirmed epidemiological links RFLP coincided slightly better than MIRU-VNTR but where there was a difference, the variation in MIRU-VNTR pattern was only in a single locus. In isolates with few IS6110 bands in RFLP, MIRU-VNTR differentiated the isolates more, dividing the RFLP clusters. Since MIRU-VNTR is faster and less labour-intensive it is the method of choice for routine genotyping. In most cases it will be sufficient for epidemiological purposes but true clustering might still be considered if there are epidemiological links and the MIRU-VNTR results differ in only one of its 24 loci.

  9. Ancestral genomic duplication of the insulin gene in tilapia: An analysis of possible implications for clinical islet xenotransplantation using donor islets from transgenic tilapia expressing a humanized insulin gene.

    Science.gov (United States)

    Hrytsenko, Olga; Pohajdak, Bill; Wright, James R

    2016-07-03

    Tilapia, a teleost fish, have multiple large anatomically discrete islets which are easy to harvest, and when transplanted into diabetic murine recipients, provide normoglycemia and mammalian-like glucose tolerance profiles. Tilapia insulin differs structurally from human insulin which could preclude their use as islet donors for xenotransplantation. Therefore, we produced transgenic tilapia with islets expressing a humanized insulin gene. It is now known that fish genomes may possess an ancestral duplication and so tilapia may have a second insulin gene. Therefore, we cloned, sequenced, and characterized the tilapia insulin 2 transcript and found that its expression is negligible in islets, is not islet-specific, and would not likely need to be silenced in our transgenic fish.

  10. Period3 VNTR polymorphism influences the time-of-day pain onset of acute myocardial infarction with ST elevation.

    Science.gov (United States)

    Lipkova, Jolana; Splichal, Zbynek; Bienertova-Vasku, Julie Anna; Jurajda, Michal; Parenica, Jiri; Vasku, Anna; Goldbergova, Monika Pavkova

    2014-10-01

    It is well established that the incidence and infarct size in acute myocardial infarction (AMI) is subject to circadian variations. At the molecular level, circadian clocks in distinct cells, including cardiomyocytes, generate 24-h cycles of biochemical processes. Possible imbalance or impairment in the cell clock mechanism may alter the cardiac metabolism and function and increase the susceptibility of cardiovascular diseases. One of the key components of the human clock system PERIOD3 (PER3) has been recently demonstrated to affect circadian expression of various genes in different tissues, including the heart. The variable number tandem repeat (VNTR) polymorphism (rs57875989) in gene Period3 (Per3) is related to multiple phenotypic parameters, including diurnal preference, sleep homeostasis, infection and cancer. The aim of our study was to investigate the effect of this polymorphism in AMI with ST elevation (STEMI). The study subjects (314 patients of Caucasian origin with STEMI, and 332 healthy controls) were genotyped for Per3 VNTR polymorphism using an allele-specific polymerase chain reaction. A gender difference in circadian rhythmicity of pain onset was observed with significant circadian pattern in men. Furthermore, the Per3(5/5) variant carriers were associated with higher levels of interleukin-6, B-type natriuretic peptide and lower vitamin A levels. By using cosinor analysis we observed different circadian distribution patterns of AMI onset at the level of genotype and allelic frequencies. Genotypes with at least one 4-repeat allele (Per3(4/5) and Per3(4/4)) (N = 264) showed remarkable circadian activity in comparison with Per3(5/5) (N = 50), especially in men. No significant differences in genotype and/or allele frequencies of Per3 VNTR polymorphism were observed when comparing STEMI cases and controls. Our results indicate that the Per3 VNTR may contribute to modulation of cardiac functions and interindividual differences in development and

  11. Association of the MAOA promoter uVNTR polymorphism with suicide attempts in patients with major depressive disorder

    Science.gov (United States)

    2011-01-01

    Background The MAOA uVNTR polymorphism has been documented to affect the MAOA gene at the transcriptional level and is associated with aggressive impulsive behaviors, depression associated with suicide (depressed suicide), and major depressive disorder (MDD). We hypothesized that the uVNTR polymorphism confers vulnerability to MDD, suicide or both. The aim of this study was to explore the association between the MAOA uVNTR and depressed suicide, using multiple controls. Methods Four different groups were included: 432 community controls, 385 patients with MDD who had not attempted suicide, 96 community subjects without mental disorders who had attempted suicide, and 109 patients with MDD who had attempted suicide. The MAOA uVNTR polymorphism was genotyped by a PCR technique. The symptom profiles and personal characteristics in each group were also compared. Results The MAOA 4R allele was more frequent in males with MDD than in male community controls (χ2 = 4.182, p = 0.041). Logistic regression analysis showed that, among the depressed subjects, those younger in age, more neurotic or who smoked had an increased risk of suicide (β = -0.04, p = 0.002; β = 0.15, p = 0.017; β = 0.79, p = 0.031, respectively). Moreover, among those who had attempted suicide, those younger in age, with more paternal overprotection, and more somatic symptoms were more likely to be in the MDD group than in the community group (β = -0.11, p depressed suicide were associated with severity of depression, personality traits, age, marital status, and inversely associated with anxiety symptoms. However, depression did not affect suicidal behavior in the community group. Conclusion The MAOA 4R allele is associated with enhanced vulnerability to suicide in depressed males, but not in community subjects. The MAOA 4R allele affects vulnerability to suicide through the mediating factor of depressive symptoms. Further large-scale studies are needed to verify the psychopathology of the

  12. Molecular diversity assessed by VNTR and IS1296 typing of historical Mycoplasma mycoides subsp. mycoides SC strains.

    Science.gov (United States)

    Varela, Filipa; Inácio, João; Botelho, Ana

    2010-12-15

    The last case of Contagious Bovine Pleuropneumonia (CBPP), caused by Mycoplasma mycoides subsp. mycoides SC (MmmSC), in Europe was reported in Portugal in 1999. However, in view of its insidious nature, it is still possible that CBPP could re-emerge. Despite differences in animal host and geographical origin, most of the European MmmSC field isolates were traditionally considered to be very homogeneous. In the present study we performed a retrospective variable-number tandem repeat (VNTR) and IS1296 genotyping analysis of 65 MmmSC field isolates associated to the last CBPP outbreaks that occurred in Portugal in order to elucidate their intra-specific genetic variability. A 8.8 kb region and two VNTR loci (VNTR4 and VNTR5) were analyzed for polymorphisms by PCR amplification. All but one strain presented the same IS1296 profile, in contrast with the VNTR genotyping that confirmed some diversity of Portuguese strains showing VNTR4, the most discriminatory one, four different patterns. VNTR4 type "9" (numbering according to the estimated number of repeats) was the most predominant one mainly in the Entre Douro-Minho region. All isolates from one geographic region (Beira Litoral) presented VNTR4 type "8" suggesting the existence of a region-specific VNTR. These facts raise the hypothesis that at least two CBPP re-emergence events could have occurred in Portugal since 1983 after 30 years of silence. This aspect represents a major concern and is a major reason for the maintenance of intensive research on this disease. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Investigation of the role of interleukin-1 receptor antagonist VNTR variant on the Behçet’s disease

    Science.gov (United States)

    Dursun, Gül; Demir, Helin Deniz; Karakuş, Nevin; Demir, Osman; Yiğit, Serbülent

    2018-01-01

    Objective Behçet’s disease (BD), a chronic multisystem inflammatory disorder, is mainly characterized by relapsing periods of a wide range of clinical symptoms. Several cytokine genes may play important roles in the pathogenesis of BD. Therefore, interleukin-1 receptor antagonist (IL-1Ra) gene 86bp variable number tandem repeat (VNTR) variant was investigated in patients with BD in a Turkish population. Methods One hundred nine patients (60 females, 49 males; the mean age±standard deviation [SD] was 36.56±9.571 years) with BD and one hundred healthy individuals (54 females, 46 males; the mean age±SD was 36.64±2.294 years) were examined in the study. For genotyping, polymerase chain reaction-restriction fragment length polymorphism analysis was employed. Data were analyzed using Statistical Package for Social Sciences (SPSS) 22.0 (IBM Corp.; Armonk, NY, USA) (p0.05). The frequency of the a1/a1, a1/a2 genotypes and a1, a2 alleles were the most common both in patients and healthy controls (p=0.37, p=0.26, and p=0.53, respectively). Also, no statistically significant difference was found between the IL-1Ra VNTR variant genotypes and clinical characteristics (p>0.05). Conclusion The results of this study do not support an association between the IL-1Ra VNTR variant and the risk of BD in a Turkish population. However, further studies of this variant with larger sample sizes and different ethnicities are required for confirmation. PMID:29657871

  14. Genetic diversity based on MIRU-VNTR profile of isolates of Mycobacterium bovis from Mexican cattle.

    Science.gov (United States)

    Nava Vargas, Alejandro; Milián Suazo, Feliciano; Cantó Alarcón, Germinal Jorge; Rubio Venegas, Yezenia; Guerrero Solorio, Roberto; Rodríguez Hernández, Elba; Pizano Martìnez, Oscar

    2016-09-01

    Bovine tuberculosis (bTB) is a disease caused by Mycobacterium bovis (M. bovis), which affects cattle, animal species and humans. To determinate the genetic structure of strains of M. bovis in mexican cattle, 467 isolates obtained from 2009 to 2010 from different regions of Mexico with known spoligotype were included in the study. The isolates were genotyped by interspersed repeated mycobacterial units-variable number tandem repeats (MIRU-VNTR) obtaining 13 MIRU-VNTR groups. When combining MIRU-VNTR patterns with its spolygotypes, the Hunter genetic discrimination index (HGDI), we obtained 421 genetic patterns distributed in 17 groups. The HGDI for the total loci was 0.99. The locus that presented the higher HGDI was 2461 (0.857), while the locus with the lowest HGDI was 2686 (0.239). When we analyzed our results, using just 6 or 8 MIRU-VNTR we obtained an discriminatory power of 0.8499 and 0.8875 respectively indicating lower HGDI than 12 MIRU-VNTR locus. Copyright © 2016. Published by Elsevier B.V.

  15. Partial rescue of in vivo insulin signalling in skeletal muscle by impaired insulin clearance in heterozygous carriers of a mutation in the insulin receptor gene

    DEFF Research Database (Denmark)

    Højlund, K.; Wojtaszewski, Jørgen; Birk, Jesper Bratz

    2006-01-01

    AIMS/HYPOTHESIS: Recently we reported the coexistence of postprandial hypoglycaemia and moderate insulin resistance in heterozygous carriers of the Arg1174Gln mutation in the insulin receptor gene (INSR). Controlled studies of in vivo insulin signalling in humans with mutant INSR are unavailable,...

  16. Genomic diversity of Mycobacterium tuberculosis Beijing strains isolated in Tuscany, Italy, based on large sequence deletions, SNPs in putative DNA repair genes and MIRU-VNTR polymorphisms.

    Science.gov (United States)

    Garzelli, Carlo; Lari, Nicoletta; Rindi, Laura

    2016-03-01

    The Beijing genotype of Mycobacterium tuberculosis is cause of global concern as it is rapidly spreading worldwide, is considered hypervirulent, and is most often associated to massive spread of MDR/XDR TB, although these epidemiological or pathological properties have not been confirmed for all strains and in all geographic settings. In this paper, to gain new insights into the biogeographical heterogeneity of the Beijing family, we investigated a global sample of Beijing strains (22% from Italian-born, 78% from foreign-born patients) by determining large sequence polymorphism of regions RD105, RD181, RD150 and RD142, single nucleotide polymorphism of putative DNA repair genes mutT4 and mutT2 and MIRU-VNTR profiles based on 11 discriminative loci. We found that, although our sample of Beijing strains showed a considerable genomic heterogeneity, yielding both ancient and recent phylogenetic strains, the prevalent successful Beijing subsets were characterized by deletions of RD105 and RD181 and by one nucleotide substitution in one or both mutT genes. MIRU-VNTR analysis revealed 47 unique patterns and 9 clusters including a total of 33 isolates (41% of total isolates); the relatively high proportion of Italian-born Beijing TB patients, often occurring in mixed clusters, supports the possibility of an ongoing cross-transmission of the Beijing genotype to autochthonous population. High rates of extra-pulmonary localization and drug-resistance, particularly MDR, frequently reported for Beijing strains in other settings, were not observed in our survey. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Influence of IL-1RN intron 2 variable number of tandem repeats (VNTR) polymorphism on bipolar disorder.

    Science.gov (United States)

    Rafiei, A; Hosseini, S H; Taheri, M; Hosseni-khah, Z; Hajilooi, M; Mazaheri, Z

    2013-01-01

    Several lines of evidence point to the role of neurobiological mechanisms and genetic background in bipolar disorder (BD). The interleukin-1 receptor antagonist (IL-1Ra) is the principal regulator of IL-1α and IL-1β bioactivities. This study aimed to investigate the potential role of the variable number of tandem repeats (VNTR) polymorphisms of the IL-1Ra gene (IL1RN) in conferring susceptibility to BD. In total, 217 patients meeting DSM-IV-TR criteria for BD and 212 controls were recruited for the study. Genotyping of IL1RN was determined by polymerase chain reaction amplification of VNTR of 86 base pairs in intron 2 of IL1RN. The genotype distribution of IL1RN polymorphism was significantly different between BD patients and controls. The IL1RN*1/2 genotype was more prevalent in BD patients than in controls (44.2 vs. 30.2%, p = 0.003). Multiple logistic regression analysis demonstrated that IL1RN*1/2 heterozygotes had a significantly higher risk for BD (OR 1.83 and 95% CI 1.22-2.74, p = 0.003). Further stratification of the BD patients into IL1RN*2 allele carrier and noncarrier subgroups revealed a strong association between IL1RN*2 carriage and prolongation of the disease (p = 0.02). These findings suggest a positive association between VNTR polymorphism in IL1RN and BD. Additional studies, particularly with a prospective approach, are necessary to clarify the precise role of the VNTR polymorphism on the disease in different ethnic populations. Copyright © 2013 S. Karger AG, Basel.

  18. New polymorphisms within the variable number tandem repeat (VNTR) 7 locus of Mycobacterium avium subsp. paratuberculosis.

    Science.gov (United States)

    Fawzy, Ahmad; Zschöck, Michael; Ewers, Christa; Eisenberg, Tobias

    2016-06-01

    Variable number tandem repeat (VNTR) is a frequently employed typing method of Mycobacterium avium paratuberculosis (MAP) isolates. Based on whole genome sequencing in a previous study, allelic diversity at some VNTR loci seems to over- or under-estimate the actual phylogenetic variance among isolates. Interestingly, two closely related isolates on one farm showed polymorphism at the VNTR 7 locus, raising concerns about the misleading role that it might play in genotyping. We aimed to investigate the underlying basis of VNTR 7-polymorphism by analyzing sequence data for published genomes and field isolates of MAP and other M. avium complex (MAC) members. In contrast to MAP strains from cattle, strains from sheep displayed an "imperfect" repeat within VNTR 7, which was identical to respective allele types in other MAC genomes. Subspecies- and strain-specific single nucleotide polymorphisms (SNPs) and two novel (16 and 56 bp) repeats were detected. Given the combination of the three existing repeats, there are at least five different patterns for VNTR 7. The present findings highlight a higher polymorphism and probable instability of VNTR 7 locus that needs to be considered and challenged in future studies. Until then, sequencing of this locus in future studies is important to correctly assign the underlying allele types.(1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. IL-1RN VNTR polymorphism as a susceptibility marker for nasopharyngeal carcinoma in Portugal.

    Science.gov (United States)

    Sousa, Hugo; Breda, Eduardo; Santos, Alexandra M; Catarino, Raquel; Pinto, Daniela; Canedo, Paulo; Machado, José Carlos; Medeiros, Rui

    2013-08-01

    Nasopharyngeal carcinoma (NPC) is a rare malignancy in Western countries that is widely associated with the infection by Epstein-Barr virus (EBV). Several studies have showed that a common allele (allele 2) of the 86-bp variable number of tandem repeats (VNTR) polymorphism within intron 2 of the interleukin 1 receptor antagonist (IL-1RN) gene is associated with several disorders, including viral-associated cancers. We have developed a hospital-based case-control study to characterise the role of the IL-1RN 86-bp VNTR polymorphism in the development of NPC with 112 patients with the disease and 433 healthy individuals from the northern region of Portugal. IL-1RN genotypes were combined according to the number of repeats: allele 2 (A2), the short allele that corresponds to two repeats, and L, the long allele that corresponds to three or more repeats. Our study revealed that 31.2% of NPC patients were IL-1RN A2*A2, compared with 9.7% observed in the control group. The statistical analysis revealed that IL-1RN*A2 homozygosity for the A2 allele was associated with a fourfold increased risk for NPC development (pVNTR in NPC development in Portugal. Our study indicates IL-1RN*A2 homozygosity as a significant risk marker in our population and that it should be further investigated for the potential role in the definition of a susceptibility profile for NPC onset. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Comparison of the capillary and agarose electrophoresis based multiple locus VNTR (variable number of tandem repeats) analysis (MLVA) on Mycobacterium bovis isolates.

    Science.gov (United States)

    Jenkins, A O; Venter, E H; Hutamo, K; Godfroid, J

    2010-09-28

    Electrophoretic techniques that can be used for genotyping of bacterial pathogens ranges from manual, low-cost, agarose gels to high-throughput capillary electrophoresis sequencing machines. These two methods are currently employed in the electrophoresis of PCR products used in multiple locus VNTR (variable number of tandem repeats) analysis (MLVA), i.e. the agarose electrophoresis (AE) and the capillary electrophoresis (CE). Some authors have suggested that clusters generated by AE are less reliable than those generated by CE and that the latter is a more sensitive technique than the former when typing Mycobacterium tuberculosis complex (MTC) isolates. Because such a claim could have significant consequences for investigators in this field, a comparison was made on 19 Belgian Mycobacterium bovis strains which had previously been genotyped using CE VNTR analysis. The VNTR profiles of the CE VNTR analysis were compared with those obtained by AE VNTR analysis at 14 VNTR loci. Our results indicated that there were no differences in copy numbers at all loci tested when the copy numbers obtained by the AE VNTR analysis were compared with those obtained by CE VNTR analysis. The use of AE VNTR analysis in mycobacterial genotyping does not alter the sensitivity of the MLVA technique compared with the CE VNTR analysis. The AE VNTR can therefore be regarded as a viable alternative in moderately equipped laboratories that cannot afford the expensive equipment required for CE VNTR analysis and data obtained by AE VNTR analysis can be shared between laboratories which use the CE VNTR method. (c) 2010 Elsevier B.V. All rights reserved.

  1. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    International Nuclear Information System (INIS)

    Puddu, A.; Storace, D.; Odetti, P.; Viviani, G.L.

    2010-01-01

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic β-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.

  2. The T -786C, G894T, and Intron 4 VNTR (4a/b) Polymorphisms of the Endothelial Nitric Oxide Synthase Gene in Prostate Cancer Cases.

    Science.gov (United States)

    Diler, S B; Öden, A

    2016-02-01

    In previously conducted some studies it has been revealed that nitric oxide (NO) and nitric oxide synthase (NOS) system play a significant role in carcinogenesis. Nitric oxide (NO) is regulated by endothelial nitric oxide synthase (eNOS) enzyme which is one of the isoenzymes of NO synthase (NOS). In this study we have tried to come to a conclusion about whether eNOS gene T -786C, G894T and Intron 4 VNTR (4a/b) polymorphisms might be considered as a risk factor causing prostate cancer (PCa) or not. A total of 200 subjects were included in this research. 84 patients with PCa (mean age 70.0 ± 6.4) and 116 healthy controls (mean age 69.9 ± 7.5) were recruited in this case-control study. Genomic DNA was extracted using the QIAamp DNA Blood Mini Kit (QIAGEN GmbH, Maryland, USA), according to the manufacturer's guidelines. The T-786C, G894T and Intron 4 VNTR (4a/b) polymorphisms were amplified using polymerase chain reation (PCR), detected by restriction fragment length polymorphism (RFLP). For T -786C polymorphism CC genotype [odds ratio (OR): 0.34, 95% confidence interval (CI): 0.15-0.78, P = 0.009)] and allele frequency (OR: 0.631, CI: 0.421-0.946, P = 0.026) is significant for control. In patients with PCa eNOS G894T polymorphism, both GT (OR: 0.069, CI: 0.027-0.174; P = 0.0001) and TT (OR: 0.040, CI: 0.013-0.123; P = = 0.0001) genotype distribution, and also T allele frequency (OR: 0.237, CI: 0.155-0.362, P = 0.0001) were considered significant statistically. While genotype distribution for the other polymorphism eNOS, intron 4 VNTR (4a/b), is insignificant statistically, "a" allele frequency was found out to be significant (OR: 2.223, CI: 1.311-3.769, P = 0.003). In this study we indicated that genotype and allele frequencies of eNOS T -786C and G894T polymorphisms are statistically significant in patients with PCa. eNOS T -786C and G894T polymorphisms may be associated with PCa susceptibility in the Turkish population. In contrast, intron 4 VNTR (4a

  3. VNTR internal structure mapping at the {alpha}-globin 3{prime}HVR locus reveals a hierachy of related lineages in oceania

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, J.J.; Clegg, J.B.; Boyce, A.J. [Univ. of Oxford (United Kingdom)

    1994-09-01

    Analysis of the {alpha}-globin gene complex in Oceania has revealed many different rearrangements which remove one of the adult globin genes. Frequencies of these deletion chromosomes are elevated by malarial resistance conferred by the resulting {alpha}-thalassaemia. One particular deletion chromosome, designated -{alpha}{sup 3.7}III, is found at high levels in Melanesia and Polynesia: RFLP haplotype analysis shows that this deletion is always found on chromosomes bearing the IIIa haplotype and is likely to be the product of one single rearrangement event. A subset of the -{alpha}{sup 3.7}III chromosomes carries a more recent mutation which generates the haemoglobin variant HbJ{sup Tongariki}. We have characterized the allelic variation at the 3{prime}HVR VNTR locus located 6 kb from the globin genes in each of these groups of chromosomes. We have determined the internal structure of these alleles by RFLP mapping of PCR-amplified DNA: within each group, the allelic diversity results from the insertion and/or deletion of small {open_quotes}motifs{close_quotes} of up to 6 adjacent repeats. Mapping of 3{prime}HVR alleles associated with other haplotypes reveals that these are composed of repeat arrays that are substantially different to those derived from IIIa chromosomes, indicating that interchromosomal recombination between heterologous haplotypes does not account for any of the diversity seen to date. We have recently shown that allelic size variation at the two VNTR loci flanking the {alpha}-globin complex is very closely linked to the haplotypes known to be present at this locus. Here we show that, within a haplotype, VNTR alleles are very closely related to each other on the basis of internal structure and demonstrate that intrachromosomal mutation processes involving small numbers of tandem repeats are the main cause of variation at this locus.

  4. Molecular characterization of Neisseria gonorrhoeae isolates in Almaty, Kazakhstan, by VNTR analysis, Opa-typing and NG-MAST.

    Science.gov (United States)

    Kushnir, Anastasiya V; Muminov, Talgat A; Bayev, Assylzhan I; Khrapov, Evgeny A; Filipenko, Maxim L

    2012-04-01

    In the present study, new variable number tandem repeats (VNTR) loci in the Neisseria gonorrhoeae genome were identified in silico. VNTR analysis scheme using PCR and agarose or polyacrylamide gel electrophoresis was developed based on nine VNTR loci with various degrees of polymorphism. The method was used to genotype a collection of 48 isolates, obtained from patients with gonorrhea in Almaty, Kazakhstan during the period from December 2008 to November 2009. This collection of isolates was also characterized by the opa-typing and multiantigen sequence typing (NG-MAST). The discriminatory power of the VNTR analysis translated by Hunter-Gaston Discrimination Index (HGDI) was similar to that of opa typing (HGDI=0.98 versus 0.97) and slightly higher than that of NG-MAST (HDGI=0.95). The adjusted Rand (AR) coefficients and Wallace coefficients showed that the overall concordance between the typing methods was not high. VNTR analysis described here is simple, inexpensive, easy to interpret, and it would be reliable for the comparison of data obtained in different laboratories. The proposed VNTR loci might be used for epidemiological studies of gonococcal infections. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. MAOA-uVNTR genotype predicts interindividual differences in experimental aggressiveness as a function of the degree of provocation.

    Science.gov (United States)

    Kuepper, Yvonne; Grant, Phillip; Wielpuetz, Catrin; Hennig, Juergen

    2013-06-15

    The MAOA-uVNTR has been suggested to play a role regarding aggression, however, results are inconsistent. We aimed at further elucidating potential effects of the MAOA-uVNTR on aggressiveness with respect to potential modulators: sex, experimental vs. trait aggressiveness and type of aggressiveness (proactive vs. reactive aggressiveness). We tested 239 healthy young adults (88 men/151 women). Participants were genotyped for the MAOA-uVNTR and performed a modified version of a competitive reaction time task - a commonly used and well established tool to elicit and measure aggressiveness. Furthermore, they completed a self-report scale measuring trait aggressiveness. We found a main effect of MAOA-uVNTR on a measure of reactive aggressiveness for both men and women, whereby the low-activity alleles of the MAOA-uVNTR were associated with substantially increased aggressive reactions (pimpulsive experimental aggressiveness in healthy men and women. Furthermore the association between the MAOA-uVNTR genotype and aggressive responses increases in a fashion linear to the degree of provocation. This indicates that the low-functional alleles of the MAOA-uVNTR are not associated with increased aggressive behavior per se, but rather with an increased aggressive reactivity to provocation. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. VNTR molecular typing of salmonella enterica serovar typhi isolates in Kathmandu valley

    Directory of Open Access Journals (Sweden)

    B Acharya

    2012-03-01

    Full Text Available Background: Typhoid fever continues to be a worldwide health problem, especially in developing countries. Effective epidemiological surveillance is needed to monitor the presence and spread of disease. Materials and Methods: Variable number tandem repeats (VNTR was performed for Salmonella enterica serovar typhi by multiplex-PCR in 28 Nepalese isolates of sporadic typhoid fever. Results: From all 28 total isolates, we could identify 12 VNTR profiles among the isolates, signifying multiple variants in circulation within the region. Conclusion: The VNTR-based typing assay for serovar typhi isolates can be used during an outbreak of enteric fever. The typing could eventually form the basis of an effective epidemiological surveillance system for developing rational strategies to control typhoid fever. DOI: http://dx.doi.org/10.3126/jpn.v2i3.6026 JPN 2012; 2(3: 220-223

  7. Insulin increases transcription of rat gene 33 through cis-acting elements in 5[prime]-flanking DNA

    Energy Technology Data Exchange (ETDEWEB)

    Cadilla, C.; Isham, K.R.; Lee, K.L.; Ch' ang, L.Y.; Kenney, F.T. (Oak Ridge National Lab., TN (United States)); Johnson, A.C. (National Cancer Institute, Bethesda, MD (United States). Lab. of Molecular Biology)

    1992-01-01

    Gene 33 is a multihormonally-regulated rat gene whose transcription is rapidly and markedly enhanced by insulin in liver and cultured hepatoma cells. To examine the mechanism by which insulin regulates transcription, the authors have constructed chimeric plasmids in which expression of the bacterial cat gene, encoding chloramphenicol acetyltransferase (CAT), is governed by gene 33 promoter elements and contiguous sequence in DNA flanking the transcription start point (tsp). When transfected into H4IIE hepatoma cells, these constructs gave rise to stably transformed cell lines producing the bacterial CAT enzyme. This expression was increased by insulin treatment in a fashion resembling the effect of this hormone on transcription of the native gene. In vitro transcription assays in nuclear extracts also revealed increased transcription of the chimeric plasmids when the extracts were prepared from insulin-treated rat hepatoma cells. The results demonstrate that induction by insulin is mediated by cis-acting nucleotide sequences located between bp [minus]480 to +27 relative to the tsp.

  8. Variable number of tandem repeats of 9 Plasmodium vivax genes among Southeast Asian isolates.

    Science.gov (United States)

    Wang, Bo; Nyunt, Myat Htut; Yun, Seung-Gyu; Lu, Feng; Cheng, Yang; Han, Jin-Hee; Ha, Kwon-Soo; Park, Won Sun; Hong, Seok-Ho; Lim, Chae-Seung; Cao, Jun; Sattabongkot, Jetsumon; Kyaw, Myat Phone; Cui, Liwang; Han, Eun-Taek

    2017-06-01

    The variable number of tandem repeats (VNTRs) provides valuable information about both the functional and evolutionary aspects of genetic diversity. Comparative analysis of 3 Plasmodium falciparum genomes has shown that more than 9% of its open reading frames (ORFs) harbor VNTRs. Although microsatellites and VNTR genes of P. vivax were reported, the VNTR polymorphism of genes has not been examined widely. In this study, 230 P. vivax genes were analyzed for VNTRs by SERV, and 33 kinds of TR deletions or insertions from 29 P. vivax genes (12.6%) were found. Of these, 9 VNTR fragments from 8 P. vivax genes were used for PCR amplification and sequence analysis to examine the genetic diversity among 134 isolates from four Southeast Asian countries (China, Republic of Korea, Thailand, and Myanmar) with different malaria endemicity. We confirmed the existence of extensive polymorphism of VNTR fragments in field isolates. This detection provides several suitable markers for analysis of the molecular epidemiology of P. vivax field isolates. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Linkage analysis: Inadequate for detecting susceptibility loci in complex disorders?

    Energy Technology Data Exchange (ETDEWEB)

    Field, L.L.; Nagatomi, J. [Univ. of Calgary, Alberta (Canada)

    1994-09-01

    Insulin-dependent diabetes mellitus (IDDM) may provide valuable clues about approaches to detecting susceptibility loci in other oligogenic disorders. Numerous studies have demonstrated significant association between IDDM and a VNTR in the 5{prime} flanking region of the insulin (INS) gene. Paradoxically, all attempts to demonstrate linkage of IDDM to this VNTR have failed. Lack of linkage has been attributed to insufficient marker locus information, genetic heterogeneity, or high frequency of the IDDM-predisposing allele in the general population. Tyrosine hydroxylase (TH) is located 2.7 kb from INS on the 5` side of the VNTR and shows linkage disequilibrium with INS region loci. We typed a highly polymorphic microsatellite within TH in 176 multiplex families, and performed parametric (lod score) linkage analysis using various intermediate reduced penetrance models for IDDM (including rare and common disease allele frequencies), as well as non-parametric (affected sib pair) linkage analysis. The scores significantly reject linkage for recombination values of .05 or less, excluding the entire 19 kb region containing TH, the 5{prime} VNTR, the INS gene, and IGF2 on the 3{prime} side of INS. Non-parametric linkage analysis also provided no significant evidence for linkage (mean TH allele sharing 52.5%, P=.12). These results have important implications for efforts to locate genes predisposing to complex disorders, strongly suggesting that regions which are significantly excluded by linkage methods may nevertheless contain predisposing genes readily detectable by association methods. We advocate that investigators routinely perform association analyses in addition to linkage analyses.

  10. Influence of FCGRT gene polymorphisms on pharmacokinetics of therapeutic antibodies.

    Science.gov (United States)

    Passot, Christophe; Azzopardi, Nicolas; Renault, Sylvaine; Baroukh, Nadine; Arnoult, Christophe; Ohresser, Marc; Boisdron-Celle, Michèle; Gamelin, Erick; Watier, Hervé; Paintaud, Gilles; Gouilleux-Gruart, Valérie

    2013-01-01

    The neonatal Fc receptor (FcRn) encoded by FCGRT is known to be involved in the pharmacokinetics (PK) of therapeutic monoclonal antibodies (mAbs). Variability in the expression of FCGRT gene and consequently in the FcRn protein level could explain differences in PK observed between patients treated with mAbs. We studied whether the previously described variable number tandem repeat (VNTR) or copy number variation (CNV) of FCGRT are associated with individual variations of PK parameters of cetuximab. VNTR and CNV were assessed on genomic DNA of 198 healthy individuals and of 94 patients treated with the therapeutic mAb. VNTR and CNV were analyzed by allele-specific PCR and duplex real-time PCR with Taqman (®) technology, respectively. The relationship between FCGRT polymorphisms (VNTR and CNV) and PK parameters of patients treated with cetuximab was studied. VNTR3 homozygote patients had a lower cetuximab distribution clearance than VNTR2/VNTR3 and VNTR3/VNTR4 patients (p = 0.021). We observed no affects of VNTR genotype on elimination clearance. One healthy person (0.5%) and 1 patient (1.1%) had 3 copies of FCGRT. The PK parameters of this patient did not differ from those of patients with 2 copies. The FCGRT promoter VNTR may influence mAbs' distribution in the body. CNV of FCGRT cannot be used as a relevant pharmacogenetic marker because of its low frequency.

  11. Glycogen Synthase Kinase-3 regulates IGFBP-1 gene transcription through the Thymine-rich Insulin Response Element

    Directory of Open Access Journals (Sweden)

    Marquez Rodolfo

    2004-09-01

    Full Text Available Abstract Background Hepatic expression of several gene products involved in glucose metabolism, including phosphoenolpyruvate carboxykinase (PEPCK, glucose-6-phosphatase (G6Pase and insulin-like growth factor binding protein-1 (IGFBP-1, is rapidly and completely inhibited by insulin. This inhibition is mediated through the regulation of a DNA element present in each of these gene promoters, that we call the Thymine-rich Insulin Response Element (TIRE. The insulin signalling pathway that results in the inhibition of these gene promoters requires the activation of phosphatidylinositol 3-kinase (PI 3-kinase. However, the molecules that connect PI 3-kinase to these gene promoters are not yet fully defined. Glycogen Synthase Kinase 3 (GSK-3 is inhibited following activation of PI 3-kinase. We have shown previously that inhibitors of GSK-3 reduce the activity of two TIRE-containing gene promoters (PEPCK and G6Pase, whose products are required for gluconeogenesis. Results In this report we demonstrate that in H4IIE-C3 cells, four distinct classes of GSK-3 inhibitor mimic the effect of insulin on a third TIRE-containing gene, IGFBP-1. We identify the TIRE as the minimum requirement for inhibition by these agents, and demonstrate that the target of GSK-3 is unlikely to be the postulated TIRE-binding protein FOXO-1. Importantly, overexpression of GSK-3 in cells reduces the insulin regulation of TIRE activity as well as endogenous IGFBP-1 expression. Conclusions These results implicate GSK-3 as an intermediate in the pathway from the insulin receptor to the TIRE. Indeed, this is the first demonstration of an absolute requirement for GSK-3 inhibition in insulin regulation of gene transcription. These data support the potential use of GSK-3 inhibitors in the treatment of insulin resistant states such as Type 2 diabetes mellitus, but suggest that it will be important to identify all TIRE-containing genes to assess potential side effects of these agents.

  12. Variants of Insulin-Signaling Inhibitor Genes in Type 2 Diabetes and Related Metabolic Abnormalities

    Directory of Open Access Journals (Sweden)

    Carlo de Lorenzo

    2013-01-01

    Full Text Available Insulin resistance has a central role in the pathogenesis of several metabolic diseases, including type 2 diabetes, obesity, glucose intolerance, metabolic syndrome, atherosclerosis, and cardiovascular diseases. Insulin resistance and related traits are likely to be caused by abnormalities in the genes encoding for proteins involved in the composite network of insulin-signaling; in this review we have focused our attention on genetic variants of insulin-signaling inhibitor molecules. These proteins interfere with different steps in insulin-signaling: ENPP1/PC-1 and the phosphatases PTP1B and PTPRF/LAR inhibit the insulin receptor activation; INPPL1/SHIP-2 hydrolyzes PI3-kinase products, hampering the phosphoinositide-mediated downstream signaling; and TRIB3 binds the serine-threonine kinase Akt, reducing its phosphorylation levels. While several variants have been described over the years for all these genes, solid evidence of an association with type 2 diabetes and related diseases seems to exist only for rs1044498 of the ENPP1 gene and for rs2295490 of the TRIB3 gene. However, overall the data recapitulated in this Review article may supply useful elements to interpret the results of novel, more technically advanced genetic studies; indeed it is becoming increasingly evident that genetic information on metabolic diseases should be interpreted taking into account the complex biological pathways underlying their pathogenesis.

  13. Effects of interleukin-1 receptor antagonist (IL-1Ra) gene 86 bp VNTR polymorphism on recurrent pregnancy loss: a case-control study.

    Science.gov (United States)

    Hajizadeh, Yasamin Sayed; Emami, Elina; Nottagh, Marina; Amini, Zahra; Maroufi, Nazila Fathi; Azimian, Saba Haj; Isazadeh, Alireza

    2017-05-26

    Objective Recurrent pregnancy loss (RPL) is a heterogeneous disease which is defined as two or more consecutive fetal losses during early pregnancy. Interleukin-1 receptor antagonist (IL-1Ra) is a anti-inflammatory cytokine, which inhibits IL-1 activity by binding to its receptors. The aim of this study was to investigate the association between RPL and IL-1Ra intron 2 polymorphism (86 bp VNTR) in Iranian women. Materials and methods In this case control study, genetic polymorphism was studied in 140 RPL patients and 140 healthy women as controls. Genomic DNA was extracted from the blood samples and polymorphism analysis was performed using the polymerase chain reaction (PCR) method. Finally, the data obtained were analyzed by statistical software. Results We found an increased frequency of the IL-1Ra 1/1 genotype in the case group compared to the control group. Whereas, the frequency of IL-1Ra genotype 1/2 was higher in control group than in the case group. However, we did not observe an association between IL-1Ra 86 bp VNTR polymorphism in intron 2 and RPL patients (p > 0.05). Conclusion IL-1Ra VNTR polymorphism may not be a genetic factor for RPL. However, investigation of IL-1Ra polymorphism was recommended in other populations and patients with recurrent pregnancy loss.

  14. Tissue-specific expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, O.D.; Andersen, L.C.; Michelsen, B.; Owerbach, D.; Larsson, L.I.; Lernmark, A.; Steiner, D.F. (Hagedorn Research Laboratory, Gentofte (Denmark))

    1988-09-01

    The pluripotent rat islet tumor cell line MSL-G2 expresses primarily glucagon or cholecystokinin and not insulin in vitro but changes phenotype completely after prolonged in vivo cultivation to yield small-sized hypoglycemic tumors composed almost entirely of insulin-producing beta cells. When a genomic DNA fragment containing the coding and upstream regulatory regions of the human insulin gene was stably transfected into MSL-G2 cells no measurable amounts of insulin or insulin mRNA were detected in vitro. However, successive transplantation of two transfected clones resulted in hypoglycemic tumors that efficiently coexpressed human and rat insulin as determined by human C-peptide-specific immunoreagents. These results demonstrate that cis-acting tissue-specific insulin gene enhancer elements are conserved between rat and human insulin genes. The authors propose that the in vivo differentiation of MSL-G2 cells and transfected subclones into insulin-producing cells reflects processes of natural beta-cell ontogeny leading to insulin gene expression.

  15. Tissue-specific expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo

    International Nuclear Information System (INIS)

    Madsen, O.D.; Andersen, L.C.; Michelsen, B.; Owerbach, D.; Larsson, L.I.; Lernmark, A.; Steiner, D.F.

    1988-01-01

    The pluripotent rat islet tumor cell line MSL-G2 expresses primarily glucagon or cholecystokinin and not insulin in vitro but changes phenotype completely after prolonged in vivo cultivation to yield small-sized hypoglycemic tumors composed almost entirely of insulin-producing beta cells. When a genomic DNA fragment containing the coding and upstream regulatory regions of the human insulin gene was stably transfected into MSL-G2 cells no measurable amounts of insulin or insulin mRNA were detected in vitro. However, successive transplantation of two transfected clones resulted in hypoglycemic tumors that efficiently coexpressed human and rat insulin as determined by human C-peptide-specific immunoreagents. These results demonstrate that cis-acting tissue-specific insulin gene enhancer elements are conserved between rat and human insulin genes. The authors propose that the in vivo differentiation of MSL-G2 cells and transfected subclones into insulin-producing cells reflects processes of natural beta-cell ontogeny leading to insulin gene expression

  16. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    International Nuclear Information System (INIS)

    Levy, J.R.; Olefsky, J.M.

    1988-01-01

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4 0 C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37 0 C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation

  17. Testing independence of fragment lengths within VNTR loci

    Energy Technology Data Exchange (ETDEWEB)

    Geisser, S. (Univ. of Minnesota, Minneapolis, MN (United States)); Johnson, W. (Univ. of California, Davis, CA (United States))

    1993-11-01

    Methods that were devised to test independence of the bivariate fragment lengths obtained from VNTR loci are applied to several population databases. It is shown that for many of the probes independence (Hardy-Weinberg equilibrium) cannot be sustained. 3 refs., 3 tabs.

  18. Low genetic diversity of bovine Mycobacterium avium subspecies paratuberculosis isolates detected by MIRU-VNTR genotyping.

    Science.gov (United States)

    de Kruijf, Marcel; Lesniak, Olga N; Yearsley, Dermot; Ramovic, Elvira; Coffey, Aidan; O'Mahony, Jim

    2017-05-01

    Mycobacterial interspersed repetitive unit and variable number tandem repeat (MIRU-VNTR) has been developed as a simple, rapid and cost efficient molecular typing method to differentiate Mycobacterium avium subspecies paratuberculosis (MAP) isolates. The aim of this study was to determine the genomic diversity of MAP across the Republic of Ireland by utilising the MIRU-VNTR typing method on a large collection of MAP isolates. A total of 114 MAP isolates originated from 53 herds across 19 counties in the Republic of Ireland were genotyped based on eight established MIRU-VNTR loci. Four INMV groups were observed during this study. INMV 1 was found in 67 MAP isolates (58.8%) and INMV 2 was observed in 45 isolates (39.4%). INMV 3 and INMV 116 recorded only one isolate each (0.9%). The unique INMV 116 group has never been reported among herds thus far and the molecular pattern of the MAP isolate classified in INMV 116 showed a difference at the MIRU-VNTR X3 locus compared to the other three INMV groups observed. INMV 1, INMV 2 and INMV 3 are observed frequently in Europe and comprised 99.1% of the total MAP isolates characterised in this study, indicating that MAP exhibited low level of genetic diversity across the Republic of Ireland using the MIRU-VNTR method. By the implementation of SNP analysis or MLSSR as an additional typing method, MAP genetic diversity would increase. INMV 3 is unique to Ireland and whereas INMV 116 has never been previously reported among herds by MIRU-VNTR typing. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Association of interleukin-1 receptor antagonist VNTR polymorphism and risk of pre-eclampsia in southeast Iranian population.

    Science.gov (United States)

    Salimi, Saeedeh; Mohammadoo-Khorasani, Milad; Mousavi, Mahdieh; Yaghmaei, Minoo; Mokhtari, Mojgan; Farajian-Mashhadi, Farzaneh

    2016-02-01

    Pre-eclampsia (PE) is an obstetric disorder that may result in maternal and neonatal mortality and morbidity. Growing evidence indicates that cytokines, such as interleukins, are involved in the pathogenesis of this complication. Hence the current study aimed to assess the possible association between interleukin-1 receptor antagonist (IL-1Ra) VNTR polymorphism, and PE susceptibility in southeast Iranian women. The IL-Ra VNTR polymorphism was evaluated in 192 PE women and 186 age-matched normotensive pregnant women by the polymerase chain reaction method. The frequency of the A2 allele and the A2A2 genotype of IL-Ra VNTR polymorphism was significantly lower in PE patients compared to controls: therefore, A2 allele may play a protective role in PE development (odds ratio = 0.13 95% CI, [0.04-0.03]; P VNTR polymorphism and severity of the disease. The A2 allele of the IL-Ra VNTR polymorphism could be a protective factor for PE susceptibility. © 2015 Japan Society of Obstetrics and Gynecology.

  20. Expression and functional assessment of candidate type 2 diabetes susceptibility genes identify four new genes contributing to human insulin secretion

    Directory of Open Access Journals (Sweden)

    Fatou K. Ndiaye

    2017-06-01

    Full Text Available Objectives: Genome-wide association studies (GWAS have identified >100 loci independently contributing to type 2 diabetes (T2D risk. However, translational implications for precision medicine and for the development of novel treatments have been disappointing, due to poor knowledge of how these loci impact T2D pathophysiology. Here, we aimed to measure the expression of genes located nearby T2D associated signals and to assess their effect on insulin secretion from pancreatic beta cells. Methods: The expression of 104 candidate T2D susceptibility genes was measured in a human multi-tissue panel, through PCR-free expression assay. The effects of the knockdown of beta-cell enriched genes were next investigated on insulin secretion from the human EndoC-βH1 beta-cell line. Finally, we performed RNA-sequencing (RNA-seq so as to assess the pathways affected by the knockdown of the new genes impacting insulin secretion from EndoC-βH1, and we analyzed the expression of the new genes in mouse models with altered pancreatic beta-cell function. Results: We found that the candidate T2D susceptibility genes' expression is significantly enriched in pancreatic beta cells obtained by laser capture microdissection or sorted by flow cytometry and in EndoC-βH1 cells, but not in insulin sensitive tissues. Furthermore, the knockdown of seven T2D-susceptibility genes (CDKN2A, GCK, HNF4A, KCNK16, SLC30A8, TBC1D4, and TCF19 with already known expression and/or function in beta cells changed insulin secretion, supporting our functional approach. We showed first evidence for a role in insulin secretion of four candidate T2D-susceptibility genes (PRC1, SRR, ZFAND3, and ZFAND6 with no previous knowledge of presence and function in beta cells. RNA-seq in EndoC-βH1 cells with decreased expression of PRC1, SRR, ZFAND6, or ZFAND3 identified specific gene networks related to T2D pathophysiology. Finally, a positive correlation between the expression of Ins2 and the

  1. Identification of Variable-Number Tandem-Repeat (VNTR) Sequences in Legionella pneumophila and Development of an Optimized Multiple-Locus VNTR Analysis Typing Scheme▿

    Science.gov (United States)

    Pourcel, Christine; Visca, Paolo; Afshar, Baharak; D'Arezzo, Silvia; Vergnaud, Gilles; Fry, Norman K.

    2007-01-01

    The utility of a genotypic typing assay for Legionella pneumophila was investigated. A multiple-locus variable number of tandem repeats (VNTR) analysis (MLVA) scheme using PCR and agarose gel electrophoresis is proposed based on eight minisatellite markers. Panels of well-characterized strains were examined in a multicenter analysis to validate the assay and to compare its performance to that of other genotyping assays. Excellent typeability, reproducibility, stability, and epidemiological concordance were observed. The MLVA type or profile is composed of a string of allele numbers, corresponding to the number of repeats at each VNTR locus, separated by commas, in a predetermined order. A database containing information from 99 L. pneumophila serogroup 1 strains and four strains of other serogroups and their MLVA profiles, which can be queried online, is available from http://bacterial-genotyping.igmors.u-psud.fr/. PMID:17251393

  2. Diversity of Salmonella enterica serovar Typhi strains collected from india using variable number tandem repeat (VNTR)-PCR analysis.

    Science.gov (United States)

    Sankar, Sathish; Kuppanan, Suresh; Nandagopal, Balaji; Sridharan, Gopalan

    2013-08-01

    Typhoid fever is endemic in India, and a seasonal increase of cases is observed annually. In spite of effective therapies and the availability of vaccines, morbidity is widespread owing to the circulation of multiple genetic variants, frequent migration of asymptomatic carriers, unhygienic food practices and the emergence of multidrug resistance and thus continues to be a major public health problem in developing countries, particularly in India. Classical methods of strain typing such as pulsed-field gel electrophoresis, ribotyping, random amplification of polymorphic DNA and amplified fragment length polymorphism are either laborious and technically complicated or less discriminatory. We investigated the molecular diversity of Indian strains of Salmonella enterica serovar Typhi (S. Typhi) isolated from humans from different parts of India to establish the molecular epidemiology of the organism using the variable number tandem repeat (VNTR)-PCR analysis. The electrophoretic band pattern was analysed using the GelCompar II software program. Of the 94 strains tested for three VNTRs loci, 75 VNTR genotypes were obtained. Of the three VNTRs tested in this study, VNTR1 was amplified in all the strains except one and found to be predominant. VNTR2 was amplified only in 57 strains with a Simpson diversity index of 0.93 indicating the high variability of this region within the strains. VNTR3 was amplified in 90 strains. The discriminatory power of this typing tool has been greatly enhanced by this VNTR2 region as the other two regions could not discriminate strains significantly. In our study, about 55 % of the strains amplified all three VNTR regions and 39 % of the strains lacked the VNTR2 region. Among the three VNTR regions tested, the majority of the strains produced similar banding pattern for any two regions grouped into a cluster. The strains grouped as a genotype were from the same geographical location. Strains collected from each geographical region were also

  3. [Proposal of a five MIRU-VNTR panel to screen clinical isolates of Mycobacterium tuberculosis in Mexico].

    Science.gov (United States)

    Bolado-Martínez, Enrique; Candia-Plata, Maria Del Carmen; Zenteno-Cuevas, Roberto; Mendoza Damián, Fabiola; Avilés-Acosta, Magali; Álvarez-Hernández, Gerardo

    2015-11-01

    Tuberculosis is a public health problem across Mexico. This paper aims to select a panel, with a minimum number of repetitive elements (MIRU-VNTR) for genotypic characterization of Mycobacterium tuberculosis (M. tuberculosis) clinical isolates. In this study, a full panel of 24 MIRU-VNTR loci was used to discriminate 65 clinical isolates of M. tuberculosis from three different geographical regions of Mexico. Those loci with the highest discriminatory power were subsequently selected. The panel, including five loci, was obtained by selecting the highest values of allelic diversity among the genotypes obtained. The dendrogram, generated by the panel MIRU-VNTR 5, showed a high discriminatory power with 65 unique genotype profiles and formed clusters according to the geographical region of origin. The panel MIRU-VNTR 5 can be useful for characterizing clinical isolates of M. tuberculosis in Mexico. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  4. Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects

    Directory of Open Access Journals (Sweden)

    Soronen Jarkko

    2012-04-01

    Full Text Available Abstract Background To get insight into molecular mechanisms underlying insulin resistance, we compared acute in vivo effects of insulin on adipose tissue transcriptional profiles between obese insulin-resistant and lean insulin-sensitive women. Methods Subcutaneous adipose tissue biopsies were obtained before and after 3 and 6 hours of intravenously maintained euglycemic hyperinsulinemia from 9 insulin-resistant and 11 insulin-sensitive females. Gene expression was measured using Affymetrix HG U133 Plus 2 microarrays and qRT-PCR. Microarray data and pathway analyses were performed with Chipster v1.4.2 and by using in-house developed nonparametric pathway analysis software. Results The most prominent difference in gene expression of the insulin-resistant group during hyperinsulinemia was reduced transcription of nuclear genes involved in mitochondrial respiration (mitochondrial respiratory chain, GO:0001934. Inflammatory pathways with complement components (inflammatory response, GO:0006954 and cytokines (chemotaxis, GO:0042330 were strongly up-regulated in insulin-resistant as compared to insulin-sensitive subjects both before and during hyperinsulinemia. Furthermore, differences were observed in genes contributing to fatty acid, cholesterol and triglyceride metabolism (FATP2, ELOVL6, PNPLA3, SREBF1 and in genes involved in regulating lipolysis (ANGPTL4 between the insulin-resistant and -sensitive subjects especially during hyperinsulinemia. Conclusions The major finding of this study was lower expression of mitochondrial respiratory pathway and defective induction of lipid metabolism pathways by insulin in insulin-resistant subjects. Moreover, the study reveals several novel genes whose aberrant regulation is associated with the obese insulin-resistant phenotype.

  5. [Analytical procedure of variable number of tandem repeats (VNTR) analysis and effective use of analysis results for tuberculosis control].

    Science.gov (United States)

    Hachisu, Yushi; Hashimoto, Ruiko; Kishida, Kazunori; Yokoyama, Eiji

    2013-12-01

    Variable number of tandem repeats (VNTR) analysis is one of the methods for molecular epidemiological studies of Mycobacterium tuberculosis. VNTR analysis is a method based on PCR, provides rapid highly reproducible results and higher strain discrimination power than the restriction fragment length polymorphism (RFLP) analysis widely used in molecular epidemiological studies of Mycobacterium tuberculosis. Genetic lineage compositions of Mycobacterium tuberculosis clinical isolates differ among the regions from where they are isolated, and allelic diversity at each locus also differs among the genetic lineages of Mycobacterium tuberculosis. Therefore, the combination of VNTR loci that can provide high discrimination capacity for analysis is not common in every region. The Japan Anti-Tuberculosis Association (JATA) 12 (15) reported a standard combination of VNTR loci for analysis in Japan, and the combination with hypervariable (HV) loci added to JATA12 (15), which has very high discrimination capacity, was also reported. From these reports, it is thought that data sharing between institutions and construction of a nationwide database will progress from now on. Using database construction of VNTR profiles, VNTR analysis has become an effective tool to trace the route of tuberculosis infection, and also helps in decision-making in the treatment course. However, in order to utilize the results of VNTR analysis effectively, it is important that each related organization cooperates closely, and analysis should be appropriately applied in the system in which accurate control and private information protection are ensured.

  6. Insulin utilizes the PI 3-kinase pathway to inhibit SP-A gene expression in lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Snyder Jeanne M

    2002-10-01

    Full Text Available Abstract Background It has been proposed that high insulin levels may cause delayed lung development in the fetuses of diabetic mothers. A key event in lung development is the production of adequate amounts of pulmonary surfactant. Insulin inhibits the expression of surfactant protein A (SP-A, the major surfactant-associated protein, in lung epithelial cells. In the present study, we investigated the signal transduction pathways involved in insulin inhibition of SP-A gene expression. Methods H441 cells, a human lung adenocarcinoma cell line, or human fetal lung explants were incubated with or without insulin. Transcription run-on assays were used to determine SP-A gene transcription rates. Northern blot analysis was used to examine the effect of various signal transduction inhibitors on SP-A gene expression. Immunoblot analysis was used to evaluate the levels and phosphorylation states of signal transduction protein kinases. Results Insulin decreased SP-A gene transcription in human lung epithelial cells within 1 hour. Insulin did not affect p44/42 mitogen-activated protein kinase (MAPK phosphorylation and the insulin inhibition of SP-A mRNA levels was not affected by PD98059, an inhibitor of the p44/42 MAPK pathway. In contrast, insulin increased p70 S6 kinase Thr389 phosphorylation within 15 minutes. Wortmannin or LY294002, both inhibitors of phosphatidylinositol 3-kinase (PI 3-kinase, or rapamycin, an inhibitor of the activation of p70 S6 kinase, a downstream effector in the PI 3-kinase pathway, abolished or attenuated the insulin-induced inhibition of SP-A mRNA levels. Conclusion Insulin inhibition of SP-A gene expression in lung epithelial cells probably occurs via the rapamycin-sensitive PI 3-kinase signaling pathway.

  7. A Model-Based Bayesian Estimation of the Rate of Evolution of VNTR Loci in Mycobacterium tuberculosis

    Science.gov (United States)

    Aandahl, R. Zachariah; Reyes, Josephine F.; Sisson, Scott A.; Tanaka, Mark M.

    2012-01-01

    Variable numbers of tandem repeats (VNTR) typing is widely used for studying the bacterial cause of tuberculosis. Knowledge of the rate of mutation of VNTR loci facilitates the study of the evolution and epidemiology of Mycobacterium tuberculosis. Previous studies have applied population genetic models to estimate the mutation rate, leading to estimates varying widely from around to per locus per year. Resolving this issue using more detailed models and statistical methods would lead to improved inference in the molecular epidemiology of tuberculosis. Here, we use a model-based approach that incorporates two alternative forms of a stepwise mutation process for VNTR evolution within an epidemiological model of disease transmission. Using this model in a Bayesian framework we estimate the mutation rate of VNTR in M. tuberculosis from four published data sets of VNTR profiles from Albania, Iran, Morocco and Venezuela. In the first variant, the mutation rate increases linearly with respect to repeat numbers (linear model); in the second, the mutation rate is constant across repeat numbers (constant model). We find that under the constant model, the mean mutation rate per locus is (95% CI: ,)and under the linear model, the mean mutation rate per locus per repeat unit is (95% CI: ,). These new estimates represent a high rate of mutation at VNTR loci compared to previous estimates. To compare the two models we use posterior predictive checks to ascertain which of the two models is better able to reproduce the observed data. From this procedure we find that the linear model performs better than the constant model. The general framework we use allows the possibility of extending the analysis to more complex models in the future. PMID:22761563

  8. Association between haptoglobin gene and insulin resistance in Arab-Americans.

    Science.gov (United States)

    Burghardt, Kyle J; Masri, Dana El; Dass, Sabrina E; Shikwana, Sara S; Jaber, Linda A

    2017-11-01

    To analyze associations between variation in the HP gene and lipid and glucose-related measures in Arab-Americans. Secondary analyses were performed based on sex. Genomic DNA was extracted from samples obtained from a previous epidemiological study of diabetes in Arab-Americans. The HP 1 and 2 alleles were analyzed by polymerase chain reaction and gel electrophoresis. Associations were analyzed by linear regression. Associations were identified between the heterozygous haptoglobin 2-1 genotype and insulin resistance, fasting insulin and fasting c-peptide. The effect of sex did not remain significant after adjustment for relevant variables. HP genetic variation may have utility as a biomarker of insulin resistance and diabetes risk in Arab-Americans, however, future prospective studies are needed.

  9. Dairy Product Consumption Interacts with Glucokinase (GCK Gene Polymorphisms Associated with Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Marine S. Da Silva

    2017-08-01

    Full Text Available Dairy product intake and a person’s genetic background have been reported to be associated with the risk of type 2 diabetes (T2D. The objective of this study was to examine the interaction between dairy products and genes related to T2D on glucose-insulin homeostasis parameters. A validated food frequency questionnaire, fasting blood samples, and glucokinase (GCK genotypes were analyzed in 210 healthy participants. An interaction between rs1799884 in GCK and dairy intake on the homeostasis model assessment of insulin resistance was identified. Secondly, human hepatocellular carcinoma cells (HepG2 were grown in a high-glucose medium and incubated with either 1-dairy proteins: whey, caseins, and a mixture of whey and casein; and 2-four amino acids (AA or mixtures of AA. The expression of GCK-related genes insulin receptor substrate-1 (IRS-1 and fatty acid synthase (FASN was increased with whey protein isolate or hydrolysate. Individually, leucine increased IRS-1 expression, whereas isoleucine and valine decreased FASN expression. A branched-chain AA mixture decreased IRS-1 and FASN expression. In conclusion, carriers of the A allele for rs1799884 in the GCK gene may benefit from a higher intake of dairy products to maintain optimal insulin sensitivity. Moreover, the results show that whey proteins affect the expression of genes related to glucose metabolism.

  10. Vitamin A and feeding statuses modulate the insulin-regulated gene expression in Zucker lean and fatty primary rat hepatocytes.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    Full Text Available Unattended hepatic insulin resistance predisposes individuals to dyslipidemia, type 2 diabetes and many other metabolic complications. The mechanism of hepatic insulin resistance at the gene expression level remains unrevealed. To examine the effects of vitamin A (VA, total energy intake and feeding conditions on the insulin-regulated gene expression in primary hepatocytes of Zucker lean (ZL and fatty (ZF rats, we analyze the expression levels of hepatic model genes in response to the treatments of insulin and retinoic acid (RA. We report that the insulin- and RA-regulated glucokinase, sterol regulatory element-binding protein-1c and cytosolic form of phosphoenolpyruvate carboxykinase expressions are impaired in hepatocytes of ZF rats fed chow or a VA sufficient (VAS diet ad libitum. The impairments are partially corrected when ZF rats are fed a VA deficient (VAD diet ad libitum or pair-fed a VAS diet to the intake of their VAD counterparts in non-fasting conditions. Interestingly in the pair-fed ZL and ZF rats, transient overeating on the last day of pair-feeding regimen changes the expression levels of some VA catabolic genes, and impairs the insulin- and RA-regulated gene expression in hepatocytes. These results demonstrate that VA and feeding statuses modulate the hepatic insulin sensitivity at the gene expression level.

  11. Fatty acid represses insulin receptor gene expression by impairing HMGA1 through protein kinase Cε

    International Nuclear Information System (INIS)

    Dey, Debleena; Bhattacharya, Anirban; Roy, SibSankar; Bhattacharya, Samir

    2007-01-01

    It is known that free fatty acid (FFA) contributes to the development of insulin resistance and type2 diabetes. However, the underlying mechanism in FFA-induced insulin resistance is still unclear. In the present investigation we have demonstrated that palmitate significantly (p < 0.001) inhibited insulin-stimulated phosphorylation of PDK1, the key insulin signaling molecule. Consequently, PDK1 phosphorylation of plasma membrane bound PKCε was also inhibited. Surprisingly, phosphorylation of cytosolic PKCε was greatly stimulated by palmitate; this was then translocated to the nuclear region and associated with the inhibition of insulin receptor (IR) gene transcription. A PKCε translocation inhibitor peptide, εV1, suppressed this inhibitory effect of palmitate, suggesting requirement of phospho-PKCε migration to implement palmitate effect. Experimental evidences indicate that phospho-PKCε adversely affected HMGA1. Since HMGA1 regulates IR promoter activity, expression of IR gene was impaired causing reduction of IR on cell surface and that compromises with insulin sensitivity

  12. Liver lipid molecules induce PEPCK-C gene transcription and attenuate insulin action

    International Nuclear Information System (INIS)

    Chen Guoxun

    2007-01-01

    Cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) plays key roles in gluconeogenesis, glyceroneogenesis, and cataplerosis. Experiments were designed to examine the effects of endogenous lipid molecules from rat livers on the expression of PEPCK-C gene in primary rat hepatocytes. The lipid extracts prepared from livers of Zucker fatty, lean, and Wistar rats induced the expression levels of PEPCK-C transcripts. Insulin-mediated reduction of PEPCK-C gene expression was attenuated by the same treatment. The lipid extracts induced the relative luciferase activity of reporter gene constructs that contain a 2.2-kb 5' promoter fragment of PEPCK-C gene, but not the construct that contains only the 3' untranslated region (UTR) of its mRNA. The estimated half life of PEPCK-C transcripts in the presence of the lipid extract is the same as that in the absence of it. My results demonstrate for the first time that endogenous lipid molecules induce PEPCK-C gene transcription and attenuate insulin action in liver

  13. [Comparison of usefulness between variable numbers of tandem repeats (VNTR) analysis and restriction fragment length polymorphism (RFLP) in the genotyping of Mycobacterium avium].

    Science.gov (United States)

    Kazumi, Yuko; Udagawa, Tadashi; Maeda, Shinji; Murase, Yoshirou; Sugawara, Isamu; Okumura, Masao; Azuma, Yuka; Goto, Mieko; Tsunematsu, Noriko

    2007-10-01

    Comparison of usefulness of IS1245 RFLP and VNTR in M. avium genotyping. Thirty-six cases (55 strains) from sputum and BALF and twelve cases (29 strains) isolated from blood of HIV-infected patients were used. VNTR and RFLP using IS1245 were performed. Multiple samples were taken from 16 patients and 52 clinical isolates were used for VNTR and RFLP for comparison. (1) VNTR and RFLP results were identical in 12 out of 16 cases whose samples were collected several times. (2) Eight isolates were obtained from one patient. In this eight isolates, there were the cases of M. avium polyclonal infection and of mixed infection with M. intracellulare. VNTR patterns were two types and RFLP were 5 kinds of different in this case. (3) VNTR patterns of six isolates from one HIV-infected patient were identical, but there were three variations in RFLP patterns. There were three cases of mixed infections with M. tuberculosis or M. intracellulare, and six strains polyclonal infection of M. avium (7.1 %) in 84 isolates. These 6 clinical isolates were derived from sputum or BALF (5 strains) and HIV-infected blood (one strain). VNTR patterns were similar in four pairs (9 strains) who did not contact closely, but they were distinguished clearly by RFLP. Seventeen strains had three or less IS1245-related bands in RFLP analyses of 89 strains. As there is a possibility of polyclonal infection with M. avium and mixed infection with other species, the single clonal infection should be confirmed first by VNTR. When single colony was obtained, VNTR and RFLP were performed for genotyping of M. avium. Furthermore, strains with less bands by RFLP should be carefully judged in terms of both VNTR and RFLP. It is recommended that the specimens should be collected from each patient several times.

  14. Receptor-like protein-tyrosine phosphatase alpha specifically inhibits insulin-increased prolactin gene expression

    DEFF Research Database (Denmark)

    Jacob, K K; Sap, J; Stanley, F M

    1998-01-01

    A physiologically relevant response to insulin, stimulation of prolactin promoter activity in GH4 pituitary cells, was used as an assay to study the specificity of protein-tyrosine phosphatase function. Receptor-like protein-tyrosine phosphatase alpha (RPTPalpha) blocks the effect of insulin...... is specific by two criteria. A number of potential RPTPalpha targets were ruled out by finding (a) that they are not affected or (b) that they are not on the pathway to insulin-increased prolactin-CAT activity. The negative effect of RPTPalpha on insulin activation of the prolactin promoter is not due...... to reduced phosphorylation or kinase activity of the insulin receptor or to reduced phosphorylation of insulin receptor substrate-1 or Shc. Inhibitor studies suggest that insulin-increased prolactin gene expression is mediated by a Ras-like GTPase but is not mitogen-activated protein kinase dependent...

  15. Reduction of lns-1 gene expression and tissue insulin levels in n5-STZ rats

    Directory of Open Access Journals (Sweden)

    Belinda Vargas Guerrero

    2013-01-01

    Full Text Available Objective: The high global incidence of type 2 diabetes has challenged researchers to establish animal models that resemble the chronic stage observed in type 2 diabetes patients. One such model is induced by neonatal streptozotocin (n-STZ administration to rat pups at 0, 2, or 5 days after birth. In this study, we assessed lns-1 gene expression and tissue insulin levels as well as serum concentration of glucose and insulin, insulin resistance, and histological changes of the islets of Langerhans in n5-STZ rats after 20-weeks post-induction. Methods: Wistar rat pups were randomly distributed into a control group and a streptozotocin-induced group. Experimental induction involved a single intraperitoneal injection of streptozotocin (150 mg/kg into neonates at five days after birth. Results: At 20 weeks post-induction, streptozotocin-induced rats exhibited increased serum glucose levels, reduced serum insulin levels, impaired glucose metabolism and insulin resistance compared to control rats. Histologically, streptozotocin-induced rats exhibited atrophic islets, vacuolization, and significantly fewer insulin-positive cells. lns-1 gene expression was significantly decreased in n5-STZ rats in comparison to the control group. Conclusion: Our findings support that the n5-STZ model 20 weeks post-induction represents an appropriate experimental tool to study T2D and to evaluate novel therapeutic agents and targets that involve insulin gene expression and secretion, as well as complications caused by chronic diabetes.

  16. Cinnamon extract regulates glucose transporter and insulin-signaling gene expression in mouse adipocytes.

    Science.gov (United States)

    Cao, Heping; Graves, Donald J; Anderson, Richard A

    2010-11-01

    Cinnamon extracts (CE) are reported to have beneficial effects on people with normal and impaired glucose tolerance, the metabolic syndrome, type 2 diabetes, and insulin resistance. However, clinical results are controversial. Molecular characterization of CE effects is limited. This study investigated the effects of CE on gene expression in cultured mouse adipocytes. Water-soluble CE was prepared from ground cinnamon (Cinnamomum burmannii). Quantitative real-time PCR was used to investigate CE effects on the expression of genes coding for adipokines, glucose transporter (GLUT) family, and insulin-signaling components in mouse 3T3-L1 adipocytes. CE (100 μg/ml) increased GLUT1 mRNA levels 1.91±0.15, 4.39±0.78, and 6.98±2.18-fold of the control after 2-, 4-, and 16-h treatments, respectively. CE decreased the expression of further genes encoding insulin-signaling pathway proteins including GSK3B, IGF1R, IGF2R, and PIK3R1. This study indicates that CE regulates the expression of multiple genes in adipocytes and this regulation could contribute to the potential health benefits of CE. Published by Elsevier GmbH.

  17. VNTR alleles associated with the {alpha}-globin locus are haplotype and population related

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, J.J.; Clegg, J.B.; Boyce, A.J. [Univ. of Oxford (United Kingdom)

    1994-09-01

    The human {alpha}-globin complex contains several polymorphic restriction-enzyme sites (i.e., RFLPs) linked to form haplotypes and is flanked by two hypervariable VNTR loci, the 5{prime} hypervariable region (HVR) and the more highly polymorphic 3{prime}HVR. Using a combination of RFLP analysis and PCR, the authors have characterized the 5{prime}HVR and 3{prime}HVR alleles associated with the {alpha}-globin haplotypes of 133 chromosomes, and they here show that specific {alpha}-globin haplotypes are each associated with discrete subsets of the alleles observed at these two VNTR loci. This statistically highly significant association is observed over a region spanning {approximately} 100 kb. With the exception of closely related haplotypes, different haplotypes do not share identically sized 3{prime}HVR alleles. Earlier studies have shown that {alpha}-globin haplotype distributions differ between populations; the current findings also reveal extensive population substructure in the repertoire of {alpha}-globin VNTRs. If similar features are characteristic of other VNTR loci, this will have important implications for forensic and anthropological studies. 42 refs., 5 figs., 5 tabs.

  18. High risk association of IL-4 VNTR polymorphism with asthma in a North Indian population.

    Science.gov (United States)

    Birbian, Niti; Singh, Jagtar; Jindal, Surinder Kumar; Sobti, Ranbir Chander

    2014-03-01

    A case-control study was conducted to evaluate the role of IL-4 VNTR polymorphism in asthma that has been associated with various inflammatory diseases worldwide. This is the first case-control study conducted in India, investigating the role of IL-4 VNTR polymorphism in asthma pathogenesis. A case-control study was performed with a total of 824 adult subjects, inducting 410 asthma patients and 414 healthy controls from North India. The genotypes were identified by polymerase chain reaction. Statistical analysis for the IL-4 VNTR polymorphism revealed that the Rp1 allele was significantly associated with asthma with OR=1.47, 95% CI (1.11-1.94) and p=0.005. The Rp1/Rp1 homozygous mutant genotype posed a high risk towards asthma with OR=2.39, 95% CI (0.96-6.14) and p=0.040. The Rp2/Rp1 heterozygous genotype also posed a risk towards asthma with OR=1.39, 95% CI (1.00-1.94) and p=0.040. Most of the phenotypic traits were significantly associated with the disease. IL-4 VNTR polymorphism is a high risk factor for asthma in the studied North Indian population. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Differential gene expression in granulosa cells from polycystic ovary syndrome patients with and without insulin resistance: identification of susceptibility gene sets through network analysis.

    Science.gov (United States)

    Kaur, Surleen; Archer, Kellie J; Devi, M Gouri; Kriplani, Alka; Strauss, Jerome F; Singh, Rita

    2012-10-01

    Polycystic ovary syndrome (PCOS) is a heterogeneous, genetically complex, endocrine disorder of uncertain etiology in women. Our aim was to compare the gene expression profiles in stimulated granulosa cells of PCOS women with and without insulin resistance vs. matched controls. This study included 12 normal ovulatory women (controls), 12 women with PCOS without evidence for insulin resistance (PCOS non-IR), and 16 women with insulin resistance (PCOS-IR) undergoing in vitro fertilization. Granulosa cell gene expression profiling was accomplished using Affymetrix Human Genome-U133 arrays. Differentially expressed genes were classified according to gene ontology using ingenuity pathway analysis tools. Microarray results for selected genes were confirmed by real-time quantitative PCR. A total of 211 genes were differentially expressed in PCOS non-IR and PCOS-IR granulosa cells (fold change≥1.5; P≤0.001) vs. matched controls. Diabetes mellitus and inflammation genes were significantly increased in PCOS-IR patients. Real-time quantitative PCR confirmed higher expression of NCF2 (2.13-fold), TCF7L2 (1.92-fold), and SERPINA1 (5.35-fold). Increased expression of inflammation genes ITGAX (3.68-fold) and TAB2 (1.86-fold) was confirmed in PCOS non-IR. Different cardiometabolic disease genes were differentially expressed in the two groups. Decreased expression of CAV1 (-3.58-fold) in PCOS non-IR and SPARC (-1.88-fold) in PCOS-IR was confirmed. Differential expression of genes involved in TGF-β signaling (IGF2R, increased; and HAS2, decreased), and oxidative stress (TXNIP, increased) was confirmed in both groups. Microarray analysis demonstrated differential expression of genes linked to diabetes mellitus, inflammation, cardiovascular diseases, and infertility in the granulosa cells of PCOS women with and without insulin resistance. Because these dysregulated genes are also involved in oxidative stress, lipid metabolism, and insulin signaling, we hypothesize that these

  20. DRD2 C313T and DRD4 48-bp VNTR polymorphisms and physical activity of healthy men in Lower Silesia, Poland (HALS study).

    Science.gov (United States)

    Jozkow, Pawel; Slowinska-Lisowska, Malgorzata; Laczmanski, Lukasz; Medras, Marek

    2013-03-01

    Both animal and human studies have proved that the dopaminergic system of the brain controls many aspects of behavior, e.g. motivation, addiction, motor movement, locomotion. It has been hypothesized that dopamine signalling may regulate spontaneous physical activity as well. Literature data suggests that an intact function of dopamine receptors (DRD2-DRD4) inhibits physical activity. This study searched for associations between a propensity to be active (or sedentary) and genetic variants of DRD2 and DRD4. Invitations to participate in the study were sent to 900 randomly selected, adult men living in Lower Silesia, Poland. Genotyping of DRD2 C313T and DRD4 48-bp VNTR polymorphisms of enrolled subjects (371 (DRD2 C313T) and 397 (DRD4 48-bp VNTR)) was performed. Level of physical activity was evaluated using the International Physical Activity Questionnaire (IPAQ). No associations were found between level of physical activity (low, moderate, high) and the two polymorphisms: DRD2 C313T (p = 0.49) and DRD4 48-bp VNTR (p = 0.31). Studied subjects did not differ as to the number of hours spent sitting either. The results exclude the presence of significant relationships between polymorphic variants of the dopamine receptors genes and the level of physical activity in men.

  1. Use of the VNTR typing technique to determine the origin of Mycobacterium tuberculosis strains isolated from Filipino patients in Korea.

    Science.gov (United States)

    Lee, Jihye; Tupasi, Thelma E; Park, Young Kil

    2014-05-01

    With increasing international interchange of personnel, international monitoring is necessary to decrease tuberculosis incidence in the world. This study aims to develop a new tool to determine origin of Mycobacterium tuberculosis strains isolated from Filipino patients living in Korea. Thirty-two variable number tandem repeat (VNTR) loci were used for discrimination of 50 Filipino M. tuberculosis strains isolated in the Philippines, 317 Korean strains isolated in Korea, and 8 Filipino strains isolated in Korea. We found that the VNTR loci 0580, 0960, 2531, 2687, 2996, 0802, 2461, 2163a, 4052, 0424, 1955, 2074, 2347, 2401, 3171, 3690, 2372, 3232, and 4156 had different mode among copy numbers or exclusively distinct copy number in VNTR typing between Filipino and Korean M. tuberculosis strains. When these differences of the VNTR loci were applied to 8 Filipino M. tuberculosis strains isolated in Korea, 6 of them revealed Filipino type while 2 of them had Korean type. Using the differences of mode or repeated number of VNTR loci were very useful in distinguishing the Filipino strain from Korean strain.

  2. Lack of Association Between the IL1B (-511 and +3954), IL1RN VNTR Polymorphisms and Tuberculosis Risk: A Meta-analysis.

    Science.gov (United States)

    Huang, Qiu-Pin; Liao, Ning; Zhao, Hua; Chen, Min-Li; Xie, Zheng-Fu

    2015-12-01

    Several recent studies have provided evidence that polymorphisms in the interleukin-1 (IL1) gene are implicated in tuberculosis (TB). However, results of different studies are inconsistent. The aim of this study was to perform a meta-analysis investigating the association of the IL1B (-511 and +3954) and IL1RN VNTR polymorphisms with TB risk. A systematic review of the English literature was conducted by searching Pubmed, Scopus, and ISI Web of Knowledge databases for relevant studies. Pooled odds ratios (OR) with 95 % confidence intervals (CI) were calculated using fixed effects models. Between-study heterogeneity and publication bias were also evaluated. Nine case-control studies including 3327 participants were reviewed and analyzed. Our results did not indicate any association of the IL1B (-511 and +3954) and IL1RN VNTR polymorphisms with TB risk in the overall populations. The pooled OR of the IL1B -511 polymorphism was 1.09 (95 % CI 0.87-1.36) for the dominant model, 1.11 (0.89-1.38) for the recessive model, 1.15 (0.87-1.50) for the homozygote model, and 1.07 (0.94-1.23) for the allelic comparison model. ORs for the IL1B +3954 and IL1RN VNTR polymorphisms were similar. In subgroup analysis stratified by ethnicity, the results revealed no association between these polymorphisms and TB risk in black people, Asians, and Caucasians, respectively. We did not identify significant between-study heterogeneity across all studies, and there was no evidence of publication bias. Our results indicate there is a lack of association between the IL1B (-511 and +3954), IL1RN VNTR polymorphisms and TB risk.

  3. Rapid clonal analysis of recurrent tuberculosis by direct MIRU-VNTR typing on stored isolates

    Directory of Open Access Journals (Sweden)

    de Viedma Darío

    2007-07-01

    Full Text Available Abstract Background The application of molecular tools to the analysis of tuberculosis has revealed examples of clonal complexity, such as exogenous reinfection, coinfection, microevolution or compartmentalization. The detection of clonal heterogeneity by standard genotyping approaches is laborious and often requires expertise. This restricts the rapid availability of Mycobacterium tuberculosis (MTB genotypes for clinical or therapeutic decision-making. A new PCR-based technique, MIRU-VNTR, has made it possible to genotype MTB in a time frame close to real-time fingerprinting. Our purpose was to evaluate the capacity of this technique to provide clinicians with a rapid discrimination between reactivation and exogenous reinfection and whether MIRU-VNTR makes it possible to obtain data directly from stored MTB isolates from recurrent episodes. Results We detected differences, between the MIRUtypes of recurrent isolates in 38.5% (5/13 of the cases studied. These included cases of i exogenous reinfection, often with more resistant strains, ii likely examples of microevolution, leading to the appearance of new clonal variants and iii a combination of microevolution, coinfection and competition. Conclusion MIRU-VNTR rapidly obtained clinically useful genotyping data in a challenging situation, directly from stored MTB isolates without subculturing them or purifying their DNA. Our results also mean that MIRU-VNTR could be applied for easy, rapid and affordable massive screening of collections of stored MTB isolates, which could establish the real dimension of clonal heterogeneity in MTB infection.

  4. IGF-I, IGF-II, and Insulin Stimulate Different Gene Expression Responses through Binding to the IGF-I Receptor

    DEFF Research Database (Denmark)

    Versteyhe, Soetkin; Klaproth, Birgit; Borup, Rehannah

    2013-01-01

    Insulin and the insulin-like growth factors (IGF)-I and -II are closely related peptides important for regulation of metabolism, growth, differentiation, and development. The IGFs exert their main effects through the IGF-I receptor. Although the insulin receptor is the main physiological receptor...... for insulin, this peptide hormone can also bind at higher concentrations to the IGF-I receptor and exert effects through it. We used microarray gene expression profiling to investigate the gene expression regulated by IGF-I, IGF-II, and insulin after stimulation of the IGF-I receptor. Fibroblasts from mice......, knockout for IGF-II and the IGF-II/cation-independent mannose-6-phosphate receptor, and expressing functional IGF-I but no insulin receptors, were stimulated for 4 h with equipotent saturating concentrations of insulin, IGF-I, and IGF-II. Each ligand specifically regulated a group of transcripts...

  5. DRD4-exonIII-VNTR moderates the effect of childhood adversities on emotional resilience in young-adults.

    Directory of Open Access Journals (Sweden)

    Debjani Das

    Full Text Available Most individuals successfully maintain psychological well-being even when exposed to trauma or adversity. Emotional resilience or the ability to thrive in the face of adversity is determined by complex interactions between genetic makeup, previous exposure to stress, personality, coping style, availability of social support, etc. Recent studies have demonstrated that childhood trauma diminishes resilience in adults and affects mental health. The Dopamine receptor D4 (DRD4 exon III variable number tandem repeat (VNTR polymorphism was reported to moderate the impact of adverse childhood environment on behaviour, mood and other health-related outcomes. In this study we investigated whether DRD4-exIII-VNTR genotype moderates the effect of childhood adversities (CA on resilience. In a representative population sample (n = 1148 aged 30-34 years, we observed an interactive effect of DRD4 genotype and CA (β = 0.132; p = 0.003 on resilience despite no main effect of the genotype when effects of age, gender and education were controlled for. The 7-repeat allele appears to protect against the adverse effect of CA since the decline in resilience associated with increased adversity was evident only in individuals without the 7-repeat allele. Resilience was also significantly associated with approach-/avoidance-related personality measures (behavioural inhibition/activation system; BIS/BAS measures and an interactive effect of DRD4-exIII-VNTR genotype and CA on BAS was observed. Hence it is possible that approach-related personality traits could be mediating the effect of the DRD4 gene and childhood environment interaction on resilience such that when stressors are present, the 7-repeat allele influences the development of personality in a way that provides protection against adverse outcomes.

  6. [Clustering analysis of Mycobacterium tuberculosis using the JATA(12)-VNTR system for molecular epidemiological surveillance in broad areas of Japan].

    Science.gov (United States)

    Wada, Takayuki; Tamaru, Aki; Iwamoto, Tomotada; Arikawa, Kentaro; Nakanishi, Noriko; Komukai, Jun; Matsumoto, Kenji; Hase, Atsushi

    2013-04-01

    Japan Anti-Tuberculosis Association (JATA) (12)-variable numbers of tandem repeats (VNTR) is a standard method for genotyping of clinical isolates of Mycobacterium tuberculosis in Japan. As a model study for nationwide surveillance, this study aimed to describe the tendency and frequency of genotypes of M. tuberculosis in a large number of clinical samples. Clinical isolates of M. tuberculosis (n = 1,778) were obtained from patients with tuberculosis in 3 areas, i.e., Osaka City, Osaka Prefecture, and Kobe City, during 2007 and 2008. The samples were analyzed using JATA (12)-VNTR. All genotypes were subjected to clustering analysis. In total, 1,086 (61.1%) isolates showed clustering. The most common clusters were composed of 3 members. Such clusters were considered to reflect either actual transmission or low discriminatory power of JATA (12)-VNTR. Several prevalent JATA(12)-VNTR genotypes formed large clusters and were discussed in relation with epidemiological findings of other studies. The findings of this study will aid in the construction of an effective genotyping-based surveillance system of M. tuberculosis, through improvement of interpretation of VNTR types, observation of certain particular strains in an area, and efficient detection of unidentified outbreaks.

  7. Insulin stimulates the expression of the SHARP-1 gene via multiple signaling pathways.

    Science.gov (United States)

    Takagi, K; Asano, K; Haneishi, A; Ono, M; Komatsu, Y; Yamamoto, T; Tanaka, T; Ueno, H; Ogawa, W; Tomita, K; Noguchi, T; Yamada, K

    2014-06-01

    The rat enhancer of split- and hairy-related protein-1 (SHARP-1) is a basic helix-loop-helix transcription factor. An issue of whether SHARP-1 is an insulin-inducible transcription factor was examined. Insulin rapidly increased the level of SHARP-1 mRNA both in vivo and in vitro. Then, signaling pathways involved with the increase of SHARP-1 mRNA by insulin were determined in H4IIE rat hepatoma cells. Pretreatments with LY294002, wortmannin, and staurosporine completely blocked the induction effect, suggesting the involvement of both phosphoinositide 3-kinase (PI 3-K) and protein kinase C (PKC) pathways. In fact, overexpression of a dominant negative form of atypical protein kinase C lambda (aPKCλ) significantly decreased the induction of the SHARP-1 mRNA. In addition, inhibitors for the small GTPase Rac or Jun N-terminal kinase (JNK) also blocked the induction of SHARP-1 mRNA by insulin. Overexpression of a dominant negative form of Rac1 prevented the activation by insulin. Furthermore, actinomycin D and cycloheximide completely blocked the induction of SHARP-1 mRNA by insulin. Finally, when a SHARP-1 expression plasmid was transiently transfected with various reporter plasmids into H4IIE cells, the promoter activity of PEPCK reporter plasmid was specifically decreased. Thus, we conclude that insulin induces the SHARP-1 gene expression at the transcription level via a both PI 3-K/aPKCλ/JNK- and a PI 3-K/Rac/JNK-signaling pathway; protein synthesis is required for this induction; and that SHARP-1 is a potential repressor of the PEPCK gene expression. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Expression of an insulin/interleukin-1 receptor antagonist hybrid gene in insulin-producing cell lines (HIT-T15 and NIT-1) confers resistance against interleukin-1-induced nitric oxide production.

    Science.gov (United States)

    Welsh, N; Bendtzen, K; Welsh, M

    1995-01-01

    A hybrid gene consisting of the insulin gene enhancer/promoter region, the signal sequence, the insulin B- and C-chains, and the human interleukin-1 receptor antagonist (IL-1ra) gene was constructed. This hybrid gene was transfected together with the pSV2-neo construct into the insulin-producing cell lines HIT-T15 and NIT-1. One of the geneticin-selected clones, HITra2, expressed a 1.4-kb mRNA, which hybridized both to insulin and IL-1ra-cDNA in Northern blot analysis. Three proteins, with the mol wt 23, 17, and 14 kD, were immunoprecipitated with anti-IL-1ra antibodies from [35S]methionine-labeled HITra2 cells. Both at a low and at a high glucose concentration, 4-5 ng of IL-1ra/10(6) cells (ELISA) was released from these cells. On the other hand, a high glucose concentration evoked a three-fold increase in the release of insulin, suggesting that IL-1ra was released constitutively. Measured by nitrite production, transfected HIT, and NIT-1 cells exhibited a more than 10-fold decrease in IL-1 beta sensitivity. Since the conditioned culture media from the HITra2 cells exhibited an anti-IL-1 beta activity of only 0.5 U/ml, and mixed culture of HITra2 cells and isolated rat islets prevented IL-1 beta induced inhibition of insulin release, it is likely that IL-1ra acts locally at the cell surface. It is concluded that expression of a hybrid insulin/IL-1ra gene confers resistance to IL-1 and that this technique may be used to elucidate the role of IL-1 in autoimmune disorders such as insulin-dependent diabetes mellitus. Images PMID:7706480

  9. Glucose metabolism in pigs expressing human genes under an insulin promoter.

    Science.gov (United States)

    Wijkstrom, Martin; Bottino, Rita; Iwase, Hayoto; Hara, Hidetaka; Ekser, Burcin; van der Windt, Dirk; Long, Cassandra; Toledo, Frederico G S; Phelps, Carol J; Trucco, Massimo; Cooper, David K C; Ayares, David

    2015-01-01

    Xenotransplantation of porcine islets can reverse diabetes in non-human primates. The remaining hurdles for clinical application include safe and effective T-cell-directed immunosuppression, but protection against the innate immune system and coagulation dysfunction may be more difficult to achieve. Islet-targeted genetic manipulation of islet-source pigs represents a powerful tool to protect against graft loss. However, whether these genetic alterations would impair islet function is unknown. On a background of α1,3-galactosyltransferase gene-knockout (GTKO)/human (h)CD46, additional genes (hCD39, human tissue factor pathway inhibitor, porcine CTLA4-Ig) were inserted in different combinations under an insulin promoter to promote expression in islets (confirmed by immunofluorescence). Seven pigs were tested for baseline and glucose/arginine-challenged levels of glucose, insulin, C-peptide, and glucagon. This preliminary study did not show definite evidence of β-cell deficiencies, even when three transgenes were expressed under the insulin promoter. Of seven animals, all were normoglycemic at fasting, and five of seven had normal glucose disposal rates after challenge. All animals exhibited insulin, C-peptide, and glucagon responses to both glucose and arginine challenge; however, significant interindividual variation was observed. Multiple islet-targeted transgenic expression was not associated with an overtly detrimental effect on islet function, suggesting that complex genetic constructs designed for islet protection warrants further testing in islet xenotransplantation models. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Brain morphometric correlates of MAOA-uVNTR polymorphism in violent behavior

    Directory of Open Access Journals (Sweden)

    C. Romero-Rebollar

    2015-01-01

    Discussion: This findings suggests that grey matter integrity in superior temporal pole could be a neurobiological correlate of the allelic association between MAOA-uVNTR polymorphism and violent behavior due to its implication in socio-emotional processing.

  11. Molecular characterization of Mycobacterium tuberculosis isolates from Tanga, Tanzania: First insight of MIRU-VNTR and microarray-based spoligotyping in a high burden country.

    Science.gov (United States)

    Hoza, Abubakar S; Mfinanga, Sayoki G; Moser, Irmgard; König, Brigitte

    2016-05-01

    Molecular typing of Mycobacterium tuberculosis(MTB) has greatly enhanced the understanding of the population structure of MTB isolates and epidemiology of tuberculosis (TB). To characterize prevalent genotypes of MTB, microarrays‑based spoligotyping and mycobacterial interspersed repetitive unit‑variable number of tandem repeats (MIRU‑VNTR) were applied on 80 isolates collected from primary health care facilities in Tanga, North‑eastern Tanzania. A total of 18 distinct spoligotypes were identified. The lineages by order of their predominance were EAI and CAS families (26.25%, 21 isolates each), LAM family and T super‑family (10%, 8 isolates each), MANU family (3.75%, 3 isolates), Beijing family (2.5%, 2 isolates) and S family (1.25%, 1 isolate). Overall, sixteen (20%) strains could not be allocated to any lineage according to the SITVIT_WEB database. The allelic diversity (h) for specific MIRU‑VNTR loci showed a considerable variation ranging from 0.826 of VNTR locus 3192 to 0.141 of VNTR locus 2059. The allelic diversity for 11 loci (VNTR 3192, 2996, 2165, 960, 4052, 424, 4156, 2531, 1644, 802 and 3690) exceeded 0.6, indicating highly discriminatory power. Seven loci (VNTR 2163b, 2401, 1955, 577, 4348, 2687 and 580) showed moderate discrimination (0.3 ≤ h ≥ 0.6), and three loci (VNTR3007, 154 and 2059) were less polymorphic. The present study suggests that the TB cases in Tanga might be caused by a diverse array of MTB strain families that may be indicative of a cosmopolitan population with frequent migration and travel. Microarray‑based spoligotyping and MIRU‑VNTR could be reliable tools in detecting different MTB genotypes in high burden settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Association analysis between a VNTR intron 8 polymorphism of the dopamine transporter gene (SLC6A3 and obsessive- compulsive disorder in a Brazilian sample Análise de associação entre um polimorfismo VNTR no intron 8 do gene do transportador de dopamina (SLC6A3 e transtorno obsessivo-compulsivo em uma amostra brasileira

    Directory of Open Access Journals (Sweden)

    Karen Miguita

    2007-12-01

    Full Text Available Family, twin and segregation analysis have provided evidences that genetic factors are implicated in the susceptibility for obsessive-compulsive disorder (OCD. Several lines of research suggest that the dopaminergic system may be involved in the pathophysiology of OCD. Thus, the aim of the present study was to investigate a possible association between a polymorphism located in intron 8 of the dopamine transporter gene (SLC6A3 and OCD in a Brazilian sample composed by 208 patients and 865 healthy controls. No statistically differences were observed in allelic and genotype distributions between cases and controls. No association was also observed when the sample was divided according to specific phenotypic features such as gender, presence of tic disorders co-morbidity and age at onset of obsessive-compulsive symptoms (OCS. Our results suggest that the intron 8 VNTR of the SLC6A3 investigated in this study is not related to the susceptibility for OCD in our Brazilian sample.Estudos de família, gêmeos e de segregação têm demonstrado que fatores genéticos estão envolvidos na susceptibilidade para o desenvolvimento do transtorno obsessivo-compulsivo (TOC. Várias linhas de pesquisa sugerem que o sistema dopaminérgico possa estar envolvido na fisiopatologia do TOC. Assim, o objetivo do presente estudo foi investigar uma possível associação entre o polimorfismo localizado no intron 8 do gene do transportador da dopamina (SLC6A3 e o TOC em uma amostra brasileira composta por 208 pacientes e 865 controles sadios. Nenhuma diferença estatisticamente significante foi observada nas distribuições alélicas e genotípicas entre os grupos de pacientes e controles. Nenhuma associação também foi observada quando as amostras foram divididas de acordo com características fenotípicas específicas, tais como gênero, presença de co-morbidade com tiques e idade de início dos sintomas obsessivo-compulsivo (SOC. Nossos resultados sugerem que o VNTR

  13. Insulin gene polymorphisms in type 1 diabetes, Addison's disease and the polyglandular autoimmune syndrome type II

    Directory of Open Access Journals (Sweden)

    Hahner Stefanie

    2008-07-01

    Full Text Available Abstract Background Polymorphisms within the insulin gene can influence insulin expression in the pancreas and especially in the thymus, where self-antigens are processed, shaping the T cell repertoire into selftolerance, a process that protects from β-cell autoimmunity. Methods We investigated the role of the -2221Msp(C/T and -23HphI(A/T polymorphisms within the insulin gene in patients with a monoglandular autoimmune endocrine disease [patients with isolated type 1 diabetes (T1D, n = 317, Addison's disease (AD, n = 107 or Hashimoto's thyroiditis (HT, n = 61], those with a polyglandular autoimmune syndrome type II (combination of T1D and/or AD with HT or GD, n = 62 as well as in healthy controls (HC, n = 275. Results T1D patients carried significantly more often the homozygous genotype "CC" -2221Msp(C/T and "AA" -23HphI(A/T polymorphisms than the HC (78.5% vs. 66.2%, p = 0.0027 and 75.4% vs. 52.4%, p = 3.7 × 10-8, respectively. The distribution of insulin gene polymorphisms did not show significant differences between patients with AD, HT, or APS-II and HC. Conclusion We demonstrate that the allele "C" of the -2221Msp(C/T and "A" -23HphI(A/T insulin gene polymorphisms confer susceptibility to T1D but not to isolated AD, HT or as a part of the APS-II.

  14. Overexpression of the ped/pea-15 Gene Causes Diabetes by Impairing Glucose-Stimulated Insulin Secretion in Addition to Insulin Action

    OpenAIRE

    Vigliotta, Giovanni; Miele, Claudia; Santopietro, Stefania; Portella, Giuseppe; Perfetti, Anna; Maitan, Maria Alessandra; Cassese, Angela; Oriente, Francesco; Trencia, Alessandra; Fiory, Francesca; Romano, Chiara; Tiveron, Cecilia; Tatangelo, Laura; Troncone, Giancarlo; Formisano, Pietro

    2004-01-01

    Overexpression of the ped/pea-15 gene is a common feature of type 2 diabetes. In the present work, we show that transgenic mice ubiquitously overexpressing ped/pea-15 exhibited mildly elevated random-fed blood glucose levels and decreased glucose tolerance. Treatment with a 60% fat diet led ped/pea-15 transgenic mice to develop diabetes. Consistent with insulin resistance in these mice, insulin administration reduced glucose levels by only 35% after 45 min, compared to 70% in control mice. In...

  15. Associação entre polimorfismo SLC6A3 3’UTR VNTR e a resposta ao tratamento da dependência de nicotina

    Directory of Open Access Journals (Sweden)

    Guilherme Rubino de Azevedo Focchi

    2011-01-01

    Full Text Available Objetivo: Avaliar a associação entre a resposta ao tratamento da dependência de nicotina com bupropiona e a presença do polimorfismo SLC6A3 3’UTR VNTR, localizado no gene que codifica o transportador dopaminérgico. Método: Foram acompanhados no Ambulatório de Tabagismo do Instituto de Psiquiatria da Faculdade de Medicina da USP 100 pacientes do sexo masculino com diagnóstico de dependência de nicotina, sem outras patologias. Todos receberam bupropiona até 300 mg ao dia por 12 semanas, associada à terapia cognitivo-comportamental em grupo. A Escala de Fagerström foi aplicada no início e no final do tratamento, e avaliou-se a parada do uso de cigarros na última semana de tratamento e um mês após. Os pacientes tiveram 10 ml de sangue colhidos e genotipados para a existência do polimorfismo SLC6A3 3’UTR VNTR. Resultados: Não foi encontrada associação entre cessação do uso de cigarro e presença do polimorfismo. Conclusão: São necessários mais estudos para avaliar se a presença do polimorfismo SLC6A3 3’UTR VNTR estaria relacionada à melhor resposta ao tratamento da dependência de nicotina.

  16. Association between Insulin Like Growth Factor-1 (IGF-1) gene ...

    African Journals Online (AJOL)

    The insulin-like growth factor-1 (IGF1) is a key regulator of muscle development and metabolism in birds and other vertebrate. Our objective was to determine the association between IGF1 gene polymorphism and carcass traits in FUNAAB Alpha chicken. Genomic DNA was extracted from the blood of 50 normal feathered ...

  17. Interleukin‑1 gene cluster variants in hemodialysis patients with end stage renal disease: An association and meta‑analysis

    Directory of Open Access Journals (Sweden)

    G Tripathi

    2015-01-01

    Full Text Available We evaluated whether polymorphisms in interleukin (IL-1 gene cluster (IL-1 alpha [IL-1A], IL-1 beta [IL-1B], and IL-1 receptor antagonist [IL-1RN] are associated with end stage renal disease (ESRD. A total of 258 ESRD patients and 569 ethnicity matched controls were examined for IL-1 gene cluster. These were genotyped for five single-nucleotide gene polymorphisms in the IL-1A, IL-1B and IL-1RN genes and a variable number of tandem repeats (VNTR in the IL-1RN. The IL-1B − 3953 and IL-1RN + 8006 polymorphism frequencies were significantly different between the two groups. At IL-1B, the T allele of − 3953C/T was increased among ESRD (P = 0.0001. A logistic regression model demonstrated that two repeat (240 base pair [bp] of the IL-1Ra VNTR polymorphism was associated with ESRD (P = 0.0001. The C/C/C/C/C/1 haplotype was more prevalent in ESRD = 0.007. No linkage disequilibrium (LD was observed between six loci of IL-1 gene. We further conducted a meta-analysis of existing studies and found that there is a strong association of IL-1 RN VNTR 86 bp repeat polymorphism with susceptibility to ESRD (odds ratio = 2.04, 95% confidence interval = 1.48-2.82; P = 0.000. IL-1B − 5887, +8006 and the IL-1RN VNTR polymorphisms have been implicated as potential risk factors for ESRD. The meta-analysis showed a strong association of IL-1RN 86 bp VNTR polymorphism with susceptibility to ESRD.

  18. Paternity testing with VNTR DNA systems. II. Evaluation of 271 cases of disputed paternity with the VNTR systems D2S44, D5S43, D7S21, D7S22, and D12S11

    DEFF Research Database (Denmark)

    Hansen, Hanna Elsebeth; Morling, N

    1993-01-01

    Paternity testing was carried out in 271 cases of disputed paternity using the 5 VNTR systems D2S44 (YNH24), D5S43 (MS8), D7S21 (MS31), D7S22 (g3), and D12S11 (MS43a), and 10-15 conventional marker systems including the HLA-A,B system. By means of the matching criteria for the VNTR systems...

  19. New PAH gene promoter KLF1 and 3'-region C/EBPalpha motifs influence transcription in vitro.

    Science.gov (United States)

    Klaassen, Kristel; Stankovic, Biljana; Kotur, Nikola; Djordjevic, Maja; Zukic, Branka; Nikcevic, Gordana; Ugrin, Milena; Spasovski, Vesna; Srzentic, Sanja; Pavlovic, Sonja; Stojiljkovic, Maja

    2017-02-01

    Phenylketonuria (PKU) is a metabolic disease caused by mutations in the phenylalanine hydroxylase (PAH) gene. Although the PAH genotype remains the main determinant of PKU phenotype severity, genotype-phenotype inconsistencies have been reported. In this study, we focused on unanalysed sequences in non-coding PAH gene regions to assess their possible influence on the PKU phenotype. We transiently transfected HepG2 cells with various chloramphenicol acetyl transferase (CAT) reporter constructs which included PAH gene non-coding regions. Selected non-coding regions were indicated by in silico prediction to contain transcription factor binding sites. Furthermore, electrophoretic mobility shift assay (EMSA) and supershift assays were performed to identify which transcriptional factors were engaged in the interaction. We found novel KLF1 motif in the PAH promoter, which decreases CAT activity by 50 % in comparison to basal transcription in vitro. The cytosine at the c.-170 promoter position creates an additional binding site for the protein complex involving KLF1 transcription factor. Moreover, we assessed for the first time the role of a multivariant variable number tandem repeat (VNTR) region located in the 3'-region of the PAH gene. We found that the VNTR3, VNTR7 and VNTR8 constructs had approximately 60 % of CAT activity. The regulation is mediated by the C/EBPalpha transcription factor, present in protein complex binding to VNTR3. Our study highlighted two novel promoter KLF1 and 3'-region C/EBPalpha motifs in the PAH gene which decrease transcription in vitro and, thus, could be considered as PAH expression modifiers. New transcription motifs in non-coding regions will contribute to better understanding of the PKU phenotype complexity and may become important for the optimisation of PKU treatment.

  20. Reduced expression of nuclear-encoded genes involved in mitochondrial oxidative metabolism in skeletal muscle of insulin-resistant women with polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Skov, Vibe; Glintborg, Dorte; Knudsen, Steen

    2007-01-01

    Insulin resistance in skeletal muscle is a major risk factor for the development of type 2 diabetes in women with polycystic ovary syndrome (PCOS). In patients with type 2 diabetes, insulin resistance in skeletal muscle is associated with abnormalities in insulin signaling, fatty acid metabolism......, and mitochondrial oxidative phosphorylation (OXPHOS). In PCOS patients, the molecular mechanisms of insulin resistance are, however, less well characterized. To identify biological pathways of importance for the pathogenesis of insulin resistance in PCOS, we compared gene expression in skeletal muscle...... of metabolically characterized PCOS patients (n = 16) and healthy control subjects (n = 13) using two different approaches for global pathway analysis: gene set enrichment analysis (GSEA 1.0) and gene map annotator and pathway profiler (GenMAPP 2.0). We demonstrate that impaired insulin-stimulated total, oxidative...

  1. Association of MEP1A gene variants with insulin metabolism in central European women with polycystic ovary syndrome.

    Science.gov (United States)

    Lam, Uyen D P; Lerchbaum, Elisabeth; Schweighofer, Natascha; Trummer, Olivia; Eberhard, Katharina; Genser, Bernd; Pieber, Thomas R; Obermayer-Pietsch, Barbara

    2014-03-10

    Polycystic ovary syndrome (PCOS) shows not only hyperandrogenemia, hirsutism and fertility problems, but also metabolic disturbances including obesity, cardiovascular events and type-2 diabetes. Accumulating evidence suggests some degree of inflammation associated with prominent aspects of PCOS. We aimed to investigate the association of genetic variants 3'UTR rs17468190 (G/T) of the inflammation-associated gene MEP1A (GenBank ID: NM_005588.2) with metabolic disturbances in PCOS and healthy control women. Genetic variants rs17468190 (G/T) of MEP1A gene were analyzed in 576 PCOS women and 206 controls by using the Taqman fluorogenic 5'-exonuclease assay. This polymorphism was tested for association with anthropometric, metabolic, hormonal, and functional parameters of PCOS. There was a borderline significant difference in genotype distribution between PCOS and control women (p=0.046). In overweight/obese PCOS patients, the variants rs17468190 (G/T) in the MEP1A gene are associated with glucose and insulin metabolism. In a dominant model, the GG genotype of the MEP1A gene was more strongly associated with insulin metabolism in overweight/obese PCOS women (body mass index, BMI>25 kg/m(2)), than in GT+TT genotypes. The MEP1A GG-carriers showed a significantly increased homeostatic model assessment - insulin resistance (HOMA-IR) (p=0.003), elevation of fasting insulin (p=0.004) and stimulated insulin (30 min, pdisease modification in PCOS. It might contribute to the abnormalities of glucose metabolism and insulin sensitivity and serve as a diagnostic or therapeutic target gene for PCOS. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Associations between period 3 gene polymorphisms and sleep- /chronotype-related variables in patients with late-life insomnia.

    Science.gov (United States)

    Mansour, Hader A; Wood, Joel; Chowdari, Kodavali V; Tumuluru, Divya; Bamne, Mikhil; Monk, Timothy H; Hall, Martica H; Buysse, Daniel J; Nimgaonkar, Vishwajit L

    2017-01-01

    A variable number tandem repeat polymorphism (VNTR) in the period 3 (PER3) gene has been associated with heritable sleep and circadian variables, including self-rated chronotypes, polysomnographic (PSG) variables, insomnia and circadian sleep-wake disorders. This report describes novel molecular and clinical analyses of PER3 VNTR polymorphisms to better define their functional consequences. As the PER3 VNTR is located in the exonic (protein coding) region of PER3, we initially investigated whether both alleles (variants) are transcribed into messenger RNA in human fibroblasts. The VNTR showed bi-allelic gene expression. We next investigated genetic associations in relation to clinical variables in 274 older adult Caucasian individuals. Independent variables included genotypes for the PER3 VNTR as well as a representative set of single nucleotide polymorphisms (SNPs) that tag common variants at the PER3 locus (linkage disequilibrium (LD) between genetic variants sleep time and sleep latency, self-rated chronotype, estimated with the Composite Scale (CS), and lifestyle regularity, estimated using the social rhythm metric (SRM). Initially, genetic polymorphisms were individually analyzed in relation to each outcome variable using analysis of variance (ANOVA). Nominally significant associations were further tested using regression analyses that incorporated individual ANOVA-associated DNA variants as potential predictors and each of the selected sleep/circadian variables as outcomes. The covariates included age, gender, body mass index and an index of medical co-morbidity. Significant genetic associations with the VNTR were not detected with the sleep or circadian variables. Nominally significant associations were detected between SNP rs1012477 and CS scores (p = 0.003) and between rs10462021 and SRM (p = 0.047); rs11579477 and average delta power (p = 0.043) (analyses uncorrected for multiple comparisons). In conclusion, alleles of the VNTR are expressed at the

  3. Increased insulin sensitivity and changes in the expression profile of key insulin regulatory genes and beta cell transcription factors in diabetic KKAy-mice after feeding with a soy bean protein rich diet high in isoflavone content.

    Science.gov (United States)

    Nordentoft, I; Jeppesen, P B; Hong, J; Abudula, R; Hermansen, K

    2008-06-25

    High content isoflavone soy protein (SBP) (Abalon) has been found in animal studies to possess beneficial effects on a number of the characteristic features of the insulin resistance syndrome. The aim of this study was to investigate whether SBP exerts beneficial effects on metabolism in the diabetic KKAy-mouse. Furthermore, we investigated the long-term in vivo effect of SBP on the expression profile in islets of key insulin regulatory genes. Twenty KKAy-mice, aged 5 weeks, were divided into 2 groups and treated for 9 weeks with either (A) standard chow diet (control) or (B) chow + 50% SBP. Twenty normal C57BL-mice fed with standard chow diet served as nondiabetic controls (C). Blood samples were collected and analyzed before and after intervention. Gene expression was determined in islets by quantitative real-time RT-PCR and Affymetrix microarray. It was demonstrated that long-term treatment with SBP improves glucose homeostasis, increases insulin sensitivity, and lowers plasma triglycerides in diabetic KKAy-mice. SBP reduces fasting plasma glucose, insulin, triglycerides, and total cholesterol. Furthermore, SBP markedly changes the gene expression profile of key insulin regulatory genes GLUT2, GLUT3, Ins1, Ins2, IGF1, Beta2/Neurod1, cholecystokinin, and LDLr, and proliferative genes in islets isolated from KKAy-mice. After 9 weeks of treatment with SBP, plasma glucose and insulin homeostasis was normalized compared to start levels. The results indicate that SBP improves glucose and insulin sensitivity and up-regulates the expression of key insulin regulatory genes.

  4. Gene expression in skeletal muscle biopsies from people with type 2 diabetes and relatives: differential regulation of insulin signaling pathways.

    Directory of Open Access Journals (Sweden)

    Jane Palsgaard

    Full Text Available BACKGROUND: Gene expression alterations have previously been associated with type 2 diabetes, however whether these changes are primary causes or secondary effects of type 2 diabetes is not known. As healthy first degree relatives of people with type 2 diabetes have an increased risk of developing type 2 diabetes, they provide a good model in the search for primary causes of the disease. METHODS/PRINCIPAL FINDINGS: We determined gene expression profiles in skeletal muscle biopsies from Caucasian males with type 2 diabetes, healthy first degree relatives, and healthy controls. Gene expression was measured using Affymetrix Human Genome U133 Plus 2.0 Arrays covering the entire human genome. These arrays have not previously been used for this type of study. We show for the first time that genes involved in insulin signaling are significantly upregulated in first degree relatives and significantly downregulated in people with type 2 diabetes. On the individual gene level, 11 genes showed altered expression levels in first degree relatives compared to controls, among others KIF1B and GDF8 (myostatin. LDHB was found to have a decreased expression in both groups compared to controls. CONCLUSIONS/SIGNIFICANCE: We hypothesize that increased expression of insulin signaling molecules in first degree relatives of people with type 2 diabetes, work in concert with increased levels of insulin as a compensatory mechanism, counter-acting otherwise reduced insulin signaling activity, protecting these individuals from severe insulin resistance. This compensation is lost in people with type 2 diabetes where expression of insulin signaling molecules is reduced.

  5. Stimulation of albumin gene transcription by insulin in primary cultures of rat hepatocytes

    International Nuclear Information System (INIS)

    Lloyd, C.E.; Kalinyak, J.E.; Hutson, S.M.; Jefferson, L.S.

    1987-01-01

    The first goal of the work reported here was to prepare single-stranded DNA sequences for use in studies on the regulation of albumin gene expression. A double-stranded rat albumin cDNA clone was subcloned into the bacteriophage vector M13mp7. Single-stranded recombinant clones were screened for albumin sequences containing either the mRNA strand or the complementary strand. Two clones were selected that contained the 1200 nucleotide long 3' end of the albumin sequence. DNA from the clone containing the mRNA strand was used as a template for DNA polymerase I to prepare a radiolabeled, single-stranded cDNA to albumin mRNA. This radiolabeled cDNA probe was used to quantitate the relative abundance of albumin mRNA in samples of total cellular RNA. DNA from the clone containing the complementary strand was used to measure relative rates of albumin gene transcription in isolated nuclei. The second goal was to use the single-stranded DNA probes to investigate the mechanism of the insulin-mediated stimulation of albumin synthesis in primary cultures of rat hepatocytes. Addition of insulin to hepatocytes maintained in a chemically defined, serum-free medium for 40 h in the absence of any hormones resulted in a specific 1.5- to 2.5-fold stimulation of albumin gene transcription that was maximal at 3 h and was maintained above control values for at least 24 h. The rate of albumin gene transcription in nuclei isolated from livers of diabetic rats was reduced to 50% of the value recorded in control nuclei. Taken together, these findings demonstrate that insulin regulates synthesis of albumin at the level of gene transcription

  6. Study of a possible role of the monoamine oxidase A (MAOA) gene in paranoid schizophrenia among a Chinese population.

    Science.gov (United States)

    Sun, Yuhui; Zhang, Jiexu; Yuan, Yanbo; Yu, Xin; Shen, Yan; Xu, Qi

    2012-01-01

    Monoamine oxidase A (MAOA) is the enzyme responsible for degradation of several monoamines, such as dopamine and serotonin that are considered as being two of the most important neurotransmitters involved in the pathophysiology of schizophrenia. To study a possible role of the MAOA gene in conferring susceptibility to schizophrenia, the present study genotyped the variable number of tandem repeat (VNTR) polymorphism and 41 SNPs across this gene among 555 unrelated patients with paranoid schizophrenia and 567 unrelated healthy controls. Quantitative real-time PCR analysis was employed to quantify expression of MAOA mRNA in 73 drug-free patients. While none of these genotyped DNA markers showed allelic association with paranoid schizophrenia, haplotypic association was found for the VNTR-rs6323, VNTR-rs1137070, and VNTR-rs6323-rs1137070 haplotypes in female subjects. Nevertheless, no significant change of the expression of MAOA mRNA was detected in either female or male patients with paranoid schizophrenia. Our study suggests that the interaction between genetic variants within the MAOA gene may contribute to an increased risk of paranoid schizophrenia, but the precise mechanism needs further investigation. Copyright © 2011 Wiley Periodicals, Inc.

  7. Association between the IL1B (-511), IL1B (+3954), IL1RN (VNTR) polymorphisms and Graves' disease risk: a meta-analysis of 11 case-control studies.

    Science.gov (United States)

    Chen, Min-Li; Liao, Ning; Zhao, Hua; Huang, Jian; Xie, Zheng-Fu

    2014-01-01

    Data on the association between the interleukin-1 (IL-1) gene polymorphisms and Graves' disease (GD) risk were conflicting. A meta-analysis was undertaken to assess this association. We searched for case-control studies investigating the association between the IL1B (-511), IL1B (+3954), IL1RN (VNTR) polymorphisms and GD risk. We extracted data using standardized forms and calculated odds ratios (OR) with 95% confidence intervals (CI). A total of 11 case-control studies were included in this meta-analysis. Available data indicated that the IL1B (-511) polymorphism was associated with GD risk in the overall populations (Caucasians and Asians) in homozygote model (TT vs. CC, OR = 0.86, 95% CI: 0.76-0.97, Pz  = 0.015), but not in dominant and recessive models (TT+TC vs. CC: OR = 0.95, 95% CI: 0.81-1.12, Pz  =  0.553 and TT vs. TC+CC: OR = 0.82, 95% CI: 0.60-1.12, Pz  =  0.205, respectively). No association between the IL1B (+3954), IL1RN (VNTR) polymorphisms and GD risk was found in the overall populations in any of the genetic models. In subgroup analyses according to ethnicity, the IL1B (-511) polymorphism was associated with GD risk in Asians in recessive and homozygote models (TT vs. TC+CC: OR =  0.68, 95% CI: 0.55-0.84, Pz VNTR) polymorphisms and GD risk was indicated in Asians, and we found no association between the IL1B (-511), IL1B (+3954), IL1RN (VNTR) polymorphisms and GD risk in Caucasians in any of the genetic models. The IL1B (-511) polymorphism, but not the IL1B (+3954) and IL1RN (VNTR) polymorphisms was associated with GD risk in Asians. There was no association between these polymorphisms and GD risk in Caucasians.

  8. MIRU-VNTR allelic variability depends on Mycobacterium bovis clonal group identity.

    Science.gov (United States)

    Hauer, Amandine; Michelet, Lorraine; De Cruz, Krystel; Cochard, Thierry; Branger, Maxime; Karoui, Claudine; Henault, Sylvie; Biet, Franck; Boschiroli, María Laura

    2016-11-01

    The description of the population of M. bovis strains circulating in France from 1978 to 2013 has highlighted the discriminating power of the MLVA among predominant spoligotype groups. In the present study we aimed to characterize clonal groups via MLVA and to better understand the strain's population structure. MLVA was performed with eight MIRU-VNTR loci, most of them defined by the Venomyc European consortium. The discriminatory index of each MLVA loci was calculated for SB0120, SB0134, SB0121 and the "F4-family", the main spoligotype groups in France. Differences in global DI per spoligotype, but also by locus within each spoligotype, were observed, which strongly suggest the clonal complex nature of these major groups. These MLVA results were compared to those of other European countries where strain collections had been characterized (Spain, Portugal, Italy, Northern Ireland and Belgium). Overall, QUB 3232 and ETR D are respectively the most and the least discriminative loci, regardless of the strains geographical origin. However, marked DI differences are observed in the rest of the MIRU-VNTR loci, again highlighting that strain genetic variability in a country depends on the dominant existing clonal complexes. A web application for M. bovis, including spoligotyping and MIRU-VNTR typing data, was developed to allow inter-laboratory comparison of field isolates. In conclusion, combination of typing methods is required for M. bovis optimum discrimination and differentiation of groups of strains. Thus, the loci employed for MLVA in a country should be those which are the most discriminative for the clonal complexes which characterize their M. bovis population. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A quantitative and efficient approach to select MIRU-VNTR loci based on accumulation of the percentage differences of strains for discriminating divergent Mycobacterium tuberculosis sublineages.

    Science.gov (United States)

    Pan, Xin-Ling; Zhang, Chun-Lei; Nakajima, Chie; Fu, Jin; Shao, Chang-Xia; Zhao, Li-Na; Cui, Jia-Yi; Jiao, Na; Fan, Chang-Long; Suzuki, Yasuhiko; Hattori, Toshio; Li, Di; Ling, Hong

    2017-07-26

    Although several optimal mycobacterial interspersed repetitive units-variable number tandem repeat (MIRU-VNTR) loci have been suggested for genotyping homogenous Mycobacterium tuberculosis, including the Beijing genotype, a more efficient and convenient selection strategy for identifying optimal VNTR loci is needed. Here 281 M. tuberculosis isolates were analyzed. Beijing genotype and non-Beijing genotypes were identified, as well as Beijing sublineages, according to single nucleotide polymorphisms. A total of 22 MIRU-VNTR loci were used for genotyping. To efficiently select optimal MIRU-VNTR loci, we established accumulations of percentage differences (APDs) between the strains among the different genotypes. In addition, we constructed a minimum spanning tree for clustering analysis of the VNTR profiles. Our findings showed that eight MIRU-VNTR loci displayed disparities in h values of ≥0.2 between the Beijing genotype and non-Beijing genotype isolates. To efficiently discriminate Beijing and non-Beijing genotypes, an optimal VNTR set was established by adding loci with APDs ranging from 87.2% to 58.8%, resulting in the construction of a nine-locus set. We also found that QUB11a is a powerful locus for separating ST10s (including ST10, STF and STCH1) and ST22s (including ST22 and ST8) strains, whereas a combination of QUB11a, QUB4156, QUB18, Mtub21 and QUB26 could efficiently discriminate Beijing sublineages. Our findings suggested that two nine-locus sets were not only efficient for distinguishing the Beijing genotype from non-Beijing genotype strains, but were also suitable for sublineage genotyping with different discriminatory powers. These results indicate that APD represents a quantitative and efficient approach for selecting MIRU-VNTR loci to discriminate between divergent M. tuberculosis sublineages.

  10. A quantitative and efficient approach to select MIRU–VNTR loci based on accumulation of the percentage differences of strains for discriminating divergent Mycobacterium tuberculosis sublineages

    Science.gov (United States)

    Pan, Xin-Ling; Zhang, Chun-Lei; Nakajima, Chie; Fu, Jin; Shao, Chang-Xia; Zhao, Li-Na; Cui, Jia-Yi; Jiao, Na; Fan, Chang-Long; Suzuki, Yasuhiko; Hattori, Toshio; Li, Di; Ling, Hong

    2017-01-01

    Although several optimal mycobacterial interspersed repetitive units–variable number tandem repeat (MIRU–VNTR) loci have been suggested for genotyping homogenous Mycobacterium tuberculosis, including the Beijing genotype, a more efficient and convenient selection strategy for identifying optimal VNTR loci is needed. Here 281 M. tuberculosis isolates were analyzed. Beijing genotype and non-Beijing genotypes were identified, as well as Beijing sublineages, according to single nucleotide polymorphisms. A total of 22 MIRU–VNTR loci were used for genotyping. To efficiently select optimal MIRU–VNTR loci, we established accumulations of percentage differences (APDs) between the strains among the different genotypes. In addition, we constructed a minimum spanning tree for clustering analysis of the VNTR profiles. Our findings showed that eight MIRU–VNTR loci displayed disparities in h values of ≥0.2 between the Beijing genotype and non-Beijing genotype isolates. To efficiently discriminate Beijing and non-Beijing genotypes, an optimal VNTR set was established by adding loci with APDs ranging from 87.2% to 58.8%, resulting in the construction of a nine-locus set. We also found that QUB11a is a powerful locus for separating ST10s (including ST10, STF and STCH1) and ST22s (including ST22 and ST8) strains, whereas a combination of QUB11a, QUB4156, QUB18, Mtub21 and QUB26 could efficiently discriminate Beijing sublineages. Our findings suggested that two nine-locus sets were not only efficient for distinguishing the Beijing genotype from non-Beijing genotype strains, but were also suitable for sublineage genotyping with different discriminatory powers. These results indicate that APD represents a quantitative and efficient approach for selecting MIRU–VNTR loci to discriminate between divergent M. tuberculosis sublineages. PMID:28745309

  11. Genotyping comparison of Mycobacterium leprae isolates by VNTR analysis from nasal samples in a Brazilian endemic region.

    Science.gov (United States)

    Lima, Luana Nepomueceno Costa; Frota, Cristiane Cunha; Suffys, Phillip Noel; Fontes, Amanda Nogueira Brum; Mota, Rosa Maria Salani; Almeida, Rosa Livia Freitas; Andrade Pontes, Maria Araci de; Gonçalves, Heitor de Sá; Kendall, Carl; Kerr, Ligia Regina Sansigolo

    2018-02-06

    This study analyzed the genetic diversity by MIRU-VNTR of Mycobacterium leprae isolates from nasal cavities and related to epidemiological and clinical data. The sample consisted of 48 newly diagnosed leprosy cases that tested positive for M. leprae PCR in nasal secretion (NS) attending to the National Reference Center of Dermatology Dona Libania (CDERM), Fortaleza, Brazil. Total DNA was extracted from NS of each patient and used for amplification of four M. leprae VNTR loci. Four clusters of M. leprae isolates were formed with identical genotypes. In the spatial analysis, 12 leprosy cases presented similar genotypes organized into 4 clusters. The most common genotypes in the current study was AC8b: 8, AC9: 7, AC8a: 8, GTA9: 10, which may represent a genotype of circulating strains most often in Ceará. A minimum set of four MIRU-VNTR loci was demonstrated to study the genetic diversity of M. leprae isolates from NS.

  12. Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. Manihotis strain CIO151.

    Science.gov (United States)

    Arrieta-Ortiz, Mario L; Rodríguez-R, Luis M; Pérez-Quintero, Álvaro L; Poulin, Lucie; Díaz, Ana C; Arias Rojas, Nathalia; Trujillo, Cesar; Restrepo Benavides, Mariana; Bart, Rebecca; Boch, Jens; Boureau, Tristan; Darrasse, Armelle; David, Perrine; Dugé de Bernonville, Thomas; Fontanilla, Paula; Gagnevin, Lionel; Guérin, Fabien; Jacques, Marie-Agnès; Lauber, Emmanuelle; Lefeuvre, Pierre; Medina, Cesar; Medina, Edgar; Montenegro, Nathaly; Muñoz Bodnar, Alejandra; Noël, Laurent D; Ortiz Quiñones, Juan F; Osorio, Daniela; Pardo, Carolina; Patil, Prabhu B; Poussier, Stéphane; Pruvost, Olivier; Robène-Soustrade, Isabelle; Ryan, Robert P; Tabima, Javier; Urrego Morales, Oscar G; Vernière, Christian; Carrere, Sébastien; Verdier, Valérie; Szurek, Boris; Restrepo, Silvia; López, Camilo; Koebnik, Ralf; Bernal, Adriana

    2013-01-01

    Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis

  13. A maternal high-fat, high-sucrose diet alters insulin sensitivity and expression of insulin signalling and lipid metabolism genes and proteins in male rat offspring: effect of folic acid supplementation.

    Science.gov (United States)

    Cuthbert, Candace E; Foster, Jerome E; Ramdath, D Dan

    2017-10-01

    A maternal high-fat, high-sucrose (HFS) diet alters offspring glucose and lipid homoeostasis through unknown mechanisms and may be modulated by folic acid. We investigated the effect of a maternal HFS diet on glucose homoeostasis, expression of genes and proteins associated with insulin signalling and lipid metabolism and the effect of prenatal folic acid supplementation (HFS/F) in male rat offspring. Pregnant Sprague-Dawley rats were randomly fed control (CON), HFS or HFS/F diets. Offspring were weaned on CON; at postnatal day 70, fasting plasma insulin and glucose and liver and skeletal muscle gene and protein expression were measured. Treatment effects were assessed by one-way ANOVA. Maternal HFS diet induced higher fasting glucose in offspring v. HFS/F (P=0·027) and down-regulation (Pinsulin resistance v. CON (P=0·030) and HFS/F was associated with higher insulin (P=0·016) and lower glucose (P=0·025). Maternal HFS diet alters offspring insulin sensitivity and de novo hepatic lipogenesis via altered gene and protein expression, which appears to be potentiated by folate supplementation.

  14. Study of a Functional Polymorphism in the PER3 Gene and Diurnal Preference in a Colombian Sample

    Science.gov (United States)

    Perea, Claudia S; Niño, Carmen L; López-León, Sandra; Gutiérrez, Rafael; Ojeda, Diego; Arboleda, Humberto; Camargo, Andrés; Adan, Ana; Forero, Diego A

    2014-01-01

    Polymorphisms in human clock genes have been evaluated as potential factors influencing circadian phenotypes in several populations. There are conflicting results for the association of a VNTR in the PER3 gene and diurnal preference in different studies. The objective of this study was to investigate the association between diurnal preference and daytime somnolence with the PER3 VNTR polymorphism (rs57875989) in healthy subjects from Colombia, a Latin American population.A total of 294 undergraduate university students from Bogotá, Colombia participated in this study. Two validated self-report questionnaires, the Composite Scale of Morningness (CSM) and the Epworth Sleep Scale (ESS) were used to assess diurnal preference and daytime somnolence, respectively. Individuals were genotyped for the PER3 VNTR using conventional PCR. Statistical comparisons were carried out with PLINK and SNPStats programs. The PER3 VNTR polymorphism was not associated with either diurnal preference or daytime somnolence in this population. No significant differences in mean scores for those scales were found between PER3 VNTR genotypes. In addition, there were no differences in allelic or genotypic frequencies between chronotype categories. This is consistent with several negative findings in other populations, indicating that the proposed influence of this polymorphism in diurnal preference, and related endophenotypes of neuropsychiatric importance, needs further clarification. This is the first report of molecular genetics of human circadian phenotypes in a Spanish-speaking population. PMID:24860629

  15. The adipose transcriptional response to insulin is determined by obesity, not insulin sensitivity

    DEFF Research Database (Denmark)

    Rydén, Mikael; Hrydziuszko, Olga; Mileti, Enrichetta

    2016-01-01

    Metabolically healthy obese subjects display preserved insulin sensitivity and a beneficial white adipose tissue gene expression pattern. However, this observation stems from fasting studies when insulin levels are low. We investigated adipose gene expression by 5'Cap-mRNA sequencing in 17 healthy...... non-obese (NO), 21 insulin-sensitive severely obese (ISO), and 30 insulin-resistant severely obese (IRO) subjects, before and 2 hr into a hyperinsulinemic euglycemic clamp. ISO and IRO subjects displayed a clear but globally similar transcriptional response to insulin, which differed from the small...... effects observed in NO subjects. In the obese, 231 genes were altered; 71 were enriched in ISO subjects (e.g., phosphorylation processes), and 52 were enriched in IRO subjects (e.g., cellular stimuli). Common cardio-metabolic risk factors and gender do not influence these findings. This study demonstrates...

  16. Association of dopamine gene variants, emotion dysregulation and ADHD in autism spectrum disorder.

    Science.gov (United States)

    Gadow, Kenneth D; Pinsonneault, Julia K; Perlman, Greg; Sadee, Wolfgang

    2014-07-01

    The aim of the present study was to evaluate the association of dopaminergic gene variants with emotion dysregulation (EMD) and attention-deficit/hyperactivity disorder (ADHD) symptoms in children with autism spectrum disorder (ASD). Three dopamine transporter gene (SLC6A3/DAT1) polymorphisms (intron8 5/6 VNTR, 3'-UTR 9/10 VNTR, rs27072 in the 3'-UTR) and one dopamine D2 receptor gene (DRD2) variant (rs2283265) were selected for genotyping based on à priori evidence of regulatory activity or, in the case of DAT1 9/10 VNTR, commonly reported associations with ADHD. A sample of 110 children with ASD was assessed with a rigorously validated DSM-IV-referenced rating scale. Global EMD severity (parents' ratings) was associated with DAT1 intron8 (ηp(2)=.063) and rs2283265 (ηp(2)=.044). Findings for DAT1 intron8 were also significant for two EMD subscales, generalized anxiety (ηp(2)=.065) and depression (ηp(2)=.059), and for DRD2 rs2283265, depression (ηp(2)=.053). DRD2 rs2283265 was associated with teachers' global ratings of ADHD (ηp(2)=.052). DAT1 intron8 was associated with parent-rated hyperactivity (ηp(2)=.045) and both DAT1 9/10 VNTR (ηp(2)=.105) and DRD2 rs2283265 (ηp(2)=.069) were associated with teacher-rated inattention. These findings suggest that dopaminergic gene polymorphisms may modulate EMD and ADHD symptoms in children with ASD but require replication with larger independent samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Determination of circulating Mycobacterium tuberculosis strains and transmission patterns among TB patients in Iran, using 15 loci MIRU-VNTR

    Directory of Open Access Journals (Sweden)

    S Zamani

    2015-01-01

    Conclusions: MIRU-VNTR typing showed a high genetic diversity and suggests the possibility of transmission from Sistan–Baluchestan to other provinces of Iran. This method could be considered a suitable tool for studying the transmission routes of TB and leading to more appropriate measures for TB control. MIRU-VNTR typing leads to a much better understanding of the bacterial population structure and phylogenetic relationships between strains of MTB in different regions of Iran.

  18. Larval hemolymph of rhinoceros beetle, Allomyrina dichotoma, enhances insulin secretion through ATF3 gene expression in INS-1 pancreatic β-cells.

    Science.gov (United States)

    Kim, Seung-Whan; Suh, Hyun-Woo; Yoo, Bo-Kyung; Kwon, Kisang; Yu, Kweon; Choi, Ji-Young; Kwon, O-Yu

    2018-05-22

    In this study, we show that INS-1 pancreatic β-cells treated for 2 h with hemolymph of larvae of rhinoceros beetle, Allomyrina dichotoma, secreted about twice as much insulin compared to control cells without such treatment. Activating transcription factor 3 (ATF3) was the highest upregulated gene in DNA chip analysis. The A. dichotoma hemolymph dose-dependently induced increased expression levels of genes encoding ATF3 and insulin. Conversely, treatment with ATF3 siRNA inhibited expression levels of both genes and curbed insulin secretion. These results suggest that the A. dichotoma hemolymph has potential for treating and preventing diabetes or diabetes-related complications.

  19. Development of new VNTR markers for pike and assessment of variability at di- and tetranucleotide repeat microsatellite loci

    DEFF Research Database (Denmark)

    Hansen, Michael Møller; Taggart, J.B.; Meldrup, Dorte

    1999-01-01

    Levels of variation at six VNTR (variable number of tandem repeats) loci, one minisatellite and five microsatellite loci, isolated from tri- and tetranucleotide enriched DNA libraries for northern pike were generally low in two Danish populations (1-4 alleles; expected heterozygosity 0-0.57), tho......Levels of variation at six VNTR (variable number of tandem repeats) loci, one minisatellite and five microsatellite loci, isolated from tri- and tetranucleotide enriched DNA libraries for northern pike were generally low in two Danish populations (1-4 alleles; expected heterozygosity 0...

  20. Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action.

    Directory of Open Access Journals (Sweden)

    Inês Barroso

    2003-10-01

    Full Text Available Type 2 diabetes is an increasingly common, serious metabolic disorder with a substantial inherited component. It is characterised by defects in both insulin secretion and action. Progress in identification of specific genetic variants predisposing to the disease has been limited. To complement ongoing positional cloning efforts, we have undertaken a large-scale candidate gene association study. We examined 152 SNPs in 71 candidate genes for association with diabetes status and related phenotypes in 2,134 Caucasians in a case-control study and an independent quantitative trait (QT cohort in the United Kingdom. Polymorphisms in five of 15 genes (33% encoding molecules known to primarily influence pancreatic beta-cell function-ABCC8 (sulphonylurea receptor, KCNJ11 (KIR6.2, SLC2A2 (GLUT2, HNF4A (HNF4alpha, and INS (insulin-significantly altered disease risk, and in three genes, the risk allele, haplotype, or both had a biologically consistent effect on a relevant physiological trait in the QT study. We examined 35 genes predicted to have their major influence on insulin action, and three (9%-INSR, PIK3R1, and SOS1-showed significant associations with diabetes. These results confirm the genetic complexity of Type 2 diabetes and provide evidence that common variants in genes influencing pancreatic beta-cell function may make a significant contribution to the inherited component of this disease. This study additionally demonstrates that the systematic examination of panels of biological candidate genes in large, well-characterised populations can be an effective complement to positional cloning approaches. The absence of large single-gene effects and the detection of multiple small effects accentuate the need for the study of larger populations in order to reliably identify the size of effect we now expect for complex diseases.

  1. Insulin-induced inhibition of gluconeogenesis genes, including glutamic pyruvic transaminase 2, is associated with reduced histone acetylation in a human liver cell line.

    Science.gov (United States)

    Honma, Kazue; Kamikubo, Michiko; Mochizuki, Kazuki; Goda, Toshinao

    2017-06-01

    Hepatic glutamic pyruvic transaminase (GPT; also known as alanine aminotransferase) is a gluconeogenesis enzyme that catalyzes conversions between alanine and pyruvic acid. It is also used as a blood biomarker for hepatic damage. In this study, we investigated whether insulin regulates GPT expression, as it does for other gluconeogenesis genes, and if this involves the epigenetic modification of histone acetylation. Human liver-derived HepG2 cells were cultured with 0.5-100nM insulin for 8h, and the mRNA expression of GPT, glutamic-oxaloacetic transaminase (GOT), γ-glutamyltransferase (GGT), PCK1, G6PC and FBP1 was measured. We also investigated the extent of histone acetylation around these genes. Insulin suppressed the mRNA expression of gluconeogenesis genes (GPT2, GOT1, GOT2, GGT1, GGT2, G6PC, and PCK1) in HepG2 cells in a dose-dependent manner. mRNA levels of GPT2, but not GPT1, were decreased by insulin. Histone acetylation was also reduced around GPT2, G6PC, and PCK1 in response to insulin. The expression of GPT2 and other gluconeogenesis genes such as G6PC and PCK1 was suppressed by insulin, in association with decreases in histone H3 and H4 acetylation surrounding these genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Pharmacodynamic/Pharmacogenomic Modeling of Insulin Resistance Genes in Rat Muscle After Methylprednisolone Treatment: Exploring Regulatory Signaling Cascades

    Directory of Open Access Journals (Sweden)

    Zhenling Yao

    2008-01-01

    Full Text Available Corticosteroids (CS effects on insulin resistance related genes in rat skeletal muscle were studied. In our acute study, adrenalectomized (ADX rats were given single doses of 50 mg/kg methylprednisolone (MPL intravenously. In our chronic study, ADX rats were implanted with Alzet mini-pumps giving zero-order release rates of 0.3 mg/kg/h MPL and sacrificed at various times up to 7 days. Total RNA was extracted from gastrocnemius muscles and hybridized to Affymetrix GeneChips. Data mining and literature searches identified 6 insulin resistance related genes which exhibited complex regulatory pathways. Insulin receptor substrate-1 (IRS-1, uncoupling protein 3 (UCP3, pyruvate dehydrogenase kinase isoenzyme 4 (PDK4, fatty acid translocase (FAT and glycerol-3-phosphate acyltransferase (GPAT dynamic profiles were modeled with mutual effects by calculated nuclear drug-receptor complex (DR(N and transcription factors. The oscillatory feature of endothelin-1 (ET-1 expression was depicted by a negative feedback loop. These integrated models provide test- able quantitative hypotheses for these regulatory cascades.

  3. Dietary approaches to stop hypertension influence on insulin receptor substrate-1gene expression: A randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Marzieh Kafeshani

    2015-01-01

    Full Text Available Background: Insulin receptor substrate (IRS Type 1 is a main substrate for the insulin receptor, controls insulin signaling in skeletal muscle, adipose tissue, and the vascular, so it is an important candidate gene for insulin resistance (IR. We aimed to compare the effects of the Dietary Approaches to Stop Hypertension (DASH and Usual Dietary Advices (UDA on IRS1 gene expression in women at risk for cardiovascular disease. Materials and Methods: A randomized controlled clinical trial was performed in 44 women at risk for cardiovascular disease. Participants were randomly assigned to a UDA diet or the DASH diet. The DASH diet was rich in fruits, vegetables, whole grains, and low-fat dairy products and low in saturated fat, total fat, cholesterol, refined grains, and sweets, with a total of 2400 mg/day sodium. The UDA diet was a regular diet with healthy dietary advice. Gene expression was assessed by the real-time polymerase chain reaction at the first of study and after 12 weeks. Independent sample t-test and paired-samples t-test were used to compare means of all variables within and between two groups respectively. Results: IRS1 gene expression was increased in DASH group compared with UDA diet (P = 0.00. Weight and waist circumference decreased in DASH group significantly compared to the UDA group (P < 0.05 but the results between the two groups showed no significant difference. Conclusion: DASH diet increased IRS1 gene expression and probably has beneficial effects on IR risks.

  4. Meta-Analysis Reveals Significant Association of the 3'-UTR VNTR in SLC6A3 with Alcohol Dependence.

    Science.gov (United States)

    Ma, Yunlong; Fan, Rongli; Li, Ming D

    2016-07-01

    Although many studies have analyzed the association of 3'-untranslated region variable-number tandem repeat (VNTR) polymorphism in SLC6A3 with alcohol dependence (AD), the results remain controversial. This study aimed to determine whether this variant indeed has any genetic effect on AD by integrating 17 reported studies with 5,929 participants included. The A9-dominant genetic model that considers A9-repeat and non-A9 repeat as 2 genotypes and compared their frequencies in alcoholics with that in controls was adopted. Considering the potential influence of ethnicity, differences in diagnostic criteria of AD, and alcoholic subgroups, stratified meta-analyses were conducted. There existed no evidence for the presence of heterogeneity among the studied samples, indicating the results under the fixed-effects model are acceptable. We found a significant association of VNTR A9 genotypes with AD in all ethnic populations (pooled odds ratio [OR] 1.12; 95% confidence interval [CI] 1.00, 1.25; p = 0.045) and the Caucasian population (pooled OR 1.15; 95% CI 1.01, 1.31; p = 0.036). We also found VNTR A9 genotypes to be significantly associated with alcoholism as defined by the DSM-IV criteria (pooled OR 1.18; 95% CI 1.03, 1.36; p = 0.02). Further, we found a significant association between VNTR A9 genotypes and alcoholism associated with alcohol withdrawal seizure or delirium tremens (pooled OR 1.55; 95% CI 1.24, 1.92; p = 1.0 × 10(-4) ). In all these meta-analyses, no evidence of publication bias was detected. We concluded that the VNTR polymorphism has an important role in the etiology of AD, and individuals with at least 1 A9 allele are more likely to be dependent on alcohol than persons carrying the non-A9 allele. Copyright © 2016 by the Research Society on Alcoholism.

  5. Evaluation of customised lineage-specific sets of MIRU-VNTR loci for genotyping Mycobacterium tuberculosis complex isolates in Ghana.

    Science.gov (United States)

    Asante-Poku, Adwoa; Nyaho, Michael Selasi; Borrell, Sonia; Comas, Iñaki; Gagneux, Sebastien; Yeboah-Manu, Dorothy

    2014-01-01

    Different combinations of variable number of tandem repeat (VNTR) loci have been proposed for genotyping Mycobacterium tuberculosis complex (MTBC). Existing VNTR schemes show different discriminatory capacity among the six human MTBC lineages. Here, we evaluated the discriminatory power of a "customized MIRU12" loci format proposed previously by Comas et al. based on the standard 24 loci defined by Supply et al. for VNTR-typing of MTBC in Ghana. One hundred and fifty-eight MTBC isolates classified into Lineage 4 and Lineage 5 were used to compare a customized lineage-specific panel of 12 MIRU-VNTR loci ("customized MIRU-12") to the standard MIRU-15 genotyping scheme. The resolution power of each typing method was determined based on the Hunter-Gaston- Discriminatory Index (HGDI). A minimal set of customized MIRU-VNTR loci for typing Lineages 4 (Euro-American) and 5 (M. africanum West African 1) strains from Ghana was defined based on the cumulative HGDI. Among the 106 Lineage 4 strains, the customized MIRU-12 identified a total of 104 distinct genotypes consisting of 2 clusters of 2 isolates each (clustering rate 1.8%), and 102 unique strains while standard MIRU-15 yielded a total of 105 different genotypes, including 1 cluster of 2 isolates (clustering rate: 0.9%) and 104 singletons. Among, 52 Lineage 5 isolates, customized MIRU-12 genotyping defined 51 patterns with 1 cluster of 2 isolates (clustering rate: 0.9%) and 50 unique strains whereas MIRU-15 classified all 52 strains as unique. Cumulative HGDI values for customized MIRU-12 for Lineages 4 and 5 were 0.98 respectively whilst that of standard MIRU-15 was 0.99. A union of loci from the customised MIRU-12 and standard MIRU-15 revealed a set of customized eight highly discriminatory loci: 4052, 2163B, 40, 4165, 2165, 10,16 and 26 with a cumulative HGDI of 0.99 for genotyping Lineage 4 and 5 strains from Ghana.

  6. Evaluation of customised lineage-specific sets of MIRU-VNTR loci for genotyping Mycobacterium tuberculosis complex isolates in Ghana.

    Directory of Open Access Journals (Sweden)

    Adwoa Asante-Poku

    Full Text Available BACKGROUND: Different combinations of variable number of tandem repeat (VNTR loci have been proposed for genotyping Mycobacterium tuberculosis complex (MTBC. Existing VNTR schemes show different discriminatory capacity among the six human MTBC lineages. Here, we evaluated the discriminatory power of a "customized MIRU12" loci format proposed previously by Comas et al. based on the standard 24 loci defined by Supply et al. for VNTR-typing of MTBC in Ghana. METHOD: One hundred and fifty-eight MTBC isolates classified into Lineage 4 and Lineage 5 were used to compare a customized lineage-specific panel of 12 MIRU-VNTR loci ("customized MIRU-12" to the standard MIRU-15 genotyping scheme. The resolution power of each typing method was determined based on the Hunter-Gaston- Discriminatory Index (HGDI. A minimal set of customized MIRU-VNTR loci for typing Lineages 4 (Euro-American and 5 (M. africanum West African 1 strains from Ghana was defined based on the cumulative HGDI. RESULTS AND CONCLUSION: Among the 106 Lineage 4 strains, the customized MIRU-12 identified a total of 104 distinct genotypes consisting of 2 clusters of 2 isolates each (clustering rate 1.8%, and 102 unique strains while standard MIRU-15 yielded a total of 105 different genotypes, including 1 cluster of 2 isolates (clustering rate: 0.9% and 104 singletons. Among, 52 Lineage 5 isolates, customized MIRU-12 genotyping defined 51 patterns with 1 cluster of 2 isolates (clustering rate: 0.9% and 50 unique strains whereas MIRU-15 classified all 52 strains as unique. Cumulative HGDI values for customized MIRU-12 for Lineages 4 and 5 were 0.98 respectively whilst that of standard MIRU-15 was 0.99. A union of loci from the customised MIRU-12 and standard MIRU-15 revealed a set of customized eight highly discriminatory loci: 4052, 2163B, 40, 4165, 2165, 10,16 and 26 with a cumulative HGDI of 0.99 for genotyping Lineage 4 and 5 strains from Ghana.

  7. Loss of circadian rhythm of circulating insulin concentration induced by high-fat diet intake is associated with disrupted rhythmic expression of circadian clock genes in the liver.

    Science.gov (United States)

    Honma, Kazue; Hikosaka, Maki; Mochizuki, Kazuki; Goda, Toshinao

    2016-04-01

    Peripheral clock genes show a circadian rhythm is correlated with the timing of feeding in peripheral tissues. It was reported that these clock genes are strongly regulated by insulin action and that a high-fat diet (HFD) intake in C57BL/6J mice for 21days induced insulin secretion during the dark phase and reduced the circadian rhythm of clock genes. In this study, we examined the circadian expression patterns of these clock genes in insulin-resistant animal models with excess secretion of insulin during the day. We examined whether insulin resistance induced by a HFD intake for 80days altered blood parameters (glucose and insulin concentrations) and expression of mRNA and proteins encoded by clock and functional genes in the liver using male ICR mice. Serum insulin concentrations were continuously higher during the day in mice fed a HFD than control mice. Expression of lipogenesis-related genes (Fas and Accβ) and the transcription factor Chrebp peaked at zeitgeber time (ZT)24 in the liver of control mice. A HFD intake reduced the expression of these genes at ZT24 and disrupted the circadian rhythm. Expression of Bmal1 and Clock, transcription factors that compose the core feedback loop, showed circadian variation and were synchronously associated with Fas gene expression in control mice, but not in those fed a HFD. These results indicate that the disruption of the circadian rhythm of insulin secretion by HFD intake is closely associated with the disappearance of circadian expression of lipogenic and clock genes in the liver of mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Knockout of Vasohibin-1 Gene in Mice Results in Healthy Longevity with Reduced Expression of Insulin Receptor, Insulin Receptor Substrate 1, and Insulin Receptor Substrate 2 in Their White Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Eichi Takeda

    2017-01-01

    Full Text Available Vasohibin-1 (Vash1, originally isolated as an endothelium-derived angiogenesis inhibitor, has a characteristic of promoting stress tolerance in endothelial cells (ECs. We therefore speculated that the lack of the vash1 gene would result in a short lifespan. However, to our surprise, vash1−/− mice lived significantly longer with a milder senescence phenotype than wild-type (WT mice. We sought the cause of this healthy longevity and found that vash1−/− mice exhibited mild insulin resistance along with reduced expression of the insulin receptor (insr, insulin receptor substrate 1 (irs-1, and insulin receptor substrate 2 (irs-2 in their white adipose tissue (WAT but not in their liver or skeletal muscle. The expression of vash1 dominated in the WAT among those 3 organs. Importantly, vash1−/− mice did not develop diabetes even when fed a high-fat diet. These results indicate that the expression of vash1 was required for the normal insulin sensitivity of the WAT and that the target molecules for this activity were insr, irs1, and irs2. The lack of vash1 caused mild insulin resistance without the outbreak of overt diabetes and might contribute to healthy longevity.

  9. Genetic variants in promoters and coding regions of the muscle glycogen synthase and the insulin-responsive GLUT4 genes in NIDDM

    DEFF Research Database (Denmark)

    Bjørbaek, C; Echwald, Søren Morgenthaler; Hubricht, P

    1994-01-01

    To examine the hypothesis that variants in the regulatory or coding regions of the glycogen synthase (GS) and insulin-responsive glucose transporter (GLUT4) genes contribute to insulin-resistant glucose processing of muscle from non-insulin-dependent diabetes mellitus (NIDDM) patients, promoter...... volunteers. By applying inverse polymerase chain reaction and direct DNA sequencing, 532 base pairs (bp) of the GS promoter were identified and the transcriptional start site determined by primer extension. SSCP scanning of the promoter region detected five single nucleotide substitutions, positioned at 42......'-untranslated region, and the coding region of the GLUT4 gene showed four polymorphisms, all single nucleotide substitutions, positioned at -581, 1, 30, and 582. None of the three changes in the regulatory region of the gene had any major influence on expression of the GLUT4 gene in muscle. The variant at 582...

  10. Relationships among Body Condition, Insulin Resistance and Subcutaneous Adipose Tissue Gene Expression during the Grazing Season in Mares.

    Directory of Open Access Journals (Sweden)

    Shaimaa Selim

    Full Text Available Obesity and insulin resistance have been shown to be risk factors for laminitis in horses. The objective of the study was to determine the effect of changes in body condition during the grazing season on insulin resistance and the expression of genes associated with obesity and insulin resistance in subcutaneous adipose tissue (SAT. Sixteen Finnhorse mares were grazing either on cultivated high-yielding pasture (CG or semi-natural grassland (NG from the end of May to the beginning of September. Body measurements, intravenous glucose tolerance test (IVGTT, and neck and tailhead SAT gene expressions were measured in May and September. At the end of grazing, CG had higher median body condition score (7 vs. 5.4, interquartile range 0.25 vs. 0.43; P=0.05 and body weight (618 kg vs. 572 kg ± 10.21 (mean ± SEM; P=0.02, and larger waist circumference (P=0.03 than NG. Neck fat thickness was not different between treatments. However, tailhead fat thickness was smaller in CG compared to NG in May (P=0.04, but this difference disappeared in September. Greater basal and peak insulin concentrations, and faster glucose clearance rate (P=0.03 during IVGTT were observed in CG compared to NG in September. A greater decrease in plasma non-esterified fatty acids during IVGTT (P<0.05 was noticed in CG compared to NG after grazing. There was down-regulation of insulin receptor, retinol binding protein 4, leptin, and monocyte chemoattractant protein-1, and up-regulation of adiponectin (ADIPOQ, adiponectin receptor 1 and stearoyl-CoA desaturase (SCD gene expressions in SAT of both groups during the grazing season (P<0.05. Positive correlations were observed between ADIPOQ and its receptors and between SCD and ADIPOQ in SAT (P<0.01. In conclusion, grazing on CG had a moderate effect on responses during IVGTT, but did not trigger insulin resistance. Significant temporal differences in gene expression profiles were observed during the grazing season.

  11. Tissue-specific methylation of human insulin gene and PCR assay for monitoring beta cell death.

    Directory of Open Access Journals (Sweden)

    Mohamed I Husseiny

    Full Text Available The onset of metabolic dysregulation in type 1 diabetes (T1D occurs after autoimmune destruction of the majority of pancreatic insulin-producing beta cells. We previously demonstrated that the DNA encoding the insulin gene is uniquely unmethylated in these cells and then developed a methylation-specific PCR (MSP assay to identify circulating beta cell DNA in streptozotocin-treated mice prior to the rise in blood glucose. The current study extends to autoimmune non-obese diabetic (NOD mice and humans, showing in NOD mice that beta cell death occurs six weeks before the rise in blood sugar and coincides with the onset of islet infiltration by immune cells, demonstrating the utility of MSP for monitoring T1D. We previously reported unique patterns of methylation of the human insulin gene, and now extend this to other human tissues. The methylation patterns of the human insulin promoter, intron 1, exon 2, and intron 2 were determined in several normal human tissues. Similar to our previous report, the human insulin promoter was unmethylated in beta cells, but methylated in all other tissues tested. In contrast, intron 1, exon 2 and intron 2 did not exhibit any tissue-specific DNA methylation pattern. Subsequently, a human MSP assay was developed based on the methylation pattern of the insulin promoter and human islet DNA was successfully detected in circulation of T1D patients after islet transplantation therapy. Signal levels of normal controls and pre-transplant samples were shown to be similar, but increased dramatically after islet transplantation. In plasma the signal declines with time but in whole blood remains elevated for at least two weeks, indicating that association of beta cell DNA with blood cells prolongs the signal. This assay provides an effective method to monitor beta cell destruction in early T1D and in islet transplantation therapy.

  12. Breed differences in development of anti-insulin antibodies in diabetic dogs and investigation of the role of dog leukocyte antigen (DLA) genes.

    Science.gov (United States)

    Holder, Angela L; Kennedy, Lorna J; Ollier, William E R; Catchpole, Brian

    2015-10-15

    Administration of insulin for treatment of diabetes mellitus in dogs can stimulate an immune response, with a proportion of animals developing anti-insulin antibodies (AIA). For an IgG antibody response to occur, this would require B cell presentation of insulin peptides by major histocompatibility complex (MHC) class II molecules, encoded by dog leukocyte antigen (DLA) genes, in order to receive T-cell help for class switching. DLA genes are highly polymorphic in the dog population and vary from breed to breed. The aim of the present study was to evaluate AIA reactivity in diabetic dogs of different breeds and to investigate whether DLA genes influence AIA status. Indirect ELISA was used to determine serological reactivity to insulin in diabetic dogs, treated with either a porcine or bovine insulin preparation. DLA haplotypes for diabetic dogs were determined by sequence-based typing of DLA-DRB1, -DQA1 and -DQB1 loci. Significantly greater insulin reactivity was seen in treated diabetic dogs (n=942) compared with non-diabetic dogs (n=100). Relatively few newly diagnosed diabetic dogs (3/109) were found to be AIA positive, although this provides evidence that insulin autoantibodies might be involved in the pathogenesis of the disease in some cases. Of the diabetic dogs treated with a bovine insulin preparation, 52.3% (182/348) were AIA positive, compared with 12.6% (75/594) of dogs treated with a porcine insulin preparation, suggesting that bovine insulin is more immunogenic. Breeds such as dachshund, Cairn terrier, miniature schnauzer and Tibetan terrier were more likely to develop AIA, whereas cocker spaniels were less likely to develop AIA, compared with crossbreed dogs. In diabetic dogs, DLA haplotype DRB1*0015--DQA1*006--DQB1*023 was associated with being AIA positive, whereas the haplotype DLA-DRB1*006--DQA1*005--DQB1*007 showed an association with being AIA negative. These research findings suggest that DLA genes influence AIA responses in treated diabetic

  13. [Solid state isotope hydrogen exchange for deuterium and tritium in human gene-engineered insulin].

    Science.gov (United States)

    Zolotarev, Yu A; Dadayan, A K; Kozik, V S; Gasanov, E V; Nazimov, I V; Ziganshin, R Kh; Vaskovsky, B V; Murashov, A N; Ksenofontov, A L; Haribin, O N; Nikolaev, E N; Myasoedov, N F

    2014-01-01

    The reaction of high temperature solid state catalytic isotope exchange in peptides and proteins under the action of catalyst-activated spillover hydrogen was studied. The reaction of human gene-engineered insulin with deuterium and tritium was conducted at 120-140° C to produce insulin samples containing 2-6 hydrogen isotope atoms. To determine the distribution of the isotope label over tritium-labeled insulin's amino acid residues, oxidation of the S-S bonds of insulin by performic acid was performed and polypeptide chains isolated; then their acid hydrolysis, amino acid analysis and liquid scintillation counts of tritium in the amino acids were conducted. The isotope label was shown to be incorporated in all amino acids of the protein, with the peptide fragment FVNQHLCGSHLVE of the insulin β-chain showing the largest incorporation. About 45% of the total protein isotope label was incorporated in His5 and His10 of this fragment. For the analysis of isotope label distribution in labeled insulin's peptide fragments, the recovery of the S-S bonds by mercaptoethanol, the enzymatic hydrolysis by glutamyl endopeptidase from Bacillus intermedius and HPLC division of the resulting peptides were carried out. Attribution of the peptide fragments formed due to hydrolysis at the Glu-X bond in the β-chain was accomplished by mass spectrometry. Mass spectrometry analysis data of the deuterium-labeled insulin samples' isotopomeric composition showed that the studied solid state isotope exchange reaction equally involved all the protein molecules. Biological studying of tritium-labeled insulin showed its physiological activity to be completely retained.

  14. The CAPN10 Gene Is Associated with Insulin Resistance Phenotypes in the Spanish Population

    Science.gov (United States)

    Sáez, María E.; González-Sánchez, José L.; Ramírez-Lorca, Reposo; Martínez-Larrad, María T.; Zabena, Carina; González, Alejandro; Morón, Francisco J.; Ruiz, Agustín; Serrano-Ríos, Manuel

    2008-01-01

    Cardiovascular disease is the leading cause of morbidity and mortality in the industrialized world. Familial aggregation of cardiovascular risk factors is a frequent finding, but genetic factors affecting its presentation are still poorly understood. The calpain 10 gene (CAPN10) has been associated with type 2 diabetes (T2DM), a complex metabolic disorder with increased risk of cardiovascular disease. Moreover, the CAPN10 gene has been associated with the presence of metabolic syndrome (MS) in T2DM and in polycystic ovary syndrome (PCOS). In this work, we have analysed whether the polymorphisms UCSNP44, -43, -19 and -63 are related to several cardiovascular risk factors in the context of MS. Molecular analysis of CAPN10 gene was performed in 899 individuals randomly chosen from a cross-sectional population-based epidemiological survey. We have found that CAPN10 gene in our population is mainly associated with two indicators of the presence of insulin resistance: glucose levels two hours after a 75-g oral glucose tolerance test (OGTT) and HOMA values, although cholesterol levels and blood pressure values are also influenced by CAPN10 variants. In addition, the 1221/1121 haplogenotype is under-represented in individuals that fulfil the International Diabetes Federation (IDF) diagnostic criteria for MS. Our results suggest that CAPN10 gene is associated with insulin resistance phenotypes in the Spanish population. PMID:18698425

  15. The CAPN10 gene is associated with insulin resistance phenotypes in the Spanish population.

    Directory of Open Access Journals (Sweden)

    María E Sáez

    Full Text Available Cardiovascular disease is the leading cause of morbidity and mortality in the industrialized world. Familial aggregation of cardiovascular risk factors is a frequent finding, but genetic factors affecting its presentation are still poorly understood. The calpain 10 gene (CAPN10 has been associated with type 2 diabetes (T2DM, a complex metabolic disorder with increased risk of cardiovascular disease. Moreover, the CAPN10 gene has been associated with the presence of metabolic syndrome (MS in T2DM and in polycystic ovary syndrome (PCOS. In this work, we have analysed whether the polymorphisms UCSNP44, -43, -19 and -63 are related to several cardiovascular risk factors in the context of MS. Molecular analysis of CAPN10 gene was performed in 899 individuals randomly chosen from a cross-sectional population-based epidemiological survey. We have found that CAPN10 gene in our population is mainly associated with two indicators of the presence of insulin resistance: glucose levels two hours after a 75-g oral glucose tolerance test (OGTT and HOMA values, although cholesterol levels and blood pressure values are also influenced by CAPN10 variants. In addition, the 1221/1121 haplogenotype is under-represented in individuals that fulfil the International Diabetes Federation (IDF diagnostic criteria for MS. Our results suggest that CAPN10 gene is associated with insulin resistance phenotypes in the Spanish population.

  16. Integrative analysis of a cross-loci regulation network identifies App as a gene regulating insulin secretion from pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Zhidong Tu

    Full Text Available Complex diseases result from molecular changes induced by multiple genetic factors and the environment. To derive a systems view of how genetic loci interact in the context of tissue-specific molecular networks, we constructed an F2 intercross comprised of >500 mice from diabetes-resistant (B6 and diabetes-susceptible (BTBR mouse strains made genetically obese by the Leptin(ob/ob mutation (Lep(ob. High-density genotypes, diabetes-related clinical traits, and whole-transcriptome expression profiling in five tissues (white adipose, liver, pancreatic islets, hypothalamus, and gastrocnemius muscle were determined for all mice. We performed an integrative analysis to investigate the inter-relationship among genetic factors, expression traits, and plasma insulin, a hallmark diabetes trait. Among five tissues under study, there are extensive protein-protein interactions between genes responding to different loci in adipose and pancreatic islets that potentially jointly participated in the regulation of plasma insulin. We developed a novel ranking scheme based on cross-loci protein-protein network topology and gene expression to assess each gene's potential to regulate plasma insulin. Unique candidate genes were identified in adipose tissue and islets. In islets, the Alzheimer's gene App was identified as a top candidate regulator. Islets from 17-week-old, but not 10-week-old, App knockout mice showed increased insulin secretion in response to glucose or a membrane-permeant cAMP analog, in agreement with the predictions of the network model. Our result provides a novel hypothesis on the mechanism for the connection between two aging-related diseases: Alzheimer's disease and type 2 diabetes.

  17. NOS1 ex1f-VNTR polymorphism influences prefrontal brain oxygenation during a working memory task.

    Science.gov (United States)

    Kopf, Juliane; Schecklmann, Martin; Hahn, Tim; Dresler, Thomas; Dieler, Alica C; Herrmann, Martin J; Fallgatter, Andreas J; Reif, Andreas

    2011-08-15

    Nitric oxide (NO) synthase produces NO, which serves as first and second messenger in neurons, where the protein is encoded by the NOS1 gene. A functional variable number of tandem repeats (VNTR) polymorphism in the promoter region of the alternative first exon 1f of NOS1 is associated with various functions of human behavior, for example increased impulsivity, while another, non-functional variant was linked to decreased verbal working memory and a heightened risk for schizophrenia. We therefore investigated the influence of NOS1 ex 1f-VNTR on working memory function as reflected by both behavioral measures and prefrontal oxygenation. We hypothesized that homozygous short allele carriers exhibit altered brain oxygenation in task-related areas, namely the dorsolateral and ventrolateral prefrontal cortex and the parietal cortex. To this end, 56 healthy subjects were stratified into a homozygous long allele group and a homozygous short allele group comparable for age, sex and intelligence. All subjects completed a letter n-back task (one-, two-, and three-back), while concentration changes of oxygenated (O(2)Hb) hemoglobin in the prefrontal cortex were measured with functional near-infrared spectroscopy (fNIRS). We found load-associated O(2)Hb increases in the prefrontal and parts of the parietal cortex. Significant load-associated oxygenation differences between the two genotype groups could be shown for the dorsolateral prefrontal cortex and the parietal cortex. Specifically, short allele carriers showed a significantly larger increase in oxygenation in all three n-back tasks. This suggests a potential compensatory mechanism, with task-related brain regions being more active in short allele carriers to compensate for reduced NOS1 expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Identification of novel type 2 diabetes candidate genes involved in the crosstalk between the mitochondrial and the insulin signaling systems.

    Directory of Open Access Journals (Sweden)

    Josep M Mercader

    Full Text Available Type 2 Diabetes (T2D is a highly prevalent chronic metabolic disease with strong co-morbidity with obesity and cardiovascular diseases. There is growing evidence supporting the notion that a crosstalk between mitochondria and the insulin signaling cascade could be involved in the etiology of T2D and insulin resistance. In this study we investigated the molecular basis of this crosstalk by using systems biology approaches. We combined, filtered, and interrogated different types of functional interaction data, such as direct protein-protein interactions, co-expression analyses, and metabolic and signaling dependencies. As a result, we constructed the mitochondria-insulin (MITIN network, which highlights 286 genes as candidate functional linkers between these two systems. The results of internal gene expression analysis of three independent experimental models of mitochondria and insulin signaling perturbations further support the connecting roles of these genes. In addition, we further assessed whether these genes are involved in the etiology of T2D using the genome-wide association study meta-analysis from the DIAGRAM consortium, involving 8,130 T2D cases and 38,987 controls. We found modest enrichment of genes associated with T2D amongst our linker genes (p = 0.0549, including three already validated T2D SNPs and 15 additional SNPs, which, when combined, were collectively associated to increased fasting glucose levels according to MAGIC genome wide meta-analysis (p = 8.12×10(-5. This study highlights the potential of combining systems biology, experimental, and genome-wide association data mining for identifying novel genes and related variants that increase vulnerability to complex diseases.

  19. MIRU-VNTR typing of drug-resistant tuberculosis isolates in Greece.

    Science.gov (United States)

    Rovina, Nikoletta; Karabela, Simona; Constantoulakis, Pantelis; Michou, Vassiliki; Konstantinou, Konstantinos; Sgountzos, Vassileios; Roussos, Charis; Poulakis, Nikolaos

    2011-08-01

    The increasing immigration rate in Greece from countries with a high prevalence of Mycobacterium tuberculosis (MTB) and multidrug-resistant tuberculosis (MDR-TB) may have an impact οn the number of MDR-TB cases in Greece. The aim of this study was to genotypically characterize the MTB isolates from patients with pulmonary drug-resistant tuberculosis (DR-TB) in Greece, and to determine whether there is any association between the prevalent genotypes and drug resistance. Fifty-three drug-resistant MTB strains isolated from culture specimens of clinical material from native Greeks and immigrant patients with pulmonary tuberculosis were genotyped using the mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) method. The phylogenetically distinct groups of isolates identified were: the Beijing (34%), the LAM (11%), the Haarlem (24.5%), the Uganda I (9.4%), the Ural (3.8%), the Delhi/CAS (9.4%) and the Cameroon (3.8%) families. Greek patients were more likely to have monoresistant and polyresistant TB with the most prevalent isolates belonging to the Haarlem family. Among foreign-born patients with MDR-TB, the most prevalent genotypes belonged to the Beijing family. MIRU-VNTR rapidly obtained clinically useful genotyping data, by characterizing clonal MTB heterogeneity in the isolated strains. Our results underline the need for more effective antituberculosis control programs in order to control the expansion of DR-TB in Greece.

  20. Analysis of Human Bradykinin Receptor Gene and Endothelial Nitric Oxide Synthase Gene Polymorphisms in End-Stage Renal Disease Among Malaysians

    Directory of Open Access Journals (Sweden)

    R. Vasudevan

    2014-06-01

    Full Text Available The aim of this study was to determine the association of the c.894G>T; p.Glu298Asp polymorphism and the variable number tandem repeat (VNTR polymorphism of the endothelial nitric oxide synthase (eNOS gene and c.181C>T polymorphism of the bradykinin type 2 receptor gene (B2R in Malaysian end-stage renal disease (ESRD subjects.

  1. Regulation of the pituitary tumor transforming gene by insulin-like-growth factor-I and insulin differs between malignant and non-neoplastic astrocytes

    International Nuclear Information System (INIS)

    Chamaon, Kathrin; Kirches, Elmar; Kanakis, Dimitrios; Braeuninger, Stefan; Dietzmann, Knut; Mawrin, Christian

    2005-01-01

    The reasons for overexpression of the oncogene pituitary tumor transforming gene (PTTG) in tumors are still not fully understood. A possible influence of the insulin-like growth factor I (Igf-I) may be of interest, since enhanced Igf-I signalling was reported in various human tumors. We examined the influence of Igf-I and insulin on PTTG expression in human astrocytoma cells in comparison to proliferating non-neoplastic rat embryonal astrocytes. PTTG mRNA expression and protein levels were increased in malignant astrocytes treated with Igf-I or insulin, whereas in rat embryonic astrocytes PTTG expression and protein levels increased only when cells were exposed to Igf-I. Enhanced transcription did not occur after treatment with inhibitors of phosphoinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK), blocking the two basic signalling pathways of Igf-I and insulin. In addition to this transcriptional regulation, both kinases directly bind to PTTG, suggesting a second regulatory route by phosphorylation. However, the interaction of endogenous PTTG with MAPK and PI3K, as well as PTTG phosphorylation were independent from Igf-I or insulin. The latter results were also found in human testis, which contains high PTTG levels as well as in nonneoplastic astrocytes. This suggest, that PI3K and MAPK signalling is involved in PTTG regulation not only in malignant astrocytomas but also in non-tumorous cells

  2. Simple and highly discriminatory VNTR-based multiplex PCR for tracing sources of Aspergillus flavus isolates.

    Directory of Open Access Journals (Sweden)

    Dong Ying Wang

    Full Text Available Aspergillus flavus is second only to A. fumigatus in causing invasive aspergillosis and it is the major agent responsible for fungal sinusitis, keratitis and endophthalmitis in many countries in the Middle East, Africa and Southeast Asia. Despite the growing challenge due to A. flavus, data on the molecular epidemiology of this fungus remain scarce. The objective of the present study was to develop a new typing method based on the detection of VNTR (Variable number tandem repeat markers. Eight VNTR markers located on 6 different chromosomes (1, 2, 3, 5, 7 and 8 of A. flavus were selected, combined by pairs for multiplex amplifications and tested on 30 unrelated isolates and six reference strains. The Simpson index for individual markers ranged from 0.398 to 0.818. A combined loci index calculated with all the markers yielded an index of 0.998. The MLVA (Multiple Locus VNTR Analysis technique proved to be specific and reproducible. In a second time, a total of 55 isolates from Chinese avian farms and from a Tunisian hospital have been evaluated. One major cluster of genotypes could be defined by using the graphing algorithm termed Minimum Spanning Tree. This cluster comprised most of the isolates collected in an avian farm in southern China. The MLVA technique should be considered as an excellent and cost-effective typing method that could be used in many laboratories without the need for sophisticated equipment.

  3. Molecular characterization of Mycobacterium avium subspecies hominissuis isolated from humans, cattle and pigs in the Uganda cattle corridor using VNTR analysis.

    Science.gov (United States)

    Muwonge, Adrian; Oloya, James; Kankya, Clovice; Nielsen, Sigrun; Godfroid, Jacques; Skjerve, Eystein; Djønne, Berit; Johansen, Tone B

    2014-01-01

    Members of the Mycobacterium avium complex (MAC) cause disease in both human and animals. Their ubiquitous nature makes them both successful microbes and difficult to source track. The precise characterization of MAC species is a fundamental step in epidemiological studies and evaluating of possible reservoirs. This study aimed at identifying and characterizing Mycobacterium avium subsp. hominissuis isolated from human, slaughter cattle and pigs in various parts of the Uganda cattle corridor (UCC) at two temporal points using variable number of tandem repeat (VNTR) analysis. A total of 46 M. avium isolates; 31 from 997 pigs, 12 from 43 humans biopsies and three from 61 cattle lesions were identified to subspecies level using IS1245 and IS901 PCR, thereafter characterized using VNTR. Twelve loci from two previously described VNTR methods were used and molecular results were analyzed and interpreted using Bionumerics 6.1. 37 of the isolates were identified as M. avium subsp. hominissuis and four as M. avium subsp. avium, while five could not be differentiated, possibly due to mixed infection. There was distinct clustering that coincides with the temporal and spatial differences of the isolates. The isolates from humans and cattle in the North Eastern parts of the UCC shared identical VNTR genotypes. The panel of loci gave an overall discriminatory power of 0.88. Some loci were absent in several isolates, probably reflecting differences in isolates from Uganda/Africa compared to isolates previously analyzed by these methods in Europe and Asia. The findings indicate a molecular difference between M. avium subsp. hominissuis isolates from pigs in Mubende and cattle and human in the rest of the UCC. Although human and cattle shared VNTR genotypes in the North Eastern parts of the UCC, it is most likely a reflection of a shared environmental source. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Patterns of Nucleotide Diversity at the Regions Encompassing the Drosophila Insulin-Like Peptide (dilp) Genes: Demography vs. Positive Selection in Drosophila melanogaster

    Science.gov (United States)

    Guirao-Rico, Sara; Aguadé, Montserrat

    2013-01-01

    In Drosophila, the insulin-signaling pathway controls some life history traits, such as fertility and lifespan, and it is considered to be the main metabolic pathway involved in establishing adult body size. Several observations concerning variation in body size in the Drosophila genus are suggestive of its adaptive character. Genes encoding proteins in this pathway are, therefore, good candidates to have experienced adaptive changes and to reveal the footprint of positive selection. The Drosophila insulin-like peptides (DILPs) are the ligands that trigger the insulin-signaling cascade. In Drosophila melanogaster, there are several peptides that are structurally similar to the single mammalian insulin peptide. The footprint of recent adaptive changes on nucleotide variation can be unveiled through the analysis of polymorphism and divergence. With this aim, we have surveyed nucleotide sequence variation at the dilp1-7 genes in a natural population of D. melanogaster. The comparison of polymorphism in D. melanogaster and divergence from D. simulans at different functional classes of the dilp genes provided no evidence of adaptive protein evolution after the split of the D. melanogaster and D. simulans lineages. However, our survey of polymorphism at the dilp gene regions of D. melanogaster has provided some evidence for the action of positive selection at or near these genes. The regions encompassing the dilp1-4 genes and the dilp6 gene stand out as likely affected by recent adaptive events. PMID:23308258

  5. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance

    DEFF Research Database (Denmark)

    Højlund, Kurt

    2014-01-01

    . These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes...... described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance....... Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin...

  6. FOXC2 mRNA Expression and a 5' untranslated region polymorphism of the gene are associated with insulin resistance

    DEFF Research Database (Denmark)

    Ridderstråle, Martin; Carlsson, Emma; Klannemark, Mia

    2002-01-01

    with subcutaneous fat from obese subjects (12 +/- 4-fold; P = 0.0001), and there was a correlation between whole-body insulin sensitivity and FOXC2 mRNA levels in visceral fat (fS-insulin R = -0.64, P = 0.01, and homeostasis model assessment of insulin resistance [HOMA-IR] R = -0.68, P = 0.007) and skeletal muscle...... (fS-insulin R = -0.57, P = 0.03, and HOMA-IR R = -0.55, P = 0.04). Mutation screening of the FOXC2 gene identified a common polymorphism in the 5' untranslated region (C-512T). The T allele was associated with enhanced insulin sensitivity (HOMA-IR P = 0.007) and lower plasma triglyceride levels...

  7. Energy expenditure, body composition and insulin response to glucose in male twins discordant for the Trp64Arg polymorphism of the β3-adrenergic receptor gene

    DEFF Research Database (Denmark)

    Højlund, Kurt; Christiansen, Christian; Bjørnsbo, K.S.

    2006-01-01

    AIM: The tryptophan to arginine change in position 64 (Trp64Arg) polymorphism of the beta3-adrenergic receptor (beta3AR) gene has been associated with an increased prevalence of obesity, insulin resistance and type 2 diabetes. In this, decreased rates of energy expenditure and impaired insulin...... and environmental background, the Trp64Arg polymorphism of the beta3AR gene is associated with lower fat mass, fasting insulin levels and an appropriate insulin response to glucose. Thus, heterozygosity for the Trp64Arg variant is unlikely to increase the risk of obesity, insulin resistance or type 2 diabetes....

  8. Vitamin D receptor gene polymorphisms, dietary promotion of insulin resistance, and colon and rectal cancer.

    Science.gov (United States)

    Murtaugh, Maureen A; Sweeney, Carol; Ma, Khe-Ni; Potter, John D; Caan, Bette J; Wolff, Roger K; Slattery, Martha L

    2006-01-01

    Modifiable risk factors in colorectal cancer etiology and their interactions with genetic susceptibility are of particular interest. Functional vitamin D receptor (VDR) gene polymorphisms may influence carcinogenesis through modification of cell growth, protection from oxidative stress, cell-cell matrix effects, or insulin and insulin-like growth factor pathways. We investigated interactions between foods (dairy products, red and processed meat, and whole and refined grains) and dietary patterns (sucrose-to-fiber ratio and glycemic index) associated with insulin resistance with the FokI polymorphism of the VDR gene and colon and rectal cancer risk. Data (diet, anthropometrics, and lifestyle) and DNA came from case-control studies of colon (1,698 cases and 1,861 controls) and rectal cancer (752 cases and 960 controls) in northern California, Utah, and the Twin Cities metropolitan area, Minnesota (colon cancer study only). Unconditional logistic regression models were adjusted for smoking, race, sex, age, body mass index, physical activity, energy intake, dietary fiber, and calcium. The lowest colon cancer risk was observed with the Ff/ff FokI genotypes and a low sucrose-to-fiber ratio. Rectal cancer risk decreased with greater consumption of dairy products and increased with red or processed meat consumption and the FF genotype. Modifiable dietary risk factors may be differentially important among individuals by VDR genotype and may act through the insulin pathway to affect colon cancer risk and through fat, calcium, or other means to influence rectal cancer risk.

  9. Evidence that phosphatidylcholine-specific phospholipase C is a key molecule mediating insulin-induced enhancement of gene expression from human cytomegalovirus promoter in CHO cells

    OpenAIRE

    Zhang, Yingpei; Katakura, Yoshinori; Seto, Perry; Shirahata, Sanetaka

    1997-01-01

    The signal transduction from insulin to its receptors and Ras has been extensively studied, while little has been reported beyond these steps. We found that the expression of human interleukin 6 gene under the control of immediate early gene promoter of human cytomegalovirus was enhanced by insulin sitmulation in Chinese hamster ovary cells. The induction effect of insulin was not significantly affected by inhibitors or activators of conventional protein kinase C, cAMP dependent protein kinas...

  10. Molecular characterization of Verocytotoxigenic Escherichia coli O157:H7 isolates from Argentina by Multiple-Loci VNTR Analysis (MLVA)

    Science.gov (United States)

    Bustamante, Ana V.; Lucchesi, Paula M.A.; Parma, Alberto E.

    2009-01-01

    The aim of this work was to adapt described MLVA protocols to the molecular typing and characterization of VTEC O157:H7 isolates from Argentina. Nine VNTR loci were amplified by PCR showing diversity values from 0.49 to 0.73. Nine MLVA profiles were observed and the cluster analysis indicated both unrelated and closely related VTEC O157:H7 strains. In spite of the limited number of isolates studied, the panel of VNTR used made it possible to perform a first approach of the high genetic diversity of native strains of O157:H7 by MLVA. PMID:24031443

  11. Phenolic Compounds from Fermented Berry Beverages Modulated Gene and Protein Expression To Increase Insulin Secretion from Pancreatic β-Cells in Vitro.

    Science.gov (United States)

    Johnson, Michelle H; de Mejia, Elvira Gonzalez

    2016-03-30

    Berries are a rich source of bioactive phenolic compounds that are able to bind and inhibit the enzyme dipeptidyl peptidase-IV (DPP-IV), a current target for type-2 diabetes therapy. The objectives were to determine the role of berry phenolic compounds to modulate incretin-cleaving DPP-IV and its substrate glucagon-like peptide-1 (GLP-1), insulin secretion from pancreatic β-cells, and genes and proteins involved in the insulin secretion pathway using cell culture. Anthocyanins (ANC) from 50% blueberry-50% blackberry (Blu-Bla) and 100% blackberry (Bla) fermented beverages at 50 μM cyanidin-3-glucoside equivalents increased (p beverages have the potential to modulate DPP-IV and its substrate GLP-1, to increase insulin secretion, and to upregulate expression of mRNA of insulin-receptor associated genes and proteins in pancreatic β-cells.

  12. Altered expression of genes involved in mitochondrial oxidative phosphorylation and insulin signaling in skeletal muscle of obese women with polycystic ovary syndrome (PCOS)

    DEFF Research Database (Denmark)

    Skov, Vibe

    be of similar importance for insulin resistance in the polycystic ovary syndrome (PCOS).   Materials and methods: Using the HG-U133 Plus 2.0 expression array from Affymetrix, we analyzed gene expression in skeletal muscle from obese women with PCOS (n=16) and age- and body mass index-matched control women (n=13...... a sum statistic and conducting a permutation test. Subsequently, we performed biological pathway analysis using Gene Set Enrichment Analysis (GSEA) and Gene Microarray Pathway Profiler (GenMAPP).   Results: Women with PCOS were characterized by fasting hyperinsulinemia and impaired insulin...... validated by quantitative real-time PCR and immunoblot analyses.   Conclusion: Our results, for the first time, provide evidence for an association between insulin resistance and impaired mitochondrial oxidative metabolism in skeletal muscle in women with PCOS. Furthermore, differential expression of genes...

  13. Differentiation of PDX1 gene-modified human umbilical cord mesenchymal stem cells into insulin-producing cells in vitro.

    Science.gov (United States)

    He, Dongmei; Wang, Juan; Gao, Yangjun; Zhang, Yuan

    2011-12-01

    Mesenchymal stem cells (MSCs) have significant advantages over other stem cell types, and greater potential for immediate clinical application. MSCs would be an interesting cellular source for treatment of type 1 diabetes. In this study, MSCs from human umbilical cord were differentiated into functional insulin-producing cells in vitro by introduction of the pancreatic and duodenal homeobox factor 1 (PDX1) and in the presence of induction factors. The expressions of cell surface antigens were detected by flow cytometry. After induction in an adipogenic medium or an osteogenic medium, the cells were observed by Oil Red O staining and alkaline phosphatase staining. Recombinant adenovirus carrying the PDX1 gene was constructed and MSCs were infected by the recombinant adenovirus, then treated with several inducing factors for differentiation into islet β-like cells. The expression of the genes and protein related to islet β-cells was detected by immunocytochemistry, RT-PCR and Western blot analysis. Insulin and C-peptide secretion were assayed. Our results show that the morphology and immunophenotype of MSCs from human umbilical cord were similar to those present in human bone marrow. The MSCs could be induced to differentiate into osteocytes and adipocytes. After induction by recombined adenovirus vector with induction factors, MSCs were aggregated and presented islet-like bodies. Dithizone staining of these cells was positive. The genes' expression related to islet β-cells was found. After induction, insulin and C-peptide secretion in the supernatant were significantly increased. In conclusion, our results demonstrated that PDX1 gene-modified human umbilical cord mesenchymal stem cells could be differentiated into insulin-producing cells in vitro.

  14. MIRU-VNTR Genotyping of Mycobacterium tuberculosis Strains Using QIAxcel Technology: A Multicentre Evaluation Study.

    Science.gov (United States)

    Nikolayevskyy, Vladyslav; Trovato, Alberto; Broda, Agnieszka; Borroni, Emanuele; Cirillo, Daniela; Drobniewski, Francis

    2016-01-01

    Molecular genotyping of M.tuberculosis is an important laboratory tool in the context of emerging drug resistant TB. The standard 24-loci MIRU-VNTR typing includes PCR amplification followed by the detection and sizing of PCR fragments using capillary electrophoresis on automated sequencers or using agarose gels. The QIAxcel Advanced system might offer a cost-effective medium-throughput alternative. Performance characteristics of the QIAxcel Advanced platform for the standard 24 VNTR loci panel was evaluated at two centres on a total of 140 DNA specimens using automated capillary electrophoresis as a reference method. Additionally 4 hypervariable MIRU-VNTR loci were evaluated on 53 crude DNA extracts. The sizing accuracy, interlaboratory reproducibility and overall instrument's performance were assessed during the study. An overall concordance with the reference method was high reaching 98.5% and 97.6% for diluted genomic and crude DNA extracts respectively. 91.4% of all discrepancies were observed in fragments longer than 700bp. The concordance for hypervariable loci was lower except for locus 4120 (96.2%). The interlaboratory reproducibility agreement rates were 98.9% and 91.3% for standard and hypervariable loci, respectively. Overall performance of the QIAxcel platform for M.tuberculosis genotyping using a panel of standard loci is comparable to that of established methods for PCR fragments up to 700bp. Inaccuracies in sizing of longer fragments could be resolved through using in-house size markers or introduction of offset values. To conclude, the QiaXcel system could be considered an effective alternative to existing methods in smaller reference and regional laboratories offering good performance and shorter turnaround times.

  15. MIRU-VNTR Genotyping of Mycobacterium tuberculosis Strains Using QIAxcel Technology: A Multicentre Evaluation Study.

    Directory of Open Access Journals (Sweden)

    Vladyslav Nikolayevskyy

    Full Text Available Molecular genotyping of M.tuberculosis is an important laboratory tool in the context of emerging drug resistant TB. The standard 24-loci MIRU-VNTR typing includes PCR amplification followed by the detection and sizing of PCR fragments using capillary electrophoresis on automated sequencers or using agarose gels. The QIAxcel Advanced system might offer a cost-effective medium-throughput alternative.Performance characteristics of the QIAxcel Advanced platform for the standard 24 VNTR loci panel was evaluated at two centres on a total of 140 DNA specimens using automated capillary electrophoresis as a reference method. Additionally 4 hypervariable MIRU-VNTR loci were evaluated on 53 crude DNA extracts. The sizing accuracy, interlaboratory reproducibility and overall instrument's performance were assessed during the study.An overall concordance with the reference method was high reaching 98.5% and 97.6% for diluted genomic and crude DNA extracts respectively. 91.4% of all discrepancies were observed in fragments longer than 700bp. The concordance for hypervariable loci was lower except for locus 4120 (96.2%. The interlaboratory reproducibility agreement rates were 98.9% and 91.3% for standard and hypervariable loci, respectively. Overall performance of the QIAxcel platform for M.tuberculosis genotyping using a panel of standard loci is comparable to that of established methods for PCR fragments up to 700bp. Inaccuracies in sizing of longer fragments could be resolved through using in-house size markers or introduction of offset values. To conclude, the QiaXcel system could be considered an effective alternative to existing methods in smaller reference and regional laboratories offering good performance and shorter turnaround times.

  16. Effect of 5'-flanking sequence deletions on expression of the human insulin gene in transgenic mice

    DEFF Research Database (Denmark)

    Fromont-Racine, M; Bucchini, D; Madsen, O

    1990-01-01

    Expression of the human insulin gene was examined in transgenic mouse lines carrying the gene with various lengths of DNA sequences 5' to the transcription start site (+1). Expression of the transgene was demonstrated by 1) the presence of human C-peptide in urine, 2) the presence of specific...... of the transgene was observed in cell types other than beta-islet cells....

  17. Dietary Chromium Restriction of Pregnant Mice Changes the Methylation Status of Hepatic Genes Involved with Insulin Signaling in Adult Male Offspring.

    Science.gov (United States)

    Zhang, Qian; Sun, Xiaofang; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2017-01-01

    Maternal undernutrition is linked with an elevated risk of diabetes mellitus in offspring regardless of the postnatal dietary status. This is also found in maternal micro-nutrition deficiency, especial chromium which is a key glucose regulator. We investigated whether maternal chromium restriction contributes to the development of diabetes in offspring by affecting DNA methylation status in liver tissue. After being mated with control males, female weanling 8-week-old C57BL mice were fed a control diet (CON, 1.19 mg chromium/kg diet) or a low chromium diet (LC, 0.14 mg chromium/kg diet) during pregnancy and lactation. After weaning, some offspring were shifted to the other diet (CON-LC, or LC-CON), while others remained on the same diet (CON-CON, or LC-LC) for 29 weeks. Fasting blood glucose, serum insulin, and oral glucose tolerance test was performed to evaluate the glucose metabolism condition. Methylation differences in liver from the LC-CON group and CON-CON groups were studied by using a DNA methylation array. Bisulfite sequencing was carried out to validate the results of the methylation array. Maternal chromium limitation diet increased the body weight, blood glucose, and serum insulin levels. Even when switched to the control diet after weaning, the offspring also showed impaired glucose tolerance and insulin resistance. DNA methylation profiling of the offspring livers revealed 935 differentially methylated genes in livers of the maternal chromium restriction diet group. Pathway analysis identified the insulin signaling pathway was the main process affected by hypermethylated genes. Bisulfite sequencing confirmed that some genes in insulin signaling pathway were hypermethylated in livers of the LC-CON and LC-LC group. Accordingly, the expression of genes in insulin signaling pathway was downregulated. There findings suggest that maternal chromium restriction diet results in glucose intolerance in male offspring through alterations in DNA methylation which

  18. Dietary Chromium Restriction of Pregnant Mice Changes the Methylation Status of Hepatic Genes Involved with Insulin Signaling in Adult Male Offspring.

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    Full Text Available Maternal undernutrition is linked with an elevated risk of diabetes mellitus in offspring regardless of the postnatal dietary status. This is also found in maternal micro-nutrition deficiency, especial chromium which is a key glucose regulator. We investigated whether maternal chromium restriction contributes to the development of diabetes in offspring by affecting DNA methylation status in liver tissue. After being mated with control males, female weanling 8-week-old C57BL mice were fed a control diet (CON, 1.19 mg chromium/kg diet or a low chromium diet (LC, 0.14 mg chromium/kg diet during pregnancy and lactation. After weaning, some offspring were shifted to the other diet (CON-LC, or LC-CON, while others remained on the same diet (CON-CON, or LC-LC for 29 weeks. Fasting blood glucose, serum insulin, and oral glucose tolerance test was performed to evaluate the glucose metabolism condition. Methylation differences in liver from the LC-CON group and CON-CON groups were studied by using a DNA methylation array. Bisulfite sequencing was carried out to validate the results of the methylation array. Maternal chromium limitation diet increased the body weight, blood glucose, and serum insulin levels. Even when switched to the control diet after weaning, the offspring also showed impaired glucose tolerance and insulin resistance. DNA methylation profiling of the offspring livers revealed 935 differentially methylated genes in livers of the maternal chromium restriction diet group. Pathway analysis identified the insulin signaling pathway was the main process affected by hypermethylated genes. Bisulfite sequencing confirmed that some genes in insulin signaling pathway were hypermethylated in livers of the LC-CON and LC-LC group. Accordingly, the expression of genes in insulin signaling pathway was downregulated. There findings suggest that maternal chromium restriction diet results in glucose intolerance in male offspring through alterations in DNA

  19. Expression of the central obesity and Type 2 Diabetes mellitus genes is associated with insulin resistance in young obese children.

    Science.gov (United States)

    Skoczen, S; Wojcik, M; Fijorek, K; Siedlar, M; Starzyk, J B

    2015-04-01

    The assessment of the health consequences associated with obesity in young children is challenging. The aims of this study were: (1) to compare insulin resistance indices derived from OGTT in obese patients and healthy control (2) to analyze central obesity and Type 2 Diabetes genes expression in obese children, with special attention to the youngest group (10 years old). The study included 49 children with obesity (median age 13.5 years old), and 25 healthy peers. Biochemical blood tests and expression of 11 central obesity and 33 Type 2 Diabetes genes was assessed. A significant difference in insulin resistance between obese and non-obese adolescents was observed in all studied indices (mean values of the insulin levels: 24.9 vs. 9.71 mIU/L in T0, 128 vs. 54.7 mIU/L in T60 and 98.7 vs. 41.1 mIU/L in T120 respectively; AUC: 217 vs. 77.2 ng/ml*h, mean values of B% (state beta cell function), S% (insulin sensitivity), and IR were 255 (±97) vs. 135 (±37.8), 46.6 (±37.3) vs. 84.2 (±29.6) and 3 (±1.55) vs. 1.36 (±0,56); HIS, WBIS and ISIBel median 3.89, 44.7, 0.73 vs. 8.57, 110, 2.25. All comparisons differed significantly p1). Moreover, insulin sensitivity was significantly better in the older obese group (>10 years old): median AUC 239 vs. 104 ng/ml*h, and HIS, WBIS and ISIBel 3.57, 38, 0.67 vs. 6.23, 75.6, 1.87 respectively in the obese older compared to the obese younger subgroup, pobesity genes and 70% of Type 2 Diabetes genes was higher in the obese compared to control groups. The differences were more pronounced in the younger obese group. Insulin resistance may develop in early stage of childhood obesity and in very young children may be associated with higher expression of the central obesity and Type 2 Diabetes genes. © Georg Thieme Verlag KG Stuttgart · New York.

  20. The rs1862513 Variant in Resistin Gene-Modified Insulin Resistance and Insulin Levels after Weight Loss Secondary to Hypocaloric Diet.

    Science.gov (United States)

    de Luis, Daniel Antonio; Izaola, Olatz; Primo, David; de la Fuente, Beatriz; Mulero, Ines; Aller, Rocío

    2016-01-01

    Polymorphisms of a single nucleotide in RETN have been associated with indexes of insulin resistance. Our aim was to analyze the effects of the rs1862513 RETN gene polymorphism on insulin resistance, insulin levels, and resistin levels changes after 3 months of a low-fat hypocaloric diet. A Caucasian population of 133 obese patients was analyzed before and after 3 months on a low-fat hypocaloric diet. Fifty-six patients (42.1%) had the genotype GG (wild group) and 77 (57.9%) patients had the other genotypes; GC (59 patients, 44.4%) or CC (18 patients, 13.5%; mutant group). In wild and mutant genotype groups, weight, body mass index, fat mass, waist circumference, and systolic blood pressure decreased. In the wild genotype group, the decrease in total cholesterol was -13.1 ± 25.3 mg/dL (vs. -4.4 ± 13.7 mg/dL in mutant group: p = 0.004 for group deltas), low density lipoprotein (LDL)-cholesterol was -13.0 ± 21.5 mg/dL (-4.3 ± 10.5 mg/dL: p = 0.007), glucose -7.2 ± 3.5 mg/dL (-0.8 ± 0.2 mg/dL: p = 0.01), insulin -5.6 ± 2.5 mUI/L (-2.9 ± 1.2 mUI/L: p = 0.03) and homeostasis model assessment-insulin resistance (HOMA-IR) -2.5 ± 1.1 (-0.6 ± 1.4: p = 0.02). Leptin levels decreased in both genotypes (-10.1 ± 9.5 ng/dL in wild type group vs. -13.1 ± 0.2 ng/dL in mutant type group: p > 0.05). The present study suggests that the G/G genotype of RETN rs1862513 could be a predictor of the reduction of HOMA-IR, insulin, fasting glucose and LDL cholesterol secondary to a hypocaloric diet in obese subjects. © 2016 S. Karger AG, Basel.

  1. MIRU-VNTR genotype diversity and indications of homoplasy in M. avium strains isolated from humans and slaughter pigs in Latvia.

    Science.gov (United States)

    Kalvisa, Adrija; Tsirogiannis, Constantinos; Silamikelis, Ivars; Skenders, Girts; Broka, Lonija; Zirnitis, Agris; Jansone, Inta; Ranka, Renate

    2016-09-01

    Diseases which are caused by non-tuberculous mycobacteria (NTM) are an increasing problem in the developed countries. In Latvia, one of the most clinically important members of NTM is Mycobacterium avium (M. avium), an opportunistic pathogen which has been isolated from several lung disease patients and tissue samples of slaughter pigs. This study was designed to characterize the genetic diversity of the M. avium isolates in Latvia and to compare the distribution of genotypic patterns among humans and pigs. Eleven (Hall and Salipante, 2010) clinical M. avium samples, isolated from patients of Center of Tuberculosis and Lung Diseases (years 2003-2010), and 32 isolates from pig necrotic mesenterial lymph nodes in different regions (years 2003-2007) were analyzed. The majority (42 of 43) of samples were identified as M. avium subsp. hominissuis; one porcine isolate belonged to M. avium subsp. avium. MIRU-VNTR genotyping revealed 13 distinct genotypes, among which nine genotype patterns, including M. avium subsp. avium isolate, were newly identified. IS1245 RFLP fingerprinting of 25 M. avium subsp. hominissuis samples yielded 17 different IS1245 RFLP patterns, allowing an efficient discrimination of isolates. Clusters of identical RFLP profiles were observed within host species, geographical locations and time frame of several years. Additional in silico analysis on simulated MIRU-VNTR genotype population datasets showed that the MIRU-VNTR pattern similarity could partly arise due to probabilistic increase of acquiring homoplasy among subpopulations, thus the similar MIRU-VNTR profiles of M. avium strains even in close geographical proximity should be interpreted with caution. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. No association of the G972S polymorphism of the insulin receptor substrate-1 gene with polycystic ovary syndrome in lean PCOS women with biochemical hyperandrogenemia.

    Science.gov (United States)

    Marioli, Dimitra J; Koika, Vasiliki; Adonakis, George L; Saltamavros, Alexandros D; Karela, Anastasia; Armeni, Anastasia K; Tsapanos, Vasilios S; Decavalas, George O; Georgopoulos, Neoklis A

    2010-06-01

    The aim of the present study was to determine the prevalence and association of the G972S polymorphism of the insulin receptor substrate-1 gene (IRS-1 G972S SNP) with polycystic ovary syndrome (PCOS) and insulin resistance-related traits in a distinct phenotypic group of lean PCOS women with biochemical hyperandrogenemia, excluding obesity, which is considered to be an aggravating parameter of insulin resistance. The study included 162 women with PCOS and 122 regularly menstruating, ovulatory women as controls. Physical measurements included weight, height, fat-free mass, fat mass, systolic and diastolic blood pressure and resting heart rate. Biochemical parameters included the serum testosterone, free testosterone, androstenedione, total cholesterol, triglycerides, HDL and LDL cholesterol and glucose levels. Insulin resistance was assessed by determining fasting insulin levels, fasting glucose levels, the fasting glucose/insulin ratio, as well as the HOMA and QUICKI indexes. All DNA samples were genotyped by a PCR-restriction fragment length polymorphism (RLFP) assay. No association of the genotype frequencies of the G972S polymorphism in insulin receptor substrate-1 gene (IRS-1 G972S SNP) with PCOS phenotype and insulin resistance was detected. The G972S polymorphism of the IRS-1 gene should not be viewed as major contributor to the development of PCOS or as a causative variant for insulin resistance.

  3. Fatty-acid binding protein 4 gene variants and childhood obesity: potential implications for insulin sensitivity and CRP levels

    Directory of Open Access Journals (Sweden)

    Bhattacharjee Rakesh

    2010-02-01

    Full Text Available Abstract Introduction Obesity increases the risk for insulin resistance and metabolic syndrome in both adults and children. FABP4 is a member of the intracellular lipid-binding protein family that is predominantly expressed in adipose tissue, and plays an important role in maintaining glucose and lipid homeostasis. The purpose of this study was to measure FABP4 plasma levels, assess FABP4 allelic variants, and explore potential associations with fasting glucose and insulin levels in young school-age children with and without obesity. Methods A total of 309 consecutive children ages 5-7 years were recruited. Children were divided based on BMI z score into Obese (OB; BMI z score >1.65 and non-obese (NOB. Fasting plasma glucose, lipids, insulin, hsCRP, and FABP4 levels were measured. HOMA was used as correlate of insulin sensitivity. Four SNPs of the human FABP4 gene (rs1051231, rs2303519, rs16909233 and rs1054135, corresponding to several critical regions of the encoding FABP4 gene sequence were genotyped. Results Compared to NOB, circulating FABP4 levels were increased in OB, as were LDL, hsCRP and HOMA. FABP4 levels correlated with BMI, and also contributed to the variance of HOMA and hsCRP, but not serum lipids. The frequency of rs1054135 allelic variant was increased in OB, and was associated with increased FABP4 levels, while the presence of rs16909233 variant allele, although similar in OB and NOB, was associated with increased HOMA values. Conclusions Childhood obesity is associated with higher FABP4 levels that may promote cardiometabolic risk. The presence of selective SNPs in the FABP4 gene may account for increased risk for insulin resistance or systemic inflammation in the context of obesity.

  4. Quinapril treatment increases insulin-stimulated endothelial function and adiponectin gene expression in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Hermann, Thomas S; Li, Weijie; Dominguez, Helena

    2005-01-01

    OBJECTIVE: Angiotensin-converting enzyme inhibitors reduce cardiovascular mortality and improve endothelial function in type 2 diabetic patients. We hypothesized that 2 months of quinapril treatment would improve insulin-stimulated endothelial function and glucose uptake in type 2 diabetic subjects...... and simultaneously increase the expression of genes that are pertinent for endothelial function and metabolism. METHODS: Twenty-four type 2 diabetic subjects were randomized to receive 2 months of quinapril 20 mg daily or no treatment in an open parallel study. Endothelium-dependent and -independent vasodilation...... occlusion plethysmography. Gene expression was measured by real-time PCR. RESULTS: Quinapril treatment increased insulin-stimulated endothelial function in the type 2 diabetic subjects (P = 0.005), whereas forearm glucose uptake was unchanged. Endothelial function was also increased by quinapril (P = 0...

  5. Influence of IL-1RN intron 2 variable number of tandem repeats (VNTR) polymorphism on the age at onset of neuropsychiatric symptoms in Wilson's disease.

    Science.gov (United States)

    Gromadzka, Grazyna; Członkowska, Anna

    2011-01-01

    ABSTRACT Wilson's disease (WND) is an autosomal recessive copper storage disease characterized with diverse clinical pictures with the hepatic and/or neuropsychiatric symptoms manifesting at variable age. On the basis of the existing knowledge on possible copper-proinflammatory cytokines interactions, we hypothesized that in WND hereditary, over-/underexpression of PC or anti-inflammatory cytokines may have an impact on the course of the disease. We analyzed the clinical manifestations of WND in relationship to polymorphisms within genes for interleukin-1 receptor antagonist (IL1RN intron 2 VNTR polymorphism), interleukin-1α (IL1A G4845T), IL-1β (IL1B C-511T), IL-6 (IL6 G-174C), and tumor necrosis factor (TNF G-308A) in a total sample of 332 patients. The IL1B C-511T and IL1RN VNTR polymorphisms had an impact on copper metabolism parameters. None of the studied gene polymorphisms had effect on the mode of WND manifestation (neuropsychiatric vs. hepatic). Carriership of the IL1RN *2 allele was related to earlier WND onset, especially among patients with neuropsychiatric form of the disease (median 27.5 vs. 32.0 years, p = .003). Because of the crucial modulatory role of IL1ra on IL-1α and IL-1β proinflammatory functions, IL1ra and its interactions may play a role in the pathogenesis of the neurodegenerative process in WND; our results need to be replicated, possibly in different ethnic groups.

  6. Effects of body weight and alcohol consumption on insulin sensitivity

    Directory of Open Access Journals (Sweden)

    Holcomb Valerie B

    2010-03-01

    Full Text Available Abstract Background Obesity is a risk factor for the development of insulin resistance, which can eventually lead to type-2 diabetes. Alcohol consumption is a protective factor against insulin resistance, and thus protects against the development of type-2 diabetes. The mechanism by which alcohol protects against the development of type-2 diabetes is not well known. To determine the mechanism by which alcohol improves insulin sensitivity, we fed water or alcohol to lean, control, and obese mice. The aim of this study was to determine whether alcohol consumption and body weights affect overlapping metabolic pathways and to identify specific target genes that are regulated in these pathways. Method Adipose tissue dysfunction has been associated with the development of type-2 diabetes. We assessed possible gene expression alterations in epididymal white adipose tissue (WAT. We obtained WAT from mice fed a calorie restricted (CR, low fat (LF Control or high fat (HF diets and either water or 20% ethanol in the drinking water. We screened the expression of genes related to the regulation of energy homeostasis and insulin regulation using a gene array composed of 384 genes. Results Obesity induced insulin resistance and calorie restriction and alcohol improved insulin sensitivity. The insulin resistance in obese mice was associated with the increased expression of inflammatory markers Cd68, Il-6 and Il-1α; in contrast, most of these genes were down-regulated in CR mice. Anti-inflammatory factors such as Il-10 and adrenergic beta receptor kinase 1 (Adrbk1 were decreased in obese mice and increased by CR and alcohol. Also, we report a direct correlation between body weight and the expression of the following genes: Kcnj11 (potassium inwardly-rectifying channel, subfamily J, member 11, Lpin2 (lipin2, and Dusp9 (dual-specificity MAP kinase phosphatase 9. Conclusion We show that alcohol consumption increased insulin sensitivity. Additionally, alterations

  7. Testosterone treatment increases androgen receptor and aromatase gene expression in myotubes from patients with PCOS and controls, but does not induce insulin resistance.

    Science.gov (United States)

    Eriksen, Mette Brandt; Glintborg, Dorte; Nielsen, Michael Friberg Bruun; Jakobsen, Marianne Antonius; Brusgaard, Klaus; Tan, Qihua; Gaster, Michael

    2014-09-05

    Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity is conserved in cultured myotubes (in vitro) from patients with PCOS, but the effect of testosterone on this insulin sensitivity is unknown. We investigated the effect of 7days testosterone treatment (100nmol/l) on glucose transport and gene expression levels of hormone receptors and enzymes involved in the synthesis and conversion of testosterone (HSD17B1, HSD17B2, CYP19A1, SRD5A1-2, AR, ER-α, HSD17B6 and AKR1-3) in myotubes from ten patients with PCOS and ten matched controls. Testosterone treatment significantly increased aromatase and androgen receptor gene expression levels in patients and controls. Glucose transport in myotubes was comparable in patients with PCOS vs. controls and was unchanged by testosterone treatment (p=0.21 PCOS vs. controls). These results suggest that testosterone treatment of myotubes increases the aromatase and androgen receptor gene expression without affecting insulin sensitivity and if testosterone is implicated in muscular insulin resistance in PCOS, this is by and indirect mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Partial deletion of eNOS gene causes hyperinsulinemic state, unbalance of cardiac insulin signaling pathways and coronary dysfunction independently of high fat diet.

    Directory of Open Access Journals (Sweden)

    Cecilia Vecoli

    Full Text Available Abnormalities in eNOS gene, possibly interacting with high fat diet (HFD, affect peripheral vascular function and glucose metabolism. The relative role of eNOS gene, HFD and metabolic derangement on coronary function has not been fully elucidated. We test whether eNOS gene deficiency per se or in association with HFD modulates coronary function through mechanisms involving molecular pathways related to insulin signaling. Wild type (WT, eNOS-/- and eNOS+/- mice were studied. WT and eNOS+/- mice were fed with either standard or HF diet for 16 weeks and compared with standard diet fed eNOS-/-. Glucose and insulin tolerance tests were performed during the last week of diet. Coronary resistance (CR was measured at baseline and during infusions of acetylcholine (Ach or sodium-nitroprusside (SNP to evaluate endothelium-dependent or independent vasodilation, in the Langendorff isolated hearts. Cardiac expression of Akt and ERK genes as evaluation of two major insulin-regulated signaling pathways involved in the control of vascular tone were assessed by western blot. HFD-fed mice developed an overt diabetic state. Conversely, chow-fed genetically modified mice (in particular eNOS-/- showed a metabolic pattern characterized by normoglycemia and hyperinsulinemia with a limited degree of insulin resistance. CR was significantly higher in animals with eNOS gene deletions than in WT, independently of diet. Percent decrease in CR, during Ach infusion, was significantly lower in both eNOS-/- and eNOS+/- mice than in WT, independently of diet. SNP reduced CR in all groups except eNOS-/-. The cardiac ERK1-2/Akt ratio, increased in animals with eNOS gene deletions compared with WT, independently of diet. These results suggest that the eNOS genetic deficiency, associated or not with HFD, has a relevant effect on coronary vascular function, possibly mediated by increase in blood insulin levels and unbalance in insulin-dependent signaling in coronary vessels

  9. Testosterone treatment increases androgen receptor and aromatase gene expression in myotubes from patients with PCOS and controls, but does not induce insulin resistance

    DEFF Research Database (Denmark)

    Eriksen, Mette Brandt; Glintborg, Dorte; Nielsen, Michael Friberg Bruun

    2014-01-01

    Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity is conse......Polycystic ovary syndrome (PCOS) is associated with insulin resistance and increased risk of type 2 diabetes. Skeletal muscle is the major site of insulin mediated glucose disposal and the skeletal muscle tissue is capable to synthesize, convert and degrade androgens. Insulin sensitivity...... is conserved in cultured myotubes (in vitro) from patients with PCOS, but the effect of testosterone on this insulin sensitivity is unknown. We investigated the effect of 7days testosterone treatment (100nmol/l) on glucose transport and gene expression levels of hormone receptors and enzymes involved...... in the synthesis and conversion of testosterone (HSD17B1, HSD17B2, CYP19A1, SRD5A1-2, AR, ER-α, HSD17B6 and AKR1-3) in myotubes from ten patients with PCOS and ten matched controls. Testosterone treatment significantly increased aromatase and androgen receptor gene expression levels in patients and controls...

  10. Molecular mechanism of insulin resistance

    Indian Academy of Sciences (India)

    Free fatty acids are known to play a key role in promoting loss of insulin sensitivity, thereby causing insulin resistance and type 2 diabetes. However, the underlying mechanism involved is still unclear. In searching for the cause of the mechanism, it has been found that palmitate inhibits insulin receptor (IR) gene expression, ...

  11. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene

    DEFF Research Database (Denmark)

    Efrat, S; Linde, S; Kofod, Hans

    1988-01-01

    Three pancreatic beta-cell lines have been established from insulinomas derived from transgenic mice carrying a hybrid insulin-promoted simian virus 40 tumor antigen gene. The beta tumor cell (beta TC) lines maintain the features of differentiated beta cells for about 50 passages in culture. The ...... both to immortalize a rare cell type and to provide a selection for the maintenance of its differentiated phenotype....

  12. Multivariate analysis of dopaminergic gene variants as risk factors of heroin dependence.

    Directory of Open Access Journals (Sweden)

    Andrea Vereczkei

    Full Text Available BACKGROUND: Heroin dependence is a debilitating psychiatric disorder with complex inheritance. Since the dopaminergic system has a key role in rewarding mechanism of the brain, which is directly or indirectly targeted by most drugs of abuse, we focus on the effects and interactions among dopaminergic gene variants. OBJECTIVE: To study the potential association between allelic variants of dopamine D2 receptor (DRD2, ANKK1 (ankyrin repeat and kinase domain containing 1, dopamine D4 receptor (DRD4, catechol-O-methyl transferase (COMT and dopamine transporter (SLC6A3 genes and heroin dependence in Hungarian patients. METHODS: 303 heroin dependent subjects and 555 healthy controls were genotyped for 7 single nucleotide polymorphisms (SNPs rs4680 of the COMT gene; rs1079597 and rs1800498 of the DRD2 gene; rs1800497 of the ANKK1 gene; rs1800955, rs936462 and rs747302 of the DRD4 gene. Four variable number of tandem repeats (VNTRs were also genotyped: 120 bp duplication and 48 bp VNTR in exon 3 of DRD4 and 40 bp VNTR and intron 8 VNTR of SLC6A3. We also perform a multivariate analysis of associations using Bayesian networks in Bayesian multilevel analysis (BN-BMLA. FINDINGS AND CONCLUSIONS: In single marker analysis the TaqIA (rs1800497 and TaqIB (rs1079597 variants were associated with heroin dependence. Moreover, -521 C/T SNP (rs1800955 of the DRD4 gene showed nominal association with a possible protective effect of the C allele. After applying the Bonferroni correction TaqIB was still significant suggesting that the minor (A allele of the TaqIB SNP is a risk component in the genetic background of heroin dependence. The findings of the additional multiple marker analysis are consistent with the results of the single marker analysis, but this method was able to reveal an indirect effect of a promoter polymorphism (rs936462 of the DRD4 gene and this effect is mediated through the -521 C/T (rs1800955 polymorphism in the promoter.

  13. Effects of insulin and exercise training on FGF21, its receptors and target genes in obesity and type 2 diabetes

    DEFF Research Database (Denmark)

    Sørensen, Rikke Kruse; Vienberg, Sara Gry; Vind, Birgitte F

    2017-01-01

    obesity with and without type 2 diabetes led to reduced expression of KLB, but increased FGFR1c expression. However, the expression of most FGF21 target genes was unaltered except for reduced CIDEA expression in individuals with type 2 diabetes. CONCLUSIONS....../INTERPRETATION: Insulin-induced expression of muscle FGF21 correlates strongly with a rise in serum FGF21, and this response appears intact in overweight/obesity and type 2 diabetes. FGF21 resistance may involve reduced KLB expression in WAT. However, increased FGFR1c expression or other mechanisms seem to ensure...... that insulin and exercise increase FGF21 in plasma. Obesity and type 2 diabetes are potentially FGF21-resistant states, but to what extent FGF21 responses to insulin and exercise training are preserved, and whether FGF21, its receptors and target genes are altered, remains to be established. METHODS...

  14. Endothelial nitric oxide synthase gene haplotypes and diabetic nephropathy among Asian Indians

    DEFF Research Database (Denmark)

    Ahluwalia, Tarun Veer Singh; Ahuja, Monica; Rai, Taranjit Singh

    2008-01-01

    of the constitutive endothelial nitric oxide synthase gene (eNOS) polymorphisms with type 2 diabetic nephropathy. We genotyped three polymorphisms of eNOS (Two SNPs: -786T > C, 894G > T and one 27-bp repeat polymorphism in Intron 4 (27VNTR)) in type 2 diabetic nephropathy patients (cases: n = 195) and type 2 diabetic...... without nephropathy (controls: n = 255), using validated PCR-RFLP assays. We measured serum NO levels in these subjects and examined its correlation with diabetic nephropathy and eNOS genotypes. The frequency of CC (-786T > C), TT (894G > T) and aa genotypes (27VNTR) were significantly higher in diabetic...

  15. Lupanine Improves Glucose Homeostasis by Influencing KATP Channels and Insulin Gene Expression

    Directory of Open Access Journals (Sweden)

    Mats Wiedemann

    2015-10-01

    Full Text Available The glucose-lowering effects of lupin seeds involve the combined action of several components. The present study investigates the influence of one of the main quinolizidine alkaloids, lupanine, on pancreatic beta cells and in an animal model of type-2 diabetes mellitus. In vitro studies were performed with insulin-secreting INS-1E cells or islets of C57BL/6 mice. In the in vivo experiments, hyperglycemia was induced in rats by injecting streptozotocin (65 mg/kg body weight. In the presence of 15 mmol/L glucose, insulin secretion was significantly elevated by 0.5 mmol/L lupanine, whereas the alkaloid did not stimulate insulin release with lower glucose concentrations. In islets treated with l-arginine, the potentiating effect of lupanine already occurred at 8 mmol/L glucose. Lupanine increased the expression of the Ins-1 gene. The potentiating effect on secretion was correlated to membrane depolarization and an increase in the frequency of Ca2+ action potentials. Determination of the current through ATP-dependent K+ channels (KATP channels revealed that lupanine directly inhibited the channel. The effect was dose-dependent but, even with a high lupanine concentration of 1 mmol/L or after a prolonged exposure time (12 h, the KATP channel block was incomplete. Oral administration of lupanine did not induce hypoglycemia. By contrast, lupanine improved glycemic control in response to an oral glucose tolerance test in streptozotocin-diabetic rats. In summary, lupanine acts as a positive modulator of insulin release obviously without a risk for hypoglycemic episodes.

  16. Validation of chimerism in pediatric recipients of allogeneic hematopoietic stem cell transplantation (HSCT) a comparison between two methods: real-time PCR (qPCR) vs. variable number tandem repeats PCR (VNTR PCR).

    Science.gov (United States)

    Kletzel, Morris; Huang, Wei; Olszewski, Marie; Khan, Sana

    2013-01-01

    Post-hematopoietic stem cell transplantation (HSCT) chimerism monitoring is important to assess relapse and therapeutic intervention. The purpose of our study is to compare two methods variable number tandem repeats (VNTR) vs. quantitative real- time polymerase chain reaction (qPCR) in terms of determining chimerism. 127 (peripheral blood n=112, bone marrow n=15) samples were simultaneously tested by VNTR using APO-B, D1S80, D1S111, D17S30, gene loci SRY and ZP3 and qPCR using 34 assays (CA001-CA034) that are designed to a bi-allelic insertion/deletion (indel) polymorphism in the human genome. Samples were separated in three subsets: total WBC, T-cell and Myeloid cells. Extraction of DNA was performed then quantified. We analyzed column statistics, paired t-test and regression analysis for both methods. There was complete correlation between the two methods. The simplicity and rapidity of the test results from the qPCR method is more efficient and accurate to assess chimerism.

  17. Dopamine transporter gene polymorphism and psychiatric symptoms seen in schizophrenic patients at their first episode

    Energy Technology Data Exchange (ETDEWEB)

    Inada, Toshiya; Sugita, Tetsuyoshi; Dobashi, Izumi [National Institute of Mental Health, Chiba (Japan)] [and others

    1996-07-26

    To investigate the possible role of the dopamine transporter (DAT) gene in determining the phenotype in human subjects, allele frequencies for the 40-bp variable number of tandem repeats (VNTR) polymorphism at this site were compared between 117 Japanese normal controls and 118 schizophrenic patients, including six subgroups: early-onset, those with a family history, and those suffering from one of the following psychiatric symptoms at their first episode: delusion and hallucination; disorganization; bizarre behavior; and negative symptoms. No significant differences were observed between the group as a whole or any subgroup of schizophrenic patients and controls. The results indicate that VNTR polymorphism in the DAT gene is unlikely to be a major contributor to any of the psychiatric parameters examined in the present population of schizophrenic subjects. 12 refs., 1 fig., 2 tabs.

  18. Association of polymorphic variants of IL-1β and IL-1RN genes in the development of Graves' disease in Kashmiri population (North India).

    Science.gov (United States)

    Shehjar, Faheem; Afroze, Dil; Misgar, Raiz A; Malik, Sajad A; Laway, Bashir A

    2018-04-01

    Graves' disease (GD) is a multigenic, organ specific autoimmune disorder with a strong genetic predisposition and IL-1β has been shown to be involved in its pathogenesis. The present study was aimed to determine the genetic associations between polymorphisms of IL-1β gene promoter region (-511 T>C) (rs16944), exon 5 (+3954 C>T) (rs1143634) and IL-1RN gene VNTR (rs2234663) polymorphism in patients with GD in ethnic Kashmiri population. A total of 135 Graves' disease patients and 150 healthy individuals were included in the study. PCR and PCR-based restriction analysis methods were done for IL-1RN VNTR and IL-1β gene polymorphisms respectively. We found statistically significant increased frequencies of the C/C + CT genotype (P = 0.001; odds ratio (OR) = 5.04, 95% confidence interval (CI) = 3.02-8.42) and the C allele (P = 0.001; OR = 3.10, 95% CI = 2.14-4.50) in IL-1β gene promoter polymorphism (rs16944) with GD patients compared to normal controls. Also in the exon 5 (rs1143634), a significant increase in frequency of the C/C homozygous genotype (P = 0.001; OR = 0.18, 95% CI = 0.11-0.30) and C allele (P = 0.001; OR = 0.31, 95% CI = 0.20-0.48) was observed in GD cases as against controls. For IL-1RN VNTR (rs2234663), we didn't observe any significant difference in the allelic and genotypic frequencies between cases and controls. Our findings suggest that both promoter and exon polymorphisms of IL-1β gene have a significant role in the risk of developing GD, whereas IL-1RN VNTR has no association with GD. Copyright © 2018. Published by Elsevier Inc.

  19. Identification of Variable-Number Tandem-Repeat (VNTR) Sequences in Acinetobacter baumannii and Interlaboratory Validation of an Optimized Multiple-Locus VNTR Analysis Typing Scheme▿†

    Science.gov (United States)

    Pourcel, Christine; Minandri, Fabrizia; Hauck, Yolande; D'Arezzo, Silvia; Imperi, Francesco; Vergnaud, Gilles; Visca, Paolo

    2011-01-01

    Acinetobacter baumannii is an important opportunistic pathogen responsible for nosocomial outbreaks, mostly occurring in intensive care units. Due to the multiplicity of infection sources, reliable molecular fingerprinting techniques are needed to establish epidemiological correlations among A. baumannii isolates. Multiple-locus variable-number tandem-repeat analysis (MLVA) has proven to be a fast, reliable, and cost-effective typing method for several bacterial species. In this study, an MLVA assay compatible with simple PCR- and agarose gel-based electrophoresis steps as well as with high-throughput automated methods was developed for A. baumannii typing. Preliminarily, 10 potential polymorphic variable-number tandem repeats (VNTRs) were identified upon bioinformatic screening of six annotated genome sequences of A. baumannii. A collection of 7 reference strains plus 18 well-characterized isolates, including unique types and representatives of the three international A. baumannii lineages, was then evaluated in a two-center study aimed at validating the MLVA assay and comparing it with other genotyping assays, namely, macrorestriction analysis with pulsed-field gel electrophoresis (PFGE) and PCR-based sequence group (SG) profiling. The results showed that MLVA can discriminate between isolates with identical PFGE types and SG profiles. A panel of eight VNTR markers was selected, all showing the ability to be amplified and good amounts of polymorphism in the majority of strains. Independently generated MLVA profiles, composed of an ordered string of allele numbers corresponding to the number of repeats at each VNTR locus, were concordant between centers. Typeability, reproducibility, stability, discriminatory power, and epidemiological concordance were excellent. A database containing information and MLVA profiles for several A. baumannii strains is available from http://mlva.u-psud.fr/. PMID:21147956

  20. Susceptibility to gastric cancer and polymorphisms of insertion/deletion at the intron 3 of the XRCC4 and VNTR at the promoter region of the XRCC5.

    Science.gov (United States)

    Saadat, Mostafa; Pashaei, Samira; Amerizade, Foroozan

    2015-07-01

    The genes encoding X-ray repair cross-complementing group 4 (XRCC4; OMIM: 194363) and 5 (XRCC5; OMIM: 194364) are involved in repair of DNA double-strand breaks. To investigating the associations between polymorphisms of Insertion/Deletion (I/D, rs28360071) in the intron 3 of the XRCC4 and VNTR in the promoter region of the XRCC5 and risk of gastric cancer, the present study was carried out. We included 159 (56 females, 103 males) with gastric cancer and 242 (75 females, 167 males) healthy blood donors frequency matched for age and gender. Using PCR-based methods, the genotypes of the study polymorphisms were determined. The alleles of VNTR XRCC5 polymorphism divided into two groups: L (0 and 1 repeats) and H (2 and 3 repeats) alleles. For the I/D XRCC4 polymorphism, after stratification of the subjects according to their family history (FH) of cancer, either the ID (OR = 3.19, 95%CI: 1.35-7.50, P = 0.008) or the DD genotypes (OR = 4.62, 95%CI: 1.63-13.0, P = 0.004) among positive FH persons, increased the risk of gastric cancer compared with the reference group (persons who have negative FH and II genotype). For the VNTR XRCC5 polymorphism, the LH + HH genotypes among positive FH persons, increased the risk of gastric cancer compared with the reference group (persons who have negative FH and LL genotype) (OR = 2.88, 95%CI: 1.34-6.18, P = 0.006). Sensitivity analysis showed that the above mentioned associations were not occurred due to the maldistribution of the genotypes among missing data. The present study suggests that both polymorphisms of the XRCC4 and XRCC5 might be risk factors for gastric cancer development especially among persons with positive FH.

  1. Gene expression of tumour necrosis factor and insulin signalling-related factors in subcutaneous adipose tissue during the dry period and in early lactation in dairy cows.

    Science.gov (United States)

    Sadri, H; Bruckmaier, R M; Rahmani, H R; Ghorbani, G R; Morel, I; van Dorland, H A

    2010-10-01

    Gene expression of adipose factors, which may be part of the mechanisms that underlie insulin sensitivity, were studied in dairy cows around parturition. Subcutaneous fat biopsies and blood samples were taken from 27 dairy cows in week 8 antepartum (a.p.), on day 1 postpartum (p.p.) and in week 5 p.p. In the adipose tissue samples, mRNA was quantified by real-time reverse transcription polymerase chain reaction for tumour necrosis factor alpha (TNFα), insulin-independent glucose transporter (GLUT1), insulin-responsive glucose transporter (GLUT4), insulin receptor, insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), regulatory subunit of phosphatidylinositol-3 kinase (p85) and catalytic subunit of phosphatidylinositol-3 kinase. Blood plasma was assayed for concentrations of glucose, β-hydroxybutyric acid, non-esterified fatty acids (NEFA) and insulin. Plasma parameters followed a pattern typically observed in dairy cows. Gene expression changes were observed, but there were no changes in TNFα concentrations, which may indicate its local involvement in catabolic adaptation of adipose tissue. Changes in GLUT4 and GLUT1 mRNA abundance may reflect their involvement in reduced insulin sensitivity and in sparing glucose for milk synthesis in early lactation. Unchanged gene expression of IRS1, IRS2 and p85 over time may imply a lack of their involvement in terms of insulin sensitivity dynamics. Alternatively, it may indicate that post-transcriptional modifications of these factors came into play and may have concealed an involvement. © 2010 Blackwell Verlag GmbH.

  2. Effect of study design and setting on tuberculosis clustering estimates using Mycobacterial Interspersed Repetitive Units-Variable Number Tandem Repeats (MIRU-VNTR): a systematic review.

    Science.gov (United States)

    Mears, Jessica; Abubakar, Ibrahim; Cohen, Theodore; McHugh, Timothy D; Sonnenberg, Pam

    2015-01-21

    To systematically review the evidence for the impact of study design and setting on the interpretation of tuberculosis (TB) transmission using clustering derived from Mycobacterial Interspersed Repetitive Units-Variable Number Tandem Repeats (MIRU-VNTR) strain typing. MEDLINE, EMBASE, CINHAL, Web of Science and Scopus were searched for articles published before 21st October 2014. Studies in humans that reported the proportion of clustering of TB isolates by MIRU-VNTR were included in the analysis. Univariable meta-regression analyses were conducted to assess the influence of study design and setting on the proportion of clustering. The search identified 27 eligible articles reporting clustering between 0% and 63%. The number of MIRU-VNTR loci typed, requiring consent to type patient isolates (as a proxy for sampling fraction), the TB incidence and the maximum cluster size explained 14%, 14%, 27% and 48% of between-study variation, respectively, and had a significant association with the proportion of clustering. Although MIRU-VNTR typing is being adopted worldwide there is a paucity of data on how study design and setting may influence estimates of clustering. We have highlighted study design variables for consideration in the design and interpretation of future studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. The Obesity-Linked Gene Nudt3 Drosophila Homolog Aps Is Associated With Insulin Signaling.

    Science.gov (United States)

    Williams, Michael J; Eriksson, Anders; Shaik, Muksheed; Voisin, Sarah; Yamskova, Olga; Paulsson, Johan; Thombare, Ketan; Fredriksson, Robert; Schiöth, Helgi B

    2015-09-01

    Several genome-wide association studies have linked the Nudix hydrolase family member nucleoside diphosphate-linked moiety X motif 3 (NUDT3) to obesity. However, the manner of NUDT3 involvement in obesity is unknown, and NUDT3 expression, regulation, and signaling in the central nervous system has not been studied. We performed an extensive expression analysis in mice, as well as knocked down the Drosophila NUDT3 homolog Aps in the nervous system, to determine its effect on metabolism. Detailed in situ hybridization studies in the mouse brain revealed abundant Nudt3 mRNA and protein expression throughout the brain, including reward- and feeding-related regions of the hypothalamus and amygdala, whereas Nudt3 mRNA expression was significantly up-regulated in the hypothalamus and brainstem of food-deprived mice. Knocking down Aps in the Drosophila central nervous system, or a subset of median neurosecretory cells, known as the insulin-producing cells (IPCs), induces hyperinsulinemia-like phenotypes, including a decrease in circulating trehalose levels as well as significantly decreasing all carbohydrate levels under starvation conditions. Moreover, lowering Aps IPC expression leads to a decreased ability to recruit these lipids during starvation. Also, loss of neuronal Aps expression caused a starvation susceptibility phenotype while inducing hyperphagia. Finally, the loss of IPC Aps lowered the expression of Akh, Ilp6, and Ilp3, genes known to be inhibited by insulin signaling. These results point toward a role for this gene in the regulation of insulin signaling, which could explain the robust association with obesity in humans.

  4. Bioluminescence imaging of β cells and intrahepatic insulin gene activity under normal and pathological conditions.

    Directory of Open Access Journals (Sweden)

    Tokio Katsumata

    Full Text Available In diabetes research, bioluminescence imaging (BLI has been applied in studies of β-cell impairment, development, and islet transplantation. To develop a mouse model that enables noninvasive imaging of β cells, we generated a bacterial artificial chromosome (BAC transgenic mouse in which a mouse 200-kbp genomic fragment comprising the insulin I gene drives luciferase expression (Ins1-luc BAC transgenic mouse. BLI of mice was performed using the IVIS Spectrum system after intraperitoneal injection of luciferin, and the bioluminescence signal from the pancreatic region analyzed. When compared with MIP-Luc-VU mice [FVB/N-Tg(Ins1-lucVUPwrs/J] expressing luciferase under the control of the 9.2-kbp mouse insulin I promoter (MIP, the bioluminescence emission from Ins1-luc BAC transgenic mice was enhanced approximately 4-fold. Streptozotocin-treated Ins1-luc BAC transgenic mice developed severe diabetes concomitant with a sharp decline in the BLI signal intensity in the pancreas. Conversely, mice fed a high-fat diet for 8 weeks showed an increase in the signal, reflecting a decrease or increase in the β-cell mass. Although the bioluminescence intensity of the islets correlated well with the number of isolated islets in vitro, the intensity obtained from a living mouse in vivo did not necessarily reflect an absolute quantification of the β-cell mass under pathological conditions. On the other hand, adenovirus-mediated gene transduction of β-cell-related transcription factors in Ins1-luc BAC transgenic mice generated luminescence from the hepatic region for more than 1 week. These results demonstrate that BLI in Ins1-luc BAC transgenic mice provides a noninvasive method of imaging islet β cells and extrapancreatic activity of the insulin gene in the liver under normal and pathological conditions.

  5. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice.

    Science.gov (United States)

    Liu, Jun-Li; Coschigano, Karen T; Robertson, Katie; Lipsett, Mark; Guo, Yubin; Kopchick, John J; Kumar, Ujendra; Liu, Ye Lauren

    2004-09-01

    Growth hormone, acting through its receptor (GHR), plays an important role in carbohydrate metabolism and in promoting postnatal growth. GHR gene-deficient (GHR(-/-)) mice exhibit severe growth retardation and proportionate dwarfism. To assess the physiological relevance of growth hormone actions, GHR(-/-) mice were used to investigate their phenotype in glucose metabolism and pancreatic islet function. Adult GHR(-/-) mice exhibited significant reductions in the levels of blood glucose and insulin, as well as insulin mRNA accumulation. Immunohistochemical analysis of pancreatic sections revealed normal distribution of the islets despite a significantly smaller size. The average size of the islets found in GHR(-/-) mice was only one-third of that in wild-type littermates. Total beta-cell mass was reduced 4.5-fold in GHR(-/-) mice, significantly more than their body size reduction. This reduction in pancreatic islet mass appears to be related to decreases in proliferation and cell growth. GHR(-/-) mice were different from the human Laron syndrome in serum insulin level, insulin responsiveness, and obesity. We conclude that growth hormone signaling is essential for maintaining pancreatic islet size, stimulating islet hormone production, and maintaining normal insulin sensitivity and glucose homeostasis.

  6. Transcription factor 7-like 2 gene links increased in vivo insulin synthesis to type 2 diabetes

    NARCIS (Netherlands)

    S. Jainandunsing (Sjaam); Koole, H.R. (H. Rita); van Miert, J.N.I. (Joram N.I.); T. Rietveld (Trinet); J.L.D. Wattimena (Josias); E.J.G. Sijbrands (Eric); F.W.M. de Rooij (Felix)

    2018-01-01

    textabstractTranscription factor 7-like 2 (TCF7L2) is the main susceptibility gene for type 2 diabetes, primarily through impairing the insulin secretion by pancreatic β cells. However, the exact in vivo mechanisms remain poorly understood. We performed a family study and determined if the T risk

  7. DNA fingerprinting of Mycobacterium leprae strains using variable number tandem repeat (VNTR) - fragment length analysis (FLA).

    Science.gov (United States)

    Jensen, Ronald W; Rivest, Jason; Li, Wei; Vissa, Varalakshmi

    2011-07-15

    The study of the transmission of leprosy is particularly difficult since the causative agent, Mycobacterium leprae, cannot be cultured in the laboratory. The only sources of the bacteria are leprosy patients, and experimentally infected armadillos and nude mice. Thus, many of the methods used in modern epidemiology are not available for the study of leprosy. Despite an extensive global drug treatment program for leprosy implemented by the WHO, leprosy remains endemic in many countries with approximately 250,000 new cases each year. The entire M. leprae genome has been mapped and many loci have been identified that have repeated segments of 2 or more base pairs (called micro- and minisatellites). Clinical strains of M. leprae may vary in the number of tandem repeated segments (short tandem repeats, STR) at many of these loci. Variable number tandem repeat (VNTR) analysis has been used to distinguish different strains of the leprosy bacilli. Some of the loci appear to be more stable than others, showing less variation in repeat numbers, while others seem to change more rapidly, sometimes in the same patient. While the variability of certain VNTRs has brought up questions regarding their suitability for strain typing, the emerging data suggest that analyzing multiple loci, which are diverse in their stability, can be used as a valuable epidemiological tool. Multiple locus VNTR analysis (MLVA) has been used to study leprosy evolution and transmission in several countries including China, Malawi, the Philippines, and Brazil. MLVA involves multiple steps. First, bacterial DNA is extracted along with host tissue DNA from clinical biopsies or slit skin smears (SSS). The desired loci are then amplified from the extracted DNA via polymerase chain reaction (PCR). Fluorescently-labeled primers for 4-5 different loci are used per reaction, with 18 loci being amplified in a total of four reactions. The PCR products may be subjected to agarose gel electrophoresis to verify the

  8. Gene expression of leptin, resistin, and adiponectin in the white adipose tissue of obese patients with non-alcoholic fatty liver disease and insulin resistance.

    Science.gov (United States)

    Baranova, Ancha; Gowder, Shobha J; Schlauch, Karen; Elariny, Hazem; Collantes, Rochelle; Afendy, Arian; Ong, Janus P; Goodman, Zachary; Chandhoke, Vikas; Younossi, Zobair M

    2006-09-01

    Adipose tissue is an active endocrine organ that secretes a variety of metabolically important substances including adipokines. These factors affect insulin sensitivity and may represent a link between obesity, insulin resistance, type 2 diabetes (DM), and nonalcoholic fatty liver disease (NAFLD). This study uses real-time polymerase chain reaction (PCR) quantification of mRNAs encoding adiponectin, leptin, and resistin on snap-frozen samples of intra-abdominal adipose tissue of morbidly obese patients undergoing bariatric surgery. Morbidly obese patients undergoing bariatric surgery were studied. Patients were classified into two groups: Group A (with insulin resistance) (N=11; glucose 149.84 +/- 40.56 mg/dL; serum insulin 8.28 +/- 3.52 microU/mL), and Group B (without insulin resistance) (N=10; glucose 102.2 +/- 8.43 mg/dL; serum insulin 3.431 +/- 1.162 microU/mL). Adiponectin mRNA in intra-abdominal adipose tissue and serum adiponectin levels were significantly lower in Group A compared to Group B patients (P<0.016 and P<0.03, respectively). Although serum resistin was higher in Group A than in Group B patients (P<0.005), resistin gene expression was not different between the two groups. Finally, for leptin, neither serum level nor gene expression was different between the two groups. Serum adiponectin level was the only predictor of nonalcoholic steatohepatitis (NASH) in this study (P=0.024). Obese patients with insulin resistance have decreased serum adiponectin and increased serum resistin. Additionally, adiponectin gene expression is also decreased in the adipose tissue of these patients. This low level of adiponectin expression may predispose patients to the progressive form of NAFLD or NASH.

  9. Maternal Pre-Gravid Obesity Changes Gene Expression Profiles Towards Greater Inflammation and Reduced Insulin Sensitivity in Umbilical Cord

    Science.gov (United States)

    Thakali, Keshari M.; Saben, Jessica; Faske, Jennifer B.; Lindsey, Forrest; Gomez-Acevedo, Horacio; Lowery, Curtis L.; Badger, Thomas M.; Andres, Aline; Shankar, Kartik

    2014-01-01

    Background Maternal obesity is associated with unfavorable outcomes, which may be reflected in the as yet undiscovered gene expression profiles of the umbilical cord (UC). Methods UCs from 12 lean (pre-gravid BMI obese (OW/OB, pre-gravid BMI ≥25) women without gestational diabetes were collected for gene expression analysis using Human Primeview microarrays (Affymetrix). Metabolic parameters were assayed in mother’s plasma and cord blood. Results Although offspring birth weight and adiposity (at 2-wk) did not differ between groups, expression of 232 transcripts was affected in UC from OW/OB compared to those of lean mothers. GSEA analysis revealed an up-regulation of genes related to metabolism, stimulus and defense response and inhibitory to insulin signaling in the OW/OB group. We confirmed that EGR1, periostin, and FOSB mRNA expression was induced in UCs from OW/OB moms, while endothelin receptor B, KFL10, PEG3 and EGLN3 expression was decreased. Messenger RNA expression of EGR1, FOSB, MEST and SOCS1 were positively correlated (pmaternal obesity and changes in UC gene expression profiles favoring inflammation and insulin resistance, potentially predisposing infants to develop metabolic dysfunction later on in life. PMID:24819376

  10. The Effects of Lycopene and Insulin on Histological Changes and the Expression Level of Bcl-2 Family Genes in the Hippocampus of Streptozotocin-Induced Diabetic Rats.

    Science.gov (United States)

    Soleymaninejad, Masoume; Joursaraei, Seyed Gholamali; Feizi, Farideh; Jafari Anarkooli, Iraj

    2017-01-01

    The aim of this study was to evaluate the effects of antioxidants lycopene and insulin on histological changes and expression of Bcl-2 family genes in the hippocampus of streptozotocin-induced type 1 diabetic rats. Forty-eight Wistar rats were divided into six groups of control (C), control treated with lycopene (CL), diabetic (D), diabetic treated with insulin (DI), diabetic treated with lycopene (DL), and diabetic treated with insulin and lycopene (DIL). Diabetes was induced by an injection of streptozotocin (60 mg/kg, IP), lycopene (4 mg/kg/day) was given to the lycopene treated groups as gavages, and insulin (Sc, 1-2 U/kg/day) was injected to the groups treated with insulin. The number of hippocampus neurons undergoing cell death in group D had significant differences with groups C and DIL ( p lycopene alone or together reduced the expression of Bax , but increased Bcl-2 and Bcl-x L levels in DI, DL, and DIL rats, especially when compared to group D ( p lycopene contribute to the prevention of cell death by reducing the expression of proapoptotic genes and increasing the expression of antiapoptotic genes in the hippocampus.

  11. Fixed bin frequency distribution for the VNTR Loci D2S44, D4S139, D5S110, and D8S358 in a population sample from Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Parreira Kleber Simônio

    2002-01-01

    Full Text Available Fixed bin frequencies for the VNTR loci D2S44, D4S139, D5S110, and D8S358 were determined in a Minas Gerais population sample. The data were generated by RFLP analysis of HaeIII-digested genomic DNA and chemiluminescent detection. The four VNTR loci have met Hardy-Weinberg equilibrium, and there was no association of alleles among VNTR loci. The frequency data can be used in forensic analyses and paternity tests to estimate the frequency of a DNA profile in the general Brazilian population.

  12. [Plasma IL-18 levels are related to insulin and are modulated by IL-18 gene polymorphisms].

    Science.gov (United States)

    Martinez-Hervas, Sergio; Martínez-Barquero, Vanesa; Nuñez Savall, Ester; Lendínez, Verónica; Olivares, Laura; Benito, Esther; Real, Jose T; Chaves, F Javier; Ascaso, Juan F

    2015-01-01

    Atherosclerosis is an inflammatory chronic disease influenced by multiple factors. Different prospective studies have shown that plasmatic levels of inflammatory markers were related to atherosclerosis and cardiovascular disease. To evaluate whether plasmatic levels of interleukin 18 (IL-18) are modulated by SNPs (single nucleotide polymorphisms) of the IL 18 gene and its possible association with insulin levels and other cardiovascular risk factors. 746 individuals were studied for a period of two years by opportunistic selection in the metropolitan area of Valencia. Parameters of lipid and glucose metabolism were analyzed by standard methodology. IL-18 was measured by ELISA. Individuals with insulin resistance showed significant higher levels of IL-18. IL 18 was significantly correlated with insulin levels and other cardiovascular risk factors. The CC genotype of the rs1834481 SNP was significantly associated with lower levels of IL-18. However, the GG genotype of the rs7559479 was associated with significant higher levels of IL-18. IL-18 is associated with insulin resistance and other cardiovascular risk factors, being those levels genetically regulated. Copyright © 2015 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  13. Mutational analysis of the HLA-DQ3.2 insulin-dependent diabetes mellitus susceptibility gene

    International Nuclear Information System (INIS)

    Kwok, W.W.; Lotshaw, C.; Milner, E.C.B.; Knitter-Jack, N.; Nepom, G.T.

    1989-01-01

    The human major histocompatibility complex includes approximately 14 class II HLA genes within the HLA-D region, most of which exist in multiple allelic forms. One of these genes, the DQ3.2β gene, accounts for the well-documented association of HLA-DR4 with insulin-dependent diabetes mellitus and is the single allele most highly correlated with this disease. The authors analyzed the amino acid substitutions that lead to the structural differences distinguishing DQ3.2β from its nondiabetogenic, but closely related allele, DQ3.1β. Site-directed mutagenesis of the DQ3.2β gene was used to convert key nucleotides into DQ3.2β codons. Subsequent expression studies of these mutated DQ3.2β clones using retroviral vectors defined amino acid 45 as critical for generating serologic epitopes characterizing the DQw3.1β and DQw3.2β molecules

  14. TS gene polymorphisms are not good markers of response to 5-FU therapy in stage III colon cancer patients.

    Science.gov (United States)

    Fariña-Sarasqueta, A; Gosens, M J E M; Moerland, E; van Lijnschoten, I; Lemmens, V E P P; Slooter, G D; Rutten, H J T; van den Brule, Adriaan J C

    2011-08-01

    Although the predictive and prognostic value of thymidylate synthase (TS) expression and gene polymorphism in colon cancer has been widely studied, the results are inconclusive probably because of methodological differences. With this study, we aimed to elucidate the role of TS gene polymorphisms genotyping in therapy response in stage III colon carcinoma patients treated with 5-FU adjuvant chemotherapy. 251 patients diagnosed with stage III colon carcinoma treated with surgery followed by 5-FU based adjuvant therapy were selected. The variable number of tandem repeats (VNTR) and the single nucleotide polymorphism (SNP) in the 5'untranslated region of the TS gene were genotyped. There was a positive association between tumor T stage and the VNTR genotypes (p = 0.05). In both univariate and multivariate survival analysis no effects of the studied polymorphisms on survival were found. However, there was an association between both polymorphisms and age. Among patients younger than 60 years, the patients homozygous for 2R seemed to have a better overall survival, whereas among the patients older than 67 this longer survival was seen by the carriers of other genotypes. We conclude that the TS VNTR and SNP do not predict response to 5-FU therapy in patients with stage III colon carcinoma. However, age appears to modify the effects of TS polymorphisms on survival.

  15. A Variation in the Cerebroside Sulfotransferase Gene Is Linked to Exercise-Modified Insulin Resistance and to Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    A. Roeske-Nielsen

    2009-01-01

    Full Text Available Aims. The glycosphingolipid β-galactosylceramide-3-O-sulfate (sulfatide is present in the secretory granules of the insulin producing β-cells and may act as a molecular chaperone of insulin. The final step in sulfatide synthesis is performed by cerebroside sulfotransferase (CST (EC 2.8.2.11. The aim of this study was to investigate whether two single nucleotide polymorphisms (SNP, rs2267161 located in an exon or rs42929 located in an intron, in the gene encoding CST are linked to type 2 diabetes (T2D. Methods. As a population survey, 265 male and female patients suffering from T2D and 291 gender matched controls were examined. Results. A higher proportion of T2D patients were heterozygous at SNP rs2267161 with both T (methionine and C (valine alleles present (49.8% versus 41.3%, P=.04. The calculated odd risk for T2D was 1.47 (1.01–2.15, P=.047. Among female controls, the homozygous CC individuals displayed lower insulin resistance measured by HOMA-IR (P=.05 than the C/T or TT persons; this was particularly prevalent in individuals who exercise (P=.03. Conclusion. Heterozygosity at SNP rs2267161 in the gene encoding the CST enzyme confers increased risk of T2D. Females with the CC allele showed lower insulin resistance.

  16. A Manganese Superoxide Dismutase (SOD2 Gene Polymorphism in Insulin-Dependent Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Flemming Pociot

    1993-01-01

    Full Text Available Interleukin I (lL-I is selectively cytotoxic to the insulin producing beta cell of pancreatic islets. This effect may be due to IL-I induced generation of reactive oxygen species and nitric oxide. Since beta cells contain low amounts of the superoxide radical scavenger enzyme manganese superoxide dismutase (MnSOD, this may leave beta cells more susceptible to IL-I than other cell types. Genetic variation in the MnSOD locus could reflect differences in scavenger potential. We, therefore, studied possible restriction fragment length polymorphisms (RFLPs of this locus in patients with insulin-dependent diabetes mellitus (100M (n= 154 and control individuals (n=178, Taql revealed a double diallelic RFLP in patients as well as in controls. No overall difference in allelic or genotype frequencies were observed between 100M patients and control individuals (p=0.11 and no significant association of any particular RFLP pattern with 100M was found. Structurally polymorphic MnSOD protein variants with altered activities have been reported. If genetic variation results in MnSOD variants with reduced activities, the MnSOD locus may still be a candidate gene for 100M susceptibility. Whether the RFLPs reported in this study reflects differences in gene expression level, protein level and/or specific activity of the protein is yet to be studied.

  17. Glucose tolerance, insulin sensitivity and insulin release in European non-diabetic carriers of a polymorphism upstream of CDKN2A and CDKN2B

    DEFF Research Database (Denmark)

    Hribal, M L; Presta, I; Procopio, T

    2011-01-01

    The aim of this study was to investigate the association of the rs10811661 polymorphism near the CDKN2B/CDKN2A genes with glucose tolerance, insulin sensitivity and insulin release in three samples of white people with European ancestry.......The aim of this study was to investigate the association of the rs10811661 polymorphism near the CDKN2B/CDKN2A genes with glucose tolerance, insulin sensitivity and insulin release in three samples of white people with European ancestry....

  18. Enterococcus faecium strains characterization through polymorphism study of VNTR loci

    Directory of Open Access Journals (Sweden)

    Belteghi, C.,

    2008-12-01

    Full Text Available Enterococci are commensally bacteria of the gastrointestinal and female genital tract in humans and some mammals and birds, and one of the significant causes of hospital-acquired infections, especially in immuno-compromised patients. Genetic fingerprinting (DNA fingerprinting is a tool for identifying, marking and prevention of infectious agents dissemination. SSR (short sequence repeat are known to suffer frequent variations in the number of repetitive units.MLVA (multiple locus variable number tandem repeats analysis is a variant of genetic fingerprinting, in epidemiological studies on the pathogenetic Enterococcus faecium. Our study included laboratory Enterococcus faecium strains or isolated from clinical cases or from the environment (2003-2008. All analyzed strains of Enterococcus faecium were sensitive to vancomycin, except BM4147, and resistant to oxacilin. Strains isolated from the birds’ samples have shown a smaller resistance profile than those of human origin. 33 Enterococus faecium strains were analyzed by PCR amplification. 27 MT (VNTR profiles were obtained: six in the case of the strains isolated from birds, 15 in the case of the strains isolated form humans, 4 in the case of the collection strains and 2 in the case of the strains isolated from water samples. Among the strains isolated from humans and those isolated from animals, identical profiles were not recorded. Within the strains isolated from clinical cases, and those isolated from birds, circulating genotypes were noted, which can be considered as epidemical. The strains used as probiotics proved to be different from those circulating in birds. All MLVA profiles codes compared with those published on line in the UMC Utrecht database proved to be different. Results obtained in this study support the usefulness of the polymorphic VNTR analysis, as genetic marker, inepidemiological investigations.

  19. MNS16A tandem repeats minisatellite of human telomerase gene: a risk factor for colorectal cancer.

    Science.gov (United States)

    Hofer, Philipp; Baierl, Andreas; Feik, Elisabeth; Führlinger, Gerhard; Leeb, Gernot; Mach, Karl; Holzmann, Klaus; Micksche, Michael; Gsur, Andrea

    2011-06-01

    Telomerase reactivation and expression of human telomerase gene [human telomerase reverse transcriptase (hTERT)] are hallmarks of unlimited proliferation potential of cancer cells. A polymorphic tandem repeats minisatellite of hTERT gene, termed MNS16A was reported to influence hTERT expression. To assess the role of MNS16A as potential biomarker for colorectal cancer (CRC), we investigated for the first time the association of MNS16A genotypes with risk of colorectal polyps and CRC. In the ongoing colorectal cancer study of Austria (CORSA), 3842 Caucasian participants were recruited within a large screening project in the province Burgenland including 90 CRC cases, 308 high-risk polyps, 1022 low-risk polyps and 1822 polyp free controls verified by colonoscopy. MNS16A genotypes were determined by polymerase chain reaction from genomic DNA. Associations of MNS16A genotypes with CRC risk were estimated by logistic regression analysis computing odds ratios (ORs) and 95% confidence intervals (CIs). We identified five different variable number of tandem repeats (VNTRs) of MNS16A including VNTR-364, a newly discovered rare variant. VNTR-274 allele was associated with a 2.7-fold significantly increased risk of CRC compared with the VNTR-302 wild-type (OR = 2.69; 95% CI = 1.11-6.50; P = 0.028). In our CORSA study, the medium length VNTR-274 was identified as risk factor for CRC. Although, this population-based study herewith reports the largest cohort size concerning MNS16A thus far, further large-scale studies in diverse populations are warranted to confirm hTERT MNS16A genotype as potential biomarker for assessment of CRC risk.

  20. Sequence of a New World primate insulin having low biological potency and immunoreactivity

    Energy Technology Data Exchange (ETDEWEB)

    Seino, S.; Steiner, D.F.; Bell, G.I.

    1987-11-01

    The organization of the insulin gene of the owl or night monkey (Aotus trivirgatus), a New World primate, is similar to that of the human gene. The sequences of these two genes and flanking regions possess 84.3% homology. An unusual feature of the owl monkey gene is the partial duplication and insertion of a portion of the A-chain coding sequence into the 3' untranslated region. The insulin gene of this primate also lacks a region of tandem repeats that is present in the 5' flanking region of the human and chimpanzee genes. Owl monkey preproinsulin has 85.5% identity with the human insulin precursor and is the most divergent of the primate insulins/preproinsulins yet described. The differences between owl monkey and human preproinsulin include three substitutions in the signal peptide, two in the B chain, seven in the C peptide, and three in the A chain. One of these replacements is the conservative substitution of valine for isoleucine a position A2, an invariant site in all other vertebrate insulins and insulin-like growth factors. The substitutions in owl monkey insulin at B9, B27, A2, A4, and A17 alter its structure so that it has only 20% of the receptor-binding activity and 1% of the affinity with guinea pig anti-porcine insulin antibodies as compared to human insulin.

  1. Sequence of a New World primate insulin having low biological potency and immunoreactivity

    International Nuclear Information System (INIS)

    Seino, S.; Steiner, D.F.; Bell, G.I.

    1987-01-01

    The organization of the insulin gene of the owl or night monkey (Aotus trivirgatus), a New World primate, is similar to that of the human gene. The sequences of these two genes and flanking regions possess 84.3% homology. An unusual feature of the owl monkey gene is the partial duplication and insertion of a portion of the A-chain coding sequence into the 3' untranslated region. The insulin gene of this primate also lacks a region of tandem repeats that is present in the 5' flanking region of the human and chimpanzee genes. Owl monkey preproinsulin has 85.5% identity with the human insulin precursor and is the most divergent of the primate insulins/preproinsulins yet described. The differences between owl monkey and human preproinsulin include three substitutions in the signal peptide, two in the B chain, seven in the C peptide, and three in the A chain. One of these replacements is the conservative substitution of valine for isoleucine a position A2, an invariant site in all other vertebrate insulins and insulin-like growth factors. The substitutions in owl monkey insulin at B9, B27, A2, A4, and A17 alter its structure so that it has only 20% of the receptor-binding activity and 1% of the affinity with guinea pig anti-porcine insulin antibodies as compared to human insulin

  2. Polymorphism -23HPhI in the Promoter of Insulin Gene and Pancreatic Cancer: A Pilot Study

    Czech Academy of Sciences Publication Activity Database

    Krechler, T.; Jáchymová, M.; Pavlíková, Markéta; Vecka, M.; Zeman, M.; Krška, Z.; Švestka, J.; Žák, A.

    2009-01-01

    Roč. 56, č. 1 (2009), s. 26-32 ISSN 0028-2685 Grant - others:GA MZd(CZ) NR9528 Institutional research plan: CEZ:AV0Z10300504 Keywords : pancreatic cancer * insulin gene regulation * polymorphism of -23HphI * diabetes mellitus * disorders of glucoregulation Subject RIV: FD - Oncology ; Hematology Impact factor: 1.192, year: 2009

  3. Length of Variable Numbers of Tandem Repeats in the Carboxyl Ester Lipase (CEL) Gene May Confer Susceptibility to Alcoholic Liver Cirrhosis but Not Alcoholic Chronic Pancreatitis.

    Science.gov (United States)

    Fjeld, Karianne; Beer, Sebastian; Johnstone, Marianne; Zimmer, Constantin; Mössner, Joachim; Ruffert, Claudia; Krehan, Mario; Zapf, Christian; Njølstad, Pål Rasmus; Johansson, Stefan; Bugert, Peter; Miyajima, Fabio; Liloglou, Triantafillos; Brown, Laura J; Winn, Simon A; Davies, Kelly; Latawiec, Diane; Gunson, Bridget K; Criddle, David N; Pirmohamed, Munir; Grützmann, Robert; Michl, Patrick; Greenhalf, William; Molven, Anders; Sutton, Robert; Rosendahl, Jonas

    2016-01-01

    Carboxyl-ester lipase (CEL) contributes to fatty acid ethyl ester metabolism, which is implicated in alcoholic pancreatitis. The CEL gene harbours a variable number of tandem repeats (VNTR) region in exon 11. Variation in this VNTR has been linked to monogenic pancreatic disease, while conflicting results were reported for chronic pancreatitis (CP). Here, we aimed to investigate a potential association of CEL VNTR lengths with alcoholic CP. Overall, 395 alcoholic CP patients, 218 patients with alcoholic liver cirrhosis (ALC) serving as controls with a comparable amount of alcohol consumed, and 327 healthy controls from Germany and the United Kingdom (UK) were analysed by determination of fragment lengths by capillary electrophoresis. Allele frequencies and genotypes of different VNTR categories were compared between the groups. Twelve repeats were overrepresented in UK ACP patients (P = 0.04) compared to controls, whereas twelve repeats were enriched in German ALC compared to alcoholic CP patients (P = 0.03). Frequencies of CEL VNTR lengths of 14 and 15 repeats differed between German ALC patients and healthy controls (P = 0.03 and 0.008, respectively). However, in the genotype and pooled analysis of VNTR lengths no statistical significant association was depicted. Additionally, the 16-16 genotype as well as 16 repeats were more frequent in UK ALC than in alcoholic CP patients (P = 0.034 and 0.02, respectively). In all other calculations, including pooled German and UK data, allele frequencies and genotype distributions did not differ significantly between patients and controls or between alcoholic CP and ALC. We did not obtain evidence that CEL VNTR lengths are associated with alcoholic CP. However, our results suggest that CEL VNTR lengths might associate with ALC, a finding that needs to be clarified in larger cohorts.

  4. Effects of craving and DRD4 VNTR genotype on the relative value of alcohol: an initial human laboratory study

    Directory of Open Access Journals (Sweden)

    McGeary John E

    2007-02-01

    Full Text Available Abstract Background Craving for alcohol is a highly controversial subjective construct and may be clarified by Loewenstein's visceral theory, which emphasizes craving's behavioral effects on the relative value of alcohol. Based on the visceral theory, this study examined the effects of a craving induction on the relative value of alcohol as measured by a behavioral choice task. In addition, based on previous evidence of its role in the expression of craving, the influence of DRD4 VNTR genotype (DRD4-L vs. DRD4-S was also examined. Methods Thirty-five heavy drinkers (54% male; 31% DRD4-L were randomly assigned to receive either a craving induction (exposure to personally relevant alcohol cues or a control induction (exposure to neutral cues, which was followed by an alcohol-money choice task. Participants were assessed for craving and positive/negative affect throughout the procedure, and relative value of alcohol was derived from participant choices for alcohol versus money. DRD4 VNTR status was assessed retrospectively via buccal samples using previously established protocols. Results Factorial analysis of the craving induction revealed that it was associated with significant increase in craving (p p p Conclusion These results are interpreted as generally supporting Loewenstein's visceral theory of craving and evidence of a functional role of DRD4 VNTR genotype in the expression of craving for alcohol. Methodological limitations, mechanisms underlying these findings, and future directions are discussed.

  5. Expression profiling of insulin action in human myotubes

    DEFF Research Database (Denmark)

    Hansen, L.; Gaster, Michael; Oakeley, E.J.

    2004-01-01

    Myotube cultures from patients with type 2 diabetes mellitus (T2DM) represent an experimental in vitro model of T2DM that offers a possibility to perform gene expression studies under standardized conditions. During a time-course of insulin stimulation (1 microM) at 5.5 mM glucose for 0 (no insulin......, metabolic enzymes, and finally cell cycle regulating genes. One-hundred-forty-four genes were differentially expressed in myotubes from donors with type 2 diabetes compared with control subjects, including HSP70, apolipoprotein D/E, tropomyosin, myosin, and actin previously reported from in vivo studies...... of diabetic skeletal muscle. We conclude, (i) that insulin induces a time-dependent inflammatory and pro-angiogenic transcriptional response in cultured human myotubes, (ii) that myotubes in vitro retain a gene expression pattern specific for type 2 diabetes and sharing five genes with that of type 2 diabetic...

  6. Molecular Characterization and Expression Analysis of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Protein-1 Genes in Qinghai-Tibet Plateau and Lowland

    Directory of Open Access Journals (Sweden)

    Ya-bing Chen

    2015-01-01

    Full Text Available Insulin-like growth factor-1 (IGF-1 and insulin-like growth factor binding protein-1 (IGFBP-1 play a pivotal role in regulating cellular hypoxic response. In this study, we cloned and characterized the genes encoding IGF-1 and IGFBP-1 to improve the current knowledge on their roles in highland Bos grunniens (Yak. We also compared their expression levels in the liver and kidney tissues between yaks and lowland cattle. We obtained full-length 465 bp IGF-1 and 792 bp IGFBP-1, encoding 154 amino acids (AA IGF-1, and 263 AA IGFBP-1 protein, respectively using reverse transcriptase-polyerase chain reaction (RT-PCR technology. Analysis of their corresponding amino acid sequences showed a high identity between B. grunniens and lowland mammals. Moreover, the two genes were proved to be widely distributed in the examined tissues through expression pattern analysis. Real-time PCR results revealed that IGF-1 expression was higher in the liver and kidney tissues in B. grunniens than in Bos taurus (p<0.05. The IGFBP-1 gene was expressed at a higher level in the liver (p<0.05 of B. taurus than B. grunniens, but it has a similar expression level in the kidneys of the two species. These results indicated that upregulated IGF-1 and downregulated IGFBP-1 are associated with hypoxia adaptive response in B. grunniens.

  7. Lack of association of DRD4 exon 3 VNTR genotype with reactivity to dynamic smoking cues in movies

    NARCIS (Netherlands)

    Lochbühler, K.C.; Verhagen, M.; Munafò, M.R.; Engels, R.C.M.E.

    2013-01-01

    Background: The objective of the present study was first to examine whether dynamic smoking cues in movies trigger craving, and second to explore whether the DRD4 48 bp variable number of tandem repeat (VNTR) exon 3 genotype modifies this relationship. Using an experimental design, daily adult

  8. A novel syndrome of autosomal-dominant hyperinsulinemic hypoglycemia linked to a mutation in the human insulin receptor gene

    DEFF Research Database (Denmark)

    Højlund, Kurt; Hansen, Torben; Lajer, Maria

    2004-01-01

    a missense mutation (Arg1174Gln) in the tyrosine kinase domain of the insulin receptor gene that cosegregated with the disease phenotype (logarithm of odds [LOD] score 3.21). In conclusion, we report a novel syndrome of autosomal-dominant hyperinsulinemic hypoglycemia. The findings demonstrate...

  9. TLR4 and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Jane J. Kim

    2010-01-01

    Full Text Available Chronic inflammation is a key feature of insulin resistance and obesity. Toll-Like Receptor 4 (TLR4, involved in modulating innate immunity, is an important mediator of insulin resistance and its comorbidities. TLR4 contributes to the development of insulin resistance and inflammation through its activation by elevated exogenous ligands (e.g., dietary fatty acids and enteric lipopolysaccharide and endogenous ligands (e.g., free fatty acids which are elevated in obese states. TLR4, expressed in insulin target tissues, activates proinflammatory kinases JNK, IKK, and p38 that impair insulin signal transduction directly through inhibitory phosphorylation of insulin receptor substrate (IRS on serine residues. TLR4 activation also leads to increased transcription of pro-inflammatory genes, resulting in elevation of cytokine, chemokine, reactive oxygen species, and eicosanoid levels that promote further insulin-desensitization within the target cell itself and in other cells via paracrine and systemic effects. Increased understanding of cell type-specific TLR4-mediated effects on insulin action present the opportunity and challenge of developing related therapeutic approaches for improving insulin sensitivity while preserving innate immunity.

  10. Baculovirus-mediated gene transfer and recombinant protein expression do not interfere with insulin dependent phosphorylation of PKB/Akt in human SHSY-5Y and C3A cells

    Directory of Open Access Journals (Sweden)

    Selander Martin

    2007-02-01

    Full Text Available Abstract Background Recombinant adenovirus vectors and transfection agents comprising cationic lipids are widely used as gene delivery vehicles for functional expression in cultured cells. Consequently, these tools are utilized to investigate the effects of functional over-expression of proteins on insulin mediated events. However, we have previously reported that cationic lipid reagents cause a state of insulin unresponsiveness in cell cultures. In addition, we have found that cultured cells often do not respond to insulin stimulation following adenovirus treatment. Infection with adenovirus compromises vital functions of the host cell leading to the activation of protein kinases central to insulin signalling, such as protein kinase B/Akt. Therefore, we investigated the effect of adenovirus infection on insulin unresponsiveness by means of Akt activation in cultured cells. Moreover, we investigated the use of baculovirus as a heterologous viral gene delivery vehicle to circumvent these phenomena. Since the finding that baculovirus can efficiently transduce mammalian cells, the applications of this viral system in gene delivery has greatly expanded and one advantage is the virtual absence of cytotoxicity in mammalian cells. Results We show that infection of human neuroblastoma SHSY-5Y and liver C3A cells with recombinant adenovirus results in the activation of Akt in a dose dependent manner. In addition, this activation makes treated cells unresponsive to insulin stimulation as determined by an apparent lack of differential phosphorylation of Akt on serine-473. Our data further indicate that the use of recombinant baculovirus does not increase the phosphorylation of Akt in SHSY-5Y and C3A cells. Moreover, following infection with baculovirus, SHSY-5Y and C3A cells respond to insulin by means of phosphorylation of Akt on serine-473 in the same manner as uninfected cells. Conclusion Widely-used adenovirus vectors for gene delivery cause a state of

  11. Feeding cycle-dependent circulating insulin fluctuation is not a dominant Zeitgeber for mouse peripheral clocks except in the liver: Differences between endogenous and exogenous insulin effects.

    Science.gov (United States)

    Oishi, Katsutaka; Yasumoto, Yuki; Higo-Yamamoto, Sayaka; Yamamoto, Saori; Ohkura, Naoki

    2017-01-29

    The master clock in the suprachiasmatic nucleus synchronizes peripheral clocks via humoral and neural signals in mammals. Insulin is thought to be a critical Zeitgeber (synchronizer) for peripheral clocks because it induces transient clock gene expression in cultured cells. However, the extent to which fluctuations in feeding-dependent endogenous insulin affect the temporal expression of clock genes remains unclear. We therefore investigated the temporal expression profiles of clock genes in the peripheral tissues of mice fed for 8 h during either the daytime (DF) or the nighttime (NF) for one week to determine the involvement of feeding cycle-dependent endogenous insulin rhythms in the circadian regulation of peripheral clocks. The phase of circulating insulin fluctuations was reversed in DF compared with NF mice, although those of circulating corticosterone fluctuations and nocturnal locomotor activity were identical between these mice. The reversed feeding cycle affected the circadian phases of Per1 and Per2 gene expression in the liver and not in heart, lung, white adipose and skeletal muscle tissues. On the other hand, injected exogenous insulin significantly induced Akt phosphorylation in the heart and skeletal muscle as well as the liver, and significantly induced Per1 and Per2 gene expression in all examined tissues. These findings suggest that feeding cycles and feeding cycle-dependent endogenous insulin fluctuations are not dominant entrainment signals for peripheral clocks other than the liver, although exogenous insulin might reset peripheral oscillators in mammals. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Associations between genetic polymorphisms of insulin-like growth factor axis genes and risk for age-related macular degeneration

    Science.gov (United States)

    Purpose: Our objective was to investigate if insulin-like growth factor (IGF) axis genes affect the risk for age-related macular degeneration (AMD). Methods: 864 Caucasian non-diabetic participants from the Age-Related Eye Disease Study (AREDS) Genetic Repository were used in this case control st...

  13. Autophagy downregulation contributes to insulin resistance mediated injury in insulin receptor knockout podocytes in vitro

    Directory of Open Access Journals (Sweden)

    Ying Xu

    2016-04-01

    Full Text Available It is unknown whether autophagy activity is altered in insulin resistant podocytes and whether autophagy could be a therapeutic target for diabetic nephropathy (DN. Here we used shRNA transfection to knockdown the insulin receptor (IR gene in cultured human immortalized podocytes as an in vitro insulin resistant model. Autophagy related proteins LC3, Beclin, and p62 as well as nephrin, a podocyte injury marker, were assessed using western blot and immunofluorescence staining. Our results show that autophagy is suppressed when podocytes lose insulin sensitivity and that treatment of rapamycin, an mTOR specific inhibitor, could attenuate insulin resistance induced podocytes injury via autophagy activation. The present study deepens our understanding of the role of autophagy in the pathogenesis of DN.

  14. PER3 VNTR polymorphism in Multiple Sclerosis: A new insight to impact of sleep disturbances in MS.

    Science.gov (United States)

    Golalipour, Masoud; Maleki, Zahra; Farazmandfar, Touraj; Shahbazi, Majid

    2017-10-01

    Multiple Sclerosis (MS) is a degenerative disease of central nervous system caused by an immune response against the myelin. About half of MS patients suffers from sleep disturbances. The circadian clock genes such as PER3 controls circadian rhythm and sleep. Due to the role of PER3 in sleep disturbances and regulation of immune response, it is possible that PER3 dysregulation increase risk of MS disease. Study groups included 160 MS patients and 160 healthy volunteers. PER3 VNTR polymorphism was evaluated by PCR method. The genotypic and allelic distribution analyzed by chi square test. There was a significant association between genotype PER3 4/4 , and 4-repeat allele with MS disease (p = 0.014 and p MS group, and MS onset showed that there was a significant correlation between PER3 4/4 genotype with female gender and early onset of MS disease (p = 0.033 and p = 0.028 respectively). Our data suggest that, PER3 4/4 genotype may accelerate the course of disease in MS susceptible individuals. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Molecular analysis and MIRU-VNTR typing of Mycobacterium avium subsp. avium, 'hominissuis' and silvaticum strains of veterinary origin.

    Science.gov (United States)

    Rónai, Zsuzsanna; Csivincsik, Ágnes; Dán, Ádám; Gyuranecz, Miklós

    2016-06-01

    Besides Mycobacterium avium subsp. paratuberculosis (MAP), M. avium subsp. avium (MAA), M. avium subsp. silvaticum (MAS), and 'M. avium subsp. hominissuis' (MAH) are equally important members of M. avium complex, with worldwide distribution and zoonotic potential. Genotypic discrimination is a prerequisite to epidemiological studies which can facilitate disease prevention through revealing infection sources and transmission routes. The primary aim of this study was to identify the genetic diversity within 135 MAA, 62 MAS, and 84 MAH strains isolated from wild and domestic mammals, reptiles and birds. Strains were tested for the presence of large sequence polymorphism LSP(A)17 and were submitted to Mycobacterial interspersed repetitive units-variable-number tandem repeat (MIRU-VNTR) analysis at 8 loci, including MIRU1, 2, 3, and 4, VNTR25, 32, and 259, and MATR9. In 12 strains hsp65 sequence code type was also determined. LSP(A)17 was present only in 19.9% of the strains. All LSP(A)17 positive strains belonged to subspecies MAH. The discriminatory power of the MIRU-VNTR loci set used reached 0.9228. Altogether 54 different genotypes were detected. Within MAH, MAA, and MAS strains 33, 16, and 5 different genotypes were observed. The described genotypes were not restricted to geographic regions or host species, but proved to be subspecies specific. Our knowledge about MAS is limited due to isolation and identification difficulties. This is the first study including a large number of MAS field strains. Our results demonstrate the high diversity of MAH and MAA strains and the relative uniformity of MAS strains. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Studies of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene in relation to insulin sensitivity among glucose tolerant caucasians

    DEFF Research Database (Denmark)

    Ek, J; Andersen, G; Urhammer, S A

    2001-01-01

    We examined whether the Pro12-Ala polymorphism of the human peroxisome proliferator-activated receptor-gamma2 (PPAR-gamma2) gene was related to altered insulin sensitivity among glucose-tolerant subjects or a lower accumulated incidence or prevalence of IGT and Type II (non-insulin-dependent) dia......-insulin-dependent) diabetes mellitus among Scandinavian Caucasians....

  17. A role for polyamines in glucose-stimulated insulin-gene expression.

    Science.gov (United States)

    Welsh, N

    1990-01-01

    The aim of the present study was to evaluate the possible role for polyamines in the glucose regulation of the metabolism of insulin mRNA of pancreatic islet cells. For this purpose islets were prepared from adult mice and cultured for 2 days in culture medium RPMI 1640 containing 3.3 mM- or 16.7 mM-glucose with or without the addition of the inhibitors of polyamine biosynthesis difluoromethylornithine (DFMO) and ethylglyoxal bis(guanylhydrazone) (EGBG). Culture at the high glucose concentration increased the islet contents of both insulin mRNA and polyamines. The synthesis of total RNA, total islet polyamines and polyamines associated with islet nuclei was also increased. When the combination of DFMO and EGBG was added in the presence of 16.7 mM-glucose, low contents of insulin mRNA, spermine and spermidine were observed. Total islet polyamine synthesis was also depressed by DFMO + EGBG, unlike islet biosynthesis of polyamines associated with nuclei, which was not equally decreased by the polyamine-synthesis inhibitors. Total RNA synthesis and turnover was not affected by DFMO + EGBG. Finally, actinomycin D attenuated the glucose-induced enhancement of insulin mRNA, and cycloheximide counteracted the insulin-mRNA attenuation induced by inhibition of polyamine synthesis. It is concluded that the glucose-induced increase in insulin mRNA is paralleled by increased contents and rates of polyamine biosynthesis and that an attenuation of the increase in polyamines prevents the increase in insulin mRNA. In addition, the results are compatible with the view that polyamines exert their effects on insulin mRNA mainly by increasing the stability of this messenger. PMID:2241922

  18. Molecular Typing of Mycobacterium Tuberculosis Complex by 24-Locus Based MIRU-VNTR Typing in Conjunction with Spoligotyping to Assess Genetic Diversity of Strains Circulating in Morocco.

    Science.gov (United States)

    Bouklata, Nada; Supply, Philip; Jaouhari, Sanae; Charof, Reda; Seghrouchni, Fouad; Sadki, Khalid; El Achhab, Youness; Nejjari, Chakib; Filali-Maltouf, Abdelkarim; Lahlou, Ouafae; El Aouad, Rajae

    2015-01-01

    Standard 24-locus Mycobacterial Interspersed Repetitive Unit Variable Number Tandem Repeat (MIRU-VNTR) typing allows to get an improved resolution power for tracing TB transmission and predicting different strain (sub) lineages in a community. During 2010-2012, a total of 168 Mycobacterium tuberculosis Complex (MTBC) isolates were collected by cluster sampling from 10 different Moroccan cities, and centralized by the National Reference Laboratory of Tuberculosis over the study period. All isolates were genotyped using spoligotyping, and a subset of 75 was genotyped using 24-locus based MIRU-VNTR typing, followed by first line drug susceptibility testing. Corresponding strain lineages were predicted using MIRU-VNTRplus database. Spoligotyping resulted in 137 isolates in 18 clusters (2-50 isolates per cluster: clustering rate of 81.54%) corresponding to a SIT number in the SITVIT database, while 31(18.45%) patterns were unique of which 10 were labelled as "unknown" according to the same database. The most prevalent spoligotype family was LAM; (n = 81 or 48.24% of isolates, dominated by SIT42, n = 49), followed by Haarlem (23.80%), T superfamily (15.47%), >Beijing (2.97%), > U clade (2.38%) and S clade (1.19%). Subsequent 24-Locus MIRU-VNTR typing identified 64 unique types and 11 isolates in 5 clusters (2 to 3isolates per cluster), substantially reducing clusters defined by spoligotyping only. The single cluster of three isolates corresponded to two previously treated MDR-TB cases and one new MDR-TB case known to be contact a same index case and belonging to a same family, albeit residing in 3 different administrative regions. MIRU-VNTR loci 4052, 802, 2996, 2163b, 3690, 1955, 424, 2531, 2401 and 960 were highly discriminative in our setting (HGDI >0.6). 24-locus MIRU-VNTR typing can substantially improve the resolution of large clusters initially defined by spoligotyping alone and predominating in Morocco, and could therefore be used to better study tuberculosis

  19. Further characterization of the ABR gene in medulloblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Wright-White, E.C.; Haken, M.S. von; McDonald J.D. [Univ. of Chicago, IL (United States)] [and others

    1994-09-01

    Although brain tumors are the most common type of solid cancer in children, little is known about their etiology at the molecular genetic level. Using a panel of 20 chromosome 17p markers, we have previously determined that loss of distal chromosome 17p DNA sequences occurs in 14 of 35 specimens (40%) of medulloblastoma, one of the most common pediatric intracranial neoplasms. Analysis of these same tumors using a PCR-denaturing gradient gel electrophoresis technique has shown only two p53 gene mutations. These results suggest that a tumor suppressor gene in addition to p53 may be located on distal chromosome 17p. Consensus deletion mapping of our specimens suggests that the smallest site of chromosomal loss in defined distally by marker 144-D6, the most telomeric probe as yet identified on chromosome 17p, and proximally by the ABR marker, a BCR homologous gene containing two highly polymorphic VNTR regions. We have used fluorescence in situ hybridization and pulsed-field gel electrophoresis to determine that the ABR gene lies transcriptionally oriented 5{prime} to 3{prime} at a distance of 240 kb from marker 144-D6. We have also constructed a cosmid contig map spanning 120 kb of this region. Using one of these cosmids as a probe, we have detected breakpoints in three of the tumor specimens that lie between the two VNTR regions within the ABR gene. We have subsequently designed PCR primers to cover the breakpoint region which include the ABR exons which have the strongest homology to the BCR gene (Mbcr region), and are screening our tumor specimens for mutations. These results suggest that loss of ABR gene sequences may be involved in the etiology of medulloblastoma.

  20. AICAR Protects against High Palmitate/High Insulin-Induced Intramyocellular Lipid Accumulation and Insulin Resistance in HL-1 Cardiac Cells by Inducing PPAR-Target Gene Expression

    Directory of Open Access Journals (Sweden)

    Ricardo Rodríguez-Calvo

    2015-01-01

    Full Text Available Here we studied the impact of 5-aminoimidazole-4-carboxamide riboside (AICAR, a well-known AMPK activator, on cardiac metabolic adaptation. AMPK activation by AICAR was confirmed by increased phospho-Thr172-AMPK and phospho-Ser79-ACC protein levels in HL-1 cardiomyocytes. Then, cells were exposed to AICAR stimulation for 24 h in the presence or absence of the AMPK inhibitor Compound C, and the mRNA levels of the three PPARs were analyzed by real-time RT-PCR. Treatment with AICAR induced gene expression of all three PPARs, but only the Ppara and Pparg regulation were dependent on AMPK. Next, we exposed HL-1 cells to high palmitate/high insulin (HP/HI conditions either in presence or in absence of AICAR, and we evaluated the expression of selected PPAR-targets genes. HP/HI induced insulin resistance and lipid storage was accompanied by increased Cd36, Acot1, and Ucp3 mRNA levels. AICAR treatment induced the expression of Acadvl and Glut4, which correlated to prevention of the HP/HI-induced intramyocellular lipid build-up, and attenuation of the HP/HI-induced impairment of glucose uptake. These data support the hypothesis that AICAR contributes to cardiac metabolic adaptation via regulation of transcriptional mechanisms.

  1. Associations between dopamine D4 receptor gene variation with both infidelity and sexual promiscuity.

    Science.gov (United States)

    Garcia, Justin R; MacKillop, James; Aller, Edward L; Merriwether, Ann M; Wilson, David Sloan; Lum, J Koji

    2010-11-30

    Human sexual behavior is highly variable both within and between populations. While sex-related characteristics and sexual behavior are central to evolutionary theory (sexual selection), little is known about the genetic bases of individual variation in sexual behavior. The variable number tandem repeats (VNTR) polymorphism in exon III of the human dopamine D4 receptor gene (DRD4) has been correlated with an array of behavioral phenotypes and may be predicatively responsible for variation in motivating some sexual behaviors, particularly promiscuity and infidelity. We administered an anonymous survey on personal history of sexual behavior and intimate relationships to 181 young adults. We also collected buccal wash samples and genotyped the DRD4 VNTR. Here we show that individuals with at least one 7-repeat allele (7R+) report a greater categorical rate of promiscuous sexual behavior (i.e., having ever had a "one-night stand") and report a more than 50% increase in instances of sexual infidelity. DRD4 VNTR genotype varies considerably within and among populations and has been subject to relatively recent, local selective pressures. Individual differences in sexual behavior are likely partially mediated by individual genetic variation in genes coding for motivation and reward in the brain. Conceptualizing these findings in terms of r/K selection theory suggests a mechanism for selective pressure for and against the 7R+ genotype that may explain the considerable global allelic variation for this polymorphism.

  2. Associations between interleukin-1 gene polymorphisms and coronary heart disease risk: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Liang Zhou

    Full Text Available OBJECTIVE: A great number of studies regarding the associations between IL-1B-511, IL-1B+3954 and IL-1RN VNTR polymorphisms within the IL-1gene cluster and coronary heart disease (CHD have been published. However, results have been inconsistent. In this study, a meta-analysis was performed to investigate the associations. METHODS: Published literature from PubMed and Embase databases were searched for eligible publications. Pooled odds ratios (ORs with 95% confidence intervals (CIs were calculated using random- or fixed- effect model. RESULTS: Thirteen studies (3,219 cases/2,445 controls for IL-1B-511 polymorphism, nine studies (1,828 cases/1,818 controls for IL-1B+3954 polymorphism and twelve studies (2,987 cases/ 2,208 controls for IL-1RN VNTR polymorphism were included in this meta analysis. The results indicated that both IL-1B-511 and IL-1B+3954 polymorphisms were not associated with CHD risk (IL-1B-511 T vs. C: OR = 0.98, 95%CI 0.87-1.09; IL-1B+3954 T vs. C: OR = 1.06, 95%CI 0.95-1.19. Similarly, there was no association between IL-1RN VNTR polymorphism and CHD risk (*2 vs. L: OR = 1.00, 95%CI 0.85-1.17. CONCLUSIONS: This meta-analysis suggested that there were no associations between IL-1 gene cluster polymorphisms and CHD.

  3. Associations between Dopamine D4 Receptor Gene Variation with Both Infidelity and Sexual Promiscuity

    Science.gov (United States)

    Garcia, Justin R.; MacKillop, James; Aller, Edward L.; Merriwether, Ann M.; Wilson, David Sloan; Lum, J. Koji

    2010-01-01

    Background Human sexual behavior is highly variable both within and between populations. While sex-related characteristics and sexual behavior are central to evolutionary theory (sexual selection), little is known about the genetic bases of individual variation in sexual behavior. The variable number tandem repeats (VNTR) polymorphism in exon III of the human dopamine D4 receptor gene (DRD4) has been correlated with an array of behavioral phenotypes and may be predicatively responsible for variation in motivating some sexual behaviors, particularly promiscuity and infidelity. Methodology/Principal Findings We administered an anonymous survey on personal history of sexual behavior and intimate relationships to 181 young adults. We also collected buccal wash samples and genotyped the DRD4 VNTR. Here we show that individuals with at least one 7-repeat allele (7R+) report a greater categorical rate of promiscuous sexual behavior (i.e., having ever had a “one-night stand”) and report a more than 50% increase in instances of sexual infidelity. Conclusions/Significance DRD4 VNTR genotype varies considerably within and among populations and has been subject to relatively recent, local selective pressures. Individual differences in sexual behavior are likely partially mediated by individual genetic variation in genes coding for motivation and reward in the brain. Conceptualizing these findings in terms of r/K selection theory suggests a mechanism for selective pressure for and against the 7R+ genotype that may explain the considerable global allelic variation for this polymorphism. PMID:21152404

  4. Associations between dopamine D4 receptor gene variation with both infidelity and sexual promiscuity.

    Directory of Open Access Journals (Sweden)

    Justin R Garcia

    2010-11-01

    Full Text Available Human sexual behavior is highly variable both within and between populations. While sex-related characteristics and sexual behavior are central to evolutionary theory (sexual selection, little is known about the genetic bases of individual variation in sexual behavior. The variable number tandem repeats (VNTR polymorphism in exon III of the human dopamine D4 receptor gene (DRD4 has been correlated with an array of behavioral phenotypes and may be predicatively responsible for variation in motivating some sexual behaviors, particularly promiscuity and infidelity.We administered an anonymous survey on personal history of sexual behavior and intimate relationships to 181 young adults. We also collected buccal wash samples and genotyped the DRD4 VNTR. Here we show that individuals with at least one 7-repeat allele (7R+ report a greater categorical rate of promiscuous sexual behavior (i.e., having ever had a "one-night stand" and report a more than 50% increase in instances of sexual infidelity.DRD4 VNTR genotype varies considerably within and among populations and has been subject to relatively recent, local selective pressures. Individual differences in sexual behavior are likely partially mediated by individual genetic variation in genes coding for motivation and reward in the brain. Conceptualizing these findings in terms of r/K selection theory suggests a mechanism for selective pressure for and against the 7R+ genotype that may explain the considerable global allelic variation for this polymorphism.

  5. Codon 972 polymorphism in the insulin receptor substrate-1 gene, obesity, and risk of noninsulin-dependent diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Sigal, R.J.; Doria, A.; Warram, J.H.; Krolewski, A.S. [Joslin Diabetes Center, Boston, MA (United States)

    1996-04-01

    Because of the role of insulin receptor substrate-1 in insulin action, the insulin receptor substrate-1 gene is a candidate gene for noninsulin-dependent diabetes mellitus (NIDDM). Modest associations between NIDDM and a GGG-AGG single base substitution (corresponding to a glycine-arginine amino acid substitution) in codon 972 of the gene have been found, but none reached statistical significance. To examine further how large a proportion of NIDDM cases could be caused by the mutation, we performed a stratified analysis combining the results from the 6 earlier studies and those from our panel of 192 unrelated NIDDM subjects and 104 healthy controls. In addition, we looked for a possibility that the codon 972 mutation plays a role only in the presence of certain conditions. Genomic DNA samples obtained from NIDDM cases and healthy controls were genotyped using a PCR-restriction fragment length polymorphism protocol modified for genomic DNA. The GGG{r_arrow}AGG substitution was found in 5.7% of the diabetic subjects (11 of 192) and 6.9% of the controls (7 of 104). The difference between groups was not statistically significant, and it was not different from the results of other studies. The Mantel-Haenszel summary odds ratio across all studies was 1.49 (P < 0.05; 95% confidence intervals, 1.01-2.2). This summary odds ratio is consistent with a small proportion of NIDDM cases ({approximately}3%) being caused by the mutation. Exploratory subgroup analyses on our panel suggested a clustering of NIDDM, the codon 972 mutation, and overweight, raising the hypothesis that the mutation may predispose to NIDDM only in the presence of excess body weight. 9 refs., 2 tabs.

  6. Phosphorylation-dependent down-regulation of apolipoprotein A5 by insulin

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Maxine; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Rommens, Corinne; Martin, Genevieve; Duran-Sandoval, Daniel; Staels, Bart; Rubin, Edward M.; Pennacchio, Len A.; Taskinen, Marja-Riitta; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2004-02-15

    The apolipoprotein A5 (APOA5) gene has been shown to be important in lowering plasma triglyceride levels. Since several studies have shown that hyperinsulinemia is associated with hypertriglyceridemia, we sought to determine whether APOA5 gene is regulated by insulin. We show here that cell and mouse treatments with insulin down-regulated APOA5 expression in a dose-dependent manner. Furthermore, we determined that insulin decreases APOA5 promoter activity and subsequent deletion analyses revealed an E-box-containing fragment. We showed that Upstream Stimulatory Factors, USF1/USF2, bind to the identified E-box in the APOA5 promoter. Moreover, in cotransfection studies, USF1 stimulates APOA5 promoter activity. The treatment with insulin reduces the binding of USF1/USF2 to APOA5 promoter. The inhibition of PI3K pathway with wortmannin abolished the insulin s effect on APOA5 gene transcription. Using oligoprecipitation method of USF from nuclear extracts, we demonstrated that phosphorylated USF1 failed to bind to APOA5 promoter. This indicates that the APOA5 gene transrepression by insulin involves a phosphorylation of USF through PI3K, that modulate their binding to APOA5 promoter and results in APOA5 down-regulation. The effect of exogenous hyperinsulinemia in healthy men shows a decrease of the plasma ApoAV level. These data suggest a potential mechanism involving APOA5 gene in hypertriglyceridemia associated with hyperinsulinemia.

  7. Hepatitis C virus nonstructural protein 5A favors upregulation of gluconeogenic and lipogenic gene expression leading towards insulin resistance: a metabolic syndrome.

    Science.gov (United States)

    Parvaiz, Fahed; Manzoor, Sobia; Iqbal, Jawed; McRae, Steven; Javed, Farrakh; Ahmed, Qazi Laeeque; Waris, Gulam

    2014-05-01

    Chronic hepatitis C is a lethal blood-borne infection often associated with a number of pathologies such as insulin resistance and other metabolic abnormalities. Insulin is a key hormone that regulates the expression of metabolic pathways and favors homeostasis. In this study, we demonstrated the molecular mechanism of hepatitis C virus (HCV) nonstructural protein 5A (NS5A)-induced metabolic dysregulation. We showed that transient expression of HCV NS5A in human hepatoma cells increased lipid droplet formation through enhanced lipogenesis. We also showed increased transcriptional expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and diacylglycerol acyltransferase-1 (DGAT-1) in NS5A-expressing cells. On the other hand, there was significantly reduced transcriptional expression of microsomal triglyceride transfer protein (MTP) and peroxisome proliferator-activated receptor γ (PPARγ) in cells expressing HCV NS5A. Furthermore, increased gluconeogenic gene expression was observed in HCV-NS5A-expressing cells. In addition, it was also shown that HCV-NS5A-expressing hepatoma cells show serine phosphorylation of IRS-1, thereby hampering metabolic activity and contributing to insulin resistance. Therefore, this study reveals that HCV NS5A is involved in enhanced gluconeogenic and lipogenic gene expression, which triggers metabolic abnormality and impairs insulin signaling pathway.

  8. Chronic insulin treatment of diabetes does not fully normalize alterations in the retinal transcriptome

    Directory of Open Access Journals (Sweden)

    Kimball Scot R

    2011-05-01

    Full Text Available Abstract Background Diabetic retinopathy (DR is a leading cause of blindness in working age adults. Approximately 95% of patients with Type 1 diabetes develop some degree of retinopathy within 25 years of diagnosis despite normalization of blood glucose by insulin therapy. The goal of this study was to identify molecular changes in the rodent retina induced by diabetes that are not normalized by insulin replacement and restoration of euglycemia. Methods The retina transcriptome (22,523 genes and transcript variants was examined after three months of streptozotocin-induced diabetes in male Sprague Dawley rats with and without insulin replacement for the later one and a half months of diabetes. Selected gene expression changes were confirmed by qPCR, and also examined in independent control and diabetic rats at a one month time-point. Results Transcriptomic alterations in response to diabetes (1376 probes were clustered according to insulin responsiveness. More than half (57% of diabetes-induced mRNA changes (789 probes observed at three months were fully normalized to control levels with insulin therapy, while 37% of probes (514 were only partially normalized. A small set of genes (5%, 65 probes was significantly dysregulated in the insulin-treated diabetic rats. qPCR confirmation of findings and examination of a one month time point allowed genes to be further categorized as prevented or rescued with insulin therapy. A subset of genes (Ccr5, Jak3, Litaf was confirmed at the level of protein expression, with protein levels recapitulating changes in mRNA expression. Conclusions These results provide the first genome-wide examination of the effects of insulin therapy on retinal gene expression changes with diabetes. While insulin clearly normalizes the majority of genes dysregulated in response to diabetes, a number of genes related to inflammatory processes, microvascular integrity, and neuronal function are still altered in expression in

  9. Diversification of the insulin-like growth factor 1 gene in mammals.

    Directory of Open Access Journals (Sweden)

    Peter Rotwein

    Full Text Available Insulin-like growth factor 1 (IGF1, a small, secreted peptide growth factor, is involved in a variety of physiological and patho-physiological processes, including somatic growth, tissue repair, and metabolism of carbohydrates, proteins, and lipids. IGF1 gene expression appears to be controlled by several different signaling cascades in the few species in which it has been evaluated, with growth hormone playing a major role by activating a pathway involving the Stat5b transcription factor. Here, genes encoding IGF1 have been evaluated in 25 different mammalian species representing 15 different orders and ranging over ~180 million years of evolutionary diversification. Parts of the IGF1 gene have been fairly well conserved. Like rat Igf1 and human IGF1, 21 of 23 other genes are composed of 6 exons and 5 introns, and all 23 also contain recognizable tandem promoters, each with a unique leader exon. Exon and intron lengths are similar in most species, and DNA sequence conservation is moderately high in orthologous exons and proximal promoter regions. In contrast, putative growth hormone-activated Stat5b-binding enhancers found in analogous locations in rodent Igf1 and in human IGF1 loci, have undergone substantial variation in other mammals, and a processed retro-transposed IGF1 pseudogene is found in the sloth locus, but not in other mammalian genomes. Taken together, the fairly high level of organizational and nucleotide sequence similarity in the IGF1 gene among these 25 species supports the contention that some common regulatory pathways had existed prior to the beginning of mammalian speciation.

  10. Self-Reported Sexual Behavioral Interests and Polymorphisms in the Dopamine Receptor D4 (DRD4) Exon III VNTR in Heterosexual Young Adults.

    Science.gov (United States)

    Halley, Andrew C; Boretsky, Melanie; Puts, David A; Shriver, Mark

    2016-11-01

    Polymorphisms in the dopamine D4 receptor (DRD4) have previously been shown to associate with a variety of human behavioral phenotypes, including ADHD pathology, alcohol and tobacco craving, financial risk-taking in males, and broader personality traits such as novelty seeking. Recent research has linked the presence of a 7-repeat (7R) allele in a 48-bp variable number of tandem repeats (VNTR) along exon III of DRD4 to age at first sexual intercourse, sexual desire, arousal and function, and infidelity and promiscuity. We hypothesized that carriers of longer DRD4 alleles may report interest in a wider variety of sexual behaviors and experiences than noncarriers. Participants completed a 37-item questionnaire measuring sexual interests as well as Cloninger's Temperament and Character Inventory, and were genotyped for the 48-bp VNTR on exon III of DRD4. Based on our final genotyped sample of female (n = 139) and male (n = 115) participants, we found that 7R carriers reported interest in a wider variety of sexual behaviors (r = 0.16) within a young adult heterosexual sample of European descent. To our knowledge, this is the first reported association between DRD4 exon III VNTR genotype and interest in a variety of sexual behaviors. We discuss these findings within the context of DRD4 research and broader trends in human evolutionary history.

  11. Nutrient sensing and insulin signaling in neuropeptide-expressing immortalized, hypothalamic neurons: A cellular model of insulin resistance.

    Science.gov (United States)

    Fick, Laura J; Belsham, Denise D

    2010-08-15

    Obesity and type 2 diabetes mellitus represent a significant global health crisis. These two interrelated diseases are typified by perturbed insulin signaling in the hypothalamus. Using novel hypothalamic cell lines, we have begun to elucidate the molecular and intracellular mechanisms involved in the hypothalamic control of energy homeostasis and insulin resistance. In this review, we present evidence of insulin and glucose signaling pathways that lead to changes in neuropeptide gene expression. We have identified some of the molecular mechanisms involved in the control of de novo hypothalamic insulin mRNA expression. And finally, we have defined key mechanisms involved in the etiology of cellular insulin resistance in hypothalamic neurons that may play a fundamental role in cases of high levels of insulin or saturated fatty acids, often linked to the exacerbation of obesity and diabetes.

  12. Depressive symptoms in schizophrenia and dopamine and serotonin gene polymorphisms.

    Science.gov (United States)

    Peitl, Vjekoslav; Štefanović, Mario; Karlović, Dalibor

    2017-07-03

    Although depressive symptoms seem to be frequent in schizophrenia they have received significantly less attention than other symptom domains. As impaired serotonergic and dopaminergic neurotransmission is implicated in the pathogenesis of depression and schizophrenia this study sought to investigate the putative association between several functional gene polymorphisms (SERT 5-HTTLPR, MAO-A VNTR, COMT Val158Met and DAT VNTR) and schizophrenia. Other objectives of this study were to closely examine schizophrenia symptom domains by performing factor analysis of the two most used instruments in this setting (Positive and negative syndrome scale - PANSS and Calgary depression rating scale - CDSS) and to examine the influence of investigated gene polymorphisms on the schizophrenia symptom domains, focusing on depressive scores. A total of 591 participants were included in the study (300 schizophrenic patients and 291 healthy volunteers). 192 (64%) of schizophrenic patients had significant depressive symptoms. Genotype distribution revealed no significant differences regarding all investigated polymorphisms except the separate gender analysis for MAO-A gene polymorphism which revealed significantly more allele 3 carriers in schizophrenic males. Factor analysis of the PANSS scale revealed the existence of five separate factors (symptom domains), while the CDSS scale revealed two distinct factors. Several investigated gene polymorphisms (mostly SERT and MAO-A, but also COMT) significantly influenced two factors from the PANSS (aggressive/impulsive and negative symptoms) and one from the CDSS scale (suicidality), respectively. Depressive symptoms in schizophrenic patients may be influenced by functional gene polymorphisms, especially those implicated in serotonergic neurotransmission. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Genetic markers of insulin resistance in gestational diabetes

    Directory of Open Access Journals (Sweden)

    Tatiana Vasil'evna Sebko

    2009-12-01

    Full Text Available Aim. To search for genetic markers of insulin resistance and impaired insulin secretion in pregnant women with gestational diabetes mellitus (GDM. Materials and methods. A total of 100 healthy pregnant women and 185 patients with GDM were available for examination. 80 patients developedGDM during current pregnancy, in 105 it was diagnosed 4-19 years ago. 25 of the 105 GDM patients had a history of type 2 DM. The following parameterswere measured: beta-cell secretory activity (proinsulin, ITI, C-peptide, total cholesterol (CH, HDL and LDL CH, triglycerides, HbA1c,fasting glycemia. Molecular-genetic DNA testing using PCR included studies of KCNJ 11, TCF7L2, PPARG2, ADIPOQ, ADIPOR1, ADIPOR2gene polymorphism. These genes were chosen based on the published data associating them with disturbed insulin secretion and sensitivity in DM2patient. Results. Pregnant women with GDM and obesity showed elevated IRI and leptin levels compared with controls. This rise was accompanied bymarked insulin resistance in 75% of these patients. In 50% of the healthy women proinsulin and insulin secretion decreased. Obesity in pregnantpatients was associated with significant elevation of proinsulin, IRI, and C-peptyide levels and GDM with Lys/Lys genotype of polymorphous markerGlu23k of KCNJ11 gene, pro and ala allele of polymorphous marker A219T of ADIPOR2 gene. These associations suggest specific genetic featuresof GDM related to impaired insulin secretion and sensitivity. Conclusion. Studies of common genetic nature of GDM and DM2 permit to identify risk groups at the preclinical stage, plan prevention and treatmentof these disorders.

  14. Differential insulin and steroidogenic signaling in insulin resistant and non-insulin resistant human luteinized granulosa cells-A study in PCOS patients.

    Science.gov (United States)

    Belani, Muskaan; Deo, Abhilash; Shah, Preeti; Banker, Manish; Singal, Pawan; Gupta, Sarita

    2018-04-01

    Insulin resistance (IR) is one of the significant aberrations in polycystic ovarian syndrome (PCOS), however is only observed in 70%-80% of obese PCOS and 20%-25% of lean PCOS. Hyperinsulinemia accompanies PCOS-IR along with hyperandrogenemia against normal insulin and androgen levels in PCOS-non insulin resistance (NIR). This could possibly be due to defects in the downstream signaling pathways. The study thus aims to unravel insulin and steroidogenic signaling pathways in luteinized granulosa cells isolated from PCOS-IR and NIR vs matched controls. Luteinized granulosa cells from 30 controls and 39 PCOS were classified for IR based on a novel method of down regulation of protein expression of insulin receptor-β (INSR- β) as shown in our previous paper. We evaluated expression of molecules involved in insulin, steroidogenic signaling and lipid metabolism in luteinized granulosa cells followed by analysis of estradiol, progesterone and testosterone in follicular fluid. Protein expression of INSR- β, pIRS (ser 307), PI(3)K, PKC-ζ, pAkt, ERK1/2, pP38MAPK and gene expression of IGF showed differential expression in the two groups. Increased protein expression of PPAR-γ was accompanied by up regulation in SREBP1c, FAS, CPT-1 and ACC-1 genes in PCOS-IR group. Expression of StAR, CYP19A1, 17 β- HSD and 3 β- HSD demonstrated significant decrease along with increase in CYP11A1, FSH-R and LH-R in both the groups. Follicular fluid testosterone increased and progesterone decreased in PCOS-IR group. This study shows how candidate molecules that were differentially expressed, aid in designing targeted therapy against the two phenotypes of PCOS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Fluvastatin increases insulin-like growth factor-1 gene expression in rat model of metabolic syndrome

    International Nuclear Information System (INIS)

    Mansy, Wael H.; Sourour, Doaa A.; Shaker, Olfat G.; Mahfouz, Mahmoud M.

    2008-01-01

    Insulin-like growth factor-1 (IGF-1) was found to have a role in both glucose homeostasis and cardiovascular diseases. The present study was designed to compare the effects of fluvastatin and metformin on IGF-1 mRNA expression within the liver and other individual components of the metabolic syndrome induced in rats by high fructose feeding. Rats fed 60% fructose in diet for 6 weeks were treated daily with fluvastatin (3.75 mg/kg/day) during the last two weeks and were compared with untreated fructose fed group. Fasting levels of plasma cholesterol, triglyceride, glucose, insulin, nitric oxide products, IGF-1 mRNA within the liver as well as systolic blood pressure and body weight were determined. Compared to control rats, the fructose fed group developed hypertension, hyperlipidemia, hyperinsulinemia, hyperglycemia and endothelial dysfunction as well as decreased levels of plasma IGF-1 and its mRNA within the liver. Fructose fed rats treated with fluvastatin or metformin for 2 weeks showed significant decrease in plasma cholesterol, triglyceride, insulin and glucose levels compared to untreated fructose fed group. Also, both drugs increased significantly plasma levels of nitric oxide products and IGF-1 together with significant increase in IGF-1 mRNA within the liver. However, only metformin treated rats showed significant decrease in systolic blood pressure compared to fructose fed group. This study showed that in a rat model of insulin resistance, fluvastatin improves the metabolic profile and increases plasma level of IGF-1 and its gene expression as effective as metformin. (author)

  16. A genome-wide siRNA screen to identify modulators of insulin sensitivity and gluconeogenesis.

    Directory of Open Access Journals (Sweden)

    Ruojing Yang

    Full Text Available BACKGROUND: Hepatic insulin resistance impairs insulin's ability to suppress hepatic glucose production (HGP and contributes to the development of type 2 diabetes (T2D. Although the interests to discover novel genes that modulate insulin sensitivity and HGP are high, it remains challenging to have a human cell based system to identify novel genes. METHODOLOGY/PRINCIPAL FINDINGS: To identify genes that modulate hepatic insulin signaling and HGP, we generated a human cell line stably expressing beta-lactamase under the control of the human glucose-6-phosphatase (G6PC promoter (AH-G6PC cells. Both beta-lactamase activity and endogenous G6PC mRNA were increased in AH-G6PC cells by a combination of dexamethasone and pCPT-cAMP, and reduced by insulin. A 4-gene High-Throughput-Genomics assay was developed to concomitantly measure G6PC and pyruvate-dehydrogenase-kinase-4 (PDK4 mRNA levels. Using this assay, we screened an siRNA library containing pooled siRNA targeting 6650 druggable genes and identified 614 hits that lowered G6PC expression without increasing PDK4 mRNA levels. Pathway analysis indicated that siRNA-mediated knockdown (KD of genes known to positively or negatively affect insulin signaling increased or decreased G6PC mRNA expression, respectively, thus validating our screening platform. A subset of 270 primary screen hits was selected and 149 hits were confirmed by target gene KD by pooled siRNA and 7 single siRNA for each gene to reduce G6PC expression in 4-gene HTG assay. Subsequently, pooled siRNA KD of 113 genes decreased PEPCK and/or PGC1alpha mRNA expression thereby demonstrating their role in regulating key gluconeogenic genes in addition to G6PC. Last, KD of 61 of the above 113 genes potentiated insulin-stimulated Akt phosphorylation, suggesting that they suppress gluconeogenic gene by enhancing insulin signaling. CONCLUSIONS/SIGNIFICANCE: These results support the proposition that the proteins encoded by the genes identified in

  17. Multiple-Locus VNTR Analysis (MLVA) for Bacterial Strain Identification - Quarterly Progress Report for the period 7/1/00 to 10/30/00

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul Keim

    2000-11-07

    Multiple locus VNTR analysis (MLVA) systems are being developed for B. anthracis, Y. pestis and F. tularensis. These are high resolution DNA fingerprinting systems that will allow for molecular epidemiology and forensic analysis of these pathogens.

  18. Multiple-Locus VNTR Analysis (MLVA) for Bacterial Strain Identification - Quarterly Progress Report for the period 7/1/00 to 10/30/00

    International Nuclear Information System (INIS)

    Dr. Paul Keim

    2000-01-01

    Multiple locus VNTR analysis (MLVA) systems are being developed for B. anthracis, Y. pestis and F. tularensis. These are high resolution DNA fingerprinting systems that will allow for molecular epidemiology and forensic analysis of these pathogens

  19. Multiple-Locus VNTR Analysis (MLVA) for Bacterial Strain Identification - Quarterly Progress Report for the Period 4/1/00 to 6/30/00

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul Keim

    2000-11-07

    Multiple locus VNTR analysis (MLVA) systems are being developed for B. anthracis, Y. pestis and F. tularensis. These are high resolution DNA fingerprinting systems that will allow for molecular epidemiology and forensic analysis of these pathogens.

  20. Multiple-Locus VNTR Analysis (MLVA) for Bacterial Strain Identification - Quarterly Progress Report for the Period 4/1/00 to 6/30/00

    International Nuclear Information System (INIS)

    Dr. Paul Keim

    2000-01-01

    Multiple locus VNTR analysis (MLVA) systems are being developed for B. anthracis, Y. pestis and F. tularensis. These are high resolution DNA fingerprinting systems that will allow for molecular epidemiology and forensic analysis of these pathogens

  1. IMPACT OF ANGIOTENSIN-CONVERTING ENZYME GENE POLYMORPHISM ON THE DEVELOPMENT OF INSULIN RESISTANCE SYNDROME

    Directory of Open Access Journals (Sweden)

    G. E. Roitberg

    2013-01-01

    Full Text Available Objective: to analyze the distribution of components of insulin resistance (IR syndrome and to study the frequency of their combinations in relation to the genotypes and allelic variants of the angiotensin-converting enzyme (ACE gene.Subjects and methods. A group of clinically healthy patients (50 women and 42 men with different genotypes of the ACE gene was examined.The distribution of IR syndrome components and the frequency of their combinations were analyzed in relation to the genotypes and allelicvariants of the ACE gene.Results. A group of D allele carriers compared to A allele ones showed a pronounced tendency for the frequency of IR to reduce due to thehigher proportion of patients with complete IR syndrome. This observation becomes statistically significant in the assessment of homozygous variants of the ACE gene. At the same time dyslipidemia and hypertension in the presence of IR significantly more frequently occurred in patients with the DD genotype than in those with genotype II.Conclusion. There was a marked predominance of the manifestations of IR syndrome with a complete set of components in the DD genotypicgroup, which confirms the significant strong association between ACE gene polymorphism and IR syndrome.

  2. Mutation analysis of suppressor of cytokine signalling 3, a candidate gene in Type 1 diabetes and insulin sensitivity

    DEFF Research Database (Denmark)

    Gylvin, T; Nolsøe, R; Hansen, T

    2004-01-01

    Beta cell loss in Type 1 and Type 2 diabetes mellitus may result from apoptosis and necrosis induced by inflammatory mediators. The suppressor of cytokine signalling (SOCS)-3 is a natural inhibitor of cytokine signalling and also influences insulin signalling. SOCS3 could therefore be a candidate...... gene in the development of Type 1 and Type 2 diabetes mellitus....

  3. Low numbers of repeat units in variable number of tandem repeats (VNTR) regions of white spot syndrome virus are correlated with disease outbreaks.

    Science.gov (United States)

    Hoa, T T T; Zwart, M P; Phuong, N T; de Jong, M C M; Vlak, J M

    2012-11-01

    White spot syndrome virus (WSSV) is the most important pathogen in shrimp farming systems worldwide including the Mekong Delta, Vietnam. The genome of WSSV is characterized by the presence of two major 'indel regions' found at ORF14/15 and ORF23/24 (WSSV-Thailand) and three regions with variable number tandem repeats (VNTR) located in ORF75, ORF94 and ORF125. In the current study, we investigated whether or not the number of repeat units in the VNTRs correlates with virus outbreak status and/or shrimp farming practice. We analysed 662 WSSV samples from individual WSSV-infected Penaeus monodon shrimp from 104 ponds collected from two important shrimp farming regions of the Mekong Delta: Ca Mau and Bac Lieu. Using this large data set and statistical analysis, we found that for ORF94 and ORF125, the mean number of repeat units (RUs) in VNTRs was significantly lower in disease outbreak ponds than in non-outbreak ponds. Although a higher mean RU number was observed in the improved-extensive system than in the rice-shrimp or semi-intensive systems, these differences were not significant. VNTR sequences are thus not only useful markers for studying WSSV genotypes and populations, but specific VNTR variants also correlate with disease outbreaks in shrimp farming systems. © 2012 Blackwell Publishing Ltd.

  4. Different susceptibility to insulin resistance and fatty liver depending on the combination of TNF-α C-857T and adiponectin G+276T gene polymorphisms in Japanese subjects with type 2 diabetes

    International Nuclear Information System (INIS)

    Ohara, Mio; Maesawa, Chihaya; Takebe, Noriko

    2012-01-01

    The C-857T promoter polymorphism of tumor necrosis factor (TNF)-α gene is associated with obese type 2 diabetes, while the adiponectin G+276T gene polymorphism in intron 2 may influence the fat accumulation in the liver. In this study, we examined effects of these polymorphisms on clinical markers of insulin resistance and fatty liver (a liver/spleen CT ratio <0.9). These polymorphisms were determined in 342 Japanese subjects with type 2 diabetes. The liver/spleen CT ratio was lower in the subjects with the adiponectin +276G/G genotype than that in the subjects with the +276T allele (P<0.05), indicating that fat accumulation in the liver is associated with the +276G/G genotype. Multiple comparisons among the 4 combinations of each polymorphism of the TNF-α and adiponectin genes revealed a significant difference in the liver/spleen CT ratio (P<0.05) among the 4 groups, indicating that the gene combinations influence the degree of fat accumulation in the liver. The subjects carrying the TNF-α-857T allele (C/T or T/T genotype) and the adiponectin +276G/G genotype had greater risks for fatty liver and insulin resistance that was evaluated by higher levels of fasting insulin and homeostasis model assessment of insulin resistance, as compared with the other groups. Therefore, Japanese subjects with the TNF-α-857T allele and the adiponectin +276G/G genotype may be more susceptible to insulin resistance and fatty liver. The present study provides the evidence for the interaction between TNF-α and adiponectin genes in the insulin resistance and fatty liver in Japanese subjects with type 2 diabetes. (author)

  5. Insulin dependent diabetes mellitus (IDDM) and autoimmune thyroiditis in a boy with a ring chromosome 18: additional evidence of autoimmunity or IDDM gene(s) on chromosome 18

    OpenAIRE

    Dacou-Voutetakis, C; Sertedaki, A; Maniatis-Christid..., M; Sarri, C; Karadima, G; Petersen, M; Xaidara, A; Kanariou, M; Nicolaidou, P

    1999-01-01

    A 4 year 3 month old boy with insulin dependent diabetes mellitus (IDDM), autoimmune thyroiditis, slight mental retardation, facial dysmorphism, and a de novo ring chromosome 18 (deletion 18q22.3-18qter) is described. This unique association of defects could represent a chance association. Alternatively, the clinical features could be the result of the chromosomal aberration. If so, one could speculate that a gene or genes on chromosome 18 might act as a suppressor or activator of the autoimm...

  6. A common polymorphism near the interleukin-6 gene modifies the association between dietary fat intake and insulin sensitivity

    Directory of Open Access Journals (Sweden)

    Cuda C

    2012-01-01

    Full Text Available Cristina Cuda1, Bibiana Garcia-Bailo1,2, Mohamed Karmali1,2, Ahmed El-Sohemy1, Alaa Badawi21Department of Nutritional Sciences, University of Toronto, 2Office of Biotechnology, Genomics and Population Health, Public Health Agency of Canada, Toronto, Ontario, CanadaBackground: Increasing evidence suggests a role for inflammation in the development of type 2 diabetes. Elevated levels of inflammatory cytokines, including interleukin-6, have been associated with insulin resistance, and dietary lipids can increase cytokine production. The objective of this study was to determine whether a single nucleotide polymorphism near the IL6 gene (rs7801406 modifies the relationship between dietary fat and markers of insulin sensitivity.Methods: Subjects were healthy men and women aged 20–29 years from the Toronto Nutrigenomics and Health Study. Dietary intake was estimated using a one-month semiquantitative food frequency questionnaire. Fasting blood samples were taken for genotyping and biomarker measurement.Results: The single nucleotide polymorphism was not associated with any of the measures of insulin sensitivity. However, it modified the relationship between total dietary fat and the homeostasis model assessment of insulin resistance (P = 0.053 for interaction. Total fat intake was positively related to HOMA-IR in individuals homozygous for the G allele (ß = 0.005 ± 0.002, P = 0.03, but not among heterozygotes. There was an inverse relationship between total fat intake and HOMA-IR in individuals who were homozygous for the A allele (β= –0.012 ± 0.006, P = 0.047.Conclusion: These findings suggest that dietary fat influences insulin sensitivity differently depending on genotype.Keywords: interleukin-6, insulin sensitivity, nutrigenomics, dietary fat

  7. Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells.

    Science.gov (United States)

    Najem, Dema; Bamji-Mirza, Michelle; Yang, Ze; Zhang, Wandong

    2016-06-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) toxicity, tau pathology, insulin resistance, neuroinflammation, and dysregulation of cholesterol homeostasis, all of which play roles in neurodegeneration. Insulin has polytrophic effects on neurons and may be at the center of these pathophysiological changes. In this study, we investigated possible relationships among insulin signaling and cholesterol biosynthesis, along with the effects of Aβ42 on these pathways in vitro. We found that neuroblastoma 2a (N2a) cells transfected with the human gene encoding amyloid-β protein precursor (AβPP) (N2a-AβPP) produced Aβ and exhibited insulin resistance by reduced p-Akt and a suppressed cholesterol-synthesis pathway following insulin treatment, and by increased phosphorylation of insulin receptor subunit-1 at serine 612 (p-IRS-S612) as compared to parental N2a cells. Treatment of human neuroblastoma SH-SY5Y cells with Aβ42 also increased p-IRS-S612, suggesting that Aβ42 is responsible for insulin resistance. The insulin resistance was alleviated when N2a-AβPP cells were treated with higher insulin concentrations. Insulin increased Aβ release from N2a-AβPP cells, by which it may promote Aβ clearance. Insulin increased cholesterol-synthesis gene expression in SH-SY5Y and N2a cells, including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) through sterol-regulatory element-binding protein-2 (SREBP2). While Aβ42-treated SH-SY5Y cells exhibited increased HMGCR expression and c-Jun phosphorylation as pro-inflammatory responses, they also showed down-regulation of neuro-protective/anti-inflammatory DHCR24. These results suggest that Aβ42 may cause insulin resistance, activate JNK for c-Jun phosphorylation, and lead to dysregulation of cholesterol homeostasis, and that enhancing insulin signaling may relieve the insulin-resistant phenotype and the dysregulated cholesterol-synthesis pathway to promote A

  8. A common variation of the PTEN gene is associated with peripheral insulin resistance

    DEFF Research Database (Denmark)

    Grinder-Hansen, L; Ribel-Madsen, R; Wojtaszewski, Jørgen

    2016-01-01

    . RESULTS: The minor G allele of PTEN rs11202614 was associated with elevated fasting plasma insulin levels and a decreased peripheral glucose disposal rate, but not with the hepatic insulin resistance index or insulin secretion measured as the first-phase insulin response and disposition index. The single...... nucleotide polymorphism was not associated with either PI3K or Akt activities. CONCLUSION: A common PTEN variation is associated with peripheral insulin resistance and subsequent risk of developing T2D. However, the association with insulin resistance is not explained by decreased proximal insulin signalling......AIM: Phosphatase and tensin homologue (PTEN) reduces insulin sensitivity by inhibiting the phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homologue (Akt) pathway. This study investigated how a common single nucleotide polymorphism near PTEN, previously associated...

  9. Platelet monoamine oxidase type B, MAOB intron 13 and MAOA-uVNTR polymorphism and symptoms of post-traumatic stress disorder.

    Science.gov (United States)

    Svob Strac, Dubravka; Kovacic Petrovic, Zrnka; Nikolac Perkovic, Matea; Umolac, Danica; Nedic Erjavec, Gordana; Pivac, Nela

    2016-07-01

    Post-traumatic stress disorder (PTSD), a disorder that develops following exposure to traumatic experience(s), is frequently associated with agitation, aggressive behavior and psychotic symptoms. Monoamine oxidase (MAO) degrades different biogenic amines and regulates mood, emotions and behavior, and has a role in the pathophysiology of various neuropsychiatric disorders. The aim of the study was to investigate the association between different symptoms occurring in PTSD [PTSD symptom severity assessed by the Clinician Administered PTSD Scale (CAPS), agitation and selected psychotic symptoms assessed by the Positive and Negative Syndrome Scale (PANSS)] and platelet MAO-B activity and/or genetic variants of MAOB rs1799836 and MAOA-uVNTR polymorphisms in 249 Croatian male veterans with PTSD. Our study revealed slightly higher platelet MAO-B activity in veterans with PTSD with more severe PTSD symptoms and in veterans with agitation, and significantly higher platelet MAO-B activity in veterans with more pronounced psychotic symptoms compared to veterans with less pronounced psychotic symptoms. Platelet MAO-B activity was associated with smoking but not with age. Genetic variants of MAOB rs1799836 and MAOA-uVNTR were not associated with agitation and selected psychotic symptoms in veterans with PTSD. A marginally significant association was found between MAOB rs1799836 polymorphism and severity of PTSD symptoms, but it was not confirmed since carriers of G or A allele of MAOB rs1799836 did not differ in their total CAPS scores. These findings suggest an association of platelet MAO-B activity, but a lack of association of MAOB rs1799836 and MAOA-uVNTR, with selected psychotic symptoms in ethnically homogenous veterans with PTSD.

  10. Edible Bird’s Nest Prevents High Fat Diet-Induced Insulin Resistance in Rats

    Directory of Open Access Journals (Sweden)

    Zhang Yida

    2015-01-01

    Full Text Available Edible bird’s nest (EBN is used traditionally in many parts of Asia to improve wellbeing, but there are limited studies on its efficacy. We explored the potential use of EBN for prevention of high fat diet- (HFD- induced insulin resistance in rats. HFD was given to rats with or without simvastatin or EBN for 12 weeks. During the intervention period, weight measurements were recorded weekly. Blood samples were collected at the end of the intervention and oral glucose tolerance test conducted, after which the rats were sacrificed and their liver and adipose tissues collected for further studies. Serum adiponectin, leptin, F2-isoprostane, insulin, and lipid profile were estimated, and homeostatic model assessment of insulin resistance computed. Effects of the different interventions on transcriptional regulation of insulin signaling genes were also evaluated. The results showed that HFD worsened metabolic indices and induced insulin resistance partly through transcriptional regulation of the insulin signaling genes. Additionally, simvastatin was able to prevent hypercholesterolemia but promoted insulin resistance similar to HFD. EBN, on the other hand, prevented the worsening of metabolic indices and transcriptional changes in insulin signaling genes due to HFD. The results suggest that EBN may be used as functional food to prevent insulin resistance.

  11. Transcriptomic identification of ADH1B as a novel candidate gene for obesity and insulin resistance in human adipose tissue in Mexican Americans from the Veterans Administration Genetic Epidemiology Study (VAGES.

    Directory of Open Access Journals (Sweden)

    Deidre A Winnier

    Full Text Available Type 2 diabetes (T2D is a complex metabolic disease that is more prevalent in ethnic groups such as Mexican Americans, and is strongly associated with the risk factors obesity and insulin resistance. The goal of this study was to perform whole genome gene expression profiling in adipose tissue to detect common patterns of gene regulation associated with obesity and insulin resistance. We used phenotypic and genotypic data from 308 Mexican American participants from the Veterans Administration Genetic Epidemiology Study (VAGES. Basal fasting RNA was extracted from adipose tissue biopsies from a subset of 75 unrelated individuals, and gene expression data generated on the Illumina BeadArray platform. The number of gene probes with significant expression above baseline was approximately 31,000. We performed multiple regression analysis of all probes with 15 metabolic traits. Adipose tissue had 3,012 genes significantly associated with the traits of interest (false discovery rate, FDR ≤ 0.05. The significance of gene expression changes was used to select 52 genes with significant (FDR ≤ 10(-4 gene expression changes across multiple traits. Gene sets/Pathways analysis identified one gene, alcohol dehydrogenase 1B (ADH1B that was significantly enriched (P < 10(-60 as a prime candidate for involvement in multiple relevant metabolic pathways. Illumina BeadChip derived ADH1B expression data was consistent with quantitative real time PCR data. We observed significant inverse correlations with waist circumference (2.8 x 10(-9, BMI (5.4 x 10(-6, and fasting plasma insulin (P < 0.001. These findings are consistent with a central role for ADH1B in obesity and insulin resistance and provide evidence for a novel genetic regulatory mechanism for human metabolic diseases related to these traits.

  12. Insulin dependent diabetes mellitus (IDDM) and autoimmune thyroiditis in a boy with a ring chromosome 18: additional evidence of autoimmunity or IDDM gene(s) on chromosome 18.

    Science.gov (United States)

    Dacou-Voutetakis, C; Sertedaki, A; Maniatis-Christidis, M; Sarri, C; Karadima, G; Petersen, M B; Xaidara, A; Kanariou, M; Nicolaidou, P

    1999-02-01

    A 4 year 3 month old boy with insulin dependent diabetes mellitus (IDDM), autoimmune thyroiditis, slight mental retardation, facial dysmorphism, and a de novo ring chromosome 18 (deletion 18q22.3-18qter) is described. This unique association of defects could represent a chance association. Alternatively, the clinical features could be the result of the chromosomal aberration. If so, one could speculate that a gene or genes on chromosome 18 might act as a suppressor or activator of the autoimmune process by itself or in concert with other IDDM loci.

  13. Pancreatic Transdifferentiation and Glucose-Regulated Production of Human Insulin in the H4IIE Rat Liver Cell Line

    Directory of Open Access Journals (Sweden)

    Binhai Ren

    2016-04-01

    Full Text Available Due to the limitations of current treatment regimes, gene therapy is a promising strategy being explored to correct blood glucose concentrations in diabetic patients. In the current study, we used a retroviral vector to deliver either the human insulin gene alone, the rat NeuroD1 gene alone, or the human insulin gene and rat NeuroD1 genes together, to the rat liver cell line, H4IIE, to determine if storage of insulin and pancreatic transdifferentiation occurred. Stable clones were selected and expanded into cell lines: H4IIEins (insulin gene alone, H4IIE/ND (NeuroD1 gene alone, and H4IIEins/ND (insulin and NeuroD1 genes. The H4IIEins cells did not store insulin; however, H4IIE/ND and H4IIEins/ND cells stored 65.5 ± 5.6 and 1475.4 ± 171.8 pmol/insulin/5 × 106 cells, respectively. Additionally, several β cell transcription factors and pancreatic hormones were expressed in both H4IIE/ND and H4IIEins/ND cells. Electron microscopy revealed insulin storage vesicles in the H4IIE/ND and H4IIEins/ND cell lines. Regulated secretion of insulin to glucose (0–20 mmol/L was seen in the H4IIEins/ND cell line. The H4IIEins/ND cells were transplanted into diabetic immunoincompetent mice, resulting in normalization of blood glucose. This data shows that the expression of NeuroD1 and insulin in liver cells may be a useful strategy for inducing islet neogenesis and reversing diabetes.

  14. HPMC supplementation reduces fatty liver, intestinal permeability, and insulin resistance with altered hepatic gene expression in diet-induced obese mice

    Science.gov (United States)

    The effects of hydroxypropyl methylcellulose (HPMC), a highly viscous nonfermentable soluble dietary fiber, were evaluated on global hepatic gene profiles, steatosis and insulin resistance in high-fat (HF) diet-induced obese (DIO) mice. DIO C57BL/6J mice were fed a HF diet supplemented with either ...

  15. Hepatic Insulin Resistance Following Chronic Activation of the CREB Coactivator CRTC2

    DEFF Research Database (Denmark)

    Hogan, Meghan F; Ravnskjaer, Kim; Matsumura, Shigenobu

    2015-01-01

    and dephosphorylation of the cAMP regulated CREB coactivators CRTC2 and CRTC3. In parallel, decreases in circulating insulin also increase gluconeogenic gene expression via the de-phosphorylation and activation of the forkhead transcription factor FOXO1. Hepatic gluconeogenesis is increased in insulin resistance where...... increased gluconeogenic gene expression under fasting as well as feeding conditions. Circulating glucose concentrations were constitutively elevated in CRTC2S171,275A expressing mice, leading to compensatory increases in circulating insulin concentrations that enhance FOXO1 phosphorylation. Despite...... accompanying decreases in FOXO1 activity, hepatic gluconeogenic gene expression remained elevated in CRTC2S171,275A mice demonstrating that chronic increases in CRTC2 activity in the liver are indeed sufficient to promote hepatic insulin resistance and to disrupt glucose homeostasis....

  16. Variable liver fat concentration as a proxy for body fat mobilization postpartum has minor effects on insulin-induced changes in hepatic gene expression related to energy metabolism in dairy cows.

    Science.gov (United States)

    Weber, C; Schäff, C T; Kautzsch, U; Börner, S; Erdmann, S; Bruckmaier, R M; Röntgen, M; Kuhla, B; Hammon, H M

    2017-02-01

    The liver plays a central role in adaptation for energy requirements around calving, and changes in the effects of insulin on hepatic energy metabolism contribute to metabolic adaptation in dairy cows. Hepatic insulin effects may depend on body fat mobilization. The objective of this study was to investigate the effects of insulin on the hepatic gene expression of enzymes involved in energy metabolism and factors related to nutrition partitioning in cows with high and low total liver fat concentration (LFC) after calving. Holstein cows were retrospectively grouped according to their LFC after calving as a proxy for body fat mobilization. Cows were classified as low (LLFC; LFC 24.4% fat/dry matter; n = 10) fat-mobilizing after calving. Euglycemic-hyperinsulinemic clamps [6 mU/(kg × min) of insulin for 6 h] were performed in wk 5 antepartum (ap) and wk 3 postpartum (pp). Before and at the end of the euglycemic-hyperinsulinemic clamps, liver biopsies were taken to measure the mRNA abundance of enzymes involved in carbohydrate and lipid metabolism, expression related to the somatotropic axis, and adrenergic and glucocorticoid receptors. The mRNA abundance of pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase (PEPCK; PCK1), acyl-CoA-dehydrogenase very long chain (ACADVL), and hydroxyl-methyl-glutaryl-CoA-synthase 1 increased, but the mRNA abundance of solute carrier family 2 (SLC2A2 and SLC2A4), growth hormone receptor 1A (GHR1A), insulin-like growth factor 1 (IGF1), sterol regulatory element binding factor 1, adrenoceptor α 1A, and glucocorticoid receptor decreased from ap to pp. Insulin treatment was associated with decreased PCK1, mitochondrial PEPCK, glucose-6-phosphatase, propionyl-CoA-carboxylase α, carnitine-palmitoyl-transferase 1A, ACADVL, and insulin receptor mRNA, but increased IGF1 and SLC2A4 mRNA ap and pp and GHR1A mRNA pp. The mRNA abundance of SLC2A4 was greater, and the mRNA abundance of GHR1A and IGF1 tended to be lower in LLFC than

  17. Testicular regulation of neuronal glucose and monocarboxylate transporter gene expression profiles in CNS metabolic sensing sites during acute and recurrent insulin-induced hypoglycemia.

    Science.gov (United States)

    Vavaiya, Kamlesh V; Paranjape, Sachin A; Briski, Karen P

    2007-01-01

    Recurrent insulin-induced hypoglycemia (RIIH) impairs glucose counter-regulatory function in male humans and rodents and, in the latter, diminishes neuronal activation in CNS structures that monitor metabolic homeostasis, including the lateral hypothalamic area (LHA) and dorsal vagal complex (DVC). We investigated whether habituated neuronal reactivity in CNS sensing sites to hypoglycemia is correlated with modified monocarboxylate and/or glucose uptake by using quantitative real-time RT-PCR to analyze neuronal monocarboxylate transporter (MCT2) and glucose transporter variant (GLUT and GLUT4) gene expression profiles in the microdissected LHA, ventromedial nucleus hypothalamus (VMH), and DVC after one or multiple insulin injections. Because orchidectomy (ORDX) maintains uniform glycemic responses to RIIH in male rats, we also examined whether regional gene response patterns are testes dependent. In the intact male rat DVC, MCT2, GLUT3, and GLUT4 gene expression was not altered by acute hypoglycemia but was enhanced by RIIH. MCT2 and GLUT3 mRNA levels in the ORDX rat DVC did not differ among groups, but GLUT4 transcripts were progressively increased by acute and recurrent hypoglycemia. Precedent hypoglycemia decreased or increased basal MCT2 and GLUT4 gene expression, respectively, in the intact rat LHA; LHA GLUT3 transcription was augmented by RIIH in intact rats only. Acute hypoglycemia suppressed MCT2, GLUT3, and GLUT4 gene expression in the intact rat VMH, a response that was abolished by RIIH. In ORDX rats, VMH gene transcript levels were unchanged in response to one dose of insulin but were selectively diminished during RIIH. These data demonstrate site-specific, testes-dependent effects of acute and recurrent hypoglycemia on neuronal metabolic substrate transporter gene expression in characterized rat brain metabolic sensing loci and emphasize the need to assess the impact of potential alterations in glucose and lactate uptake during RIIH on general and

  18. MLVA Typing of Streptococcus pneumoniae Isolates with Emphasis on Serotypes 14, 9N and 9V: Comparison of Previously Described Panels and Proposal of a Novel 7 VNTR Loci-Based Simplified Scheme.

    Science.gov (United States)

    Costa, Natália S; Pinto, Tatiana C A; Merquior, Vânia L C; Castro, Luciana F S; da Rocha, Filomena S P; Morais, Jaqueline M; Peralta, José M; Teixeira, Lúcia M

    2016-01-01

    Streptococcus pneumoniae remains as an important cause of community-acquired bacterial infections, and the nasopharynx of asymptomatic carriers is the major reservoir of this microorganism. Pneumococcal strains of serotype 14 and serogroup 9 are among the most frequently isolated from both asymptomatic carriers and patients with invasive disease living in Brazil. Internationally disseminated clones belonging to such serotypes have been associated with the emergence and spread of antimicrobial resistance in our setting, highlighting the need for epidemiological tracking of these isolates. In this scenario, Multiple Loci VNTR Analysis (MLVA) has emerged as an alternative tool for the molecular characterization of pneumococci, in addition to more traditional techniques such as Multi-Locus Sequence Typing (MLST) and Pulsed-Field Gel Electrophoresis (PFGE). In the present study, 18 VNTR loci, as well as other previously described reduced MLVA panels (7 VNTR loci), were evaluated as tools to characterize pneumococcal strains of serotypes 14, 9N and 9V belonging to international and regional clones isolated in Brazil. The 18 VNTR loci panel was highly congruent with MLST and PFGE, being also useful for indicating the genetic relationship with international clones and for discriminating among strains with indistinguishable STs and PFGE profiles. Analysis of the results also allowed deducing a novel shorter 7 VNTR loci panel, keeping a high discriminatory power for isolates of the serotypes investigated and a high congruence level with MLST and PFGE. The newly proposed simplified panel was then evaluated for typing pneumococcal strains of other commonly isolated serotypes. The results indicate that MLVA is a faster and easier to perform, reliable approach for the molecular characterization of S. pneumoniae isolates, with potential for cost-effective application, especially in resource-limited countries.

  19. [ALLELES C282Y AND H63D HFE GENE, INSULIN RESISTANCE AND SUSCEPTIBILITY TO DISTURBANCE OF PORPHYRIN METABOLISM IN NON-ALCOHOLIC FATTY LIVER DISEASE].

    Science.gov (United States)

    Krivosheev, A B; Maximov, V N; Voevoda, M I; Kuimov, A D; Kondratova, M A; Tuguleva, T A; Koval, O N; Bezrukova, A A; Bogorianova, P A; Rybina, O V

    2015-01-01

    The aim of the present work was to study the frequency of genotypes and alleles of C282Y and H63D HFE gene that may be associated with impaired porphyrin metabolism, as well as possible reasons for the formation of dysmetabolism porphyrins with NAFLD. The study involved 65 patients (52 men and 13 women) aged 21 to 69 years (mean age 48.5±1.5 years). Excretion uroporphyrin, coproporphyrin, 6-aminolevulinic acid of porphobilinogen in urine was determined by chromatography and spectrophotometry calculated total excretion of porphyrins. Allele frequencies C282Y and H63D were determined during the molecular genetic analysis of DNA using the polymerase chain reaction followed by analysis of length polymorphism restraktsionnyh fragments. Condition of carbohydrate metabolism was evaluated by the level of fasting blood glucose and standard glucose tolerance test. Diagnosis of insulin resistance was performed according to the criteria proposed by the European Group for the Study of insulin resistance (EGIR). Skill test for the C282Y mutation carriage and H63D in the HFE gene in 65 patients with non-alcoholic fatty liver disease. Disturbances in the metabolism of porphyrins were recorded in 43 (66.2%) patients. H63D and C282Y mutations were found in 18 (27.7%) patients, of whom 13 (72.2%) people with different options dismetabolism porphyrins and signs of insulin resistance. In 47 (72.3%) patients without mutations studied porphyrin metabolism disorders were detected in 30 (63.8 %), of which insulin resistance is registered only in 16 (34.0 %). Detection of mutations C282Y and H63D in the HFE gene in combination with disorders of porphyrin metabolism on the background of insulin resistance is likely to allow such patients considered as candidates for inclusion in the higher risk of formation of diabetes.

  20. VNTR diversity in Yersinia pestis isolates from an animal challenge study reveals the potential for in vitro mutations during laboratory cultivation

    Science.gov (United States)

    Vogler, Amy J.; Nottingham, Roxanne; Busch, Joseph D.; Sahl, Jason W.; Shuey, Megan M.; Foster, Jeffrey T.; Schupp, James M.; Smith, Susan; Rocke, Tonie E.; Klein, Paul; Wagner, David M.

    2016-01-01

    Underlying mutation rates and other evolutionary forces shape the population structure of bacteria in nature. Although easily overlooked, similar forces are at work in the laboratory and may influence observed mutations. Here, we investigated tissue samples and Yersinia pestis isolates from a rodent laboratory challenge with strain CO92 using whole genome sequencing and multi-locus variable-number tandem repeat (VNTR) analysis (MLVA). We identified six VNTR mutations that were found to have occurred in vitro during laboratory cultivation rather than in vivo during the rodent challenge. In contrast, no single nucleotide polymorphism (SNP) mutations were observed, either in vivo or in vitro. These results were consistent with previously published mutation rates and the calculated number of Y. pestis generations that occurred during the in vitro versus the in vivo portions of the experiment. When genotyping disease outbreaks, the potential for in vitro mutations should be considered, particularly when highly variable genetic markers such as VNTRs are used.

  1. Evaluation of insulin expression and secretion in genetically engineered gut K and L-cells

    Directory of Open Access Journals (Sweden)

    Ahmad Zalinah

    2012-09-01

    Full Text Available Abstract Background Gene therapy could provide an effective treatment of diabetes. Previous studies have investigated the potential for several cell and tissue types to produce mature and active insulin. Gut K and L-cells could be potential candidate hosts for gene therapy because of their special features. Results In this study, we isolated gut K and L-cells to compare the potential of both cell types to produce insulin when exposed to similar conditions. The isolated pure K and L-cells were transfected with recombinant plasmids encoding insulin and with specific promoters for K or L-cells. Insulin expression was studied in response to glucose or meat hydrolysate. We found that glucose and meat hydrolysate efficiently induced insulin secretion from K and L-cells. However, the effects of meat hydrolysate on insulin secretion were more potent in both cells compared with glucose. Results of enzyme-linked immunosorbent assays showed that L-cells secreted more insulin compared with K-cells regardless of the stimulator, although this difference was not statistically significant. Conclusion The responses of K and L-cells to stimulation with glucose or meat hydrolysate were generally comparable. Therefore, both K and L-cells show similar potential to be used as surrogate cells for insulin gene expression in vitro. The potential use of these cells for diabetic gene therapy warrants further investigation.

  2. Insulin resistance, adipokine profile and hepatic expression of SOCS-3 gene in chronic hepatitis C.

    Science.gov (United States)

    Wójcik, Kamila; Jabłonowska, Elżbieta; Omulecka, Aleksandra; Piekarska, Anna

    2014-08-14

    To analyze adipokine concentrations, insulin resistance and hepatic expression of suppressor of cytokine signaling 3 (SOCS-3) in patients with chronic hepatitis C genotype 1 with normal body weight, glucose and lipid profile. The study group consisted of 31 patients with chronic hepatitis C and 9 healthy subjects. Total levels of adiponectin, leptin, resistin, visfatin, omentin, osteopontin and insulin were measured using an ELISA kit. The hepatic expression of SOCS-3 was determined by the use of the reverse transcription polymerase chain reaction method. Homeostasis model assessment for insulin resistance (HOMA-IR) values were significantly higher in hepatitis C virus (HCV) infected patients without metabolic disorders compared to healthy controls (2.24 vs 0.59, P = 0.0003). Hepatic steatosis was observed in 32.2% of patients with HCV infection and was found in patients with increased HOMA-IR index (2.81 vs 1.99, P = 0.05) and reduced adiponectin level (5.96 vs 8.37, P = 0.04). Inflammatory activity (G ≥ 2) was related to increased osteopontin concentration (34.04 vs 23.35, P = 0.03). Advanced liver fibrosis (S ≥ 2) was associated with increased levels of omentin and osteopontin (436.94 vs 360.09, P = 0.03 and 32.84 vs 20.29, P = 0.03) and reduced resistin concentration (1.40 vs 1.74, P = 0.047). No correlations were reported between adipokine profile, HOMA-IR values and hepatic expression of the SOCS-3 gene. We speculated that no relationship between adipokines and HOMA-IR values may indicate that HCV can induce insulin resistance itself. Some adipokines appear to be biochemical markers of steatosis, inflammation and fibrosis in patients with chronic HCV infection. © 2014 Baishideng Publishing Group Inc. All rights reserved.

  3. Common variants in SOCS7 gene predict obesity, disturbances in lipid metabolism and insulin resistance.

    Science.gov (United States)

    Tellechea, M L; Steinhardt, A Penas; Rodriguez, G; Taverna, M J; Poskus, E; Frechtel, G

    2013-05-01

    Specific Suppressor of Cytokine Signaling (SOCS) members, such as SOCS7, may play a role in the development of insulin resistance (IR) owing to their ability to inhibit insulin signaling pathways. The objective was to explore the association between common variants and related haplotypes in SOCS7 gene and metabolic traits related to obesity, lipid metabolism and IR. 780 unrelated men were included in a cross-sectional study. We selected three tagged SNPs that capture 100% of SNPs with minor allele frequency ≥ 0.10. Analyses were done separately for each SNP and followed up by haplotype analysis. rs8074124C was associated with both obesity (p = 0.005) and abdominal obesity (p = 0.002) and allele C carriers showed, in comparison with TT carriers, lower BMI (p = 0.001) and waist circumference (p = 0.001). rs8074124CC- carriers showed lower fasting insulin (p = 0.017) and HOMA-IR (p = 0.018) than allele T carriers. rs12051836C was associated with hypertriglyceridemia (p = 0.009) and hypertriglyceridemic waist (p = 0.006). rs12051836CC- carriers showed lower fasting insulin (p = 0.043) and HOMA-IR (p = 0.042). Haplotype-based association analysis (rs8074124 and rs12051836 in that order) showed associations with lipid and obesity -related phenotypes, consistent with single locus analysis. Haplotype analysis also revealed association between haplotype CT and both decreased HDL-C (p = 0.026) and HDL-C (p = 0.014) as a continuous variable. We found, for the first time, significant associations between SOCS7 common variants and related haplotypes and obesity, IR and lipid metabolism disorders. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  4. Variable number of tandem repeat polymorphisms of the interleukin-1 receptor antagonist gene IL-1RN: a novel association with the athlete status

    Directory of Open Access Journals (Sweden)

    Ryckman Kelli K

    2010-02-01

    Full Text Available Abstract Background The interleukin-1 (IL-1 family of cytokines is involved in the inflammatory and repair reactions of skeletal muscle during and after exercise. Specifically, plasma levels of the IL-1 receptor antagonist (IL-1ra increase dramatically after intense exercise, and accumulating evidence points to an effect of genetic polymorphisms on athletic phenotypes. Therefore, the IL-1 family cytokine genes are plausible candidate genes for athleticism. We explored whether IL-1 polymorphisms are associated with athlete status in European subjects. Methods Genomic DNA was obtained from 205 (53 professional and 152 competitive non-professional Italian athletes and 458 non-athlete controls. Two diallelic polymorphisms in the IL-1β gene (IL-1B at -511 and +3954 positions, and a variable number tandem repeats (VNTR in intron 2 of the IL-1ra gene (IL-1RN were assessed. Results We found a 2-fold higher frequency of the IL-1RN 1/2 genotype in athletes compared to non-athlete controls (OR = 1.93, 95% CI = 1.37-2.74, 41.0% vs. 26.4%, and a lower frequency of the 1/1 genotype (OR = 0.55, 95% CI = 0.40-0.77, 43.9% vs. 58.5%. Frequency of the IL-1RN 2/2 genotype did not differ between groups. No significant differences between athletes and controls were found for either -511 or +3954 IL-1B polymorphisms. However, the haplotype (-511C-(+3954T-(VNTR2 was 3-fold more frequent in athletes than in non-athletes (OR = 3.02, 95% CI = 1.16-7.87. Interestingly, the IL-1RN 1/2 genotype was more frequent in professional than in non-professional athletes (OR = 1.92, 95% CI = 1.02-3.61, 52.8% vs. 36.8%. Conclusions Our study found that variants at the IL-1ra gene associate with athletic status. This confirms the crucial role that cytokine IL-1ra plays in human physical exercise. The VNTR IL-1RN polymorphism may have implications for muscle health, performance, and/or recovery capacities. Further studies are needed to assess these specific issues. As VNTR IL-1RN

  5. The association of SNP276G>T at adiponectin gene with insulin resistance and circulating adiponectin in response to two different hypocaloric diets.

    Science.gov (United States)

    de Luis, Daniel Antonio; Izaola, Olatz; Primo, David; Aller, R; Ortola, A; Gómez, E; Lopez, J J

    2018-03-01

    Several adiponectin gene (ADIPOQ) single nucleotide polymorphisms (SNPS) have been related with adiponectin levels and risk for obesity. The aim of our study was to analyze the effect of rs1501299 ADIPOQ gene polymorphism and dietary intake on total adiponectin levels and insulin resistance after two hypocaloric diets in obese subjects. A Caucasian population of 284 obese patients was enrolled in a randomized clinical trial with two hypocaloric diets (I: moderate carbohydrates vs II: low fat). Before and after 12 weeks on each hypocaloric diet, an anthropometric evaluation, an assessment of nutritional intake and a biochemical analysis were realized. The statistical analysis was performed for the combined GT and TT as a group (mutant) and GG as second group (wild) (dominant model). The genotype distribution was 149 GG, 124 GT and 21 TT. With caloric restriction strategies, body weight, body mass index (BMI), fat mass, waist circumference, systolic blood pressure, total LDL cholesterol, LDL cholesterol and leptin levels decreased. Only in subjects with GG genotype, diet I and II decreased fasting insulin levels, HOMA-IR and adiponectin levels. The improvement was similar with both diets; insulin concentrations (Diet I: -4.7 ± 1.4 mUI/L vs. Diet II: -5.9 ± 1.9 mUI/L: p = .76), HOMA-IR (Diet I: -1.4 ± 0.6 units vs. Diet II: -2.0 ± 0.7 units: p = .56) and adiponectin levels (Diet I: -10.2 ± 3.4 ng/dl vs. Diet II: -14.0 ± 2.9 ng/dl: p = .33). The GG genotype of ADIPOQ gene variant (rs1501299) is associated with an increase in adiponectin levels and a decrease of insulin and HOMA-IR after weight loss. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Polymorphism rs3123554 in the cannabinoid receptor gene type 2 (CNR2) reveals effects on body weight and insulin resistance in obese subjects.

    Science.gov (United States)

    de Luis, Daniel Antonio; Izaola, Olatz; Primo, David; de la Fuente, Beatriz; Aller, Rocio

    2017-10-01

    Few studies assessing the relationship between single nucleotide polymorphisms in CNR2 and obesity or its related metabolic parameters are available. To investigate the influence of polymorphism rs3123554 in the CNR2 receptor gene on obesity anthropometric parameters, insulin resistance, and adipokines in subjects with obesity. The study population consisted of 1027 obese subjects, who were performed bioelectrical impedance analyses, blood pressure measurements, serial assessments of dietary intake during three days, and biochemical tests. Genotypes GG, GA, and AA were found in 339 (33.0%), 467 (45.5%), and 221 (21.5%) respectively. Body mass index, weight, fat mass, waist circumference, insulin, HOMA-IR, and triglyceride and leptin levels were higher in A-allele carriers as compared to non A-allele carriers. No differences were seen in these parameters between the GA and AA genotypes. There were no statistical differences in dietary intake. The main study finding was the association of the minor allele of the SNP rs3123554 in the CNR2 gene with body weight and triglyceride, HOMA-IR, insulin, and leptin levels. Copyright © 2017 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. VNTR fingerprinting of Kluyveromyces marxianus strains WT, 7-1, and 8-1 by using different primer types to give best results in PCR and on electrophorese gel in order to find differentiation of the DNA of the yeast strains.

    Science.gov (United States)

    Using mutagenized Kluyveromyces marxianus strains (WT, 7-1, 8-1) we wish to find out the variable numbered tandem repeats (VNTR) of each of the DNA strains from the different mutagenized K. marxianus strains. To do this we used Phusion HF Buffer Pack to try and give a clear picture of the VNTR by u...

  8. Insulin Increases Ceramide Synthesis in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    M. E. Hansen

    2014-01-01

    Full Text Available Aims. The purpose of this study was to determine the effect of insulin on ceramide metabolism in skeletal muscle. Methods. Skeletal muscle cells were treated with insulin with or without palmitate for various time periods. Lipids (ceramides and TAG were isolated and gene expression of multiple biosynthetic enzymes were quantified. Additionally, adult male mice received daily insulin injections for 14 days, followed by muscle ceramide analysis. Results. In muscle cells, insulin elicited an increase in ceramides comparable to palmitate alone. This is likely partly due to an insulin-induced increase in expression of multiple enzymes, particularly SPT2, which, when knocked down, prevented the increase in ceramides. In mice, 14 days of insulin injection resulted in increased soleus ceramides, but not TAG. However, insulin injections did significantly increase hepatic TAG compared with vehicle-injected animals. Conclusions. This study suggests that insulin elicits an anabolic effect on sphingolipid metabolism in skeletal muscle, resulting in increased ceramide accumulation. These findings reveal a potential mechanism of the deleterious consequences of the hyperinsulinemia that accompanies insulin resistance and suggest a possible novel therapeutic target to mitigate its effects.

  9. Genomic Variability of Mycobacterium tuberculosis Strains of the Euro-American Lineage Based on Large Sequence Deletions and 15-Locus MIRU-VNTR Polymorphism

    Science.gov (United States)

    Rindi, Laura; Medici, Chiara; Bimbi, Nicola; Buzzigoli, Andrea; Lari, Nicoletta; Garzelli, Carlo

    2014-01-01

    A sample of 260 Mycobacterium tuberculosis strains assigned to the Euro-American family was studied to identify phylogenetically informative genomic regions of difference (RD). Mutually exclusive deletions of regions RD115, RD122, RD174, RD182, RD183, RD193, RD219, RD726 and RD761 were found in 202 strains; the RDRio deletion was detected exclusively among the RD174-deleted strains. Although certain deletions were found more frequently in certain spoligotype families (i.e., deletion RD115 in T and LAM, RD174 in LAM, RD182 in Haarlem, RD219 in T and RD726 in the “Cameroon” family), the RD-defined sublineages did not specifically match with spoligotype-defined families, thus arguing against the use of spoligotyping for establishing exact phylogenetic relationships between strains. Notably, when tested for katG463/gyrA95 polymorphism, all the RD-defined sublineages belonged to Principal Genotypic Group (PGG) 2, except sublineage RD219 exclusively belonging to PGG3; the 58 Euro-American strains with no deletion were of either PGG2 or 3. A representative sample of 197 isolates was then analyzed by standard 15-locus MIRU-VNTR typing, a suitable approach to independently assess genetic relationships among the strains. Analysis of the MIRU-VNTR typing results by using a minimum spanning tree (MST) and a classical dendrogram showed groupings that were largely concordant with those obtained by RD-based analysis. Isolates of a given RD profile show, in addition to closely related MIRU-VNTR profiles, related spoligotype profiles that can serve as a basis for better spoligotype-based classification. PMID:25197794

  10. MNS16A tandem repeat minisatellite of human telomerase gene: functional studies in colorectal, lung and prostate cancer.

    Science.gov (United States)

    Hofer, Philipp; Zöchmeister, Cornelia; Behm, Christian; Brezina, Stefanie; Baierl, Andreas; Doriguzzi, Angelina; Vanas, Vanita; Holzmann, Klaus; Sutterlüty-Fall, Hedwig; Gsur, Andrea

    2017-04-25

    MNS16A, a functional polymorphic tandem repeat minisatellite, is located in the promoter region of an antisense transcript of the human telomerase reverse transcriptase gene. MNS16A promoter activity depends on the variable number of tandem repeats (VNTR) presenting varying numbers of transcription factor binding sites for GATA binding protein 1. Although MNS16A has been investigated in multiple cancer epidemiology studies with incongruent findings, functional data of only two VNTRs (VNTR-243 and VNTR-302) were available thus far, linking the shorter VNTR to higher promoter activity.For the first time, we investigated promoter activity of all six VNTRs of MNS16A in cell lines of colorectal, lung and prostate cancer using Luciferase reporter assay. In all investigated cell lines shorter VNTRs showed higher promoter activity. While this anticipated indirect linear relationship was affirmed for colorectal cancer SW480 (P = 0.006), a piecewise linear regression model provided significantly better model fit in lung cancer A-427 (P = 6.9 × 10-9) and prostate cancer LNCaP (P = 0.039). In silico search for transcription factor binding sites in MNS16A core repeat element suggested a higher degree of complexity involving X-box binding protein 1, general transcription factor II-I, and glucocorticoid receptor alpha in addition to GATA binding protein 1.Further functional studies in additional cancers are requested to extend our knowledge of MNS16A functionality uncovering potential cancer type-specific differences. Risk alleles may vary in different malignancies and their determination in vitro could be relevant for interpretation of genotype data.

  11. Expression of glycogen synthase and phosphofructokinase in muscle from type 1 (insulin-dependent) diabetic patients before and after intensive insulin treatment

    DEFF Research Database (Denmark)

    Vestergaard, H; Andersen, P H; Lund, S

    1994-01-01

    The aim of the present study was to determine whether short-term appropriate insulinization of Type 1 (insulin-dependent) diabetic patients in long-term poor glycaemic control (HbA1C > 9.5%) was associated with an adaptive regulation of the activity and gene expression of key proteins in muscle...... glycogen storage and glycolysis: glycogen synthase and phosphofructokinase, respectively. In nine diabetic patients biopsies of quadriceps muscle were taken before and 24-h after intensified insulin therapy and compared to findings in eight control subjects. Subcutaneous injections of rapid acting insulin...... were given at 3-h intervals to improve glycaemic control in diabetic patients (fasting plasma glucose decreased from 20.8 +/- 0.8 to 8.7 +/- 0.8 mmol/l whereas fasting serum insulin increased from 59 +/- 8 to 173 +/- 3 pmol/l). Before intensified insulin therapy, analysis of muscle biopsies from...

  12. Gene expression of insulin signal-transduction pathway intermediates is lower in rats fed a beef tallow diet than in rats fed a safflower oil diet.

    Science.gov (United States)

    Kim, Y B; Nakajima, R; Matsuo, T; Inoue, T; Sekine, T; Komuro, M; Tamura, T; Tokuyama, K; Suzuki, M

    1996-09-01

    To elucidate the effects of dietary fatty acid composition on the insulin signaling pathway, we measured the gene expression of the earliest steps in the insulin action pathway in skeletal muscle of rats fed a safflower oil diet or a beef tallow diet. Rats were meal-fed an isoenergetic diet based on either safflower oil or beef tallow for 8 weeks. Both diets provided 45%, 35%, and 20% of energy as fat, carbohydrate, and protein, respectively. Insulin resistance, assessed from the diurnal rhythm of plasma glucose and insulin and the oral glucose tolerance test (OGTT), developed in rats fed a beef tallow diet. Body fat content was greater in rats fed a beef tallow diet versus a safflower oil diet. The level of insulin receptor mRNA, relative expression of the insulin receptor mRNA isoforms, and receptor protein were not affected by the composition of dietary fatty acids. The abundance of insulin receptor substrate-1 (IRS-1) and phosphatidylinositol (PI) 3-kinase mRNA and protein was significantly lower in rats fed a beef tallow diet versus a safflower oil diet. We conclude that long-term feeding of a high-fat diet with saturated fatty acids induces decrease in IRS-1 and PI 3-kinase mRNA and protein levels, causing insulin resistance in skeletal muscle.

  13. VNTR diversity in Yersinia pestis isolates from an animal challenge study reveals the potential for in vitro mutations during laboratory cultivation.

    Science.gov (United States)

    Vogler, Amy J; Nottingham, Roxanne; Busch, Joseph D; Sahl, Jason W; Shuey, Megan M; Foster, Jeffrey T; Schupp, James M; Smith, Susan R; Rocke, Tonie E; Keim, Paul; Wagner, David M

    2016-11-01

    Underlying mutation rates and other evolutionary forces shape the population structure of bacteria in nature. Although easily overlooked, similar forces are at work in the laboratory and may influence observed mutations. Here, we investigated tissue samples and Yersinia pestis isolates from a rodent laboratory challenge with strain CO92 using whole genome sequencing and multi-locus variable-number tandem repeat (VNTR) analysis (MLVA). We identified six VNTR mutations that were found to have occurred in vitro during laboratory cultivation rather than in vivo during the rodent challenge. In contrast, no single nucleotide polymorphism (SNP) mutations were observed, either in vivo or in vitro. These results were consistent with previously published mutation rates and the calculated number of Y. pestis generations that occurred during the in vitro versus the in vivo portions of the experiment. When genotyping disease outbreaks, the potential for in vitro mutations should be considered, particularly when highly variable genetic markers such as VNTRs are used. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. PKCδ regulates hepatic insulin sensitivity and hepatosteatosis in mice and humans

    DEFF Research Database (Denmark)

    Bezy, Olivier; Tran, Thien T; Pihlajamäki, Jussi

    2011-01-01

    C57BL/6J and 129S6/Sv (B6 and 129) mice differ dramatically in their susceptibility to developing diabetes in response to diet- or genetically induced insulin resistance. A major locus contributing to this difference has been mapped to a region on mouse chromosome 14 that contains the gene encoding...... tolerance, and reduced hepatosteatosis with aging. Conversely, mice with liver-specific overexpression of PKCδ developed hepatic insulin resistance characterized by decreased insulin signaling, enhanced lipogenic gene expression, and hepatosteatosis. Therefore, changes in the expression and regulation...... of PKCδ between strains of mice and in obese humans play an important role in the genetic risk of hepatic insulin resistance, glucose intolerance, and hepatosteatosis; and thus PKCδ may be a potential target in the treatment of metabolic syndrome....

  15. Expression of the growth hormone receptor gene in insulin producing cells

    DEFF Research Database (Denmark)

    Møldrup, Annette; Billestrup, N; Nielsen, Jens Høiriis

    1990-01-01

    Growth hormone (GH) plays a dual role in glucose homeostasis. On the one hand, it exerts an insulin antagonistic effect on the peripheral tissue, on the other hand, it stimulates insulin biosynthesis and beta-cell proliferation. The expression of GH-receptors on the rat insulinoma cell line RIN-5...

  16. Dual Regulation of Gluconeogenesis by Insulin and Glucose in the Proximal Tubules of the Kidney.

    Science.gov (United States)

    Sasaki, Motohiro; Sasako, Takayoshi; Kubota, Naoto; Sakurai, Yoshitaka; Takamoto, Iseki; Kubota, Tetsuya; Inagi, Reiko; Seki, George; Goto, Moritaka; Ueki, Kohjiro; Nangaku, Masaomi; Jomori, Takahito; Kadowaki, Takashi

    2017-09-01

    Growing attention has been focused on the roles of the proximal tubules (PTs) of the kidney in glucose metabolism, including the mechanism of regulation of gluconeogenesis. In this study, we found that PT-specific insulin receptor substrate 1/2 double-knockout mice, established by using the newly generated sodium-glucose cotransporter 2 (SGLT2)-Cre transgenic mice, exhibited impaired insulin signaling and upregulated gluconeogenic gene expression and renal gluconeogenesis, resulting in systemic insulin resistance. In contrast, in streptozotocin-treated mice, although insulin action was impaired in the PTs, the gluconeogenic gene expression was unexpectedly downregulated in the renal cortex, which was restored by administration of an SGLT1/2 inhibitor. In the HK-2 cells, the gluconeogenic gene expression was suppressed by insulin, accompanied by phosphorylation and inactivation of forkhead box transcription factor 1 (FoxO1). In contrast, glucose deacetylated peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), a coactivator of FoxO1, via sirtuin 1, suppressing the gluconeogenic gene expression, which was reversed by inhibition of glucose reabsorption. These data suggest that both insulin signaling and glucose reabsorption suppress the gluconeogenic gene expression by inactivation of FoxO1 and PGC1α, respectively, providing insight into novel mechanisms underlying the regulation of gluconeogenesis in the PTs. © 2017 by the American Diabetes Association.

  17. [Insulin-sensitizing agents: metformin and thiazolidinedione derivatives].

    Science.gov (United States)

    Satoh, Jo

    2003-07-01

    Both metformin and thiazolidinedione derivatives(TZDs) improve insulin resistance, a major pathogenesis of type 2 diabetes, and decrease blood glucose levels without stimulating insulin secretion. Metformin inhibits glucose output from the liver, while TZDs increase glucose utilization in the peripheral tissues. In addition, there has been indicated that these agents ameliorate metabolic syndrome beyond glucose-level lowering. Molecular targets of these agents have recently been revealed; AMP-activated protein kinase (AMPK) for metformin and adiponectin, while PPAR gamma for TZDs which induce gene expression of adipocyte glycerol kinase and adiponectin. Insulin-sensitizing agents are clinically useful for obese diabetic patients with insulin resistance. However, periodical examinations are necessary to avoid serious adverse effects such as lactic acidosis, although rare, by metformin and liver injury by TZDs.

  18. Successful transition to sulphonylurea therapy from insulin in a child with permanent neonatal diabetes due to a KCNJ11 gene mutation

    Directory of Open Access Journals (Sweden)

    Venkatesan Radha

    2018-01-01

    Full Text Available Neonatal diabetes mellitus (NDM is a monogenic form of diabetes mellitus that occurs in the first 6 months of life. It is a rare condition with a prevalence of 1 in 100,000–500,000 live births. We report a 3-month-old girl child with high blood glucose levels. She was diagnosed with diabetes mellitus during the 28th day of life and was on treatment with insulin. She was admitted for the control of high blood glucose levels during which she was started on multiple daily insulin treatment, but the control had been poor. As the age of onset is <6 months of life, genetic analysis has been done. It revealed the presence of a heterozygous mutation p. Gly334Val (p. G334V in KCNJ11 gene which confirmed the diagnosis of NDM. The child was successfully shifted from insulin to sulfonylureas, and the blood glucose levels are well maintained.

  19. The Ia-2β intronic miRNA, miR-153, is a negative regulator of insulin and dopamine secretion through its effect on the Cacna1c gene in mice.

    Science.gov (United States)

    Xu, Huanyu; Abuhatzira, Liron; Carmona, Gilberto N; Vadrevu, Suryakiran; Satin, Leslie S; Notkins, Abner L

    2015-10-01

    miR-153 is an intronic miRNA embedded in the genes that encode IA-2 (also known as PTPRN) and IA-2β (also known as PTPRN2). Islet antigen (IA)-2 and IA-2β are major autoantigens in type 1 diabetes and are important transmembrane proteins in dense core and synaptic vesicles. miR-153 and its host genes are co-regulated in pancreas and brain. The present experiments were initiated to decipher the regulatory network between miR-153 and its host gene Ia-2β (also known as Ptprn2). Insulin secretion was determined by ELISA. Identification of miRNA targets was assessed using luciferase assays and by quantitative real-time PCR and western blots in vitro and in vivo. Target protector was also employed to evaluate miRNA target function. Functional studies revealed that miR-153 mimic suppresses both glucose- and potassium-induced insulin secretion (GSIS and PSIS, respectively), whereas miR-153 inhibitor enhances both GSIS and PSIS. A similar effect on dopamine secretion also was observed. Using miRNA target prediction software, we found that miR-153 is predicted to target the 3'UTR region of the calcium channel gene, Cacna1c. Further studies confirmed that Cacna1c mRNA and protein are downregulated by miR-153 mimics and upregulated by miR-153 inhibitors in insulin-secreting freshly isolated mouse islets, in the insulin-secreting mouse cell line MIN6 and in the dopamine-secreting cell line PC12. miR-153 is a negative regulator of both insulin and dopamine secretion through its effect on Cacna1c expression, which suggests that IA-2β and miR-153 have opposite functional effects on the secretory pathway.

  20. Higher protein kinase C ζ in fatty rat liver and its effect on insulin actions in primary hepatocytes.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    Full Text Available We previously showed the impairment of insulin-regulated gene expression in the primary hepatocytes from Zucker fatty (ZF rats, and its association with alterations of hepatic glucose and lipid metabolism. However, the molecular mechanism is unknown. A preliminary experiment shows that the expression level of protein kinase C ζ (PKCζ, a member of atypical PKC family, is higher in the liver and hepatocytes of ZF rats than that of Zucker lean (ZL rats. Herein, we intend to investigate the roles of atypical protein kinase C in the regulation of hepatic gene expression. The insulin-regulated hepatic gene expression was evaluated in ZL primary hepatocytes treated with atypical PKC recombinant adenoviruses. Recombinant adenovirus-mediated overexpression of PKCζ, or the other atypical PKC member PKCι/λ, alters the basal and impairs the insulin-regulated expressions of glucokinase, sterol regulatory element-binding protein 1c, the cytosolic form of phosphoenolpyruvate carboxykinase, the catalytic subunit of glucose 6-phosphatase, and insulin like growth factor-binding protein 1 in ZL primary hepatocytes. PKCζ or PKCι/λ overexpression also reduces the protein level of insulin receptor substrate 1, and the insulin-induced phosphorylation of AKT at Ser473 and Thr308. Additionally, PKCι/λ overexpression impairs the insulin-induced Prckz expression, indicating the crosstalk between PKCζ and PKCι/λ. We conclude that the PKCζ expression is elevated in hepatocytes of insulin resistant ZF rats. Overexpressions of aPKCs in primary hepatocytes impair insulin signal transduction, and in turn, the down-stream insulin-regulated gene expression. These data suggest that elevation of aPKC expression may contribute to the hepatic insulin resistance at gene expression level.

  1. Pharmacogenetics of Risperidone-Induced Insulin Resistance in Children and Adolescents with Autism Spectrum Disorder.

    Science.gov (United States)

    Sukasem, Chonlaphat; Vanwong, Natchaya; Srisawasdi, Pornpen; Ngamsamut, Nattawat; Nuntamool, Nopphadol; Hongkaew, Yaowaluck; Puangpetch, Apichaya; Chamkrachangpada, Bhunnada; Limsila, Penkhae

    2018-07-01

    The purpose of this study was to explore the association of genetic polymorphism of genes related to pharmacokinetics or pharmacodynamics with insulin resistance in children and adolescents with autism spectrum disorder (ASD) and treated with risperidone. All 89 subjects underwent measurement of fasting blood glucose and insulin levels, body-weight and height. Genotyping was performed by TaqMan real-time polymerase chain reaction (PCR) (pharmacokinetics genes: cytochrome P450 2D6 (CYP2D6) *4 (rs3892097), *5 (gene deletion), *10 (rs1065852) and *41 (rs28371725), ATP-binding cassette transporter B1 (ABCB1) 2677 G>T/A (rs2032582) and 3435C>T (rs1045642) and pharmacodynamics genes: dopamine receptor D2 (DRD2) Tag-SNP (C>T) (rs4436578), DRD2 Tag1A (C>T) (rs1800497), leptin gene (LEP) -2548G>A (rs7799039), ghrelin gene (GHRL) -604G>A (rs27647) and brain-derived neurotrophic factor (BDNF) 196G>A (rs6265)). Drug levels were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results revealed that 5 (5.62%) patients presented with hyperglycaemia. Insulin resistance was detected in 15 (16.85%) patients. Insulin resistance was associated with LEP 2548 G>A and BDNF 196 G>A polymorphism (p = 0.051 and p = 0.03). There was no association of pharmacokinetic gene polymorphisms (CYP2D6 and ABCB1) and risperidone levels with insulin resistance. Multiple regression analysis indicated that BDNF 196 G>A polymorphism was significantly associated with insulin resistance (p = 0.025). This finding suggested that BDNF 196 G>A polymorphism may be a genetic marker for predicting insulin resistance before initiating treatment in patients treated with risperidone. Because of the small sample size, further studies are needed to confirm these results. © 2018 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  2. Serotonin transporter (SERT gene polymorphism in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Mahmut Özkaya

    2004-06-01

    Full Text Available Background: Parkinson disease (PD is the second most common neurodegenerative disorder with a prevalence of about 2% in persons older than 65 years of age. Neurodegenerative process in PD is not restricted to the dopaminergic neurons of the substantia nigra but also affects serotoninergic neurons. It has been shown that PD brains with Lewy bodies in the substantia nigra also had Lewy bodies in the raphe nuclei. The re-uptake of 5HT released into the synaptic cleft is mediated by the 5HT transporter (SERT. The SERT gene has been mapped to the chromosome of 17q11.1-q12 and has two main polymorphisms: intron two VNTR polymorphism and promoter region 44 bp insertion/deletion polymorphism. Objective: In this study we investigated whether two polymorphic regions in the serotonin transporter gene are associated with PD. Material and Method: After obtaining informed consent, blood samples were collected from 76 patients and 54 healthy volunteers. Genomic DNA was extracted from peripheral leucocytes using standard methods. The SERT gene genotypes were determined using polymerase chain reaction (PCR method. Results: Based on the intron 2 VNTR polymorphism of SERT gene, the distribution of 12/12, 12/10 and 10/10 genotypes were found as, 56.6 %, 35.5 %, 7.9 % in patients whereas this genotype distribution in control group was 40.7 %, 46.3 % and 13 %, respectively. According to 5-HTTLPR polymorphism, the distribution of L/L, L/S and S/S genotypes were found as 27.6 % 51.3 % and 21.1 % in patients whereas this genotype distribution in control group was 33.4 %, 50.0 % and 16.6 %, respectively. Despite the fact that the genotype distribution of SERT gene polymorphism in patients and control group seemed to be different from each other, this difference was not found to be statistically significant. Conclusion: This finding suggests that polymorphisms within the SERT gene do not play a major role in PD susceptibility in the Turkish population.

  3. Interaction Between the Central and Peripheral Effects of Insulin in Controlling Hepatic Glucose Metabolism in the Conscious Dog

    Science.gov (United States)

    Ramnanan, Christopher J.; Kraft, Guillaume; Smith, Marta S.; Farmer, Ben; Neal, Doss; Williams, Phillip E.; Lautz, Margaret; Farmer, Tiffany; Donahue, E. Patrick; Cherrington, Alan D.; Edgerton, Dale S.

    2013-01-01

    The importance of hypothalamic insulin action to the regulation of hepatic glucose metabolism in the presence of a normal liver/brain insulin ratio (3:1) is unknown. Thus, we assessed the role of central insulin action in the response of the liver to normal physiologic hyperinsulinemia over 4 h. Using a pancreatic clamp, hepatic portal vein insulin delivery was increased three- or eightfold in the conscious dog. Insulin action was studied in the presence or absence of intracerebroventricularly mediated blockade of hypothalamic insulin action. Euglycemia was maintained, and glucagon was clamped at basal. Both the molecular and metabolic aspects of insulin action were assessed. Blockade of hypothalamic insulin signaling did not alter the insulin-mediated suppression of hepatic gluconeogenic gene transcription but blunted the induction of glucokinase gene transcription and completely blocked the inhibition of glycogen synthase kinase-3β gene transcription. Thus, central and peripheral insulin action combined to control some, but not other, hepatic enzyme programs. Nevertheless, inhibition of hypothalamic insulin action did not alter the effects of the hormone on hepatic glucose flux (production or uptake). These data indicate that brain insulin action is not a determinant of the rapid (<4 h) inhibition of hepatic glucose metabolism caused by normal physiologic hyperinsulinemia in this large animal model. PMID:23011594

  4. Rosiglitazone stimulates the release and synthesis of insulin by enhancing GLUT-2, glucokinase and BETA2/NeuroD expression

    International Nuclear Information System (INIS)

    Kim, Hyo-Sup; Noh, Jung-Hyun; Hong, Seung-Hyun; Hwang, You-Cheol; Yang, Tae-Young; Lee, Myung-Shik; Kim, Kwang-Won; Lee, Moon-Kyu

    2008-01-01

    Peroxisome proliferator-activated receptor (PPAR)-γ is a member of the nuclear receptor superfamily, and its ligands, the thiazolidinediones, might directly stimulate insulin release and insulin synthesis in pancreatic β-cells. In the present study, we examined the effects of rosiglitazone (RGZ) on insulin release and synthesis in pancreatic β-cell (INS-1). Insulin release and synthesis were stimulated by treatment with RGZ for 24 h. RGZ upregulated the expressions of GLUT-2 and glucokinase (GCK). Moreover, it was found that RGZ increased the expression of BETA2/NeuroD gene which could regulate insulin gene expression. These results suggest that RGZ could stimulate the release and synthesis of insulin through the upregulation of GLUT-2, GCK, and BETA2/NeuroD gene expression

  5. Global transcriptome profiling identifies KLF15 and SLC25A10 as modifiers of adipocytes insulin sensitivity in obese women.

    Directory of Open Access Journals (Sweden)

    Agné Kulyté

    Full Text Available Although the mechanisms linking obesity to insulin resistance (IR and type 2 diabetes (T2D are not entirely understood, it is likely that alterations of adipose tissue function are involved. The aim of this study was to identify new genes controlling insulin sensitivity in adipocytes from obese women with either insulin resistant (OIR or sensitive (OIS adipocytes. Insulin sensitivity was first determined by measuring lipogenesis in isolated adipocytes from abdominal subcutaneous white adipose tissue (WAT in a large observational study. Lipogenesis was measured under conditions where glucose transport was the rate limiting step and reflects in vivo insulin sensitivity. We then performed microarray-based transcriptome profiling on subcutaneous WAT specimen from a subgroup of 9 lean, 21 OIS and 18 obese OIR women. We could identify 432 genes that were differentially expressed between the OIR and OIS group (FDR ≤5%. These genes are enriched in pathways related to glucose and amino acid metabolism, cellular respiration, and insulin signaling, and include genes such as SLC2A4, AKT2, as well as genes coding for enzymes in the mitochondria respiratory chain. Two IR-associated genes, KLF15 encoding a transcription factor and SLC25A10 encoding a dicarboxylate carrier, were selected for functional evaluation in adipocytes differentiated in vitro. Knockdown of KLF15 and SLC25A10 using siRNA inhibited insulin-stimulated lipogenesis in adipocytes. Transcriptome profiling of siRNA-treated cells suggested that KLF15 might control insulin sensitivity by influencing expression of PPARG, PXMP2, AQP7, LPL and genes in the mitochondrial respiratory chain. Knockdown of SLC25A10 had only modest impact on the transcriptome, suggesting that it might directly influence insulin sensitivity in adipocytes independently of transcription due to its important role in fatty acid synthesis. In summary, this study identifies novel genes associated with insulin sensitivity in

  6. The Lack of Correlation between the Increased Frequency of Allele IL-1RN*2 of Interleukin-1 Receptor Antagonist Gene in Czech Patients with Knee Osteoarthritis and the Markers of Cartilage Degradation

    Czech Academy of Sciences Publication Activity Database

    Růžičková, Šárka; Šenolt, L.; Gatterová, J.; Vencovský, J.; Pavelka, K.

    2008-01-01

    Roč. 54, č. 4 (2008), s. 115-120 ISSN 0015-5500 Institutional research plan: CEZ:AV0Z50520701 Keywords : knee osteoarthritis * IL-1RN gene * VNTR polymorphism Subject RIV: EC - Immunology Impact factor: 1.140, year: 2008

  7. IL1 receptor antagonist gene IL1-RN variable number of tandem repeats polymorphism and cancer risk: a literature review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    Full Text Available IL1 receptor antagonist (IL1RA and IL1beta (IL1β, members of the pro-inflammatory cytokine interleukin-1 (IL1 family, play a potential role against infection and in the pathogenesis of cancers. The variable number of tandem repeats (VNTR polymorphism in the second intron of the IL1 receptor antagonist gene (IL1-RN and a polymorphism in exon 5 of IL1B (IL1B+3954C>T, rs1143634 have been suggested in predisposition to cancer risk. However, studies have shown inconsistent results. To validate any association, a meta-analysis was performed with 14,854 cases and 19,337 controls from 71 published case-control studies for IL1-RN VNTR and 33 eligible studies contained 7,847 cases and 8917 controls for IL1B +3954. Odds ratios (ORs with 95% confidence intervals (CIs were calculated from comparisons to assess the strength of the association. There was significant association between the IL1-RN VNTR polymorphism and the risk of cancer for any overall comparison. Furthermore, cancer type stratification analysis revealed that there were significantly increased risks of gastric cancer, bladder cancer and other cancer groups. Infection status analysis indicated that the H. pylori or HBV/HCV infection and IL1-RN VNTR genotypes were independent factors for developing gastric or hepatocellular cancers. In addition, a borderline significant association was observed between IL1B+3954 polymorphism and the increased cancer risk. Although some modest bias could not be eliminated, this meta-analysis suggested that the IL1-RN VNTR polymorphisms may contribute to genetic susceptibility to gastric cancer. More studies are needed to further evaluate the role of the IL1B+3954 polymorphism in the etiology of cancer.

  8. Dnmt3a is an epigenetic mediator of adipose insulin resistance

    DEFF Research Database (Denmark)

    You, Dongjoo; Nilsson, Emma; Tenen, Danielle E.

    2017-01-01

    Insulin resistance results from an intricate interaction between genetic make-up and environment, and thus may be orchestrated by epigenetic mechanisms like DNA methylation. Here, we demonstrate that DNA methyltransferase 3a (Dnmt3a) is both necessary and sufficient to mediate insulin resistance...... in cultured mouse and human adipocytes. Furthermore, adipose-specific Dnmt3a knock-out mice are protected from diet-induced insulin resistance and glucose intolerance without accompanying changes in adiposity. Unbiased gene profiling studies revealed Fgf21 as a key negatively regulated Dnmt3a target gene...... in adipocytes with concordant changes in DNA methylation at the Fgf21 promoter region. Consistent with this, Fgf21 can rescue Dnmt3a-mediated insulin resistance, and DNA methylation at the FGF21 locus was elevated in human subjects with diabetes and correlated negatively with expression of FGF21 in human...

  9. Expression profiling analysis: Uncoupling protein 2 deficiency improves hepatic glucose, lipid profiles and insulin sensitivity in high-fat diet-fed mice by modulating expression of genes in peroxisome proliferator-activated receptor signaling pathway.

    Science.gov (United States)

    Zhou, Mei-Cen; Yu, Ping; Sun, Qi; Li, Yu-Xiu

    2016-03-01

    Uncoupling protein 2 (UCP2), which was an important mitochondrial inner membrane protein associated with glucose and lipid metabolism, widely expresses in all kinds of tissues including hepatocytes. The present study aimed to explore the impact of UCP2 deficiency on glucose and lipid metabolism, insulin sensitivity and its effect on the liver-associated signaling pathway by expression profiling analysis. Four-week-old male UCP2-/- mice and UCP2+/+ mice were randomly assigned to four groups: UCP2-/- on a high-fat diet, UCP2-/- on a normal chow diet, UCP2+/+ on a high-fat diet and UCP2+/+ on a normal chow diet. The differentially expressed genes in the four groups on the 16th week were identified by Affymetrix gene array. The results of intraperitoneal glucose tolerance test and insulin tolerance showed that blood glucose and β-cell function were improved in the UCP2-/- group on high-fat diet. Enhanced insulin sensitivity was observed in the UCP2-/- group. The differentially expressed genes were mapped to 23 pathways (P high-fat diet. The upregulation of genes in the PPAR signaling pathway could explain our finding that UCP2 deficiency ameliorated insulin sensitivity. The manipulation of UCP2 protein expression could represent a new strategy for the prevention and treatment of diabetes.

  10. Expression of insulin receptor spliced variants and their functional correlates in muscle from patients with non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Hansen, Torben; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Due to alternative splicing of exon 11 of the receptor gene, the human insulin receptor exists in two forms, that have distinct tissue-specific expression and are functionally different. Needle biopsies obtained from vastus lateralis muscle from 20 patients with noninsulin-dependent diabetes...... kinase activity were examined in wheat germ agglutinin-purified insulin receptors isolated from muscle biopsies. Moreover, insulin-stimulated glucose disposal was studied by means of the euglycemic hyperinsulinemic clamp technique. No difference in the relative expression of spliced variants......, and tyrosine kinase activity toward the exogenous substrate poly(Glu-Tyr(4:1)). Furthermore, no significant relationship was demonstrated between the glucose disposal rate and the relative expression of insulin receptor splice variants. In conclusion, in skeletal muscle from both normal control subjects...

  11. Cytokine Gene Polymorphisms in Egyptian Cases with Brain Tumors

    International Nuclear Information System (INIS)

    Badr El-Din, N.K.; Abdel-Hady, E.K.; Salem, F.K.; Settin, A.; ALI, N.

    2009-01-01

    Background: Cytokines are proposed to play important roles in brain tumor biology as well as neuro degeneration or impaired neuronal function. Objectives: This work aimed to check the association of polymorphisms of cytokine genes in Egyptian cases with brain tumors. Methods: This work included 45 cases affected by brain tumors diagnosed as 24 benign and 21 malignant. Their median age was 45 years, and they were 20 males and 25 females. These cases were taken randomly from the Neurosurgery Department of Mansoura University Hospital, Egypt. Case genotypes were compared to 98 healthy unrelated controls from the same locality. DNA was amplified using PCR utilizing sequence specific primers (SSP) for detection of polymorphisms related to TNF-a-308 (G/A), IL-10-1082 (G/A), IL-6-174 (G/C) and IL-1Ra (VNTR) genes. Results: Cases affected with benign brain tumors showed a significant higher frequency of IL-10-1082 A/A [odds ratio (OR=8.0), p<0.001] and IL-6-174 C/C (OR=6.3, p=0.002) homozygous genotypes as compared to controls. Malignant cases, on the other hand, showed significantly higher frequency of IL-6-174 C/C (OR =4.8, p=0.002) homozygous genotype and TNF-a-308 A/A (OR=4.9, p<0.001) homozygous genotype when compared to controls. In the meantime, all cases showed no significant difference regarding the distribution of IL-1Ra VNTR genotype polymorphism compared to controls. Conclusions: Cytokine gene polymorphisms showed a pattern of association with brain tumors which may have potential impact on family counseling and disease management.

  12. Persistent Organic Pollutant Exposure Leads to Insulin Resistance Syndrome

    DEFF Research Database (Denmark)

    Ruzzin, Jérôme; Petersen, Rasmus; Meugnier, Emmanuelle

    2010-01-01

    BACKGROUND: The incidence of the insulin resistance syndrome has increased at an alarming rate worldwide creating a serious challenge to public health care in the 21st century. Recently, epidemiological studies have associated the prevalence of type 2 diabetes with elevated body burdens...... of persistent organic pollutants (POPs). However, experimental evidence demonstrating a causal link between POPs and the development of insulin resistance is lacking. OBJECTIVE: We investigated whether exposure to POPs contributes to insulin resistance and metabolic disorders. METHODS: Wistar rats were exposed...... salmon oil. We measured body weight, whole-body insulin sensitivity, POP accumulation, lipid and glucose homeostasis, gene expression and performed microarray analysis. RESULTS: Adult male rats exposed to crude, but not refined, salmon oil developed insulin resistance, abdominal obesity...

  13. Interaction of insulin-like growth factor-I and insulin resistance-related genetic variants with lifestyle factors on postmenopausal breast cancer risk.

    Science.gov (United States)

    Jung, Su Yon; Ho, Gloria; Rohan, Thomas; Strickler, Howard; Bea, Jennifer; Papp, Jeanette; Sobel, Eric; Zhang, Zuo-Feng; Crandall, Carolyn

    2017-07-01

    Genetic variants and traits in metabolic signaling pathways may interact with obesity, physical activity, and exogenous estrogen (E), influencing postmenopausal breast cancer risk, but these inter-related pathways are incompletely understood. We used 75 single-nucleotide polymorphisms (SNPs) in genes related to insulin-like growth factor-I (IGF-I)/insulin resistance (IR) traits and signaling pathways, and data from 1003 postmenopausal women in Women's Health Initiative Observation ancillary studies. Stratifying via obesity and lifestyle modifiers, we assessed the role of IGF-I/IR traits (fasting IGF-I, IGF-binding protein 3, insulin, glucose, and homeostatic model assessment-insulin resistance) in breast cancer risk as a mediator or influencing factor. Seven SNPs in IGF-I and INS genes were associated with breast cancer risk. These associations differed between non-obese/active and obese/inactive women and between exogenous E non-users and users. The mediation effects of IGF-I/IR traits on the relationship between these SNPs and cancer differed between strata, but only roughly 35% of the cancer risk due to the SNPs was mediated by traits. Similarly, carriers of 20 SNPs in PIK3R1, AKT1/2, and MAPK1 genes (signaling pathways-genetic variants) had different associations with breast cancer between strata, and the proportion of the SNP-cancer relationship explained by traits varied 45-50% between the strata. Our findings suggest that IGF-I/IR genetic variants interact with obesity and lifestyle factors, altering cancer risk partially through pathways other than IGF-I/IR traits. Unraveling gene-phenotype-lifestyle interactions will provide data on potential genetic targets in clinical trials for cancer prevention and intervention strategies to reduce breast cancer risk.

  14. Cross talk between insulin and bone morphogenetic protein signaling systems in brown adipogenesis

    DEFF Research Database (Denmark)

    Zhang, Hongbin; Schulz, Tim J; Espinoza, Daniel O

    2010-01-01

    Both insulin and bone morphogenetic protein (BMP) signaling systems are important for adipocyte differentiation. Analysis of gene expression in BMP7-treated fibroblasts revealed a coordinated change in insulin signaling components by BMP7. To further investigate the cross talk between insulin...... BMP7's suppressive effect on pref-1 transcription. Together, these data suggest cross talk between the insulin and BMP signaling systems by which BMP7 can rescue brown adipogenesis in cells with insulin resistance....

  15. [Association between the MAOA-uVNTR polymorphism and antisocial personality traits in alcoholic men].

    Science.gov (United States)

    Laqua, C; Zill, P; Koller, G; Preuss, U; Soyka, M

    2015-03-01

    We have analysed the MAOA-uVNTR polymorphism in the promoter region of the X-chromosomal monoamine oxidase A (MAOA) gene. The first aim was to examine the association between the MAOA genotype and the alcoholic phenotype. In the second part of the paper we have analysed the association of the MAOA genotype with impulsive and aggressive behaviour. Genotypes with 3 or 5-repeat alleles (MAOA-L-genotype) were reported to be associated with impulsive and aggressive traits. The MAOA genotype was determined in 371 male alcohol-dependent subjects and 236 male controls all of German descent. Behavioural and personality traits were evaluated using the self-report questionnaires Barratt Impulsiveness Scale (BIS), Buss Durkee Hostility Inventory (BDHI), Temperament and Character Inventory (TCI) and NEO-Five Factor Inventory (NEO-FFI). A median split in BIS, Buss Durkee Physical Assault, Buss Durkee Irritability, TCI and NEO-FFI was conducted. No association could be detected between the MAOA genotype and the alcoholic phenotype. Based on the results of the BIS questionnaire, we were able to make out an association between the MAOA-L genotype and higher levels of impulsivity (p = 0.043). Furthermore - without reaching statistical significance - we detected a very slight association between the MAOA-L genotype and higher scores in the BDHI subcategory physical aggression (p = 0.058). Taken together, these findings suggest that the MAOA-L genotype is to some extent associated with impulsive and antisocial personality traits in alcoholic men. Further studies on that question are needed. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: A meta-analysis of 50,345 Caucasians

    NARCIS (Netherlands)

    A.M. Fretts (Amanda M.); J.L. Follis (Jack ); J.A. Nettleton (Jennifer ); R.N. Lemaitre (Rozenn ); J.S. Ngwa; M.K. Wojczynski (Mary ); I.-P. Kalafati (Ioanna-Panagiota); T.V. Varga (Tibor V.); A.C. Frazier-Wood (Alexis C.); D.K. Houston (Denise); J. Lahti (Jari); U. Ericson (Ulrika); E.H. van den Hooven (Edith); V. Mikkilä (Vera); J.C. Kiefte-de Jong (Jessica); D. Mozaffarian (Dariush); K.M. Rice (Kenneth); F. Renström (Frida); K.E. North (Kari); N.M. McKeown (Nicola ); M.F. Feitosa (Mary Furlan); S. Kanoni (Stavroula); C.E. Smith (Caren); M. Garcia (Melissa); A.-M. Tiainen (Anna-Maija); E. Sonestedt (Emily); A. Manichaikul (Ani); F.J.A. van Rooij (Frank); M. Dimitriou (Maria); O. Raitakari (Olli); J.S. Pankow (James); L. Djoussé (Luc); M.A. Province (Mike); F.B. Hu (Frank); C.-Q. Lai (Chao-Qiang); M.F. Keller (Margaux); M.-M. Perälä (Mia-Maria); J.I. Rotter (Jerome I.); A. Hofman (Albert); M.J. Graff (Maud J.L.); M. Kähönen (Mika); K. Mukamal (Kenneth); I. Johansson (Ingegerd); J.M. Ordovas (Jose); Y. Liu (YongMei); S. Männistö (Satu); A.G. Uitterlinden (André); P. Deloukas (Panagiotis); I. Seppälä (Ilkka); B.M. Psaty (Bruce); L.A. Cupples (Adrienne); I.B. Borecki (Ingrid); P.W. Franks (Paul W.); D.K. Arnett (Donna); M.A. Nalls (Michael); K. Hagen (Knut); M. Orho-Melander (Marju); O.H. Franco (Oscar); T. Lehtimäki (Terho); G.V. Dedoussis (George); J.B. Meigs (James); D.S. Siscovick (David)

    2015-01-01

    textabstractBackground: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. Objective: We investigated the

  17. Brain insulin signaling and Alzheimer's disease: current evidence and future directions.

    Science.gov (United States)

    Schiöth, Helgi B; Craft, Suzanne; Brooks, Samantha J; Frey, William H; Benedict, Christian

    2012-08-01

    Insulin receptors in the brain are found in high densities in the hippocampus, a region that is fundamentally involved in the acquisition, consolidation, and recollection of new information. Using the intranasal method, which effectively bypasses the blood-brain barrier to deliver and target insulin directly from the nose to the brain, a series of experiments involving healthy humans has shown that increased central nervous system (CNS) insulin action enhances learning and memory processes associated with the hippocampus. Since Alzheimer's disease (AD) is linked to CNS insulin resistance, decreased expression of insulin and insulin receptor genes and attenuated permeation of blood-borne insulin across the blood-brain barrier, impaired brain insulin signaling could partially account for the cognitive deficits associated with this disease. Considering that insulin mitigates hippocampal synapse vulnerability to amyloid beta and inhibits the phosphorylation of tau, pharmacological strategies bolstering brain insulin signaling, such as intranasal insulin, could have significant therapeutic potential to deter AD pathogenesis.

  18. The effect of curcumin on insulin release in rat-isolated pancreatic islets.

    Science.gov (United States)

    Abdel Aziz, Mohamed T; El-Asmar, Mohamed F; El Nadi, Essam G; Wassef, Mohamed A; Ahmed, Hanan H; Rashed, Laila A; Obaia, Eman M; Sabry, Dina; Hassouna, Amira A; Abdel Aziz, Ahmed T

    2010-08-01

    Curcumin exerts a hypoglycemic action and induces heme-oxygenase-1 (HO-1). We evaluated the effect of curcumin on isolated islets of Langerhans and studied whether its action on insulin secretion is mediated by inducible HO-1. Islets were isolated from rats and divided into control islets, islets incubated in different curcumin concentrations, islets incubated in hemin, islets incubated in curcumin and HO inhibitor, stannous mesoporphyrin (SnMP), islets incubated in hemin and SnMP, islets incubated in SnMP only, and islets incubated in 16.7 mmol/L glucose. Heme-oxygenase activity, HO-1 expression, and insulin estimation was assessed. Insulin secretion, HO-1 gene expression and HO activity were significantly increased in islets incubated in curcumin, hemin, and glucose compared with controls. This increase in insulin secretion was significantly decreased by incubation of islets in SnMP. The action of curcumin on insulin secretion from the isolated islets may be, in part, mediated through increased HO-1 gene expression.

  19. Period 3 gene polymorphism and sleep adaptation to stressful urban environments.

    Science.gov (United States)

    Anderson, Maxwell R; Akeeb, Ameenat; Lavela, Joseph; Chen, Yuanxiu; Mellman, Thomas A

    2017-02-01

    This study's objective was to investigate the relationship between a variable-number tandem-repeat (VNTR) Period 3 gene (PER3) polymorphism and sleep adaptation to stressful urban environments. Seventy-five (49 female) African American participants (ages 18-35 years) living in neighbourhoods with high rates of violent crime were selected for the study based on converging criteria for good or poor sleep. Categorization of sleep quality was based on the Insomnia Severity Index (ISI), estimates of typical sleep duration and sleep efficiency. Other assessments included the Fear of Sleep Index (FOSI) and City Stress Inventory (CSI). Whole blood DNA was analysed for the 4 and 5 VNTR alleles using polymerase chain reaction (PCR) and restrictive enzyme digestion. Fifty-seven per cent of those who were homo- or heterozygous for the 4-repeat allele were poor sleepers versus 25% of those homozygous for the 5-repeat allele; χ 2  = 4.17, P = 0.041. In a logistic regression model with all the variables with significant bivariate relationships to sleep quality group, FOSI was the only significant predictor (χ 2  = 5.68, P = 0.017). FOSI scores were higher among those with the 4-repeat allele (t = 2.66, P = 0.013). The PER3 4 and 5 VNTR polymorphisms appear to influence sensitivity to the effects of stressful urban environments on sleep. While FOSI was the only variable associated independently with sleep quality category, the candidate vulnerability allele was also associated with greater 'fear of sleep'. © 2016 European Sleep Research Society.

  20. Exposures to arsenite and methylarsonite produce insulin resistance and impair insulin-dependent glycogen metabolism in hepatocytes.

    Science.gov (United States)

    Zhang, Chongben; Fennel, Emily M J; Douillet, Christelle; Stýblo, Miroslav

    2017-12-01

    Environmental exposure to inorganic arsenic (iAs) has been shown to disturb glucose homeostasis, leading to diabetes. Previous laboratory studies have suggested several mechanisms that may underlie the diabetogenic effects of iAs exposure, including (i) inhibition of insulin signaling (leading to insulin resistance) in glucose metabolizing peripheral tissues, (ii) inhibition of insulin secretion by pancreatic β cells, and (iii) dysregulation of the methylation or expression of genes involved in maintenance of glucose or insulin metabolism and function. Published studies have also shown that acute or chronic iAs exposures may result in depletion of hepatic glycogen stores. However, effects of iAs on pathways and mechanisms that regulate glycogen metabolism in the liver have never been studied. The present study examined glycogen metabolism in primary murine hepatocytes exposed in vitro to arsenite (iAs 3+ ) or its methylated metabolite, methylarsonite (MAs 3+ ). The results show that 4-h exposures to iAs 3+ and MAs 3+ at concentrations as low as 0.5 and 0.2 µM, respectively, decreased glycogen content in insulin-stimulated hepatocytes by inhibiting insulin-dependent activation of glycogen synthase (GS) and by inducing activity of glycogen phosphorylase (GP). Further investigation revealed that both iAs 3+ and MAs 3+ inhibit insulin-dependent phosphorylation of protein kinase B/Akt, one of the mechanisms involved in the regulation of GS and GP by insulin. Thus, inhibition of insulin signaling (i.e., insulin resistance) is likely responsible for the dysregulation of glycogen metabolism in hepatocytes exposed to iAs 3+ and MAs 3+ . This study provides novel information about the mechanisms by which iAs exposure impairs glucose homeostasis, pointing to hepatic metabolism of glycogen as one of the targets.

  1. Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men

    DEFF Research Database (Denmark)

    Alibegovic, A C; Sonne, M P; Højbjerre, L

    2010-01-01

    Physical inactivity is a risk factor for insulin resistance. We examined the effect of 9 days of bed rest on basal and insulin-stimulated expression of genes potentially involved in insulin action by applying hypothesis-generating microarray in parallel with candidate gene real-time PCR approaches...... contribute to the development of insulin resistance induced by bed rest. Lack of complete normalization of changes after 4 wk of retraining underscores the importance of maintaining a minimum of daily physical activity....

  2. Association of a Monoamine Oxidase-A Gene Promoter Polymorphism with ADHD and Anxiety in Boys with Autism Spectrum Disorder

    Science.gov (United States)

    Roohi, Jasmin; DeVincent, Carla J.; Hatchwell, Eli; Gadow, Kenneth D.

    2009-01-01

    The aim of the present study was to examine the association between a variable number tandem repeat (VNTR) functional polymorphism in the promoter region of the MAO-A gene and severity of ADHD and anxiety in boys with ASD. Parents and teachers completed a DSM-IV-referenced rating scale for 5- to 14-year-old boys with ASD (n = 43). Planned…

  3. Human gut microbes impact host serum metabolome and insulin sensitivity

    DEFF Research Database (Denmark)

    Pedersen, Helle Krogh; Gudmundsdottir, Valborg; Nielsen, Henrik Bjørn

    2016-01-01

    Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individ......Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin......-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus...

  4. Insulin/IGF signaling-related gene expression in the brain of a sporadic Alzheimer's disease monkey model induced by intracerebroventricular injection of streptozotocin.

    Science.gov (United States)

    Lee, Youngjeon; Kim, Young-Hyun; Park, Sang-Je; Huh, Jae-Won; Kim, Sang-Hyun; Kim, Sun-Uk; Kim, Ji-Su; Jeong, Kang-Jin; Lee, Kyoung-Min; Hong, Yonggeun; Lee, Sang-Rae; Chang, Kyu-Tae

    2014-01-01

    We reported previously that the intracerebroventricular streptozotocin (icv-STZ)-treated cynomolgus monkey showed regionally specific glucose hypometabolism in FDG-PET imaging, similar to that observed in the early stages of sporadic Alzheimer's disease (sAD). However, further pathological analyses of this model at the molecular level are needed to validate it as a feasible model for sAD. Two cynomolgus monkeys were injected with 2 mg/kg STZ into the cerebellomedullary cistern at day 1, 7 and 14. Two control monkeys were given normal saline. At 5 months after injection, the expression levels of genes encoding 9 upstream molecules in insulin/insulin-like growth factor (IGF) signaling and markers for 4 cell-type populations in the frontal cortex, hippocampus, posterior cingulate, precuneus, and occipital cortex of control and icv-STZ treated cynomolgus monkeys were examined. Real-time quantitative PCR analyses demonstrated that the overall mRNA expression of insulin/IGF signaling-related genes was mainly impaired in the anterior part of the cerebrum, frontal cortex, and hippocampus, similar to the early stage of sAD. The changes were accompanied by the loss of oligodendrocytes and neurons. The posterior part of the cerebrum did not show degenerative alterations. The present study provides important fundamental information on the icv-STZ monkey model for sAD. These results may help guide future studies using this model for the investigation of pathological mechanisms and the development of drugs for sAD.

  5. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance.

    Science.gov (United States)

    Højlund, Kurt

    2014-07-01

    Type 2 diabetes, obesity and polycystic ovary syndrome (PCOS) are common metabolic disorders which are observed with increasing prevalences, and which are caused by a complex interplay between genetic and environmental factors, including increased calorie intake and physical inactivity. These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes and cardiovascular disease. In several studies, we have investigated insulin action on glucose and lipid metabolism, and at the molecular level, insulin signaling to glucose transport and glycogen synthesis in skeletal muscle from healthy individuals and in obesity, PCOS and type 2 diabetes. Moreover, we have described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance. Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin action on glucose uptake and glycogen synthesis is impaired. This suggests that the defects in glucose and lipid oxidation in the common metabolic disorders are secondary to other factors. In young women with PCOS, the degree of insulin resistance was similar to that seen in middle-aged patients with type 2 diabetes. This supports the hypothesis of an unique pathogenesis of insulin resistance in PCOS. Insulin in physiological concentrations stimulates glucose uptake in human skeletal

  6. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians

    Science.gov (United States)

    Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. We investigated the associations of meat intake and the intera...

  7. Differentiation of human-induced pluripotent stem cells into insulin-producing clusters.

    Science.gov (United States)

    Shaer, Anahita; Azarpira, Negar; Vahdati, Akbar; Karimi, Mohammad Hosein; Shariati, Mehrdad

    2015-02-01

    In diabetes mellitus type 1, beta cells are mostly destroyed; while in diabetes mellitus type 2, beta cells are reduced by 40% to 60%. We hope that soon, stem cells can be used in diabetes therapy via pancreatic beta cell replacement. Induced pluripotent stem cells are a kind of stem cell taken from an adult somatic cell by "stimulating" certain genes. These induced pluripotent stem cells may be a promising source of cell therapy. This study sought to produce isletlike clusters of insulin-producing cells taken from induced pluripotent stem cells. A human-induced pluripotent stem cell line was induced into isletlike clusters via a 4-step protocol, by adding insulin, transferrin, and selenium (ITS), N2, B27, fibroblast growth factor, and nicotinamide. During differentiation, expression of pancreatic β-cell genes was evaluated by reverse transcriptase-polymerase chain reaction; the morphologic changes of induced pluripotent stem cells toward isletlike clusters were observed by a light microscope. Dithizone staining was used to stain these isletlike clusters. Insulin produced by these clusters was evaluated by radio immunosorbent assay, and the secretion capacity was analyzed with a glucose challenge test. Differentiation was evaluated by analyzing the morphology, dithizone staining, real-time quantitative polymerase chain reaction, and immunocytochemistry. Gene expression of insulin, glucagon, PDX1, NGN3, PAX4, PAX6, NKX6.1, KIR6.2, and GLUT2 were documented by analyzing real-time quantitative polymerase chain reaction. Dithizone-stained cellular clusters were observed after 23 days. The isletlike clusters significantly produced insulin. The isletlike clusters could increase insulin secretion after a glucose challenge test. This work provides a model for studying the differentiation of human-induced pluripotent stem cells to insulin-producing cells.

  8. Concentrated insulins: the new basal insulins

    Directory of Open Access Journals (Sweden)

    Lamos EM

    2016-03-01

    Full Text Available Elizabeth M Lamos,1 Lisa M Younk,2 Stephen N Davis3 1Division of Endocrinology, Diabetes and Nutrition, 2Department of Medicine, University of Maryland School of Medicine, 3Department of Medicine, University of Maryland Medical Center, Baltimore, MD, USA Introduction: Insulin therapy plays a critical role in the treatment of type 1 and type 2 diabetes mellitus. However, there is still a need to find basal insulins with 24-hour coverage and reduced risk of hypoglycemia. Additionally, with increasing obesity and insulin resistance, the ability to provide clinically necessary high doses of insulin at low volume is also needed. Areas covered: This review highlights the published reports of the pharmacokinetic (PK and glucodynamic properties of concentrated insulins: Humulin-R U500, insulin degludec U200, and insulin glargine U300, describes the clinical efficacy, risk of hypoglycemic, and metabolic changes observed, and finally, discusses observations about the complexity of introducing a new generation of concentrated insulins to the therapeutic market. Conclusion: Humulin-R U500 has a similar onset but longer duration of action compared with U100 regular insulin. Insulin glargine U300 has differential PK/pharmacodynamic effects when compared with insulin glargine U100. In noninferiority studies, glycemic control with degludec U200 and glargine U300 is similar to insulin glargine U100 and nocturnal hypoglycemia is reduced. Concentrated formulations appear to behave as separate molecular entities when compared with earlier U100 insulin analog compounds. In the review of available published data, newer concentrated basal insulins may offer an advantage in terms of reduced intraindividual variability as well as reducing the injection burden in individuals requiring high-dose and large volume insulin therapy. Understanding the PK and pharmacodynamic properties of this new generation of insulins is critical to safe dosing, dispensing, and administration

  9. Disruption of KEX1 gene reduces the proteolytic degradation of secreted two-chain Insulin glargine in Pichia pastoris.

    Science.gov (United States)

    Sreenivas, Suma; Krishnaiah, Sateesh M; Shyam Mohan, Anil H; Mallikarjun, Niveditha; Govindappa, Nagaraja; Chatterjee, Amarnath; Sastry, Kedarnath N

    2016-02-01

    Insulin glargine is a slow acting analog of insulin used in diabetes therapy. It is produced by recombinant DNA technology in different hosts namely E. coli and Pichia pastoris. In our previous study, we have described the secretion of fully folded two-chain Insulin glargine into the medium by over-expression of Kex2 protease. The enhanced levels of the Kex2 protease was responsible for the processing of the glargine precursor with in the host. Apart from the two-chain glargine product we observed a small proportion of arginine clipped species. This might be due to the clipping of arginine present at the C-terminus of the B-chain as it is exposed upon Kex2 cleavage. The carboxypeptidase precursor Kex1 is known to be responsible for clipping of C-terminal lysine or arginine of the proteins or peptides. In order to address this issue we created a Kex1 knock out in the host using Cre/loxP mechanism of targeted gene deletion. When two-chain glargine was expressed in the Kex1 knock out host of P. pastoris GS115 the C-terminal clipped species reduced by ∼80%. This modification further improved the process by reducing the levels of product related impurities. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. [Insulin resistance--a physiopathological condition with numerous sequelae: non-insulin-dependent diabetes mellitus (NIDDM), android obesity, essential hypertension, dyslipidemia and atherosclerosis].

    Science.gov (United States)

    Pedersen, O

    1992-05-11

    Recent research has demonstrated that reduced insulin-stimulated glucose metabolism in skeletal muscle (insulin resistance) and hyperinsulinism are common features in widespread diseases such as essential hypertension, android obesity, non-insulin dependent diabetes mellitus, dyslipidemia (in the form of raised serum triglyceride and reduced serum high-density lipoprotein (HDL) cholesterol) and arteriosclerosis. Simultaneously, investigations in a comprehensive group of healthy middle-aged men have revealed insulin resistance in one fourth. On the basis of these observations, a working hypothesis is suggested which postulates that genetic abnormalities in one or more of the candidate genes in the modes of action of insulin occur in a great proportion of the population. These may result in insulin resistance (primary genetic insulin resistance). Primary insulin resistance may be potentiated by a series of circumstances such as ageing, high-fat diet, lack of physical activity, hormonal and metabolic abnormalities or drugs (secondary insulin resistance). As a consequence of the reduced effect of insulin on muscle tissue, compensatory hyperinsulinism develops. Depending on the remaining vulnerability of the individual the hyperinsulinism is presumed to result in development of one or more phenotypes. For example if the beta-cells of the pancreas are unable to secrete sufficient insulin to compensate the insulin resistance on account of genetic defects, glucose intolerance will develop. In a similar manner, hyperinsulinism in insulin-resistant individuals who are predisposed to essential hypertension is presumed to reveal genetic defects in the blood pressure regulating mechanisms and thus contribute to development of the disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Postprandial regulation of hepatic microRNAs predicted to target the insulin pathway in rainbow trout.

    Directory of Open Access Journals (Sweden)

    Jan A Mennigen

    Full Text Available Rainbow trout are carnivorous fish and poor metabolizers of carbohydrates, which established this species as a model organism to study the comparative physiology of insulin. Following the recent characterisation of key roles of several miRNAs in the insulin action on hepatic intermediary metabolism in mammalian models, we investigated the hypothesis that hepatic miRNA expression is postprandially regulated in the rainbow trout and temporally coordinated in the context of insulin-mediated regulation of metabolic gene expression in the liver. To address this hypothesis, we used a time-course experiment in which rainbow trout were fed a commercial diet after short-term fasting. We investigated hepatic miRNA expression, activation of the insulin pathway, and insulin regulated metabolic target genes at several time points. Several miRNAs which negatively regulate hepatic insulin signaling in mammalian model organisms were transiently increased 4 h after the meal, consistent with a potential role in acute postprandial negative feed-back regulation of the insulin pathway and attenuation of gluconeogenic gene expression. We equally observed a transient increase in omy- miRNA-33 and omy-miRNA-122b 4 h after feeding, whose homologues have potent lipogenic roles in the liver of mammalian model systems. A concurrent increase in the activity of the hepatic insulin signaling pathway and the expression of lipogenic genes (srebp1c, fas, acly was equally observed, while lipolytic gene expression (cpt1a and cpt1b decreased significantly 4 h after the meal. This suggests lipogenic roles of omy-miRNA-33 and omy-miRNA-122b may be conserved between rainbow trout and mammals and that these miRNAs may furthermore contribute to acute postprandial regulation of de novo hepatic lipid synthesis in rainbow trout. These findings provide a framework for future research of miRNA regulation of hepatic metabolism in trout and will help to further elucidate the metabolic

  12. No Association of BDNF, COMT, MAOA, SLC6A3, and SLC6A4 Genes and Depressive Symptoms in a Sample of Healthy Colombian Subjects.

    Science.gov (United States)

    González-Giraldo, Yeimy; Camargo, Andrés; López-León, Sandra; Forero, Diego A

    2015-01-01

    Background. Major depressive disorder (MDD) is the second cause of years lived with disability around the world. A large number of studies have been carried out to identify genetic risk factors for MDD and related endophenotypes, mainly in populations of European and Asian descent, with conflicting results. The main aim of the current study was to analyze the possible association of five candidate genes and depressive symptoms in a Colombian sample of healthy subjects. Methods and Materials. The Spanish adaptation of the Hospital Anxiety and Depression Scale (HADS) was applied to one hundred eighty-eight healthy Colombian subjects. Five functional polymorphisms were genotyped using PCR-based assays: BDNF-Val66Met (rs6265), COMT-Val158Met (rs4680), SLC6A4-HTTLPR (rs4795541), MAOA-uVNTR, and SLC6A3-VNTR (rs28363170). Result. We did not find significant associations with scores of depressive symptoms, derived from the HADS, for any of the five candidate genes (nominal p values >0.05). In addition, we did not find evidence of significant gene-gene interactions. Conclusion. This work is one of the first studies of candidate genes for depressive symptoms in a Latin American sample. Study of additional genetic and epigenetic variants, taking into account other pathophysiological theories, will help to identify novel candidates for MDD in populations around the world.

  13. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    International Nuclear Information System (INIS)

    Permana, Paska A.; Menge, Christopher; Reaven, Peter D.

    2006-01-01

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-κB) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-κB inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity

  14. Correction of Diabetic Hyperglycemia and Amelioration of Metabolic Anomalies by Minicircle DNA Mediated Glucose-Dependent Hepatic Insulin Production.

    Directory of Open Access Journals (Sweden)

    Tausif Alam

    Full Text Available Type 1 diabetes mellitus (T1DM is caused by immune destruction of insulin-producing pancreatic β-cells. Commonly used insulin injection therapy does not provide a dynamic blood glucose control to prevent long-term systemic T1DM-associated damages. Donor shortage and the limited long-term success of islet transplants have stimulated the development of novel therapies for T1DM. Gene therapy-based glucose-regulated hepatic insulin production is a promising strategy to treat T1DM. We have developed gene constructs which cause glucose-concentration-dependent human insulin production in liver cells. A novel set of human insulin expression constructs containing a combination of elements to improve gene transcription, mRNA processing, and translation efficiency were generated as minicircle DNA preparations that lack bacterial and viral DNA. Hepatocytes transduced with the new constructs, ex vivo, produced large amounts of glucose-inducible human insulin. In vivo, insulin minicircle DNA (TA1m treated streptozotocin (STZ-diabetic rats demonstrated euglycemia when fasted or fed, ad libitum. Weight loss due to uncontrolled hyperglycemia was reversed in insulin gene treated diabetic rats to normal rate of weight gain, lasting ∼1 month. Intraperitoneal glucose tolerance test (IPGT demonstrated in vivo glucose-responsive changes in insulin levels to correct hyperglycemia within 45 minutes. A single TA1m treatment raised serum albumin levels in diabetic rats to normal and significantly reduced hypertriglyceridemia and hypercholesterolemia. Elevated serum levels of aspartate transaminase, alanine aminotransferase, and alkaline phosphatase were restored to normal or greatly reduced in treated rats, indicating normalization of liver function. Non-viral insulin minicircle DNA-based TA1m mediated glucose-dependent insulin production in liver may represent a safe and promising approach to treat T1DM.

  15. Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects.

    Science.gov (United States)

    Reyna, Sara M; Ghosh, Sangeeta; Tantiwong, Puntip; Meka, C S Reddy; Eagan, Phyllis; Jenkinson, Christopher P; Cersosimo, Eugenio; Defronzo, Ralph A; Coletta, Dawn K; Sriwijitkamol, Apiradee; Musi, Nicolas

    2008-10-01

    OBJECTIVE- Tall-like receptor (TLR)4 has been implicated in the pathogenesis of free fatty acid (FFA)-induced insulin resistance by activating inflammatory pathways, including inhibitor of kappaB (IkappaB)/nuclear factor kappaB (NFkappaB). However, it is not known whether insulin-resistant subjects have abnormal TLR4 signaling. We examined whether insulin-resistant subjects have abnormal TLR4 expression and TLR4-driven (IkappaB/NFkappaB) signaling in skeletal muscle. RESEARCH DESIGN AND METHODS- TLR4 gene expression and protein content were measured in muscle biopsies in 7 lean, 8 obese, and 14 type 2 diabetic subjects. A primary human myotube culture system was used to examine whether FFAs stimulate IkappaB/NFkappaB via TLR4 and whether FFAs increase TLR4 expression/content in muscle. RESULTS- Obese and type 2 diabetic subjects had significantly elevated TLR4 gene expression and protein content in muscle. TLR4 muscle protein content correlated with the severity of insulin resistance. Obese and type 2 diabetic subjects also had lower IkappaBalpha content, an indication of elevated IkappaB/NFkappaB signaling. The increase in TLR4 and NFkappaB signaling was accompanied by elevated expression of the NFkappaB-regulated genes interleukin (IL)-6 and superoxide dismutase (SOD)2. In primary human myotubes, acute palmitate treatment stimulated IkappaB/NFkappaB, and blockade of TLR4 prevented the ability of palmitate to stimulate the IkappaB/NFkappaB pathway. Increased TLR4 content and gene expression observed in muscle from insulin-resistant subjects were reproduced by treating myotubes from lean, normal-glucose-tolerant subjects with palmitate. Palmitate also increased IL-6 and SOD2 gene expression, and this effect was prevented by inhibiting NFkappaB. CONCLUSIONS- Abnormal TLR4 expression and signaling, possibly caused by elevated plasma FFA levels, may contribute to the pathogenesis of insulin resistance in humans.

  16. Alternative splicing of exon 17 and a missense mutation in exon 20 of the insulin receptor gene in two brothers with a novel syndrome of insulin resistance (congenital fiber-type disproportion myopathy)

    DEFF Research Database (Denmark)

    Vorwerk, P; Christoffersen, C T; Müller, J

    1999-01-01

    to be compound heterozygotes for mutations in the IR gene. The maternal allele was alternatively spliced in exon 17 due to a point mutation in the -1 donor splice site of the exon. The abnormal skipping of exon 17 shifts the amino acid reading frame and leads to a truncated IR, missing the entire tyrosine kinase......The insulin receptor (IR) in two brothers with a rare syndrome of congenital muscle fiber type disproportion myopathy (CFTDM) associated with diabetes and severe insulin resistance was studied. By direct sequencing of Epstein-Barr virus-transformed lymphocytes both patients were found...... domain. In the correct spliced variant, the point mutation is silent and results in a normally translated IR. The paternal allele carries a missense mutation in the tyrosine kinase domain. All three cDNA variants were present in the lymphocytes of the patients. Purified IR from 293 cells overexpressing...

  17. Analysis of polymorphisms and haplotype structure of the human thymidylate synthase genetic region: a tool for pharmacogenetic studies.

    Directory of Open Access Journals (Sweden)

    Soma Ghosh

    Full Text Available 5-Fluorouracil (5FU, a widely used chemotherapeutic drug, inhibits the DNA replicative enzyme, thymidylate synthase (Tyms. Prior studies implicated a VNTR (variable numbers of tandem repeats polymorphism in the 5'-untranslated region (5'-UTR of the TYMS gene as a determinant of Tyms expression in tumors and normal tissues and proposed that these VNTR genotypes could help decide fluoropyrimidine dosing. Clinical associations between 5FU-related toxicity and the TYMS VNTR were reported, however, results were inconsistent, suggesting that additional genetic variation in the TYMS gene might influence Tyms expression. We thus conducted a detailed genetic analysis of this region, defining new polymorphisms in this gene including mononucleotide (poly A:T repeats and novel single nucleotide polymorphisms (SNPs flanking the VNTR in the TYMS genetic region. Our haplotype analysis of this region used data from both established and novel genetic variants and found nine SNP haplotypes accounting for more than 90% of the studied population. We observed non-exclusive relationships between the VNTR and adjacent SNP haplotypes, such that each type of VNTR commonly occurred on several haplotype backgrounds. Our results confirmed the expectation that the VNTR alleles exhibit homoplasy and lack the common ancestry required for a reliable marker of a linked adjacent locus that might govern toxicity. We propose that it may be necessary in a clinical trial to assay multiple types of genetic polymorphisms in the TYMS region to meaningfully model linkage of genetic markers to 5FU-related toxicity. The presence of multiple long (up to 26 nt, polymorphic monothymidine repeats in the promoter region of the sole human thymidylate synthetic enzyme is intriguing.

  18. Association of paraoxonase-1 gene polymorphisms with insulin resistance in South Indian population.

    Science.gov (United States)

    Gomathi, Panneerselvam; Iyer, Anandi Chandramouli; Murugan, Ponniah Senthil; Sasikumar, Sundaresan; Raj, Nancy Bright Arul Joseph; Ganesan, Divya; Nallaperumal, Sivagnanam; Murugan, Maruthamuthu; Selvam, Govindan Sadasivam

    2018-04-15

    Insulin resistance plays a crucial role in the pathogenesis of type 2 diabetes and cardiovascular diseases. Recently, paraoxonase-1(PON1) is reported to have an ability to reduce insulin resistance by promoting glucose transporter-4 (GLUT-4) expression in vitro. Single nucleotide polymorphism (SNP) in PON1 is associated with variability in enzyme activity and concentration. Based on this we aimed to investigate the association of PON1 (Q192R and L55M) polymorphisms with the risk of developing insulin resistance in adult South Indian population. Two hundred and eighty seven (287) Type 2 diabetes patients and 293 healthy controls were enrolled in this study. All the study subjects were genotyped for PON1 (Q192R and L55M) missense polymorphisms using polymerase chain reaction-restriction fragment length polymorphism (PCRRFLP) method. Fasting serum insulin level was measured by ELISA. The distribution of QR/RR and LM/MM genotypes were significantly higher in type 2 diabetes patients compared with healthy controls. Moreover, the R and M alleles were significantly associated with type 2 diabetes with an Odds Ratio of 1.68 (P  R genotypes were found to be significantly associated with higher BMI, cholesterol, triglycerides, LDL, fasting serum insulin and HOMA-IR. Further, the mutant allele or genotypes of PON1 L55M were associated with higher BMI, triglycerides, VLDL, fasting serum insulin and HOMA-IR among adult type 2 diabetes patients. PON1 (Q192R and L55M) polymorphisms may play a crucial role in pathogenesis and susceptibility of insulin resistance thus leads to the development of type 2 diabetes in South Indian population. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Insulin resistance is not conserved in myotubes established from women with PCOS.

    Directory of Open Access Journals (Sweden)

    Mette Eriksen

    2010-12-01

    Full Text Available Polycystic ovary syndrome (PCOS is the most common endocrine disorder among premenopausal women, who often develop insulin resistance. We tested the hypothesis that insulin resistance in skeletal muscle of patients with polycystic ovary syndrome (PCOS is an intrinsic defect, by investigating the metabolic characteristics and gene expression of in vitro differentiated myotubes established from well characterized PCOS subjects.Using radiotracer techniques, RT-PCR and enzyme kinetic analysis we examined myotubes established from PCOS subjects with or without pioglitazone treatment, versus healthy control subjects who had been extensively metabolically characterized in vivo. Results. Myotubes established from PCOS and matched control subjects comprehensively expressed all insulin-sensitive biomarkers; glucose uptake and oxidation, glycogen synthesis and lipid uptake. There were no significant differences between groups either at baseline or during acute insulin stimulation, although in vivo skeletal muscle was insulin resistant. In particular, we found no evidence for defects in insulin-stimulated glycogen synthase activity between groups. Myotubes established from PCOS patients with or without pioglitazone treatment also showed no significant differences between groups, neither at baseline nor during acute insulin stimulation, although in vivo pioglitazone treatment significantly improved insulin sensitivity. Consistently, the myotube cultures failed to show differences in mRNA levels of genes previously demonstrated to differ in PCOS patients with or without pioglitazone treatment (PLEK, SLC22A16, and TTBK.These results suggest that the mechanisms governing insulin resistance in skeletal muscle of PCOS patients in vivo are not primary, but rather adaptive.ClinicalTrials.gov NCT00145340.

  20. Insulin suppresses the AMPK signaling pathway to regulate lipid metabolism in primary cultured hepatocytes of dairy cows.

    Science.gov (United States)

    Li, Xinwei; Li, Yu; Ding, Hongyan; Dong, Jihong; Zhang, Renhe; Huang, Dan; Lei, Lin; Wang, Zhe; Liu, Guowen; Li, Xiaobing

    2018-05-01

    Dairy cows with type II ketosis display hepatic fat accumulation and hyperinsulinemia, but the underlying mechanism is not completely clear. This study aimed to clarify the regulation of lipid metabolism by insulin in cow hepatocytes. In vitro, cow hepatocytes were treated with 0, 1, 10, or 100 nm insulin in the presence or absence of AICAR (an AMP-activated protein kinase alpha (AMPKα) activator). The results showed that insulin decreased AMPKα phosphorylation. This inactivation of AMPKα increased the gene and protein expression levels of carbohydrate responsive element-binding protein (ChREBP) and sterol regulatory element-binding protein-1c (SREBP-1c), which downregulated the expression of lipogenic genes, thereby decreasing lipid biosynthesis. Furthermore, AMPKα inactivation decreased the gene and protein expression levels of peroxisome proliferator-activated receptor-α (PPARα), which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation. In addition, insulin decreased the very low density lipoprotein (VLDL) assembly. Consequently, triglyceride content was significantly increased in insulin treated hepatocytes. Activation of AMPKα induced by AICAR could reverse the effect of insulin on PPARα, SREBP-1c, and ChREBP, thereby decreasing triglyceride content. These results indicate that insulin inhibits the AMPKα signaling pathway to increase lipid synthesis and decrease lipid oxidation and VLDL assembly in cow hepatocytes, thereby inducing TG accumulation. This mechanism could partly explain the causal relationship between hepatic fat accumulation and hyperinsulinemia in dairy cows with type II ketosis.

  1. [Association of the genetic variations of bone morphogenetic protein 7 gene with diabetes and insulin resistance in Xinjiang Uygur population].

    Science.gov (United States)

    Yan, Zhi-tao; Li, Nan-fang; Guo, Yan-ying; Yao, Xiao-guang; Wang, Hong-mei; Hu, Jun-li

    2011-06-01

    To investigate the association between the genetic variations of the functional region in bone morphogenetic protein gene (BMP7) with type 2 diabetes mellitus in Chinese Uygur individuals. A case-control study was conducted based on epidemiological investigation. A total of 717 Uygur subjects (276 males and 441 females) were selected and divided into two groups: diabetes mellitus group (n = 502, 191 males and 311 females) and control group (n = 215, 85 males and 130 females). All exons, flanking introns and the promoter regions of (BMP7) gene were sequenced in 48 Uygur diabetics. Representative variations were selected according to the minor allele frequency (MAF) and linkage disequilibrium and genotyped using the TaqMan polymerase chain reaction method in 717 Uygur individuals, a relatively isolated general population in a relatively homogeneous environment and a case-control study was conducted to test the association between the genetic variations of (BMP7) gene and type 2 diabetes mellitus. Five novel and 8 known variations in the (BMP7) gene were identified. All genotype distributions were tested for deviations from Hardy-Weinberg equilibrium (P> 0.05). There was significant difference of genotype distribution of rs6025422 between type 2 diabetes mellitus and control groups in the male population (P 0.05), but there was no difference in total and female population (P> 0.05). And the means of fasting blood glucose (FBG), fasting insulin and HOMA-index significantly decreased in individuals with AA, AG and GG genotypes of rs6025422 in male population (Ppopulation (P> 0.05). The logistic regression analysis showed that GG genotype of rs6025422 variation might be a protective factor for diabetes in male (OR= 0.637, 95% confidence interval 0.439-0.923, P< 0.05). The present study suggests that the rs6025422 polymorphism in (BMP7) gene may be associated with diabetes mellitus and insulin resistance in Uygur men.

  2. Role of myotonic dystrophy protein kinase (DMPK in glucose homeostasis and muscle insulin action.

    Directory of Open Access Journals (Sweden)

    Esther Llagostera

    2007-11-01

    Full Text Available Myotonic dystrophy 1 (DM1 is caused by a CTG expansion in the 3'-unstranslated region of the DMPK gene, which encodes a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin action. DMPK-deficient (dmpk-/- mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver, tissues in which DMPK is not expressed. Dmpk-/- mice display metabolic derangements such as abnormal glucose tolerance, reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the molecular and metabolic phenotype of dmpk-/- mice. Taken together, these findings indicate that reduced DMPK expression may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for susceptibility to type 2-diabetes.

  3. Huntingtin-interacting protein 14 is a type 1 diabetes candidate protein regulating insulin secretion and β-cell apoptosis

    DEFF Research Database (Denmark)

    Berchtold, Lukas Adrian; Størling, Zenia Marian; Ortis, Fernanda

    2011-01-01

    Type 1 diabetes (T1D) is a complex disease characterized by the loss of insulin-secreting β-cells. Although the disease has a strong genetic component, and several loci are known to increase T1D susceptibility risk, only few causal genes have currently been identified. To identify disease...... genes in T1D, including the INS gene. An unexpected top-scoring candidate gene was huntingtin-interacting protein (HIP)-14/ZDHHC17. Immunohistochemical analysis of pancreatic sections demonstrated that HIP14 is almost exclusively expressed in insulin-positive cells in islets of Langerhans. RNAi...... knockdown experiments established that HIP14 is an antiapoptotic protein required for β-cell survival and glucose-stimulated insulin secretion. Proinflammatory cytokines (IL-1β and IFN-γ) that mediate β-cell dysfunction in T1D down-regulated HIP14 expression in insulin-secreting INS-1 cells and in isolated...

  4. Genetic variants and traits related to insulin-like growth factor-I and insulin resistance and their interaction with lifestyles on postmenopausal colorectal cancer risk.

    Directory of Open Access Journals (Sweden)

    Su Yon Jung

    Full Text Available Genetic variants and traits in metabolic signaling pathways may interact with lifestyle factors such as obesity, physical activity, and exogenous estrogen (E, influencing postmenopausal colorectal cancer (CRC risk, but these interrelated pathways are not fully understood. In this case-cohort study, we examined 33 single-nucleotide polymorphisms (SNPs in genes related to insulin-like growth factor-I (IGF-I/ insulin resistance (IR traits and signaling pathways, using data from 704 postmenopausal women in Women's Health Initiative Observation ancillary studies. Stratifying by the lifestyle modifiers, we assessed the effects of IGF-I/IR traits (fasting total and free IGF-I, IGF binding protein-3, insulin, glucose, and homeostatic model assessment-insulin resistance on CRC risk as a mediator or influencing factor. Six SNPs in the INS, IGF-I, and IGFBP3 genes were associated with CRC risk, and those associations differed between non-obese/active and obese/inactive women and between E nonusers and users. Roughly 30% of the cancer risk due to the SNP was mediated by IGF-I/IR traits. Likewise, carriers of 11 SNPs in the IRS1 and AKT1/2 genes (signaling pathway-related genetic variants had different associations with CRC risk between strata, and the proportion of the SNP-cancer association explained by traits varied from 30% to 50%. Our findings suggest that IGF-I/IR genetic variants interact with obesity, physical activity, and exogenous E, altering postmenopausal CRC risk, through IGF-I/IR traits, but also through different pathways. Unraveling gene-phenotype-lifestyle interactions will provide data on potential genetic targets in clinical trials for cancer prevention and intervention strategies to reduce CRC risk.

  5. Multiple-locus variable number of tandem repeats (VNTR) fingerprinting (MLVF) and antibacterial resistance profiles of extended spectrum beta lactamase (ESBL) producing Pseudomonas aeruginosa among burnt patients in Tehran.

    Science.gov (United States)

    Jabalameli, Fereshteh; Mirsalehian, Akbar; Sotoudeh, Nazli; Jabalameli, Leila; Aligholi, Marzieh; Khoramian, Babak; Taherikalani, Morovat; Emaneini, Mohammad

    2011-11-01

    Extended spectrum β-lactamase (ESBL)-producing trait was present in 48 out of the 112 (42.8%) Pseudomonas aeruginosa isolates collected from burn wound infections during a 12-month period. The presence of oxa-10, per-1, veb-1 and ges genes and the multiple-locus variable number of tandem repeats (VNTR) fingerprinting (MLVF) of 112 P. aeruginosa strains were determined by PCR and multiplex PCR. Disk diffusion methods were used to determine the susceptibility of the isolates to antimicrobial agents as instructed by CLSI. All ESBL isolates were resistant to aztreonam, cefepime, cefotaxime, cefpodoxime, ceftazidime, ceftriaxone and ofloxacin. Fewer than 60% of ESBL isolates were resistant to imipenem, meropenem, and piperacillin-tazobactam but more than 90% were resistant to amikacin, ciprofloxacin, levofloxacin, ticarcillin and tobramycin. The most prevalent ESBL genes included oxa-10 (70%) and per-1 (50%) followed by veb-1 (31.3%). The gene encodes GES enzyme did not detect in any isolates. A total of 100 P. aeruginosa strains were typed by MLVF typing method. MLVF produced 42 different DNA banding patterns. These data indicate that different MLVF types infect burn wounds in patients at a hospital in Tehran and also suggest an alarming rate of ESBL-producing isolates in this test location. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  6. Weight-loss changes PPAR expression, reduces atherosclerosis and improves cardiovascular function in obese insulin-resistant mice

    Energy Technology Data Exchange (ETDEWEB)

    Verreth, Wim; Verhamme, Peter; Pelat, Michael; Ganame, Javier; Bielicki, John K.; Mertens, Ann; Quarck, Rozenn; Benhabiles, Nora; Marguerie, Gerard; Mackness, Bharti; Mackness, Mike; Ninio, Ewa; Herregods, Marie-Christine; Balligand, Jean-Luc; Holvoet, Paul

    2003-09-01

    Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and of key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.

  7. Trigonella foenum-graecum water extract improves insulin sensitivity and stimulates PPAR and γ gene expression in high fructose-fed insulin-resistant rats

    Directory of Open Access Journals (Sweden)

    Abbas Mohammadi

    2016-01-01

    Conclusion: This study demonstrates the beneficial effects of trigonella foenum-graecum extract on insulin resistance in rats fed on a high-fructose diet. At least three mechanisms are involved, including direct insulin-like effect, increase in adiponectin levels, and PPARγ protein expression.

  8. Neuronal Cbl Controls Biosynthesis of Insulin-Like Peptides in Drosophila melanogaster

    Science.gov (United States)

    Yu, Yue; Sun, Ying; He, Shengqi; Yan, Cheng; Rui, Liangyou; Li, Wenjun

    2012-01-01

    The Cbl family proteins function as both E3 ubiquitin ligases and adaptor proteins to regulate various cellular signaling events, including the insulin/insulin-like growth factor 1 (IGF1) and epidermal growth factor (EGF) pathways. These pathways play essential roles in growth, development, metabolism, and survival. Here we show that in Drosophila melanogaster, Drosophila Cbl (dCbl) regulates longevity and carbohydrate metabolism through downregulating the production of Drosophila insulin-like peptides (dILPs) in the brain. We found that dCbl was highly expressed in the brain and knockdown of the expression of dCbl specifically in neurons by RNA interference increased sensitivity to oxidative stress or starvation, decreased carbohydrate levels, and shortened life span. Insulin-producing neuron-specific knockdown of dCbl resulted in similar phenotypes. dCbl deficiency in either the brain or insulin-producing cells upregulated the expression of dilp genes, resulting in elevated activation of the dILP pathway, including phosphorylation of Drosophila Akt and Drosophila extracellular signal-regulated kinase (dERK). Genetic interaction analyses revealed that blocking Drosophila epidermal growth factor receptor (dEGFR)-dERK signaling in pan-neurons or insulin-producing cells by overexpressing a dominant-negative form of dEGFR abolished the effect of dCbl deficiency on the upregulation of dilp genes. Furthermore, knockdown of c-Cbl in INS-1 cells, a rat β-cell line, also increased insulin biosynthesis and glucose-stimulated secretion in an ERK-dependent manner. Collectively, these results suggest that neuronal dCbl regulates life span, stress responses, and metabolism by suppressing dILP production and the EGFR-ERK pathway mediates the dCbl action. Cbl suppression of insulin biosynthesis is evolutionarily conserved, raising the possibility that Cbl may similarly exert its physiological actions through regulating insulin production in β cells. PMID:22778134

  9. ANTIBODIES TO BENZO[A]PYRENE, ESTRADIOL AND PROGESTERONE AND GENE POLYMORPHISMS OF CYTOKINES: ASSOCIATIONS WITH LUNG CANCER IN MEN

    Directory of Open Access Journals (Sweden)

    A. N. Glushkov

    2018-01-01

    Full Text Available Previous studies have revealed associations of antibodies, specific to chemical carcinogens and steroid hormones with lung cancer in men. However, the mechanisms of their formation and action were remained unclear. In particular, the relationships between antibodies and gene polymorphisms of cytokines were un- known. The purpose of this study was to identify possible associations between occurrence of A class antibodies, specific to benzo[a]pyrene, estradiol and progesterone (IgA-Bp, IgA-Es and IgA-Pg, and frequency of genetic polymorphisms of IL1RN VNTR, IL1В (rs1143634, rs16944, IL4 VNTR, IL6 (rs1800795, IL10 (rs1800896, TNFA (rs1800629, rs361525 genes in healthy male smokers and lung cancer patients.We have examined 381 men with non-small cell lung cancer and 158 apparently healthy donors without respiratory diseases. A non-competitive solid phase immunoassay of antibodies was performed. Analysis of polymorphic loci of IL1RN (VNTR, intron 2, IL4 (VNTR, intron 3 was performed by means of conventional PCR; IL1В (rs1143634, rs16944, IL6 (rs1800795 SNPs were detected by RFLP, and IL10 (rs1800896, TNFA (rs1800629, rs361525 genotyping was carried out with TaqMan Real-time PCR. Results of the study have shown that the proportion of cases with high level of IgA-Pg and low levels of both IgA-Bp and IgA-Es among the lung cancer patients was lower than in healthy men (OR = 0.31, p < 0.0001. Vice versa, the ratio of cases with high levels of both IgA-Bp and IgA-Es and low levels of IgA-Pg was higher in lung cancer patients (OR = 3.6, p < 0.0001. No relationships were revealed between the levels of antibodies, and rates of genetic polymorphisms for the studied cytokines in both groups of men. At the same time, the detected associations of IgA-Bp, IgA-Es and IgA-Pg with lung cancer proved to be significant only in carriers of certain cytokine genotypes, e.g., in AG IL10 heterozygotes (OR = 5.1, p < 0.0001.In conclusion, these results provide indirect

  10. Effect of lipopolysaccharide on inflammation and insulin action in human muscle.

    Science.gov (United States)

    Liang, Hanyu; Hussey, Sophie E; Sanchez-Avila, Alicia; Tantiwong, Puntip; Musi, Nicolas

    2013-01-01

    Accumulating evidence from animal studies suggest that chronic elevation of circulating intestinal-generated lipopolysaccharide (LPS) (i.e., metabolic endotoxemia) could play a role in the pathogenesis of insulin resistance. However, the effect of LPS in human muscle is unclear. Moreover, it is unknown whether blockade/down regulation of toll-like receptor (TLR)4 can prevent the effect of LPS on insulin action and glucose metabolism in human muscle cells. In the present study we compared plasma LPS concentration in insulin resistant [obese non-diabetic and obese type 2 diabetic (T2DM)] subjects versus lean individuals. In addition, we employed a primary human skeletal muscle cell culture system to investigate the effect of LPS on glucose metabolism and whether these effects are mediated via TLR4. Obese non-diabetic and T2DM subjects had significantly elevated plasma LPS and LPS binding protein (LBP) concentrations. Plasma LPS (r = -0.46, P = 0.005) and LBP (r = -0.49, P = 0.005) concentrations negatively correlated with muscle insulin sensitivity (M). In human myotubes, LPS increased JNK phosphorylation and MCP-1 and IL-6 gene expression. This inflammatory response led to reduced insulin-stimulated IRS-1, Akt and AS160 phosphorylation and impaired glucose transport. Both pharmacologic blockade of TLR4 with TAK-242, and TLR4 gene silencing, suppressed the inflammatory response and insulin resistance caused by LPS in human muscle cells. Taken together, these findings suggest that elevations in plasma LPS concentration found in obese and T2DM subjects could play a role in the pathogenesis of insulin resistance and that antagonists of TLR4 may improve insulin action in these individuals.

  11. Timing sexual differentiation: full functional sex reversal achieved through silencing of a single insulin-like gene in the prawn, Macrobrachium rosenbergii.

    Science.gov (United States)

    Ventura, Tomer; Manor, Rivka; Aflalo, Eliahu D; Weil, Simy; Rosen, Ohad; Sagi, Amir

    2012-03-01

    In Crustacea, an early evolutionary group (∼50 000 species) inhabiting most ecological niches, sex differentiation is regulated by a male-specific androgenic gland (AG). The identification of AG-specific insulin-like factors (IAGs) and genomic sex markers offers an opportunity for a deeper understanding of the sexual differentiation mechanism in crustaceans and other arthropods. Here, we report, to our knowledge, the first full and functional sex reversal of male freshwater prawns (Macrobrachium rosenbergii) through the silencing of a single IAG-encoding gene. These "neofemales" produced all-male progeny, as proven by sex-specific genomic markers. This finding offers an insight regarding the biology and evolution of sex differentiation regulation, with a novel perspective for the evolution of insulin-like peptides. Our results demonstrate how temporal intervention with a key regulating gene induces a determinative, extreme phenotypic shift. Our results also carry tremendous ecological and commercial implications. Invasive and pest crustacean species represent genuine concerns worldwide without an apparent solution. Such efforts might, therefore, benefit from sexual manipulations, as has been successfully realized with other arthropods. Commercially, such manipulation would be significant in sexually dimorphic cultured species, allowing the use of nonbreeding, monosex populations while dramatically increasing yield and possibly minimizing the invasion of exotic cultured species into the environment.

  12. Attention deficit/hyperactivity disorder children with a 7-repeat allele of the dopamine recepter D4 gene have extreme behavior but normal performance on critical neuropsychological tests of attention

    NARCIS (Netherlands)

    Swanson, J.; Oosterlaan, J.; Murias, M.; Schuck, S.; Flodman, P.; Spence, M.A.; Wasdell, M.; Ding, Y.; Chi, H-C.; Smith, M.; Mann, M.; Carlson, C.; Kennedy, J.L.; Sergeant, J.A.; Leung, P.; Zhang, Y-P.; Sadeh, A.; Chan, C.; Whalen, C.K.; Babb, K.; Moyzis, R.; Posner, M.I.

    2000-01-01

    An association of the dopamine receptor D4 (DRD4) gene located on chromosome 11p15.5 and attention deficit/hyperactivity disorder (ADHD) has been demonstrated and replicated by multiple investigators. A specific allele [the 7-repeat of a 48-bp variable number of tandem repeats (VNTR) in exon 3] has

  13. Association of IL-1beta gene polymorphism with cachexia from locally advanced gastric cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dianliang; Zheng, Hongmei; Zhou, Yanbing [Department of General Surgery, Affiliated Hospital of Qingdao University Medical College, Qingdao 266003 (China); Tang, Xingming; Yu, Baojun; Li, Jieshou [Research Institute of General Surgery, Jinlin Hospital, Nanjing University, Nanjing 210093 (China)

    2007-03-14

    IL-1beta has been implicated in inflammatory episode. In view of the inflammatory nature of cancer cachexia, we determined the predictive value of IL-1B-31 T/C, -511 C/T, +3954 C/T and IL-1RN VNTR gene polymorphisms on the occurrence of cachexia associated with locally advanced gastric cancer. The study included 214 patients and 230 healthy volunteers. Genomic DNA was prepared from peripheral blood leukocytes. Genotypes and allele frequencies were determined in patients and healthy controls using restriction fragment length polymorphism analysis of polymerase chain reaction products. The overall frequencies of IL-1B-31 T, -511 T, +3954 T and IL-1RN VNTR alleles in patients with locally advanced gastric cancer were all comparable with those in controls. No significant differences were found in the distribution of IL-1B-31 T, -511 T and IL-1RN VNTR between patients with cachexia and without. Patients with cachexia showed a significantly higher prevalence of IL-1B+3954 T allele than those without (P = 0.018). In a logistic regression analysis adjusted for actual weight, carcinoma location and stage, the IL-1B+3954 CT genotype was associated with an odds ratio of 2.512 (95% CI, 1.180 – 5.347) for cachexia. The IL-1B+3954 T allele is a major risk for cachexia from locally gastric cancer. Genetic factors studied are not likely to play an important role in the determination of susceptibility to locally advanced gastric cancer.

  14. Association of IL-1beta gene polymorphism with cachexia from locally advanced gastric cancer

    International Nuclear Information System (INIS)

    Zhang, Dianliang; Zheng, Hongmei; Zhou, Yanbing; Tang, Xingming; Yu, Baojun; Li, Jieshou

    2007-01-01

    IL-1beta has been implicated in inflammatory episode. In view of the inflammatory nature of cancer cachexia, we determined the predictive value of IL-1B-31 T/C, -511 C/T, +3954 C/T and IL-1RN VNTR gene polymorphisms on the occurrence of cachexia associated with locally advanced gastric cancer. The study included 214 patients and 230 healthy volunteers. Genomic DNA was prepared from peripheral blood leukocytes. Genotypes and allele frequencies were determined in patients and healthy controls using restriction fragment length polymorphism analysis of polymerase chain reaction products. The overall frequencies of IL-1B-31 T, -511 T, +3954 T and IL-1RN VNTR alleles in patients with locally advanced gastric cancer were all comparable with those in controls. No significant differences were found in the distribution of IL-1B-31 T, -511 T and IL-1RN VNTR between patients with cachexia and without. Patients with cachexia showed a significantly higher prevalence of IL-1B+3954 T allele than those without (P = 0.018). In a logistic regression analysis adjusted for actual weight, carcinoma location and stage, the IL-1B+3954 CT genotype was associated with an odds ratio of 2.512 (95% CI, 1.180 – 5.347) for cachexia. The IL-1B+3954 T allele is a major risk for cachexia from locally gastric cancer. Genetic factors studied are not likely to play an important role in the determination of susceptibility to locally advanced gastric cancer

  15. Thyroid peroxidase: evidence for disease gene exclusion in Pendred's syndrome.

    Science.gov (United States)

    Gausden, E; Armour, J A; Coyle, B; Coffey, R; Hochberg, Z; Pembrey, M; Britton, K E; Grossman, A; Reardon, W; Trembath, R

    1996-04-01

    Pendred's syndrome is an association between congenital neurosensory deafness and goitre with abnormal discharge of iodide following perchlorate challenge, indicating a defect of iodide organification. Although Pendred's syndrome may cause up to 7.5% of all cases of congenital deafness, the molecular basis of the association between the hearing loss and the thyroid organification defect remains unknown. We chose to investigate the role of the thyroid peroxidase (TPO) gene as the genetic defect in Pendred's syndrome. A highly informative variable number tandem repeat (VNTR), located 1.5 kb downstream of exon 10 of the TPO gene, was used to search for genetic linkage in multiple sibships affected by Pendred's syndrome. Seven kindreds were recruited from the UK, each with at least two affected members. We have also examined a large inbred Israeli family with two affected offspring and five unaffected children. Individuals were assigned affected status based on the characteristic clinical features of Pendred's syndrome, namely the presence of congenital sensorineural hearing loss and the appearance in early life of a goitre. Additionally, at least one affected member from each sibship had a characteristic positive perchlorate discharge test (Morgans & Trotter, 1958). PCR amplification of genomic DNA at the TPO VNTR allowed assignment of genotypes to each individual and the calculation of a two-point LOD score. In six of the nine sibships analysed we found obligatory recombination between TPO and Pendred's syndrome. Non-complementation observed in affected parents with an affected offspring excluded TPO in an affected sibship with genotype sharing and supports a hypothesis of genetic homogeneity for Pendred's syndrome. In two sibships, mutation of the TPO gene as the cause of Pendred's syndrome could not be excluded. These data suggest that defects at the thyroid peroxidase locus on chromosome 2 are not the major cause of Pendred's syndrome.

  16. Insulin-Like Growth Factor-1 Inscribes a Gene Expression Profile for Angiogenic Factors and Cancer Progression in Breast Epithelial Cells

    Directory of Open Access Journals (Sweden)

    J.S. Oh

    2002-01-01

    Full Text Available Activation of the insulin-like growth factor-1 receptor (IGF-11R by IGF-1 is associated with the risk and progression of many types of cancer, although despite this it remains unclear how activated IGF-1 R contributes to cancer progression. In this study, gene expression changes elicited by IGF-1 were profiled in breast epithelial cells. We noted that many genes are functionally linked to cancer progression and angiogenesis. To validate some of the changes observed, the RNA and/or protein was confirmed for c-fos, cytochrome P4501Al, cytochrome P450 1131, interleukin-1 beta, fas ligand, vascular endothelial growth factor, and urokinase plasminogen activator. Nuclear proteins were also temporally monitored to address how gene expression changes were regulated. We found that IGF-1 stimulated the nuclear translocation of phosphorylated AKT, hypoxic-inducible factor-1 alpha, and phosphorylated cAMP-responsive element-binding protein, which correlated with temporal changes in gene expression. Next, the promoter regions of IGF-1-regulated genes were searched in silico. The promoters of genes that clustered together had similar regulatory regions. In summary, IGF-1 inscribes a gene expression profile relevant to cancer progression, and this study provides insight into the mechanism(s whereby some of these changes occur.

  17. No evidence for allelic association between bipolar disorder and monoamine oxidase A gene polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Craddock, N.; Daniels, J.; Roberts, E. [Univ. of Wales, College of Medicine, Cardiff (United Kingdom)] [and others

    1995-08-14

    We have tested the hypothesis that DNA markers in the MAOA gene show allelic association with bipolar affective disorder. Eighty-four unrelated Caucasian patients with DSM III-R bipolar disorder and 84 Caucasian controls were typed for three markers in MAOA: a dinucleotide repeat in intron 2, a VNTR in intron 1, and an Fnu4HI RFLP in exon 8. No evidence for allelic association was observed between any of the markers and bipolar disorder. 9 refs., 1 tab.

  18. Macrophages and Adipocytes in Human Obesity Adipose Tissue Gene Expression and Insulin Sensitivity During Calorie Restriction and Weight Stabilization

    DEFF Research Database (Denmark)

    Capel, F.; Klimcakova, E.; Viguerie, N.

    2009-01-01

    OBJECTIVE-We investigated the regulation of adipose tissue gene expression during different phases of a dietary weight loss program and its relation with insulin sensitivity. RESEARCH DESIGN AND METHODS-Twenty-two obese women followed a dietary intervention program composed of an energy restriction...... expression profiling was performed using a DNA microarray in a subgroup of eight women. RT-quantitative PCR was used for determination of mRNA levels of 31 adipose tissue macrophage markers (n = 22). RESULTS-Body weight, fat mass, and C-reactive protein level decreased and glucose disposal rate increased...... during the dietary intervention program. Transcriptome profiling revealed two main patterns of variations. The first involved 464 mostly adipocyte genes involved in metabolism that were downregulated during energy restriction, upregulated during weight stabilization, and unchanged during the dietary...

  19. Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice.

    Science.gov (United States)

    Irimia, Jose M; Meyer, Catalina M; Segvich, Dyann M; Surendran, Sneha; DePaoli-Roach, Anna A; Morral, Nuria; Roach, Peter J

    2017-06-23

    Disruption of the Gys2 gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect. Phosphorylation of components of the hepatic insulin-signaling pathway, namely IRS1, Akt, and GSK3, was decreased in LGSKO mice. Moreover, insulin stimulation of their phosphorylation was significantly suppressed, both temporally and in an insulin dose response. Phosphorylation of the insulin-regulated transcription factor FoxO1 was somewhat reduced and insulin treatment did not elicit normal translocation of FoxO1 out of the nucleus. Fat overaccumulated in LGSKO livers, showing an aberrant distribution in the acinus, an increase not explained by a reduction in hepatic triglyceride export. Rather, when administered orally to fasted mice, glucose was directed toward hepatic lipogenesis as judged by the activity, protein levels, and expression of several fatty acid synthesis genes, namely, acetyl-CoA carboxylase, fatty acid synthase, SREBP1c, chREBP, glucokinase, and pyruvate kinase. Furthermore, using cultured primary hepatocytes, we found that lipogenesis was increased by 40% in LGSKO cells compared with controls. Of note, the hepatic insulin resistance was not associated with increased levels of pro-inflammatory markers. Our results suggest that loss of liver glycogen synthesis diverts glucose toward fat synthesis, correlating with impaired hepatic insulin signaling and glucose disposal. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Differentiation of Human Mesenchymal Stem Cells into Insulin Producing Cells by Using A Lentiviral Vector Carrying PDX1.

    Science.gov (United States)

    Allahverdi, Amir; Abroun, Saied; Jafarian, Arefeh; Soleimani, Masoud; Taghikhani, Mohammad; Eskandari, Fatemeh

    2015-01-01

    Type I diabetes is an immunologically-mediated devastation of insulin producing cells (IPCs) in the pancreatic islet. Stem cells that produce β-cells are a new promising tool. Adult stem cells such as mesenchymal stem cells (MSCs) are self renewing multi potent cells showing capabilities to differentiate into ectodermal, mesodermal and endodermal tissues. Pancreatic and duodenal homeobox factor 1 (PDX1) is a master regulator gene required for embryonic development of the pancreas and is crucial for normal pancreatic islets activities in adults. We induced the over-expression of the PDX1 gene in human bone marrow MSCs (BM-MSCs) by Lenti-PDX1 in order to generate IPCs. Next, we examine the ability of the cells by measuring insulin/c-peptide production and INSULIN and PDX1 gene expressions. After transduction, MSCs changed their morphology at day 5 and gradually differentiated into IPCs. INSULIN and PDX1 expressions were confirmed by real time polymerase chain reaction (RT-PCR) and immunostaining. IPC secreted insulin and C-peptide in the media that contained different glucose concentrations. MSCs differentiated into IPCs by genetic manipulation. Our result showed that lentiviral vectors could deliver PDX1 gene to MSCs and induce pancreatic differentiation.

  1. Synergy analysis reveals association between insulin signaling and desmoplakin expression in palmitate treated HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Xuewei Wang

    Full Text Available The regulation of complex cellular activities in palmitate treated HepG2 cells, and the ensuing cytotoxic phenotype, involves cooperative interactions between genes. While previous approaches have largely focused on identifying individual target genes, elucidating interacting genes has thus far remained elusive. We applied the concept of information synergy to reconstruct a "gene-cooperativity" network for palmititate-induced cytotoxicity in liver cells. Our approach integrated gene expression data with metabolic profiles to select a subset of genes for network reconstruction. Subsequent analysis of the network revealed insulin signaling as the most significantly enriched pathway, and desmoplakin (DSP as its top neighbor. We determined that palmitate significantly reduces DSP expression, and treatment with insulin restores the lost expression of DSP. Insulin resistance is a common pathological feature of fatty liver and related ailments, whereas loss of DSP has been noted in liver carcinoma. Reduced DSP expression can lead to loss of cell-cell adhesion via desmosomes, and disrupt the keratin intermediate filament network. Our findings suggest that DSP expression may be perturbed by palmitate and, along with insulin resistance, may play a role in palmitate induced cytotoxicity, and serve as potential targets for further studies on non-alcoholic fatty liver disease (NAFLD.

  2. Osteocalcin improves insulin resistance and inflammation in obese mice: Participation of white adipose tissue and bone.

    Science.gov (United States)

    Guedes, J A C; Esteves, J V; Morais, M R; Zorn, T M; Furuya, D T

    2017-11-26

    The discovery of osteocalcin, a protein synthetized by osteoblasts, as a hormone that has positive effects on insulin resistance, contributed to support the concept of bone as an endocrine organ. However, very little is known about the molecular pathways involved in osteocalcin improved-insulin resistance. The present study aimed to investigate the mechanisms of action of osteocalcin on insulin resistance and inflammation in obese mice and 3T3-L1 adipocytes. Lean control, saline-treated obese and uncarboxylated osteocalcin (uOC)-treated obese mice were subjected to insulin tolerance test in vivo. Blood was collect for biochemical/metabolic profile analysis; and, skeletal muscle, white adipose tissue (WAT) and bone were collected for protein (Western blotting) and mRNA (RT-qPCR) analysis. uOC effects on insulin resistance and inflammation were also investigated in 3T3-L1 adipocytes challenged with tumor necrosis factor. Osteocalcin treatment improved in vivo insulin resistance in obese mice. In WAT, osteocalcin had positive effects such as (1) WAT weight reduction; (2) upregulation of glucose transporter (GLUT) 4 protein and its mRNA (Slc2a4); (3) improved insulin-induced AKT phosphorylation; (4) downregulation of several genes involved in inflammation and inflammassome transcriptional machinery, and (5) reduction of the density of macrophage in crown-like structures (histomorphometrical analysis). Notably, in 3T3-L1 adipocytes, osteocalcin restored Slc2a4/GLUT4 content and reduced the expression of inflammatory genes after TNF-a challenge; moreover, osteocalcin treatment increased AKT phosphorylation induced by insulin. Finally, it was observed that in bone, osteocalcin improves insulin resistance by increasing insulin-induced AKT phosphorylation and reducing the expression of genes involved in bone insulin resistance, resulting in increased secretion of uncarboxylated osteocalcin in circulation. We provided some mechanisms of action for osteocalcin in the

  3. Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse

    Science.gov (United States)

    Ning, Jie; Hong, Tao; Yang, Xuefeng; Mei, Shuang; Liu, Zhenqi; Liu, Hui-Yu

    2011-01-01

    The primary player that induces insulin resistance has not been established. Here, we studied whether or not fat can cause insulin resistance in the presence of insulin deficiency. Our results showed that high-fat diet (HFD) induced insulin resistance in C57BL/6 (B6) mice. The HFD-induced insulin resistance was prevented largely by the streptozotocin (STZ)-induced moderate insulin deficiency. The STZ-induced insulin deficiency prevented the HFD-induced ectopic fat accumulation and oxidative stress in liver and gastrocnemius. The STZ-induced insulin deficiency prevented the HFD- or insulin-induced increase in hepatic expression of long-chain acyl-CoA synthetases (ACSL), which are necessary for fatty acid activation. HFD increased mitochondrial contents of long-chain acyl-CoAs, whereas it decreased mitochondrial ADP/ATP ratio, and these HFD-induced changes were prevented by the STZ-induced insulin deficiency. In cultured hepatocytes, we observed that expressions of ACSL1 and -5 were stimulated by insulin signaling. Results in cultured cells also showed that blunting insulin signaling by the PI3K inhibitor LY-294002 prevented fat accumulation, oxidative stress, and insulin resistance induced by the prolonged exposure to either insulin or oleate plus sera that normally contain insulin. Finally, knockdown of the insulin receptor prevented the oxidative stress and insulin resistance induced by the prolonged exposure to insulin or oleate plus sera. Together, our results show that insulin and insulin signaling are required for fat induction of insulin resistance in mice and cultured mouse hepatocytes. PMID:21586696

  4. Insulin-like growth factor II: complexity of biosynthesis and receptor binding

    DEFF Research Database (Denmark)

    Gammeltoft, S; Christiansen, Jan; Nielsen, F C

    1991-01-01

    Insulin-like growth factor II (IGF-II) belongs to the insulin family of peptides and acts as a growth factor in many fetal tissues and tumors. The gene expression of IGF-II is initiated at three different promoters which gives rise to multiple transcripts. In a human rhabdomyosarcoma cell line......, Man-6-P induces cellular responses. We have studied rat brain neuronal precursor cells where Man-6-P acted as a mitogen suggesting that phosphomannosylated proteins may act as growth factors via the Man-6-P/IGF-II receptor. In conclusion, the gene expression and mechanism of action of IGF-II is very...

  5. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    International Nuclear Information System (INIS)

    Naidoo, C.

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, 125 I-insulin binding to the solubilized erythrocyte membrane receptor and 125 I-insulin binding to fibroblasts in culture

  6. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, C

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, /sup 125/I-insulin binding to the solubilized erythrocyte membrane receptor and /sup 125/I-insulin binding to fibroblasts in culture.

  7. AgRP Neurons Control Systemic Insulin Sensitivity via Myostatin Expression in Brown Adipose Tissue.

    Science.gov (United States)

    Steculorum, Sophie M; Ruud, Johan; Karakasilioti, Ismene; Backes, Heiko; Engström Ruud, Linda; Timper, Katharina; Hess, Martin E; Tsaousidou, Eva; Mauer, Jan; Vogt, Merly C; Paeger, Lars; Bremser, Stephan; Klein, Andreas C; Morgan, Donald A; Frommolt, Peter; Brinkkötter, Paul T; Hammerschmidt, Philipp; Benzing, Thomas; Rahmouni, Kamal; Wunderlich, F Thomas; Kloppenburg, Peter; Brüning, Jens C

    2016-03-24

    Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Intralipid decreases apolipoprotein M levels and insulin sensitivity in rats.

    Directory of Open Access Journals (Sweden)

    Lu Zheng

    Full Text Available BACKGROUND: Apolipoprotein M (ApoM is a constituent of high-density lipoproteins (HDL. It plays a crucial role in HDL-mediated reverse cholesterol transport. Insulin resistance is associated with decreased ApoM levels. AIMS: To assess the effects of increased free fatty acids (FFAs levels after short-term Intralipid infusion on insulin sensitivity and hepatic ApoM gene expression. METHODS: Adult male Sprague-Dawley (SD rats infused with 20% Intralipid solution for 6 h. Glucose infusion rates (GIR were determined by hyperinsulinemic-euglycemic clamp during Intralipid infusion and plasma FFA levels were measured by colorimetry. Rats were sacrificed after Intralipid treatment and livers were sampled. Human embryonic kidney 293T cells were transfected with a lentivirus mediated human apoM overexpression system. Goto-Kakizaki (GK rats were injected with the lentiviral vector and insulin tolerance was assessed. Gene expression was assessed by real-time RT-PCR and PCR array. RESULTS: Intralipid increased FFAs by 17.6 folds and GIR was decreased by 27.1% compared to the control group. ApoM gene expression was decreased by 40.4% after Intralipid infusion. PPARβ/δ expression was not changed by Intralipid. Whereas the mRNA levels of Acaca, Acox1, Akt1, V-raf murine sarcoma 3611 viral oncogene homolog, G6pc, Irs2, Ldlr, Map2k1, pyruvate kinase and RBC were significantly increased in rat liver after Intralipid infusion. The Mitogen-activated protein kinase 8 (MAPK8 was significantly down-regulated in 293T cells overexpressing ApoM. Overexpression of human ApoM in GK rats could enhance the glucose-lowering effect of exogenous insulin. CONCLUSION: These results suggest that Intralipid could decrease hepatic ApoM levels. ApoM overexpression may have a potential role in improving insulin resistance in vivo and modulating apoM expression might be a future therapeutic strategy against insulin resistance in type 2 diabetes.

  9. A directed RNAi screen based on larval growth arrest reveals new modifiers of C. elegans insulin signaling.

    Directory of Open Access Journals (Sweden)

    Ola Billing

    Full Text Available Genes regulating Caenorhabditis elegans insulin/IGF signaling (IIS have largely been identified on the basis of their involvement in dauer development or longevity. A third IIS phenotype is the first larval stage (L1 diapause, which is also influenced by asna-1, a regulator of DAF-28/insulin secretion. We reasoned that new regulators of IIS strength might be identified in screens based on the L1 diapause and the asna-1 phenotype. Eighty- six genes were selected for analysis by virtue of their predicted interaction with ASNA-1 and screened for asna-1-like larval arrest. ykt-6, mrps-2, mrps-10 and mrpl-43 were identified as genes which, when inactivated, caused larval arrest without any associated feeding defects. Several tests indicated that IIS strength was weaker and that insulin secretion was defective in these animals. This study highlights the role of the Golgi network and the mitochondria in insulin secretion and provides a new list of genes that modulate IIS in C. elegans.

  10. Theobromine does not affect postprandial lipid metabolism and duodenal gene expression, but has unfavorable effects on postprandial glucose and insulin responses in humans.

    Science.gov (United States)

    Smolders, Lotte; Mensink, Ronald P; Boekschoten, Mark V; de Ridder, Rogier J J; Plat, Jogchum

    2018-04-01

    Chocolate consumption is associated with a decreased risk for CVD. Theobromine, a compound in cocoa, may explain these effects as it favorably affected fasting serum lipids. However, long-term effects of theobromine on postprandial metabolism as well as underlying mechanisms have never been studied. The objective was to evaluate the effects of 4-week theobromine consumption (500 mg/day) on fasting and postprandial lipid, lipoprotein and glucose metabolism, and duodenal gene expression. In a randomized, double-blind crossover study, 44 healthy men and women, with low baseline HDL-C concentrations consumed 500 mg theobromine or placebo daily. After 4-weeks, fasting blood was sampled and subjects participated in a 4-h postprandial test. Blood was sampled frequently for analysis of lipid and glucose metabolism. In a subgroup of 10 men, 5 h after meal consumption duodenal biopsies were taken for microarray analysis. 4-weeks theobromine consumption lowered fasting LDL-C (-0.21 mmol/L; P = 0.006), and apoB100 (-0.04 g/L; P = 0.022), tended to increase HDL-C (0.03 mmol/L; P = 0.088) and increased hsCRP (1.2 mg/L; P = 0.017) concentrations. Fasting apoA-I, TAG, FFA, glucose and insulin concentrations were unchanged. In the postprandial phase, theobromine consumption increased glucose (P = 0.026), insulin (P = 0.011) and FFA (P = 0.003) concentrations, while lipids and (apo)lipoproteins were unchanged. In duodenal biopsies, microarray analysis showed no consistent changes in expression of genes, pathways or gene sets related to lipid, cholesterol or glucose metabolism. It is not likely that the potential beneficial effects of cocoa on CVD can be ascribed to theobromine. Although theobromine lowers serum LDL-C concentrations, it did not change fasting HDL-C, apoA-I, or postprandial lipid concentrations and duodenal gene expression, and unfavorably affected postprandial glucose and insulin responses. This trial was registered on clinicaltrials.gov under

  11. Founder effect in the Horn of Africa for an insulin receptor mutation that may impair receptor recycling

    DEFF Research Database (Denmark)

    Raffan, E; Soos, M A; Rocha, N

    2011-01-01

    Genetic insulin receptoropathies are a rare cause of severe insulin resistance. We identified the Ile119Met missense mutation in the insulin receptor INSR gene, previously reported in a Yemeni kindred, in four unrelated patients with Somali ancestry. We aimed to investigate a possible genetic...

  12. Study of the serotonin transporter (SLC6A4 and BDNF genes in French patients with non syndromic mental deficiency

    Directory of Open Access Journals (Sweden)

    Mignon Laurence

    2010-02-01

    Full Text Available Abstract Background Mental deficiency has been linked to abnormalities in cortical neuronal network connectivity and plasticity. These mechanisms are in part under the control of two interacting signalling pathways, the serotonergic and the brain-derived neurotrophic (BDNF pathways. The aim of the current paper is to determine whether particular alleles or genotypes of two crucial genes of these systems, the serotonin transporter gene (SLC6A4 and the brain-derived neurotrophic factor gene (BDNF, are associated with mental deficiency (MD. Methods We analyzed four functional polymorphisms (rs25531, 5-HTTLPR, VNTR, rs3813034 of the SLC6A4 gene and one functional polymorphism (Val66 Met of the BDNF gene in 98 patients with non-syndromic mental deficiency (NS-MD and in an ethnically matched control population of 251 individuals. Results We found no significant differences in allele and genotype frequencies in the five polymorphisms studied in the SLC6A4 and BDNF genes of NS-MD patients versus control patients. While the comparison of the patterns of linkage disequilibrium (D' in the control and NS-MD populations revealed a degree of variability it did not, however, reach significance. No significant differences in frequencies of haplotypes and genotypes for VNTR/rs3813034 and rs25531/5-HTTLPR were observed. Conclusion Altogether, results from the present study do not support a role for any of the five functional polymorphisms of SLC6A4 and BDNF genes in the aetiology of NS-RM. Moreover, they suggest no epistatic interaction in NS-MD between polymorphisms in BDNF and SLC6A4. However, we suggest that further studies on these two pathways in NS-MD remain necessary.

  13. Insulin priming effect on estradiol-induced breast cancer metabolism and growth.

    Science.gov (United States)

    Wairagu, Peninah M; Phan, Ai N H; Kim, Min-Kyu; Han, Jeongwoo; Kim, Hyun-Won; Choi, Jong-Whan; Kim, Ki Woo; Cha, Seung-Kuy; Park, Kwang Hwa; Jeong, Yangsik

    2015-01-01

    Diabetes is a risk factor for breast cancer development and is associated with poor prognosis for breast cancer patients. However, the molecular and biochemical mechanisms underlying the association between diabetes and breast cancer have not been fully elucidated. Here, we investigated estradiol response in MCF-7 breast cancer cells with or without chronic exposure to insulin. We found that insulin priming is necessary and specific for estradiol-induced cancer cell growth, and induces anaplerotic shunting of glucose into macromolecule biosynthesis in the estradiol treated cells. Treatment with ERK or Akt specific inhibitors, U0126 or LY294002, respectively, suppressed estradiol-induced growth. Interestingly, molecular analysis revealed that estradiol treatment markedly increases expression of cyclin A and B, and decreases p21 and p27 in the insulin-primed cells. In addition, estradiol treatment activated metabolic genes in pentose phosphate (PPP) and serine biosynthesis pathways in the insulin-primed cells while insulin priming decreased metabolic gene expression associated with glucose catabolism in the breast cancer cells. Finally, we found that anti-diabetic drug metformin and AMPK ligand AICAR, but not thiazolidinediones (TZDs), specifically suppress the estradiol-induced cellular growth in the insulin-primed cells. These findings suggest that estrogen receptor (ER) activation under chronic hyperinsulinemic condition increases breast cancer growth through the modulation of cell cycle and apoptotic factors and nutrient metabolism, and further provide a mechanistic evidence for the clinical benefit of metformin use for ER-positive breast cancer patients with diabetes.

  14. Morquio A syndrome: Cloning, sequence, and structure of the human N-acetylgalactosamine 6-sulfatase (GALNS) gene

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C.P.; Guo, Xiao-Hui; Apostolou, S. [Adelaide Children`s Hospital, North Adelaide (Australia)] [and others

    1994-08-01

    Deficiency of the lysosomal enzyme, N-acetylgalactosamine 6-sulfatase (GALNS;EC 3.1.6.4), results in the storage of the glycosaminoglycans, keratan sulfate and chrondroitin 6-sulfate, which leads to the lysosomal storage disorder Morquio A syndrome. Four overlapping genomic clones derived from a chromosome 16-specific gridded cosmid library containing the entire GALNS gene were isolated. The structure of the gene and the sequence of the exon/intron boundaries and the 5{prime} promoter region were determined. The GALNS gene is split into 14 exons spanning approximately 40 kb. The potential promoter for GALNS lacks a TATA box but contains GC box consensus sequences, consistent with its role as a housekeeping gene. The GALNS gene contains an Alu repeat in intron 5 and a VNTR-like sequence in intron 6. 12 refs., 3 figs., 1 tab.

  15. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock

    DEFF Research Database (Denmark)

    Dyar, Kenneth A.; Ciciliot, Stefano; Wright, Lauren E.

    2014-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-s...

  16. Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes

    DEFF Research Database (Denmark)

    Bacos, Karl; Gillberg, Linn; Volkov, Petr

    2016-01-01

    identified in human islets (for example, KLF14, FHL2, ZNF518B and FAM123C) and some associate with insulin secretion and T2D. DNA methylation correlates with islet expression of multiple genes, including FHL2, ZNF518B, GNPNAT1 and HLTF. Silencing these genes in β-cells alter insulin secretion. Together, we...

  17. Degludec insulin: A novel basal insulin

    OpenAIRE

    Kalra, Sanjay; Unnikrishnan, Ambika Gopalakrishnan; Baruah, Manash; Kalra, Bharti

    2011-01-01

    This paper reviews a novel insulin analogue, degludec, which has the potential to emerge as an ideal basal insulin. It reviews the limitations of existing basal insulin and analogues, and highlights the need for a newer molecule. The paper discusses the potential advantages of degludec, while reviewing its pharmacologic and clinical studies done so far. The paper assesses the potential role of insulin degludec and degludec plus in clinical diabetes practice.

  18. From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells.

    Science.gov (United States)

    Gabr, Mahmoud M; Zakaria, Mahmoud M; Refaie, Ayman F; Abdel-Rahman, Engy A; Reda, Asmaa M; Ali, Sameh S; Khater, Sherry M; Ashamallah, Sylvia A; Ismail, Amani M; Ismail, Hossam El-Din A; El-Badri, Nagwa; Ghoneim, Mohamed A

    2017-01-01

    The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs), for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs), was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion . BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine.

  19. H19 RNA binds four molecules of insulin-like growth factor II mRNA-binding protein

    DEFF Research Database (Denmark)

    Runge, Steffen; Nielsen, Finn Cilius; Nielsen, Jacob

    2000-01-01

    H19 RNA is a major oncofetal 2.5-kilobase untranslated RNA of unknown function. The maternally expressed H19 gene is located 90 kilobase pairs downstream from the paternally expressed insulin-like growth factor II (IGF-II) gene on human chromosome 11 and mouse chromosome 7; and due to their recip......H19 RNA is a major oncofetal 2.5-kilobase untranslated RNA of unknown function. The maternally expressed H19 gene is located 90 kilobase pairs downstream from the paternally expressed insulin-like growth factor II (IGF-II) gene on human chromosome 11 and mouse chromosome 7; and due...

  20. Induction of insulin secretion in engineered liver cells by nitric oxide

    Directory of Open Access Journals (Sweden)

    Özcan Sabire

    2007-10-01

    Full Text Available Abstract Background Type 1 Diabetes Mellitus results from an autoimmune destruction of the pancreatic beta cells, which produce insulin. The lack of insulin leads to chronic hyperglycemia and secondary complications, such as cardiovascular disease. The currently approved clinical treatments for diabetes mellitus often fail to achieve sustained and optimal glycemic control. Therefore, there is a great interest in the development of surrogate beta cells as a treatment for type 1 diabetes. Normally, pancreatic beta cells produce and secrete insulin only in response to increased blood glucose levels. However in many cases, insulin secretion from non-beta cells engineered to produce insulin occurs in a glucose-independent manner. In the present study we engineered liver cells to produce and secrete insulin and insulin secretion can be stimulated via the nitric oxide pathway. Results Expression of either human insulin or the beta cell specific transcription factors PDX-1, NeuroD1 and MafA in the Hepa1-6 cell line or primary liver cells via adenoviral gene transfer, results in production and secretion of insulin. Although, the secretion of insulin is not significantly increased in response to high glucose, treatment of these engineered liver cells with L-arginine stimulates insulin secretion up to three-fold. This L-arginine-mediated insulin release is dependent on the production of nitric oxide. Conclusion Liver cells can be engineered to produce insulin and insulin secretion can be induced by treatment with L-arginine via the production of nitric oxide.

  1. MiR-155 Enhances Insulin Sensitivity by Coordinated Regulation of Multiple Genes in Mice

    Science.gov (United States)

    Lin, Taoyan; Lin, Xia; Chen, Li; Zeng, Hui; Han, Yanjiang; Wu, Lihong; Huang, Shun; Wang, Meng; Huang, Shenhao; Xie, Raoying; Liang, Liqi; Liu, Yu; Liu, Ruiyu; Zhang, Tingting; Li, Jing; Wang, Shengchun; Sun, Penghui; Huang, Wenhua; Yao, Kaitai; Xu, Kang; Du, Tao; Xiao, Dong

    2016-01-01

    miR-155 plays critical roles in numerous physiological and pathological processes, however, its function in the regulation of blood glucose homeostasis and insulin sensitivity and underlying mechanisms remain unknown. Here, we reveal that miR-155 levels are downregulated in serum from type 2 diabetes (T2D) patients, suggesting that miR-155 might be involved in blood glucose control and diabetes. Gain-of-function and loss-of-function studies in mice demonstrate that miR-155 has no effects on the pancreatic β-cell proliferation and function. Global transgenic overexpression of miR-155 in mice leads to hypoglycaemia, improved glucose tolerance and insulin sensitivity. Conversely, miR-155 deficiency in mice causes hyperglycemia, impaired glucose tolerance and insulin resistance. In addition, consistent with a positive regulatory role of miR-155 in glucose metabolism, miR-155 positively modulates glucose uptake in all cell types examined, while mice overexpressing miR-155 transgene show enhanced glycolysis, and insulin-stimulated AKT and IRS-1 phosphorylation in liver, adipose tissue or skeletal muscle. Furthermore, we reveal these aforementioned phenomena occur, at least partially, through miR-155-mediated repression of important negative regulators (i.e. C/EBPβ, HDAC4 and SOCS1) of insulin signaling. Taken together, these findings demonstrate, for the first time, that miR-155 is a positive regulator of insulin sensitivity with potential applications for diabetes treatment. PMID:27711113

  2. Spectrum of Phenylalanine Hydroxylase Gene Mutations in Hamadan and Lorestan Provinces of Iran and Their Associations with Variable Number of Tandem Repeat Alleles.

    Science.gov (United States)

    Alibakhshi, Reza; Moradi, Keivan; Biglari, Mostafa; Shafieenia, Samaneh

    2018-05-01

    Phenylketonuria (PKU) is one of the most common known inherited metabolic diseases. The present study aimed to investigate the status of molecular defects in phenylalanine hydroxylase ( PAH ) gene in western Iranian PKU patients (predominantly from Kermanshah, Hamadan, and Lorestan provinces) during 2014-2016. Additionally, the results were compared with similar studies in Iran. Nucleotide sequence analysis of all 13 exons and their flanking intronic regions of the PAH gene was performed in 18 western Iranian PKU patients. Moreover, a variable number of tandem repeat (VNTR) located in the PAH gene was studied. The results revealed a mutational spectrum encompassing 11 distinct mutations distributed along the PAH gene sequence on 34 of the 36 mutant alleles (diagnostic efficiency of 94.4%). Also, four PAH VNTR alleles (with repeats of 3, 7, 8 and 9) were detected. The three most frequent mutations were IVS9+5G>A, IVS7-5T>C, and p.P281L with the frequency of 27.8%, 11%, and 11%, respectively. The results showed that there is not only a consanguineous relation, but also a difference in PAH characters of mutations between Kermanshah and the other two parts of western Iran (Hamadan and Lorestan). Also, it seems that the spectrum of mutations in western Iran is relatively distinct from other parts of the country, suggesting that this region might be a special PAH gene distribution region. Moreover, our findings can be useful in the identification of genotype to phenotype relationship in patients, and provide future abilities for confirmatory diagnostic testing, prognosis, and predict the severity of PKU patients.

  3. Regulation of signaling genes by TGFβ during entry into dauer diapause in C. elegans

    Directory of Open Access Journals (Sweden)

    Patterson Garth I

    2004-09-01

    Full Text Available Abstract Background When resources are scant, C. elegans larvae arrest as long-lived dauers under the control of insulin/IGF- and TGFβ-related signaling pathways. However, critical questions remain regarding the regulation of this developmental event. How do three dozen insulin-like proteins regulate one tyrosine kinase receptor to control complex events in dauer, metabolism and aging? How are signals from the TGFβ and insulin/IGF pathways integrated? What gene expression programs do these pathways regulate, and how do they control complex downstream events? Results We have identified genes that show different levels of expression in a comparison of wild-type L2 or L3 larvae (non-dauer to TGFβ mutants at similar developmental stages undergoing dauer formation. Many insulin/IGF pathway and other known dauer regulatory genes have changes in expression that suggest strong positive feedback by the TGFβ pathway. In addition, many insulin-like ligand and novel genes with similarity to the extracellular domain of insulin/IGF receptors have altered expression. We have identified a large group of regulated genes with putative binding sites for the FOXO transcription factor, DAF-16. Genes with DAF-16 sites upstream of the transcription start site tend to be upregulated, whereas genes with DAF-16 sites downstream of the coding region tend to be downregulated. Finally, we also see strong regulation of many novel hedgehog- and patched-related genes, hormone biosynthetic genes, cell cycle genes, and other regulatory genes. Conclusions The feedback regulation of insulin/IGF pathway and other dauer genes that we observe would be predicted to amplify signals from the TGFβ pathway; this amplification may serve to ensure a decisive choice between "dauer" and "non-dauer", even if environmental cues are ambiguous. Up and down regulation of insulin-like ligands and novel genes with similarity to the extracellular domain of insulin/IGF receptors suggests opposing

  4. The most common spoligotype of Mycobacterium bovis isolated in the world and the recommended loci for VNTR typing; A systematic review.

    Science.gov (United States)

    Ghavidel, Mahdis; Mansury, Davood; Nourian, Kimiya; Ghazvini, Kiarash

    2018-03-22

    Mycobacterium bovis is a neglected zoonotic organism that epidemiological studies are of crucial importance in identifying its source, control it and prevent it from spreading. The aim of this study was to investigate the most common spoligotypes of Mycobacterium bovis circulating around the world and introduce the most and least strong determine powers of loci for VNTR. We have used different databases such as ISC, science direct, Embase (Elsevier), Web of Science, Scopus and Medline via PubMed. Searches were performed by key words including: Mycobacterium bovis, MIRU -VNTR, spoligotyping and discrimination power. Finally, thirty-one articles were selected after filtering out some titles, abstracts and full texts. Spoligotype SB0120 was the most common circulating type on several continents while SB0121 existed in Europe, Africa and America. SB0140 was also detected in Asia, Europe and America. QUB3232 and QUB11b were more appropriate loci among the loci with high discriminatory power. MIRU 10 and MIRU4 were among the loci with poor discriminatory power. Taking the published data into consideration, SB0120 and SB0121 are predominant spoligotypes of M. bovis circulating among animals around the world. Determining the most common spoligotype of M. bovis is the key to find source of infection, control and prevent the disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Insulin secretion and insulin action in non-insulin-dependent diabetes mellitus: which defect is primary?

    Science.gov (United States)

    Reaven, G M

    1984-01-01

    Defects in both insulin secretion and insulin action exist in patients with non-insulin-dependent diabetes mellitus (NIDDM). The loss of the acute plasma insulin response to intravenous glucose is seen in patients with relatively mild degrees of fasting hyperglycemia, but patients with severe fasting hyperglycemia also demonstrate absolute hypoinsulinemia in response to an oral glucose challenge. In contrast, day-long circulating insulin levels are within normal limits even in severely hyperglycemic patients with NIDDM. The relationship between NIDDM and insulin action in NIDDM is less complex, and is a characteristic feature of the syndrome. This metabolic defect is independent of obesity, and the severity of the resistance to insulin-stimulated glucose uptake increases with magnitude of hyperglycemia. Control of hyperglycemia with exogenous insulin ameliorates the degree of insulin resistance, and reduction of insulin resistance with weight loss in obese patients with NIDDM leads to an enhanced insulin response. Since neither therapeutic intervention is capable of restoring all metabolic abnormalities to normal, these observations do not tell us which of these two defects is primarily responsible for the development of NIDDM. Similarly, the observation that most patients with impaired glucose tolerance are hyperinsulinemic and insulin resistant does not prove that insulin resistance is the primary defect in NIDDM. In conclusion, reduction in both insulin secretion and action is seen in patients with NIDDM, and the relationship between these two metabolic abnormalities is very complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. IGF-1 and insulin as growth hormones.

    Science.gov (United States)

    Laron, Zvi

    2004-01-01

    IGF-1 generated in the liver is the anabolic effector and linear growth promoting hormone of the pituitary growth hormone (GH). This is evidenced by dwarfism in states of congenital IGF-1 deficiency, Igf1 gene mutation/deletions or knockouts, and in Laron syndrome (LS), due to GH receptor gene mutations/deletions or IGF-1 receptor blocking. In a positive way, daily IGF-1 administration to stunted patients with LS or hGH gene deletion accelerates linear growth velocity. IGF-1 acts on the proliferative cells of the epiphyseal cartilage. IGF-1 also induces organ and tissue growth; its absence causing organomicria. Insulin shares a common ancestry with IGF-1 and with 45% amino acid homology, as well as very close relationships in the structure of its receptors and post-receptor cascade, also acts as a growth hormone. It has protein anabolic activity and stimulates IGF-1 synthesis. Pancreas agenesis causes short babies, and obese children with hyperinsulinism, with or without pituitary GH, have an accelerated growth rate and skeletal maturation; so do babies with macrosomia. Whether the insulin growth effect is direct, or mediated by IGF-1 or leptin is controversial.

  7. Molecular characterization of phosphorylcholine expression on the lipooligosaccharide of Histophilus somni

    Science.gov (United States)

    Elswaifi, Shaadi F.; St. Michael, Frank; Sreenivas, Avula; Cox, Andrew; Carman, George M.; Inzana, Thomas J.

    2013-01-01

    Histophilus somni (Haemophilus somnus) is an important pathogen of cattle that is responsible for respiratory disease, septicemia, and systemic diseases such as thrombotic meningoencephalitis, myocarditis, and abortion. A variety of virulence factors have been identified in H. somni, including compositional and antigenic variation of the lipooligosaccharide (LOS). Phosphorylcholine (ChoP) has been identified as one of the components of H. somni LOS that undergoes antigenic variation. In this study, five genes (lic1ABCDHs and glpQ) with homology to genes responsible for ChoP expression in Haemophilus influenzae LOS were identified in the H. somni genome. An H. somni open reading frame (ORF) with homology to H. influenzae lic1A (lic1AHi) contained a variable number of tandem repeats (VNTR). However, whereas the tetranucleotide repeat 5′-CAAT-3′ is present in lic1AHi, the VNTR in H. somni lic1A (lic1AHs) consisted of 5′-AACC-3′. Due to the propensity of VNTR to vary during replication and cause the ORF to shift in and out of frame with the upstream start codon, the VNTR were deleted from lic1AHs to maintain the gene constitutively on. This construct was cloned into Escherichia coli, and functional enzyme assays confirmed that lic1AHs encoded a choline kinase, and that the VNTR were not required for expression of a functional gene product. Variation in the number of VNTR in lic1AHs correlated with antigenic variation of ChoP expression in H. somni strain 124P. However, antigenic variation of ChoP expression in strain 738 predominately occurred through variable extension/truncation of the LOS outer core. These results indicated that the lic1Hs genes controlled expression of ChoP on the LOS, but that in H. somni there are two potential mechanisms that account for antigenic variation of ChoP. PMID:19682567

  8. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    Science.gov (United States)

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  9. Human insulin-like growth factor II leader 2 mediates internal initiation of translation

    DEFF Research Database (Denmark)

    Pedersen, Susanne; Christiansen, Jan; Hansen, T.O.

    2002-01-01

    Insulin-like growth factor II (IGF-II) is a fetal growth factor, which belongs to the family of insulin-like peptides. During fetal life, the IGF-II gene generates three mRNAs with different 5' untranslated regions (UTRs), but identical coding regions and 3' UTRs. We have shown previously that IG...

  10. Insulin-like growth factor-I gene therapy reverses morphologic changes and reduces hyperprolactinemia in experimental rat prolactinomas

    Directory of Open Access Journals (Sweden)

    Bracamonte Maria I

    2008-01-01

    Full Text Available Abstract Background The implementation of gene therapy for the treatment of pituitary tumors emerges as a promising complement to surgery and may have distinct advantages over radiotherapy for this type of tumors. Up to now, suicide gene therapy has been the main experimental approach explored to treat experimental pituitary tumors. In the present study we assessed the effectiveness of insulin-like growth factor I (IGF-I gene therapy for the treatment of estrogen-induced prolactinomas in rats. Results Female Sprague Dawley rats were subcutaneously implanted with silastic capsules filled with 17-β estradiol (E2 in order to induce pituitary prolactinomas. Blood samples were taken at regular intervals in order to measure serum prolactin (PRL. As expected, serum PRL increased progressively and 23 days after implanting the E2 capsules (Experimental day 0, circulating PRL had undergone a 3–4 fold increase. On Experimental day 0 part of the E2-implanted animals received a bilateral intrapituitary injection of either an adenoviral vector expressing the gene for rat IGF-I (RAd-IGFI, or a vector (RAd-GFP expressing the gene for green fluorescent protein (GFP. Seven days post vector injection all animals were sacrificed and their pituitaries morphometrically analyzed to evaluate changes in the lactotroph population. RAd-IGFI but not RAd-GFP, induced a significant fall in serum PRL. Furthermore, RAd-IGFI but not RAd-GFP significantly reversed the increase in lactotroph size (CS and volume density (VD induced by E2 treatment. Conclusion We conclude that IGF-I gene therapy constitutes a potentially useful intervention for the treatment of prolactinomas and that bioactive peptide gene delivery may open novel therapeutic avenues for the treatment of pituitary tumors.

  11. Insulin degludec versus insulin glargine in insulin-naive patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Zinman, Bernard; Philis-Tsimikas, Athena; Cariou, Bertrand

    2012-01-01

    To compare ultra-long-acting insulin degludec with glargine for efficacy and safety in insulin-naive patients with type 2 diabetes inadequately controlled with oral antidiabetic drugs (OADs).......To compare ultra-long-acting insulin degludec with glargine for efficacy and safety in insulin-naive patients with type 2 diabetes inadequately controlled with oral antidiabetic drugs (OADs)....

  12. Down-regulation of the miR-543 alleviates insulin resistance through targeting the SIRT1.

    Science.gov (United States)

    Hu, Xiaojing; Chi, Liyi; Zhang, Wentao; Bai, Tiao; Zhao, Wei; Feng, Zhanbin; Tian, Hongyan

    2015-12-25

    Insulin resistance plays an important role in the development of hypertension, which is seriously detrimental to human health. Recently, Sirtuin-1 (SIRT1) has been found to participate in regulation of insulin resistance. Therefore, further studies focused on the SIRT1 regulators might provide a potential approach for combating insulin resistance and hypertension. Interestingly, in this study, we found that SIRT1 was the target gene of the miR-543 by the Dual-Luciferase Reporter Assay. Moreover, the miR-543 expression notably increased in the insulin-resistant HepG2 cells induced by TNF-α. Further analysis showed that the overexpression of the miR-543 lowered the SIRT1 mRNA and protein levels, resulting in the insulin resistance in the HepG2 cells; the inhibition of miR-543, however, enhanced the mRNA and protein expression of the SIRT1, and alleviated the insulin resistance. Furthermore, the SIRT1 overexpression abrogated the effect of miR-543 on insulin resistance. In addition, the overexpression of the miR-543 by the lentivirus-mediated gene transfer markedly impaired the insulin signaling assessed by the Western blot analysis of the glycogen synthesis and the phosphorylation of Akt and GSK3β. In summary, our study suggested that the downregulation of the miR-543 could alleviate the insulin resistance via the modulation of the SIRT1 expression, which might be a potential new strategy for treating insulin resistance and a promising therapeutic method for hypertension. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Insulin signaling displayed a differential tissue-specific response to low-dose dihydrotestosterone in female mice.

    Science.gov (United States)

    Andrisse, Stanley; Billings, Katelyn; Xue, Ping; Wu, Sheng

    2018-04-01

    Hyperandrogenemia and hyperinsulinemia are believed to play prominent roles in polycystic ovarian syndrome (PCOS). We explored the effects of low-dose dihydrotestosterone (DHT), a model of PCOS, on insulin signaling in metabolic and reproductive tissues in a female mouse model. Insulin resistance in the energy storage tissues is associated with type 2 diabetes. Insulin signaling in the ovaries and pituitary either directly or indirectly stimulates androgen production. Energy storage and reproductive tissues were isolated and molecular assays were performed. Livers and white adipose tissue (WAT) from DHT mice displayed lower mRNA and protein expression of insulin signaling intermediates. However, ovaries and pituitaries of DHT mice exhibited higher expression levels of insulin signaling genes/proteins. Insulin-stimulated p-AKT levels were blunted in the livers and WAT of the DHT mice but increased or remained the same in the ovaries and pituitaries compared with controls. Glucose uptake decreased in liver and WAT but was unchanged in pituitary and ovary of DHT mice. Plasma membrane GLUTs were decreased in liver and WAT but increased in ovary and pituitary of DHT mice. Skeletal muscle insulin-signaling genes were not lowered in DHT mice compared with control. DHT mice did not display skeletal muscle insulin resistance. Insulin-stimulated glucose transport increased in skeletal muscles of DHT mice compared with controls. DHT mice were hyperinsulinemic. However, the differential mRNA and protein expression pattern was independent of hyperinsulinemia in cultured hepatocytes and pituitary cells. These findings demonstrate a differential effect of DHT on the insulin-signaling pathway in energy storage vs. reproductive tissues independent of hyperinsulinemia.

  14. Mechanism by which arylamine N-acetyltransferase 1 ablation causes insulin resistance in mice

    DEFF Research Database (Denmark)

    Camporez, João Paulo; Wang, Yongliang; Faarkrog, Kasper

    2017-01-01

    A single-nucleotide polymorphism in the human arylamine N-acetyltransferase 2 (Nat2) gene has recently been identified as associated with insulin resistance in humans. To understand the cellular and molecular mechanisms by which alterations in Nat2 activity might cause insulin resistance, we...... examined murine ortholog Nat1 knockout (KO) mice. Nat1 KO mice manifested whole-body insulin resistance, which could be attributed to reduced muscle, liver, and adipose tissue insulin sensitivity. Hepatic and muscle insulin resistance were associated with marked increases in both liver and muscle...... adipose tissue, and hepatocytes. Taken together, these studies demonstrate that Nat1 deletion promotes reduced mitochondrial activity and is associated with ectopic lipid-induced insulin resistance. These results provide a potential genetic link among mitochondrial dysfunction with increased ectopic lipid...

  15. Integrative network analysis highlights biological processes underlying GLP-1 stimulated insulin secretion: A DIRECT study.

    Directory of Open Access Journals (Sweden)

    Valborg Gudmundsdottir

    Full Text Available Glucagon-like peptide 1 (GLP-1 stimulated insulin secretion has a considerable heritable component as estimated from twin studies, yet few genetic variants influencing this phenotype have been identified. We performed the first genome-wide association study (GWAS of GLP-1 stimulated insulin secretion in non-diabetic individuals from the Netherlands Twin register (n = 126. This GWAS was enhanced using a tissue-specific protein-protein interaction network approach. We identified a beta-cell protein-protein interaction module that was significantly enriched for low gene scores based on the GWAS P-values and found support at the network level in an independent cohort from Tübingen, Germany (n = 100. Additionally, a polygenic risk score based on SNPs prioritized from the network was associated (P < 0.05 with glucose-stimulated insulin secretion phenotypes in up to 5,318 individuals in MAGIC cohorts. The network contains both known and novel genes in the context of insulin secretion and is enriched for members of the focal adhesion, extracellular-matrix receptor interaction, actin cytoskeleton regulation, Rap1 and PI3K-Akt signaling pathways. Adipose tissue is, like the beta-cell, one of the target tissues of GLP-1 and we thus hypothesized that similar networks might be functional in both tissues. In order to verify peripheral effects of GLP-1 stimulation, we compared the transcriptome profiling of ob/ob mice treated with liraglutide, a clinically used GLP-1 receptor agonist, versus baseline controls. Some of the upstream regulators of differentially expressed genes in the white adipose tissue of ob/ob mice were also detected in the human beta-cell network of genes associated with GLP-1 stimulated insulin secretion. The findings provide biological insight into the mechanisms through which the effects of GLP-1 may be modulated and highlight a potential role of the beta-cell expressed genes RYR2, GDI2, KIAA0232, COL4A1 and COL4A2 in GLP-1 stimulated

  16. Genetic Variations in the Kir6.2 Subunit (KCNJ11 of Pancreatic ATP-Sensitive Potassium Channel Gene Are Associated with Insulin Response to Glucose Loading and Early Onset of Type 2 Diabetes in Childhood and Adolescence in Taiwan

    Directory of Open Access Journals (Sweden)

    Yi-Der Jiang

    2014-01-01

    Full Text Available To investigate the role of E23K polymorphism of the KCNJ11 gene on early onset of type 2 diabetes in school-aged children/adolescents in Taiwan, we recruited 38 subjects with type 2 diabetes (ages 18.6 ± 6.6 years; body mass index percentiles 83.3 ± 15.4 and 69 normal controls (ages 17.3 ± 3.8 years; body mass index percentiles 56.7 ± 29.0 from a national surveillance for childhood/adolescent diabetes in Taiwan. We searched for the E23K polymorphism of the KCNJ11 gene. We found that type 2 diabetic subjects had higher carrier rate of E23K polymorphism of KCNJ11 gene than control subjects (P = 0.044. After adjusting for age, gender, body mass index percentiles, and fasting plasma insulin, the E23K polymorphism contributed to an increased risk for type 2 diabetes (P = 0.047. K23-allele-containing genotypes conferring increased plasma insulin level during OGTT in normal subjects. However, the diabetic subjects with the K23-allele-containing genotypes had lower fasting plasma insulin levels after adjustment of age and BMI percentiles. In conclusion, the E23K variant of the KCNJ11 gene conferred higher susceptibility to type 2 diabetes in children/adolescents. Furthermore, in normal glucose-tolerant children/adolescents, K23 allele carriers had a higher insulin response to oral glucose loading.

  17. Role of rs1501299 variant in the adiponectin gene on total adiponectin levels, insulin resistance and weight loss after a Mediterranean hypocaloric diet.

    Science.gov (United States)

    de Luis, Daniel Antonio; Izaola, Olatz; Primo, David; Aller, Rocio

    2017-11-14

    Several adiponectin gene (ADIPOQ) single nucleotide polymorphisms (SNPS) have been related with adiponectin levels and risk for obesity. Our aim was to analyze the effects of rs1501299 ADIPOQ gene polymorphism on total adiponectin levels, insulin resistance and weight loss after a Mediterranean hypocaloric diet in obese subjects. A Caucasian population of 82 obese patients was analyzed, before and after 3 months on a Mediterranean hypocaloric diet. Before and after 3 months on a hypocaloric diet, an anthropometric evaluation, an assessment of nutritional intake and a biochemical analysis were performed. After dietary treatment and in wild type group, weight, BMI, fat mass, leptin levels, systolic blood pressure and waist circumference decreases were similar to the mutant type group. In wild type group, the decrease in total cholesterol was -28.1±15.3 mg/dl (mutant group: -12.6±16.7 mg/dl:p=0.009), LDL- cholesterol was -31.8±20.5 mg/dl (-12.2±11.5 mg/dl:p=0.006), fasting glucose plasma -4.8±2.5 mg/dL (-0.5±0.1 mg/dL:p=0.02), insulin -3.6±1.5 mUI/L (+0.6±1.1 mUI/L:p=0.02) and HOMA-IR -1.2±0.9 (-0.1±1.1:p=0.03). The present study suggests that T allele of ADIPO (rs1501299) could be a predictor of a lack of response of HOMA-IR, insulin, fasting glucose and LDL cholesterol secondary to a Mediterranean hypocaloric diet in obese subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A cross-sectional study to assess any possible linkage of C/T polymorphism in CYP17A1 gene with insulin resistance in non-obese women with polycystic ovarian syndrome

    Directory of Open Access Journals (Sweden)

    Ushasi Banerjee

    2016-01-01

    Full Text Available Background & objectives: Insulin resistance (IR is a major confounding factor in polycystic ovarian syndrome (PCOS irrespective of obesity. Its exact mechanism remains elusive till now. C/T polymorphism in the -34 promoter region of the CYP17 gene is inconsistently attributed to elucidate the mechanism of IR and its link to hyperandrogenemia in obese PCOS patients. In the present study we aimed to evaluate any association of this polymorphism with IR in non-obese women with PCOS. Methods: Polymorphism study was performed by restriction fragment length polymorphism (RFLP analysis of the Msp A1 digest of the PCR product of the target gene in 75 PCOS cases against 73 age and BMI matched control women. Serum testosterone, BMI and HOMA-IR (homeostatic model of assessment-insulin resistance were analyzed by standard techniques. A realistic cut-off value for the HOMA-IR was obtained through receiver operating characteristic (ROC curve for exploring any possible link between IR and T/C polymorphism in the case group. Results: Significant increases in serum testosterone and HOMA-IR values were observed among the case group (P<0.001 without any significant elevation in BMI and FBG compared to controls. Cut-off value for IR in the PCOS patients was 1.40 against a maximum sensitivity of 0.83 and a minimum false positivity of 0.13. The analysis revealed an inconclusive link between the C/T polymorphic distribution and insulin resistant case subjects. Interpretation & conclusions: The results showed that CYP17A1 gene was not conclusively linked to either IR or its associated increased androgen secretion in non-obese women with PCOS. We propose that an increased sensitivity of insulin on the ovarian cells may be the predominant reason for the clinical effects and symptoms of androgen excess observed in non-obese PCOS patients in our region.

  19. Caenorhabditis elegans DAF-2 as a Model for Human Insulin Receptoropathies

    Directory of Open Access Journals (Sweden)

    David A. Bulger

    2017-01-01

    Full Text Available Human exome sequencing has dramatically increased the rate of identification of disease-associated polymorphisms. However, examining the functional consequences of those variants has created an analytic bottleneck. Insulin-like signaling in Caenorhabditis elegans has long provided a model to assess consequences of human insulin signaling mutations, but this has not been evaluated in the context of current genetic tools. We have exploited strains derived from the Million Mutation Project (MMP and gene editing to explore further the evolutionary relationships and conservation between the human and C. elegans insulin receptors. Of 40 MMP alleles analyzed in the C. elegans insulin-like receptor gene DAF-2, 35 exhibited insulin-like signaling indistinguishable from wild-type animals, indicating tolerated mutations. Five MMP alleles proved to be novel dauer-enhancing mutations, including one new allele in the previously uncharacterized C-terminus of DAF-2. CRISPR-Cas9 genome editing was used to confirm the phenotypic consequence of six of these DAF-2 mutations and to replicate an allelic series of known human disease mutations in a highly conserved tyrosine kinase active site residue, demonstrating the utility of C. elegans for directly modeling human disease. Our results illustrate the challenges associated with prediction of the phenotypic consequences of amino acid substitutions, the value of assaying mutant isoform function in vivo, and how recently developed tools and resources afford the opportunity to expand our understanding even of highly conserved regulatory modules such as insulin signaling. This approach may prove generally useful for modeling phenotypic consequences of candidate human pathogenic mutations in conserved signaling and developmental pathways.

  20. Induction of insulin and islet amyloid polypeptide production in pancreatic islet glucagonoma cells by insulin promoter factor 1

    DEFF Research Database (Denmark)

    Serup, P; Jensen, J; Andersen, F G

    1996-01-01

    Insulin promoter factor 1 (IPF1), a member of the homeodomain protein family, serves an early role in pancreas formation, as evidenced by the lack of pancreas formation in mice carrying a targeted disruption of the IPF1 gene [Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. (1994) Nature (London...

  1. The Role of Insulin, Insulin Growth Factor, and Insulin-Degrading Enzyme in Brain Aging and Alzheimer's Disease

    OpenAIRE

    Messier, Claude; Teutenberg, Kevin

    2005-01-01

    Most brain insulin comes from the pancreas and is taken up by the brain by what appears to be a receptor-based carrier. Type 2 diabetes animal models associated with insulin resistance show reduced insulin brain uptake and content. Recent data point to changes in the insulin receptor cascade in obesity-related insulin resistance, suggesting that brain insulin receptors also become less sensitive to insulin, which could reduce synaptic plasticity. Insulin transport to the brain is reduced in a...

  2. A genetic-demographic approach reveals a gender-specific association of SLC6A3/DAT1 40 bp-VNTR with life-expectancy.

    Science.gov (United States)

    Hadi, Fazal; Dato, Serena; Carpi, Francesco M; Prontera, Paolo; Crucianelli, Francesca; Renda, Federica; Passarino, Giuseppe; Napolioni, Valerio

    2015-06-01

    Several recent lines of evidence are proving an important role for dopamine in the aging process and in the determination of life span. Components of the dopaminergic system may represent good candidates for longevity studies. Herein, we tested the possible association of the functional SLC6A3/DAT1 40-bp VNTR with life-expectancy in a healthy population of Central Italy (N = 993) by applying a genetic-demographic approach that takes into account the demographic information and different survival rates between sexes for modeling the survival of specific allele carriers in the population. Male carriers of S*/S* genotype showed a lower survival chance across most of the lifespan respect to the survival of DAT1*L-carriers (P = 0.021). The same analyses gave non-significant results in females. Several studies already reported significant sex differences in dopamine metabolism and its related biological pathways. Thus, we can hypothesize that the SLC6A3/DAT1 40 bp-VNTR may affect life expectancy in a sex-specific way. Moreover, it is conceivable that DAT1 S*/S* carriers, who are prone to assume "risk" type behaviors, may be dropped out of the "healthy" population by a sort of "demographic selection".

  3. Associations of −308G/A Polymorphism of Tumor Necrosis Factor(TNF)–α Gene and Serum TNF-α Levels with Measures of Obesity, Intra-Abdominal and Subcutaneous Abdominal Fat, Subclinical Inflammation and Insulin Resistance in Asian Indians in North India

    Science.gov (United States)

    Vikram, Naval K.; Bhatt, Surya Prakash; Bhushan, Bharat; Luthra, Kalpana; Misra, Anoop; Poddar, Pawan K.; Pandey, Ravindra M.; Guleria, Randeep

    2011-01-01

    Objectives: Obesity is associated with high levels proinflammatory cytokines like tumour necrosis factor alpha (TNF-α), which may play an important role in the genesis of insulin resistance. We evaluated the relationship of −308G/A polymorphism of TNF-α gene with obesity and insulin resistance in Asian Indians in north India. Methods: This cross-sectional study included 151 apparently healthy individuals (79 males, 72 females) 18–50 yrs of age from New Delhi, India. Body composition by dual-energy x-ray absorptiometry (DEXA) and abdominal fat by magnetic resonance imaging (MRI) were measured. Biochemical measurements included OGTT, lipids, fasting insulin, hs-CRP and TNF-α levels. We analysed −308G/A polymorphism of TNF-α gene and studied its association with obesity and biochemical parameters. Results: At comparable BMI, abdominal obesity was more prevalent in females (50%) as compared to males (20%). The wild genotype (GG) was present in 78.8%, GA in 17.9%, and AA in 3.3% subjects. Measures of body composition, abdominal fat distribution, lipids, insulin, hs-CRP and TNF-α levels were not influenced by the presence of −308G/A polymorphism. Serum TNF-α levels correlated significantly with fasting insulin in both genders. Conclusion: TNF-α levels correlate with fasting insulin but not with indicators of body composition in Asian Indians. The −308G/A polymorphism of TNF-α gene is not associated with differences in the serum levels of TNF-α in Asian Indians. PMID:21846948

  4. From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Gabr

    2017-01-01

    Full Text Available The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs and adipose tissue-derived mesenchymal stem cells (AT-MSCs, for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs, was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion. BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine.

  5. High-fat diet induced insulin resistance in pregnant rats through pancreatic pax6 signaling pathway.

    Science.gov (United States)

    Wu, Hao; Liu, Yunyun; Wang, Hongkun; Xu, Xianming

    2015-01-01

    To explore the changes in pancreas islet function of pregnant rats after consumption of high-fat diet and the underlying mechanism. Thirty pregnant Wistar rats were randomly divided into two groups: high-fat diet group and normal control group. Twenty days after gestation, fasting blood glucose concentration (FBG) and fasting serum insulin concentration (FINS) were measured. Then, oral glucose tolerance test (OGTT) and insulin release test (IRT) were performed. Finally, all the rats were sacrificed and pancreas were harvested. Insulin sensitivity index (ISI) and insulin resistance index (HOMA-IR) were calculated according to FBG and FINS. RT-PCR and Real-time PCR were performed to study the expression of paired box 6 transcription factor (Pax6) and its target genes in pancreatic tissues. The body weight was significantly increased in the high-fat diet group compared with that of normal control rats (Pinsulin concentration between the two groups. OGTT and IRT were abnormal in the high-fat diet group. The high-fat diet rats were more prone to impaired glucose tolerance and insulin resistance. The level of the expression of Pax6 transcription factor and its target genes in pancreas, such as pancreatic and duodenal homeobox factor-1 (Pdx1), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) and glucose transporter 2 (Glut2) were decreased significantly compared with those of normal control group. High-fat diet feeding during pregnancy may induce insulin resistance in maternal rats by inhibiting pancreatic Pax6 and its target genes expression.

  6. Associations of the interleukin-1 gene locus polymorphisms with risk to hip and knee osteoarthritis: gender and subpopulation differences.

    Science.gov (United States)

    Kaarvatn, M H; Jotanovic, Z; Mihelic, R; Etokebe, G E; Mulac-Jericevic, B; Tijanic, T; Balen, S; Sestan, B; Dembic, Z

    2013-02-01

    Genetic predisposition to the complex hereditary disease like osteoarthritis (OA) of the large joints (hip and knee) includes the interleukin-1 gene (IL-1) cluster on chromosome 2. Using a case-control study with 500 OA patients (240 knee and 260 hip OA patients, all with joint replacement), we analysed frequencies of IL-1 gene cluster polymorphisms in Croatian Caucasian population. The control samples came from 531 healthy individuals including blood donors. We genotyped two single nucleotide polymorphisms in the IL-1 gene locus at IL-1A (-889, C>T, rs1800587) and IL-1B (+3594, C>T, rs1143634) and compared their frequencies between patients and controls. We predicted haplotypes by combining current data with our previous results on gene polymorphisms (IL-1B, rs16944 and the IL-1 receptor antagonist gene [IL-1RN] variable number tandem repeat [VNTR]) for the same population. Haplotype analyses revealed gender disparities and showed that women carriers of the 1-2-1-1 haplotype [IL-1A(rs1800587) - IL-1B(rs1143634) - IL-1B(rs16944) - IL-1RN(VNTR)] had sixfold lower risk to develop knee OA. However, carriers of the 1-1-1-2 haplotype of both sexes had over twofold higher predisposition to hip OA. Our results differ from some earlier studies in Caucasian subpopulations, which may be due to the fact that this is the first study to separate genders in assessing the IL-1-locus genetic risk of OA. The results suggest that inflammatory mediators like IL-1 might be implicated in the pathogenesis of primary OA in large joints and that as yet unidentified gender-specific factors exist in a Croatian Caucasian population. © 2012 The Authors. Scandinavian Journal of Immunology © 2012 Blackwell Publishing Ltd.

  7. Insulin secretion and signaling in response to dietary restriction and subsequent re-alimentation in cattle.

    Science.gov (United States)

    Keogh, Kate; Kenny, David A; Kelly, Alan K; Waters, Sinéad M

    2015-08-01

    The objectives of this study were to examine systemic insulin response to a glucose tolerance test (GTT) and transcript abundance of genes of the insulin signaling pathway in skeletal muscle, during both dietary restriction and re-alimentation-induced compensatory growth. Holstein Friesian bulls were blocked to one of two groups: 1) restricted feed allowance for 125 days (period 1) (RES, n = 15) followed by ad libitum feeding for 55 days (period 2) or 2) ad libitum access to feed throughout (periods 1 and 2) (ADLIB, n = 15). On days 90 and 36 of periods 1 and 2, respectively, a GTT was performed. M. longissimus dorsi biopsies were harvested from all bulls on days 120 and 15 of periods 1 and 2, respectively, and RNA-Seq analysis was performed. RES displayed a lower growth rate during period 1 (RES: 0.6 kg/day, ADLIB: 1.9 kg/day; P alimentation (RES: 2.5 kg/day, ADLIB: 1.4 kg/day; P alimentation (P > 0.05). Genes differentially expressed in the insulin signaling pathway suggested a greater sensitivity to insulin in skeletal muscle, with pleiotropic effects of insulin signaling interrupted during dietary restriction. Collectively, these results indicate increased sensitivity to glucose clearance and skeletal muscle insulin signaling during dietary restriction; however, no overall role for insulin was apparent in expressing compensatory growth. Copyright © 2015 the American Physiological Society.

  8. Generation of insulin-producing human mesenchymal stem cells using recombinant adeno-associated virus.

    Science.gov (United States)

    Kim, Jeong Hwan; Park, Si-Nae; Suh, Hwal

    2007-02-28

    The purpose of current experiment is the generation of insulin-producing human mesenchymal stem cells as therapeutic source for the cure of type 1 diabetes. Type 1 diabetes is generally caused by insulin deficiency accompanied by the destruction of islet beta-cells. In various trials for the treatment of type 1 diabetes, cell-based gene therapy using stem cells is considered as one of the most useful candidate for the treatment. In this experiment, human mesenchymal stem cells were transduced with AAV which is containing furin-cleavable human preproinsulin gene to generate insulin-producing cells as surrogate beta-cells for the type 1 diabetes therapy. In the rAAV production procedure, rAAV was generated by transfection of AD293 cells. Human mesenchymal stems cells were transduced using rAAV with a various multiplicity of infection. Transduction of recombinant AAV was also tested using beta-galactosidse expression. Cell viability was determined by using MTT assay to evaluate the toxicity of the transduction procedure. Expression and production of Insulin were tested using reverse transcriptase-polymerase chain reaction and immunocytochemistry. Secretion of human insulin and C-peptide from the cells was assayed using enzyme-linked immunosorbent assay. Production of insulin and C-peptide from the test group represented a higher increase compared to the control group. In this study, we examined generation of insulin-producing cells from mesenchymal stem cells by genetic engineering for diabetes therapy. This work might be valuable to the field of tissue engineering for diabetes treatment.

  9. Insulin receptors

    International Nuclear Information System (INIS)

    Kahn, C.R.; Harrison, L.C.

    1988-01-01

    This book contains the proceedings on insulin receptors. Part A: Methods for the study of structure and function. Topics covered include: Method for purification and labeling of insulin receptors, the insulin receptor kinase, and insulin receptors on special tissues

  10. Associations between dopamine and serotonin genes and job satisfaction: preliminary evidence from the Add Health Study.

    Science.gov (United States)

    Song, Zhaoli; Li, Wendong; Arvey, Richard D

    2011-11-01

    Previous behavioral genetic studies have found that job satisfaction is partially heritable. We went a step further to examine particular genetic markers that may be associated with job satisfaction. Using an oversample from the National Adolescent Longitudinal Study (Add Health Study), we found 2 genetic markers, dopamine receptor gene DRD4 VNTR and serotonin transporter gene 5-HTTLPR, to be weakly but significantly associated with job satisfaction. Furthermore, we found study participants' level of pay to mediate the DRD4 and job satisfaction relationship. However, we found no evidence that self-esteem mediated the relationships between these 2 genes and job satisfaction. The study represents an initial effort to introduce a molecular genetics approach to the fields of organizational psychology and organizational behavior. (c) 2011 APA, all rights reserved.

  11. Overexpression of the dual-specificity phosphatase MKP-4/DUSP-9 protects against stress-induced insulin resistance

    DEFF Research Database (Denmark)

    Emanuelli, Brice; Eberlé, Delphine; Suzuki, Ryo

    2008-01-01

    , improved glucose intolerance, decreased expression of gluconeogenic and lipogenic genes, and reduced hepatic steatosis. Thus, MKP-4 has a protective effect against the development of insulin resistance through its ability to dephosphorylate and inactivate crucial mediators of stress-induced insulin...

  12. GCKR variants increase triglycerides while protecting from insulin resistance in Chinese children.

    Science.gov (United States)

    Shen, Yue; Wu, Lijun; Xi, Bo; Liu, Xin; Zhao, Xiaoyuan; Cheng, Hong; Hou, Dongqing; Wang, Xingyu; Mi, Jie

    2013-01-01

    Variants in gene encoding glucokinase regulator protein (GCKR) were found to have converse effects on triglycerides and glucose metabolic traits. We aimed to investigate the influence of GCKR variants for triglycerides and glucose metabolic traits in Chinese children and adults. We genotyped two GCKR variants rs1260326 and rs1260333 in children and adults, and analyzed the association between two variants and triglycerides, glucose, insulin and HOMA-IR using linear regression model, and estimated the effect on insulin resistance using logistic regression model. Rs1260326 and rs1260333 associated with increased triglycerides in children and adults (ptriglycerides in Chinese children and adults. Triglycerides-increasing alleles of GCKR variants reduce insulin and HOMA-IR index, and protect from insulin resistance in children. Our results suggested GCKR has an effect on development of insulin resistance in Chinese children.

  13. Identification of a growth hormone-responsive STAT5-binding element in the rat insulin 1 gene

    DEFF Research Database (Denmark)

    Galsgaard, E D; Gouilleux, F; Groner, B

    1996-01-01

    promoter activity 2-fold, and this stimulation was abolished by introduction of a block mutation in a gamma-interferon-activated sequence (GAS)-like element (GLE) with the sequence 5'-TTCTGGGAA-3' located in the rat insulin 1 enhancer at position -330 to -322. This element, termed Ins-GLE, was able...... transfected with STAT5 and GH receptor cDNAs, it was found that expression of STAT5 was necessary for GH induction of these two DNA-binding complexes. These results suggest that GH stimulates insulin 1 promoter activity by inducing the binding of STAT5 to Ins-GLE.......GH and PRL stimulate both proliferation and insulin production in pancreatic beta-cells as well as in the rat insulinoma cell line RIN-5AH, We report here that human GH increases insulin mRNA levels in RIN-5AH cells via both somatogenic and lactogenic receptors. GH stimulated the rat insulin 1...

  14. Caenorhabditis elegans DAF-2 as a Model for Human Insulin Receptoropathies.

    Science.gov (United States)

    Bulger, David A; Fukushige, Tetsunari; Yun, Sijung; Semple, Robert K; Hanover, John A; Krause, Michael W

    2017-01-05

    Human exome sequencing has dramatically increased the rate of identification of disease-associated polymorphisms. However, examining the functional consequences of those variants has created an analytic bottleneck. Insulin-like signaling in Caenorhabditis elegans has long provided a model to assess consequences of human insulin signaling mutations, but this has not been evaluated in the context of current genetic tools. We have exploited strains derived from the Million Mutation Project (MMP) and gene editing to explore further the evolutionary relationships and conservation between the human and C. elegans insulin receptors. Of 40 MMP alleles analyzed in the C. elegans insulin-like receptor gene DAF-2, 35 exhibited insulin-like signaling indistinguishable from wild-type animals, indicating tolerated mutations. Five MMP alleles proved to be novel dauer-enhancing mutations, including one new allele in the previously uncharacterized C-terminus of DAF-2 CRISPR-Cas9 genome editing was used to confirm the phenotypic consequence of six of these DAF-2 mutations and to replicate an allelic series of known human disease mutations in a highly conserved tyrosine kinase active site residue, demonstrating the utility of C. elegans for directly modeling human disease. Our results illustrate the challenges associated with prediction of the phenotypic consequences of amino acid substitutions, the value of assaying mutant isoform function in vivo, and how recently developed tools and resources afford the opportunity to expand our understanding even of highly conserved regulatory modules such as insulin signaling. This approach may prove generally useful for modeling phenotypic consequences of candidate human pathogenic mutations in conserved signaling and developmental pathways. Copyright © 2017 Bulger et al.

  15. Genetic Diversity of Mycobacterium tuberculosis Isolates from Assam, India: Dominance of Beijing Family and Discovery of Two New Clades Related to CAS1_Delhi and EAI Family Based on Spoligotyping and MIRU-VNTR Typing.

    Science.gov (United States)

    Devi, Kangjam Rekha; Bhutia, Rinchenla; Bhowmick, Shovonlal; Mukherjee, Kaustab; Mahanta, Jagadish; Narain, Kanwar

    2015-01-01

    Tuberculosis (TB) is one of the major public health concerns in Assam, a remote state located in the northeastern (NE) region of India. The present study was undertaken to explore the circulating genotypes of Mycobacterium tuberculosis complex (MTBC) in this region. A total of 189 MTBC strains were collected from smear positive pulmonary tuberculosis cases from different designated microscopy centres (DMC) from various localities of Assam. All MTBC isolates were cultured on Lowenstein-Jensen (LJ) media and subsequently genotyped using spoligotyping and 24-loci mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) typing. Spoligotyping of MTBC isolates revealed 89 distinct spoligo patterns. The most dominant MTBC strain belonged to Beijing lineage and was represented by 35.45% (n = 67) of total isolates, followed by MTBC strains belonging to Central Asian-Delhi (CAS/Delhi) lineage and East African Indian (EAI5) lineage. In addition, in the present study 43 unknown spoligo patterns were detected. The discriminatory power of spoligotyping was found to be 0.8637 based on Hunter Gaston Discriminatory Index (HGDI). On the other hand, 24-loci MIRU-VNTR typing revealed that out of total 189 MTBC isolates from Assam 185 (97.9%) isolates had unique MIRU-VNTR profiles and 4 isolates grouped into 2 clusters. Phylogenetic analysis of 67 Beijing isolates based on 24-loci MIRU-VNTR typing revealed that Beijing isolates from Assam represent two major groups, each comprising of several subgroups. Neighbour-Joining (NJ) phylogenetic tree analysis based on combined spoligotyping and 24-loci MIRU-VNTR data of 78 Non-Beijing isolates was carried out for strain lineage identification as implemented by MIRU-VNTRplus database. The important lineages of MTBC identified were CAS/CAS1_Delhi (41.02%, n = 78) and East-African-Indian (EAI, 33.33%). Interestingly, phylogenetic analysis of orphan (23.28%) MTBC spoligotypes revealed that majority of these orphan

  16. Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro.

    Directory of Open Access Journals (Sweden)

    Holger A Russ

    Full Text Available Expansion of beta cells from the limited number of adult human islet donors is an attractive prospect for increasing cell availability for cell therapy of diabetes. However, attempts at expanding human islet cells in tissue culture result in loss of beta-cell phenotype. Using a lineage-tracing approach we provided evidence for massive proliferation of beta-cell-derived (BCD cells within these cultures. Expansion involves dedifferentiation resembling epithelial-mesenchymal transition (EMT. Epigenetic analyses indicate that key beta-cell genes maintain open chromatin structure in expanded BCD cells, although they are not transcribed. Here we investigated whether BCD cells can be redifferentiated into beta-like cells.Redifferentiation conditions were screened by following activation of an insulin-DsRed2 reporter gene. Redifferentiated cells were characterized for gene expression, insulin content and secretion assays, and presence of secretory vesicles by electron microscopy. BCD cells were induced to redifferentiate by a combination of soluble factors. The redifferentiated cells expressed beta-cell genes, stored insulin in typical secretory vesicles, and released it in response to glucose. The redifferentiation process involved mesenchymal-epithelial transition, as judged by changes in gene expression. Moreover, inhibition of the EMT effector SLUG (SNAI2 using shRNA resulted in stimulation of redifferentiation. Lineage-traced cells also gave rise at a low rate to cells expressing other islet hormones, suggesting transition of BCD cells through an islet progenitor-like stage during redifferentiation.These findings demonstrate for the first time that expanded dedifferentiated beta cells can be induced to redifferentiate in culture. The findings suggest that ex-vivo expansion of adult human islet cells is a promising approach for generation of insulin-producing cells for transplantation, as well as basic research, toxicology studies, and drug

  17. Dopamine transporter 3'UTR VNTR genotype is a marker of performance on executive function tasks in children with ADHD

    Directory of Open Access Journals (Sweden)

    Polotskaia Anna

    2008-06-01

    Full Text Available Abstract Background Attention-Deficit/Hyperactivity Disorder (ADHD is a heterogeneous disorder from both clinical and pathogenic viewpoints. Executive function deficits are considered among the most important pathogenic pathways leading to ADHD and may index part of the heterogeneity in this disorder. Methods To investigate the relationship between the dopamine transporter gene (SLC6A3 3'-UTR VNTR genotypes and executive function in children with ADHD, 196 children diagnosed with ADHD were sequentially recruited, genotyped, and tested using a battery of three neuropsychological tests aimed at assessing the different aspects of executive functioning. Results Taking into account a correction for multiple comparisons, the main finding of this study is a significant genotype effect on performances on the Tower of London (F = 6.902, p = 0.009 and on the Wechsler Intelligence Scale for Children, Third Edition (WISC-III Freedom From Distractibility Index (F = 7.125, p = 0.008, as well as strong trends on Self Ordered Pointing Task error scores (F = 4,996 p = 0.026 and WISC-III Digit Span performance (F = 6.28, p = 0.023. Children with the 9/10 genotype exhibited, on average, a poorer performance on all four measures compared to children with the 10/10 genotype. No effect of genotype on Wisconsin Card Sorting Test measures of performance was detected. Conclusion Results are compatible with the view that SLC6A3 genotype may modulate components of executive function performance in children with ADHD.

  18. Spectrum of Phenylalanine Hydroxylase Gene Mutations in Hamadan and Lorestan Provinces of Iran and Their Associations with Variable Number of Tandem Repeat Alleles

    Directory of Open Access Journals (Sweden)

    Reza Alibakhshi

    2018-05-01

    Full Text Available Phenylketonuria (PKU is one of the most common known inherited metabolic diseases. The present study aimed to investigate the status of molecular defects in phenylalanine hydroxylase (PAH gene in western Iranian PKU patients (predominantly from Kermanshah, Hamadan, and Lorestan provinces during 2014-2016. Additionally, the results were compared with similar studies in Iran. Nucleotide sequence analysis of all 13 exons and their flanking intronic regions of the PAH gene was performed in 18 western Iranian PKU patients. Moreover, a variable number of tandem repeat (VNTR located in the PAH gene was studied. The results revealed a mutational spectrum encompassing 11 distinct mutations distributed along the PAH gene sequence on 34 of the 36 mutant alleles (diagnostic efficiency of 94.4%. Also, four PAH VNTR alleles (with repeats of 3, 7, 8 and 9 were detected. The three most frequent mutations were IVS9+5G>A, IVS7-5T>C, and p.P281L with the frequency of 27.8%, 11%, and 11%, respectively. The results showed that there is not only a consanguineous relation, but also a difference in PAH characters of mutations between Kermanshah and the other two parts of western Iran (Hamadan and Lorestan. Also, it seems that the spectrum of mutations in western Iran is relatively distinct from other parts of the country, suggesting that this region might be a special PAH gene distribution region. Moreover, our findings can be useful in the identification of genotype to phenotype relationship in patients, and provide future abilities for confirmatory diagnostic testing, prognosis, and predict the severity of PKU patients.

  19. Construction of engineering adipose-like tissue in vivo utilizing human insulin gene-modified umbilical cord mesenchymal stromal cells with silk fibroin 3D scaffolds.

    Science.gov (United States)

    Li, Shi-Long; Liu, Yi; Hui, Ling

    2015-12-01

    We evaluated the use of a combination of human insulin gene-modified umbilical cord mesenchymal stromal cells (hUMSCs) with silk fibroin 3D scaffolds for adipose tissue engineering. In this study hUMSCs were isolated and cultured. HUMSCs infected with Ade-insulin-EGFP were seeded in fibroin 3D scaffolds with uniform 50-60 µm pore size. Silk fibroin scaffolds with untransfected hUMSCs were used as control. They were cultured for 4 days in adipogenic medium and transplanted under the dorsal skins of female Wistar rats after the hUMSCs had been labelled with chloromethylbenzamido-1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (CM-Dil). Macroscopical impression, fluorescence observation, histology and SEM were used for assessment after transplantation at 8 and 12 weeks. Macroscopically, newly formed adipose tissue was observed in the experimental group and control group after 8 and 12 weeks. Fluorescence observation supported that the formed adipose tissue originated from seeded hUMSCs rather than from possible infiltrating perivascular tissue. Oil red O staining of newly formed tissue showed that there was substantially more tissue regeneration in the experimental group than in the control group. SEM showed that experimental group cells had more fat-like cells, whose volume was larger than that of the control group, and degradation of the silk fibroin scaffold was greater under SEM observation. This study provides significant evidence that hUMSCs transfected by adenovirus vector have good compatibility with silk fibroin scaffold, and adenoviral transfection of the human insulin gene can be used for the construction of tissue-engineered adipose. Copyright © 2013 John Wiley & Sons, Ltd.

  20. A new variation in the promoter region, the -604 C>T, and the Leu72Met polymorphism of the ghrelin gene are associated with protection to insulin resistance.

    Science.gov (United States)

    Zavarella, S; Petrone, A; Zampetti, S; Gueorguiev, M; Spoletini, M; Mein, C A; Leto, G; Korbonits, M; Buzzetti, R

    2008-04-01

    Previous studies suggested that polymorphisms in the coding region of the preproghrelin were involved in the etiology of obesity and might modulate glucose-induced insulin secretion. We evaluated the association of a new variation, -604C>T, in the promoter region of the ghrelin gene, of Leu72Met (247C>A) and of Gln90Leu (265A>T), all haplotype-tagging single nucleotide polymorphisms (SNPs), with measures of insulin sensitivity in 1420 adult individuals. The three SNPs were genotyped using ABI PRISM 7900 HT Sequence Detection System. We used multiple linear regression analysis for quantitative traits and THESIAS software for haplotype analysis. We observed a protective effect exerted by Met72 variant of Leu72Met SNP on insulin resistance parameters; a significant decreasing trend from Leu/Leu to Leu/Met and to Met/Met homozygous subjects in triglycerides, fasting insulin levels and HOMA-IR index (P=0.02, 0.01 and 0.003, respectively), and, consistently, an increase in ghrelin levels (P=0.003) was found. A significant decrease from CC to TC and to TT genotypes in insulin levels and HOMA-IR index was also detected (P=0.00l for both), but only in subjects homozygous for Leu72, where the protective effect of Met72 was not present. The haplotype analysis results supported the data obtained by the evaluation of each single SNP, showing the highest value of insulin levels and HOMA-IR index in the -604(c)247(c) haplotype intermediate value in -604(T)247(C) and lowest value in -604(C)247(A). Our observations suggest a protective role of the Met72 variant and of -604 T allele in modulating insulin resistance. These SNPs or an unknown functional variant in linkage disequilibrium could increase ghrelin levels and probably insulin sensitivity.

  1. Improved insulin sensitivity after exercise: focus on insulin signaling

    DEFF Research Database (Denmark)

    Frøsig, Christian; Richter, Erik

    2009-01-01

    After a single bout of exercise, the ability of insulin to stimulate glucose uptake is markedly improved locally in the previously active muscles. This makes exercise a potent stimulus counteracting insulin resistance characterizing type 2 diabetes (T2D). It is believed that at least part...... of the mechanism relates to an improved ability of insulin to stimulate translocation of glucose transporters (GLUT4) to the muscle membrane after exercise. How this is accomplished is still unclear; however, an obvious possibility is that exercise interacts with the insulin signaling pathway to GLUT4...... translocation allowing for a more potent insulin response. Parallel to unraveling of the insulin signaling cascade, this has been investigated within the past 25 years. Reviewing existing studies clearly indicates that improved insulin action can occur independent of interactions with proximal insulin signaling...

  2. Involvement of insulin-like factor 3 (Insl3) in diethylstilbestrol-induced cryptorchidism

    NARCIS (Netherlands)

    J.M.A. Emmen (Judith); A. McLuskey; I.M. Adham; W. Engel; M. Verhoef-Post (Miriam); A.P.N. Themmen (Axel); J.A. Grootegoed (Anton); A.O. Brinkmann (Albert)

    2000-01-01

    textabstractRecently, it has been shown that targeted inactivation of the Insl3 gene in male mice results in cryptorchidism. The Insl3 gene encodes insulin-like factor 3 (Insl3), which is expressed in fetal Leydig cells. The testicular factor Insl3 appears to play an

  3. A Randomized Double-Blinded, Placebo-Controlled Trial Investigating the Effect of Fish Oil Supplementation on Gene Expression Related to Insulin Action, Blood Lipids, and Inflammation in Gestational Diabetes Mellitus-Fish Oil Supplementation and Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Mehri Jamilian

    2018-01-01

    Full Text Available Gestational diabetes mellitus (GDM is a common complication of pregnancy, and it is mostly associated with postpartum diabetes, insulin resistance, and dyslipidemia. Fish oil (omega-3 supplementation has been shown to reduce the risk of different chronic diseases such as cardiovascular disease, type 2 diabetes, and cancers, though the evidence of its impact on gestational diabetes is scarce. Our goal in this study was to determine the effect of fish oil administration on gene expression related to insulin action, blood lipids, and inflammation in women with GDM. Participants with GDM (n = 40, aged 18–40 years, were randomized to take either 1000 mg fish oil capsules, containing 180 mg eicosapentaenoic acid and 120 mg docosahexaenoic acid (n = 20, or placebo (n = 20 twice a day for 6 weeks. Gene expression related to insulin, lipids, and inflammation was quantified in peripheral blood mononuclear cells (PBMCs of GDM women using Reverse Transcription Polymerase Chain Reaction (RT-PCR method. Results of RT-PCR indicated that omega-3 supplementation upregulated gene expression of peroxisome proliferator-activated receptor gamma (PPAR-γ (P = 0.04 in PBMCs of patients with GDM, compared with the placebo. In addition, gene expression of the low-density lipoprotein receptor (LDLR (P < 0.001, interleukin-1 (IL-1 (P = 0.007, and tumor necrosis factor alpha (TNF-α (P = 0.01 was downregulated in PBMCs of women with GDM, following omega-3 supplementation. No significant effect of omega-3 supplementation was indicated on gene expression of IL-8 in PBMCs of patients with GDM. Overall, fish oil supplementation for 6 weeks in women with GDM significantly improved gene expression of PPAR-γ, IL-1, and TNF-α, but not gene expression of IL-8.

  4. Jejunal gluconeogenesis associated with insulin resistance level and its evolution after Roux-en-Y gastric bypass.

    Science.gov (United States)

    Gutierrez-Repiso, Carolina; Garcia-Serrano, Sara; Moreno-Ruiz, Francisco J; Alcain-Martinez, Guillermo; Rodriguez-Pacheco, Francisca; Garcia-Fuentes, Eduardo

    2017-04-01

    Intestinal gluconeogenesis (GNG) may play an important role in glucose homeostasis, but there is little information about the condition in humans. To study the relationship between intestinal GNG and insulin resistance, its association with the evolution of morbidly obese patients after bariatric surgery, and the effect of insulin and or leptin. Regional university hospital, Malaga (Spain). Jejunal mRNA expression of genes involved in GNG was analyzed in 3 groups of morbidly obese patients who underwent Roux-en-Y gastric bypass: with low insulin resistance (MO-low-IR), with high insulin resistance (MO-high-IR), and with type 2 diabetes treated with metformin (MO-metf-T2D). Also, intestinal epithelial cells (IEC) from MO-low-IR were incubated with different doses of insulin and or leptin. In MO-high-IR, glutaminase, phosphoenolpyruvate carboxykinase (PEPCK), glucose 6-phosphatase (G6 Pase), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1 α), and sterol regulatory element-binding proteins 1 c (SREBP-1 c) expressions were significantly higher than in MO-low-IR. In MO-metf-T2 D, only PEPCK was significantly lower than in MO-high-IR. In IEC, an incubation with a high glucose and insulin dose produced an increase of PEPCK and SREBP-1 c, and a decrease of glutaminase, fructose 1,6-bisphosphatase (FBPase), and PGC-1 α expression. At high doses of leptin, G6 Pase and FBPase were significantly increased. The improvement of insulin resistance 3 months after bariatric surgery was positively associated with high G6 Pase and FBPase expression. mRNA expression of genes involved in GNG is increased in the jejunum of MO-high-IR, and regulated by insulin and or leptin. High mRNA expression of genes involved in GNG is associated with a better evolution of insulin resistance after bariatric surgery. Copyright © 2016 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  5. GENE DOPING IN SPORT – PERSPECTIVES AND RISKS

    OpenAIRE

    E Brzeziańska; D Domańska; A Jegier

    2014-01-01

    In the past few years considerable progress regarding the knowledge of the human genome map has been achieved. As a result, attempts to use gene therapy in patients’ management are more and more often undertaken. The aim of gene therapy is to replace defective genes in vivo and/or to promote the long-term endogenous synthesis of deficient protein. In vitro studies improve the production of human recombinant proteins, such as insulin (INS), growth hormone (GH), insulin-like growth factor-1 (IG...

  6. Fatty acid induced changes in gene expression in cultured L6 rat muscle cells : An in vitro model on high dietary fat-induced insulin resistance in red gastrocnemius rat muscle in vivo

    OpenAIRE

    Breivik, Børge

    2004-01-01

    ABSTRACT Type 2 diabetes is a serious cause of morbidity and mortality and the disease is reaching epidemic proportions in the developed world. A core defect in type 2 diabetes is insulin resistance in skeletal muscle. Previous global gene expression experiments conducted at the Garvan Medical Research Institute has shown that 3 weeks high fat feeding induced increased expression of stress related genes in rat muscle. These stress-related genes could be involved in the devel...

  7. Association of single nucleotide polymorphism at position 45 in adiponectin gene with plasma adiponectin level and insulin resistance in obesity

    International Nuclear Information System (INIS)

    Chen Xiaoyu; Li Xisheng; Lin Xiahong; Gao Hongzhi; Li Qiulan; Zha Jinshun

    2012-01-01

    Objective: To explore the association of single nucleotide polymorphism at position 45 (SNP45) in adiponectin gene with plasma adiponectin level and insulin resistance in obesity in Quanzhou area of Fujian province. Methods: Two hundred and forty-eight patients with obesity and 225 normal control subjects were enrolled in this study.Fasting insulin (FINS) were measured by radioimmunoassay and fasting plasma glucose (FPG), total cholesterol (TC), triglyceride (TG), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C) were measured by BECKMAN DXC800 biochemistry analyzer. Body mass index (BMI), waist to hip ratio,homeostasis model assessment of insulin resistance (HOMA-IR) were calculated. Plasma adiponectin levels were examined by means of enzyme-linked immunosorbentassy. The adiponectin gene SNP45 was identified by PCR-restriction fragment length polymorphism. Results: (1) Frequencies of GG+GT genotype in obesity group and normal control group were 61% and 44% respectively (χ 2 =14.182, P<0.01), and G allele frequencies were 35% and 25% (χ 2 =10.708, P<0.01). (2) In obesity group,the subjects with SNP45 GG+GT genotype had higher TG and LDL-C levels than those with TT genotype (t=2.604, P<0.01; t=5.507, P<0.01), and had lower adiponectin level than those with TT genotype (t=2.275, P<0.05), and had significantly lower HDL-L level than those with TT genotype (t=10.100, P< 0.01). (3) In normal control group,the subjects with SNP45 GG +GT genotype had significantly lower adiponectin,TG,TC levels than those with TT genotype (t=2.510, P<0.05; t=2.922, P<0.01; t=3.272, P< 0.01). (4) Logistic analysis proved that the SNP45 GG+GT genotype in obesity group was associated with decreased risk of plasma adiponectin level (OR=0.810, 95% CI : 0.673-0.975, P<0.05), and with increased risk of HOMA-IR (OR=1.746, 95% CI : 1.060-2.875, P<0.05). The SNP45 GG+GT genotype in normal control group was associated with increased risk of HOMA-IR (OR=3

  8. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans.

    Science.gov (United States)

    Kullmann, Stephanie; Heni, Martin; Hallschmid, Manfred; Fritsche, Andreas; Preissl, Hubert; Häring, Hans-Ulrich

    2016-10-01

    Ever since the brain was identified as an insulin-sensitive organ, evidence has rapidly accumulated that insulin action in the brain produces multiple behavioral and metabolic effects, influencing eating behavior, peripheral metabolism, and cognition. Disturbances in brain insulin action can be observed in obesity and type 2 diabetes (T2D), as well as in aging and dementia. Decreases in insulin sensitivity of central nervous pathways, i.e., brain insulin resistance, may therefore constitute a joint pathological feature of metabolic and cognitive dysfunctions. Modern neuroimaging methods have provided new means of probing brain insulin action, revealing the influence of insulin on both global and regional brain function. In this review, we highlight recent findings on brain insulin action in humans and its impact on metabolism and cognition. Furthermore, we elaborate on the most prominent factors associated with brain insulin resistance, i.e., obesity, T2D, genes, maternal metabolism, normal aging, inflammation, and dementia, and on their roles regarding causes and consequences of brain insulin resistance. We also describe the beneficial effects of enhanced brain insulin signaling on human eating behavior and cognition and discuss potential applications in the treatment of metabolic and cognitive disorders. Copyright © 2016 the American Physiological Society.

  9. Liraglutide increases FGF-21 activity and insulin sensitivity in high fat diet and adiponectin knockdown induced insulin resistance.

    Directory of Open Access Journals (Sweden)

    Mengliu Yang

    Full Text Available BACKGROUND: Liraglutide is a glucagon-like peptide-1 analogue that stimulates insulin secretion and improves β-cell function. However, it is not clear whether liraglutide achieves its glucose lowering effect only by its known effects or whether other as yet unknown mechanisms are involved. The aim of this study was to examine the effects of liraglutide on Fibroblast growth factor-21 (FGF-21 activity in High-fat diet (HFD fed ApoE(-/- mice with adiponectin (Acrp30 knockdown. METHOD: HFD-fed ApoE(-/- mice were treated with adenovirus vectors expressing shAcrp30 to produce insulin resistance. Hyperinsulinemic-euglycemic clamp studies were performed to evaluate insulin sensitivity of the mouse model. QRT-PCR and Western blot were used to measure the mRNA and protein expression of the target genes. RESULTS: The combination of HFD, ApoE deficiency, and hypoadiponectinemia resulted in an additive effect on insulin resistance. FGF-21 mRNA expressions in both liver and adipose tissues were significantly increased while FGF-21 receptor 1 (FGFR-1 and β-Klotho mRNA levels in adipose tissue, as well as FGFR-1-3 and β-Klotho mRNA levels in liver were significantly decreased in this model. Liraglutide treatment markedly improved insulin resistance and increased FGF-21 expression in liver and FGFR-3 in adipose tissue, restored β-Klotho mRNA expression in adipose tissue as well as FGFR-1-3, β-Klotho levels and phosphorylation of FGFR1 up to the levels observed in control mice in liver. Liraglutide treatment also further increased FGF-21 proteins in liver and plasma. In addition, as shown by hyperinsulinemic-euglycemic clamp, liraglutide treatment also markedly improved glucose metabolism and insulin sensitivity in these animals. CONCLUSION: These findings demonstrate an additive effect of HFD, ApoE deficiency, and adiponectin knockdown on insulin resistance and unveil that the regulation of glucose metabolism and insulin sensitivity by liraglutide may be

  10. Fanconi anemia links reactive oxygen species to insulin resistance and obesity.

    Science.gov (United States)

    Li, Jie; Sipple, Jared; Maynard, Suzette; Mehta, Parinda A; Rose, Susan R; Davies, Stella M; Pang, Qishen

    2012-10-15

    Insulin resistance is a hallmark of obesity and type 2 diabetes. Reactive oxygen species (ROS) have been proposed to play a causal role in insulin resistance. However, evidence linking ROS to insulin resistance in disease settings has been scant. Since both oxidative stress and diabetes have been observed in patients with the Fanconi anemia (FA), we sought to investigate the link between ROS and insulin resistance in this unique disease model. Mice deficient for the Fanconi anemia complementation group A (Fanca) or Fanconi anemia complementation group C (Fancc) gene seem to be diabetes-prone, as manifested by significant hyperglycemia and hyperinsulinemia, and rapid weight gain when fed with a high-fat diet. These phenotypic features of insulin resistance are characterized by two critical events in insulin signaling: a reduction in tyrosine phosphorylation of the insulin receptor (IR) and an increase in inhibitory serine phosphorylation of the IR substrate-1 in the liver, muscle, and fat tissues from the insulin-challenged FA mice. High levels of ROS, spontaneously accumulated or generated by tumor necrosis factor alpha in these insulin-sensitive tissues of FA mice, were shown to underlie the FA insulin resistance. Treatment of FA mice with the natural anti-oxidant Quercetin restores IR signaling and ameliorates the diabetes- and obesity-prone phenotypes. Finally, pairwise screen identifies protein-tyrosine phosphatase (PTP)-α and stress kinase double-stranded RNA-dependent protein kinase (PKR) that mediate the ROS effect on FA insulin resistance. These findings establish a pathogenic and mechanistic link between ROS and insulin resistance in a unique human disease setting. ROS accumulation contributes to the insulin resistance in FA deficiency by targeting both PTP-α and PKR.

  11. Leu72Met and Other Intronic Polymorphisms in the and Genes Are Not Associated with Type 2 Diabetes Mellitus, Insulin Resistance, or Serum Ghrelin Levels in a Saudi Population

    OpenAIRE

    Faris Elbahi Joatar; Ali Ahmed Al Qarni; Muhalab E. Ali; Abdulaziz Al Masaud; Abdirashid M. Shire; Nagalla Das; Khalid Gumaa; Hayder A. Giha

    2017-01-01

    Background Ghrelin (GHRL), a gastric peptide encoded by the GHRL gene, is known to be involved in energy homeostasis via its G protein receptor, encoded by the growth hormone secretagogue receptor (GHSR) gene. Some studies have shown associations between plasma GHRL levels and GHRL single-nucleotide polymorphisms (SNPs), namely the Leu72Met polymorphism (rs696217 TG), with type 2 diabetes mellitus (T2DM) and insulin resistance (IR), while others have not. The controversies in these associatio...

  12. Molecular evolution and functional characterization of Drosophila insulin-like peptides.

    Directory of Open Access Journals (Sweden)

    Sebastian Grönke

    2010-02-01

    Full Text Available Multicellular animals match costly activities, such as growth and reproduction, to the environment through nutrient-sensing pathways. The insulin/IGF signaling (IIS pathway plays key roles in growth, metabolism, stress resistance, reproduction, and longevity in diverse organisms including mammals. Invertebrate genomes often contain multiple genes encoding insulin-like ligands, including seven Drosophila insulin-like peptides (DILPs. We investigated the evolution, diversification, redundancy, and functions of the DILPs, combining evolutionary analysis, based on the completed genome sequences of 12 Drosophila species, and functional analysis, based on newly-generated knock-out mutations for all 7 dilp genes in D. melanogaster. Diversification of the 7 DILPs preceded diversification of Drosophila species, with stable gene diversification and family membership, suggesting stabilising selection for gene function. Gene knock-outs demonstrated both synergy and compensation of expression between different DILPs, notably with DILP3 required for normal expression of DILPs 2 and 5 in brain neurosecretory cells and expression of DILP6 in the fat body compensating for loss of brain DILPs. Loss of DILP2 increased lifespan and loss of DILP6 reduced growth, while loss of DILP7 did not affect fertility, contrary to its proposed role as a Drosophila relaxin. Importantly, loss of DILPs produced in the brain greatly extended lifespan but only in the presence of the endosymbiontic bacterium Wolbachia, demonstrating a specific interaction between IIS and Wolbachia in lifespan regulation. Furthermore, loss of brain DILPs blocked the responses of lifespan and fecundity to dietary restriction (DR and the DR response of these mutants suggests that IIS extends lifespan through mechanisms that both overlap with those of DR and through additional mechanisms that are independent of those at work in DR. Evolutionary conservation has thus been accompanied by synergy

  13. Variance of the SGK1 gene is associated with insulin secretion in different European populations: results from the TUEF, EUGENE2, and METSIM studies

    DEFF Research Database (Denmark)

    Friedrich, Björn; Weyrich, Peter; Stancáková, Alena

    2008-01-01

    gene (SGK) variations and insulin secretion traits. The German TUEF project provided the screening population (N = 725), and four tagging SNPs (rs1763527, rs1743966, rs1057293, rs9402571) were investigated. EUGENE2 (N = 827) served as a replication cohort for the detected associations. Finally...... secretion only remained significant in lean TUEF participants (BMIEUGENE2 rs9402571 minor allele carriers, who had a significantly higher AUC(Ins)/AUC(Glc) (TT: 226+/-7, XG: 246+/-9; p = 0.019). Accordingly, the METSIM trial revealed a lower prevalence of type...... 2 diabetes (OR: 0.85; 95%CI: 0.71-1.01; p = 0.065, dominant model) in rs9402571 minor allele carriers. CONCLUSIONS: The rs9402571 SGK genotype associates with increased insulin secretion in lean non-diabetic TUEF/EUGENE2 participants and with lower diabetes prevalence in METSIM. Our study in three...

  14. RFX6 Regulates Insulin Secretion by Modulating Ca2+ Homeostasis in Human β Cells

    Directory of Open Access Journals (Sweden)

    Vikash Chandra

    2014-12-01

    Full Text Available Development and function of pancreatic β cells involve the regulated activity of specific transcription factors. RFX6 is a transcription factor essential for mouse β cell differentiation that is mutated in monogenic forms of neonatal diabetes. However, the expression and functional roles of RFX6 in human β cells, especially in pathophysiological conditions, are poorly explored. We demonstrate the presence of RFX6 in adult human pancreatic endocrine cells. Using the recently developed human β cell line EndoC-βH2, we show that RFX6 regulates insulin gene transcription, insulin content, and secretion. Knockdown of RFX6 causes downregulation of Ca2+-channel genes resulting in the reduction in L-type Ca2+-channel activity that leads to suppression of depolarization-evoked insulin exocytosis. We also describe a previously unreported homozygous missense RFX6 mutation (p.V506G that is associated with neonatal diabetes, which lacks the capacity to activate the insulin promoter and to increase Ca2+-channel expression. Our data therefore provide insights for understanding certain forms of neonatal diabetes.

  15. 3,5 Diiodo-L-Thyronine (T2 Does Not Prevent Hepatic Steatosis or Insulin Resistance in Fat-Fed Sprague Dawley Rats.

    Directory of Open Access Journals (Sweden)

    Daniel F Vatner

    Full Text Available Thyroid hormone mimetics are alluring potential therapies for diseases like dyslipidemia, nonalcoholic fatty liver disease (NAFLD, and insulin resistance. Though diiodothyronines are thought inactive, pharmacologic treatment with 3,5- Diiodo-L-Thyronine (T2 reportedly reduces hepatic lipid content and improves glucose tolerance in fat-fed male rats. To test this, male Sprague Dawley rats fed a safflower-oil based high-fat diet were treated with T2 (0.25 mg/kg-d or vehicle. Neither 10 nor 30 days of T2 treatment had an effect on weight, adiposity, plasma fatty acids, or hepatic steatosis. Insulin action was quantified in vivo by a hyperinsulinemic-euglycemic clamp. T2 did not alter fasting plasma glucose or insulin concentration. Basal endogenous glucose production (EGP rate was unchanged. During the clamp, there was no difference in insulin stimulated whole body glucose disposal. Insulin suppressed EGP by 60% ± 10 in T2-treated rats as compared with 47% ± 4 suppression in the vehicle group (p = 0.32. This was associated with an improvement in hepatic insulin signaling; insulin stimulated Akt phosphorylation was ~2.5 fold greater in the T2-treated group as compared with the vehicle-treated group (p = 0.003. There was no change in expression of genes thought to mediate the effect of T2 on hepatic metabolism, including genes that regulate hepatic lipid oxidation (ppara, carnitine palmitoyltransferase 1a, genes that regulate hepatic fatty acid synthesis (srebp1c, acetyl coa carboxylase, fatty acid synthase, and genes involved in glycolysis and gluconeogenesis (L-pyruvate kinase, glucose 6 phosphatase. Therefore, in contrast with previous reports, in Sprague Dawley rats fed an unsaturated fat diet, T2 administration failed to improve NAFLD or whole body insulin sensitivity. Though there was a modest improvement in hepatic insulin signaling, this was not associated with significant differences in hepatic insulin action. Further study will be

  16. DNA Polymorphism of Insulin-like Growth Factor-binding Protein-3 Gene and Its Association with Cashmere Traits in Cashmere Goats

    Directory of Open Access Journals (Sweden)

    Haiying Liu

    2012-11-01

    Full Text Available Insulin-like growth factor binding protein-3 (IGFBP-3 gene is important for regulation of growth and development in mammals. The present investigation was carried out to study DNA polymorphism by PCR-RFLP of IGFBP-3 gene and its effect on fibre traits of Chinese Inner Mongolian cashmere goats. The fibre traits data investigated were cashmere fibre diameter, combed cashmere weight, cashmere fibre length and guard hair length. Four hundred and forty-four animals were used to detect polymorphisms in the hircine IGFBP-3 gene. A 316-bp fragment of the IGFBP-3 gene in exon 2 was amplified and digested with HaeIII restriction enzyme. Three patterns of restriction fragments were observed in the populations. The frequency of AA, AB and BB genotypes was 0.58, 0.33 and 0.09 respectively. The allelic frequency of the A and B allele was 0.75 and 0.25 respectively. Nucleotide sequencing revealed a C>G transition in the exon 2 region of the IGFBP-3 gene resulting in R158G change which caused the polymorphism. Least squares analysis revealed a significant effect of genotypes on cashmere weight (p0.05. The animals of AB and BB genotypes showed higher cashmere weight, cashmere fibre length and hair length than the animals possessing AA genotype. These results suggested that polymorphisms in the hircine IGFBP-3 gene might be a potential molecular marker for cashmere weight in cashmere goats.

  17. Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance.

    Science.gov (United States)

    Arai, Chikako; Arai, Norie; Mizote, Akiko; Kohno, Keizo; Iwaki, Kanso; Hanaya, Toshiharu; Arai, Shigeyuki; Ushio, Simpei; Fukuda, Shigeharu

    2010-12-01

    Trehalose has been shown to evoke lower insulin secretion than glucose in oral saccharide tolerance tests in humans. Given this hypoinsulinemic effect of trehalose, we hypothesized that trehalose suppresses adipocyte hypertrophy by reducing storage of triglyceride and mitigates insulin resistance in mice fed a high-fat diet (HFD). Mice were fed an HFD and given drinking water containing 2.5% saccharide (glucose [Glc], trehalose [Tre], maltose [Mal], high-fructose corn syrup, or fructose [Fru]) ad libitum. After 7 weeks of HFD and saccharide intake, fasting serum insulin levels in the Tre/HFD group were significantly lower than in the Mal/HFD and Glc/HFD groups (P fructose corn syrup/HFD, or Fru/HFD group. Analysis of gene expression in mesenteric adipocytes showed that no statistically significant difference in the expression of monocyte chemoattractant protein-1 (MCP-1) messenger RNA (mRNA) was observed between the Tre/HFD group and the distilled water/standard diet group, whereas a significant increase in the MCP-1 mRNA expression was observed in the Glc/HFD, Mal/HFD, Fru/HFD, and distilled water/HFD groups. Thus, our data indicate that trehalose prevents adipocyte hypertrophy and mitigates insulin resistance in HFD-fed mice by reducing insulin secretion and down-regulating mRNA expression of MCP-1. These findings further suggest that trehalose is a functional saccharide that mitigates insulin resistance. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Skeletal Muscle TRIB3 Mediates Glucose Toxicity in Diabetes and High- Fat Diet–Induced Insulin Resistance

    Science.gov (United States)

    Wu, Mengrui; Kim, Teayoun; Jariwala, Ravi H.; Garvey, W. John; Luo, Nanlan; Kang, Minsung; Ma, Elizabeth; Tian, Ling; Steverson, Dennis; Yang, Qinglin; Fu, Yuchang

    2016-01-01

    In the current study, we used muscle-specific TRIB3 overexpressing (MOE) and knockout (MKO) mice to determine whether TRIB3 mediates glucose-induced insulin resistance in diabetes and whether alterations in TRIB3 expression as a function of nutrient availability have a regulatory role in metabolism. In streptozotocin diabetic mice, TRIB3 MOE exacerbated, whereas MKO prevented, glucose-induced insulin resistance and impaired glucose oxidation and defects in insulin signal transduction compared with wild-type (WT) mice, indicating that glucose-induced insulin resistance was dependent on TRIB3. In response to a high-fat diet, TRIB3 MOE mice exhibited greater weight gain and worse insulin resistance in vivo compared with WT mice, coupled with decreased AKT phosphorylation, increased inflammation and oxidative stress, and upregulation of lipid metabolic genes coupled with downregulation of glucose metabolic genes in skeletal muscle. These effects were prevented in the TRIB3 MKO mice relative to WT mice. In conclusion, TRIB3 has a pathophysiological role in diabetes and a physiological role in metabolism. Glucose-induced insulin resistance and insulin resistance due to diet-induced obesity both depend on muscle TRIB3. Under physiological conditions, muscle TRIB3 also influences energy expenditure and substrate metabolism, indicating that the decrease and increase in muscle TRIB3 under fasting and nutrient excess, respectively, are critical for metabolic homeostasis. PMID:27207527

  19. The Role of PTP1B O-GlcNAcylation in Hepatic Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Yun Zhao

    2015-09-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B, which can directly dephosphorylate both the insulin receptor and insulin receptor substrate 1 (IRS-1, thereby terminating insulin signaling, reportedly plays an important role in insulin resistance. Accumulating evidence has demonstrated that O-GlcNAc modification regulates functions of several important components of insulin signal pathway. In this study, we identified that PTP1B is modified by O-GlcNAcylation at three O-GlcNAc sites (Ser104, Ser201, and Ser386. Palmitate acid (PA impaired the insulin signaling, indicated by decreased phosphorylation of both serine/threonine-protein kinase B (Akt and glycogen synthase kinase 3 beta (GSK3β following insulin administration, and upregulated PTP1B O-GlcNAcylation in HepG2 cells. Compared with the wild-type, intervention PTP1B O-GlcNAcylation by site-directed gene mutation inhibited PTP1B phosphatase activity, resulted in a higher level of phosphorylated Akt and GSK3β, recovered insulin sensitivity, and improved lipid deposition in HepG2 cells. Taken together, our research showed that O-GlcNAcylation of PTP1B can influence insulin signal transduction by modulating its own phosphatase activity, which participates in the process of hepatic insulin resistance.

  20. A nonsense mutation causing decreased levels of insulin receptor mRNA: Detection by a simplified technique for direct sequencing of genomic DNA amplified by the polymerase chain reaction

    International Nuclear Information System (INIS)

    Kadowaki, T.; Kadowaki, H.; Taylor, S.I.

    1990-01-01

    Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. The authors have studied a patient with leprechaunism (leprechaun/Minn-1), a genetic syndrome associated with intrauterine growth retardation and extreme insulin resistance. Genomic DNA from the patient was amplified by the polymerase chain reaction catalyzed by Thermus aquaticus (Taq) DNA polymerase, and the amplified DNA was directly sequenced. A nonsense mutations was identified at codon 897 in exon 14 in the paternal allele of the patient's insulin receptor gene. Levels of insulin receptor mRNA are decreased to <10% of normal in Epstein-Barr virus-transformed lymphoblasts and cultured skin fibroblasts from this patient. Thus, this nonsense mutation appears to cause a decrease in the levels of insulin receptor mRNA. In addition, they have obtained indirect evidence that the patient's maternal allele of the insulin receptor gene contains a cis-acting dominant mutation that also decreases the level of mRNA, but by a different mechanism. The nucleotide sequence of the entire protein-coding domain and the sequences of the intron-exon boundaries for all 22 exons of the maternal allele were normal. Presumably, the mutation in the maternal allele maps elsewhere in the insulin receptor gene. Thus, they conclude that the patient is a compound heterozygote for two cis-acting dominant mutations in the insulin receptor gene: (i) a nonsense mutation in the paternal allel that reduces the level of insulin receptor mRNA and (ii) an as yet unidentified mutation in the maternal allele that either decreases the rate of transcription or decreases the stability of the mRNA

  1. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells

    Science.gov (United States)

    Zalzman, Michal; Gupta, Sanjeev; Giri, Ranjit K.; Berkovich, Irina; Sappal, Baljit S.; Karnieli, Ohad; Zern, Mark A.; Fleischer, Norman; Efrat, Shimon

    2003-06-01

    Beta-cell replacement is considered to be the most promising approach for treatment of type 1 diabetes. Its application on a large scale is hindered by a shortage of cells for transplantation. Activation of insulin expression, storage, and regulated secretion in stem/progenitor cells offers novel ways to overcome this shortage. We explored whether fetal human progenitor liver cells (FH) could be induced to differentiate into insulin-producing cells after expression of the pancreatic duodenal homeobox 1 (Pdx1) gene, which is a key regulator of pancreatic development and insulin expression in beta cells. FH cells possess a considerable replication capacity, and this was further extended by introduction of the gene for the catalytic subunit of human telomerase. Immortalized FH cells expressing Pdx1 activated multiple beta-cell genes, produced and stored considerable amounts of insulin, and released insulin in a regulated manner in response to glucose. When transplanted into hyperglycemic immunodeficient mice, the cells restored and maintained euglycemia for prolonged periods. Quantitation of human C-peptide in the mouse serum confirmed that the glycemia was normalized by the transplanted human cells. This approach offers the potential of a novel source of cells for transplantation into patients with type 1 diabetes.

  2. Detection of polymorphism of the insulin-like growth factor-I (IGF-I ...

    African Journals Online (AJOL)

    Molecular genetic selection on individual genes is a promising method to genetically improve economically important traits in chickens. The insulin-like growth factor-I (IGF-I) gene may play important roles in growth of multiple tissues, including muscle cells, cartilage and bone. In the present study, polymorphism of the ...

  3. Relationships of plasma adiponectin level and adiponectin receptors 1 and 2 gene expression to insulin sensitivity and glucose and fat metabolism in monozygotic and dizygotic twins

    DEFF Research Database (Denmark)

    Storgaard, Heidi; Poulsen, Pernille; Ling, Charlotte

    2007-01-01

    and muscle AdipoR1/R2 gene expression and the impact of these components on in vivo glucose and fat metabolism. DESIGN AND PARTICIPANTS: Plasma adiponectin and muscle gene expression of AdipoR1/R2 were measured before and during insulin infusion in 89 young and 69 elderly monozygotic and dizygotic twins...... influenced by age, sex, abdominal obesity, and aerobic capacity. Intrapair correlations in monozygotic twins indicated a nongenetic influence of birth weight on plasma adiponectin and AdipoR2 expression. Nonoxidative glucose metabolism was associated with AdipoR1 and plasma adiponectin, in young and elderly...

  4. [Comparison between basal insulin glargine and NPH insulin in patients with diabetes type 1 on conventional intensive insulin therapy].

    Science.gov (United States)

    Pesić, Milica; Zivić, Sasa; Radenković, Sasa; Velojić, Milena; Dimić, Dragan; Antić, Slobodan

    2007-04-01

    Insulin glargine is a long-acting insulin analog that mimics normal basal insulin secretion without pronounced peaks. The aim of this study was to compare insulin glargine with isophane insulin (NPH insulin) for basal insulin supply in patients with type 1 diabetes. A total of 48 type 1 diabetics on long term conventional intensive insulin therapy (IT) were randomized to three different regimens of basal insulin substitution: 1. continuation of NPH insulin once daily at bedtime with more intensive selfmonitoring (n = 15); 2. NPH insulin twice daily (n = 15); 3. insulin glargine once daily (n = 18). Meal time insulin aspart was continued in all groups. Fasting blood glucose (FBG) was lower in the glargine group (7.30+/-0.98 mmol/1) than in the twice daily NPH group (7.47+/-1.06 mmol/1), but without significant difference. FBG was significantly higher in the once daily NPH group (8.44+/-0.85 mmol/l; p < 0.05). HbAlc after 3 months did not change in the once daily NPH group, but decreased in the glargine group (from 7.72+/-0.86% to 6.87+/-0.50%), as well as in the twice daily NPH group (from 7.80+/-0.83% to 7.01+/-0.63%). Total daily insulin doses were similar in all groups but only in the glargine group there was an increase of basal and decrease of meal related insulin doses. The frequency of mild hypoglycemia was significantly lower in the glargine group (6.56+/-2.09) than in both NPH groups (9.0+/-1.65 in twice daily NPH group and 8.13+/-1.30 in other NPH group) (episodes/patients-month, p < 0.05). Basal insulin supplementation in type 1 diabetes mellitus with either twice daily NPH insulin or glargine can result in similar glycemic control when combined with meal time insulin aspart. However, with glargine regimen FBG, HbAlc and frequency of hypoglycemic event are lower. These facts contribute to better patients satisfaction with insulin glargine versus NPH insulin in IIT in type 1 diabetics.

  5. The polymorphism of dopamine receptor D4 (DRD4) and dopamine transporter (DAT) genes in the men with antisocial behaviour and mixed martial arts fighters.

    Science.gov (United States)

    Cherepkova, Elena V; Maksimov, Vladimir N; Kushnarev, Alexandr P; Shakhmatov, Igor I; Aftanas, Lyubomir I

    2017-09-12

    Variable-number tandem repeat (VNTR) polymorphisms of DRD4 and DAT genes were studied in the Russian and Chechen men convicted of crimes, and two control groups comprised of the MMA fighters and a sample of general population. A group of MMA fighters included only the subjects without history of antisocial behaviour. DNA was isolated by phenol-chloroform extraction from the blood. Genotyping VNTR polymorphisms of the DRD4 and DAT genes were performed by PCR on published methods. Among those convicted of felonies and most grave crimes, carriers of DRD4 long alleles are found more frequently, similarly to the cohort of MMA fighters (lacking criminal record in both paternal lines). The 9/9 DAT genotype carriers are more frequently encountered among the habitual offenders. A frequency of the combination of the DRD4 genotype 4/7 and DAT genotype 10/10 is clearly higher among the convicts of violent crimes and the MMA fighters. One can speculate the presence of a 'controlled aggression' without a predisposition to pathological violence in the MMA fighters. Our study supports the hypothesis of genetic predisposition to different variants of extreme behaviour mediated by genetic determinants involved in the functioning of neuromediator systems including those controlling dopamine pathways.

  6. Association of single nucleotide polymorphisms in genes coding ...

    African Journals Online (AJOL)

    The insulin-like growth factor 1 system plays a central role in the growth and development of the mammary gland. Insulin-like growth factor 1 (IGF1) and insulin-like growth factor 1 receptor (IGF1R) have been proposed as candidate genes for milk production traits. This study involved a population of 163 Montbeliarde cows.

  7. FOXO1 and GSK-3β Are Main Targets of Insulin-Mediated Myogenesis in C2C12 Muscle Cells.

    Science.gov (United States)

    Litwiniuk, Anna; Pijet, Barbara; Pijet-Kucicka, Maja; Gajewska, Małgorzata; Pająk, Beata; Orzechowski, Arkadiusz

    2016-01-01

    Myogenesis and muscle hypertrophy account for muscle growth and adaptation to work overload, respectively. In adults, insulin and insulin-like growth factor 1 stimulate muscle growth, although their links with cellular energy homeostasis are not fully explained. Insulin plays critical role in the control of mitochondrial activity in skeletal muscle cells, and mitochondria are essential for insulin action. The aim of this study was to elucidate molecular mechanism(s) involved in mitochondrial control of insulin-dependent myogenesis. The effects of several metabolic inhibitors (LY294002, PD98059, SB216763, LiCl, rotenone, oligomycin) on the differentiation of C2C12 myoblasts in culture were examined in the short-term (hours) and long-term (days) experiments. Muscle cell viability and mitogenicity were monitored and confronted with the activities of selected genes and proteins expression. These indices focus on the roles of insulin, glycogen synthase kinase 3 beta (GSK-3β) and forkhead box protein O1 (FOXO1) on myogenesis using a combination of treatments and inhibitors. Long-term insulin (10 nM) treatment in "normoglycemic" conditions led to increased myogenin expression and accelerated myogenesis in C2C12 cells. Insulin-dependent myogenesis was accompanied by the rise of mtTFA, MtSSB, Mfn2, and mitochondrially encoded Cox-1 gene expressions and elevated levels of proteins which control functions of mitochondria (kinase--PKB/AKT, mitofusin 2 protein--Mfn-2). Insulin, via the phosphatidylinositol 3-kinase (PI3-K)/AKT-dependent pathway reduced transcription factor FOXO1 activity and altered GSK-3β phosphorylation status. Once FOXO1 and GSK-3β activities were inhibited the rise in Cox-1 gene action and nuclear encoded cytochrome c oxidase subunit IV (COX IV) expressions were observed, even though some mRNA and protein results varied. In contrast to SB216763, LiCl markedly elevated Mfn2 and COX IV protein expression levels when given together with insulin. Thus

  8. FOXO1 and GSK-3β Are Main Targets of Insulin-Mediated Myogenesis in C2C12 Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Anna Litwiniuk

    Full Text Available Myogenesis and muscle hypertrophy account for muscle growth and adaptation to work overload, respectively. In adults, insulin and insulin-like growth factor 1 stimulate muscle growth, although their links with cellular energy homeostasis are not fully explained. Insulin plays critical role in the control of mitochondrial activity in skeletal muscle cells, and mitochondria are essential for insulin action. The aim of this study was to elucidate molecular mechanism(s involved in mitochondrial control of insulin-dependent myogenesis. The effects of several metabolic inhibitors (LY294002, PD98059, SB216763, LiCl, rotenone, oligomycin on the differentiation of C2C12 myoblasts in culture were examined in the short-term (hours and long-term (days experiments. Muscle cell viability and mitogenicity were monitored and confronted with the activities of selected genes and proteins expression. These indices focus on the roles of insulin, glycogen synthase kinase 3 beta (GSK-3β and forkhead box protein O1 (FOXO1 on myogenesis using a combination of treatments and inhibitors. Long-term insulin (10 nM treatment in "normoglycemic" conditions led to increased myogenin expression and accelerated myogenesis in C2C12 cells. Insulin-dependent myogenesis was accompanied by the rise of mtTFA, MtSSB, Mfn2, and mitochondrially encoded Cox-1 gene expressions and elevated levels of proteins which control functions of mitochondria (kinase--PKB/AKT, mitofusin 2 protein--Mfn-2. Insulin, via the phosphatidylinositol 3-kinase (PI3-K/AKT-dependent pathway reduced transcription factor FOXO1 activity and altered GSK-3β phosphorylation status. Once FOXO1 and GSK-3β activities were inhibited the rise in Cox-1 gene action and nuclear encoded cytochrome c oxidase subunit IV (COX IV expressions were observed, even though some mRNA and protein results varied. In contrast to SB216763, LiCl markedly elevated Mfn2 and COX IV protein expression levels when given together with insulin

  9. Branched-chain amino acids in metabolic signalling and insulin resistance

    Science.gov (United States)

    Lynch, Christopher J.; Adams, Sean H.

    2015-01-01

    Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent models. However, circulating levels of BCAAs tend to be increased in individuals with obesity and are associated with worse metabolic health and future insulin resistance or type 2 diabetes mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM involves leucine-mediated activation of the mammalian target of rapamycin complex 1 (mTORC1), which results in uncoupling of insulin signalling at an early stage. A BCAA dysmetabolism model proposes that the accumulation of mitotoxic metabolites (and not BCAAs per se) promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with T2DM. Alternatively, insulin resistance might promote aminoacidaemia by increasing the protein degradation that insulin normally suppresses, and/or by eliciting an impairment of efficient BCAA oxidative metabolism in some tissues. Whether and how impaired BCAA metabolism might occur in obesity is discussed in this Review. Research on the role of individual and model-dependent differences in BCAA metabolism is needed, as several genes (BCKDHA, PPM1K, IVD and KLF15) have been designated as candidate genes for obesity and/or T2DM in humans, and distinct phenotypes of tissue-specific branched chain ketoacid dehydrogenase complex activity have been detected in animal models of obesity and T2DM. PMID:25287287

  10. Subcutaneous insulin absorption explained by insulin's physicochemical properties. Evidence from absorption studies of soluble human insulin and insulin analogues in humans.

    Science.gov (United States)

    Kang, S; Brange, J; Burch, A; Vølund, A; Owens, D R

    1991-11-01

    To study the influence of molecular aggregation on rates of subcutaneous insulin absorption and to attempt to elucidate the mechanism of absorption of conventional soluble human insulin in humans. Seven healthy male volunteers aged 22-43 yr and not receiving any drugs comprised the study. This study consisted of a single-blind randomized comparison of equimolar dosages of 125I-labeled forms of soluble hexameric 2 Zn2+ human insulin and human insulin analogues with differing association states at pharmaceutical concentrations (AspB10, dimeric; AspB28, mixture of monomers and dimers; AspB9, GluB27, monomeric). After an overnight fast and a basal period of 1 h, 0.6 nmol/kg of either 125I-labeled human soluble insulin (Actrapid HM U-100) or 125I-labeled analogue was injected subcutaneously on 4 separate days 1 wk apart. Absorption was assessed by measurement of residual radioactivity at the injection site by external gamma-counting. The mean +/- SE initial fractional disappearance rates for the four preparations were 20.7 +/- 1.9 (hexameric soluble human insulin), 44.4 +/- 2.5 (dimeric analogue AspB10), 50.6 +/- 3.9 (analogue AspB28), and 67.4 +/- 7.4%/h (monomeric analogue AspB9, GluB27). Absorption of the dimeric analogue was significantly faster than that of hexameric human insulin (P less than 0.001); absorption of monomeric insulin analogue AspB9, GluB27 was significantly faster than that of dimeric analogue AspB10 (P less than 0.01). There was an inverse linear correlation between association state and the initial fractional disappearance rates (r = -0.98, P less than 0.02). Analysis of the disappearance data on a log linear scale showed that only the monomeric analogue had a monoexponential course throughout. Two phases in the rates of absorption were identified for the dimer and three for hexameric human insulin. The fractional disappearance rates (%/h) calculated by log linear regression analysis were monomer 73.3 +/- 6.8; dimer 44.4 +/- 2.5 from 0 to 2 h and

  11. Curcuma oil ameliorates insulin resistance & associated thrombotic complications in hamster & rat.

    Science.gov (United States)

    Singh, Vishal; Jain, Manish; Misra, Ankita; Khanna, Vivek; Prakash, Prem; Malasoni, Richa; Dwivedi, Anil Kumar; Dikshit, Madhu; Barthwal, Manoj Kumar

    2015-06-01

    Curcuma oil (C. oil) isolated from turmeric (Curcuma longa L.) has been shown to have neuro-protective, anti-cancer, antioxidant and anti-hyperlipidaemic effects in experimental animal models. However, its effect in insulin resistant animals remains unclear. The present study was carried out to investigate the disease modifying potential and underlying mechanisms of the C. oil in animal models of diet induced insulin resistance and associated thrombotic complications. Male Golden Syrian hamsters on high fructose diet (HFr) for 12 wk were treated orally with vehicle, fenofibrate (30 mg/kg) or C. oil (300 mg/kg) in the last four weeks. Wistar rats fed HFr for 12 wk were treated orally with C. oil (300 mg/kg) in the last two weeks. To examine the protective effect of C. oil, blood glucose, serum insulin, platelet aggregation, thrombosis and inflammatory markers were assessed in these animals. Animals fed with HFr diet for 12 wk demonstrated hyperlipidaemia, hyperglycaemia, hyperinsulinaemia, alteration in insulin sensitivity indices, increased lipid peroxidation, inflammation, endothelial dysfunction, platelet free radical generation, tyrosine phosphorylation, aggregation, adhesion and intravascular thrombosis. Curcuma oil treatment for the last four weeks in hamsters ameliorated HFr-induced hyperlipidaemia, hyperglycaemia, insulin resistance, oxidative stress, inflammation, endothelial dysfunction, platelet activation, and thrombosis. In HFr fed hamsters, the effect of C. oil at 300 mg/kg [ ] was comparable with the standard drug fenofibrate. Curcuma oil treatment in the last two weeks in rats ameliorated HFr-induced hyperglycaemia and hyperinsulinaemia by modulating hepatic expression of sterol regulatory element binding protein 1c (SREBP-1c), peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1)α and PGC-1β genes known to be involved in lipid and glucose metabolism. High fructose feeding to rats and hamsters led to the development of insulin

  12. Curcuma oil ameliorates insulin resistance & associated thrombotic complications in hamster & rat

    Directory of Open Access Journals (Sweden)

    Vishal Singh

    2015-01-01

    Full Text Available Background & objectives: Curcuma oil (C. oil isolated from turmeric (Curcuma longa L. has been shown to have neuro-protective, anti-cancer, antioxidant and anti-hyperlipidaemic effects in experimental animal models. However, its effect in insulin resistant animals remains unclear. The present study was carried out to investigate the disease modifying potential and underlying mechanisms of the C. oil in animal models of diet induced insulin resistance and associated thrombotic complications. Methods: Male Golden Syrian hamsters on high fructose diet (HFr for 12 wk were treated orally with vehicle, fenofibrate (30 mg/kg or C. oil (300 mg/kg in the last four weeks. Wistar rats fed HFr for 12 wk were treated orally with C. oil (300 mg/kg in the last two weeks. To examine the protective effect of C. oil, blood glucose, serum insulin, platelet aggregation, thrombosis and inflammatory markers were assessed in these animals. Results: Animals fed with HFr diet for 12 wk demonstrated hyperlipidaemia, hyperglycaemia, hyperinsulinaemia, alteration in insulin sensitivity indices, increased lipid peroxidation, inflammation, endothelial dysfunction, platelet free radical generation, tyrosine phosphorylation, aggregation, adhesion and intravascular thrombosis. Curcuma oil treatment for the last four weeks in hamsters ameliorated HFr-induced hyperlipidaemia, hyperglycaemia, insulin resistance, oxidative stress, inflammation, endothelial dysfunction, platelet activation, and thrombosis. In HFr fed hamsters, the effect of C. oil at 300 mg/kg [ ] was comparable with the standard drug fenofibrate. Curcuma oil treatment in the last two weeks in rats ameliorated HFr-induced hyperglycaemia and hyperinsulinaemia by modulating hepatic expression of sterol regulatory element binding protein 1c (SREBP-1c, peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1α and PGC-1β genes known to be involved in lipid and glucose metabolism. Interpretation

  13. Insulin receptor internalization defect in an insulin-resistant mouse melanoma cell line

    International Nuclear Information System (INIS)

    Androlewicz, M.J.; Straus, D.S.; Brandenburg, D.F.

    1989-01-01

    Previous studies from this laboratory demonstrated that the PG19 mouse melanoma cell line does not exhibit a biological response to insulin, whereas melanoma x mouse embryo fibroblast hybrids do respond to insulin. To investigate the molecular basis of the insulin resistance of the PG19 melanoma cells, insulin receptors from the insulin-resistant melanoma cells and insulin-sensitive fibroblast x melanoma hybrid cells were analyzed by the technique of photoaffinity labeling using the photoprobe 125 I-NAPA-DP-insulin. Photolabeled insulin receptors from the two cell types have identical molecular weights as determined by SDS gel electrophoresis under reducing and nonreducing conditions, indicating that the receptors on the two cell lines are structurally similar. Insulin receptor internalization studies revealed that the hybrid cells internalize receptors to a high degree at 37 degree C, whereas the melanoma cells internalize receptors to a very low degree or not at all. The correlation between ability to internalize insulin receptors and sensitivity to insulin action in this system suggests that uptake of the insulin-receptor complex may be required for insulin action in these cells. Insulin receptors from the two cell lines autophosphorylate in a similar insulin-dependent manner both in vitro and in intact cells, indicating that insulin receptors on the melanoma and hybrid cells have functional tyrosine protein kinase activity. Therefore, the block in insulin action in the PG19 melanoma cells appears to reside at a step beyond insulin-stimulated receptor autophosphorylation

  14. Reduced Circulating Insulin Enhances Insulin Sensitivity in Old Mice and Extends Lifespan

    Directory of Open Access Journals (Sweden)

    Nicole M. Templeman

    2017-07-01

    Full Text Available The causal relationships between insulin levels, insulin resistance, and longevity are not fully elucidated. Genetic downregulation of insulin/insulin-like growth factor 1 (Igf1 signaling components can extend invertebrate and mammalian lifespan, but insulin resistance, a natural form of decreased insulin signaling, is associated with greater risk of age-related disease in mammals. We compared Ins2+/− mice to Ins2+/+ littermate controls, on a genetically stable Ins1 null background. Proteomic and transcriptomic analyses of livers from 25-week-old mice suggested potential for healthier aging and altered insulin sensitivity in Ins2+/− mice. Halving Ins2 lowered circulating insulin by 25%–34% in aged female mice, without altering Igf1 or circulating Igf1. Remarkably, decreased insulin led to lower fasting glucose and improved insulin sensitivity in aged mice. Moreover, lowered insulin caused significant lifespan extension, observed across two diverse diets. Our study indicates that elevated insulin contributes to age-dependent insulin resistance and that limiting basal insulin levels can extend lifespan.

  15. Reduced Circulating Insulin Enhances Insulin Sensitivity in Old Mice and Extends Lifespan.

    Science.gov (United States)

    Templeman, Nicole M; Flibotte, Stephane; Chik, Jenny H L; Sinha, Sunita; Lim, Gareth E; Foster, Leonard J; Nislow, Corey; Johnson, James D

    2017-07-11

    The causal relationships between insulin levels, insulin resistance, and longevity are not fully elucidated. Genetic downregulation of insulin/insulin-like growth factor 1 (Igf1) signaling components can extend invertebrate and mammalian lifespan, but insulin resistance, a natural form of decreased insulin signaling, is associated with greater risk of age-related disease in mammals. We compared Ins2 +/- mice to Ins2 +/+ littermate controls, on a genetically stable Ins1 null background. Proteomic and transcriptomic analyses of livers from 25-week-old mice suggested potential for healthier aging and altered insulin sensitivity in Ins2 +/- mice. Halving Ins2 lowered circulating insulin by 25%-34% in aged female mice, without altering Igf1 or circulating Igf1. Remarkably, decreased insulin led to lower fasting glucose and improved insulin sensitivity in aged mice. Moreover, lowered insulin caused significant lifespan extension, observed across two diverse diets. Our study indicates that elevated insulin contributes to age-dependent insulin resistance and that limiting basal insulin levels can extend lifespan. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Hyperinsulinemic hypoglycemia associated with insulin antibodies caused by exogenous insulin analog

    Directory of Open Access Journals (Sweden)

    Chih-Ting Su

    2016-11-01

    Full Text Available Insulin antibodies (IA associated with exogenous insulin administration seldom caused hypoglycemia and had different characteristics from insulin autoantibodies (IAA found in insulin autoimmune syndrome (IAS, which was first described by Dr Hirata in 1970. The characteristic of IAS is the presence of insulin-binding autoantibodies and related fasting or late postprandial hypoglycemia. Here, we report a patient with type 1 diabetes mellitus under insulin glargine and insulin aspart treatment who developed recurrent spontaneous post-absorptive hyperinsulinemic hypoglycemia with the cause probably being insulin antibodies induced by exogenous injected insulin. Examinations of serial sera disclosed a high titre of insulin antibodies (33%, normal <5%, high insulin concentration (111.9 IU/mL and undetectable C-peptide when hypoglycemia occurred. An oral glucose tolerance test revealed persistent high serum levels of total insulin and undetectable C-peptide. Image studies of the pancreas were unremarkable, which excluded the diagnosis of insulinoma. The patient does not take any of the medications containing sulfhydryl compounds, which had been reported to cause IAS. After administering oral prednisolone for 3 weeks, hypoglycemic episodes markedly improved, and he was discharged smoothly.

  17. Comparison between basal insulin glargine and NPH insulin in patients with diabetes type 1 on conventional intensive insulin therapy

    Directory of Open Access Journals (Sweden)

    Pešić Milica

    2007-01-01

    Full Text Available Background/Aim. Insulin glargine is a long-acting insulin analog that mimics normal basal insulin secretion without pronounced peaks. The aim of this study was to compare insulin glargine with isophane insulin (NPH insulin for basal insulin supply in patients with type 1 diabetes. Methods. A total of 48 type 1 diabetics on long term conventional intensive insulin therapy (IIT were randomized to three different regimens of basal insulin substitution: 1. continuation of NPH insulin once daily at bedtime with more intensive selfmonitoring (n = 15; 2. NPH insulin twice daily (n = 15; 3. insulin glargine once daily (n = 18. Meal time insulin aspart was continued in all groups. Results. Fasting blood glucose (FBG was lower in the glargine group (7.30±0.98 mmol/l than in the twice daily NPH group (7.47±1.06 mmol/l, but without significant difference. FBG was significantly higher in the once daily NPH group (8.44±0.85 mmol/l; p < 0.05. HbA1c after 3 months did not change in the once daily NPH group, but decreased in the glargine group (from 7.72±0.86% to 6.87±0.50%, as well as in the twice daily NPH group (from 7.80±0.83% to 7.01±0.63%. Total daily insulin doses were similar in all groups but only in the glargine group there was an increase of basal and decrease of meal related insulin doses. The frequency of mild hypoglycemia was significantly lower in the glargine group (6.56±2.09 than in both NPH groups (9.0±1.65 in twice daily NPH group and 8.13±1.30 in other NPH group (episodes/patients-month, p < 0.05. Conclusion. Basal insulin supplementation in type 1 diabetes mellitus with either twice daily NPH insulin or glargine can result in similar glycemic control when combined with meal time insulin aspart. However, with glargine regimen FBG, HbA1c and frequency of hypoglycemic event are lower. These facts contribute to better patients satisfaction with insulin glargine versus NPH insulin in IIT in type 1 diabetics.

  18. Molecular characterization of insulin resistance and glycolytic metabolism in the rat uterus

    Science.gov (United States)

    Zhang, Yuehui; Sun, Xue; Sun, Xiaoyan; Meng, Fanci; Hu, Min; Li, Xin; Li, Wei; Wu, Xiao-Ke; Brännström, Mats; Shao, Ruijin; Billig, Håkan

    2016-01-01

    Peripheral insulin resistance and hyperandrogenism are the primary features of polycystic ovary syndrome (PCOS). However, how insulin resistance and hyperandrogenism affect uterine function and contribute to the pathogenesis of PCOS are open questions. We treated rats with insulin alone or in combination with human chorionic gonadotropin (hCG) and showed that peripheral insulin resistance and hyperandrogenism alter uterine morphology, cell phenotype, and cell function, especially in glandular epithelial cells. These defects are associated with an aberration in the PI3K/Akt signaling pathway that is used as an indicator for the onset of insulin resistance in classical metabolic tissues. Concomitantly, increased GSK3β (Ser-9) phosphorylation and decreased ERK1/2 phosphorylation in rats treated with insulin and hCG were also observed. We also profiled the expression of glucose transporter (Glut) isoform genes in the uterus under conditions of insulin resistance and/or hyperandrogenism. Finally, we determined the expression pattern of glycolytic enzymes and intermediates during insulin resistance and hyperandrogenism in the uterus. These findings suggest that the PI3K/Akt and MAPK/ERK signaling pathways play a role in the onset of uterine insulin resistance, and they also suggest that changes in specific Glut isoform expression and alterations to glycolytic metabolism contribute to the endometrial dysfunction observed in PCOS patients. PMID:27461373

  19. Polymorphisms in dopaminergic system genes; association with criminal behavior and self-reported aggression in violent prison inmates from Pakistan.

    Directory of Open Access Journals (Sweden)

    Muhammad Imran Qadeer

    Full Text Available Genetic factors contribute to antisocial and criminal behavior. Dopamine transporter DAT-1 (SLC6A3 and DRD2 gene for the dopamine-2 receptor are dopaminergic system genes that regulate dopamine reuptake and signaling, and may be part of the pathogenesis of psychiatric disorders including antisocial behaviors and traits. No previous studies have analyzed DAT-1 and DRD2 polymorphisms in convicted murderers, particularly from Indian subcontinent. In this study we investigated the association of 40 bp VNTR polymorphism of DAT-1 and Taq1 variant of DRD2 gene (rs1800479 with criminal behavior and self-reported aggression in 729 subjects, including 370 men in Pakistani prisons convicted of first degree murder(s and 359 control men without any history of violence or criminal tendency. The 9R allele of DAT-1 VNTR polymorphism was more prevalent in convicted murderers compared with control samples, for either one or two risk alleles (OR = 1.49 and 3.99 respectively, P = 0.003. This potential association of DAT-1 9R allele polymorphism with murderer phenotype was confirmed assuming different genetic models of inheritance. However, no genetic association was found for DRD2 Taq1 polymorphism. In addition, a combined haplotype (9R-A2 of DAT-1 and DRD2 genes was associated with this murderer phenotype. Further, 9R allele of DAT-1 was also associated with response to verbal abuse and parental marital complications, but not with other measures pertinent to self-reported aggression. These results suggest that 9R allele, which may influence levels of intra-synaptic dopamine in the brain, may contribute to criminal tendency in this sample of violent murderers of Pakistani origin. Future studies are needed to replicate this finding in other populations of murderers and see if this finding extends to other forms of violence and lesser degrees of aggression.

  20. A model of insulin fibrils derived from the x-ray crystal structure of a monomeric insulin (despentapeptide insulin).

    Science.gov (United States)

    Brange, J; Dodson, G G; Edwards, D J; Holden, P H; Whittingham, J L

    1997-04-01

    The crystal structure of despentapeptide insulin, a monomeric insulin, has been refined at 1.3 A spacing and subsequently used to predict and model the organization in the insulin fibril. The model makes use of the contacts in the densely packed despentapeptide insulin crystal, and takes into account other experimental evidence, including binding studies with Congo red. The dimensions of this model fibril correspond well with those measured experimentally, and the monomer-monomer contacts within the fibril are in accordance with the known physical chemistry of insulin fibrils. Using this model, it may be possible to predict mutations in insulin that might alleviate problems associated with fibril formation during insulin therapy.