WorldWideScience

Sample records for insulators fabricacion industrial

  1. Industrial manufacturing of electric insulators; Fabricacion industrial de aisladores electricos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Lucia [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    Porcelain is the insulating material more extensively used for electric insulators manufacturing, due to its dielectric properties; nevertheless, it presents fragility problems of manufacture and of resistance to the thermal shock, among others. For this reason studies are being conducted for the substitution of porcelain in the electric insulators manufacturing. In this area, the Instituto de Investigaciones Electricas developed an improved insulating formulation - the polymeric concrete- and an industrial prototype machine for the manufacture of high voltage electric insulators for outdoors use. [Espanol] La porcelana es el material aislante electrico mas utilizado en la elaboracion de aisladores electricos, debido a sus propiedades dielectricas; sin embargo, presenta problemas de fragilidad, de fabricacion y de baja resistencia al choque termico, entre otros. Es por ello que se realizan estudios para sustituir la porcelana en la fabricacion de aisladores electricos. En este campo, el Instituto de Investigaciones Electricas desarrollo una formulacion aislante mejorada -el concreto polimerico- y una maquina prototipo industrial para fabricar aisladores electricos de alto voltaje para uso en exteriores.

  2. Industrial manufacturing of electric insulators; Fabricacion industrial de aisladores electricos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Lucia [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    Porcelain is the insulating material more extensively used for electric insulators manufacturing, due to its dielectric properties; nevertheless, it presents fragility problems of manufacture and of resistance to the thermal shock, among others. For this reason studies are being conducted for the substitution of porcelain in the electric insulators manufacturing. In this area, the Instituto de Investigaciones Electricas developed an improved insulating formulation - the polymeric concrete- and an industrial prototype machine for the manufacture of high voltage electric insulators for outdoors use. [Espanol] La porcelana es el material aislante electrico mas utilizado en la elaboracion de aisladores electricos, debido a sus propiedades dielectricas; sin embargo, presenta problemas de fragilidad, de fabricacion y de baja resistencia al choque termico, entre otros. Es por ello que se realizan estudios para sustituir la porcelana en la fabricacion de aisladores electricos. En este campo, el Instituto de Investigaciones Electricas desarrollo una formulacion aislante mejorada -el concreto polimerico- y una maquina prototipo industrial para fabricar aisladores electricos de alto voltaje para uso en exteriores.

  3. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    John Williams

    2011-03-30

    Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energy’s Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT®, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspen’s best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XT’s commercial success has been driven by it’s 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

  4. Optimizing inventory management in the insulation manufacturing industry

    OpenAIRE

    Herbert-Hansen, Zaza Nadja Lee; Larsen, Samuel

    2016-01-01

    Inventory issues within the insulation manufacturing industry are essential for competitiveness. However, they are largely unexplored in academic literature. Therefore the aim of this paper is to address the research question: “What approach to inventory management provides the best balance between service level and cost for the insulation manufacturing industry?” This is done through an in-depth case study of a world-leading company within this industry, with focus on two of its factories. T...

  5. Optimizing inventory management in the insulation manufacturing industry

    DEFF Research Database (Denmark)

    Herbert-Hansen, Zaza Nadja Lee; Larsen, Samuel

    2016-01-01

    Inventory issues within the insulation manufacturing industry are essential for competitiveness. However, they are largely unexplored in academic literature. Therefore the aim of this paper is to address the research question: “What approach to inventory management provides the best balance between...... service level and cost for the insulation manufacturing industry?” This is done through an in-depth case study of a world-leading company within this industry, with focus on two of its factories. This paper contributes with empirical research within operations management in a sector which has not been...

  6. Workshop on technical assessment of industrial thermal insulation materials: summary

    International Nuclear Information System (INIS)

    Peterson, S.

    1976-07-01

    Over 80 participants representing 50 organizations met to discuss the report, Industrial Thermal Insulation--An Assessment, ORNL/TM-5283. Presentations on the performance of available materials, economic considerations, and measurement problems were followed by discussion. A final wrap-up session concluded that the report was valuable in pointing the direction for needed effort in the area, confirmed the indicated actions needed to further industrial application of insulation, and called for future meetings to continue the dialogue between the various facets of the industry

  7. Layered Thermal Insulation Systems for Industrial and Commercial Applications

    Science.gov (United States)

    Fesmire, James E.

    2015-01-01

    From the high performance arena of cryogenic equipment, several different layered thermal insulation systems have been developed for industrial and commercial applications. In addition to the proven areas in cold-work applications for piping and tanks, the new Layered Composite Insulation for Extreme Environments (LCX) has potential for broader industrial use as well as for commercial applications. The LCX technology provides a unique combination of thermal, mechanical, and weathering performance capability that is both cost-effective and enabling. Industry applications may include, for example, liquid nitrogen (LN2) systems for food processing, liquefied natural gas (LNG) systems for transportation or power, and chilled water cooling facilities. Example commercial applications may include commercial residential building construction, hot water piping, HVAC systems, refrigerated trucks, cold chain shipping containers, and a various consumer products. The LCX system is highly tailorable to the end-use application and can be pre-fabricated or field assembled as needed. Product forms of LCX include rigid sheets, semi-flexible sheets, cylindrical clam-shells, removable covers, or flexible strips for wrapping. With increasing system control and reliability requirements as well as demands for higher energy efficiencies, thermal insulation in harsh environments is a growing challenge. The LCX technology grew out of solving problems in the insulation of mechanically complex cryogenic systems that must operate in outdoor, humid conditions. Insulation for cold work includes equipment for everything from liquid helium to chilled water. And in the middle are systems for LNG, LN2, liquid oxygen (LO2), liquid hydrogen (LH2) that must operate in the ambient environment. Different LCX systems have been demonstrated for sub-ambient conditions but are capable of moderately high temperature applications as well.

  8. Aerogel-Based Insulation for High-Temperature Industrial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Owen Evans

    2011-10-13

    Under this program, Aspen Aerogels has developed an industrial insulation called Pyrogel HT, which is 4-5 times more thermally efficient than current non-aerogel technology. Derived from nanoporous silica aerogels, Pyrogel HT was specifically developed to address a high temperature capability gap not currently met with Aspen Aerogels{trademark} flagship product, Pyrogel XT. Pyrogel XT, which was originally developed on a separate DOE contract (DE-FG36-06GO16056), was primarily optimized for use in industrial steam processing systems, where application temperatures typically do not exceed 400 C. At the time, further improvements in thermal performance above 400 C could not be reasonably achieved for Pyrogel XT without significantly affecting other key material properties using the current technology. Cumulative sales of Pyrogel HT into domestic power plants should reach $125MM through 2030, eventually reaching about 10% of the total insulation market share in that space. Global energy savings would be expected to scale similarly. Over the same period, these sales would reduce domestic energy consumption by more than 65 TBtu. Upon branching out into all industrial processes in the 400 C-650 C regime, Pyrogel HT would reach annual sales levels of $150MM, with two-thirds of that being exported.

  9. Basalt fiber insulating material with a mineral binding agent for industrial use

    Science.gov (United States)

    Drozdyuk, T.; Aizenshtadt, A.; Tutygin, A.; Frolova, M.

    2016-04-01

    The paper considers a possibility of using mining industry waste as a binding agent for heat insulating material on the basis of basalt fiber. The main objective of the research is to produce a heat-insulating material to be applied in machine building in high-temperature environments. After synthetic binder having been replaced by a mineral one, an environmentally sound thermal insulating material having desirable heat-protecting ability and not failing when exposed to high temperatures was obtained.

  10. Estimation of flashover voltage probability of overhead line insulators under industrial pollution, based on maximum likelihood method

    International Nuclear Information System (INIS)

    Arab, M.N.; Ayaz, M.

    2004-01-01

    The performance of transmission line insulator is greatly affected by dust, fumes from industrial areas and saline deposit near the coast. Such pollutants in the presence of moisture form a coating on the surface of the insulator, which in turn allows the passage of leakage current. This leakage builds up to a point where flashover develops. The flashover is often followed by permanent failure of insulation resulting in prolong outages. With the increase in system voltage owing to the greater demand of electrical energy over the past few decades, the importance of flashover due to pollution has received special attention. The objective of the present work was to study the performance of overhead line insulators in the presence of contaminants such as induced salts. A detailed review of the literature and the mechanisms of insulator flashover due to the pollution are presented. Experimental investigations on the behavior of overhead line insulators under industrial salt contamination are carried out. A special fog chamber was designed in which the contamination testing of insulators was carried out. Flashover behavior under various degrees of contamination of insulators with the most common industrial fume components such as Nitrate and Sulphate compounds was studied. Substituting the normal distribution parameter in the probability distribution function based on maximum likelihood develops a statistical method. The method gives a high accuracy in the estimation of the 50% flashover voltage, which is then used to evaluate the critical flashover index at various contamination levels. The critical flashover index is a valuable parameter in insulation design for numerous applications. (author)

  11. Industrial production of insulators using isostatic compaction method

    Energy Technology Data Exchange (ETDEWEB)

    Drugoveiko, O.P.; Ermolaeva, L.V.; Koren' , M.G.; Kreimer, B.D.; Panichev, G.I.; Ponomarev, A.P.; Rutkovskii, V.N.

    1985-07-01

    The process of shaping ceramic products from powders using isostatic compaction method is finding increasing industrial application. The production of electrical-engineering porcelain using isostatic compaction method is, according to the authors, a promising direction since this method permits one to obtain large and complex shaped products having uniform density distribution. The authors introduce an automatic isostatic compaction line at the ''Proletarii'' Factory for the production of the IOS-110-20000UKhL, T1 type insulators having the described dimensions. According to the technological process developed at the ''Elektrokeramika'' Production Complex, insulators were manufactured on the isostatic compaction line from the G-33 mass. Presspowder having a moisture content of 0.3-0.6% and a particle size of 90-160 micrometers was obtained in a spray dryer using disk spraying. The authors studied saturability by moisture of the powder obtained.

  12. Climate protection with rapid payback. Energy and CO2 savings potential of industrial insulation in EU27

    Energy Technology Data Exchange (ETDEWEB)

    Neelis, M.; Blinde, P.; Overgaag, M.; Deng, Y. [Ecofys Netherlands, Utrecht (Netherlands)

    2012-06-15

    This study aims to answer the following four questions: (1) What is the energy savings and CO2 emissions mitigation potential resulting from insulating currently uninsulated parts and from better maintenance of insulation systems?; (2) What are the energy savings and CO2 mitigation potential from improving current insulation to cost-effective levels? Cost-effective insulation in this study is defined as the insulation that minimises the sum of the costs of heat loss and the costs of insulation; (3) What is the energy savings and CO2 mitigation potential from improving current insulation beyond cost-effective levels to even more energy-efficient levels? Energy-efficient insulation in this study is defined as the insulation at which the sum of the costs of heat loss and the annualised insulation investments are equal to the costs of typical current insulation while offering an additional energy savings and CO2 mitigation potential; and (4) How can these potentials best be realised? This study investigates savings potentials from improved insulation in EU industry and the power sector under realistic market conditions. Nuclear power plants and power production by renewable sources were left outside the scope of this study as well as insulations of cold applications. Case studies of insulation projects have been used to compare energy loss and investments related to different levels of insulation. The analysis was performed for three temperature levels: <100C; 100-300C and >300C. Results at the level of the case studies were extrapolated to European level using data on current energy use. Other assumptions have been made where needed on the basis of literature and expert input. All potentials are based on a 9% discount rate, an average insulation lifetime of 15 years and a 2-3% per year increase of the price of energy net of inflation.

  13. Center for the Polyurethanes Industry summary of unpublished industrial hygiene studies related to the evaluation of emissions of spray polyurethane foam insulation.

    Science.gov (United States)

    Wood, Richard D

    2017-09-01

    Spray polyurethane foam (SPF) insulation is used as thermal insulation for residential and commercial buildings. It has many advantages over other forms insulation; however, concerns have been raised related to chemical emissions during and after application. The American Chemistry Council's (ACC's) Center for the Polyurethanes Industry (CPI) has gathered previously unpublished industrial hygiene air sampling studies submitted by member companies that were completed during an eight-year period from 2007-2014. These studies address emissions from medium density closed cell and low density open cell formulations. This article summarizes the results of personal and area air samples collected during application and post application of SPF to interior building surfaces in both laboratory and field environments. Chemicals of interest included: Volatile Organic Compounds (VOCs), methylene diphenyl diisocyanate (MDI), flame retardants, amine catalysts, blowing agents, and aldehydes. Overall, the results indicate that SPF applicators and workers in close proximity to the application are potentially exposed to MDI in excess of recommended and governmental occupational exposure limits and should use personal protective equipment (PPE) consisting of air supplied respirators and full-body protective clothing to reduce exposure. Catalyst emissions can be reduced by using reactive catalysts in SPF formulations, and mechanical ventilation is important in controlling emissions during and after application.

  14. Survey of thermal insulation systems

    International Nuclear Information System (INIS)

    Kinoshita, Izumi

    1983-01-01

    Better thermal insulations have been developed to meet the growing demands of industry, and studies on thermal insulation at both high temperature and low temperature have been widely performed. The purpose of this survey is to summarize data on the performances and characteristics of thermal insulation materials and thermal insulation structures (for instance, gas cooled reactors, space vehicles and LNG storage tanks), and to discuss ravious problems regarding the design of thermal insulation structures of pool-type LMFBRs. (author)

  15. The heat insulating properties of potato starch extruded with addition of chosen by- products of food industry

    Directory of Open Access Journals (Sweden)

    Zdybel Ewa

    2014-12-01

    Full Text Available The study was aimed at determination of time of heat transition through the layer of quince, apple, linen, rose pomace and potato pulp, as well as layer of potato starch and potato starch extruded with addition of above mentioned by-products. Additionally the attempt of creation a heat insulating barrier from researched raw material was made. The heat conductivity of researched materials was dependent on the type of material and its humidity. Extruded potato starch is characterized by smaller heat conductivity than potato starch extruded with addition of pomace. The obtained rigid extruded starch moulders were characterized by higher heat insulating properties than the loose beads. It is possible to use starch and by-products of food industry for production of heat insulating materials.

  16. Polyester Apparel Cutting Waste as Insulation Material

    OpenAIRE

    Trajković, Dušan; Jordeva, Sonja; Tomovska, Elena; Zafirova, Koleta

    2017-01-01

    Polyester waste is the dominant component of the clothing industry waste stream, yet its recycling in this industry is rarely addressed. This paper proposes using polyester cutting waste as an insulation blanket for roofing and buildings’ internal walls in order to reduce environmental pollution. The designed textile structures used waste cuttings from different polyester fabrics without opening the fabric to fibre. Thermal insulation, acoustic insulation, fire resistance and biodegradation o...

  17. Manufacture of amorphous and poly-crystalline materials with the sol-gel process; Fabricacion de materiales amorfos y policristalinos con la ruta sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda-Contreras, J. [Centro Universitario de Los Lagos, Universidad de Guadalajara, Guadalajara, Jalisco (Mexico)

    2006-01-15

    The sun-gel process is a chemical route that allows the manufacture of amorphous and poly-crystalline materials in a relatively simple way. New materials can be obtained, materials that through the traditional manufacture methods, are very difficult to obtain, such as oxide combinations (SiO{sub 2}, TiO{sub 2}, ZrO{sub 2}, etc.), and that, when being produced by traditional methods, they run the risk of being contaminated with rare earth ions or organic dyes. The unique structures, micro- structures and compounds that can be made with the sun-gel process open many possibilities for practical applications, to name a few: the manufacture of optical components, preforms for optical fibers, dielectric coatings, superconductors, waveguides, nanoparticles, solar cells, etc. [Spanish] El proceso sol-gel es una ruta quimica que permite fabricar materiales amorfos y policristalinos de forma relativamente sencilla. Se pueden obtener nuevos materiales que a traves de los metodos tradicionales de fabricacion son muy dificiles de obtener, tales como combinaciones de oxidos (SiO{sub 2}, TiO{sub 2}, ZrO{sub 2}, etc.), y que, de ser producidos por metodos tradicionales corren el riesgo de contaminarse con iones de tierras raras o colorantes organicos. Las estructuras unicas, micro estructuras y compuestos que pueden hacerse con el proceso sol-gel abren muchas posibilidades para aplicaciones practicas, por nombrar algunas, la fabricacion de componentes opticos, preformas para fibras opticas, recubrimientos dielectricos, superconductores, guias de onda, nanoparticulas, celdas solares, etc.

  18. Corrosion-under-insulation (CUI) guidelines

    CERN Document Server

    Staff, European Federation of Corrosion; Winnik, S

    2014-01-01

    Corrosion under insulation (CUI) refers to the external corrosion of piping and vessels that occurs underneath externally clad/jacketed insulation as a result of the penetration of water. By its very nature CUI tends to remain undetected until the insulation and cladding/jacketing is removed to allow inspection or when leaks occur. CUI is a common problem shared by the refining, petrochemical, power, industrial, onshore and offshore industries. The European Federation of Corrosion (EFC) Working Parties WP13 and WP15 have worked to provide guidelines on managing CUI together with a number of major European refining, petrochemical and offshore companies including BP, Chevron-Texaco, Conoco-Phillips, ENI, Exxon-Mobil, IFP, MOL, Scanraff, Statoil, Shell, Total and Borealis. The guidelines within this document are intended for use on all plants and installations that contain insulated vessels, piping and equipment. The guidelines cover a risk-based inspection methodology for CUI, inspection techniques (including n...

  19. Improvements to the electrical insulation resistance of high quality magnesia insulated cables

    International Nuclear Information System (INIS)

    Mauger, R.A.; Goodings, A.

    1984-03-01

    Mineral insulated signal cables for nuclear reactor instrumentation schemes have to meet stringent electrical insulation requirements at high temperatures. This report discusses the factors which influence the attainment of this objective and the way in which it has been reached under industrial manufacturing conditions. It emphasises the importance of moisture and gives details of the improvements achieved as a result of moisture reduction. (author)

  20. Crosslinking of wire and cable insulation using electron accelerators

    International Nuclear Information System (INIS)

    Feng Yongxiang; Ma Zueteh

    1992-01-01

    Radiation crosslinking of wire and cable insulation is a well-established technology that is widely used in industry. The advantages of radiation crosslinking over chemical crosslinking have helped maintain its steady growth. Since successful utilization of electron beam processing relies on the formulation of compounds used in insulation, the radiation crosslinking of various polymers is reviewed. The handling technology for crosslinking wire and cable insulation and the throughput capacity of electron beam processors are also discussed. More than 30% of the industrial electron accelerators in the world are used for the radiation crosslinking of wire and cable insulation. Prospects of increased use of electron accelerators for crosslinking of wire and cable insulation are very good. (orig.)

  1. Process insulation. Isolation thermique des equipements

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    A manual is presented to assist managers and operating personnel to recognize industrial energy management opportunities, and provides mathematical equations, general information on proven techniques and technology, and examples. It deals with process insulation, focusing on the insulation of mechanical systems such as piping, process vessels, equipment, and ductwork. The manual describes the effects of insulation materials; commonly encountered types of insulation, coverings and protective finishes as well as common applications; energy management opportunities, divided into housekeeping, low cost, and retrofit; and includes worked examples of each. Includes glossary. 17 figs., 8 tabs.

  2. Thermo-Insulation Properties Of Hemp-Based Products

    Directory of Open Access Journals (Sweden)

    Lekavicius V.

    2015-02-01

    Full Text Available As known, many multi-purpose plants can be used in different industries. This research is focused on the possibilities to utilize hemp as feedstock for thermal insulation products. The most advantageous features of hemp insulation are associated with health and environmental safety. The thermal conductivity of commercially available hemp insulation products is comparable with that of other fibrous insulation materials; however, it is possible to develop new products that could be more efficient in terms of cost and due to other important features.

  3. Properties of Agro-Industrial Aerated Concrete as Potential Thermal Insulation for Building

    Directory of Open Access Journals (Sweden)

    Aminudin Eeydzah

    2016-01-01

    Full Text Available The present paper is aiming to provide an actual state of the development of non autoclaved Agro-Industrial aerated concrete by using multiple ashes as improvement of thermal behavior for building. The feasibility of Agro-Industrial wastes as lightweight concrete by utilizing the Palm Oil Fuel Ash (POFA as binder replacement and bottom ash as fine aggregate was investigated in this paper. Portland cement, bottom ash, aluminum powder and lime (Ca(OH2 were used in this study. The POFA was used to replace Portland cement and Hydrated Lime at 0%, 5%, 10% and 15% by weight and aluminum powder was added at 0.75% dry weight in order to form bubbles. The compressive strength, water absorption, porosity and the thermal conductivity test were carried out after the concrete were water cured for 7 days and later being exposed to the air and water until 28days. The results show that the 20% replacements give the optimum strength of 7.143MPa and 30% give the best thermal conductivity with 0.48W/mK. Hence, this study aim, was to develop an agro-industrial aerated concrete good in insulation but having an optimum strength. Hence, it has been found that the more the percentage of POFA is added the lower the thermal conductivity since the pore structure is increasing and by the optimization done, 30% replacement has been chosen as the best mix design for Agro-Industrial Aerated Concrete.

  4. Air-Filled Nanopore Based High-Performance Thermal Insulation Materials

    OpenAIRE

    Gangåssæter, Haakon Fossen; Jelle, Bjørn Petter; Alex Mofid, Sohrab; Gao, Tao

    2017-01-01

    State-of-the-art thermal insulation solutions like vacuum insulation panels (VIP) and aerogels have low thermal conductivity, but their drawbacks may make them unable to be the thermal insulation solutions that will revolutionize the building industry regarding energy-efficient building envelopes. Nevertheless, learning from these materials may be crucial to make new and novel high-performance thermal insulation products. This study presents a review on the state-of-the-art air-filled thermal...

  5. 5th Duisburg thermal insulation days. Fuenfte Duisburger Waermedaemm-Tage

    Energy Technology Data Exchange (ETDEWEB)

    Agst, J. (ed.)

    1989-01-01

    This volume contains 18 specialist lectures mainly about the problems of thermal insulation in industrial furnaces and facility engineering. Among the subjects are: formed parts, monolithic lining materials and fillers of vermiculite; pyro-block-modular systems for furnaces (of the company DYKO-Morgan Fasertechnik); microporous insulating materials (KAOWOOL); properties of lightweight refractory bricks; thermal insulation in induction furnaces; vacuum moulded parts in electric furnace engineering; high temperature insulating materials with ceramic fibres; microtherm insulating materials. (MM).

  6. The inaccuracy of heat transfer characteristics of insulated and non-insulated circular duct while neglecting the influence of heat radiation

    International Nuclear Information System (INIS)

    Hsien, T.-L.; Wong, K.-L.; Yu, S.-J.

    2009-01-01

    The non-insulated and insulated ducts are commonly applied in the industries and various buildings, because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations. Most heat transfer experts recognized from their own experiences that the heat radiation effect can be ignored due to the small temperature difference between insulated and non-insulated surface and surroundings. This paper studies in detail to check the inaccuracies of heat transfer characteristics non-insulated and insulated duct by comparing the results between considering and neglecting heat radiation effect. It is found that neglecting the heat radiation effect is likely to produce large errors of non-insulated and thin-insulated ducts in situations of ambient air with low external convection heat coefficients and larger surface emissivity, especially while the ambient air temperature is different from that of surroundings and greater internal fluid convection coefficients. It is also found in this paper that using greater duct surface emissivity can greatly improve the heat exchanger effect and using smaller insulated surface emissivity can obtain better insulation.

  7. 52 KILN EFFICIENCY AND INSULATION. Anthony Obiy Etuokwu ...

    African Journals Online (AJOL)

    HP-G61

    52. KILN EFFICIENCY AND INSULATION. Anthony Obiy Etuokwu. Department of Fine and Industrial Arts,. Niger Delta University,. Wilberforce Island, Bayelsa State. etuokwutony@yahoo.com. Introduction. The kiln is an insulating fire chamber that has the ability to retain the heat that is generated into it, and utilizes such heat ...

  8. Analysis and comparison of magnetic sheet insulation tests

    Science.gov (United States)

    Marion-Péra, M. C.; Kedous-Lebouc, A.; Cornut, B.; Brissonneau, P.

    1994-05-01

    Magnetic circuits of electrical machines are divided into coated sheets in order to limit eddy currents. The surface insulation resistance of magnetic sheets is difficult to evaluate because it depends on parameters like pressure and covers a wide range of values. Two methods of measuring insulation resistance are analyzed: the standardized 'Franklin device' and a tester developed by British Steel Electrical. Their main drawback is poor local repeatability. The Franklin method allows better quality control of industrial process because it measures only one insulating layer at a time. It also gives more accurate images of the distribution of possible defects. Nevertheless, both methods lead to similar classifications of insulation efficiency.

  9. Labeling and advertising of home insulation

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    This staff report, prepared by the F.T.C.'s Bureau of Consumer Protection for Commission review, includes recommendations as to the final form of a trade regulation rule relating to the labeling and advertising of home insulation. Because of marketing abuses which accompanied the rising demand for home insulation, there has been broad support for a rule requiring information disclosures to help purchasers of home insulation to make an informed decision. The Commission, to provide such rule as quickly as possible, undertook its rulemaking proceeding under its new expedited rulemaking procedure. The rule was proposed on November 18, 1977, and, following a two-month period for written comments, four weeks of hearings were held in Washington, D.C. in February 1978. The record, contributed to by a variety of interests, shows that consumers do not know how to shop for home insulation. The staff-recommended rule, among other things, would require that insulation be tested and R-values (a measure of insulation's ability to retain heat) disclosed on labels and in advertising. To facilitate comparison shopping, the industry would also be required to furnish consumers with fact sheets describing, on a product-to-product basis, factors that can reduce the R-value of insulation.

  10. Thermal insulation. Non-utilized energy need not be generated. Four rules for a successful thermal insulation by means of building insulation; Waermedaemmung. Energie, die nicht gebraucht wird, muss man nicht erzeugen. Vier Regeln fuer erfolgreichen Waermeschutz durch Gebaeudedaemmung

    Energy Technology Data Exchange (ETDEWEB)

    Patschke, Markus [3E-Consult, Nordkirchen (Germany); Drewer, Arnold [IpeG-Institut, Paderborn (Germany)

    2011-07-15

    The heat supply of buildings causes nearly one third of the energy consumption of an industrialized country. In 2006, the climate-adjusted heat consumption of private households in Germany amounted nearly 600 billion kWh. This consumption caused more than 167 million tons of CO{sub 2}. Heat insulation measures in buildings are required for all heat-transferring enveloping surface. Under this aspect, the contribution under consideration reports on four fundamental rules for a cost-efficient building insulation: (a) Only heated rooms should be insulated thermally; (b) Location and thermal insulation of cavities; (c) Selection of a suitable insulating material; (d) Consideration of an economic sustainability.

  11. Competitive landscape of the EU’s insulation materials industry for energy-efficient buildings

    OpenAIRE

    PAVEL CLAUDIU; BLAGOEVA DARINA

    2017-01-01

    Insulation materials could contribute significantly to improving the overall energy efficiency and sustainability of the buildings, especially by reducing the energy losses through the building envelope (walls, roofs, floors, etc.). The global demand for thermal insulation materials in building applications is projected to increase at a CAGR of 4.5 % between 2016 and 2027. In the EU the demand for thermal insulation materials is estimated at 3.48 % (2015-2027). Wool minerals (glass and stone ...

  12. Assessment of Eco-friendly Gases for Electrical Insulation to Replace the Most Potent Industrial Greenhouse Gas SF6.

    Science.gov (United States)

    Rabie, Mohamed; Franck, Christian M

    2018-01-16

    Gases for electrical insulation are essential for the operation of electric power equipment. This Review gives a brief history of gaseous insulation that involved the emergence of the most potent industrial greenhouse gas known today, namely sulfur hexafluoride. SF 6 paved the way to space-saving equipment for the transmission and distribution of electrical energy. Its ever-rising usage in the electrical grid also played a decisive role in the continuous increase of atmospheric SF 6 abundance over the last decades. This Review broadly covers the environmental concerns related to SF 6 emissions and assesses the latest generation of eco-friendly replacement gases. They offer great potential for reducing greenhouse gas emissions from electrical equipment but at the same time involve technical trade-offs. The rumors of one or the other being superior seem premature, in particular because of the lack of dielectric, environmental, and chemical information for these relatively novel compounds and their dissociation products during operation.

  13. Insulation Characteristics of Sisal Fibre/Epoxy Composites

    Directory of Open Access Journals (Sweden)

    A. Shalwan

    2017-01-01

    Full Text Available Using natural fibres in civil engineering is the aim of many industrial and academics sectors to overcome the impact of synthetic fibres on environments. One of the potential applications of natural fibres composites is to be implemented in insulation components. Thermal behaviour of polymer composites based on natural fibres is recent ongoing research. In this article, thermal characteristics of sisal fibre reinforced epoxy composites are evaluated for treated and untreated fibres considering different volume fractions of 0–30%. The results revealed that the increase in the fibre volume fraction increased the insulation performance of the composites for both treated and untreated fibres. More than 200% insulation rate was achieved at the volume fraction of 20% of treated sisal fibres. Untreated fibres showed about 400% insulation rate; however, it is not recommended to use untreated fibres from mechanical point of view. The results indicated that there is potential of using the developed composites for insulation purposes.

  14. The technical viability of alternative blowing agents in polyisocyanurate roof insulation: A cooperative industry/government project

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.; Courville, G.E.; Desjarlais, A.O.; Graves, R.S.; Linkous, R.L.; McElroy, D.L.; Weaver, F.J.; Wendt, R.L.; Yarbrough, D.W.

    1993-06-01

    This report is a summary of the cooperative industry/government program to establish the viability of alternative blowing agents to chlorofluorocarbons (CFCs). The project was initiated in 1989 following two workshops that focused on needed research on thermal insulation blown with substitutes for CFC-11 and CFC-12. The project is directed by a steering committee of representatives of the sponsors and of Oak Ridge National Laboratory (ORNL). The purpose of the project is to determine if the performance of polyisocyanurate (PIR) roof insulation foam boards blown with alternate agents differs from the performance of boards blown with CFC-1. This report describes apparent thermal conductivity (k) results obtained from field and laboratory tests from 1989 to 1992 on a set of experimental PIR laminate boardstock produced to evaluate the viability of alternative hydrochlorofluorocarbons (HCFCs) as blowing agents. All boardstock was manufactured from similar formulations that were not optimized for thermal performance. Commercial broadstock made in the future may differ in performance from this set. The PIR boards were prepared with CFC-11, HCFC-123, HCFC-141b, and 50/50 and 65/35 blends of HCFC-123/HCFC-141b.

  15. Insulating modernism isolated and non-isolated thermodynamics in architecture

    CERN Document Server

    Moe, Kiel

    2014-01-01

    What is the best way to achieve sustainable energy savings in buildings? The mainstream construction industry has been saying for decades: it's insulation. Today there is a growing movement among architects who claim that, by contrast, it isintelligent design thatprovides the best energetic results. This book describes the history, theory and facts of the mainstream insulation technology and the emerging alternative design approaches.

  16. Hydrogen interactions with silicon-on-insulator materials

    OpenAIRE

    Rivera de Mena, A.J.

    2003-01-01

    The booming of microelectronics in recent decades has been made possible by the excellent properties of the Si/SiO2 interface in oxide on silicon systems.. This semiconductor/insulator combination has proven to be of great value for the semiconductor industry. It has made it possible to continuously increase the number of transistors per chip until the physical limit of integration is now almost reached. Silicon-on-insulator (SOI) materials were early on seen as a step in the logical evolutio...

  17. Study for increasing the stabilization time of a catalytic dye to facilitate the fabrication of membrane electrode assemblies; Estudio para incrementar el tiempo de estabilizacion de una tinta catalitica para facilitar la fabricacion de ensambles membrana-electrodo

    Energy Technology Data Exchange (ETDEWEB)

    Flores Hernandez, J. Roberto [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)] e-mail: jrflores@iie.org.mx; Martinez Vado, F. Isaias [Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Mexico D.F. (Mexico); Cano Castillo, Ulises, Albarran Sanchez, Lorena [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2009-09-15

    An infrastructure project has been underway for hydrogen technology and fuel cells at the Electrical Research Institute (IIE, Spanish acronym). Part of this project is an activity for the fabrication of membrane electrode assemblies (MEA). Currently, a fabrication process is well-established for the MEA using the spray technique. In addition, a catalytic dye base composition has been developed for use in the fabrication of high-quality MEA with a good degree of reproducibility. Nevertheless, the instability of the dye over time prevents continuous fabrication of MEA. This document presents the results obtained, to-date, of research conducted at the IIE aimed at increasing the stability of the catalytic dye by adding a surfactant with different concentrations and increasing the concentration of the Nafion® solution. It was found that the effect of adding the surfactant to the catalytic dye results in a qualitative decrease in the agglomerate sizes, while also decreasing the porosity of the dye once it has dried. In addition, it was found that increasing the amount of Nafion® in the catalytic die increases the porosity. [Spanish] En el Instituto de Investigaciones Electricas (IIE) se ha venido trabajando en un proyecto de infraestructura sobre la tecnologia de hidrogeno y celdas de combustible. Dentro de este proyecto se tiene una actividad orientada a la fabricacion de Ensambles Membrana-Electrodo (MEA's). Actualmente se tiene un proceso de fabricacion bien establecido para la elaboracion de MEA's utilizando la tecnica de rociado, asimismo, se tiene una composicion base de tinta catalitica con la cual se fabrican MEA's de buena calidad y con buen grado de reproducibilidad. Sin embargo, la inestabilidad de la tinta con respecto al tiempo impide tener una fabricacion continua de los MEA's. En este documento se presentan los resultados obtenidos hasta ahora de una investigacion que se realiza en el IIE orientada a incrementar la estabilidad de la

  18. Degradation diagnosis of transformer insulating oils with terahertz time-domain spectroscopy

    Science.gov (United States)

    Kang, Seung Beom; Kim, Won-Seok; Chung, Dong Chul; Joung, Jong Man; Kwak, Min Hwan

    2017-12-01

    We report the frequency-dependent complex optical constants, refractive index and absorption, and complex dielectric properties over the frequency range from 0.2 to 3.0 THz for aged power transformer mineral insulating oils. These results have been obtained using terahertz time-domain spectroscopy (THz-TDS) and demonstrate the double-Debye relaxation behavior of the mineral insulating oil. The measured complex optical and dielectric characteristics can be important benchmarks for liquid molecular dynamics and theoretical studies of insulating oils. Due to clear differences in THz responses of aged mineral insulating oils, THz-TDS can be used as a novel on-site diagnostic technique to monitor the insulation condition in aged power transformers and may be valuable alternative to characterize other developing eco-friendly insulating oils and industrial liquids.

  19. Synthesis and characterization of innovative insulation materials

    Directory of Open Access Journals (Sweden)

    Skaropoulou Aggeliki

    2018-01-01

    Full Text Available Insulation elements are distinguished in inorganic fibrous and organic foamed materials. Foamed insulation materials are of great acceptance and use, but their major disadvantage is their flammability. In case of fire, they tend to transmit the flame producing toxic gases. In this paper, the synthesis and characterization of innovative inorganic insulation materials with properties competitive to commercial is presented. Their synthesis involves the mixing of inorganic raw material and water with reinforcing agent or/and foaming agent leading to the formation of a gel. Depending on raw materials nature, the insulation material is produced by freeze drying or ambient drying techniques of the gel. The raw material used are chemically benign and abundantly available materials, or industrial by-products and the final products are non-toxic and, in some cases, non-flammable. Their density and thermal conductivity was measured and found 0.02-0.06 g/cm3 and 0.03-0.04 W/mK, respectively.

  20. Insulation performance data and assessment procedures for steam kiln energy conservation investments

    Energy Technology Data Exchange (ETDEWEB)

    Zaccor, J.V.

    1980-09-01

    For a demonstration project, the costs and benefits of insulating concrete block curing kilns to isolate the kiln thermal mass from the curing cycle are determined. Data were developed on service life of FOAMGLAS insulation, the effect of Johnson burners on the insulation and mounting, performance of an alternative insulation (a rapidly installed, spray-on polyurethane foam), and a simple incentive to promote implementation of industrial energy conservation concepts. Data are tabulated and compared for the FOAMGLAS and CPR 480 polyurethane insulations. Specific studies of insulation that was installed on inside surfaces of kilns to lock the kiln-mass out of the curing cycle are given for Blocklite plant in California, the Ameron pipe plant in California, and the Superlite plant in Phoenix, Arizona. (MCW)

  1. Technological impact in steels degree API 5L X-70 for the manufacture of resistant ducts of 36 inches of diameter to the bitter gas; Impacto tecnologico de aceros grado API 5L X-70 para la fabricacion de ductos de 36 pulgadas de diametro resistentes al gas amargo

    Energy Technology Data Exchange (ETDEWEB)

    Aramburo Perez, G.; Garcia Galan, S.; Perez Campos, R.; Juarez Islas, J.A. [Facultad de Quimica, UNAM, Mexico, D.F. (Mexico)

    2004-03-01

    Several steel plates in the as-hot rolled plus cooled condition were studied, in order to evaluate the impact of the steelmaking route and the controlled thermomechanical processing plus the cooling media. The steelmaking route to produce the slabs involved the use of 100% sponge iron which was feed into an electric arc furnace, vacuum degassed, ladle treated and continuously cast. After soaking, a controlled thermomechanical processing the resulting steel plates cooled in air showed a banded structure, which sometimes presented a central segregation region. The worst plates with a central segregation region showed intermetallic compounds in it. After modifications of the steelmaking route and the controlled thermomechanical/cooling schedule, a steel plate with a ferritic microstructure plus 0.5% in vol of bainite was obtained. This microstructure together with the resulting mechanical properties, fulfilled the API grade 5LX-70 properties, required by the petroleum industry. [Spanish] Se evaluo el impacto del proceso en la fabricacion de planchones de acero grado APIX-70, asimismo, el proceso de deformacion termomecanico controlado, mas enfriamiento de placas. El proceso para producir los planchones involucra el uso de 100% de hierro esponja, el cual es alimentado a un horno electrico, desgasificado al vacio y colado continuamente. Al planchon resultante se le aplica un programa de laminacion en caliente controlado y a las placas resultantes se le aplica un enfriamiento al aire o acelerado. La mayoria de las placas enfriadas al aire mostraron una estructura bandeada, algunas presentaron una region con segregacion central y otras las segregacion central mas la presencia de intermetalicos. Despues de modificar el proceso de fabricacion del acero, su control termomecanico y su programa de enfriamiento, se obtuvo una placa con una microestructura ferrifica mas un 0.5% en volumen de bainita. Esta microestructura junto con el resultado de sus propiedades mecanicas

  2. Structure, Mechanism, and Application of Vacuum Insulation Panels in Chinese Buildings

    Directory of Open Access Journals (Sweden)

    Changhai Peng

    2016-01-01

    Full Text Available Thermal insulation is one of the most used approaches to reduce energy consumption in buildings. Vacuum insulation panels (VIPs are new thermal insulation materials that have been used in the domestic and overseas market in the last 20 years. Due to the vacuum thermal insulation technology of these new materials, their thermal conductivity can be as low as 0.004 W/(m·K at the center of panels. In addition, VIPs that are composites with inorganic core and an envelope out of commonly three metallized PET layers and a PE sealing layer can provide B class fire resistance (their core materials are not flammable and are classified as A1. Compared with other conventional thermal insulation materials, the thermal insulation and fire resistance performances form the foundation of VIP’s applications in the construction industry. The structure and thermal insulation mechanism of VIP and their application potential and problems in Chinese buildings are described in detail.

  3. Automatic detection of flaws in polymer insulators using 3D industrial tomography; Deteccao automatica de vazios em isoladores polimericos por tomografia industrial 3D

    Energy Technology Data Exchange (ETDEWEB)

    Godoi, Walmor Cardoso; Swinka-Filho, Vitoldo [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil)], Emails: walmor@lactec.org.br, vitoldo@lactec.org.br; Geus, Klaus de [Companhia Paranaense de Energia (Copel), Curitiba, PR (Brazil)], Email: klaus@copel.com; Silva, Romeu Ricardo da [SENAI-RJ Solda (CTS/Solda), Rio de Janeiro, RJ (Brazil). Centro de Tecnologia], Email: rrdsilva@firjan.org.br

    2009-10-15

    This work presents a methodology for the automatic detection of flaws in polymer insulators using three-dimensional industrial computed tomography (CT), as well as results obtained in the context of power distribution networks. The CT slices were reconstructed using 180 digital radiographs (projections) acquired by a high resolution system (pixel dimension of 50 {mu}m x 50 {mu}m, a-Si). For the reconstruction of 3D CT, 50 {mu}m wide bit map slices were used. The Marching Cubes algorithm was used to perform the 3D reconstruction, using the Visualization Tool kit (VTK) library and the Java programming language (64 Bits Linux platform). Nine features were obtained from the reconstructed three-dimensional objects for the neural networks training. Results showed to be satisfactory. (author)

  4. Assessment of health implications related to processing and use of natural wool insulation products.

    Science.gov (United States)

    Mansour, E; Loxton, C; Elias, R M; Ormondroyd, G A

    2014-12-01

    This paper discusses possible health implications related to dust particles released during the manufacture of sheep's wool-based non-woven insulation material. Such insulation may replace traditional synthetic insulation products used in roofs, wall cavities, etc. A review of the literature concerning organic dusts in general and sheep's wool fiber summarizes dust exposure patterns, toxicological pathways and the hazards imposed by inhalation and explosion risk. This paper highlights a need for more research in order to refrain from overgeneralizing potential pulmonary and carcinogenic risks across the industries. Variables existing between industries such as the use of different wool types, processes, and additives are shown to have varying health effects. Within the final section of the paper, the health issues raised are compared with those that have been extensively documented for the rock and glass wool industries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A New Generation of Building Insulation by Foaming Polymer Blend Materials with CO2

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Arthur [Industrial Science & Technology Network, Inc., Lancaster, PA (United States); Domszy, Roman [Industrial Science & Technology Network, Inc., Lancaster, PA (United States); Yang, Jeff [Industrial Science & Technology Network, Inc., Lancaster, PA (United States)

    2016-03-30

    Advanced thermal insulation is among the most effective technologies in transforming our nation’s energy system and contributing to DOE’s stated goal of 50% less building energy consumption by 2030. The installation of an advanced thermal insulation would prevent energy waste without the need for any maintenance, and ISTN conservatively estimates that the commercialization of such a new technology would contribute to annual U.S. energy savings of 0.361 Quads and $8 billion in annual economic savings. The key challenge to improving building insulation is to maintain and surpass the industry standard of R-5 per inch insulation value in a cost-competitive manner. Improvements in R-value without cost-efficiency are not likely to impact the market given the cost-sensitive nature of the construction industry (insulation is already the lowest-cost component of the building envelope). However, significantly higher insulating value at competitive costs is extremely appealing to the market given the greater potential to save on energy consumption and costs over the long-term. Thus, our goal is to develop a super-thermal insulation with 50% greater insulation value (R-9 to R-10 per inch) and manufacturing costs that are equal on a per-R-value basis (< $0.70/ft2).

  6. RTD-Incotest for evaluation of corrosion under insulation

    Energy Technology Data Exchange (ETDEWEB)

    Witts, J., E-mail: Jason.Witts@applusrtd.com [Applus-RTD Canada, Edmonton, AB (Canada)

    2015-07-01

    RTD-Incotest or insulated component testing, a method of pulsed eddy current, is designed and developed by Applus-RTD for the detection and sizing of corrosion under insulation. RTD-Incotest measures average wall loss over an area beneath the probe. This is accomplished by measuring the decay curve of the eddy current and then utilizes a software algorithm to determine percent wall loss. If there is a verification point this can also give average remaining wall thickness. The benefits for the nuclear industry are: 1) No need to remove insulation. Only requires one verification point. 2) Reduces potential exposure/ maintains ALARA 3) Quick and accurate screening method. For exposed piping there is no need for contact with the piping. So it can be applied for high temperature or for increasing standoff to reduce exposure. (author)

  7. RTD-Incotest for evaluation of corrosion under insulation

    International Nuclear Information System (INIS)

    Witts, J.

    2015-01-01

    RTD-Incotest or insulated component testing, a method of pulsed eddy current, is designed and developed by Applus-RTD for the detection and sizing of corrosion under insulation. RTD-Incotest measures average wall loss over an area beneath the probe. This is accomplished by measuring the decay curve of the eddy current and then utilizes a software algorithm to determine percent wall loss. If there is a verification point this can also give average remaining wall thickness. The benefits for the nuclear industry are: 1) No need to remove insulation. Only requires one verification point. 2) Reduces potential exposure/ maintains ALARA 3) Quick and accurate screening method. For exposed piping there is no need for contact with the piping. So it can be applied for high temperature or for increasing standoff to reduce exposure. (author)

  8. Hydrogen interactions with silicon-on-insulator materials

    NARCIS (Netherlands)

    Rivera de Mena, A.J.

    2003-01-01

    The booming of microelectronics in recent decades has been made possible by the excellent properties of the Si/SiO2 interface in oxide on silicon systems.. This semiconductor/insulator combination has proven to be of great value for the semiconductor industry. It has made it possible to continuously

  9. Edge forward mechanical protection for porcelain insulators

    Energy Technology Data Exchange (ETDEWEB)

    deCasseres, D.K.

    1987-12-01

    Vandal damage to exposed outdoor insulators of all types has become an increasing problem. Porcelain is susceptible to impact fracture, and Area Boards have frequently found it necessary to protect expensive and often highly vulnerable terminating assemblies from the unwelcome attention of hooligans. Various means of physical protection can be used, but many of these are highly demanding in terms of maintenance. This article discusses the 'state of the art' in insulator protection, and describes the design and development of a new concept in the field-the Shed Protector-a number of which are now installed on 132kV sealing ends throughout the Electricity Supply Industry.

  10. Available Prediction Methods for Corrosion under Insulation (CUI: A Review

    Directory of Open Access Journals (Sweden)

    Burhani Nurul Rawaida Ain

    2014-07-01

    Full Text Available Corrosion under insulation (CUI is an increasingly important issue for the piping in industries especially petrochemical and chemical plants due to its unexpected catastrophic disaster. Therefore, attention towards the maintenance and prediction of CUI occurrence, particularly in the corrosion rates, has grown in recent years. In this study, a literature review in determining the corrosion rates by using various prediction models and method of the corrosion occurrence between the external surface piping and its insulation was carried out. The results, prediction models and methods available were presented for future research references. However, most of the prediction methods available are based on each local industrial data only which might be different based on the plant location, environment, temperature and many other factors which may contribute to the difference and reliability of the model developed. Thus, it is more reliable if those models or method supported by laboratory testing or simulation which includes the factors promoting CUI such as environment temperature, insulation types, operating temperatures, and other factors.

  11. Impact of moisture content in AAC on its heat insulation properties

    Science.gov (United States)

    Rubene, S.; Vilnitis, M.

    2017-10-01

    One of the most popular trends in construction industry is sustainable construction. Therefore, application of construction materials with high insulation characteristics has significantly increased during the past decade. Requirements for application of construction materials with high insulation parameters are required not only by means of energy saving and idea of sustainable construction but also by legislative requirements. Autoclaved aerated concrete (AAC) is a load bearing construction material, which has high heat insulation parameters. However, if the AAC masonry construction has high moisture content the heat insulation properties of the material decrease significantly. This fact lead to the necessity for the on-site control of moisture content in AAC in order to avoid inconsistency between the designed and actual thermal resistivity values of external delimiting constructions. Research of the impact of moisture content in AAC on its heat insulation properties has been presented in this paper.

  12. Thermal paint production: the techno-economic evaluation of muscovite as insulating additive.

    Directory of Open Access Journals (Sweden)

    Gabriela Fernandes Ribas

    2016-09-01

    Full Text Available Muscovite is known by its thermal and electrical insulating properties. Based on this, it was hypothesized that its addition on paints should increase the thermal resistance. The use of muscovite as mineral insulating is pointed out as advantageous due to its low cost compared to other materials used for this purpose, such as the ceramic microsphere. The use of a low cost material could open the access to the medium and low income families, implying two aspects: the life quality increase by thermal comfort and the increase of energy saving. Thus, this part of the population could open a new market to thermal paints. Aiming to contribute to this issue, this work evaluated the thermal insulation performance of commercial paints containing muscovite additions and determined the economic evaluation for its industrial production. The thermal paint was formulated by adding 10%, 20% and 40% of muscovite to the commercial paint. This was applied on steel reinforced mortar boards. Thermal insulation tests were carried out in bench scale using an adapted box. The economic evaluation of the industrial production of muscovite-based thermal paint was conducted, considering the Brazilian economic market in this activity. The results showed its ability as an insulating agent due to a reduction of 0.667 °C/mm board by the addition of 40% muscovite. The economic analysis also demonstrated the feasibility of the thermal paint industrial production. The payback is favorable to 5 years when compared to the Selic short-term lending rate, with 21.53% of internal rate return and a net present value of US$ 15,085.76.

  13. Green insulation: hemp fibers

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2011-09-15

    Indian hemp (Cannabis indica) is known for its psychotropic values and it is banned in most countries. However, industrial hemp (Cannabis sativa) is known for its tough fibers. Several manufactures in Europe including, small niche players, have been marketing hemp insulation products for several years. Hemp is a low environmental impact material. Neither herbicide nor pesticide is used during the growth of hemp. The fibers are extracted in a waste-free and chemical-free mechanical process. Hemp can consume CO2 during its growth. In addition, hemp fiber can be disposed of harmlessly by composting or incineration at the end of its life. Hemp fibers are processed and treated only minimally to resist rot and fungal activity. There is little health risk when producing and installing the insulation, thanks to the absence of toxic additive. Its thermal resistance is comparable to mineral wool. But the development and marketing of hemp fibers may be restricted in North America.

  14. Advances in Thermal Insulation. Vacuum Insulation Panels and Thermal Efficiency to Reduce Energy Usage in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thorsell, Thomas

    2012-07-01

    We are coming to realize that there is an urgent need to reduce energy usage in buildings and it has to be done in a sustainable way. This thesis focuses on the performance of the building envelope; more precisely thermal performance of walls and super insulation material in the form of vacuum insulation. However, the building envelope is just one part of the whole building system, and super insulators have one major flaw: they are easily adversely affected by other problems in the built environment. Vacuum Insulation Panels are one fresh addition to the arsenal of insulation materials available to the building industry. They are composite material with a core and an enclosure which, as a composite, can reach thermal conductivities as low as 0.004 W/(mK). However, the exceptional performance relies on the barrier material preventing gas permeation, maintaining a near vacuum into the core and a minimized thermal bridge effect from the wrapping of barrier material round the edge of a panel. A serpentine edge is proposed to decrease the heat loss at the edge. Modeling and testing shows a reduction of 60 % if a reasonable serpentine edge is used. A diffusion model of permeation through multilayered barrier films with metallization coatings was developed to predict ultimate service life. The model combines numerical calculations with analytical field theory allowing for more precise determination than current models. The results using the proposed model indicate that it is possible to manufacture panels with lifetimes exceeding 50 years with existing manufacturing. Switching from the component scale to the building scale; an approach of integrated testing and modeling is proposed. Four wall types have been tested in a large range of environments with the aim to assess the hydrothermal nature and significance of thermal bridges and air leakages. The test procedure was also examined as a means for a more representative performance indicator than R-value (in USA). The

  15. Labeling and advertising of home insulation. Final staff report to the Federal Trade Commission and proposed trade regulation rule (16 CFR Part 460)

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    Because insulation is a very difficult product for uniformed consumers to evaluate, there has been broad support for a rule requiring disclosure of information facilitating choices among insulation products. With information that the Recommended Rule will require, consumers will be able to compare the thermal properties of various types of insulation and make the best purchases. The FTC undertook this rulemaking effort and proposed a Rule on November 18, 1977. Hearings were conducted. Approximately 50 witnesses representing insulation manufacturers, contractors, trade associations, consumer and environmental groups, and state and Federal government agencies attended. As the record shows, without the Rule, some insulation industry members have failed to base R-value claims on tests or have extrapolated values from too-thin samples. Neither labels nor ads disclose R values; most do not explain R value; and the industry is not telling consumers about factors that often reduce insulation R values. Consumers are seldom told about performance characteristics of individual types of insulation. They are not advised that insulation is not always a good investment, or that their money might be more wisely spent on other conservation measures. The Rule addresses all of these problems. All aspects of the insulation industry and some consumer characteristics are summarized. (MCW)

  16. Improved Thermal-Insulation Systems for Low Temperatures

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, Stanislaw D.

    2003-01-01

    Improved thermal-insulation materials and structures and the techniques for manufacturing them are undergoing development for use in low-temperature applications. Examples of low-temperature equipment for which these thermal insulation systems could provide improved energy efficiency include storage tanks for cryogens, superconducting electric-power-transmission equipment, containers for transport of food and other perishable commodities, and cold boxes for low-temperature industrial processes. These systems could also be used to insulate piping used to transfer cryogens and other fluids, such as liquefied natural gas, refrigerants, chilled water, crude oil, or low-pressure steam. The present thermal-insulation systems are layer composites based partly on the older class of thermal-insulation systems denoted generally as multilayer insulation (MLI). A typical MLI structure includes an evacuated jacket, within which many layers of radiation shields are stacked or wrapped close together. Low-thermal-conductivity spacers are typically placed between the reflection layers to keep them from touching. MLI can work very well when a high vacuum level (less than 10(exp-4) torr) is maintained and utmost care is taken during installation, but its thermal performance deteriorates sharply as the pressure in the evacuated space rises into the soft vacuum range [pressures greater than 0.1 torr (greater than 13 Pa)]. In addition, the thermal performance of MLI is extremely sensitive to mechanical compression and edge effects and can easily decrease from one to two orders of magnitude from its ideal value even when the MLI is kept under high vacuum condition. The present thermal-insulation systems are designed to perform well under soft vacuum level, in particular the range of 1 to 10 torr. They are also designed with larger interlayer spacings to reduce vulnerability to compression (and consequent heat leak) caused by installation and use. The superiority of these systems is the

  17. Radiation Crosslinking of Small Electrical Wire Insulator Fabricated from NR-LDPE Blend

    International Nuclear Information System (INIS)

    Chyagrit, S.

    2006-01-01

    Blending of block natural rubber (STR-5L) and LDPE with phthalic anhydride (PA) as copatibilizer was put to the test for the purpose of a fabrication into small electrical wire insulator. It was found that PA at concentration of 1.0 - 1.5% in NR/PE of 50/50 so fabricated into the insulator, after gamma ray cross-linked at a dose of 180 kGy in limited air, could meet Thai Industrial Standard (TIS) 11-2531 of small eletrical insulator (<300 V). Effect of radiation dose on tensile, hardness, elongation at break, modulus 100%, limiting oxigen index (LOI) were investigated. It was noted that to comply with TIS 11-2531 for vertical flame retardance test, a suitable flame retardance was needed for the insulator

  18. A water blown urethane insulation for use in cryogenic environments

    Science.gov (United States)

    Blevins, Elana; Sharpe, Jon

    1995-01-01

    Thermal Protection Systems (TPS) of NASA's Space Shuttle External Tank include polyurethane and polyisocyanurate modified polyurethane foam insulations. These insulations, currently foamed with CFC 11 blowing agent, serve to maintain cryogenic propellant quality, maintain the external tank structural temperature limits, and minimize the formation of ice and frost that could potentially damage the ceramic insulation on the space shuttle orbiter. During flight the external tank insulations are exposed to mechanical, thermal and acoustical stresses. TPS must pass cryogenic flexure and substrate adhesion tests at -253 C, aerothermal and radiant heating tests at fluxes up to approximately 14 kilowatts per square meter, and thermal conductivity tests at cryogenic and elevated temperatures. Due to environmental concerns, the polyurethane insulation industry and the External Tank Project are tasked with replacing CFC 11. The flight qualification of foam insulations employing HCFC 141b as a foaming agent is currently in progress; HCFC 141b blown insulations are scheduled for production implementation in 1995. Realizing that the second generation HCFC blowing agents are an interim solution, the evaluation of third generation blowing agents with zero ozone depletion potential is underway. NASA's TPS Materials Research Laboratory is evaluating third generation blowing agents in cryogenic insulations for the External Tank; one option being investigated is the use of water as a foaming agent. A dimensionally stable insulation with low friability, good adhesion to cryogenic substrates, and acceptable thermal conductivity has been developed with low viscosity materials that are easily processed in molding applications. The development criteria, statistical experimental approach, and resulting foam properties will be presented.

  19. Application of CdZnTe Gamma-Ray Detector for Imaging Corrosion under Insulation

    International Nuclear Information System (INIS)

    Abdullah, J.; Yahya, R.

    2007-01-01

    Corrosion under insulation (CUI) on the external wall of steel pipes is a common problem in many types of industrial plants. This is mainly due to the presence of moisture or water in the insulation materials. This type of corrosion can cause failures in areas that are not normally of a primary concern to an inspection program. The failures are often the result of localised corrosion and not general wasting over a large area. These failures can tee catastrophic in nature or at least have an adverse economic effect in terms of downtime and repairs. There are a number of techniques used today for CUI investigations. The main ones are profile radiography, pulse eddy current, ultrasonic spot readings and insulation removal. A new system now available is portable Pipe-CUI-Profiler. The nucleonic system is based on dual-beam gamma-ray absorption technique using Cadmium Zinc Telluride (CdZnTe) semiconductor detectors. The Pipe-CUI-Profiler is designed to inspect pipes of internal diameter 50, 65, 80, 90, 100, 125 and 150 mm. Pipeline of these sizes with aluminium or thin steel sheathing, containing fibreglass or calcium silicate insulation to thickness of 25, 40 and 50 mm can be inspected. The system has proven to be a safe, fast and effective method of inspecting pipe in industrial plant operations. This paper describes the application of gamma-ray techniques and CdZnTe semiconductor detectors in the development of Pipe-CUI-Profiler for non-destructive imaging of corrosion under insulation of steel pipes. Some results of actual pipe testing in large-scale industrial plant will be presented

  20. Application of CdZnTe Gamma-Ray Detector for Imaging Corrosion under Insulation

    Science.gov (United States)

    Abdullah, J.; Yahya, R.

    2007-05-01

    Corrosion under insulation (CUI) on the external wall of steel pipes is a common problem in many types of industrial plants. This is mainly due to the presence of moisture or water in the insulation materials. This type of corrosion can cause failures in areas that are not normally of a primary concern to an inspection program. The failures are often the result of localised corrosion and not general wasting over a large area. These failures can tee catastrophic in nature or at least have an adverse economic effect in terms of downtime and repairs. There are a number of techniques used today for CUI investigations. The main ones are profile radiography, pulse eddy current, ultrasonic spot readings and insulation removal. A new system now available is portable Pipe-CUI-Profiler. The nucleonic system is based on dual-beam gamma-ray absorption technique using Cadmium Zinc Telluride (CdZnTe) semiconductor detectors. The Pipe-CUI-Profiler is designed to inspect pipes of internal diameter 50, 65, 80, 90, 100, 125 and 150 mm. Pipeline of these sizes with aluminium or thin steel sheathing, containing fibreglass or calcium silicate insulation to thickness of 25, 40 and 50 mm can be inspected. The system has proven to be a safe, fast and effective method of inspecting pipe in industrial plant operations. This paper describes the application of gamma-ray techniques and CdZnTe semiconductor detectors in the development of Pipe-CUI-Profiler for non-destructive imaging of corrosion under insulation of steel pipes. Some results of actual pipe testing in large-scale industrial plant will be presented.

  1. Cellulose Insulation

    Science.gov (United States)

    1980-01-01

    Fire retardant cellulose insulation is produced by shredding old newspapers and treating them with a combination of chemicals. Insulating material is blown into walls and attics to form a fiber layer which blocks the flow of air. All-Weather Insulation's founders asked NASA/UK-TAP to help. They wanted to know what chemicals added to newspaper would produce an insulating material capable of meeting federal specifications. TAP researched the query and furnished extensive information. The information contributed to successful development of the product and helped launch a small business enterprise which is now growing rapidly.

  2. ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized

  3. Insulation measurement and supervision in live AC and DC unearthed systems

    CERN Document Server

    Olszowiec, Piotr

    2014-01-01

    Low voltage unearthed (IT) AC and DC systems are commonly applied for supply of power and control circuits in industry, transportation, medical objects etc. The main reasons for their use are high reliability and numerous advantages offered by isolating them against ground. Insulation level is a decisive factor for networks operational reliability and safety. Insufficient insulation-to-ground resistance can cause various disturbances. Though ground faults in IT systems do not make networks operation impossible, they may cause severe problems with their safe functioning. In this book the most important issues concerning normal operation and ground fault phenomena are described in concise form. Numerous methods of insulation resistance and capacitance measurement in live circuits are presented. Important other procedures of  these parameters determination based on measurement and calculation are explained and reviews of selected insulation resistance measurement devices as well as earth fault locating systems ...

  4. Insulation measurement and supervision in live AC and DC unearthed systems

    CERN Document Server

    Olszowiec, Piotr

    2013-01-01

    Low voltage unearthed (IT) AC and DC systems are commonly applied for supply of power and control circuits in industry, transportation, medical objects etc. The main reasons for their use are high reliability and numerous advantages offered by isolating them against ground. Insulation level is a decisive factor for networks operational reliability and safety. Insufficient insulation-to-ground resistance can cause various disturbances. Though ground faults in IT systems do not make networks operation impossible, they may cause severe problems with their safe functioning. In this book the most important issues concerning normal operation and ground fault phenomena are described in concise form. Numerous methods of insulation resistance and capacitance measurement in live circuits are presented. Important other procedures of  these parameters determination based on measurement and calculation are explained and reviews of selected insulation resistance measurement devices as well as earth fault locating systems ...

  5. Design analysis of ceramic and polymer 150 kV insulators for tropical condition using quickfield software

    Science.gov (United States)

    Walukow, Stephy B.; Manjang, Salama; Zainuddin, Zahir; Samman, Faizal Arya

    2018-03-01

    This research is to analyze design of ceramic and polymer 150 kV insulators for the tropical area. The use of an insulator certainly requires an electric field. The leakage current and breakdown voltage this happens the contaminant on the surface of the insulator. This type of contaminant can be rain, dust, salt air, extreme weather (much in tropical climates), industrial pollutants and cracks on the surface resulting in collisions. The method used in this research is magnetic field and electric field isolator using Quicfield software. To get the test results variation ranges 20 kV, 70 kV and 150 kV. Side effects of magnetic and electric fields around the insulator. The simulation results show the accumulated contaminants on the surface. Planning should be done in insulator insulator on unstable insulator. Thus, the approach using this commercially available software can be applied to. Therefore, the development of further simulations on the different types of composite insulators used on.

  6. NDE of ceramic insulator blanks by radiography

    International Nuclear Information System (INIS)

    Sarvanan, S.; Venkatraman, B.; Jayakumar, T.; Baldev Raj

    1996-01-01

    The production of ceramic insulators in electrical industry involves a number of steps, one of which is the green blank. The defects such as voids and crack can be present in the extruded green blank. One of the best non-destructive evaluation (NDE) technique radiography. This paper deals with the development of methodology based on theoretical modeling for the examination of ceramics by high sensitivity radiography. (author)

  7. Determination of the characteristics of an electric arc plasma contaminated by vapors from insulators

    International Nuclear Information System (INIS)

    Abbaoui, M.; Cheminat, B.

    1991-01-01

    An experimental study at atmospheric pressure carried out on plasma penetrated by vapors from different industrial insulators allowed the showing of the influence of the nature of the insulator upon the characteristics of the electric arc plasma; i.e., an increase of the temperature, electron density, electric field, and extinction velocity of the arc. Measurements have been made spectrometrically and by means of probes

  8. Thermal insulation

    International Nuclear Information System (INIS)

    Aspden, G.J.; Howard, R.S.

    1988-01-01

    The patent concerns high temperature thermal insulation of large vessels, such as the primary vessel of a liquid metal cooled nuclear reactor. The thermal insulation consists of multilayered thermal insulation modules, and each module comprises a number of metal sheet layers sandwiched between a back and front plate. The layers are linked together by straps and clips to control the thickness of the module. (U.K.)

  9. Non-destructive qualification tests for ITER cryogenic axial insulating breaks

    International Nuclear Information System (INIS)

    Kosek, Jacek; Lopez, Roberto; Tommasini, Davide; Rodriguez-Mateos, Felix

    2014-01-01

    In the ITER superconducting magnets the dielectric separation between the CICC (Cable-In-Conduit Conductors) and the helium supply pipes is made through the so-called insulating breaks (IB). These devices shall provide the required dielectric insulation at a 30 kV level under different types of stresses and constraints: thermal, mechanical, dielectric and ionizing radiations. As part of the R and D program, the ITER Organization launched contracts with industrial companies aimed at the qualification of the manufacturing techniques. After reviewing the main functional aspects, this paper describes and discusses the protocol established for non-destructive qualification tests of the prototypes

  10. Non-destructive qualification tests for ITER cryogenic axial insulating breaks

    Energy Technology Data Exchange (ETDEWEB)

    Kosek, Jacek [Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland and CERN, Geneva 23,CH-1211 (Switzerland); Lopez, Roberto; Tommasini, Davide [CERN, Geneva 23,CH-1211 (Switzerland); Rodriguez-Mateos, Felix [CERN, Geneva 23,CH-1211, Switzerland and ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France)

    2014-01-29

    In the ITER superconducting magnets the dielectric separation between the CICC (Cable-In-Conduit Conductors) and the helium supply pipes is made through the so-called insulating breaks (IB). These devices shall provide the required dielectric insulation at a 30 kV level under different types of stresses and constraints: thermal, mechanical, dielectric and ionizing radiations. As part of the R and D program, the ITER Organization launched contracts with industrial companies aimed at the qualification of the manufacturing techniques. After reviewing the main functional aspects, this paper describes and discusses the protocol established for non-destructive qualification tests of the prototypes.

  11. PRODUCTION OF AN INSULATION MATERIAL FROM CARPET AND BORON WASTES

    Directory of Open Access Journals (Sweden)

    Yasin ERDOĞAN

    2016-12-01

    Full Text Available Buildings are large consumers of energy in all countries. In regions with harsh climatic conditions, a substantial share of energy goes to heat and cool buildings. This paper reports an investigation of the insulation materials made from mixing carpet wastes with a solution with added crude colemanite ore, one of boron minerals, and a solution with added colemanite wastes from a barrage. A new building insulation material was produced which is name, Halibor. Optimum mixing ratios were determined for mass production and the physical properties of the product were established. In addition, the material produced was compared with similar products used in buildings in terms of physical properties. As a result of the investigations, it was established that the product provides high heat and sound insulation and can be used easily in building and construction industry.

  12. Absorbed Dose Distributions in Irradiated Plastic Tubing and Wire Insulation

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1979-01-01

    Plastic tubing and wire insulation were simulated by radiochromic dye dosimeter films having electron absorbing properties similar to the materials of interest (polyethylene and PVC). A 400-keV electron accelerator was used to irradiate from 1, 2, 3 and 4 sides simulating possible industrial...

  13. Expert Meeting Report: Cladding Attachment Over Exterior Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States)

    2013-10-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on thestructure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exterior insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explorethese topics from an engineering design, laboratory testing, field monitoring, as well as practical construction perspective. By bringing various groups together (who have been conduction research or have experience in this area), a more holistic review of the design limits and current code language proposals can be completed and additional gaps identified. The results of which will help informdesign standards and criteria.

  14. Estimation of thermal insulation performance in multi-layer insulator for liquid helium pipe

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Kuriyama, Masaaki; Shibata, Takemasa

    1991-01-01

    For a multi-layer insulator around the liquid helium pipes for cryopumps of JT-60 NBI, a multi-layer insulator composed of 10 layers, which can be wound around the pipe at the same time and in which the respective layers are in concentric circles by shifting them in arrangement, has been developed and tested. As the result, it was shown that the newly developed multi-layer insulator has better thermal insulation performance than the existing one, i.e. the heat load of the newly developed insulator composed of 10 layers was reduced to 1/3 the heat load of the existing insulator, and the heat leak at the joint of the insulator in longitudinal direction of the pipe was negligible. In order to clarify thermal characteristics of the multi-layer insulator, the heat transfer through the insulator has been analyzed considering the radiation heat transfer by the netting spacer between the reflectors, and the temperature dependence on the emissivities and the heat transmission coefficients of these two components of the insulator. The analytical results were in good agreements with the experimental ones, so that the analytical method was shown to be valid. Concerning the influence of the number of layers and the layer density on the insulation performance of the insulator, analytical results showed that the multi-layer insulator with the number of layer about N = 20 and the layer density below 2.0 layer/mm was the most effective for the liquid helium pipe of a JT-60 cryopump. (author)

  15. Influence of void defects on partial discharge behavior of superconducting busbar insulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunyu; Huang, Xiongyi, E-mail: huangxy@ipp.ac.cn; Lu, Kun; Li, Guoliang; Zhu, Haisheng; Wang, Jun; Wang, Cao; Dai, Zhiheng; Fang, Linlin; Song, Yuntao

    2017-06-15

    Highlights: • PD detection method was used to check the quality of the superconducting busbar insulation. • The samples with different void fraction were manufactured for comparing. • The discharge inception voltage, PRPD pattern was tested and studied for the samples with different void content. • The PD behaviors in oil bath and air condition were compared. - Abstract: For a magnetic confinement fusion device, the superconducting magnets and busbars need to be insulated with one layer of solid insulation to isolate the high voltage potential from the ground. The insulation layer commonly consists of several interleaved layers of epoxy resin-impregnated glass fiber tapes and polyimide films. The traditional electrical inspection methods for such solidified insulation on the magnet and busbar are a DC voltage test or a Paschen test. These tests measure the quality of the insulation based on the value of leakage currents. However, even if there is a larger quantity of high dielectric strength material implemented, if there are some microcavities or delaminations in the insulation system, the leakage current may be limited to microampere levels under testing levels over dozens of kilovolts. Therefore, it is difficult to judge the insulation quality just by the magnitudes of leakage current. Under long-term operation, such imperceptible defects will worsen and finally completely break down the insulation because of partial discharge (PD) incidents. Therefore, a PD detection test is an important complement to the DC voltage and Paschen tests for magnet and busbar insulations in the field of fusion. It is known that the PD detection test is a mature technique in the electric power industry. In this paper, the PD characteristics of samples containing glass fiber-reinforced composite insulations for use with the superconducting busbar were presented and discussed. Various samples with different void contents were prepared and the PD behaviors were tested.

  16. Influence of void defects on partial discharge behavior of superconducting busbar insulation

    International Nuclear Information System (INIS)

    Wang, Chunyu; Huang, Xiongyi; Lu, Kun; Li, Guoliang; Zhu, Haisheng; Wang, Jun; Wang, Cao; Dai, Zhiheng; Fang, Linlin; Song, Yuntao

    2017-01-01

    Highlights: • PD detection method was used to check the quality of the superconducting busbar insulation. • The samples with different void fraction were manufactured for comparing. • The discharge inception voltage, PRPD pattern was tested and studied for the samples with different void content. • The PD behaviors in oil bath and air condition were compared. - Abstract: For a magnetic confinement fusion device, the superconducting magnets and busbars need to be insulated with one layer of solid insulation to isolate the high voltage potential from the ground. The insulation layer commonly consists of several interleaved layers of epoxy resin-impregnated glass fiber tapes and polyimide films. The traditional electrical inspection methods for such solidified insulation on the magnet and busbar are a DC voltage test or a Paschen test. These tests measure the quality of the insulation based on the value of leakage currents. However, even if there is a larger quantity of high dielectric strength material implemented, if there are some microcavities or delaminations in the insulation system, the leakage current may be limited to microampere levels under testing levels over dozens of kilovolts. Therefore, it is difficult to judge the insulation quality just by the magnitudes of leakage current. Under long-term operation, such imperceptible defects will worsen and finally completely break down the insulation because of partial discharge (PD) incidents. Therefore, a PD detection test is an important complement to the DC voltage and Paschen tests for magnet and busbar insulations in the field of fusion. It is known that the PD detection test is a mature technique in the electric power industry. In this paper, the PD characteristics of samples containing glass fiber-reinforced composite insulations for use with the superconducting busbar were presented and discussed. Various samples with different void contents were prepared and the PD behaviors were tested.

  17. Thermal insulating panel

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J.T.

    1985-09-11

    A panel of thermal insulation material has at least one main portion which comprises a dry particulate insulation material compressed within a porous envelope so that it is rigid or substantially rigid and at least one auxiliary portion which is secured to and extends along at least one of the edges of the main portions. The auxiliary portions comprise a substantially uncompressed dry particulate insulation material contained within an envelope. The insulation material of the auxiliary portion may be the same as or may be different from the insulation material of the main portion. The envelope of the auxiliary portion may be made of a porous or a non-porous material. (author).

  18. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Directory of Open Access Journals (Sweden)

    J. W. Zhang

    2017-10-01

    Full Text Available As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC. In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  19. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Science.gov (United States)

    Zhang, J. W.; Zhou, T. C.; Wang, J. X.; Yang, X. F.; Zhu, F.; Tian, L. M.; Liu, R. T.

    2017-10-01

    As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC). In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  20. Insulation and Heat Treatment of Bi-2212 Wire for Wind-and-React Coils

    Energy Technology Data Exchange (ETDEWEB)

    Peter K. F. Hwang

    2007-10-22

    Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2" dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

  1. Insulation and Heat Treatment of Bi-2212 Wires for Wind-and-React Coils

    International Nuclear Information System (INIS)

    Hwang, Peter K.F.

    2007-01-01

    Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2-inch dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

  2. Wall insulation system

    Energy Technology Data Exchange (ETDEWEB)

    Kostek, P.T.

    1987-08-11

    In a channel specially designed to fasten semi-rigid mineral fibre insulation to masonry walls, it is known to be constructed from 20 gauge galvanized steel or other suitable material. The channel is designed to have pre-punched holes along its length for fastening of the channel to the drywall screw. The unique feature of the channel is the teeth running along its length which are pressed into the surface of the butted together sections of the insulation providing a strong grip between the two adjacent pieces of insulation. Of prime importance to the success of this system is the recent technological advancements of the mineral fibre itself which allow the teeth of the channel to engage the insulation fully and hold without mechanical support, rather than be repelled or pushed back by the inherent nature of the insulation material. After the insulation is secured to the masonry wall by concrete nail fastening systems, the drywall is screwed to the channel.

  3. Vacuum Insulation Panels (VIPs) for building construction industry - A review of the contemporary developments and future directions

    International Nuclear Information System (INIS)

    Alam, M.; Singh, H.; Limbachiya, M.C.

    2011-01-01

    Highlights: → Vacuum Insulation Panels (VIP), a high thermal resistance building insulation. → Review of research into VIPs for building applications. → High cost and uncertainty of service life are two barriers for VIP use in buildings. → SiO 2 /SiN x coated PET laminate- candidate for high barrier VIP envelope. → The optimum combination of VIP core and envelope yet to be determined. -- Abstract: Demand for energy efficient buildings has increased drastically in recent years and this trend will continue in the future. Insulating building elements will play a key role in meeting this demand by reducing heat losses through the building fabric. Due to their higher thermal resistance, Vacuum Insulation Panels (VIPs) would be a more energy efficient alternative to conventional building insulation materials. Thus, efforts to develop VIPs with characteristics suitable for applications to new and existing buildings are underway. This paper provides a review of important contemporary developments towards producing VIPs using various materials such as glass fibre, foams, perlite and fibre/powder composites. The limitations of the materials currently used to fabricate VIPs have not been emphasised in detail in previous review papers published. Selection criteria, methods to measure important properties of VIPs and analytical and numerical models presented in the past have been detailed. Limitations of currently employed design tools along with potential future materials such as Nano/microcellular foams and SiO x /SiN x coatings for use in VIPs are also described.

  4. Reduction of heat insulation upon soaking of the insulation layer

    Science.gov (United States)

    Achtliger, J.

    1983-09-01

    Improved thermal protection of hollow masonry by introduction of a core insulation between the inner and outer shell is discussed. The thermal conductivity of insulation materials was determined in dry state and after soaking by water with different volume-related moisture contents. The interpolated thermal conductivity values from three measured values at 10 C average temperature are presented as a function of the pertinent moisture content. Fills of expanded polystyrene, perlite and granulated mineral fibers, insulating boards made of mineral fibers and in situ cellular plastics produced from urea-formaldehyde resin were investigated. Test results show a confirmation of thermal conductivity values for insulating materials in hollow masonry.

  5. Industrial applications or electron beams

    International Nuclear Information System (INIS)

    Martin, J. I.

    2001-01-01

    Industrial use of electron beams began in the 1950's with the crosslinking of polyethylene film and wire insulation. Today the number of electron beam Processing Systems installed for industrial applications throughout the world has grown to more than six hundred stations in over 35 countries. Total installed power is now approaching 40 megawatts (over 8 million tons of products per year). Electron beam is now utilized by many major industries including plastics, automotive, rubber goods, wire and cable, electrical insulation, semiconductor, medical, packaging, or pollution control. The principal effect of high-energy electrons is to produce ions in the materials treated, resulting in the liberation of orbital electrons. As a result, the original molecule is modified and the ree radicals combine to form new molecules with new chemical reactions or dis organisation od the DNA chains of living organisms (insects, fungus, microorganisms, etc.). (Author) 8 refs

  6. BOA: Pipe-asbestos insulation removal robot system

    International Nuclear Information System (INIS)

    Schempf, H.; Bares, J.; Mutschler, E.

    1995-01-01

    This paper describes the BOA system, a mobile pipe-external crawler used to remotely strip and bag (possibly contaminated) asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations across the DOE weapons complex. The mechanical removal of ACLIM is very cost-effective due to the relatively low productivity and high cost involved in human removal scenarios. BOA, a mechanical system capable of removing most forms of lagging (paper, plaster, aluminum sheet, clamps, screws and chicken-wire), and insulation (paper, tar, asbestos fiber, mag-block) uses a circular cutter and compression paddles to cut and strip the insulation off the pipe through compression, while a HEPA-filter and encapsulant system maintain a certifiable vacuum and moisture content inside the system and on the pipe, respectively. The crawler system has been built and is currently undergoing testing. Key design parameters and performance parameters are developed and used in performance testing. Since the current system is a testbed, we also discuss future enhancements and outline two deployment scenarios (robotic and manual) for the final system to be designed and completed by the end of FY '95. An on-site demonstration is currently planned for Fernald in Ohio and Oak Ridge in Tennessee

  7. Propagation Characteristics of Multilayer Hybrid Insulator-Metal-Insulator and Metal-Insulator-Metal Plasmonic Waveguides

    Directory of Open Access Journals (Sweden)

    M. Talafi Noghani

    2014-02-01

    Full Text Available Propagation characteristics of symmetrical and asymmetrical multilayer hybrid insulator-metal-insulator (HIMI and metal-insulator-metal (HMIM plasmonic slab waveguides are investigated using the transfer matrix method. Propagation length (Lp and spatial length (Ls are used as two figures of merit to qualitate the plasmonic waveguides. Symmetrical structures are shown to be more performant (having higher Lp and lower Ls, nevertheless it is shown that usage of asymmetrical geometry could compensate for the performance degradation in practically realized HIMI waveguides with different substrate materials. It is found that HMIM slab waveguide could support almost long-range subdiffraction plasmonic modes at dimensions lower than the spatial length of the HIMI slab waveguide.

  8. BOA II: pipe-asbestos insulation removal system

    International Nuclear Information System (INIS)

    Schempf, H.; Mutschler; Boehmke, S.; Chemel, B.; Piepgras, C.

    1996-01-01

    BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to high labor costs and high level of radioactive contamination, making manual removal costly and inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  9. Passive Collecting of Solar Radiation Energy using Transparent Thermal Insulators, Energetic Efficiency of Transparent Thermal Insulators

    Directory of Open Access Journals (Sweden)

    Smajo Sulejmanovic

    2014-11-01

    Full Text Available This paper explains passive collection of solar radiation energy using transparent thermal insulators. Transparent thermal insulators are transparent for sunlight, at the same time those are very good thermal insulators. Transparent thermal insulators can be placed instead of standard conventional thermal insulators and additionally transparent insulators can capture solar radiation, transform it into heat and save heat just as standard insulators. Using transparent insulators would lead to reduce in usage of fossil fuels and would help protection of an environment and reduce effects of global warming, etc.

  10. Application of Nanotechnology-Based Thermal Insulation Materials in Building Construction

    Directory of Open Access Journals (Sweden)

    Bozsaky David

    2016-03-01

    Full Text Available Nanotechnology-based materials have previously been used by space research, pharmaceuticals and electronics, but in the last decade several nanotechnology-based thermal insulation materials have appeared in building industry. Nowadays they only feature in a narrow range of practice, but they offer many potential applications. These options are unknown to most architects, who may simply be afraid of these materials owing to the incomplete and often contradictory special literature. Therefore, they are distrustful and prefer to apply the usual and conventional technologies. This article is intended to provide basic information about nanotechnology-based thermal insulation materials for designers. It describes their most important material properties, functional principles, applications, and potential usage options in building construction.

  11. Self-Healing Wire Insulation

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2012-01-01

    A self-healing system for an insulation material initiates a self-repair process by rupturing a plurality of microcapsules disposed on the insulation material. When the plurality of microcapsules are ruptured, reactants within the plurality of microcapsules react to form a replacement polymer in a break of the insulation material. This self-healing system has the ability to repair multiple breaks in a length of insulation material without exhausting the repair properties of the material.

  12. Electrohydrodynamic direct—writing of conductor—insulator-conductor multi-layer interconnection

    International Nuclear Information System (INIS)

    Zheng Gao-Feng; Pei Yan-Bo; Wang Xiang; Zheng Jian-Yi; Sun Dao-Heng

    2014-01-01

    A multi-layer interconnection structure is a basic component of electronic devices, and printing of the multi-layer interconnection structure is the key process in printed electronics. In this work, electrohydrodynamic direct-writing (EDW) is utilized to print the conductor—insulator—conductor multi-layer interconnection structure. Silver ink is chosen to print the conductor pattern, and a polyvinylpyrrolidone (PVP) solution is utilized to fabricate the insulator layer between the bottom and top conductor patterns. The influences of EDW process parameters on the line width of the printed conductor and insulator patterns are studied systematically. The obtained results show that the line width of the printed structure increases with the increase of the flow rate, but decreases with the increase of applied voltage and PVP content in the solution. The average resistivity values of the bottom and top silver conductor tracks are determined to be 1.34 × 10 −7 Ω·m and 1.39 × 10 −7 Ω·m, respectively. The printed PVP layer between the two conductor tracks is well insulated, which can meet the insulation requirement of the electronic devices. This study offers an alternative, fast, and cost-effective method of fabricating conductor—insulator—conductor multi-layer interconnections in the electronic industry

  13. BOA: Asbestos Pipe-Insulation Abatement Robot System

    International Nuclear Information System (INIS)

    Schempf, H.

    1996-01-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  14. BOA: Pipe asbestos insulation removal robot system

    International Nuclear Information System (INIS)

    Schempf, H.; Bares, J.; Schnorr, W.

    1995-01-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  15. BOA: Pipe-asbestos insulation removal robot system

    Energy Technology Data Exchange (ETDEWEB)

    Schempf, H.; Bares, J.; Schnorr, W. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-10-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  16. BOA: Pipe-asbestos insulation removal robot system

    International Nuclear Information System (INIS)

    Schempf, H.; Bares, J.; Schnorr, W.

    1995-01-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  17. Heat insulation support device

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki; Koda, Tomokazu; Motojima, Osamu; Yamamoto, Junya.

    1994-01-01

    The device of the present invention comprises a plurality of heat insulation legs disposed in a circumferential direction. Each of the heat insulative support legs has a hollow shape, and comprises an outer column and an inner column as support structures having a heat insulative property (heat insulative structure), and a thermal anchor which absorbs compulsory displacement by a thin flat plate (displacement absorber). The outer column, the thermal anchor and the inner column are connected by a support so as to offset the positional change of objects to be supported due to shrinkage when they are shrunk. In addition, the portion between the superconductive coils as the objects to be supported and the inner column is connected by the support. The superconductive thermonuclear device is entirely contained in a heat insulative vacuum vessel, and the heat insulative support legs are disposed on a lower lid of the heat insulative vacuum vessel. With such a constitution, they are strengthened against lateral load and buckling, thereby enabling to reduce the amount of heat intrusion while keeping the compulsory displacement easy to be absorbed. (I.N.)

  18. Development of portable gamma ray tomography for imaging corrosion under insulation

    International Nuclear Information System (INIS)

    Rasif Mohd Zain; Roslan Yahya

    2009-01-01

    Corrosion under insulation (CUI) on the external wall of steel pipes is a common problem in many types of industrial plants. This is mainly due to the presence of moisture or water in the insulation materials. This type of corrosion can cause failures in areas that are normally of a primary concern to an inspection program. The failures are often the result of localized corrosion and not general wasting over large area. These failures can tee catastrophic in nature at least have an adverse economic effect in terms of downtime and repairs. There are number of techniques used today for CUI investigations. The main ones are profile radiography, pulse eddy current (PEC), ultrasonic spot readings and insulation removal. A new system that has been developed is gamma-ray computer tomography. The system is based on parallel-beam gamma ray absorption technique using NaI(Tl) 1 ' x 1 ' scintillation detectors. This paper describes the development of gamma ray tomography system. (author)

  19. Pipe-CUI-profiler: a portable nucleonic system for detecting corrosion under insulation (CUI) of steel pipes

    International Nuclear Information System (INIS)

    Jaafar Abdullah; Rasif Mohd Zain; Roslan Yahya

    2003-01-01

    Corrosion under insulation (CUI) on the external wall of steel pipes is a common problem in many types of industrial plants. This is mainly due to the presence of moisture or water in the insulation materials. A portable nucleonic system that can be used to detect CUI without the need to remove the insulation materials, has been developed. The system is based on dual-beam gamma-ray absorption technique. It is designed to inspect pipes of internal diameter 50, 65, 80, 90, 100 and 150 mm. Pipeline of these sizes with aluminium or thin steel sheathing, containing fibre-glass or calcium silicate insulation to thicknesses of 25, 40 and 50 mm can be inspected. The system has proven to be a safe, fast and effective method of inspecting insulated pipes. This paper describes the new nucleonic system that has been developed. This paper describes the basic principle of the system and outlines its performance. (Author)

  20. Economically optimal thermal insulation

    Energy Technology Data Exchange (ETDEWEB)

    Berber, J.

    1978-10-01

    Exemplary calculations to show that exact adherence to the demands of the thermal insulation ordinance does not lead to an optimal solution with regard to economics. This is independent of the mode of financing. Optimal thermal insulation exceeds the values given in the thermal insulation ordinance.

  1. Panels of microporous insulation

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, J.A.; Morgan, D.E.; Jackson, J.D.J.

    1990-08-07

    Microporous thermal insulation materials have a lattice structure in which the average interstitial dimension is less than the mean free path of the molecules of air or other gas in which the material is arranged. This results in a heat flow which is less than that attributable to the molecular heat diffusion of the gas. According to this invention, a method is provided for manufacturing panels of microporous thermal insulation, in particular such panels in which the insulation material is bonded to a substrate. The method comprises the steps of applying a film of polyvinyl acetate emulsion to a non-porous substrate, and compacting powdery microporous thermal insulation material against the film so as to cause the consolidated insulation material to bond to the substrate and form a panel. The polyvinyl acetate may be applied by brushing or spraying, and is preferably allowed to dry prior to compacting the insulation material. 1 fig.

  2. Total dose hardening of buried insulator in implanted silicon-on-insulator structures

    International Nuclear Information System (INIS)

    Mao, B.Y.; Chen, C.E.; Pollack, G.; Hughes, H.L.; Davis, G.E.

    1987-01-01

    Total dose characteristics of the buried insulator in implanted silicon-on-insulator (SOI) substrates have been studied using MOS transistors. The threshold voltage shift of the parasitic back channel transistor, which is controlled by charge trapping in the buried insulator, is reduced by lowering the oxygen dose as well as by an additional nitrogen implant, without degrading the front channel transistor characteristics. The improvements in the radiation characteristics of the buried insulator are attributed to the decrease in the buried oxide thickness or to the presence of the interfacial oxynitride layer formed by the oxygen and nitrogen implants

  3. Detection of UV Pulse from Insulators and Application in Estimating the Conditions of Insulators

    Science.gov (United States)

    Wang, Jingang; Chong, Junlong; Yang, Jie

    2014-10-01

    Solar radiation in the band of 240-280 nm is absorbed by the ozone layer in the atmosphere, and corona discharges from high-voltage apparatus emit in air mainly in the 230-405 nm range of ultraviolet (UV), so the band of 240-280 nm is called UV Solar Blind Band. When the insulators in a string deteriorate or are contaminated, the voltage distribution along the string will change, which causes the electric fields in the vicinity of insulators change and corona discharge intensifies. An UV pulse detection method to check the conditions of insulators is presented based on detecting the UV pulse among the corona discharge, then it can be confirmed that whether there exist faulty insulators and whether the surface contamination of insulators is severe for the safe operation of power systems. An UV-I Insulator Detector has been developed, and both laboratory tests and field tests have been carried out which demonstrates the practical viability of UV-I Insulator Detector for online monitoring.

  4. Thermal insulation

    International Nuclear Information System (INIS)

    Pinsky, G.P.

    1977-01-01

    Thermal insulation for vessels and piping within the reactor containment area of nuclear power plants is disclosed. The thermal insulation of this invention can be readily removed and replaced from the vessels and piping for inservice inspection, can withstand repeated wettings and dryings, and can resist high temperatures for long periods of time. 4 claims, 3 figures

  5. The electrostatics of charged insulating sheets peeled from grounded conductors

    International Nuclear Information System (INIS)

    Datta, M J; Horenstein, M N

    2008-01-01

    The physics of a charged, insulating sheet peeled from a ground-plane conductor is examined. Contact charging is ensured by charging a sheet to 10-12 kV with corona to establish intimate electrostatic contact with the underlying conductor. The surface potential is next forced to zero by sweeping the sheet with a stainless-steel brush, and the surface recharged to a new potential between 0 and 11 kV. The sheet is then peeled from the ground plane and its residual charge density is measured. Results show that the residual charge equals the breakdown-limiting value, but its polarity depends on the surface potential acquired just prior to peeling. The results have relevance to studies of industrial webs and insulating sheets.

  6. Wrapped Multilayer Insulation

    Science.gov (United States)

    Dye, Scott A.

    2015-01-01

    New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/m2, or 27 percent of the heat leak of conventional MLI (26.7 W/m2). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.

  7. Thermal conductivity: recent developments on insulating and new materials; La conductivite thermique: developpements recents sur les isolants et les materiaux nouveaux

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop organized by the thermo-kinetics section of the French society of thermal engineers deals with recent developments concerning insulating, dielectric and composite materials. The seven papers presented during this workshop concern the methods and results of thermal conductivity measurements performed in these materials and the possible applications of these materials in aerospace industry (carbon foams, ceramic-based composite materials), civil engineering (glazing materials, aerogels), power electronics (dielectric thin films, ceramics), and in other industries (heat resistant and thermal insulating materials). (J.S.)

  8. Expert Meeting Report: Cladding Attachment Over Exterior Insulation (BSC Report)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-10-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exterior insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explore these topics from an engineering design, laboratory testing, field monitoring, as well as practical construction perspective. By bringing various groups together (who have been conduction research or have experience in this area), a more holistic review of the design limits and current code language proposals can be completed and additional gaps identified. The results of which will help inform design standards and criteria.

  9. Asbestos Standard for the Construction Industry

    National Research Council Canada - National Science Library

    1995-01-01

    .... In the construction industry, asbestos is found in installed products such as shingles, floor tiles, cement pipe and sheet, roofing felts, insulation, ceiling tiles, fire-resistant drywall, and acoustical products...

  10. Magnetically self-insulated transformers

    International Nuclear Information System (INIS)

    Novac, B.M.; Smith, I.R.; Brown, J.

    2002-01-01

    Magnetic insulation is the only practicable form of insulation for much equipment used in ultrahigh pulsed-power work, including transmission lines and plasma opening switches. It has not however so far been successfully exploited in the transformers that are necessarily involved, and the first proposed design that appeared more than 30 years ago raised apparently insuperable problems. The two novel arrangements for a magnetically insulated transformer described in this paper overcome the problems faced by the earlier designs and also offer considerable scope for development in a number of important areas. Theoretical justification is given for their insulating properties, and this is confirmed by proof-of-principle results obtained from a small-scale experimental prototype in which magnetic insulation was demonstrated at up to 100 kV. (author)

  11. XRD and SEM study of alumina silicate porcelain insulator

    Science.gov (United States)

    Duddi, Dharmender; Singh, G. P.; Kalra, Swati; Shekhawat, M. S.; Tak, S. K.

    2018-05-01

    Higher strength electrical porcelain is a requirement of industry. This will be achieved by a specific composition of raw materials, which is consisted of clays and feldspars. Water absorption, particle size and insulating properties are of special interest now a day. China clay, Ball clay and Quartz are widely used by ceramic industries in Bikaner district of Rajasthan. Sample for present study were prepared by mixing of above clay, feldspar with MnO2, then shrinkage is observed. Bar shaped samples were prepared and heated up to a temperature of about 1185° C to observe shrinkage. For phase study of XRD and SEM are observed.

  12. Overview and statistical failure analyses of the electrical insulation system for the SSC long dipole magnets from an industrialization point of view

    International Nuclear Information System (INIS)

    Roach, J.F.

    1992-01-01

    The electrical insulation system of the SSC long dipole magnets is reviewed and potential dielectric failure modes discussed. Electrical insulation fabrication and assembly issues with respect to rate production manufacturability are addressed. The automation required for rate assembly of electrical insulation components will require critical online visual and dielectric screening tests to insure production quality. Storage and assembly areas must bc designed to prevent foreign particles from becoming entrapped in the insulation during critical coil winding, molding, and collaring operations. All hand assembly procedures involving dielectrics must be performed with rigorous attention to their impact on insulation integrity. Individual dipole magnets must have a sufficiently low probability of electrical insulation failure under all normal and fault mode voltage conditions such that the series of magnets in the SSC rings have acceptable Mean Time Between Failure (MTBF) with respect to dielectric mode failure events. Statistical models appropriate for large electrical system breakdown failure analysis are applied to the SSC magnet rings. The MTBF of the SSC system is related to failure data base for individual dipole magnet samples

  13. Microscopic Void Detection for Predicting Remaining Life in Electric Cable Insulation

    International Nuclear Information System (INIS)

    Horvath, David A.; Avila, Steven M.

    2003-01-01

    A reliable method of testing for remaining life in electric cable insulation has continued to elude the nuclear industry as it seeks to extend the life and license of its nuclear stations. Until recently, a trendable, measurable electrical property has not been found, and unexpected cable failures continue to be reported. Most reliable approaches to date rely on monitoring mechanical properties, which are assumed to degrade faster than the insulation's electrical properties. This paper introduces a promising technique based on void characterization, which is dependent on an electrical property related to dielectric strength. A relationship between insulation void characteristics (size and density) and the onset of partial discharge is known to exist. A similar relationship can be shown between void characteristics and unacceptable leakage currents (another typical cable failure criterion). For low-voltage cables, it is believed void content can be correlated to mechanical property degradation.This paper will report on an approach for using void information, research results showing the existence of trendable void characteristics in commonly used electric insulation materials, and techniques for detecting the voids (both laboratory- and field-based techniques). Acoustical microscopy was found to be potentially more suitable than conventional ultrasound for nondestructive in situ detection and monitoring of void characteristics in jacketed multiconductor insulation while ignoring the jacket. Also, optical and scanning electron microscope techniques will play an essential role in establishing the database necessary for continued development and implementation of this promising technique

  14. Research on vacuum insulation for cryocables

    International Nuclear Information System (INIS)

    Graneau, P.

    1974-01-01

    Vacuum insulation, as compared with solid insulation, simplifies the construction of both resistive or superconducting cryogenic cables. The common vacuum space in the cable can furnish thermal insulation between the environment and the cryogenic coolant, provide electrical insulation between conductors, and establish thermal isolation between go- and return-coolant streams. The differences between solid and vacuum high voltage insulation are discussed, and research on the design, materials selection, and testing of vacuum insulated cryogenic cables is described

  15. Sound Insulation between Dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  16. The inaccuracy of heat transfer characteristics for non-insulated and insulated spherical containers neglecting the influence of heat radiation

    International Nuclear Information System (INIS)

    Wong, King-Leung; Salazar, Jose Luis Leon; Prasad, Leo; Chen, Wen-Lih

    2011-01-01

    In this investigation, the differences of heat transfer characteristics for insulated and non-insulated spherical containers between considering and neglecting the influence of heat radiation are studied by the simulations in some practical situations. It is found that the heat radiation effect cannot be ignored in conditions of low ambient convection heat coefficients (such ambient air) and high surface emissivities, especially for the non-insulated and thin insulated cases. In most practical situations when ambient temperature is different from surroundings temperature and the emissivity of insulation surface is different from that of metal wall surface, neglecting heat radiation will result in inaccurate insulation effect and heat transfer errors even with very thick insulation. However, the insulation effect considering heat radiation will only increase a very small amount after some dimensionless insulated thickness (such insulation thickness/radius ≥0.2 in this study), thus such dimensionless insulated thickness can be used as the optimum thickness in practical applications. Meanwhile, wrapping a material with low surface emissivity (such as aluminum foil) around the oxidized metal wall or insulation layer (always with high surface emissivity) can achieve very good insulated effect for the non-insulated or thin insulated containers.

  17. Electrical insulating liquid: A review

    Directory of Open Access Journals (Sweden)

    Deba Kumar Mahanta

    2017-08-01

    Full Text Available Insulating liquid plays an important role for the life span of the transformer. Petroleum-based mineral oil has become dominant insulating liquid of transformer for more than a century for its excellent dielectric and cooling properties. However, the usage of petroleum-based mineral oil, derived from a nonrenewable energy source, has affected the environment for its nonbiodegradability property. Therefore, researchers direct their attention to renewable and biodegradable alternatives. Palm fatty acid ester, coconut oil, sunflower oil, etc. are considered as alternatives to replace mineral oil as transformer insulation liquid. This paper gives an extensive review of different liquid insulating materials used in a transformer. Characterization of different liquids as an insulating material has been discussed. An attempt has been made to classify different insulating liquids-based on different properties.

  18. Biodegradation performance of environmentally-friendly insulating oil

    Science.gov (United States)

    Yang, Jun; He, Yan; Cai, Shengwei; Chen, Cheng; Wen, Gang; Wang, Feipeng; Fan, Fan; Wan, Chunxiang; Wu, Liya; Liu, Ruitong

    2018-02-01

    In this paper, biodegradation performance of rapeseed insulating oil (RDB) and FR3 insulating oil (FR3) was studied by means of ready biodegradation method which was performed with Organization for Economic Co-operation and Development (OECD) 301B. For comparison, the biodegradation behaviour of 25# mineral insulating oil was also characterized with the same method. The testing results shown that the biodegradation degree of rapeseed insulating oil, FR3 insulating oil and 25# mineral insulating oil was 95.8%, 98.9% and 38.4% respectively. Following the “new chemical risk assessment guidelines” (HJ/T 154 - 2004), which illustrates the methods used to identify and assess the process safety hazards inherent. The guidelines can draw that the two vegetable insulating oils, i.e. rapeseed insulating oil and FR3 insulating oil are easily biodegradable. Therefore, the both can be classified as environmentally-friendly insulating oil. As expected, 25# mineral insulating oil is hardly biodegradable. The main reason is that 25# mineral insulating oil consists of isoalkanes, cyclanes and a few arenes, which has few unsaturated bonds. Biodegradation of rapeseed insulating oil and FR3 insulating oil also remain some difference. Biodegradation mechanism of vegetable insulating oil was revealed from the perspective of hydrolysis kinetics.

  19. Voltage-driven magnetization control in topological insulator/magnetic insulator heterostructures

    Directory of Open Access Journals (Sweden)

    Michael E. Flatté

    2017-05-01

    Full Text Available A major barrier to the development of spin-based electronics is the transition from current-driven spin torque, or magnetic-field-driven magnetization reversal, to a more scalable voltage-driven magnetization reversal. To achieve this, multiferroic materials appear attractive, however the effects in current materials occur at very large voltages or at low temperatures. Here the potential of a new class of hybrid multiferroic materials is described, consisting of a topological insulator adjacent to a magnetic insulator, for which an applied electric field reorients the magnetization. As these materials lack conducting states at the chemical potential in their bulk, no dissipative charge currents flow in the bulk. Surface states at the interface, if present, produce effects similar to surface recombination currents in bipolar devices, but can be passivated using magnetic doping. Even without conducting states at the chemical potential, for a topological insulator there is a finite spin Hall conductivity provided by filled bands below the chemical potential. Spin accumulation at the interface with the magnetic insulator provides a torque on the magnetization. Properly timed voltage pulses can thus reorient the magnetic moment with only the flow of charge current required in the leads to establish the voltage. If the topological insulator is sufficiently thick the resulting low capacitance requires little charge current.

  20. Gas insulated substations

    CERN Document Server

    2014-01-01

    This book provides an overview on the particular development steps of gas insulated high-voltage switchgear, and is based on the information given with the editor's tutorial. The theory is kept low only as much as it is needed to understand gas insulated technology, with the main focus of the book being on delivering practical application knowledge. It discusses some introductory and advanced aspects in the meaning of applications. The start of the book presents the theory of Gas Insulated Technology, and outlines reliability, design, safety, grounding and bonding, and factors for choosing GIS. The third chapter presents the technology, covering the following in detail: manufacturing, specification, instrument transformers, Gas Insulated Bus, and the assembly process. Next, the book goes into control and monitoring, which covers local control cabinet, bay controller, control schemes, and digital communication. Testing is explained in the middle of the book before installation and energization. Importantly, ...

  1. Industrial applications of irradiation as a service

    International Nuclear Information System (INIS)

    Martin, J. I.

    2002-01-01

    Industrial use of electron beams began in the 1950's with the crosslinking of polyethylene film and wire insulation. Today the number of electron began Processing Systems installed for industrial applications throughout the world has grown to more than six hundred stations in over 35 countries. Total installed power is now approaching 40 megawasls (over 8 million tons of products per year). Electron Beam is now utilized by many major industries including plastic, automotive, rubber goods, wire and cable, electrical insulation, semiconductor, medical, packaging, or pollution control. The principal effect of high-energy electrons is to produce ions in the materials treated, resulting in the liberation of orbital electrons. As a result, the original molecule is modified and the ree radicals combine to form new molecules with new chemical reactions or dis organization of the DNA chains of living organisms (insects, fungus, microorganisms, etc.). (Author)

  2. Industrial energy thrift scheme. Report No. 16. Energy use in the knitting industry

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The knitting industry includes organizations concerned with hosiery, other weft knitted goods and warp-knitting and in some cases also with subsequent dyeing and finishing of knitted goods. In 1976, the industry had 116,000 employees located at approximately 600 sites, mostly in the East Midlands. The total energy consumption of the industry in 1976 was estimated to be 12,180 TJ. Sites with dyeing and finishing interests could save 15% of their energy. The major sources of savings (6%) are by recovering process heat which is currently wasted and from better process control. Other significant savings (5%) are possible from better control, maintenance and insulation of boilers and pipes. Attention to better housekeeping, to controlling draughts and to space heating generally could account for a further 3.5% saving in energy. Sites without dyeing and finishing interests could save 13% of the total energy used by this group. The most important opportunities are better control of space heating (5.5%) and better control and insulation of boilers, pipes and services (5%). These sites have fewer opportunities to recover heat from processes (2%) than where dyeing and finishing takes place but opportunities do exist.

  3. Insulation structure of thermonuclear device

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Usami, Saburo; Tsukamoto, Hideo; Kikuchi, Mitsuru

    1998-01-01

    The present invention provides an insulating structure of a thermonuclear device, in which insulation materials between toroidal coils are not broken even if superconductive toroidal coils are used. Namely, a tokamak type thermonuclear device of an insulating structure type comprises superconductive toroidal coils for confining plasmas arranged in a circular shape directing the center each at a predetermined angle, and the toroidal coils are insulated from each other. The insulation materials are formed by using a biaxially oriented fiber reinforced plastics. The contact surface of the toroidal coils and the insulating materials are arranged so that they are contact at a woven surface of the fiber reinforced plastics. Either or both of the contact surfaces of the fiber reinforced plastics and the toroidal coils are coated with a high molecular compound having a low friction coefficient. With such a constitution, since the interlayer shearing strength of the biaxially oriented fiber reinforced plastics is about 1/10 of the compression strength, the shearing stress exerted on the insulation material is reduced. Since a static friction coefficient on the contact surface is reduced to provide a structure causing slipping, shearing stress does not exceeds a predetermined limit. As a result, breakage of the insulation materials between the toroidal coils can be prevented. (I.S.)

  4. Thermal insulation

    International Nuclear Information System (INIS)

    Durston, J.G.; Birch, W.; Facer, R.I.; Stuart, R.A.

    1977-01-01

    Reference is made to liquid metal cooled nuclear reactors. In the arrangement described the reactor vessel is clad with thermal insulation comprising a layer of insulating blocks spaced from the wall and from each other; each block is rigidly secured to the wall, and the interspaces are substantially closed against convectional flow of liquid by resilient closure members. A membrane covering is provided for the layer of blocks, with venting means to allow liquid from the reactor vessel to penetrate between the covering and the layer of blocks. The membrane covering may comprise a stainless steel sheet ribbed in orthogonal pattern to give flexibility for the accommodation of thermal strain. The insulating blocks may be comprised of stainless steel or cellular or porous material and may be hollow shells containing ceramic material or gas fillings. (U.K.)

  5. Insulation Reformulation Development

    Science.gov (United States)

    Chapman, Cynthia; Bray, Mark

    2015-01-01

    The current Space Launch System (SLS) internal solid rocket motor insulation, polybenzimidazole acrylonitrile butadiene rubber (PBI-NBR), is a new insulation that replaced asbestos-based insulations found in Space Shuttle heritage solid rocket boosters. PBI-NBR has some outstanding characteristics such as an excellent thermal erosion resistance, low thermal conductivity, and low density. PBI-NBR also has some significant challenges associated with its use: Air entrainment/entrapment during manufacture and lay-up/cure and low mechanical properties such as tensile strength, modulus, and fracture toughness. This technology development attempted to overcome these challenges by testing various reformulated versions of booster insulation. The results suggest the SLS program should continue to investigate material alternatives for potential block upgrades or use an entirely new, more advanced booster. The experimental design was composed of a logic path that performs iterative formulation and testing in order to maximize the effort. A lab mixing baseline was developed and documented for the Rubber Laboratory in Bldg. 4602/Room 1178.

  6. Removal of Corrosive Sulfur from Insulating Oils by Natural Sorbent and Liquid-Liquid.

    Czech Academy of Sciences Publication Activity Database

    Matějková, Martina; Kaštánek, František; Maléterová, Ywetta; Kužílek, V.; Košanová, L.; Šolcová, Olga

    2017-01-01

    Roč. 24, č. 4 (2017), s. 2383-2389 ISSN 1070-9878 R&D Projects: GA TA ČR(CZ) TA04020151 Institutional support: RVO:67985858 Keywords : oil insulation * sorption * bentonite Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.115, year: 2016

  7. Cryogenic Insulation Standard Data and Methodologies Project

    Science.gov (United States)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Fesmire, James; Swanger, Adam

    2015-01-01

    Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of foam insulation materials was performed by NASA Kennedy Space Center and LeTourneau University. The initial focus was ambient pressure cryogenic boil off testing using the Cryostat-400 flat-plate instrument. Completion of a test facility at LETU has enabled direct, comparative testing, using identical cryostat instruments and methods, and the production of standard thermal data sets for a number of materials under sub-ambient conditions. The two sets of measurements were analyzed and indicate there is reasonable agreement between the two laboratories. Based on cryogenic boiloff calorimetry, new equipment and methods for testing thermal insulation systems have been successfully developed. These boiloff instruments (or cryostats) include both flat plate and cylindrical models and are applicable to a wide range of different materials under a wide range of test conditions. Test measurements are generally made at large temperature difference (boundary temperatures of 293 K and 78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cryostat instruments provide an effective and reliable way to characterize the thermal performance of materials under subambient conditions. Proven in through thousands of tests of hundreds of material systems, they have supported a wide range of aerospace, industry, and research projects. Boiloff testing technology is not just for cryogenic testing but is a cost effective, field-representative methodology to test any material or system for applications at sub-ambient temperatures. This technology, when adequately coupled with a technical standards basis, can provide a cost-effective, field-representative methodology to test any material or system

  8. Available Prediction Methods for Corrosion under Insulation (CUI): A Review

    OpenAIRE

    Burhani Nurul Rawaida Ain; Muhammad Masdi; Ismail Mokhtar Che

    2014-01-01

    Corrosion under insulation (CUI) is an increasingly important issue for the piping in industries especially petrochemical and chemical plants due to its unexpected catastrophic disaster. Therefore, attention towards the maintenance and prediction of CUI occurrence, particularly in the corrosion rates, has grown in recent years. In this study, a literature review in determining the corrosion rates by using various prediction models and method of the corrosion occurrence between the external su...

  9. Cooper Pairs in Insulators?

    International Nuclear Information System (INIS)

    Valles, James

    2008-01-01

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.

  10. Environmental safety providing during heat insulation works and using thermal insulation materials

    Directory of Open Access Journals (Sweden)

    Velichko Evgeny

    2017-01-01

    Full Text Available This article considers the negative effect of thermal insulating materials and products on human health and environment pollution, particularly in terms of the composition of environmentally hazardous construction products. The authors have analyzed the complex measures for providing ecological safety, sanitary and epidemiological requirements, rules and regulations both during thermal insulation works and throughout the following operation of buildings and premises. The article suggests the protective and preventive measures to reduce and eliminate the negative impact of the proceeding of thermal insulation works on the natural environment and on human health.

  11. 16 CFR 460.18 - Insulation ads.

    Science.gov (United States)

    2010-01-01

    ... Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES LABELING AND ADVERTISING OF HOME INSULATION § 460.18 Insulation ads. (a) If your ad gives an R-value, you must give the type of insulation and... your ad gives a price, you must give the type of insulation, the R-value at a specific thickness, the...

  12. Electrical insulators for the theta-pinch fusion reactor

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1976-01-01

    The five major applications for electrical insulators in the Reference Theta Pinch Reactor are as follows: (1) first-wall insulator, (2) blanket intersegment insulator, (3) graphite encapsulating insulator, (4) implosion coil insulator, and (5) compression coil insulator. Insulator design proposals and some preliminary test results are given for each application

  13. Hydrogen storage in insulated pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.; Garcia-Villazana, O. [Lawrence Livermore National Lab., CA (United States)

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

  14. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator.

    Science.gov (United States)

    Farajollahpour, T; Jafari, S A

    2018-01-10

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the 'ARPES-dark' state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  15. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator

    Science.gov (United States)

    Farajollahpour, T.; Jafari, S. A.

    2018-01-01

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the ‘ARPES-dark’ state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  16. Metal-insulator-semiconductor photodetectors.

    Science.gov (United States)

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  17. Metal-Insulator-Semiconductor Photodetectors

    Directory of Open Access Journals (Sweden)

    Chu-Hsuan Lin

    2010-09-01

    Full Text Available The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  18. Effect on the insulation material of a MOSFET device submitted to a standard diagnostic radiation beam

    International Nuclear Information System (INIS)

    De Magalhaes, C M S; Dos Santos, L A P; Souza, D do N; Maia, A F

    2010-01-01

    MOSFET electronic devices have been used for dosimetry in radiology and radiotherapy. Several communications show that due to the radiation exposure defects appear on the semiconductor crystal lattice. Actually, the structure of a MOSFET consists of three materials: a semiconductor, a metal and an insulator between them. The MOSFET is a quadripolar device with a common terminal: gate-source is the input; drain-source is the output. The gate controls the electrical current passing through semiconductor medium by the field effect because the silicon oxide acts as insulating material. The proposal of this work is to show some radiation effects on the insulator of a MOSFET device. A 6430 Keithley sub-femtoamp SourceMeter was used to verify how the insulating material layer in the structure of the device varies with the radiation exposure. We have used the IEC 61267 standard radiation X-ray beams generated from a Pantak industrial unit in the radiation energy range of computed tomography. This range was chosen because we are using the MOSFET device as radiation detector for dosimetry in computed tomography. The results showed that the behaviour of the electrical current of the device is different in the insulator and semiconductor structures.

  19. DOE Task Force meeting on Electrical Breakdown of Insulating Ceramics in a High Radiation Field

    International Nuclear Information System (INIS)

    Green, P.H.

    1991-08-01

    This volume contains the abstracts and presentation material from the Research Assistance Task Force Meeting ''Electrical Breakdown of Insulating Ceramics in a High-Radiation Field.'' The meeting was jointly sponsored by the Office of Basic Energy Sciences and the Office of Fusion Energy of the US Department of Energy in Vail, Colorado, May 28--June 1, 1991. The 26 participants represented expertise in fusion, radiation damage, electrical breakdown, ceramics, and semiconductor and electronic structures. These participants came from universities, industries, national laboratories, and government. The attendees represented eight nations. The Task Force meeting was organized in response to the recent discovery that a combination of temperature, electric field, and radiation for an extended period of time has an unexplained adverse effect in ceramics, termed radiation-enhanced electrical degradation (REED). REED occurs after an incubation period and continues to accelerate with irradiation until the ceramics can no longer be regarded as insulators. It appears that REED is irreversible and the ceramic insulators cannot be readily annealed or otherwise repaired for future services. This effect poses a serious threat for fusion reactors, which require electrical insulators in diagnostic devices, in radio frequency and neutral beam systems, and in magnetic assemblies. The problem of selecting suitable electrical insulating materials in thus far more serious than previously anticipated

  20. Effects of insulation on potted superconducting coils

    International Nuclear Information System (INIS)

    Zeller, A.F.; DeKamp, J.C.; Magsig, C.T.; Nolen, J.A.; McInturff, A.D.

    1989-01-01

    Test coils using identical wire but with either Formvar or Polyesterimid insulation were fabricated to determine the effects of insulation on training behavior. It was found that the type of insulation did not affect the training behavior. While considerable attention has been paid to epoxy formulations used for superconducting coils, little study has been devoted to the effects of the wire insulation on training behavior. If the insulation does not bind well with the epoxy, the wires will not be held securely in place, and training will be required to make the coil operate at its design limit. In fact, the coil may never reach its design current, showing considerable degredation. Conversely, if the epoxy-insulation reaction is to soften or weaken the insulation, then shorts and/or training may result. The authors have undertaken a study of the effects of the insulation on potted coils wet wound with Stycast 2850 FT epoxy. The wire was insulated with one of two insulting varnishes: Formvar (a polyvinyl formal resin) or Polyesterimid (a phenolic resin). Formvar is the standard insulation in the United States while Polyesterimid the European standard

  1. Vacuum foil insulation system

    International Nuclear Information System (INIS)

    Hanson, J.P.; Sabolcik, R.E.; Svedberg, R.C.

    1976-01-01

    In a multifoil thermal insulation package having a plurality of concentric cylindrical cups, means are provided for reducing heat loss from the penetration region which extends through the cups. At least one cup includes an integral skirt extending from one end of the cup to intersection with the penetration means. Assembly of the insulation package with the skirted cup is facilitated by splitting the cup to allow it to be opened up and fitted around the other cups during assembly. The insulation is for an implantable nuclear powered artificial heart

  2. Topological insulators

    CERN Document Server

    Franz, Marcel

    2013-01-01

    Topological Insulators, volume six in the Contemporary Concepts of Condensed Matter Series, describes the recent revolution in condensed matter physics that occurred in our understanding of crystalline solids. The book chronicles the work done worldwide that led to these discoveries and provides the reader with a comprehensive overview of the field. Starting in 2004, theorists began to explore the effect of topology on the physics of band insulators, a field previously considered well understood. However, the inclusion of topology brings key new elements into this old field. Whereas it was

  3. PD-pulse characteristics in rotating machine insulation

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Jensen, A

    1994-01-01

    In this paper results are presented from investigations on partial discharges (PD) in insulation systems, resembling the stator insulation in high voltage rotating machines. A model, simulating a stator winding in a slot, has been developed, consisting of simple rotating machine insulation test...... bars with epoxy/mica insulation, mounted between steel sheets forming a dot, in order to investigate the fundamental behaviour of PD in insulation defects in epoxy/mica insulation and the characteristics of the resulting electrical pulses. Stator slot couplers (SSC) were used to detect pulses coming...

  4. Development of ecological and economical super-insulations for various applications. Subproject 1: scientific development of ecological super-insulations for industrial application. Subproject 2: experimental synthesis and development of a pilot plant for continuously production and realisation of multilayer-insulation materials. Final report; Entwicklung oekologischer und wirtschaftlicher Super-Isolationen fuer vielfaeltige Anwendungen. Teilvorhaben 1: Wissenschaftliche Entwicklung oekologischer Super-Isolationen fuer industrielle Anwendungen. Teilvorhaben 2: Experimentelle Struktursynthese und Entwicklung einer Technikumsanlage zur kontinuierlichen Herstellung von Mehrschicht-Daemmstoffen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Offermann, P.; Freudenberg, C.; Schenk, A.; Doerfel, A.; Hoffmann, G.; Roedel, H.; Schierz, C.; Hopf, W.

    2002-07-01

    Heat insulation materials are used in many applications with special tasks. Insulating materials like mineral wool, hard foams are used in civil engineering and for industrial insulation. Insulating materials from natural fibres are used in civil engineering on a small scale, too. In the clothing area are applied knitted fleece particularly for out-door-clothing in addition to non-woven made of synthetic polymers or wool. The aim of the project consists in the development of an insulating material with a very low heat conductivity and density as well as a multitude of degree of freedom to the structure and material parameters. A mathematical model has been developed for the determination of an optimised structure regarding to heat conductivity and density. The development was done by using the electrostatic flocking technology. After the material selection practical investigations have been done about the mode of function of the selected materials regarding their thermal insulation behaviour. A pilot plant for continuous production of the flocked material has been installed and tested. The result of this project is a very variable structure of insulating materials with excellent properties. The developed material is called Super-Insulation-Flock-Material (SIFM). Using defined structural parameters and skillfully selected materials it would be possible to get a heat conductivity between 0,027 W/mK and 0,30 W/mK. The density of these structures is between 10 kg/m{sup 3} and 20 kg/m{sup 3}. Structures with a density of only 7 kg/m{sup 3} are able to attend for applications without high mechanical demands. The Super-Insulation-Fock-Material is used in the clothing area and the technical sector. Sample products, e.g. a cold protective jacket, a jacket for fire fighters, insulation of airplanes as well as heat protective plates for the automotive industry, are found out. New fields for further applications of the Super-Insulation-Flock-Material result from the

  5. An Ultra-Efficient Nonlinear Platform: AlGaAs-On-Insulator

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta

    The combination of nonlinear and integrated photonics enables applications including optical signal processing, multi-wavelength lasers, metrology, spectroscopy, and quantum information science. Silicon-on-insulator (SOI) has emerged as a promising platform [1, 2] due to its high material...... nonlinearity and its compatibility with the CMOS industry. However, silicon suffers two-photon absorption (TPA) in the telecommunication wavelength band around 1.55 µm, which hampers its applications. Different platforms have been proposed to avoid TPA in the telecom wavelength range such as Si3N4 and Hydex [3...... a nonlinear index (n2) on the order of 10−17 W/m2 and a high refractive index (n ≈3.3), a large transparency window (from near- to mid-infrared), and the ability to engineer the material bandgap to mitigate TPA [5]. In this presentation, we introduce AlGaAson-insulator (AlGaAsOI) platform which combines both...

  6. INSUL, Calculation of Thermal Insulation of Various Materials Immersed in He

    International Nuclear Information System (INIS)

    Kinkead, A.N.; Pitchford, B.E.

    1977-01-01

    1 - Nature of the physical problem solved: Performance of thermal insulation immersed in helium. 2 - Method of solution: Mineral fibre, metal fibre and metallic multi-layer foils are studied. An approximate analysis for performance evaluation of multi-layer insulation in vertical gas spaces including the regime between fully suppressed natural convection and that for which an accepted power relationship applies is included

  7. Integrated Multilayer Insulation

    Science.gov (United States)

    Dye, Scott

    2009-01-01

    Integrated multilayer insulation (IMLI) is being developed as an improved alternative to conventional multilayer insulation (MLI), which is more than 50 years old. A typical conventional MLI blanket comprises between 10 and 120 metallized polymer films separated by polyester nets. MLI is the best thermal- insulation material for use in a vacuum, and is the insulation material of choice for spacecraft and cryogenic systems. However, conventional MLI has several disadvantages: It is difficult or impossible to maintain the desired value of gap distance between the film layers (and consequently, it is difficult or impossible to ensure consistent performance), and fabrication and installation are labor-intensive and difficult. The development of IMLI is intended to overcome these disadvantages to some extent and to offer some additional advantages over conventional MLI. The main difference between IMLI and conventional MLI lies in the method of maintaining the gaps between the film layers. In IMLI, the film layers are separated by what its developers call a micro-molded discrete matrix, which can be loosely characterized as consisting of arrays of highly engineered, small, lightweight, polymer (typically, thermoplastic) frames attached to, and placed between, the film layers. The term "micro-molded" refers to both the smallness of the frames and the fact that they are fabricated in a process that forms precise small features, described below, that are essential to attainment of the desired properties. The term "discrete" refers to the nature of the matrix as consisting of separate frames, in contradistinction to a unitary frame spanning entire volume of an insulation blanket.

  8. ASRM case insulation design and development

    Science.gov (United States)

    Bell, Matthew S.; Tam, William F. S.

    1992-10-01

    This paper describes the achievements made on the Advanced Solid Rocket Motor (ASRM) case insulation design and development program. The ASRM case insulation system described herein protects the metal case and joints from direct radiation and hot gas impingement. Critical failure of solid rocket systems is often traceable to failure of the insulation design. The wide ranging accomplishments included the development of a nonasbestos insulation material for ASRM that replaced the existing Redesigned Solid Rocket Motor (RSRM) asbestos-filled nitrile butadiene rubber (NBR) along with a performance gain of 300 pounds, and improved reliability of all the insulation joint designs, i.e., segmented case joint, case-to-nozzle and case-to-igniter joint. The insulation process development program included the internal stripwinding process. This process advancement allowed Aerojet to match to exceed the capability of other propulsion companies.

  9. High temperature study of flexible silicon-on-insulator fin field-effect transistors

    KAUST Repository

    Diab, Amer El Hajj

    2014-09-29

    We report high temperature electrical transport characteristics of a flexible version of the semiconductor industry\\'s most advanced architecture: fin field-effect transistor on silicon-on-insulator with sub-20 nm fins and high-κ/metal gate stacks. Characterization from room to high temperature (150 °C) was completed to determine temperature dependence of drain current (Ids), gate leakage current (Igs), transconductance (gm), and extracted low-field mobility (μ0). Mobility degradation with temperature is mainly caused by phonon scattering. The other device characteristics show insignificant difference at high temperature which proves the suitability of inorganic flexible electronics with advanced device architecture.

  10. Temperature and press load stimulation on thermal transport in fibrous and porous composite insulators

    International Nuclear Information System (INIS)

    Rehman, M.A.; Maqsood, A.

    2006-01-01

    Thermal transport properties of synthetic pliable insulators are measured as a function of applied pressure at constant temperatures. Advantageous Transient Plane Source (ATPS) method is used for the simultaneous measurement of thermal conductivity and thermal diffusivity of these materials and heat capacity per unit volume is then calculated. Three samples namely foam, closed cell foam and fiber glass are subjected to press load, taking into account the flexibility and sustainability of the samples and the requirements of the technique used. The thermal data of the samples were determined within the temperature range (300-414K) and pressure range (Normal -15kPa). These materials are used for thermal insulation and temperature control of air-conditioned space, acoustic and sound insulation, agriculture and fishery, sports and leisure goods, building and civil engineering, industrial packaging cold storage ware house, boiler work and other electric appliances, so they are helpful in reducing energy losses. (author)

  11. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  12. High-Performance Slab-on-Grade Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Mosiman, Garrett E. [NorthernSTAR, St. Paul, MN (United States)

    2015-09-01

    A more accurate assessment of slab-on-grade foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated).

  13. VIP A B C. Vacuum Insulation Panels Applied in Building Constructions

    Energy Technology Data Exchange (ETDEWEB)

    Tenpierik, M.J.

    2010-02-01

    -scale application of VIPs in the building industry. However, integration of VIPs into buildings must be performed very meticulously for several reasons; first, due to its nature a VIP cannot be processed on site and needs careful planning in advance; second, it is very sensitive to mechanical damage thus requiring careful handling; third, thermal bridges along the panel's edges reduce its performance; fourth, the composite system is highly subjected to aging. This dissertation therefore looks into many of these aspects, presents several calculation tools and shows how VIPs can be applied in facade panels, EPS insulation boards and as under-floor insulation. With the wide-spread proliferation of VIPs in buildings a more sustainable and healthy environment can then be achieved.

  14. Insulator contamination effects; Efectos de la contaminacion en aislamientos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Lucia [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    Environmental contamination deteriorates the electric insulators, mechanically as well as electrically; the mechanical problems caused by contamination are related basically with materials corrosion and degradation and the electrical problems are related to the deterioration of their dielectric rigidity. From the electrical standpoint, the type of contamination that cause more problems are divided into: marine, desert and industrial. It is not uncommon to find various combinations of these types of contamination. When the electric installations operate in polluted environments, the insulator electric behavior deteriorates, provoking increments in the operation costs for maintenance as well as for replacement. Mexico has large extensions of coasts (marine contamination), where nowadays large cities and productions centers are developed (industrial pollution); also, in some cases for the energy transportation is necessary to go through large land extensions, where no vegetation of any kind exists. For this reason the contamination effect on the electric installations must be considered in order to obtain a reliable and economical energy supply. [Espanol] La contaminacion ambiental deteriora los aisladores electricos tanto mecanica como electricamente; los problemas mecanicos por contaminacion se relacionan en forma basica con la corrosion y degradacion de los materiales, y los electricos se vinculan con el deterioro de su rigidez dielectrica. Desde el punto de vista electrico, los tipos de contaminacion que mas problemas ocasionan se dividen en: marina, desertica e industrial. Es comun encontrar diversas combinaciones de estas. Cuando las instalaciones electricas operan en ambientes contaminados, el comportamiento electrico de los aisladores se deteriora, provocando incrementos en los costos de operacion, tanto por mantenimiento como por reposicion. Mexico cuenta con grandes extensiones de costas (contaminacion marina), donde actualmente se desarrollan ciudades y

  15. Insulator contamination effects; Efectos de la contaminacion en aislamientos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Lucia [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    Environmental contamination deteriorates the electric insulators, mechanically as well as electrically; the mechanical problems caused by contamination are related basically with materials corrosion and degradation and the electrical problems are related to the deterioration of their dielectric rigidity. From the electrical standpoint, the type of contamination that cause more problems are divided into: marine, desert and industrial. It is not uncommon to find various combinations of these types of contamination. When the electric installations operate in polluted environments, the insulator electric behavior deteriorates, provoking increments in the operation costs for maintenance as well as for replacement. Mexico has large extensions of coasts (marine contamination), where nowadays large cities and productions centers are developed (industrial pollution); also, in some cases for the energy transportation is necessary to go through large land extensions, where no vegetation of any kind exists. For this reason the contamination effect on the electric installations must be considered in order to obtain a reliable and economical energy supply. [Espanol] La contaminacion ambiental deteriora los aisladores electricos tanto mecanica como electricamente; los problemas mecanicos por contaminacion se relacionan en forma basica con la corrosion y degradacion de los materiales, y los electricos se vinculan con el deterioro de su rigidez dielectrica. Desde el punto de vista electrico, los tipos de contaminacion que mas problemas ocasionan se dividen en: marina, desertica e industrial. Es comun encontrar diversas combinaciones de estas. Cuando las instalaciones electricas operan en ambientes contaminados, el comportamiento electrico de los aisladores se deteriora, provocando incrementos en los costos de operacion, tanto por mantenimiento como por reposicion. Mexico cuenta con grandes extensiones de costas (contaminacion marina), donde actualmente se desarrollan ciudades y

  16. Linear accelerator with x-ray absorbing insulators

    International Nuclear Information System (INIS)

    Rose, P.H.

    1975-01-01

    Annular insulators for supporting successive annular electrodes in a linear accelerator have embedded x-ray absorbing shield structures extending around the accelerating path. The shield members are disposed to intercept x-ray radiation without disrupting the insulative effect of the insulator members. In preferred forms, the structure comprises a plurality of annular members of heavy metal disposed in an x-ray blocking array, spaced from each other by the insulating substance of the insulator member. (auth)

  17. Insulator applications in a Tokamak reactor

    International Nuclear Information System (INIS)

    Leger, D.

    1986-06-01

    Insulators, among which insulators ceramics, have great potential applications in fusion reactors. They will be used for all plasma-facing components as protection and, magnetic fusion devices being subject to large electrical currents flowing in any parts of the device, for their electrical insulating properties

  18. Detection of wall thinning of carbon steel pipe covered with insulation using Pulsed Eddy Current technique

    International Nuclear Information System (INIS)

    Park, Duckgun; Kishore, M. B.; Lee, D. H.

    2013-01-01

    The test sample is a ferromagnetic carbon steel pipe having different thickness, covered with a 10 cm plastic insulation laminated by 0.4 mm Al plate to simulate the pipelines in NPPs. The PEC Probe used for the wall thinning detection consists of an excitation coil and a Hall sensor. The excitation coils in the probe is driven by a rectangular bipolar current pulse and the Hall-sensor will detects the resultant field. The Hall sensor output is considered as PEC signal. Results shows that the PEC system can detect wall thinning in an insulated pipeline of the NPPs. Local wall thinning in pipelines affects the structural integrity of industries like nuclear power plants (NPPs). In the present study a pulsed eddy current (PEC) technology to detect the wall thing of carbon steel pipe covered with insulation is developed

  19. Vacuum-insulated catalytic converter

    Science.gov (United States)

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  20. Handleable shapes of thermal insulation material

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J. T.

    1989-01-17

    Handleable and machineable shapes of thermal insulation material are made by compacting finely divided thermal insulation material into the cells of a reinforcing honeycomb insulation material into the cells of a reinforcing honeycomb structure. The finely divided thermal insulation material may be, for example, silica aerogel, pyrogenic silica, carbon black, silica gel, volatilised silica, calcium silicate, vermiculate or perlite, or finely divided metal oxides such as alumina or titania. The finely divided thermal insulation material may include an infra-red opacifier and/or reinforcing fibres. The reinforcing honeycomb structure may be made from, for example, metals such as aluminium foil, inorganic materials such as ceramics, organic materials such as plastics materials, woven fabrics or paper. A rigidiser may be employed. The shapes of thermal insulation material are substantially rigid and may be machines, for example by mechanical or laser cutting devices, or may be formed, for example by rolling, into curved or other shaped materials. 12 figs.

  1. Reusable Surface Insulation

    Science.gov (United States)

    1997-01-01

    Advanced Flexible Reusable Surface Insulation, developed by Ames Research Center, protects the Space Shuttle from the searing heat that engulfs it on reentry into the Earth's atmosphere. Initially integrated into the Space Shuttle by Rockwell International, production was transferred to Hi-Temp Insulation Inc. in 1974. Over the years, Hi-Temp has created many new technologies to meet the requirements of the Space Shuttle program. This expertise is also used commercially, including insulation blankets to cover aircrafts parts, fire barrier material to protect aircraft engine cowlings and aircraft rescue fire fighter suits. A Fire Protection Division has also been established, offering the first suit designed exclusively by and for aircraft rescue fire fighters. Hi-Temp is a supplier to the Los Angeles City Fire Department as well as other major U.S. civil and military fire departments.

  2. Translucent insulating building envelope

    DEFF Research Database (Denmark)

    Rahbek, Jens Eg

    1997-01-01

    A new type of translucent insulating material has been tested. This material is made of Celulose-Acetat and have a honey-comb structure. The material has a high solar transmittance and is highly insulating. The material is relatively cheap to produce. Danish Title: Translucent isolerende klimaskærm....

  3. Insulators for fusion applications

    International Nuclear Information System (INIS)

    1987-04-01

    Design studies for fusion devices and reactors have become more detailed in recent years and with this has come a better understanding of requirements and operating conditions for insulators in these machines. Ceramic and organic insulators are widely used for many components of fusion devices and reactors namely: radio frequency (RF) energy injection systems (BeO, Al 2 O 3 , Mg Al 2 O 4 , Si 3 N 4 ); electrical insulation for the torus structure (SiC, Al 2 O 3 , MgO, Mg Al 2 O 4 , Si 4 Al 2 O 2 N 6 , Si 3 N 4 , Y 2 O 3 ); lightly-shielded magnetic coils (MgO, MgAl 2 O 4 ); the toroidal field coil (epoxies, polyimides), neutron shield (B 4 C, TiH 2 ); high efficiency electrical generation; as well as the generation of very high temperatures for high efficiency hydrogen production processes (ZrO 2 and Al 2 O 3 - mat, graphite and carbon - felt). Timely development of insulators for fusion applications is clearly necessary. Those materials to be used in fusion machines should show high resistance to radiation damage and maintain their structural integrity. Now the need is urgent for a variety of radiation resistant materials, but much effort in these areas is required for insulators to be considered seriously by the design community. This document contains 14 papers from an IAEA meeting. It was the objective of this meeting to identify existing problems in analysing various situations of applications and requirements of electrical insulators and ceramics in fusion and to recommend strategies and different stages of implementation. This meeting was endorsed by the International Fusion Research Council

  4. High Performance Slab-on-Grade Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Mosiman, Garrett E. [NorthernSTAR, St. Paul, MN (United States)

    2015-09-01

    ?A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated). The optimum insulation strategy was applied to single and multi-family residential buildings in climate zone 4 - 7. The highest site energy savings of 5% was realized for a single family home in Duluth, MN, and the lowest savings of 1.4 % for a 4-unit townhouse in Richmond, VA. SOG foundation insulation retrofit simple paybacks ranged from 18 to 47 years. There are other benefits of SOG foundation insulation resulting from the increase in the slab surface temperatures. These include increased occupant thermal comfort, and a decrease in slab surface condensation particularly around the slab perimeter.

  5. Metal-insulator transitions

    Science.gov (United States)

    Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori

    1998-10-01

    Metal-insulator transitions are accompanied by huge resistivity changes, even over tens of orders of magnitude, and are widely observed in condensed-matter systems. This article presents the observations and current understanding of the metal-insulator transition with a pedagogical introduction to the subject. Especially important are the transitions driven by correlation effects associated with the electron-electron interaction. The insulating phase caused by the correlation effects is categorized as the Mott Insulator. Near the transition point the metallic state shows fluctuations and orderings in the spin, charge, and orbital degrees of freedom. The properties of these metals are frequently quite different from those of ordinary metals, as measured by transport, optical, and magnetic probes. The review first describes theoretical approaches to the unusual metallic states and to the metal-insulator transition. The Fermi-liquid theory treats the correlations that can be adiabatically connected with the noninteracting picture. Strong-coupling models that do not require Fermi-liquid behavior have also been developed. Much work has also been done on the scaling theory of the transition. A central issue for this review is the evaluation of these approaches in simple theoretical systems such as the Hubbard model and t-J models. Another key issue is strong competition among various orderings as in the interplay of spin and orbital fluctuations. Experimentally, the unusual properties of the metallic state near the insulating transition have been most extensively studied in d-electron systems. In particular, there is revived interest in transition-metal oxides, motivated by the epoch-making findings of high-temperature superconductivity in cuprates and colossal magnetoresistance in manganites. The article reviews the rich phenomena of anomalous metallicity, taking as examples Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Ru compounds. The diverse phenomena include strong spin and

  6. Attic Retrofits Using Nail-Base Insulated Panels

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, David [Home Innovation Research Labs; Kochkin, Vladimir [Home Innovation Research Labs

    2018-03-26

    This project developed and demonstrated a roof/attic energy retrofit solution using nail-base insulated panels for existing homes where traditional attic insulation approaches are not effective or feasible. Nail-base insulated panels (retrofit panels) consist of rigid foam insulation laminated to one face of a wood structural panel. The prefabricated panels are installed above the existing roof deck during a reroofing effort.

  7. High performance thermal insulation systems (HiPTI). Vacuum insulated products (VIP). Proceedings of the international conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, M.; Bertschinger, H.

    2001-07-01

    These are the proceedings of the International Conference and Workshop held at EMPA Duebendorf, Switzerland, in January 2001. The papers presented at the conference's first day included contributions on the role of high-performance insulation in energy efficiency - providing an overview of available technologies and reviewing physical aspects of heat transfer and the development of thermal insulation as well as the state of the art of glazing technologies such as high-performance and vacuum glazing. Also, vacuum-insulated products (VIP) with fumed silica, applications of VIP systems in technical building systems, nanogels, VIP packaging materials and technologies, measurement of physical properties, VIP for advanced retrofit solutions for buildings and existing and future applications for advanced low energy building are discussed. Finally, research and development concerning VIP for buildings are reported on. The workshops held on the second day covered a preliminary study on high-performance thermal insulation materials with gastight porosity, flexible pipes with high performance thermal insulation, evaluation of modern insulation systems by simulation methods as well as the development of vacuum insulation panels with a stainless steel envelope.

  8. Building materials and systems with vacuum insulation panels for external walls; Bauelemente und Systeme mit VIP fuer Aussenwandkonstruktionen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Binz, A; Steinke, G

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at materials and systems using vacuum insulation panels (VIP) for the construction of external walls. The aim of this research project was the development, practical use and market introduction of VIP systems that take account of the special properties of VIP. Along with partners in industry, applications involving external and internal insulation were examined. The need for protecting the vacuum panels against mechanical damage is stressed. The specific needs for the protection of external and internal applications are discussed. The dynamic developments in this relatively new area are commented on. Various mounting systems are examined and commented on. The thermal properties of such insulation systems and applications are noted and commented on.

  9. Radiation cross-linking of small electrical wire insulator fabricated from NR/LDPE blends

    Energy Technology Data Exchange (ETDEWEB)

    Siri-Upathum, Chyagrit [Department of Nuclear Technology, Faculty of Engineering Chulalongkorn University, Bangkok 10330 (Thailand)], E-mail: chyagrit@chula.ac.th; Punnachaiya, Suvit [Department of Nuclear Technology, Faculty of Engineering Chulalongkorn University, Bangkok 10330 (Thailand)

    2007-12-15

    A low voltage, radiation-crosslinked wire insulator has been fabricated from blends of natural rubber block (STR-5L) and LDPE with phthalic anhydride (PA) as a compatibilizer. Physical properties of the NR/LDPE blend ratios of 50/50 and 60/40 with 0.5, 1.0, and 1.5 wt% PA were evaluated. The gel content increased as the radiation dose increased. Tensile at break exhibited a maximum value of 12 MPa at 120 kGy for 1.0 and 1.5 wt% PA of both blend ratios. A higher PA content yielded a higher modulus for the same blend ratio. Blends of 60/40 ratio with 1.0 wt% PA and 0.8 wt% antimony oxide flame retardant gave the highest limiting oxygen index (LOI) of >30% at above 150 kGy. Other electrical properties of the wire insulator were investigated. It was found that an insulator fabricated from a PA content of 1.0 wt% in the NR/LDPE blend ratio of 50/50, after gamma ray cross-linked at a dose of 180 kGy in low vacuum (1 mm Hg), met the Thai Industrial Standard 11-2531 for low voltage wire below 1.0 kV. To comply with the standard for vertical flame test, a more suitable flame retardant was needed for the insulator.

  10. Overview of thermal conductivity models of anisotropic thermal insulation materials

    Science.gov (United States)

    Skurikhin, A. V.; Kostanovsky, A. V.

    2017-11-01

    Currently, the most of existing materials and substances under elaboration are anisotropic. It makes certain difficulties in the study of heat transfer process. Thermal conductivity of the materials can be characterized by tensor of the second order. Also, the parallelism between the temperature gradient vector and the density of heat flow vector is violated in anisotropic thermal insulation materials (TIM). One of the most famous TIM is a family of integrated thermal insulation refractory material («ITIRM»). The main component ensuring its properties is the «inflated» vermiculite. Natural mineral vermiculite is ground into powder state, fired by gas burner for dehydration, and its precipitate is then compressed. The key feature of thus treated batch of vermiculite is a package structure. The properties of the material lead to a slow heating of manufactured products due to low absorption and high radiation reflection. The maximum of reflection function is referred to infrared spectral region. A review of current models of heat propagation in anisotropic thermal insulation materials is carried out, as well as analysis of their thermal and optical properties. A theoretical model, which allows to determine the heat conductivity «ITIRM», can be useful in the study of thermal characteristics such as specific heat capacity, temperature conductivity, and others. Materials as «ITIRM» can be used in the metallurgy industry, thermal energy and nuclear power-engineering.

  11. Design of Chern insulating phases in honeycomb lattices

    Science.gov (United States)

    Pickett, Warren E.; Lee, Kwan-Woo; Pentcheva, Rossitza

    2018-06-01

    The search for robust examples of the magnetic version of topological insulators, referred to as quantum anomalous Hall insulators or simply Chern insulators, so far lacks success. Our groups have explored two distinct possibilities based on multiorbital 3d oxide honeycomb lattices. Each has a Chern insulating phase near the ground state, but materials parameters were not appropriate to produce a viable Chern insulator. Further exploration of one of these classes, by substituting open shell 3d with 4d and 5d counterparts, has led to realistic prediction of Chern insulating ground states. Here we recount the design process, discussing the many energy scales that are active in participating (or resisting) the desired Chern insulator phase.

  12. Dielectric and Insulating Technology 2005 : Reviews & Forecasts

    Science.gov (United States)

    Okamoto, Tatsuki

    This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was done in the article of 2003. Thoese are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).

  13. Dielectric and Insulating Technology 2006 : Review & Forecast

    Science.gov (United States)

    Okamoto, Tatsuki

    This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was seen in the articles of 2005. Those are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).

  14. Airborne sound insulation descriptors in the Nordic building regulations - Overview special rules and benefits of changing descriptors

    DEFF Research Database (Denmark)

    Helimäki, Heikki; Rasmussen, Birgit

    2010-01-01

    All Nordic countries have sound insulation requirements specified in the building regulations or in sound classification schemes, Class C, referred to in the regulations and published as national standards, which all originate from a common Nordic INSTA-B proposal from the 90’s, thus having a lot...... insulation requirements and is related to an equivalent paper about impact sound insulation requirements. The papers also describe the major benefits of reducing the number of special rules and of changing descriptors to those which best support protection of the residents and development of the building....... These national rules are not easy to find, unless all details of standards and other documents are known and studied carefully, and they cause problems since the building industry is not national anymore. This paper gives an overview of special national rules in the Nordic countries regarding airborne sound...

  15. Foam insulated transfer line test report

    International Nuclear Information System (INIS)

    Squier, D.M.

    1994-06-01

    Miles of underground insulated piping will be installed at the Hanford site to transfer liquid waste. Significant cost savings may be realized by using pre-fabricated polyurethane foam insulated piping. Measurements were made on sections of insulated pipe to determine the insulation's resistance to axial expansion of the pipe, the force required to compress the foam in the leg of an expansion loop and the time required for heat up and cool down of a buried piping loop. These measurements demonstrated that the peak axial force increases with the amount of adhesion between the encasement pipe and the insulation. The compressive strength of the foam is too great to accommodate the thermal growth of long straight pipe sections into the expansion loops. Mathematical models of the piping system's thermal behavior can be refined by data from the heated piping loop

  16. Lightweight, Thermally Insulating Structural Panels

    Science.gov (United States)

    Eisen, Howard J.; Hickey, Gregory; Wen, Liang-Chi; Layman, William E.; Rainen, Richard A.; Birur, Gajanana C.

    1996-01-01

    Lightweight, thermally insulating panels that also serve as structural members developed. Honeycomb-core panel filled with low-thermal-conductivity, opacified silica aerogel preventing convection and minimizes internal radiation. Copper coating on face sheets reduces radiation. Overall thermal conductivities of panels smaller than state-of-art commercial non-structurally-supporting foam and fibrous insulations. On Earth, panels suitable for use in low-air-pressure environments in which lightweight, compact, structurally supporting insulation needed; for example, aboard high-altitude aircraft or in partially evacuated panels in refrigerators.

  17. Aharonov–Bohm interference in topological insulator nanoribbons

    KAUST Repository

    Peng, Hailin; Lai, Keji; Kong, Desheng; Meister, Stefan; Chen, Yulin; Qi, Xiao-Liang; Zhang, Shou-Cheng; Shen, Zhi-Xun; Cui, Yi

    2009-01-01

    Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport

  18. Optimization design for SST-1 Tokamak insulators

    International Nuclear Information System (INIS)

    Zhang Yuanbin; Pan Wanjiang

    2012-01-01

    With the help of ANSYS FEA technique, high voltage and cryogenic proper- ties of the SST-1 Tokamak insulators were obtained, and the structure of the insulators was designed and modified by taking into account the simulation results. The simulation results indicate that the optimization structure has better high voltage insulating property and cryogenic mechanics property, and also can fulfill the qualification criteria of the SST-1 Tokamak insulators. (authors)

  19. Research of mechanical and void properties of composite insulation for superconducting busbar

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiongyi, E-mail: huangxy@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Guoliang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Clayton, Nicholas [ITER IO, Superconductor Systems & Auxiliaries Section, 13067 St Paul Lez Durance Cedex (France); Lu, Kun; Wang, Chunyu; Wang, Chao; Dai, Zhiheng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Gung, Chen-yu; Devred, Arnaud [ITER IO, Superconductor Systems & Auxiliaries Section, 13067 St Paul Lez Durance Cedex (France); Song, Yuntao; Fang, Linlin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-01-15

    Highlights: • Two curing methods for the pre-preg on the superconducting busbar are researched. • Vaccum bag and silicone rubber is used for pre-preg curing as complement of VPI in fusion filed. • The results of mechanical properties and void content is described and discussed. - Abstract: Pre-preg material has been widely-used in the industry of the aerospace, the wind power, which has many advantages on manufacture process, and can be chosen as an effective complementary insulation method for the Wet-winding and Vacuum Pressure Impregnation technology in the field of superconducting fusion magnets. ASIPP undertaken many engineering tasks on the superconducting coil and busbar design and manufacture for the large fusion device, the pre-preg material and the relevant curing technology were researched as a new method for the high voltage potential components in ITER Feeders, such as the busbars and current leads. Two types of Chinese industrial glass fiber pre-preg insulation composite material were studied and pre-qualified using vacuum bag and silicone rubber assistance technique in ASIPP. The mechanical properties including the ILSS and UTS at 77 K, and void content of this composites were measured and discussed in this paper in detail.

  20. Slab edge insulating form system and methods

    Science.gov (United States)

    Lee, Brain E [Corral de Tierra, CA; Barsun, Stephan K [Davis, CA; Bourne, Richard C [Davis, CA; Hoeschele, Marc A [Davis, CA; Springer, David A [Winters, CA

    2009-10-06

    A method of forming an insulated concrete foundation is provided comprising constructing a foundation frame, the frame comprising an insulating form having an opening, inserting a pocket former into the opening; placing concrete inside the foundation frame; and removing the pocket former after the placed concrete has set, wherein the concrete forms a pocket in the placed concrete that is accessible through the opening. The method may further comprise sealing the opening by placing a sealing plug or sealing material in the opening. A system for forming an insulated concrete foundation is provided comprising a plurality of interconnected insulating forms, the insulating forms having a rigid outer member protecting and encasing an insulating material, and at least one gripping lip extending outwardly from the outer member to provide a pest barrier. At least one insulating form has an opening into which a removable pocket former is inserted. The system may also provide a tension anchor positioned in the pocket former and a tendon connected to the tension anchor.

  1. High-performance insulator structures for accelerator applications

    International Nuclear Information System (INIS)

    Sampayan, S.E.; Caporaso, G.J.; Sanders, D.M.; Stoddard, R.D.; Trimble, D.O.; Elizondo, J.; Krogh, M.L.; Wieskamp, T.F.

    1997-05-01

    A new, high gradient insulator technology has been developed for accelerator systems. The concept involves the use of alternating layers of conductors and insulators with periods of order 1 mm or less. These structures perform many times better (about 1.5 to 4 times higher breakdown electric field) than conventional insulators in long pulse, short pulse, and alternating polarity applications. We describe our ongoing studies investigating the degradation of the breakdown electric field resulting from alternate fabrication techniques, the effect of gas pressure, the effect of the insulator-to-electrode interface gap spacing, and the performance of the insulator structure under bi-polar stress

  2. Development of insulating coatings for liquid metal blankets

    International Nuclear Information System (INIS)

    Malang, S.; Borgstedt, H.U.; Farnum, E.H.; Natesan, K.; Vitkovski, I.V.

    1994-07-01

    It is shown that self-cooled liquid metal blankets are feasible only with electrically insulating coatings at the duct walls. The requirements on the insulation properties are estimated by simple analytical models. Candidate insulator materials are selected based on insulating properties and thermodynamic consideration. Different fabrication technologies for insulating coatings are described. The status of the knowledge on the most crucial feasibility issue, the degradation of the resisivity under irradiation, is reviewed

  3. EFFICIENCY IMPROVEMENT IN INDUSTRIAL BOILER BY FLUE GAS DUCT INSULATION

    OpenAIRE

    Sanjay H. Zala

    2017-01-01

    Now a days in industry major losses are find out so here we calculate these losses and find out efficiency of boiler. Boiler efficiency and energy losses from boiler are important parameter for any industry using boiler. In this work a detailed analysis was carried out for boiler at Anish Chemicals Bhavnagar. It is a combined water and fire tube boiler using biomass coal as fuel. Boiler efficiency calculated by direct method is in range of (78.5% to 81.6%). Major losses from boiler are heat ...

  4. Plastic Materials for Insulating Applications.

    Science.gov (United States)

    Wang, S. F.; Grossman, S. J.

    1987-01-01

    Discusses the production and use of polymer materials as thermal insulators. Lists several materials that provide varying degrees of insulation. Describes the production of polymer foam and focuses on the major applications of polystyrene foam, polyurethane foam, and polyisocyanurate foam. (TW)

  5. Separation and concentration of water-borne contaminants utilizing insulator-based dielectrophoresis.

    Energy Technology Data Exchange (ETDEWEB)

    Lapizco-Encinas, Blanca Hazalia; Fiechtner, Gregory J.; Cummings, Eric B.; Davalos, Rafael V.; Kanouff, Michael P.; Simmons, Blake Alexander; McGraw, Gregory J.; Salmi, Allen J.; Ceremuga, Joseph T.; Fintschenko, Yolanda

    2006-01-01

    This report focuses on and presents the capabilities of insulator-based dielectrophoresis (iDEP) microdevices for the concentration and removal of water-borne bacteria, spores and inert particles. The dielectrophoretic behavior exhibited by the different particles of interest (both biological and inert) in each of these systems was observed to be a function of both the applied electric field and the characteristics of the particle, such as size, shape, and conductivity. The results obtained illustrate the potential of glass and polymer-based iDEP devices to act as a concentrator for a front-end device with significant homeland security and industrial applications for the threat analysis of bacteria, spores, and viruses. We observed that the polymeric devices exhibit the same iDEP behavior and efficacy in the field of use as their glass counterparts, but with the added benefit of being easily mass fabricated and developed in a variety of multi-scale formats that will allow for the realization of a truly high-throughput device. These results also demonstrate that the operating characteristics of the device can be tailored through the device fabrication technique utilized and the magnitude of the electric field gradient created within the insulating structures. We have developed systems capable of handling numerous flow rates and sample volume requirements, and have produced a deployable system suitable for use in any laboratory, industrial, or clinical setting.

  6. Insulation Progress since the Mid-1950s

    Science.gov (United States)

    Timmerhaus, K. D.

    Storage vessel and cryostat design for modern cryogenic systems has become rather routine as the result of the wide use of and application of cryogenic fluids. Such vessels for these fluids range in size from 1 L flasks used in the laboratory for liquid nitrogen to the more than 200,000 m3 double-walled tanks used for temporary storage of liquefied natural gas before being transported overseas to their final destination. These storage vessels for cryogenic fluids range in type from low-performance containers insulated with rigid foam or fibrous insulation to high-performance containers insulated with evacuated multilayer insulations. The overriding factors in the type of container selected normally are of economics and safety. This paper will consider various insulation concepts used in such cryogenic storage systems and will review the progress that has been made over the past 50 years in these insulation systems.

  7. In-field implementation of impedance-based structural health monitoring for insulated rail joints

    Science.gov (United States)

    Albakri, Mohammad I.; Malladi, V. V. N. Sriram; Woolard, Americo G.; Tarazaga, Pablo A.

    2017-04-01

    Track defects are a major safety concern for the railroad industry. Among different track components, insulated rail joints, which are widely used for signaling purposes, are considered a weak link in the railroad track. Several joint-related defects have been identified by the railroad community, including rail wear, torque loss, and joint bar breakage. Current track inspection techniques rely on manual and visual inspection or on specially equipped testing carts, which are costly, timeconsuming, traffic disturbing, and prone to human error. To overcome the aforementioned limitations, the feasibility of utilizing impedance-based structural health monitoring for insulated rail joints is investigated in this work. For this purpose, an insulated joint, provided by Koppers Inc., is instrumented with piezoelectric transducers and assembled with 136 AREA rail plugs. The instrumented joint is then installed and tested at the Facility for Accelerated Service Testing, Transportation Technology Center Inc. The effects of environmental and operating conditions on the measured impedance signatures are investigated through a set of experiments conducted at different temperatures and loading conditions. The capabilities of impedance-based SHM to detect several joint-related damage types are also studied by introducing reversible mechanical defects to different joint components.

  8. Impact sound insulation descriptors in the Nordic building regulations – Overview special rules and benefits of changing descriptors

    DEFF Research Database (Denmark)

    Hagberg, Klas; Rasmussen, Birgit

    2010-01-01

    All Nordic countries have sound insulation requirements specified in the building regulations or in sound classification schemes, Class C, referred to in the regulations and published as national standards, which all originate from a common Nordic INSTA-B proposal from the 90’s, thus having a lot...... insulation requirements and is related to an equivalent paper about airborne sound insulation requirements. The papers also describe the major benefits of reducing the number of special rules and of changing descriptors to those which best support protection of the residents and development of the building....... These national rules are not easy to find, unless all details of standards and other documents are known and studied carefully, and they cause problems since the building industry is not national anymore. This paper gives an overview of special national rules in the Nordic countries regarding impact sound...

  9. The human impact on natural rock reserves using basalt, anorthosite, and carbonates as raw materials in insulation products

    DEFF Research Database (Denmark)

    Dahl, Tais Wittchen; Clausen, Anders U.; Hansen, Peter B.

    2011-01-01

    lithosphere or subducted with oceanic crust and recycled through the mantle by plate tectonics. Insulation products have a chemical composition similar to average crustal rocks and participate in the natural rock cycle. However, these products need not accumulate in nature, inasmuch as old insulation......Typical crustal rocks such as basalt, limestone, and anorthosite are used in stone wool insulation products. The raw materials for stone wool production are not specific to any rare mineral source but depend upon the mixture of materials having the correct chemical composition, exemplified by 40 wt......% basalt, 20 wt% anorthosite, and 40 wt% cement-bonded renewable materials. This study provides an overview of the natural cycle of these resources, including their abundances in nature, and sets the consumption by the stone wool industry and other human activities in perspective. Basalt, anorthosite...

  10. Reflecting variable opening insulating panel

    International Nuclear Information System (INIS)

    Nungesser, W.T.

    1976-01-01

    A description is given of a reflecting variable opening insulating panel assembly, comprising a static panel assembly of reflecting insulation sheets forming a cavity along one side of the panel and a movable panel opening out by sliding from the cavity of the static panel, and a locking device for holding the movable panel in a position extending from the cavity of the static panel. This can apply to a nuclear reactor of which the base might require maintenance and periodical checking and for which it is desirable to have available certain processes for the partial dismantling of the insulation [fr

  11. Electrical breakdown studies with Mycalex insulators

    International Nuclear Information System (INIS)

    Waldron, W.; Greenway, W.; Eylon, S.; Henestroza, E.; Yu, S.

    2003-01-01

    Insulating materials such as alumina and glass-bonded mica (Mycalex) are used in accelerator systems for high voltage feedthroughs, structural supports, and barriers between high voltage insulating oil and the vacuum beam pipe in induction accelerator cells. Electric fields in the triple points should be minimized to prevent voltage breakdown. Mechanical stress can compromise seals and result in oil contamination of the insulator surface. We have tested various insulator cleaning procedures including ultrasonic cleaning with a variety of aqueous-based detergents, and manual scrubbing with various detergents. Water sheeting tests were used to determine the initial results of the cleaning methods. Ultimately, voltage breakdown tests will be used to quantify the benefits of these cleaning procedures

  12. Topological insulators/superconductors: Potential future electronic materials

    International Nuclear Information System (INIS)

    Hor, Y. S.

    2014-01-01

    A new material called topological insulator has been discovered and becomes one of the fastest growing field in condensed matter physics. Topological insulator is a new quantum phase of matter which has Dirac-like conductivity on its surface, but bulk insulator through its interior. It is considered a challenging problem for the surface transport measurements because of dominant internal conductance due to imperfections of the existing crystals of topological insulators. By a proper method, the internal bulk conduction can be suppressed in a topological insulator, and permit the detection of the surface currents which is necessary for future fault-tolerant quantum computing applications. Doped topological insulators have depicted a large variety of bulk physical properties ranging from magnetic to superconducting behaviors. By chemical doping, a TI can change into a bulk superconductor. Nb x Bi 2 Se 3 is shown to be a superconductor with T c ∼ 3.2 K, which could be a potential candidate for a topological superconductor

  13. Sheath insulator final test report, TFE Verification Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications.

  14. Sheath insulator final test report, TFE Verification Program

    International Nuclear Information System (INIS)

    1994-07-01

    The sheath insulator in a thermionic cell has two functions. First, the sheath insulator must electrically isolate the collector form the outer containment sheath tube that is in contact with the reactor liquid metal coolant. Second, The sheath insulator must provide for high uniform thermal conductance between the collector and the reactor coolant to remove away waste heat. The goals of the sheath insulator test program were to demonstrate that suitable ceramic materials and fabrication processes were available, and to validate the performance of the sheath insulator for TFE-VP requirements. This report discusses the objectives of the test program, fabrication development, ex-reactor test program, in-reactor test program, and the insulator seal specifications

  15. Proximity effects in topological insulator heterostructures

    International Nuclear Information System (INIS)

    Li Xiao-Guang; Wu Guang-Fen; Zhang Gu-Feng; Culcer Dimitrie; Zhang Zhen-Yu; Chen Hua

    2013-01-01

    Topological insulators (TIs) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to Tl-based heterostructures, in which conventional proximity effects give rise to a series of exotic physical phenomena. This paper reviews our recent studies on the potential existence of topological proximity effects at the interface between a topological insulator and a normal insulator or other topologically trivial systems. Using first-principles approaches, we have realized the tunability of the vertical location of the topological helical state via intriguing dual-proximity effects. To further elucidate the control parameters of this effect, we have used the graphene-based heterostructures as prototypical systems to reveal a more complete phase diagram. On the application side of the topological helical states, we have presented a catalysis example, where the topological helical state plays an essential role in facilitating surface reactions by serving as an effective electron bath. These discoveries lay the foundation for accurate manipulation of the real space properties of the topological helical state in TI-based heterostructures and pave the way for realization of the salient functionality of topological insulators in future device applications. (topical review - low-dimensional nanostructures and devices)

  16. Dielectric and Insulating Technology 2004 : Review & Forecast

    Science.gov (United States)

    Okamoto, Tatsuki

    This article reports the state-of-art of DEIS activites. DEIS activiteis are basically based on the activites of 8-10 investigation committees’ under DEIS committee. Recent DEIS activites are categlized into three functions in this article and remarkable activity or trend of each category is mentioned. Those are activities on insulation diagnosis (AI application and asset management), activities on new insulation technology for power tansmission (high Tc super conducting cable insulation and all solid sinulated substation), and activities on new insulating materials (Nanocomposite).

  17. (H)-FCKW foamed insulating materials in the building industry in Germany. Estimation of the potential emissions up to the year 2010; (H)-FCKW-geschaeumte Daemmstoffe im Bauwesen in Deutschland. Schaetzung der potentiellen Emissionen bis zum Jahr 2010

    Energy Technology Data Exchange (ETDEWEB)

    Obernosterer, Richard [Ressourcen Management Agentur GmbH, Villach (Austria)

    2012-09-15

    fugitive losses (assumed to be between 0.35% and 0.68%) were deducted from those banks, specific to the relevant products and blowing agents. As result a bank of approximately 117.5 kt or 105 000 t-ODP in PU insulating foams was estimated for Germany. The entire ODS bank in insulating materials used in construction in Germany was estimated to amount to about 120 000 t-ODP. The bulk of these ODP quantities (more than three quarters) are concentrated in only a few applications. PU sandwich panels are mainly used to insulate roofs and walls in the construction of industrial buildings as well as for cold-storage buildings. PU insulating panels are mainly used to insulate flat roofs, saddle roofs and floors.

  18. Excavationless Exterior Foundation Insulation Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-10-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  19. Excavationless Exterior Foundation Insulation Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, T. [NorthernSTAR, Minneaplolis, MN (United States); Mosiman, G. [NorthernSTAR, Minneaplolis, MN (United States); Ojczyk, C. [NorthernSTAR, Minneaplolis, MN (United States)

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with liquid insulating foam. The team was able to excavate a continuous 4 inches wide by 4 feet to 5 feet deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  20. Insulation systems of the building construtions

    Directory of Open Access Journals (Sweden)

    Rumiantcev Boris

    2016-01-01

    Full Text Available Constructions of the exterior insulation and decoration combines materials of different functionality and constructive solutions allows to these materials to demonstrate their efficiency to the great extent. Fire safety of buildings is mandatory requirement for building systems. Some insulating material may belong to the group of combustible, but their use in structures so as to minimize the risk of fire. On the other hand, there are special designs, in which non-flammable insulation acts as a flame retardant barrier. In the article carried systematization of construction systems used in the flat and pitched roof during the insulation and wall covering and facades. Taking into account the experience of leading firms were considered the application features of using exterior finish systems: construction solutions, requirements for materials and recommendations about the installation these systems.The article deals with the construction ventilated roofing system of two types: flat roof and pitched roof seam. In the first case, the ventilation system is created using milled insulation boards in the second - by a ventilated gap. In both cases the natural convection of air in the air cavities. Ensuring operational stability insulation is laid on the stages of production of heat-insulating materials. It is important: firstly responsible execution of all process operations associated with providing regulatory properties of materials and secondly, the performance of additional operations associated with the produc-tion of materials, working in a specific design. An example of a material whose properties can modify for a particular application, are milled mineral wool (with air channels for systems of ventilated flat roof.

  1. Polymer-Reinforced, Non-Brittle, Lightweight Cryogenic Insulation

    Science.gov (United States)

    Hess, David M.

    2013-01-01

    The primary application for cryogenic insulating foams will be fuel tank applications for fueling systems. It is crucial for this insulation to be incorporated into systems that survive vacuum and terrestrial environments. It is hypothesized that by forming an open-cell silica-reinforced polymer structure, the foam structures will exhibit the necessary strength to maintain shape. This will, in turn, maintain the insulating capabilities of the foam insulation. Besides mechanical stability in the form of crush resistance, it is important for these insulating materials to exhibit water penetration resistance. Hydrocarbon-terminated foam surfaces were implemented to impart hydrophobic functionality that apparently limits moisture penetration through the foam. During the freezing process, water accumulates on the surfaces of the foams. However, when hydrocarbon-terminated surfaces are present, water apparently beads and forms crystals, leading to less apparent accumulation. The object of this work is to develop inexpensive structural cryogenic insulation foam that has increased impact resistance for launch and ground-based cryogenic systems. Two parallel approaches will be pursued: a silica-polymer co-foaming technique and a post foam coating technique. Insulation characteristics, flexibility, and water uptake can be fine-tuned through the manipulation of the polyurethane foam scaffold. Silicate coatings for polyurethane foams and aerogel-impregnated polyurethane foams have been developed and tested. A highly porous aerogel-like material may be fabricated using a co-foam and coated foam techniques, and can insulate at liquid temperatures using the composite foam

  2. Use and benefit summary of General Electric Company thermocase insulated tubulars for steam enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Traynor, B.V. Jr.; Hawley, J.R.; Marziani, V.J.; Prevost, W.M.

    1982-01-01

    General Electric Co.'s (GE) first well-bore insulation in 1969 resulted from the industry's need to produce hot oil on Alaska's North Slope without damaging the permafrost. In the past 3 yr, over 500,000 linear ft of GE's Thermocase has been sold. Thermocase tubulars are in use in California, Wyoming, Texas, Canada, Venezuela, and the USSR. Thermocase insulated tubulars are being used in a wide range of reservoirs under a variety of completion designs. This study discusses field experience, thermal completion benefits afforded by Thermocase tubulars, a quantified economic evaluation in a 1000-ft application, as well as GE's product verification, test and rigid quality control program.

  3. HgTe based topological insulators

    International Nuclear Information System (INIS)

    Bruene, Christoph

    2014-01-01

    This PhD thesis summarizes the discovery of topological insulators and highlights the developments on their experimental observations. The work focuses on HgTe. The thesis is structured as follows: - The first chapter of this thesis will give a brief overview on discoveries in the field of topological insulators. It focuses on works relevant to experimental results presented in the following chapters. This includes a short outline of the early predictions and a summary of important results concerning 2-dimensional topological insulators while the final section discusses observations concerning 3-dimensional topological insulators. - The discovery of the quantum spin Hall effect in HgTe marked the first experimental observation of a topological insulator. Chapter 2 focuses on HgTe quantum wells and the quantum spin Hall effect. The growth of high quality HgTe quantum wells was one of the major goals for this work. In a final set of experiments the spin polarization of the edge channels was investigated. Here, we could make use of the advantage that HgTe quantum well structures exhibit a large Rashba spin orbit splitting. - HgTe as a 3-dimensional topological insulator is presented in chapter 3. - Chapters 4-6 serve as in depth overviews of selected works: Chapter 4 presents a detailed overview on the all electrical detection of the spin Hall effect in HgTe quantum wells. The detection of the spin polarization of the quantum spin Hall effect is shown in chapter 5 and chapter 6 gives a detailed overview on the quantum Hall effect originating from the topological surface state in strained bulk HgTe.

  4. A Novel Environmental Route to Ambient Pressure Dried Thermal Insulating Silica Aerogel via Recycled Coal Gangue

    Directory of Open Access Journals (Sweden)

    Pinghua Zhu

    2016-01-01

    Full Text Available Coal gangue, one of the main hazardous emissions of purifying coal from coalmine industry, is rich in silica and alumina. However, the recycling of the waste is normally restricted by less efficient techniques and low attractive output; the utilization of such waste is still staying lower than 15%. In this work, the silica aerogel materials were synthesized by using a precursor extracted from recycled silicon-rich coal gangue, followed by a single-step surface silylation and ambient pressure drying. A low density (~0.19 g/cm3 nanostructured aerogel with a 3D open porous microstructure and high surface area (~690 m2/g was synthesized, which presents a superior thermal insulation performance (~26.5 mW·m−1·K−1 of a plane packed of 4-5 mm granules which was confirmed by transient hot-wire method. This study offers a new facile route to the synthesis of insulating aerogel material by recycling solid waste coal gangue and presents a potential cost reduction of industrial production of silica aerogels.

  5. Field evaluation of reflective insulation in south east Asia

    Science.gov (United States)

    Teh, Khar San; Yarbrough, David W.; Lim, Chin Haw; Salleh, Elias

    2017-12-01

    The objective of this research was to obtain thermal performance data for reflective insulations in a South East Asia environment. Thermal resistance data (RSI, m2 ṡ K/W) for reflective insulations are well established from 1-D steady-state tests, but thermal data for reflective insulation in structures like those found in South East Asia are scarce. Data for reflective insulations in South East Asia will add to the worldwide database for this type of energy-conserving material. RSI were obtained from heat flux and temperature data of three identical structures in the same location. One unit did not have insulation above the ceiling, while the second and third units were insulated with reflective insulation with emittance less than 0.05. RSI for the uninsulated test unit varied from 0.37 to 0.40 m2 ṡ K/W. RSI for a single-sheet reflective insulation (woven foil) varied from 2.15 to 2.26 m2 ṡ K/W, while bubble-foil insulation varied from 2.69 to 3.09 m2 ṡ K/W. The range of RSI values resulted from differences in the spacing between the reflective insulation and the roof. In addition, the reflective insulation below the roof lowered attic temperatures by as much as 9.7° C. Reductions in ceiling heat flux of 80 to 90% relative to the uninsulated structure, due to the reflective insulation, were observed.

  6. Innovative Retrofit Insulation Strategies for Concrete Masonry Foundations

    Energy Technology Data Exchange (ETDEWEB)

    Huelman, P. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Goldberg, L. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Jacobson, R. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2015-05-06

    This study was designed to test a new approach for foundation insulation retrofits, with the goal of demonstrating improved moisture control, improved occupant comfort, and reduced heat loss. Because conducting experimental research on existing below-grade assemblies is very difficult, most of the results are based on simulations. The retrofit approach consists of filling open concrete block cores with an insulating material and adding R-10 exterior insulation that extends 1 ft below grade. The core fill is designed to improve the R-value of the foundation wall and increase the interior wall surface temperature, but more importantly to block convection currents that could otherwise increase moisture loads on the foundation wall and interior space. The exterior insulation significantly reduces heat loss through the most exposed part of the foundation and further increases the interior wall surface temperature. This improves occupant comfort and decreases the risk of condensation. Such an insulation package avoids the full-depth excavation necessary for exterior insulation retrofits, reduces costs, and eliminates the moisture and indoor air quality risks associated with interior insulation retrofits. Retrofit costs for the proposed approach were estimated at roughly half those of a full-depth exterior insulation retrofit.

  7. Load responsive multilayer insulation performance testing

    Energy Technology Data Exchange (ETDEWEB)

    Dye, S.; Kopelove, A. [Quest Thermal Group, 6452 Fig Street Suite A, Arvada, CO 80004 (United States); Mills, G. L. [Ball Aerospace and Technologies Corp, 1600 Commerce Street, Boulder, CO 80301 (United States)

    2014-01-29

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.

  8. Load responsive multilayer insulation performance testing

    International Nuclear Information System (INIS)

    Dye, S.; Kopelove, A.; Mills, G. L.

    2014-01-01

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI

  9. A novel no-insulation winding technique of high temperature-superconducting racetrack coil for rotating applications: A progress report in Korea university.

    Science.gov (United States)

    Choi, Y H; Song, J B; Yang, D G; Kim, Y G; Hahn, S; Lee, H G

    2016-10-01

    This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.

  10. A novel no-insulation winding technique of high temperature-superconducting racetrack coil for rotating applications: A progress report in Korea university

    Science.gov (United States)

    Choi, Y. H.; Song, J. B.; Yang, D. G.; Kim, Y. G.; Hahn, S.; Lee, H. G.

    2016-10-01

    This paper presents our recent progress on core technology development for a megawatt-class superconducting wind turbine generator supported by the international collaborative R&D program of the Korea Institute of Energy Technology Evaluation and Planning. To outperform the current high-temperature-superconducting (HTS) magnet technology in the wind turbine industry, a novel no-insulation winding technique was first proposed to develop the second-generation HTS racetrack coil for rotating applications. Here, we briefly report our recent studies on no-insulation (NI) winding technique for GdBCO coated conductor racetrack coils in the following areas: (1) Charging-discharging characteristics of no-insulation GdBCO racetrack coils with respect to external pressures applied to straight sections; (2) thermal and electrical stabilities of no-insulation GdBCO racetrack coils encapsulated with various impregnating materials; (3) quench behaviors of no-insulation racetrack coils wound with GdBCO conductor possessing various lamination layers; (4) electromagnetic characteristics of no-insulation GdBCO racetrack coils under time-varying field conditions. Test results confirmed that this novel NI winding technique was highly promising. It could provide development of a compact, mechanically dense, and self-protecting GdBCO magnet for use in real-world superconducting wind turbine generators.

  11. Defect design of insulation systems for photovoltaic modules

    Science.gov (United States)

    Mon, G. R.

    1981-01-01

    A defect-design approach to sizing electrical insulation systems for terrestrial photovoltaic modules is presented. It consists of gathering voltage-breakdown statistics on various thicknesses of candidate insulation films where, for a designated voltage, module failure probabilities for enumerated thickness and number-of-layer film combinations are calculated. Cost analysis then selects the most economical insulation system. A manufacturing yield problem is solved to exemplify the technique. Results for unaged Mylar suggest using fewer layers of thicker films. Defect design incorporates effects of flaws in optimal insulation system selection, and obviates choosing a tolerable failure rate, since the optimization process accomplishes that. Exposure to weathering and voltage stress reduces the voltage-withstanding capability of module insulation films. Defect design, applied to aged polyester films, promises to yield reliable, cost-optimal insulation systems.

  12. Measure Guideline. Hybrid Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a “partial drainage” detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  13. Interaction between a pair of gypsy insulators or between heterologous gypsy and Wari insulators modulates Flp site-specific recombination in Drosophila melanogaster.

    Science.gov (United States)

    Krivega, Margarita; Savitskaya, Ekaterina; Krivega, Ivan; Karakozova, Marina; Parshikov, Aleksander; Golovnin, Anton; Georgiev, Pavel

    2010-08-01

    Chromatin insulators block the action of transcriptional enhancers when interposed between an enhancer and a promoter. An Flp technology was used to examine interactions between Drosophila gypsy and Wari insulators in somatic and germ cells. The gypsy insulator consists of 12 binding sites for the Su(Hw) protein, while the endogenous Wari insulator, located on the 3' side of the white gene, is independent from the Su(Hw) protein. Insertion of the gypsy but not Wari insulator between FRT sites strongly blocks recombination between Flp dimers bound to FRT sites located on the same chromatid (recombination in cis) or in sister chromatids (unequal recombination in trans). At the same time, the interaction between Wari and gypsy insulators regulates the efficiency of Flp-mediated recombination. Thus, insulators may have a role in controlling interactions between distantly located protein complexes (not only those involved in transcriptional gene regulation) on the same chromosome or on sister chromatids in somatic and germ cells. We have also found that the frequency of Flp-mediated recombination between FRT sites is strongly dependent on the relative orientation of gypsy insulators. Taken together, our results indicate that the interactions between insulators can be visualized by Flp technology and that insulators may be involved in blocking undesirable interactions between proteins at the two-chromatid phase of the cell cycle.

  14. Industrial applications or electron beams; Aplicaciones industriales de la irradiacion como servicio

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J. I.

    2001-07-01

    Industrial use of electron beams began in the 1950's with the crosslinking of polyethylene film and wire insulation. Today the number of electron beam Processing Systems installed for industrial applications throughout the world has grown to more than six hundred stations in over 35 countries. Total installed power is now approaching 40 megawatts (over 8 million tons of products per year). Electron beam is now utilized by many major industries including plastics, automotive, rubber goods, wire and cable, electrical insulation, semiconductor, medical, packaging, or pollution control. The principal effect of high-energy electrons is to produce ions in the materials treated, resulting in the liberation of orbital electrons. As a result, the original molecule is modified and the ree radicals combine to form new molecules with new chemical reactions or dis organisation od the DNA chains of living organisms (insects, fungus, microorganisms, etc.). (Author) 8 refs.

  15. Modeling of Dynamic Responses in Building Insulation

    Directory of Open Access Journals (Sweden)

    Anna Antonyová

    2015-10-01

    Full Text Available In this research a measurement systemwas developedfor monitoring humidity and temperature in the cavity between the wall and the insulating material in the building envelope. This new technology does not disturb the insulating material during testing. The measurement system can also be applied to insulation fixed ten or twenty years earlier and sufficiently reveals the quality of the insulation. A mathematical model is proposed to characterize the dynamic responses in the cavity between the wall and the building insulation as influenced by weather conditions.These dynamic responses are manifested as a delay of both humidity and temperature changes in the cavity when compared with the changes in the ambient surrounding of the building. The process is then modeled through numerical methods and statistical analysis of the experimental data obtained using the new system of measurement.

  16. Electrical insulator requirements for mirror fusion reactors

    International Nuclear Information System (INIS)

    Condit, R.H.; Van Konynenburg, R.A.

    1977-01-01

    The requirements for mirror fusion electrical insulators are discussed. Insulators will be required at the neutral beam injectors, injector power supplies, direct converters, and superconducting magnets. Insulators placed at the neutral beam injectors will receive the greatest radiation exposure, 10 14 to 10 16 neutrons/m 2 .s and 0.3 to 3 Gy/s (10 5 to 10 6 R/h) of gamma rays, with shielding. Direct converter insulators may receive the highest temperature (up to 1300 0 K), but low voltage holding requirements. Insulators made from organic materials (e.g., plastics) for the magnet coils may be satisfactory. Immediate conductivity increases of all insulators result from gamma irradiation. With an upper limit to gamma flux exposures of 300 Gy/s in a minimally shielded region, the conductivity could reach 10 -6 S/m. Damage from neutron irradiation may not be serious during several years' exposure. Surface changes in ceramics at the neutral beam injector may be serious. The interior of the injector will contain atomic hydrogen, and sputtering may transfer material away from or onto the ceramic insulators. Unknown and potentially damaging interactions between irradiation, electric fields, temperature gradients, cycling of temperature, surface and joint reactions, sputtering, polarization, and electrotransport in the dielectrics are of concern. Materials research to deal with these problems is needed

  17. Measure Guideline: Hybrid Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Lstiburek, J.

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a 'partial drainage' detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  18. Development of Industrially Produced Composite Quench Heaters for the LHC Superconducting Lattice Magnets

    CERN Document Server

    Szeless, Balázs; Calvone, F

    1996-01-01

    The quench heaters are vital elements for the protection of the LHC superconducting lattice magnets in the case of resistive transitions of the conductor. The basic concept of magnet protection and technical solutions are briefly presented. The quench heater consists of partially copper clad stainless steel strips sandwiched in between electric insulating carrier foils with electrical and mechanical properties such as to withstand high voltages, low temperatures, pressures and ionizing radiation. Testing of some commercial available electric insulation foils, polyimide (PI), polyetheretherketon (PEEK) and polyarylate (PA) and combinations of adhesive systems which are suitable for industrial processing are described. Possible industrial methods for series production for some 80 km of these composite quench heaters are indicated.

  19. Externalized conductors and insulation failure in Biotronik defibrillator leads: History repeating or a false alarm?

    Science.gov (United States)

    De Maria, Elia; Borghi, Ambra; Bonetti, Lorenzo; Fontana, Pier Luigi; Cappelli, Stefano

    2017-02-16

    Conductor externalization and insulation failure are frequent complications with the recalled St. Jude Medical Riata implantable cardioverter-defibrillator (ICD) leads. Conductor externalization is a "unique" failure mechanism: Cables externalize through the insulation ("inside-out" abrasion) and appear outside the lead body. Recently, single reports described a similar failure also for Biotronik leads. Moreover, some studies reported a high rate of electrical dysfunction (not only insulation failure) with Biotronik Linox leads and a reduced survival rate in comparison with the competitors. In this paper we describe the case of a patient with a Biotronik Kentrox ICD lead presenting with signs of insulation failure and conductor externalization at fluoroscopy. Due to the high risk of extraction we decided to implant a new lead, abandoning the damaged one; lead reimplant was uneventful. Subsequently, we review currently available literature about Biotronik Kentrox and Linox ICD lead failure and in particular externalized conductors. Some single-center studies and a non-prospective registry reported a survival rate between 88% and 91% at 5 years for Linox leads, significantly worse than that of other manufacturers. However, the preliminary results of two ongoing multicenter, prospective registries (GALAXY and CELESTIAL) showed 96% survival rate at 5 years after implant, well within industry standards. Ongoing data collection is needed to confirm longer-term performance of this family of ICD leads.

  20. 49 CFR 236.527 - Roadway element insulation resistance.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Roadway element insulation resistance. 236.527 Section 236.527 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... element insulation resistance. Insulation resistance between roadway inductor and ground shall be...

  1. Thermal-Insulation Properties of Multilayer Textile Packages

    Directory of Open Access Journals (Sweden)

    Matusiak Małgorzata

    2014-12-01

    Full Text Available Thermal-insulation properties of textile materials play a significant role in material engineering of protective clothing. Thermal-insulation properties are very important from the point of view of thermal comfort of the clothing user as well as the protective efficiency against low or high temperature. Thermal protective clothing usually is a multilayer construction. Its thermal insulation is a resultant of a number of layers and their order, as well as the thermalinsulation properties of a single textile material creating particular layers. The aim of the presented work was to investigate the relationships between the thermal-insulation properties of single materials and multilayer textile packages composed of these materials. Measurement of the thermal-insulation properties of single and multilayer textile materials has been performed with the Alambeta. The following properties have been investigated: thermal conductivity, resistance and absorptivity. Investigated textile packages were composed of two, three and four layers made of woven and knitted fabrics, as well as nonwovens. On the basis of the obtained results an analysis has been carried out in order to assess the dependency of the resultant values of the thermal-insulation properties of multilayer packages on the appropriate values of particular components.

  2. Numerical study of the thermal and aerodynamic insulation of a cavity with a vertical downstream air jet

    Energy Technology Data Exchange (ETDEWEB)

    Mhiri, H.; El Golli, S. [Ecole Nationale d`Ingenieurs, Monastir (Tunisia). Lab. d`Energetique; Berthon, A.; Le Palec, G.; Bournot, P. [Technopole de Chateau-Gombert, Marseille (France)

    1998-10-01

    Because of its numerous industrial applications (air conditioning, thermal insulation, behavior of fires), heat transfer in rectangular cavities has made the subject of many works which concern both theoretical numerical studies and experimental investigations. This work is devoted to a numerical approach of the laminar mixed convection in a cavity which one of the boundaries is materialized by a laminar vertical downstream air jet. The purpose is to analyze the interaction of this flow with the natural movement that grows in the cavity under the combined action of boundary thermal gradients and external medium of the cavity in order to examine thermal insulation qualities of the jet. Calculations have been made with the help of the finite volume method.

  3. Topological Insulators Dirac Equation in Condensed Matters

    CERN Document Server

    Shen, Shun-Qing

    2012-01-01

    Topological insulators are insulating in the bulk, but process metallic states around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, Topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological in...

  4. KSI's Cross Insulated Core Transformer Technology

    International Nuclear Information System (INIS)

    Uhmeyer, Uwe

    2009-01-01

    Cross Insulated Core Transformer (CCT) technology improves on Insulated Core Transformer (ICT) implementations. ICT systems are widely used in very high voltage, high power, power supply systems. In an ICT transformer ferrite core sections are insulated from their neighboring ferrite cores. Flux leakage is present at each of these insulated gaps. The flux loss is raised to the power of stages in the ICT design causing output voltage efficiency to taper off with increasing stages. KSI's CCT technology utilizes a patented technique to compensate the flux loss at each stage of an ICT system. Design equations to calculate the flux compensation capacitor value are presented. CCT provides corona free operation of the HV stack. KSI's CCT based High Voltage power supply systems offer high efficiency operation, high frequency switching, low stored energy and smaller size over comparable ICT systems.

  5. Grandstand view of phenolic foam insulation

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    Stadium Insulation Ltd, manufacture pipe sections, tank and vessel insulation products in Lowphen, polyisocyanurate, polyurethane foams and expanded polystyrene, though for certain specialist applications, cork is still employed in small quantities. Currently the emphasis is very much on Lowphen, the company's range of pipe sections based on phenolic foam. The company's manufacturing and marketing effort reflects the increasing market trend towards the use of insulating material capable of withstanding higher temperatures, and phenolic foam neatly satisfies the demand since it is capable of use at temperatures up to 140/sup 0/C. Moreover, phenolic foam has the lowest K value at 0.02W/m/sup 0/C of any of the currently available range of insulating materials, and while the product is slightly more expensive than alternatives such as polyisocyanurate and polyurethane, its high performance offsets that premium.

  6. Monolayer graphene-insulator-semiconductor emitter for large-area electron lithography

    Science.gov (United States)

    Kirley, Matthew P.; Aloui, Tanouir; Glass, Jeffrey T.

    2017-06-01

    The rapid adoption of nanotechnology in fields as varied as semiconductors, energy, and medicine requires the continual improvement of nanopatterning tools. Lithography is central to this evolving nanotechnology landscape, but current production systems are subject to high costs, low throughput, or low resolution. Herein, we present a solution to these problems with the use of monolayer graphene in a graphene-insulator-semiconductor (GIS) electron emitter device for large-area electron lithography. Our GIS device displayed high emission efficiency (up to 13%) and transferred large patterns (500 × 500 μm) with high fidelity (industries and opening opportunities in nanomanufacturing.

  7. Method of manufacturing a thermally insulating body

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, J.A.; Morgan, D.E.; Jackson, J.D.

    1988-10-11

    A method of manufacturing a microporous thermally insulating body comprises mixing together a finely divided microporous insulating material such as silica aerogel or pyrogenic silica and a solid ammonia-generating compound in particulate form, and compressing the mixture to form a thermally insulating body. The ammonia-generating compound is dispersed evenly throughout the insulating material and may comprise, for example, ammonium carbonate, ammonium acetate or urea. Preferably, the ammonia-generating compound comprises a mixture of about one third by weight of ammonium carbonate and about two thirds by weight of ammonium bicarbonate together with a small proportion of magnesium oxide. Experiments are described which illustrate the manufacturing process. 6 tabs.

  8. Compact gas-insulated transformer. Fourteenth quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    1983-08-01

    Objective is to develop a compact, more efficient, quieter transformer which does not rely on mineral oil insulation. Compressed SF/sub 6/ is used as the external insulation and polymer film as the insulation between turns. A separate liquid cooling system is also provided. This document reports progress made in design, mechanical, dielectric, short circuit, thermal, materials, prototype, accessories, commercialization, and system studies. (DLC)

  9. Quantitative analysis of thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2014-01-01

    This work concerns the development of simulation tools for mapping of insulation properties of thermal insulation coatings based on selected functional filler materials. A mathematical model, which includes the underlying physics (i.e. thermal conductivity of a heterogeneous two-component coating...

  10. Thermal insulation of high temperature reactors

    International Nuclear Information System (INIS)

    Cornille, Y.

    1975-01-01

    Operating conditions of HTR thermal insulation are given and heat insulators currently developed are described (fibers kept in position by metallic structures). For future applications and higher temperatures, research is directed towards solutions using ceramics or associating fibers and ceramics [fr

  11. Vacuum insulation - Panel properties and building applications. HiPTI - High Performance Thermal Insulation - IEA/ECBCS Annex 39 - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Erb, M. (ed.)

    2005-12-15

    This paper takes a look at the properties of vacuum insulation panels (VIP) that have already been developed some time ago for use in appliances such as refrigerators and deep-freezers. Their insulation performance is a factor of five to ten times better than that of conventional insulation. The paper discusses the use of such panels in buildings to provide thin, highly-insulating constructions for walls, roofs and floors. The motivation for examining the applicability of high performance thermal insulation in buildings is discussed, including solutions where severe space limitations and other technical and aesthetic considerations exist. The use of nano-structured materials and laminated foils is examined and discussed. The questions arising from the use of such panels in buildings is discussed and the open questions and risks involved are examined. Finally, an outlook on the introduction of VIP technology is presented and quality assurance aspects are examined. This work was done within the framework of the Task 39 'High Performance Thermal Insulation' of the 'Energy Conservation in Buildings and Community Systems ECBCS' programme of the International Energy Agency IEA.

  12. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types.

    Science.gov (United States)

    Kim, JunHee; You, Young-Chan

    2015-03-03

    A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs) reinforced with grid-type glass-fiber-reinforced polymer (GFRP) shear connectors. Two kinds of insulation-expanded polystyrene (EPS) and extruded polystyrene (XPS) with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation.

  13. Insulators form gene loops by interacting with promoters in Drosophila.

    Science.gov (United States)

    Erokhin, Maksim; Davydova, Anna; Kyrchanova, Olga; Parshikov, Alexander; Georgiev, Pavel; Chetverina, Darya

    2011-09-01

    Chromatin insulators are regulatory elements involved in the modulation of enhancer-promoter communication. The 1A2 and Wari insulators are located immediately downstream of the Drosophila yellow and white genes, respectively. Using an assay based on the yeast GAL4 activator, we have found that both insulators are able to interact with their target promoters in transgenic lines, forming gene loops. The existence of an insulator-promoter loop is confirmed by the fact that insulator proteins could be detected on the promoter only in the presence of an insulator in the transgene. The upstream promoter regions, which are required for long-distance stimulation by enhancers, are not essential for promoter-insulator interactions. Both insulators support basal activity of the yellow and white promoters in eyes. Thus, the ability of insulators to interact with promoters might play an important role in the regulation of basal gene transcription.

  14. Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Costeux, Stephane [Dow Chemical Company, Midland, MI (United States); Bunker, Shanon [Dow Chemical Company, Midland, MI (United States)

    2013-12-20

    The objective of this project was to explore and potentially develop high performing insulation with increased R/inch and low impact on climate change that would help design highly insulating building envelope systems with more durable performance and lower overall system cost than envelopes with equivalent performance made with materials available today. The proposed technical approach relied on insulation foams with nanoscale pores (about 100 nm in size) in which heat transfer will be decreased. Through the development of new foaming methods, of new polymer formulations and new analytical techniques, and by advancing the understanding of how cells nucleate, expand and stabilize at the nanoscale, Dow successfully invented and developed methods to produce foams with 100 nm cells and 80% porosity by batch foaming at the laboratory scale. Measurements of the gas conductivity on small nanofoam specimen confirmed quantitatively the benefit of nanoscale cells (Knudsen effect) to increase insulation value, which was the key technical hypotheses of the program. In order to bring this technology closer to a viable semi-continuous/continuous process, the project team modified an existing continuous extrusion foaming process as well as designed and built a custom system to produce 6" x 6" foam panels. Dow demonstrated for the first time that nanofoams can be produced in a both processes. However, due to technical delays, foam characteristics achieved so far fall short of the 100 nm target set for optimal insulation foams. In parallel with the technology development, effort was directed to the determination of most promising applications for nanocellular insulation foam. Voice of Customer (VOC) exercise confirmed that demand for high-R value product will rise due to building code increased requirements in the near future, but that acceptance for novel products by building industry may be slow. Partnerships with green builders, initial launches in smaller markets (e.g. EIFS

  15. A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

  16. Economical evaluation of damaged vacuum insulation panels in buildings

    Science.gov (United States)

    Kim, Y. M.; Lee, H. Y.; Choi, G. S.; Kang, J. S.

    2015-12-01

    In Korea, thermal insulation standard of buildings have been tightened annually to satisfy the passive house standard from the year 2009. The current domestic policies about disseminating green buildings are progressively conducted. All buildings should be the zero energy building in the year 2025, obligatorily. The method is applied to one of the key technologies for high-performance insulation for zero energy building. The vacuum insulation panel is an excellent high performance insulation. But thermal performance of damaged vacuum insulation panels is reduced significantly. In this paper, the thermal performance of damaged vacuum insulation panels was compared and analyzed. The measurement result of thermal performance depends on the core material type. The insulation of building envelope is usually selected by economic feasibility. To evaluate the economic feasibility of VIPs, the operation cost was analyzed by simulation according to the types and damaged ratio of VIPs

  17. Super-insulation

    International Nuclear Information System (INIS)

    Gerold, J.

    1985-01-01

    The invention concerns super-insulation, which also acts as spacing between two pressurized surfaces, where the crossing bars in at least two layers are provided, with interposed foil. The super-insulation is designed so that it can take compression forces and limits thermal radiation and thermal conduction sufficiently, where the total density of heat flow is usually limited to a few watts per m 2 . The solution to the problem is characterized by the fact that the bars per layer are parallel and from layer to layer they are at an angle to each other and the crossover positions of the bars of different layers are at fixed places and so form contact columns. The basic idea is that bars crossing over each other to support compression forces are used so that contact columns are formed, which are compressed to a certain extent by the load. (orig./PW) [de

  18. On effective holographic Mott insulators

    Energy Technology Data Exchange (ETDEWEB)

    Baggioli, Matteo; Pujolàs, Oriol [Institut de Física d’Altes Energies (IFAE), Universitat Autònoma de Barcelona,The Barcelona Institute of Science and Technology,Campus UAB, 08193 Bellaterra (Barcelona) (Spain)

    2016-12-20

    We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of ‘traffic-jam’-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.

  19. Improved DC Gun Insulator Assembly

    International Nuclear Information System (INIS)

    Neubauer, M.L.; Dudas, A.; Sah, R.; Poelker, M.; Surles-Law, K.E.L.

    2010-01-01

    Many user facilities such as synchrotron radiation light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and often exhibit poor reliability. Two technical approaches to solving this problem will be investigated. Firstly, inverted ceramics offer solutions for reduced gradients between the electrodes and ground. An inverted design will be presented for 350 kV, with maximum gradients in the range of 5-10 MV/m. Secondly, novel ceramic manufacturing processes will be studied, in order to protect triple junction locations from emission, by applying a coating with a bulk resistivity. The processes for creating this coating will be optimized to provide protection as well as be used to coat a ceramic with an appropriate gradient in bulk resistivity from the vacuum side to the air side of an HV standoff ceramic cylinder. Example insulator designs are being computer modelled, and insulator samples are being manufactured and tested

  20. On effective holographic Mott insulators

    International Nuclear Information System (INIS)

    Baggioli, Matteo; Pujolàs, Oriol

    2016-01-01

    We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of ‘traffic-jam’-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.

  1. Compact vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  2. Step tunneling enhanced asymmetry in metal-insulator-insulator-metal (MIIM) diodes for rectenna applications

    Science.gov (United States)

    Alimardani, N.; Conley, J. F.

    2013-09-01

    We combine nanolaminate bilayer insulator tunnel barriers (Al2O3/HfO2, HfO2/Al2O3, Al2O3/ZrO2) deposited via atomic layer deposition (ALD) with asymmetric work function metal electrodes to produce MIIM diodes with enhanced I-V asymmetry and non-linearity. We show that the improvements in MIIM devices are due to step tunneling rather than resonant tunneling. We also investigate conduction processes as a function of temperature in MIM devices with Nb2O5 and Ta2O5 high electron affinity insulators. For both Nb2O5 and Ta2O5 insulators, the dominant conduction process is established as Schottky emission at small biases and Frenkel-Poole emission at large biases. The energy depth of the traps that dominate Frenkel-Poole emission in each material are estimated.

  3. CFC alternatives for thermal insulation foams

    Energy Technology Data Exchange (ETDEWEB)

    Shankland, I.R. (Allied-Signal Inc., Buffalo, NY (US))

    1990-03-01

    Low density polymeric foam materials expanded with chlorofluorocarbon (CFC) blowing agents have found widespread use as highly efficient thermal insulation materials in the construction, refrigeration appliance and transportation industries. The advent of regulations which are reducing the production and consumption of the fully halogenated CFCs for environmental reasons has prompted the development of environmentally acceptable substitutes for the CFC blowing agents. This paper summarizes the physical properties and performance of the leading alternatives for CFC-11, which is used to expand rigid polyurethane and polyisocyanurate foams, and the leading alternatives for CFC-12 which is used to expand extruded polystyrene board foam. Although the alternatives, HCFC-123 and HCFC-14lb for CFC-11 and HCFC142b and HCFC-124 for CFC-12, are not perfect matches from the performance viewpoint, they represent the optimum choice given the constraints on environmental acceptability, toxicity, flammability and performance. (author).

  4. External insulation with cellular plastic materials

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt; Nielsen, Anker

    2014-01-01

    External thermal insulation composite systems (ETICS) can be used as extra insulation of existing buildings. The system can be made of cellular plastic materials or mineral wool. There is a European Technical guideline, ETAG 004, that describe the tests that shall be conducted on such systems....... This paper gives a comparison of systems with mineral wool and cellular plastic, based on experience from practice and literature. It is important to look at the details in the system and at long time stability of the properties such as thermal insulation, moisture and fire. Investigation of fire properties...

  5. Development and preliminary experimental study on micro-stacked insulator

    International Nuclear Information System (INIS)

    Ren Chengyan; Yuan Weiqun; Zhang Dongdong; Yan Ping; Wang Jue

    2009-01-01

    High gradient insulating technology is one of the key technologies in new type dielectric wall accelerator(DWA). High gradient insulator, namely micro-stacked insulator, was developed and preliminary experimental study was done. Based on the finite element and particle simulating method, surface electric field distribution and electron movement track of micro-stacked insulator were numerated, and then the optimized design proposal was put forward. Using high temperature laminated method, we developed micro-stacked insulator samples which uses exhaustive fluorinated ethylene propylene(FEP) as dielectric layer and stainless steel as metal layer. Preliminary experiment of vacuum surface flashover in nanosecond pulse voltage was done and micro-stacked insulator exhibited favorable vacuum surface flashover performance with flashover field strength of near 180 kV/cm. (authors)

  6. Cryogenic foam insulation: Abstracted publications

    Science.gov (United States)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  7. Topological Field Theory of Time-Reversal Invariant Insulators

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.

  8. Operational impact of product variety in the process industry

    DEFF Research Database (Denmark)

    Moseley, Alexandria Lee; Hvam, Lars; Herbert-Hansen, Zaza Nadja Lee

    2016-01-01

    The purpose of this research article is to examine the impact of product variety on production performance in the process industry. As the number of product variants sold by a process company typically impacts the run length, production data from a mineral wool insulation manufacturer is analyzed...

  9. Positron Annihilation in Insulating Materials

    International Nuclear Information System (INIS)

    Asoka-Kumar, P; Sterne, PA

    2002-01-01

    We describe positron results from a wide range of insulating materials. We have completed positron experiments on a range of zeolite-y samples, KDP crystals, alkali halides and laser damaged SiO 2 . Present theoretical understanding of positron behavior in insulators is incomplete and our combined theoretical and experimental approach is aimed at developing a predictive understanding of positrons and positronium annihilation characteristics in insulators. Results from alkali halides and alkaline-earth halides show that positrons annihilate with only the halide ions, with no apparent contribution from the alkali or alkaline-earth cations. This contradicts the results of our existing theory for metals, which predicts roughly equal annihilation contributions from cation and anion. We also present result obtained using Munich positron microprobe on laser damaged SiO 2 samples

  10. [Effects of functional interactions between nonhomologous insulators Wari and Su(Hw)].

    Science.gov (United States)

    Erokhin, M M; Georgiev, P G; Chetverina, D A

    2010-01-01

    Insulators are regulatory DNA elements restricting gene activation by enhancers. Interactions between insulators can lead to both insulation and activation of promoters by enhancers. In this work, we analyzed the effects of interaction of two Drosophila insulators, Wari and Su(Hw). The functional interaction between these insulators was found to enhance the activity of the Su(Hw) insulator only, but not of the Wari insulator. This suggests that the formation of a chromatin loop between interacting insulators is not a key factor for enhancement of insulation, which is in disagreement with the main idea of structural models. In addition, the effect of interaction between Wari and Su(Hw) depends on a distance between them and on the position in the system relative to other regulatory elements.

  11. Energy conservation through thermally insulated structures

    International Nuclear Information System (INIS)

    Abu-Dayyeh, Ayoub

    2006-01-01

    The propose of this paper is to explicate its title through investigating the different available thermal insulating materials and the various techniques of application, as practiced in Jordan, in particular, and as practiced in many parts of the world in general, which will satisfy Jordanian standards in terms of heat transmittance and thermal comfort. A brief comparison with international standards will shed some light on the stringent measures enforced in the developed world and on our striving aspirations to keep pace. The paper consists of four main parts, pseudoally divided. The first part will deal with the mechanism of heat loss and heat gain in structures during summer and winter. It will also explain the Time-lag phenomenon which is vital for providing thermal comfort inside the dwellings. The second part will evaluate the damages induced by the temperature gradients on the different elements of the structure, particularly next to exterior opening. The paper will also demonstrate the damages induced by water condensation and fungus growth on the internal surfaces of the structure and within its skeleton. A correlation between condensation and thermal insulation will be established. The third part of the paper will evaluate the different available thermal insulating materials and the application techniques which will satisfy the needs for thermal insulating and thermal comfort at the least cost possible. The criteria of an economical design shall be established. As a conclusion, the paper infers answers to the following different criteria discussed throughout the different parts of the paper. The main theme of questions can be summarized as follows: 1)How energy conservation is possible due to thermal insulation? 2)The feasibility of investing in thermal insulation? 3)Is thermal comfort and a healthy atmosphere possible inside the dwellings during all season! What are the conditions necessary to sustain them? 4)What environmental impacts can exist due to

  12. Concepts for evaluation of sound insulation of dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit; Rindel, Jens Holger

    2005-01-01

    Legal sound insulation requirements have existed more than 50 years in some countries, and single-number quantities for evaluation of sound insulation have existed nearly as long time. However, the concepts have changed considerably over time from simple arithmetic averaging of frequency bands......¬ments and classification schemes revealed significant differences of concepts. The paper summarizes the history of concepts, the disadvantages of the present chaos and the benefits of consensus concerning concepts for airborne and impact sound insulation between dwellings and airborne sound insulation of facades...... with a trend towards light-weight constructions are contradictory and challenging. This calls for exchange of data and experience, implying a need for harmonized concepts, including use of spectrum adaptation terms. The paper will provide input for future discussions in EAA TC-RBA WG4: "Sound insulation...

  13. Effect of Sweating on Insulation of Footwear.

    Science.gov (United States)

    Kuklane, Kalev; Holmér, Ingvar

    1998-01-01

    The study aimed to find out the influence of sweating on footwear insulation with a thermal foot model. Simultaneously, the influence of applied weight (35 kg), sock, and steel toe cap were studied. Water to 3 sweat glands was supplied with a pump at the rate of 10 g/hr in total. Four models of boots with steel toe caps were tested. The same models were manufactured also without steel toe. Sweating reduced footwear insulation 19-25% (30-37% in toes). During static conditions, only a minimal amount of sweat evaporated from boots. Weight affected sole insulation: Reduction depended on compressibility of sole material. The influence of steel toe varied with insulation. The method of thermal foot model appears to be a practical tool for footwear evaluation.

  14. An experimental study on thermal properties of composite insulation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gyoung-Seok [Building and Urban Research Department, Korea Institute of Construction Technology, 2311 Daehwa-Dong, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do 411-712 (Korea); College of Architecture, Hanyang University, 17, Hangdang-Dong, Sungdong-Gu, Seoul 133-791 (Korea); Kang, Jae-Sik; Jeong, Young-Sun; Lee, Seung-Eon [Building and Urban Research Department, Korea Institute of Construction Technology, 2311 Daehwa-Dong, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do 411-712 (Korea); Sohn, Jang-Yeul [College of Architecture, Hanyang University, 17, Hangdang-Dong, Sungdong-Gu, Seoul 133-791 (Korea)

    2007-04-01

    In accordance with the insulation standards reinforced since 2001 and the compulsory standards on floor impact sound insulation that have been enforced since 2004, insulation materials for actual buildings have been converted to composite materials and new insulation materials have been released in the market. However, Korea is lagging behind the world in fundamental experimental studies and resources. In case of some composite insulation materials, there also have been problems of distorted performance occurring as a result of tests being conducted without having verification and evaluation on the accuracy and inaccuracy of such tests. Therefore, this study grasped the thermal properties of composite insulation materials using thermal conductivity test equipment by heat flux method, and performed quantitative evaluation on the measurement precision and uncertainty of composite materials. (author)

  15. Insulation systems for superconducting transmission cables

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1996-01-01

    the electrical insulation is placed outside both the superconducting tube and the cryostat. The superconducting tube is cooled by liquid nitrogen which is pumped through the hollow part of the tube.2) The cryogenic dielectric design, where the electrical insulation is placed inside the cryostat and thus is kept...

  16. High-voltage polymeric insulated cables

    Energy Technology Data Exchange (ETDEWEB)

    Ross, A

    1987-01-01

    Reviews developments in high-voltage (here defined as 25 kV, 66 kV and 132 kV) polymeric insulated cables in the UK over the period 1979-1986, with particular reference to the experience of the Eastern Electricity Board. Outlines the background to the adoption of XPLE-insulated solid cable, and the design, testing, terminations, jointing and costs of 25 kV, 66 kV and 132 kV cables.

  17. Artificial heart system thermal insulation component development

    International Nuclear Information System (INIS)

    Svedberg, R.C.; Buckman, R.W. Jr.

    1975-01-01

    A concentric cup vacuum multifoil insulation system has been selected by virtue of its size, weight, and thermal performance to insulate the hot radioisotope portion of the thermal converter of an artificial implantable heart system. A factor of 2 improvement in thermal performance, based on the heat loss per number of foil layers (minimum system weight and volume) has been realized over conventional spiral wrapped multifoil vacuum insulation. This improvement is the result of the concentric cup construction to maintain a uniform interfoil spacing and the elimination of corner heat losses. Based on external insulation system dimensions (surface area in contact with host body), heat losses of 0.019 W/ cm 2 at 1140 0 K (1600 0 F) and 0.006 W/cm 2 at 920 0 K (1200 0 F) have been achieved. Factors which influence thermal performance of the nickel foil concentric cup insulation system include the number of cups, configuration and method of application of zirconia (ZrO 2 ) spacer material, system pressure, emittance of the cups, and operating temperature

  18. Heat insulating plates

    Energy Technology Data Exchange (ETDEWEB)

    Allan, J.A.F.

    1976-10-28

    Micro-porous insulation plates are dealt with, for example, how they are used in the insulation of heat storage devices. Since one side of such plates is exposed to a temperature of over 700/sup 0/C, a shrinkage of the glass texture of the covering can occur, which can exceed the shrinkage of the inner micro-porous material, so that cracks and splits in the high temperature side of the covering can come about. The task of the invention is to design the plate in such a way as to prevent this from happening. For this purpose the plate is provided, according to invention specifications, with flutes, waves, ribs, waffle or grid patterns and the covering is set into the recesses originating from this.

  19. Topological insulators and superconductors from string theory

    International Nuclear Information System (INIS)

    Ryu, Shinsei; Takayanagi, Tadashi

    2010-01-01

    Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the θ term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).

  20. Silicon on insulator self-aligned transistors

    Science.gov (United States)

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  1. Emerging Trends in Topological Insulators and Topological ...

    Indian Academy of Sciences (India)

    /fulltext/reso/022/08/0787-0800. Keywords. Superconductor, quantum Hall effect, topological insulator, Majorana fermions. Abstract. Topological insulators are new class of materials which arecharacterized by a bulk band gap like ordinary ...

  2. The Development and Application of Simulative Insulation Resistance Tester

    Science.gov (United States)

    Jia, Yan; Chai, Ziqi; Wang, Bo; Ma, Hao

    2018-02-01

    The insulation state determines the performance and insulation life of electrical equipment, so it has to be judged in a timely and accurate manner. Insulation resistance test, as the simplest and most basic test of high voltage electric tests, can measure the insulation resistance and absorption ratio which are effective criterion of part or whole damp or dirty, breakdown, severe overheating aging and other insulation defects. It means that the electrical test personnel need to be familiar with the principle of insulation resistance test, and able to operate the insulation resistance tester correctly. At present, like the insulation resistance test, most of electrical tests are trained by physical devices with the real high voltage. Although this allows the students to truly experience the test process and notes on security, it also has certain limitations in terms of safety and test efficiency, especially for a large number of new staves needing induction training every year. This paper presents a new kind of electrical test training system based on the simulative device of dielectric loss measurement and simulative electrical testing devices. It can not only overcome the defects of current training methods, but also provide other advantages in economical efficiency and scalability. That makes it possible for the system to be allied in widespread.

  3. Facility for endurance tests of thermal insulations

    International Nuclear Information System (INIS)

    Mauersberger, R.

    1984-01-01

    In the following report the design and construction of an experimental facility for endurance tests of thermal insulations is presented. It's name in abbreviation is 'ADI' standing for the German words A nlage zum Dauertest von Isolierungen . This test facility was build by HRB in order to investigate the performance of thermal insulation systems of hot gas ducts for the process heat-reactor-project. The tests are intended to simulate the conditions of reactor operation. They include short-time experiments for selection of insulation-concepts and in a second step long-time experiments as performance tests. During these tests are measured the effective heat conductivity the local heat losses the temperature profiles of the insulation, of the fixing elements and along the wall of the duct. The design-data required to perform all these tasks are shown in the first picture: The gas-atmosphere must be Helium in tests like in reactor with regard to the special thermal and hydraulic properties of Helium and to the influence of Helium on mechanic friction and wear. The hot gas temperature in the PNP-reactor will be 950 deg. C and should be equal in the experiments. The temperature on the cold side of the insulation has to be adjustable from 50 deg. C up to 300 deg. C. The Helium pressure in the hot gas ducts of a HTR-plant is about 42 bar. The ADI was laid out for 70 bar to cover the hole range of interest. A Helium mass flow has to stream through the insulated test duct in order to realize equal temperatures on the hot side of the insulation. A flow rate of 4,5 kg/s is sufficient for this requirement. The axial pressure gradient along the insulation must be the same as in the reactor, because this has an essential influence on the heat losses. This pressure gradient is about 40 Pa/m

  4. Fermi surfaces in Kondo insulators

    Science.gov (United States)

    Liu, Hsu; Hartstein, Máté; Wallace, Gregory J.; Davies, Alexander J.; Ciomaga Hatnean, Monica; Johannes, Michelle D.; Shitsevalova, Natalya; Balakrishnan, Geetha; Sebastian, Suchitra E.

    2018-04-01

    We report magnetic quantum oscillations measured using torque magnetisation in the Kondo insulator YbB12 and discuss the potential origin of the underlying Fermi surface. Observed quantum oscillations as well as complementary quantities such as a finite linear specific heat capacity in YbB12 exhibit similarities with the Kondo insulator SmB6, yet also crucial differences. Small heavy Fermi sections are observed in YbB12 with similarities to the neighbouring heavy fermion semimetallic Fermi surface, in contrast to large light Fermi surface sections in SmB6 which are more similar to the conduction electron Fermi surface. A rich spectrum of theoretical models is suggested to explain the origin across different Kondo insulating families of a bulk Fermi surface potentially from novel itinerant quasiparticles that couple to magnetic fields, yet do not couple to weak DC electric fields.

  5. Process for manufacture of Te microwire in glass insulation

    International Nuclear Information System (INIS)

    Bodiul, Pavel; Nicolaeva, Alibina; Konopko, Leonid; Bondarciuc, Nicolae

    2010-01-01

    The invention relates to the manufacturing of microwires in glass insulation and can be used in electronics and in the manufacturing of thermoelectrodes for thermoelectric sensors. The process for manufacture of Te microwire in glass insulation consists in softening the Te sample and its pulling in glass insulation. Near the microwire pulling zone through the furnace is maintained a temperature of 430-440 degrees Celsius, which causes the solidification firstly of Te microwire, and then of glass insulation. The result of the invention is to obtain Te microwires in glass insulation of high quality with a diameter of 50-100 μm and a length of 3-15 cm.

  6. Insulation coordination workstation for AC and DC substations

    International Nuclear Information System (INIS)

    Booth, R.R.; Hileman, A.R.

    1990-01-01

    The Insulation Coordination Workstation was designed to aid the substation design engineer in the insulation coordination process. The workstation utilizes state of the art computer technology to present a set of tools necessary for substation insulation coordination, and to support the decision making process for all aspects of insulation coordination. The workstation is currently being developed for personal computers supporting OS/2 Presentation Manager. Modern Computer-Aided Software Engineering (CASE) technology was utilized to create an easily expandable framework which currently consists of four modules, each accessing a central application database. The heart of the workstation is a library of user-friendly application programs for the calculation of important voltage stresses used for the evaluation of insulation coordination. The Oneline Diagram is a graphic interface for data entry into the EPRI distributed EMTP program, which allows the creation of complex systems on the CRT screen using simple mouse clicks and keyboard entries. Station shielding is graphically represented in the Geographic Viewport using a three-dimensional substation model, and the interactive plotting package allows plotting of EPRI EMTP output results on the CRT screen, printer, or pen plotter. The Insulation Coordination Workstation was designed by Advanced Systems Technology (AST), a division of ABB Power Systems, Inc., and sponsored by the Electric Power Research Institute under RP 2323-5, AC/DC Insulation Coordination Workstation

  7. Voltage Sag due to Pollution Induced Flashover Across Ceramic Insulator Strings

    Science.gov (United States)

    Reddy B, Subba; Goswami, Arup Kumar

    2017-11-01

    Voltage sag or voltage dips are significant to industrial reliability. There is a necessity to characterize the feeder level power quality (PQ) and the PQ performance among various utility companies. Contamination/pollution induced flashover is the ultimate consequence of the creeping discharges across the insulator strings which induce voltage sag. These have a severe threat on the safe and reliable operation of power systems. In the present work an attempt has been made to experimentally investigate the occurrence of voltage sag/dips during pollution induced flashovers. Results show significant dip/sag in the voltage magnitude during the flashover process.

  8. Electric Field and Current Density Performance Analysis of Sf6, C4f8 and CO2 Gases As An Insulation

    Science.gov (United States)

    Mazli, Ahmad Danial Ahmad; Jamail, Nor Akmal Mohd; Azlin Othman, Nordiana

    2017-08-01

    SF6 gases are not only widely used as an insulating component in electric power industry but also as an arc extinguishing performance in high voltage (HV) gas-insulated circuit breaker (GCB). SF6 gases is generally used in the production of semiconductor materials and devices. Though these gasses is widely used in many application, the presences of temperature hotspot in the insulations may affect the insulation characteristics particularly electric field and current density. Therefore, it is important to determine the relationship between electric field and current density of gasses used in the insulator in the presence of hotspot. In this paper, three types of gases in particular Sulphur Hexafluoride (SF6), Octafluorocylobutane (C4F8), and Carbon Dioxide (CO2) was used in the insulator for gas insulation with the presence of two hotspots. These two hotspost were detected by referring the rising temperature in the insulator which are 1000 and 2000 Kelvin temperature for hotspot 1 and hotspot 2, respectively. From the simulation results, it can be concluded that Sulphur Hexafluoride (SF6) is the best choice for gas insulation since it had the lowest current density and electric field compared to Octafluorocylobutane (C4F8), and Carbon Dioxide (CO2). It is observed that the maximum current density and electric field for SF6 during normal condition are 358.94 × 103 V/m and 0.643 × 109 A/m2, respectively. Meanwhile, during temperature rising at hotspot 1 and hotspot 2, SF6 also had lowest current density and electric field compared to the other gasses where the results for Emax and Jmax at hotspot 1 are 322.34 × 103 V/m and 1.934 × 109 A/m2, respectively; While, Emax and Jmax at hotspot 2 are 259.77× 103 V/m and 2.824 × 109 A/m2. The results of this analysis can be used to find the best choices of gas that can be used in the insulator.

  9. Superconductivity and ferromagnetism in topological insulators

    Science.gov (United States)

    Zhang, Duming

    Topological insulators, a new state of matter discovered recently, have attracted great interest due to their novel properties. They are insulating inside the bulk, but conducting at the surface or edges. This peculiar behavior is characterized by an insulating bulk energy gap and gapless surface or edge states, which originate from strong spin-orbit coupling and time-reversal symmetry. The spin and momentum locked surface states not only provide a model system to study fundamental physics, but can also lead to applications in spintronics and dissipationless electronics. While topological insulators are interesting by themselves, more exotic behaviors are predicted when an energy gap is induced at the surface. This dissertation explores two types of surface state gap in topological insulators, a superconducting gap induced by proximity effect and a magnetic gap induced by chemical doping. The first three chapters provide introductory theory and experimental details of my research. Chapter 1 provides a brief introduction to the theoretical background of topological insulators. Chapter 2 is dedicated to material synthesis principles and techniques. I will focus on two major synthesis methods: molecular beam epitaxy for the growth of Bi2Se3 thin films and chemical vapor deposition for the growth of Bi2Se3 nanoribbons and nanowires. Material characterization is discussed in Chapter 3. I will describe structural, morphological, magnetic, electrical, and electronic characterization techniques used to study topological insulators. Chapter 4 discusses the experiments on proximity-induced superconductivity in topological insulator (Bi2Se3) nanoribbons. This work is motivated by the search for the elusive Majorana fermions, which act as their own antiparticles. They were proposed by Ettore Majorara in 1937, but have remained undiscovered. Recently, Majorana's concept has been revived in condensed matter physics: a condensed matter analog of Majorana fermions is predicted to

  10. Thermal-performance study of liquid metal fast breeder reactor insulation

    International Nuclear Information System (INIS)

    Shiu, K.K.

    1980-09-01

    Three types of metallic thermal insulation were investigated analytically and experimentally: multilayer reflective plates, multilayer honeycomb composite, and multilayer screens. Each type was subjected to evacuated and nonevacuated conditions, where thermal measurements were made to determine thermal-physical characteristics. A variation of the separation distance between adjacent reflective plates of multilayer reflective plates and multilayer screen insulation was also experimentally studied to reveal its significance. One configuration of the multilayer screen insulation was further selected to be examined in sodium and sodium oxide environments. The emissivity of Type 304 stainless steel used in comprising the insulation was measured by employing infrared technology. A comprehensive model was developed to describe the different proposed types of thermal insulation. Various modes of heat transfer inherent in each type of insulation were addressed and their relative importance compared. Provision was also made in the model to allow accurate simulation of possible sodium and sodium oxide contamination of the insulation. The thermal-radiation contribution to heat transfer in the temperature range of interest for LMFBR's was found to be moderate, and the suppression of natural convection within the insulation was vital in preserving its insulating properties. Experimental data were compared with the model and other published results. Moreover, the three proposed test samples were assessed and compared under various conditions as viable LMFBR thermal insulations

  11. Comparative Analysis of Houses Built from Insulating Concrete Formwork – case Study

    Directory of Open Access Journals (Sweden)

    Mačková Daniela

    2015-11-01

    Full Text Available More and more, people are looking to build and live in different ways. They want houses with a high standard of living and reasonable production and maintenance costs. However, they also want to build a way that does not adversely affect their quality of life. Currently, the using of modern methods of construction (MMC expands consistently year on year. MMC include prefabricated products made in the factory and also new methods of building that are site-based and they are regarded as a means of achieving higher quality, reducing time spent onsite, increasing safety and overcoming skills shortages in the industry. Aim of this paper is to analyze and compare, trough case study, technical, cost and technological parameters of house built by modern method of construction (from insulating concrete formwork and by traditional method (from brick system. The subject of case study is house modeled in two variants of insulating concrete formwork and a variant bricks and ceiling system. In conclusion, there is selected optimal method and system for house construction through multicriteria optimization.

  12. Thermal insulation product for insulation, especially in nuclear power engineering, and method of its production

    International Nuclear Information System (INIS)

    Veselovsky, P.; Zink, S.; Balacek, P.; Mares, I.

    1989-01-01

    The insulation consists of a sewn fabric cover made of inorganic fibers, in which the fiber filling is reinforced mechanically by dense point interweaving. The inorganic fibers, 1 to 5 μm in diameter, consist of min. 97 wt.% mixture of aluminium and silicon oxides in the vitreous state. The fibers making up the cover consist of min. 95% silicon, aluminium, calcium, magnesium and boron oxides in the vitreous state; the rest can consist of alloy steel fibres. The bulk density of the insulation is 70 to 150 kg/m 3 . The product is highly resistant to temperature and to the action of chemicals, water, and acid and alkaline deactivation solutions. Its manufacture is fast and undemanding. It is designed for thermal insulation of pipes, tanks and valves in nuclear power plants. (M.D.). 2 figs

  13. Insulated InP (100) semiconductor by nano nucleus generation in pure water

    Science.gov (United States)

    Ghorab, Farzaneh; Es'haghi, Zarrin

    2018-01-01

    Preparation of specified designs on optoelectronic devices such as Light-Emitting Diodes (LEDs) and Laser Diodes (LDs) by using insulated thin films is very important. InP as one of those semiconductors which is used as optoelectronic devices, have two different kinds of charge carriers as n-InP and p-InP in the microelectronic industry. The surface preparation of this kind of semiconductor can be accomplished with individually chemical, mechanical, chemo - mechanical and electrochemical methods. But electrochemical method can be suitably replaced instead of the other methods, like CMP (Chemical Mechanical Polishing), because of the simplicity. In this way, electrochemically formation of insulated thin films by nano nucleus generation on semiconductor (using constant current density of 0.07 mA /cm2) studied in this research. Insulated nano nucleus generation and their growth up to thin film formation on semiconductor single crystal (100), n-InP, inpure water (0.08 µs/cm,25°c) characterized by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Four-point probe and Styloprofilometer techniques. The SEM images show active and passive regions on the n-InP surface and not uniform area on p-InP surface by passing through the passive condition. So the passive regions were nonuniform, and only the active regions were uniform and clean. The various semiconducting behavior in electrochemical condition, studied and compared with structural specification of InP type group (III-V).

  14. The Wick-Concept for Thermal Insulation of Cold Piping

    DEFF Research Database (Denmark)

    Koverdynsky, Vit; Korsgaard, Vagn; Rode, Carsten

    2006-01-01

    the wick-concept in either of two variations: the self-drying or the self-sealing system. Experiments have been carried out using different variations of the two systems to investigate the conditions for exploiting the drying capabilities of the systems, and the results are presented. The results show......The wick-concept for thermal insulation of cold piping is based on capillary suction of a fiber fabric to remove excess water from the pipe surface by transporting it to the outer surface of the insulation. From the surface of the insulation jacket, the water will evaporate to the ambient air....... This will prevent long-term accumulation of moisture in the insulation material. The wick keeps the hydrophobic insulation dry, allowing it to maintain its thermal performance. The liquid moisture is kept only in the wick fabric. This article presents the principle of operation of cold pipe insulation using...

  15. Topological insulators and superconductors: tenfold way and dimensional hierarchy

    International Nuclear Information System (INIS)

    Ryu, Shinsei; Schnyder, Andreas P; Furusaki, Akira; Ludwig, Andreas W W

    2010-01-01

    It has recently been shown that in every spatial dimension there exist precisely five distinct classes of topological insulators or superconductors. Within a given class, the different topological sectors can be distinguished, depending on the case, by a Z or a Z 2 topological invariant. This is an exhaustive classification. Here we construct representatives of topological insulators and superconductors for all five classes and in arbitrary spatial dimension d, in terms of Dirac Hamiltonians. Using these representatives we demonstrate how topological insulators (superconductors) in different dimensions and different classes can be related via 'dimensional reduction' by compactifying one or more spatial dimensions (in 'Kaluza-Klein'-like fashion). For Z-topological insulators (superconductors) this proceeds by descending by one dimension at a time into a different class. The Z 2 -topological insulators (superconductors), on the other hand, are shown to be lower-dimensional descendants of parent Z-topological insulators in the same class, from which they inherit their topological properties. The eightfold periodicity in dimension d that exists for topological insulators (superconductors) with Hamiltonians satisfying at least one reality condition (arising from time-reversal or charge-conjugation/particle-hole symmetries) is a reflection of the eightfold periodicity of the spinor representations of the orthogonal groups SO(N) (a form of Bott periodicity). Furthermore, we derive for general spatial dimensions a relation between the topological invariant that characterizes topological insulators and superconductors with chiral symmetry (i.e., the winding number) and the Chern-Simons invariant. For lower-dimensional cases, this formula relates the winding number to the electric polarization (d=1 spatial dimensions) or to the magnetoelectric polarizability (d=3 spatial dimensions). Finally, we also discuss topological field theories describing the spacetime theory of

  16. Electrical insulation for large multiaxis superconducting magnets

    International Nuclear Information System (INIS)

    Harvey, A.R.; Rinde, J.A.

    1975-01-01

    The selection of interturn and interlayer insulation for superconducting magnets is discussed. The magnet problems of the Baseball II device are described. Manufacture of the insulation and radiation damage are mentioned. A planned experimental program is outlined

  17. Insulating Foams Save Money, Increase Safety

    Science.gov (United States)

    2009-01-01

    Scientists at Langley Research Center created polyimide foam insulation for reusable cryogenic propellant tanks on the space shuttle. Meanwhile, a small Hialeah, Florida-based business, PolyuMAC Inc., was looking for advanced foams to use in the customized manufacturing of acoustical and thermal insulation. The company contacted NASA, licensed the material, and then the original inventors worked with the company's engineers to make a new material that was better for both parties. The new version, a high performance, flame retardant, flexible polyimide foam, is used for insulating NASA cryogenic propellant tanks and shows promise for use on watercraft, aircraft, spacecraft, electronics and electrical products, automobiles and automotive products, recreation equipment, and building and construction materials.

  18. Simulation of Contamination Deposition on Typical Shed Porcelain Insulators

    Directory of Open Access Journals (Sweden)

    Yukun Lv

    2017-07-01

    Full Text Available The contamination deposition characteristics of insulators can be used in the development of antifouling work. Using COMSOL software, numerical simulations on the pollution-deposited performance of a porcelain three-umbrella insulator and porcelain bell jar insulator in a wind tunnel were conducted, and the simulated results were compared with the tested results. The comparison shows that the deposit amount is consistent with the order of magnitude and presents a similar tendency with Direct Current (DC voltage variation; then the rationality of the simulation is verified. Based on these results, simulations of the natural contamination deposition on porcelain insulators and the distribution of pollution along the umbrella skirt were performed. The results indicates that, under a same wind speed, contamination of the porcelain three-umbrella insulator and porcelain bell jar insulator under DC voltage was positively correlated with the particle size. With the same particle size, the proportion of the deposit amount under DC voltage (NSDDDC to the deposit amount under AC voltage (NSDDAC of both insulators decreases with the increase in wind speed. However, the ratio increases as particle size increase. At a small wind speed, the deposit amount along the umbrella skirt of the two insulators displays a U-shaped distribution under DC voltage while there is little difference in the contamination amount of each skirt under Alternating Current (AC voltage.

  19. Insulated Wire Fed Floating Monopole Antenna for Coastal Monitoring

    Directory of Open Access Journals (Sweden)

    Z. M. Loni

    2018-04-01

    Full Text Available A thin, flexible, insulated wire submerged in seawater forms a coaxial cable which has attenuation at ultra-high frequency (UHF dependent on the operating frequency, the diameter of the insulating material and the diameter of the inner conductor. An extension of the insulated wire above the surface through a spherical float forms a monopole antenna. Attenuation through the wire depends on the conductivity and temperature of seawater. This paper reports the effect of electromagnetic (EM wave propagation at 433 MHz through insulated wires with different radii of the insulating material and inner conductor. The attenuation was calculated and measured in the range of 32-47 dB/m. The propagation from the monopole antenna to a fixed shore based receiver was measured to be approximately equal to 1 dB/m. The propagation measurements were compared with a shielded coaxial cable. Results show that the propagation range depends on the ratio of the insulation radius to conductor radius for insulated wire, however, a shielded coaxial cable showed no significant attenuation. The technique has applications in coastal wireless sensor networks where the water depth changes continually due to tide and wave motion.

  20. Calculation of high-temperature insulation parameters and heat transfer behaviors of multilayer insulation by inverse problems method

    Directory of Open Access Journals (Sweden)

    Huang Can

    2014-08-01

    Full Text Available In the present paper, a numerical model combining radiation and conduction for porous materials is developed based on the finite volume method. The model can be used to investigate high-temperature thermal insulations which are widely used in metallic thermal protection systems on reusable launch vehicles and high-temperature fuel cells. The effective thermal conductivities (ECTs which are measured experimentally can hardly be used separately to analyze the heat transfer behaviors of conduction and radiation for high-temperature insulation. By fitting the effective thermal conductivities with experimental data, the equivalent radiation transmittance, absorptivity and reflectivity, as well as a linear function to describe the relationship between temperature and conductivity can be estimated by an inverse problems method. The deviation between the calculated and measured effective thermal conductivities is less than 4%. Using the material parameters so obtained for conduction and radiation, the heat transfer process in multilayer thermal insulation (MTI is calculated and the deviation between the calculated and the measured transient temperatures at a certain depth in the multilayer thermal insulation is less than 6.5%.

  1. Insulator layer formation in MgB2 SIS junctions

    International Nuclear Information System (INIS)

    Shimakage, H.; Tsujimoto, K.; Wang, Z.; Tonouchi, M.

    2005-01-01

    The dependence of current-voltage characteristics on thin film deposition conditions was investigated using MgB 2 /AlN/NbN SIS junctions. By increasing the substrate temperature in AlN insulator deposition, the current density decreased and the normal resistance increased. The results indicated that an additional insulator layer between the MgB 2 and AlN formed, either before or during the AlN deposition. The thickness of the additional insulator layer was increased with an increase in the AlN deposition temperature. From the dependence of current density on the thickness of AlN in low temperature depositions, the thickness of the additional insulator layer was estimated to be 1-1.5 nm when the AlN insulator was deposited from 0.14 to 0.7 nm. Moreover, with the current density of MgB 2 /AlN/MgB 2 SIS junctions, further insulator layer formation was confirmed

  2. Spin-polarized tunneling through a ferromagnetic insulator

    NARCIS (Netherlands)

    Kok, M.; Kok, M.; Beukers, J.N.; Brinkman, Alexander

    2009-01-01

    The polarization of the tunnel conductance of spin-selective ferromagnetic insulators is modeled, providing a generalized concept of polarization including both the effects of electrode and barrier polarization. The polarization model is extended to take additional non-spin-polarizing insulating

  3. Insulation co-ordination in high-voltage electric power systems

    CERN Document Server

    Diesendorf, W

    2015-01-01

    Insulation Co-ordination in High-Voltage Electric Power Systems deals with the methods of insulation needed in different circumstances. The book covers topics such as overvoltages and lightning surges; disruptive discharge and withstand voltages; self-restoring and non-self-restoring insulation; lightning overvoltages on transmission lines; and the attenuation and distortion of lightning surges. Also covered in the book are topics such as the switching surge designs of transmission lines, as well as the insulation coordination of high-voltage stations. The text is recommended for electrical en

  4. Further considerations for damping in heavily insulated pipe systems

    International Nuclear Information System (INIS)

    Anderson, M.J.; Lindquist, M.R.; Severud, L.K.

    1985-01-01

    Over the past several years a body of test data has been accumulated which demonstrates that damping in small diameter heavily insulated pipe systems is much larger than presently recommended by Regulatory Guide 1.61. This data is generally based on pipe systems using a stand-off insulation design with a heater annulus. Additional tests have how been completed on similar pipe systems using a strap-on insulation design without the heater annulus. Results indicate some reduction in damping over the stand-off designs. Test data has also been obtained on a larger sixteen-inch diameter heavily insulated pipe system. Results of these two additional test series are presented. Revised damping values for seismic design of heavily insulated pipe systems are then recommended

  5. Further considerations for damping in heavily insulated pipe systems

    International Nuclear Information System (INIS)

    Anderson, M.J.; Lindquist, M.R.; Severud, L.K.

    1985-01-01

    Over the past several years a body of test data has been accumulated which demonstrates that damping in small diameter heavily insulated pipe systems is much larger than presently recommended by Regulatory Code 1.61. This data is generally based on pipe systems using a stand-off insulation design with a heater annulus. Additional tests have now been completed on similar pipe systems using a strap-on insulation design without the heater annulus. Results indicate some reduction in damping over the stand-off designs. Test data has also been obtained on a larger sixteen-inch diameter heavily insulated pipe system. Results of these two additional test series are presented. Revised damping values for seismic design for heavily insulated pipe systems are then recommended

  6. Insulator-insulator and insulator-conductor transitions in the phase diagram of aluminium trichloride

    Directory of Open Access Journals (Sweden)

    Romina Ruberto

    2009-01-01

    Full Text Available We report a classical computer-simulation study of the phase diagram of AlCl3 in the pressure-temperature (p, T plane, showing (i that melting from a layered crystal structure occurs into a molecular liquid at low (p, T and into a dissociated ionic liquid at high (p, T, and (ii that a broad transition from a molecular insulator to an ionic conductor takes place in the liquid state.

  7. Topological insulators Dirac equation in condensed matter

    CERN Document Server

    Shen, Shun-Qing

    2017-01-01

    This new edition presents a unified description of these insulators from one to three dimensions based on the modified Dirac equation. It derives a series of solutions of the bound states near the boundary, and describes the current status of these solutions. Readers are introduced to topological invariants and their applications to a variety of systems from one-dimensional polyacetylene, to two-dimensional quantum spin Hall effect and p-wave superconductors, three-dimensional topological insulators and superconductors or superfluids, and topological Weyl semimetals, helping them to better understand this fascinating field. To reflect research advances in topological insulators, several parts of the book have been updated for the second edition, including: Spin-Triplet Superconductors, Superconductivity in Doped Topological Insulators, Detection of Majorana Fermions and so on. In particular, the book features a new chapter on Weyl semimetals, a topic that has attracted considerable attention and has already b...

  8. Improved thermal monitoring of rotating machine insulation

    International Nuclear Information System (INIS)

    Stone, G.C.; Sedding, H.G.; Bernstein, B.S.

    1991-01-01

    Aging of motor and generator insulation is most often induced as a result of operation at high temperatures. In spite of this knowledge, stator and rotor temperatures are only crudely monitored in existing machines. In EPRI project RP2577-1, three new means of detecting machine temperatures were successfully developed. Two of the techniques, the Electronic Rotor Temperature Sensor and the Passive Rotor Temperature Sensor, were specifically developed to give point temperature readings on turbine generator rotor windings. The Insulation Sniffer allows operators to determine when any electrical insulation in a motor is overheating. Another electronic device, called the Thermal Life Indicator, helps operators and maintenance personnel determine how accumulated operation has affected the remaining life of the insulation in rotating machines. These new devices permit nuclear station operators to avoid hazardous operating conditions and will help to determine priorities for maintenance and plant life extension programs

  9. Thermal insulation performance of green roof systems

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Serdar; Morgan, Susan; Retzlaff, William; Once, Orcun [southern Illinois University (United States)], e-mail: scelik@siue.edu, e-mail: smorgan@siue.edu, e-mail: wretzla@siue.edu, e-mail: oonce@siue.edu

    2011-07-01

    With the increasing costs of energy, good building insulation has become increasingly important. Among existing insulation techniques is the green roof system, which consists of covering the roof of a building envelop with plants. The aim of this paper is to assess the impact of vegetation type and growth media on the thermal performance of green roof systems. Twelve different green roof samples were made with 4 different growth media and 3 sedum types. Temperature at the sample base was recorded every 15 minutes for 3 years; the insulation behavior was then analysed. Results showed that the insulation characteristics were achieved with a combination of haydite and sedum sexangulare. This study demonstrated that the choice of growth media and vegetation is important to the green roof system's performance; further research is required to better understand the interactions between growth media and plant roots.

  10. Charge transport through superconductor/Anderson-insulator interfaces

    International Nuclear Information System (INIS)

    Frydman, A.; Ovadyahu, Z.

    1997-01-01

    We report on a study of charge transport through superconductor-insulator-superconductor and normal metal endash insulator endash superconductor structures (SIS and NIS junctions, respectively) where the insulator is of the Anderson type. Devices which are characterized by a junction resistance larger than 10 kΩ show behavior which is typical of Giaever tunnel junctions. In structures having smaller resistance, several peculiar features are observed. In the SIS junctions, Josephson coupling is detected over distances much larger then the typical insulator localization length. In addition, a series of resistance peaks appears at voltages of 2Δ/n, where Δ is the superconducting gap. The NIS Junctions exhibit a large resistance dip at subgap bias. We discuss possible interpretations of these findings and suggest that they may result from the presence of high transmission channels through the barrier region. copyright 1997 The American Physical Society

  11. Built-in unit with short-circuit insulation for hermetic cable ducts

    International Nuclear Information System (INIS)

    Tschacher, B.; Gurr, W.; Kusserow, J.; Katzmarek, W.

    1984-01-01

    The invention concerns a built-in unit with short-circuit insulation for hermetic cable ducts, especially for containments of nuclear power reactors. The short-circuit insulation is achieved by an insulation plate made from radiation-resistant insulating materials of high mechanical strength

  12. Floquet topological insulators for sound

    Science.gov (United States)

    Fleury, Romain; Khanikaev, Alexander B.; Alù, Andrea

    2016-06-01

    The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters.

  13. Topological insulators and topological superconductors

    CERN Document Server

    Bernevig, Andrei B

    2013-01-01

    This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...

  14. Design and construction of the mineral insulated magnets

    International Nuclear Information System (INIS)

    Kurokawa, S.; Hirabayashi, H.; Taino, M.; Tsuchiya, K.; Yamamoto, A.

    1978-01-01

    The radiation resistant magnets with mineral insulated coils are designed and constructed. The electrical insulation of the cable is maintained by magnesium oxide in the form of a powder held around the copper hollow conductor by a copper shieth. By the direct water cooling through a hollow conductor the sometimes conflicting requirements of good insulation and high field are fulfilled. The magnets can with stand more than 10 12 rad of absorbed dose. (author)

  15. Impact of insulation and consumer behavior on natural gas consumption

    Energy Technology Data Exchange (ETDEWEB)

    van Mastrigt, P.

    1983-09-01

    The influence of insulation measures and certain changes in behavioral patterns on gas consumption for home heating has been examined, both on an annual basis and on the maximum day and at the maximum hour. By means of good insulation (cavity wall insulation and double glazing on the ground floor) annual gas consumption can be brought down by 28-35%, depending on the type of dwelling, as compared with moderate insulation. Maximum day consumption will go down by 26-33% and maximum hour consumption by no more than 20-28%. Further insulation, to current Danish standards, would enable savings of up to 72% of annual consumption, 64-66% of maximum day consumption and 52-55% of maximum hour consumption. By further night reduction from 14.5 degrees C to 12 degrees C 2% of the annual consumption can be saved in moderately insulated dwellings. It also leads, however, to an increase in maximum hour consumption by some 11%. In heavily insulated dwellings further night reduction does not yield any additional savings on the annual consumption. By lowering the thermostat setting by 2 degrees C in the daytime annual consumption in a moderately insulated dwelling can be cut by 9%. With increasing insulation level the savings will get higher, up to 11% in heavily insulated dwellings. Drawing the curtains during the evening and night may yield savings of 4-6% depending on the ratio of glass surface to total outer wall surface. These savings will be lower as the insulation level increases. The results of the study have been converted to the overall domestic natural gas consumption in the Netherlands. In 1985 the annual consumption will be 7% lower than in 1978 as a result of insulation measures and changes in consumer behavior, even at a rise in the total number of connections. Maximum day consumption will be 5% lower and maximum hour consumption will be virtually the same. This trend became already manifest during the 1978-1982 period.

  16. Correlation analysis between ceramic insulator pollution and acoustic emissions

    Directory of Open Access Journals (Sweden)

    Benjamín Álvarez-Nasrallah

    2015-01-01

    Full Text Available Most of the studies related to insulator pollution are normally performed based on individual analysis among leakage current, relative humidity and equivalent salt deposit density (ESDD. This paper presents a correlation analysis between the leakage current and the acoustic emissions measured in a 230 kV electrical substations in the city of Barranquilla, Colombia. Furthermore, atmospheric variables were considered to develop a characterization model of the insulator contamination process. This model was used to demonstrate that noise emission levels are a reliable indicator to detect and characterize pollution on high voltage insulators. The correlation found amount the atmospheric, electrical and sound variables allowed to determine the relations for the maintenance of ceramic insulators in high-polluted areas. In this article, the results on the behavior of the leakage current in ceramic insulators and the sound produced with different atmospheric conditions are shown, which allow evaluating the best time to clean the insulator at the substation. Furthermore, by experimentation on site and using statistical models, the correlation between ambient variables and the leakage current of insulators in an electrical substation was obtained. Some of the problems that bring the external noise were overcome using multiple microphones and specialized software that enabled properly filter the sound and better measure the variables.

  17. Electrical machining method of insulating ceramics

    International Nuclear Information System (INIS)

    Fukuzawa, Y.; Mohri, N.; Tani, T.

    1999-01-01

    This paper describes a new electrical discharge machining method for insulating ceramics using an assisting electrode with either a sinking electrical discharge machine or a wire electrical discharge machine. In this method, the metal sheet or mesh is attached to the ceramic surface as an assisting material for the discharge generation around the insulator surface. When the machining condition changes from the attached material to the workpiece, a cracked carbon layer is formed on the workpiece surface. As this layer has an electrical conductivity, electrical discharge occurs in working oil between the tool electrode and the surface of the workpiece. The carbon is formed from the working oil during this electrical discharge. Even after the material is machined, an electrical discharge occurs in the gap region between the tool electrode and the ceramic because an electrically conductive layer is generated continuously. Insulating ceramics can be machined by the electrical discharge machining method using the above mentioned surface modification phenomenon. In this paper the authors show a machined example demonstrating that the proposed method is available for machining a complex shape on insulating ceramics. Copyright (1999) AD-TECH - International Foundation for the Advancement of Technology Ltd

  18. Tetradymites as thermoelectrics and topological insulators

    Science.gov (United States)

    Heremans, Joseph P.; Cava, Robert J.; Samarth, Nitin

    2017-10-01

    Tetradymites are M2X3 compounds — in which M is a group V metal, usually Bi or Sb, and X is a group VI anion, Te, Se or S — that crystallize in a rhombohedral structure. Bi2Se3, Bi2Te3 and Sb2Te3 are archetypical tetradymites. Other mixtures of M and X elements produce common variants, such as Bi2Te2Se. Because tetradymites are based on heavy p-block elements, strong spin-orbit coupling greatly influences their electronic properties, both on the surface and in the bulk. Their surface electronic states are a cornerstone of frontier work on topological insulators. The bulk energy bands are characterized by small energy gaps, high group velocities, small effective masses and band inversion near the centre of the Brillouin zone. These properties are favourable for high-efficiency thermoelectric materials but make it difficult to obtain an electrically insulating bulk, which is a requirement of topological insulators. This Review outlines recent progress made in bulk and thin-film tetradymite materials for the optimization of their properties both as thermoelectrics and as topological insulators.

  19. Numerical simulations of quantum many-body systems with applications to superfluid-insulator and metal-insulator transitions

    International Nuclear Information System (INIS)

    Niyaz, P.

    1993-01-01

    Quantum Monte Carlo techniques were used to study two quantum many-body systems, the one-dimensional extended boson-Hubbard Hamiltonian, a model of superfluid-insulator quantum phase transitions, and the two-dimensional Holstein Model, a model for electron-phonon interactions. For the extended boson-Hubbard model, the authors studied the ground state properties at commensurate filling (density = 1) and half-integer filling (density = 1/2). At commensurate filling, the system has two possible insulating phases for strong coupling. If the on-site repulsion dominates, the system freezes into an insulating phase where each site is singly occupied. If the intersite repulsion dominates, doubly occupied and empty sites alternate. At weak coupling, the system becomes a superfluid. The authors investigated the order of phase transitions between these different phases. At half-integer filling, the authors found one strong coupling insulating phase, where singly occupied and empty sites alternate, and a weak coupling superfluid phase. The authors also investigated the possibility of a supersolid phase and found no clear evidence of such a new phase. For the electron-phonon (Holstein) model, the authors focused on the finite temperature phase transition from a metallic state to an insulating charge density wave (CDW) state as the temperature is lowered. The authors present the first calculation of the spectral density from Monte Carlo data for this system. The authors also investigated the formation of a CDW state as a function of various parameters characterizing the electron-phonon interactions. Using these numerical results as benchmarks, the authors then investigated different levels of Migdal approximations. The authors found the solutions of a set of gapped Migdal-Eliashberg equations agreed qualitatively with the Monte Carlo results

  20. Topological insulators fundamentals and perspectives

    CERN Document Server

    Ortmann, Frank; Valenzuela, Sergio O

    2015-01-01

    There are only few discoveries and new technologies in physical sciences that have the potential to dramatically alter and revolutionize our electronic world. Topological insulators are one of them. The present book for the first time provides a full overview and in-depth knowledge about this hot topic in materials science and condensed matter physics. Techniques such as angle-resolved photoemission spectrometry (ARPES), advanced solid-state Nuclear Magnetic Resonance (NMR) or scanning-tunnel microscopy (STM) together with key principles of topological insulators such as spin-locked electronic

  1. Effects of radiation on insulation materials

    International Nuclear Information System (INIS)

    Poehlchen, R.

    1992-01-01

    This presentation will concentrate on the insulation materials which are suitable for the insulation of superconducting magnets for fusion. For the next generation of fusion machines with magnetic confinement as NET and ITER general agreement exists that the insulation will consist of fibre reinforced organic matrix material, a composite. Much effort has been put into the investigation of the radiation resistance of such materials during the last 20-30 years, see in particular the numerous reports of accelerator laboratories on this subject. But very few of the published data are relevant for the superconducting magnets of fusion machines. Either the irradiation and testing was carried out at RT or LN 2 temperature and/or the irradiation spectrum was not representative for a fusion machine and/or the materials investigated are not applicable for the insulation of S.C. fusion magnets. Therefore test programs have been launched recently, one by the NET team. The intention of the first chapter is to give guidance on the choice of materials which are suitable as insulation materials from a more general point of view. A good understanding of the coil manufacturing process is needed for this purpose. The second chapter explains the irradiation spectrum seen by the magnets. A third chapter does present the NET/ITER test programme. Step 1 was completed at the end of 1989, the second step will be carried out in the autumn of 1991. Finally, a general assessment of materials and testing methods will be given with recommendations for further testing

  2. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  3. Ginsburg-Landau equation around the superconductor-insulator transition

    International Nuclear Information System (INIS)

    Ng, T.K.

    1991-01-01

    Based on the scaling theory of localization, we construct a Ginsburg-Landau (GL) equation for superconductors in an arbitrary strength of disordered potential. Using this GL equation, we reexamine the criteria for the superconductor-insulator transition and find that the transition to a localized superconductor can happen on both sides of the (normal) metal-insulator transition, in contrast to a previous prediction by Ma and Lee [Phys. Rev. B 32, 5658 (1985)] that the transition can only be on the insulator side. Furthermore, by comparing our theory with a recent scaling theory of dirty bosons by Fisher et al. [Phys. Rev. Lett. 64, 587 (1990)], we conclude that nontrivial crossover behavior in transport properties may occur in the vicinity of the superconductor-insulator transition

  4. Characterization of silicon-on-insulator wafers

    Science.gov (United States)

    Park, Ki Hoon

    The silicon-on-insulator (SOI) is attracting more interest as it is being used for an advanced complementary-metal-oxide-semiconductor (CMOS) and a base substrate for novel devices to overcome present obstacles in bulk Si scaling. Furthermore, SOI fabrication technology has improved greatly in recent years and industries produce high quality wafers with high yield. This dissertation investigated SOI material properties with simple, yet accurate methods. The electrical properties of as-grown wafers such as electron and hole mobilities, buried oxide (BOX) charges, interface trap densities, and carrier lifetimes were mainly studied. For this, various electrical measurement techniques were utilized such as pseudo-metal-oxide-semiconductor field-effect-transistor (PseudoMOSFET) static current-voltage (I-V) and transient drain current (I-t), Hall effect, and MOS capacitance-voltage/capacitance-time (C-V/C-t). The electrical characterization, however, mainly depends on the pseudo-MOSFET method, which takes advantage of the intrinsic SOI structure. From the static current-voltage and pulsed measurement, carrier mobilities, lifetimes and interface trap densities were extracted. During the course of this study, a pseudo-MOSFET drain current hysteresis regarding different gate voltage sweeping directions was discovered and the cause was revealed through systematic experiments and simulations. In addition to characterization of normal SOI, strain relaxation of strained silicon-on-insulator (sSOI) was also measured. As sSOI takes advantage of wafer bonding in its fabrication process, the tenacity of bonding between the sSOI and the BOX layer was investigated by means of thermal treatment and high dose energetic gamma-ray irradiation. It was found that the strain did not relax with processes more severe than standard CMOS processes, such as anneals at temperature as high as 1350 degree Celsius.

  5. Infrared circular photogalvanic effect in topological insulators

    Science.gov (United States)

    Luo, Siyuan

    2018-04-01

    Topological insulators have attracted a lot of attention in recent years due to its unique phenomena. Circular photogalvanic effect (CPGE) is one of the important phenomena in topological insulators. Bi2Se3, as one of the 3D topological insulators, consist of a single Dirac cone at the Γ point in k-space [1], corresponding to the surface states. Controlled by the Berry curvature of the surface band, the dominant photo response due to the interband transition is helicity dependent [2]. In addition, due to the spin-momentum locking in topological insulators' surface, the sign of spin-angular-momentum of obliquely incident light and photo currents are locked together. On the other hand, Bi2Se3 consists of quintuple layers which make it possible to be exfoliated and transferred based on graphene fabrication. In this paper, Bi2Se3 devices were fabricated and Ohm contact was achieved. We experimentally demonstrated the CPGE in Bi2Se3 using 1550nm incident laser.

  6. Radiation processing in the plastics industry

    International Nuclear Information System (INIS)

    Saunders, C.B.

    1988-01-01

    The interaction of ionizing radiation with organic substrates to produce useful physical and chemical changes is the basis of the radiation processing industry for plastics. Electron beam (EB) accelerators dominate the industry; however, there are a few small applications that use gamma radiation. The five general product categories that account for over 95% of the worldwide EB capacity used for plastics production are the following: wire and cable insulation; heat-shrinkable film, tubes and pipes; radiation-curable coatings; rubber products; and polyolefin foam. A total of 6.1% of the yearly production of these products in the United States is EB treated. The United States accounts for 59% of the total worldwide EB capacity of 20.5 MW (1984), followed by Europe (16%) and Japan (15%). There are 469 to 479 individual EB units worldwide used for the production of plastics and rubber. The average annual rate of growth (AARG) for the EB processing of plastics in Japan, from 1977 to 1987, was 13.3%. The AARG for Japan has decreased from 20% for 1977 to 198, to 6.4% for 1984 to 1987. Radiation cross-linking, of power cable insulation (cable rating ≥75 kV), thick polyolefin and rubber sheet (≥15 mm), and thick-walled tubing is one fo the potential applications for a 5- to 10-MeV EB system. Other products such as coatings, films and wire insulation may be economically EB-treated using a 5 to 10 MeV accelerator, if several layers of the product could be irradiated simultaneously. Two general product categories that require more study to determine the potential of high-energy EB processing are moulded plastics and composite materials. 32 refs

  7. HiPTI - High Performance Thermal Insulation, Annex 39 to IEA/ECBCS-Implementing Agreement. Vacuum insulation in the building sector. Systems and applications

    Energy Technology Data Exchange (ETDEWEB)

    Binz, A.; Moosmann, A.; Steinke, G.; Schonhardt, U.; Fregnan, F. [Fachhochschule Nordwestschweiz (FHNW), Muttenz (Switzerland); Simmler, H.; Brunner, S.; Ghazi, K.; Bundi, R. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Heinemann, U.; Schwab, H. [ZAE Bayern, Wuerzburg (Germany); Cauberg, H.; Tenpierik, M. [Delft University of Technology, Delft (Netherlands); Johannesson, G.; Thorsell, T. [Royal Institute of Technology (KTH), Stockholm (Sweden); Erb, M.; Nussbaumer, B. [Dr. Eicher und Pauli AG, Basel and Bern (Switzerland)

    2005-07-01

    This final report on vacuum insulation panels (VIP) presents and discusses the work done under IEA/Energy Conservation in Buildings and Community Systems (ECBCS) Annex 39, subtask B on the basis of a wide selection of reports from practice. The report shows how the building trade deals with this new material today, the experience gained and the conclusions drawn from this work. As well as presenting recommendations for the practical use of VIP, the report also addresses questions regarding the effective insulation values to be expected with current VIP, whose insulation performance is stated as being a factor of five to eight times better than conventional insulation. The introduction of this novel material in the building trade is discussed. Open questions and risks are examined. The fundamentals of vacuum insulation panels are discussed and the prerequisites, risks and optimal application of these materials in the building trade are examined.

  8. Insulation systems for liquid methane fuel tanks for supersonic cruise aircraft

    Science.gov (United States)

    Brady, H. F.; Delduca, D.

    1972-01-01

    Two insulation systems for tanks containing liquid methane in supersonic cruise-type aircraft were designed and tested after an extensive materials investigation. One system is an external insulation and the other is an internal wet-type insulation system. Tank volume was maximized by making the tank shape approach a rectangular parallelopiped. One tank was designed to use the external insulation and the other tank to use the internal insulation. Performance of the external insulation system was evaluated on a full-scale tank under the temperature environment of -320 F to 700 F and ambient pressures of ground-level atmospheric to 1 psia. Problems with installing the internal insulation on the test tank prevented full-scale evaluation of performance; however, small-scale testing verified thermal conductivity, temperature capability, and installed density.

  9. Composite bulk Heat Insulation Made of loose Mineral and Organic Aggregate

    Directory of Open Access Journals (Sweden)

    Namsone Eva

    2015-12-01

    Full Text Available The task of building energy-efficiency is getting more important. Every house owner wishes to save up exploitation costs of heating, cooling, hot water production, ventilation, etc. and find cost-effective investments. One of the ways to reduce greenhouse gas emissions (GHGE is to minimize the heat transfer through the building by insulating it. Loose heat insulation is a good alternative to traditional board insulation, it is simple in use and cost-effective. Main drawback of this insulation is tendency to compact during exploitation. In the frame of this research composite loose heat insulation is elaborated, consisting on porous mineral foamed glass aggregate and local organic fiber materials (hemp and flaxen shives. Composite bulk insulation is an alternative solution which combines heat insulating properties and mechanical stability.

  10. Effects of insulating vanadium oxide composite in concomitant mixed phases via interface barrier modulations on the performance improvements in metal-insulator-metal diodes

    Directory of Open Access Journals (Sweden)

    Kaleem Abbas

    2018-03-01

    Full Text Available The performance of metal-insulator-metal diodes is investigated for insulating vanadium oxide (VOx composite composed of concomitant mixed phases using the Pt metal as the top and the bottom electrodes. Insulating VOx composite in the Pt/VOx/Pt diode exhibits a high asymmetry of 10 and a very high sensitivity of 2,135V−1 at 0.6 V. The VOx composite provides Schottky-like barriers at the interface, which controls the current flow and the trap-assisted conduction mechanism. Such dramatic enhancement in asymmetry and rectification performance at low applied bias may be ascribed to the dynamic control of the insulating and metallic phases in VOx composites. We find that the nanostructure details of the insulating VOx layer can be critical in enhancing the performance of MIM diodes.

  11. Impact of Moistened Bio-insulation on Whole Building Energy Use

    Directory of Open Access Journals (Sweden)

    Latif Eshrar

    2017-01-01

    Full Text Available One of the key properties of hemp insulation is its moisture adsorption capacity. Adsorption of moisture can increase both thermal conductivity and heat capacity of the insulation. The current study focuses on the effect of moisture induced thermal mass of installed hemp insulation on the whole building energy use. Hygrothermal and thermal simulations were performed using the CIBSE TRY weather data of Edinburgh and Birmingham with the aid of following simulation tools: WUFI and IES. Following simplified building types were considered: building-1 with dry hemp wall and loft insulations, building-2 with moistened hemp wall and loft insulation and building-3 with stone wool insulation. It was observed that the overall conditioning load of building-1 was 1.2 to 2.3% higher than building-2 and 3. However, during the summer season, the cooling load of building-2 was 3-7.5% lower than the other buildings. It implies that, moistened insulation can potentially mitigate the effect of increasing cooling degree days induced by global warming.

  12. Radiaton-resistant electrical insulation on the base of cement binders

    International Nuclear Information System (INIS)

    Afanas'ev, V.V.; Korenevskij, V.V.; Pisachev, S.Yu.

    1985-01-01

    The problems of designing radiation-resistant electrical insulations on the base of BATs and Talum cements for the UNK magnets operating under constant and pulse modes are discussed. The data characterizing dielectrical ad physico-mechanical properties of 25 various compositions are given. Two variants of manufacturing coils are considered: solid and with the use of asbestos tape impregnated with aluminous cement solution. The data obtained testify to the fact that the advantages of insulation on Talum cement are raised radiation resistance, high strength (particularly compression strength), weak porosity, high elasticity modulus and high thermal conductivity. BATs cement insulation is characterized by high radiation resistance, absence of shrinkage, rather low elasticity modulus and high dielectrical characteristics under normal conditions. The qualities of the solid insulation variant are its high technological effectiveness and posibility to fill up the spaces of complex configuration. In case of using as solid insulation Talum cement, however special measures for moisture removal are required. The advantage of insulation on the base of the asbestos tape is its reliability. For complex configuration magnets, however to realize is such insulation somewhat difficult

  13. Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls

    Directory of Open Access Journals (Sweden)

    Omer Kaynakli

    2011-06-01

    Full Text Available Numerous studies have estimated the optimum thickness of thermal insulation materials used in building walls for different climate conditions. The economic parameters (inflation rate, discount rate, lifetime and energy costs, the heating/cooling loads of the building, the wall structure and the properties of the insulation material all affect the optimum insulation thickness. This study focused on the investigation of these parameters that affect the optimum thermal insulation thickness for building walls. To determine the optimum thickness and payback period, an economic model based on life-cycle cost analysis was used. As a result, the optimum thermal insulation thickness increased with increasing the heating and cooling energy requirements, the lifetime of the building, the inflation rate, energy costs and thermal conductivity of insulation. However, the thickness decreased with increasing the discount rate, the insulation material cost, the total wall resistance, the coefficient of performance (COP of the cooling system and the solar radiation incident on a wall. In addition, the effects of these parameters on the total life-cycle cost, payback periods and energy savings were also investigated.

  14. Insulating materials for cables: state of the technology and future developments

    Energy Technology Data Exchange (ETDEWEB)

    Blechschmidt, H H [Hessische Elektrizitaets-A.G., Darmstadt (Germany, F.R.)

    1977-02-01

    This article gives a summary of old and new insulating materials for electrical cables. The electrical properties of some polymer insulating materials (PVC, polyethelene (PE), polymerised polyethelene (VPE), polypropylene) are compared in a table with the properties of paper insulation. The changeover from oiled paper to plastic insulation is almost complete for low voltage cables. Soft PVC is the dominant insulating material in this field. For medium voltage cables (10 kV and 20 kV supplies) and for high voltage cables (60 kV and 110 kV supplies) there is a trend to plastic PE/VPE, because these insulating materials have better electrical properties than PVC.

  15. Study of thermal conductivity of multilayer insulation

    International Nuclear Information System (INIS)

    Dutta, D.; Sundaram, S.; Nath, G.K.; Sethuram, N.P.; Chandrasekharan, T.; Varadarajan, T.G.

    1994-01-01

    This paper presents experimental determination of the apparent thermal conductivity of multilayer insulation for a cryogenic system. The variation of thermal conductivity with residual gas pressure is studied and the optimum vacuum for good insulating performance is determined. Evaporation loss technique for heat-inleak determination is employed. (author)

  16. Recent Progress in Electrical Insulation Techniques for HTS Power Apparatus

    Science.gov (United States)

    Hayakawa, Naoki; Kojima, Hiroki; Hanai, Masahiro; Okubo, Hitoshi

    This paper describes the electrical insulation techniques at cryogenic temperatures, i.e. Cryodielectrics, for HTS power apparatus, e.g. HTS power transmission cables, transformers, fault current limiters and SMES. Breakdown and partial discharge characteristics are discussed for different electrical insulation configurations of LN2, sub-cooled LN2, solid, vacuum and their composite insulation systems. Dynamic and static insulation performances with and without taking account of quench in HTS materials are also introduced.

  17. Analysis of Pathogenesis of Autoimmune Insulitis in NOD Mice: Adoptive Transfer Experiments of Insulitis in ILI and NOD Nude Mice

    OpenAIRE

    Nakamura, Moritaka; Nishimura, Masahiko; Koide, Yukio; Takato, O.Yoshida

    2003-01-01

    In an effort to study the pathophysiological events in the development of insulitis in NOD mice, we have developed ILI- and NOD-nu/nu mice. ILI mice are a nondiabetic inbred strain but are derived from the same Jcl:ICR mouse as NOD mice and share the same H-2 allotype with NOD mice. Splenocytes and CD4+ cells from diabetic NOD mice appeared to transfer insulitis to ILI-nu/nu mice, suggesting that ILI mice already express autoantigen(s) responsible for insulitis. But reciprocal thymic grafts f...

  18. Ferromagnetic-insulators-modulated transport properties on the surface of a topological insulator

    International Nuclear Information System (INIS)

    Guo Jun-Ji; Liao Wen-Hu

    2014-01-01

    Transport properties on the surface of a topological insulator (TI) under the modulation of a two-dimensional (2D) ferromagnet/ferromagnet junction are investigated by the method of wave function matching. The single ferromagnetic barrier modulated transmission probability is expected to be a periodic function of the polarization angle and the planar rotation angle, that decreases with the strength of the magnetic proximity exchange increasing. However, the transmission probability for the double ferromagnetic insulators modulated n—n junction and n—p junction is not a periodic function of polarization angle nor planar rotation angle, owing to the combined effects of the double ferromagnetic insulators and the barrier potential. Since the energy gap between the conduction band and the valence band is narrowed and widened respectively in ranges of 0 ≤ θ < π/2 and π/2 < θ ≤ π, the transmission probability of the n—n junction first increases rapidly and then decreases slowly with the increase of the magnetic proximity exchange strength. While the transmission probability for the n—p junction demonstrates an opposite trend on the strength of the magnetic proximity exchange because the band gaps contrarily vary. The obtained results may lead to the possible realization of a magnetic/electric switch based on TIs and be useful in further understanding the surface states of TIs

  19. Assessment of fibrous insulation materials for the selenide isotope generator system

    International Nuclear Information System (INIS)

    Wei, G.C; Tennery, V.J.

    1977-11-01

    Fibrous insulations for use in the converter and the heat source of the radioisotope-powered, selenide element, thermoelectric generator (selenide isotope generator) are assessed. The most recent system design and material selection basis is presented. Several fibrous insulation materials which have the potential for use as load-bearing or nonload-bearing thermal insulations are reviewed, and thermophysical properties supplied by manufacturers or published in the literature are presented. Potential problems with the application of fibrous insulations in the selenide isotope generator are as follows: compatibility with graphite, the thermoelectric elements, and the isolation hot frame; devitrification, grain growth, and sintering with an accompanying degradation of insulation quality; impurity diffusion from the insulation to adjoining structures; outgassing and storage of fibrous materials. Areas in which thermophysical data or quantitative information on the insulation and structural stability is lacking are identified

  20. Polyimide Foams Offer Superior Insulation

    Science.gov (United States)

    2012-01-01

    At Langley Research Center, Erik Weiser and his colleagues in the Advanced Materials and Processing Branch were working with a new substance for fabricating composites for use in supersonic aircraft. The team, however, was experiencing some frustration. Every time they tried to create a solid composite from the polyimide (an advanced polymer) material, it bubbled and foamed. It seemed like the team had reached a dead end in their research - until they had another idea. "We said, This isn t going to work for composites, but maybe we could make a foam out of it," Weiser says. "That was kind of our eureka moment, to see if we could go in a whole other direction. And it worked." Weiser and his colleagues invented a new kind of polyimide foam insulation they named TEEK. The innovation displayed a host of advantages over existing insulation options. Compared to other commercial foams, Weiser explains, polyimide foams perform well across a broad range of temperatures, noting that the NASA TEEK foams provide effective structural insulation up to 600 F and down to cryogenic temperatures. The foam does not burn or off-gas toxic fumes, and even at -423 F - the temperature of liquid hydrogen - the material stays flexible. The inventors could produce the TEEK foam at a range of densities, from 0.5 pounds per cubic foot up to 20 pounds per cubic foot, making the foam ideal for a range of applications, including as insulation for reusable launch vehicles and for cryogenic tanks and lines. They also developed a unique, friable balloon format for manufacturing the foam, producing it as hollow microspheres that allowed the foam to be molded and then cured into any desired shape - perfect for insulating pipes of different sizes and configurations. The team s originally unplanned invention won an "R&D 100" award, and a later form of the foam, called LaRC FPF-44 (Spinoff 2009), was named "NASA Invention of the Year" in 2007.

  1. Aharonov–Bohm interference in topological insulator nanoribbons

    KAUST Repository

    Peng, Hailin

    2009-12-13

    Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport measurements. Recently, Bi2 Se3 and related materials have been proposed as three-dimensional topological insulators with a single Dirac cone on the surface, protected by time-reversal symmetry. The topological surface states have been observed by angle-resolved photoemission spectroscopy experiments. However, few transport measurements in this context have been reported, presumably owing to the predominance of bulk carriers from crystal defects or thermal excitations. Here we show unambiguous transport evidence of topological surface states through periodic quantum interference effects in layered single-crystalline Bi2 Se3 nanoribbons, which have larger surface-to-volume ratios than bulk materials and can therefore manifest surface effects. Pronounced Aharonov-Bohm oscillations in the magnetoresistance clearly demonstrate the coherent propagation of two-dimensional electrons around the perimeter of the nanoribbon surface, as expected from the topological nature of the surface states. The dominance of the primary h/e oscillation, where h is Plancks constant and e is the electron charge, and its temperature dependence demonstrate the robustness of these states. Our results suggest that topological insulator nanoribbons afford promising materials for future spintronic devices at room temperature.

  2. Improving the reliability of stator insulation system in rotating machines

    International Nuclear Information System (INIS)

    Gupta, G.K.; Sedding, H.G.; Culbert, I.M.

    1997-01-01

    Reliable performance of rotating machines, especially generators and primary heat transport pump motors, is critical to the efficient operation on nuclear stations. A significant number of premature machine failures have been attributed to the stator insulation problems. Ontario Hydro has attempted to assure the long term reliability of the insulation system in critical rotating machines through proper specifications and quality assurance tests for new machines and periodic on-line and off-line diagnostic tests on machines in service. The experience gained over the last twenty years is presented in this paper. Functional specifications have been developed for the insulation system in critical rotating machines based on engineering considerations and our past experience. These specifications include insulation stress, insulation resistance and polarization index, partial discharge levels, dissipation factor and tip up, AC and DC hipot tests. Voltage endurance tests are specified for groundwall insulation system of full size production coils and bars. For machines with multi-turn coils, turn insulation strength for fast fronted surges in specified and verified through tests on all coils in the factory and on samples of finished coils in the laboratory. Periodic on-line and off-line diagnostic tests were performed to assess the condition of the stator insulation system in machines in service. Partial discharges are measured on-line using several techniques to detect any excessive degradation of the insulation system in critical machines. Novel sensors have been developed and installed in several machines to facilitate measurements of partial discharges on operating machines. Several off-line tests are performed either to confirm the problems indicated by the on-line test or to assess the insulation system in machines which cannot be easily tested on-line. Experience with these tests, including their capabilities and limitations, are presented. (author)

  3. Improved design of a high-voltage vacuum-insulator interface

    Directory of Open Access Journals (Sweden)

    W. A. Stygar

    2005-05-01

    Full Text Available We have conducted a series of experiments designed to measure the flashover strength of various azimuthally symmetric 45° vacuum-insulator configurations. The principal objective of the experiments was to identify a configuration with a flashover strength greater than that of the standard design, which consists of a 45° polymethyl-methacrylate (PMMA insulator between flat electrodes. The thickness d and circumference C of the insulators tested were held constant at 4.318 and 95.74 cm, respectively. The peak voltage applied to the insulators ranged from 0.8 to 2.2 MV. The rise time of the voltage pulse was 40–60 ns; the effective pulse width [as defined in Phys. Rev. ST Accel. Beams 7, 070401 (2004PRABFM1098-440210.1103/PhysRevSTAB.7.070401] was on the order of 10 ns. Experiments conducted with flat aluminum electrodes demonstrate that the flashover strength of a crosslinked polystyrene (Rexolite insulator is (18±7% higher than that of PMMA. Experiments conducted with a Rexolite insulator and an anode plug, i.e., an extension of the anode into the insulator, demonstrate that a plug can increase the flashover strength by an additional (44±11%. The results are consistent with the Anderson model of anode-initiated flashover, and confirm previous measurements. It appears that a Rexolite insulator with an anode plug can, in principle, increase the peak electromagnetic power that can be transmitted across a vacuum interface by a factor of [(1.18(1.44]^{2}=2.9 over that which can be achieved with the standard design.

  4. Cellulose insulation as an air barrier

    Energy Technology Data Exchange (ETDEWEB)

    Manning, K.

    1989-10-01

    The objective of this study was to determine if a wet sprayed cellulose wall insulation system would function satisfactorily without use of a polyethylene air/vapour barrier. The research was designed to demonstrate that this particular insulation system would form enough of a barrier to air leakage, that moisture accumulation from condensation and vapour diffusion would be insignificant. Field work conducted in Alberta, involved construction of a conventional duplex housing unit which was insulated with wet sprayed cellulose in the exterior walls and dry loose-fill cellulose in the attic areas. One half of the unit did not have a polyethylene air/vapor barrier installed. Air leakage and exterior wall moisture levels were monitored for a year following construction. Data collected during this time indicated that the moisture added to the walls during the insulating process was dissipated over the study period. The presence of polyethylene sheeting had no significant effect on the moisture levels in either the wall or attic areas of the test structure. On the other hand, testing indicated that the use of polyethylene sheeting in the wall system did serve to improve blower door air test results. In conclusion, although the air leakage resistance apparently provided by the polyethylene sheeting is significant, the amount is probably not more than could otherwise be obtained by more careful attention to sealing procedures such as those used in the airtight drywall technique. A more important finding is that the use of polyethylene sheeting is not essential in a structure which has the degree of air leakage resistance provided by the insulation system used in this project. 6 figs., 2 tabs.

  5. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States)

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1” to 1 ½”), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  6. Tank Insulation

    Science.gov (United States)

    1979-01-01

    For NASA's Apollo program, McDonnell Douglas Astronautics Company, Huntington Beach, California, developed and built the S-IVB, uppermost stage of the three-stage Saturn V moonbooster. An important part of the development task was fabrication of a tank to contain liquid hydrogen fuel for the stage's rocket engine. The liquid hydrogen had to be contained at the supercold temperature of 423 degrees below zero Fahrenheit. The tank had to be perfectly insulated to keep engine or solar heat from reaching the fuel; if the hydrogen were permitted to warm up, it would have boiled off, or converted to gaseous form, reducing the amount of fuel available to the engine. McDonnell Douglas' answer was a supereffective insulation called 3D, which consisted of a one-inch thickness of polyurethane foam reinforced in three dimensions with fiberglass threads. Over a 13-year development and construction period, the company built 30 tanks and never experienced a failure. Now, after years of additional development, an advanced version of 3D is finding application as part of a containment system for transporting Liquefied Natural Gas (LNG) by ship.

  7. Laccase-Catalyzed Surface Modification of Thermo-Mechanical Pulp (TMP) for the Production of Wood Fiber Insulation Boards Using Industrial Process Water

    Science.gov (United States)

    Schubert, Mark; Ruedin, Pascal; Civardi, Chiara; Richter, Michael; Hach, André; Christen, Herbert

    2015-01-01

    Low-density wood fiber insulation boards are traditionally manufactured in a wet process using a closed water circuit (process water). The water of these industrial processes contains natural phenolic extractives, aside from small amounts of admixtures (e.g., binders and paraffin). The suitability of two fungal laccases and one bacterial laccase was determined by biochemical characterization considering stability and substrate spectra. In a series of laboratory scale experiments, the selected commercial laccase from Myceliophtora thermophila was used to catalyze the surface modification of thermo-mechanical pulp (TMP) using process water. The laccase catalyzed the covalent binding of the phenolic compounds of the process water onto the wood fiber surface and led to change of the surface chemistry directly via crosslinking of lignin moieties. Although a complete substitution of the binder was not accomplished by laccase, the combined use of laccase and latex significantly improved the mechanical strength properties of wood fiber boards. The enzymatically-treated TMP showed better interactions with the synthetic binder, as shown by FTIR-analysis. Moreover, the enzyme is extensively stable in the process water and the approach requires no fresh water as well as no cost-intensive mediator. By applying a second-order polynomial model in combination with the genetic algorithm (GA), the required amount of laccase and synthetic latex could be optimized enabling the reduction of the binder by 40%. PMID:26046652

  8. Study of thermal conductivity of multilayer insulation

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, D; Sundaram, S; Nath, G K; Sethuram, N P; Chandrasekharan, T; Varadarajan, T G [Heavy Water Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    This paper presents experimental determination of the apparent thermal conductivity of multilayer insulation for a cryogenic system. The variation of thermal conductivity with residual gas pressure is studied and the optimum vacuum for good insulating performance is determined. Evaporation loss technique for heat-inleak determination is employed. (author). 3 refs., 3 figs.

  9. Quality labels for retrofit cavity wall insulation : a comparative analysis

    NARCIS (Netherlands)

    Rovers, Twan Johannes Hendrikus; Entrop, Alexis Gerardus; Halman, Johannes I.M.

    2017-01-01

    Retrofit cavity wall insulation can be exerted to reduce the energy use for space heating and cooling of existing buildings. In multiple countries, quality labels have emerged for this insulation service. In this research project, an evaluation framework for cavity wall insulation is developed by

  10. ONLINE TECHNOLOGICAL MONITORING OF INSULATION DEFECTS IN ENAMELED WIRES

    Directory of Open Access Journals (Sweden)

    V. M. Zolotaryov

    2017-08-01

    Full Text Available In this paper the authors used non-destructive technological monitoring of defects insulation enameled wire with poliimid polymer. The paper is devoted to the statistical method for processing, comparison and analysis of results of measurements of parameters of insulation of enameled wire because of mathematical model of trend for application in active technological monitoring is developed; the recommendations for parameters of such monitoring are used. It is theoretically justified and the possibility of determination of dependence of the error on the velocity of movement of a wire for want of quantifying of defects in enameled insulation by non-destructive tests by high voltage. The dependence of average value of amount of defects for enameled wire with two-sheeted poliimid insulation in a range of nominal diameter 0.56 mm is experimentally determined. The technological monitoring purpose is to reduce the quantifying defects of enameled insulation.

  11. Public health foundations and the tobacco industry: lessons from Minnesota

    Science.gov (United States)

    Ibrahim, J; Tsoukalas, T; Glantz, S

    2004-01-01

    Objective: To investigate whether private foundations can be created in a way that will insulate them from attacks by the tobacco industry, using the Minnesota Partnership for Action Against Tobacco (MPAAT) as a case study. Design: Information was collected from internal tobacco industry documents, court documents, newspapers, and interviews with health advocates and elected officials. Results: The creation of MPAAT as an independent foundation did not insulate it from attacks by tobacco industry allies. During 2001–2002, MPAAT was repeatedly attacked by Attorney General Mike Hatch and major media, using standard tobacco industry rhetoric. This strategy of attack and demands for information were reminiscent of previous attacks on Minnesota's Plan for Nonsmoking and Health and the American Stop Smoking Intervention Study (ASSIST). MPAAT was ultimately forced to restructure its programme to abandon effective community norm change interventions around smoke-free policies and replace them with less effective individual cessation interventions. Neither MPAAT nor other health advocates mounted an effective public response to these attacks, instead relying on the insider strategy of responding in court. Conclusion: It is not possible to avoid attacks by the tobacco industry or its political allies. Like programmes administered by government agencies, tobacco control foundations must be prepared for these attacks, including a proactive plan to educate the public about the principles of community based tobacco control. Public health advocates also need to be willing to take prompt action to defend these programmes and hold public officials who attack tobacco control programmes accountable for their actions. PMID:15333877

  12. Thermal insulation coating based on water-based polymer dispersion

    Directory of Open Access Journals (Sweden)

    Panchenko Iuliia

    2018-01-01

    Full Text Available For Russia, due to its long winter period, improvement of thermal insulation properties of envelope structures by applying thermal insulation paint and varnish coating to its inner surface is considered perspective. Thermal insulation properties of such coatings are provided by adding aluminosilicate microspheres and aluminum pigment to their composition. This study was focused on defining the effect of hollow aluminosilicate microspheres and aluminum pigment on the paint thermal insulation coating based on water-based polymer dispersion and on its optimum filling ratio. The optimum filling ratio was determined using the method of critical pigment volume concentration (CPVC. The optimum filling ratio was found equal to 55%.

  13. Colloquium 3: Thermal insulation materials in construction and in high-temperature plants. Lectures; Kolloquium 3: Waermedaemmstoffe im Bauwesen und in Hochtemperaturanlagen. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, E.; Gross, U.; Walter, G. [comps.

    1999-07-01

    Colloquium 3, ''Thermal insulation materials in construction and in high-temperature plants'' focused, for one thing, on the inter-relationships between the development of thermal insulation materials for construction and high-temperature applications and the development of processes and plants and, for another, on the standards of and amendments to the thermal protection ordinance. Calcium silicate and Silcapor as a thermal protection material and a high-temperature thermal insulant, respectively, are dealt with inter alia. The use of thermal insulants in industrial furnaces and different methods for measuring thermal conductivity are described. Further topics are the elements of the energy conservation ordinance being drafted, and thermal-insulation construction materials such as bricks and foam mortar. Ten papers are individually listed in the Energy database. (orig.) [German] Im Mittelpunkt des Kolloquium 3 ''Waermedaemmstoffe im Bauwesen und in Hochtemperaturanlagen'' stehen die wechselseitigen Zusammenhaenge zwischen der Entwicklung von Waermedaemmstoffen fuer das Bauwesen und die Hochtemperaturanwendung einerseits und der Prozess-und Anlagenentwicklung anderseits sowie die Normung und die Novellierung der Waermeschutzverordnung. Es wird u.a. auf den Waermedaemmstoff Calciumsilicat eingegangen ebensowie auf Silcapor als Hochtemperaturd ammstoff. Der Einsatz von Waermedaemmstoffen in Industrieoefen sowie die unterschiedlichen Messmethoden der Waermeleitfaehigkeit werden beschrieben. Weitere Themen sind die Grundlagen der kuenftigen Energiesparverordnung sowie waermedaemmende Baustoffe wie Ziegel und Porenbeton. Fuer die Datenbank Energy wurden zehn Arbeiten separat aufgenommen.

  14. Testing of ITER central solenoid coil insulation in an array

    International Nuclear Information System (INIS)

    Jayakumar, R.; Martovetsky, N.N.; Perfect, S.A.

    1995-01-01

    A glass-polyimide insulation system has been proposed by the US team for use in the Central Solenoid (CS) coil of the international Thermonuclear Experimental Reactor (ITER) machine and it is planned to use this system in the CS model coil inner module. The turn insulation will consist of 2 layers of combined prepreg and Kapton. Each layer is 50% overlapped with a butt wrap of prepreg and an overwrap of S glass. The coil layers will be separated by a glass-resin composite and impregnated in a VPI process. Small scale tests on the various components of the insulation are complete. It is planned to fabricate and test the insulation in a 4 x 4 insulated CS conductor array which will include the layer insulation and be vacuum impregnated. The conductor array will be subjected to 20 thermal cycles and 100000 mechanical load cycles in a Liquid Nitrogen environment. These loads are similar to those seen in the CS coil design. The insulation will be electrically tested at several stages during mechanical testing. This paper will describe the array configuration, fabrication: process, instrumentation, testing configuration, and supporting analyses used in selecting the array and test configurations

  15. Post-Insulation of Existing Buildings Constructed Between 1850 and 1920

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2010-01-01

    as a result of post-insulation measures. Besides lower heating costs and reduced CO2 emissions, improvement of the insulation standard could contribute to the elimination of other aspects of discomfort, such as draught originating from cold surfaces inside. This paper considers post-insulation of a simulated...

  16. Supporting documentation for the 1997 revision to the DOE Insulation Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, T.K.

    1997-08-22

    The Department of Energy (DOE) Insulation Fact Sheet has been revised to reflect developments in energy conservation technology and the insulation market. A nationwide insulation cost survey was made by polling insulation contractors and builders, and the results are reported here. These costs, along with regional weather data, regional fuel costs, and fuel-specific system efficiencies were used to produce recommended insulation levels for new and existing houses. This report contains all of the methodology, algorithms, assumptions, references, and data resources that were used to produce the 1997 DOE Insulation Fact Sheet.

  17. Development of applications for Indian industry using electron beam technology

    International Nuclear Information System (INIS)

    Sarma, K.S.S.; Khader, S.A.; Sabharwal, S.

    2009-01-01

    This paper presents a report on the industrial applications that have been developed and demonstrated to the Indian industry using 2MeV/20kW Electron Beam accelerator at BARC-BRIT in the field of polymer modifications (crosslinking and degradation), gem stone coloration etc. Technological scale demonstration of the applications citing the benefits in terms of clean technology and better economics, encouraged three companies in private industry to set up EB facilities for the treatment of cable insulations, heat shrinkable products, diamond and gem stones during the last five years. Recent work on EB processing of automobile rubber tires is also included. (author)

  18. Design and analysis of the PBFA-Z vacuum insulator stack

    International Nuclear Information System (INIS)

    Shoup, R.W.; Long, F.; Martin, T.H.; Stygar, W.A.; Spielman, R.B.; Struve, K.W.; Mostrom, M.; Corcoran, P.; Smith, I.

    1996-01-01

    Sandia is developing PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack, and MITLs on PBFA II with new hardware. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITL interface requirements, and the machine operations and maintenance requirements. The insulator stack will consist of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathode conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time-dependent performance of the insulator stack was evaluated using IVORY, a 2-D PIC code. The insulator stack design and present the results of the ELECTRO and IVORY analyses are described. (author). 2 tabs., 9 figs., 3 refs

  19. The topological Anderson insulator phase in the Kane-Mele model

    Science.gov (United States)

    Orth, Christoph P.; Sekera, Tibor; Bruder, Christoph; Schmidt, Thomas L.

    2016-04-01

    It has been proposed that adding disorder to a topologically trivial mercury telluride/cadmium telluride (HgTe/CdTe) quantum well can induce a transition to a topologically nontrivial state. The resulting state was termed topological Anderson insulator and was found in computer simulations of the Bernevig-Hughes-Zhang model. Here, we show that the topological Anderson insulator is a more universal phenomenon and also appears in the Kane-Mele model of topological insulators on a honeycomb lattice. We numerically investigate the interplay of the relevant parameters, and establish the parameter range in which the topological Anderson insulator exists. A staggered sublattice potential turns out to be a necessary condition for the transition to the topological Anderson insulator. For weak enough disorder, a calculation based on the lowest-order Born approximation reproduces quantitatively the numerical data. Our results thus considerably increase the number of candidate materials for the topological Anderson insulator phase.

  20. Design and analysis of the PBFA-Z vacuum insulator stack

    Energy Technology Data Exchange (ETDEWEB)

    Shoup, R W [Field Command Defense Nuclear Agency, Kirtland AFB, NM (United States); Long, F; Martin, T H; Stygar, W A; Spielman, R B [Sandia National Laboratories, Albuquerque, NM (United States). Dept 9573; Ives, H [EG and G, Albuquerque, NM (United States); Struve, K W; Mostrom, M [Mission Research Corp., Albuquerque, NM (United States); Corcoran, P; Smith, I [Pulse Sciences, Inc., San Leandro, CA (United States)

    1997-12-31

    Sandia is developing PBFA-Z, a 20-MA driver for z-pinch experiments by replacing the water lines, insulator stack, and MITLs on PBFA II with new hardware. The design of the vacuum insulator stack was dictated by the drive voltage, the electric field stress and grading requirements, the water line and MITL interface requirements, and the machine operations and maintenance requirements. The insulator stack will consist of four separate modules, each of a different design because of different voltage drive and hardware interface requirements. The shape of the components in each module, i.e., grading rings, insulator rings, flux excluders, anode and cathode conductors, and the design of the water line and MITL interfaces, were optimized by using the electrostatic analysis codes, ELECTRO and JASON. The time-dependent performance of the insulator stack was evaluated using IVORY, a 2-D PIC code. The insulator stack design and present the results of the ELECTRO and IVORY analyses are described. (author). 2 tabs., 9 figs., 3 refs.

  1. Effect of wind on Svalbard reindeer fur insulation

    Directory of Open Access Journals (Sweden)

    Christine Cuyler

    2002-06-01

    Full Text Available The heat transfer through Svalbard reindeer (Rangifer tarandus platyrhynchus fur samples was studied with respect to wind velocity, season and animal age. A total of 33 dorsal fur sections were investigated using a wind tunnel. Insulation varied with season (calving, summer, autumn and winter. At zero wind velocity, fur insulation was significantly different between seasons for both calf and adult fur samples. At the same time, there was no significant difference between calf and adult insulation for the summer, autumn and winter seasons. Calf fur insulated as well as adult fur. Winter insulation of Svalbard reindeer was approximately 3 times that of summer. Increasing wind veloci¬ty increased heat loss, however, the increase was not dramatic. When wind coefficients (slope of the heat transfer regression lines were compared, between season and between calf and adult, no significant differences were reported. All fur samples showed similar increases in heat transfer for wind velocities between 0 and 10 m.s-1. The conductance of winter fur of Svalbard reindeer was almost half that of caribou fur. Also, conductance was not as greatly influenced by wind as caribou fur

  2. Physical processes in high field insulating liquid conduction

    Science.gov (United States)

    Mazarakis, Michael; Kiefer, Mark; Leckbee, Joshua; Anderson, Delmar; Wilkins, Frank; Obregon, Robert

    2017-10-01

    In the power grid transmission where a large amount of energy is transmitted to long distances, High Voltage DC (HVDC) transmission of up to 1MV becomes more attractive since is more efficient than the counterpart AC. However, two of the most difficult problems to solve are the cable connections to the high voltage power sources and their insulation from the ground. The insulating systems are usually composed of transformer oil and solid insulators. The oil behavior under HVDC is similar to that of a weak electrolyte. Its behavior under HVDC is dominated more by conductivity than dielectric constant. Space charge effects in the oil bulk near high voltage electrodes and impeded plastic insulators affect the voltage oil hold-off. We have constructed an experimental facility where we study the oil and plastic insulator behavior in an actual HVDC System. Experimental results will be presented and compared with the present understanding of the physics governing the oil behavior under very high electrical stresses. Sandia National Laboratories managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. D.O.E., NNSA under contract DE-NA-0003525.

  3. Compact vacuum insulation embodiments

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  4. Boson localization and the superfluid-insulator transition

    International Nuclear Information System (INIS)

    Fisher, M.P.A.; Weichman, P.B.; Grinstein, G.; Fisher, D.S.; Condensed Matter Physics 114-36, California Institute of Technology, Pasadena, California 91125; IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598; Joseph Henry Laboratory of Physics, Jadwin Hall, Princeton University, Princeton, New Jersey 08544)

    1989-01-01

    The phase diagrams and phase transitions of bosons with short-ranged repulsive interactions moving in periodic and/or random external potentials at zero temperature are investigated with emphasis on the superfluid-insulator transition induced by varying a parameter such as the density. Bosons in periodic potentials (e.g., on a lattice) at T=0 exhibit two types of phases: a superfluid phase and Mott insulating phases characterized by integer (or commensurate) boson densities, by the existence of a gap for particle-hole excitations, and by zero compressibility. Generically, the superfluid onset transition in d dimensions from a Mott insulator to superfluidity is ''ideal,'' or mean field in character, but at special multicritical points with particle-hole symmetry it is in the universality class of the (d+1)-dimensional XY model. In the presence of disorder, a third, ''Bose glass'' phase exists. This phase is insulating because of the localization effects of the randomness and analogous to the Fermi glass phase of interacting fermions in a strongly disordered potential

  5. Interfacial Coatings for Inorganic Composite Insulation Systems

    International Nuclear Information System (INIS)

    Hooker, M. W.; Fabian, P. E.; Stewart, M. W.; Grandlienard, S. D.; Kano, K. S.

    2006-01-01

    Inorganic (ceramic) insulation materials are known to have good radiation resistance and desirable electrical and mechanical properties at cryogenic and elevated temperatures. In addition, ceramic materials can withstand the high-temperature reaction cycle used with Nb3Sn superconductor materials, allowing the insulation to be co-processed with the superconductor in a wind-and-react fabrication process. A critical aspect in the manufacture of ceramic-based insulation systems is the deposition of suitable fiber-coating materials that prevent chemical reaction of the fiber and matrix materials, and thus provide a compliant interface between the fiber and matrix, which minimizes the impact of brittle failure of the ceramic matrix. Ceramic insulation produced with CTD-FI-202 fiber interfaces have been found to exhibit very high shear and compressive strengths. However, this material is costly to produce. Thus, the goal of the present work is to evaluate alternative, lower-cost materials and processes. A variety of oxide and polyimide coatings were evaluated, and one commercially available polyimide coating has been shown to provide some improvement as compared to uncoated and de-sized S2 glass

  6. The influence of the thermo-phono-insulating glazing structure configuration of some PVC profile windows on the airborne sound insulation – case study

    Directory of Open Access Journals (Sweden)

    Marta Cristina ZAHARIA

    2012-12-01

    Full Text Available After conducting laboratory acoustic measurements of airborne sound insulation for several windows with the same type of PVC profiles, equipped with different types of phono- and thermal - insulating glazings, the influence of the window’s glazed part (glass structure configuration on airborne sound insulation was analyzed. The configuration of the structure’s glazed part requires its composition of glass sheets with different thicknesses or intermediate layers of air with different thicknesses. This configuration has an important influence on the acoustic response of windows, namely on the index of air noise sound insulation, Rw, and on the behavior of the entire measurement frequency range.

  7. Airborne sound insulation of new composite wall structures

    Directory of Open Access Journals (Sweden)

    Ivanova Yonka

    2018-01-01

    Full Text Available Protection against noise is one of the essential requirements of the European Construction Product directive. In buildings, airborne sound insulation is used to define the acoustical quality between rooms. In order to develop wall structures with optimal sound insulation, an understanding of the physical origins of sound transmission is necessary. To develop a kind of knowledge that is applicable to the improvement of real walls and room barriers is the motive behind this study. The purpose of the work is to study the sound insulation of new composite wall structure.

  8. Thermal Insulation System for Non-Vacuum Applications Including a Multilayer Composite

    Science.gov (United States)

    Fesmire, James E. (Inventor)

    2017-01-01

    The thermal insulation system of the present invention is for non-vacuum applications and is specifically tailored to the ambient pressure environment with any level of humidity or moisture. The thermal insulation system includes a multilayered composite including i) at least one thermal insulation layer and at least one compressible barrier layer provided as alternating, successive layers, and ii) at least one reflective film provided on at least one surface of the thermal insulation layer and/or said compressible barrier layer. The different layers and materials and their combinations are designed to provide low effective thermal conductivity for the system by managing all modes of heat transfer. The thermal insulation system includes an optional outer casing surrounding the multilayered composite. The thermal insulation system is particularly suited for use in any sub-ambient temperature environment where moisture or its adverse effects are a concern. The thermal insulation system provides physical resilience against damaging mechanical effects including compression, flexure, impact, vibration, and thermal expansion/contraction.

  9. Correlation among ESDD, NSDD and leakage current in distribution insulators

    International Nuclear Information System (INIS)

    Montoya, G.; Ramirez, I.; Montoya, J.I.

    2004-01-01

    The maintenance of distribution networks is more effective if the insulation contamination levels are known. The selection of measuring methods of pollution levels is then crucial. The relationship between several evaluation methods of pollution levels and the operating behaviour of several insulator profiles in a polluted zone is described. Laboratory tests were carried out to reproduce pollution levels found in the field. The quantity of non-soluble materials deposited over the insulators' surface affect the magnitude of the leakage current generated over a contaminated insulator. The relationship that defines leakage current with respect to the equivalent salt deposit density (ESDD) level for a specific non-soluble material level is almost linear, from which it is possible to develop a relationship between them for each insulator. (author)

  10. Topological Insulators and Superconductors for Innovative Devices

    Science.gov (United States)

    2015-03-20

    Final 3. DATES COVERED (From - To) 20120321 - 20150320 4. TITLE AND SUBTITLE Topological insulators and superconductors for innovative...locking, which hold promise for various innovative devices. Similarly, topological superconductors are associated with exotic surface states, which...298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Final Report Title: Topological Insulators and Superconductors for Innovative Devices

  11. Coupling of an applied field magnetically insulated ion diode to a high power magnetically insulated transmission line system

    International Nuclear Information System (INIS)

    Maenchen, J.E.

    1983-01-01

    The coupling of energy from a high power pulsed accelerator through a long triplate magnetically insulated transmission line (MITL) in vacuum to an annular applied magnetic field insulated extraction ion diode is examined. The narrow power transport window and the wave front erosion of the MITL set stringent impedance history conditions on the diode load. A new ion diode design developed to satisfy these criteria with marginal electron insulation is presented. The LION accelerator is used to provide a positive polarity 1.5 MV, 350 kA, 40 ns FWHM pulse with a 30 kA/ns current rate from a triplate MITL source. A transition converts the triplate into a cylindrical cross section which flares into the ion diode load. Extensive current and voltage measurements performed along this structure and on the extracted ion beam provide conclusive evidence that the self insulation condition of the MITL is maintained in the transition by current loss alone. The ion diode utilizes a radial magnetic field between a grounded cathode annular emission tip and a disk anode. A 50 cm 2 dielectric/metal anode area serves as the ion plasma source subject to direct electron bombardment from the opposing cathode tip under marginal magnetic insulation conditions. The ions extracted cross the radial magnetic field and exit the diode volume as an annular cross section beam of peak current about 100 kA. The diode current gradually converts from the initial electron flow to nearly 100% ion current after 30 ns, coupling 60% of the diode energy into ions

  12. Influences of Corrosive Sulfur on Copper Wires and Oil-Paper Insulation in Transformers

    Directory of Open Access Journals (Sweden)

    Jian Li

    2011-10-01

    Full Text Available Oil-impregnated paper is widely used in power transmission equipment as a reliable insulation. However, copper sulphide deposition on oil-paper insulation can lead to insulation failures in power transformers. This paper presents the influences of copper sulfur corrosion and copper sulphide deposition on copper wires and oil-paper insulation in power transformers. Thermal aging tests of paper-wrapped copper wires and bare copper wires in insulating oil were carried out at 130 °C and 150 °C in laboratory. The corrosive characteristics of paper-wrapped copper wires and bare copper wires were analyzed. Dielectric properties of insulation paper and insulating oil were also analyzed at different stages of the thermal aging tests using a broadband dielectric spectrometer. Experiments and analysis results show that copper sulfide deposition on surfaces of copper wires and insulation paper changes the surface structures of copper wires and insulation paper. Copper sulfur corrosion changes the dielectric properties of oil-paper insulation, and the copper sulfide deposition greatly reduces the electrical breakdown strength of oil-paper insulation. Metal passivator is capable of preventing copper wires from sulfur corrosion. The experimental results are helpful for investigations for fault diagnosis of internal insulation in power transformers.

  13. Long-term performance of high-voltage insulations. Proceedings. Dauerverhalten von Hochspannungsisolierungen. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    The Conference of the ETG (Energy Eng. Society) covers the following topics: long term performance of epoxide insulations and machine insulations, insulating liquids and mixed dielectrics, fatigue of polyolefine insulation as electrochemical fatigue and possibilities of stabilization. On report was abstracted and classified among 42 articles. (GL).

  14. Electronic structure and insulating gap in epitaxial VO2 polymorphs

    Directory of Open Access Journals (Sweden)

    Shinbuhm Lee

    2015-12-01

    Full Text Available Determining the origin of the insulating gap in the monoclinic V O2(M1 is a long-standing issue. The difficulty of this study arises from the simultaneous occurrence of structural and electronic transitions upon thermal cycling. Here, we compare the electronic structure of the M1 phase with that of single crystalline insulating V O2(A and V O2(B thin films to better understand the insulating phase of VO2. As these A and B phases do not undergo a structural transition upon thermal cycling, we comparatively study the origin of the gap opening in the insulating VO2 phases. By x-ray absorption and optical spectroscopy, we find that the shift of unoccupied t2g orbitals away from the Fermi level is a common feature, which plays an important role for the insulating behavior in VO2 polymorphs. The distinct splitting of the half-filled t2g orbital is observed only in the M1 phase, widening the bandgap up to ∼0.6 eV. Our approach of comparing all three insulating VO2 phases provides insight into a better understanding of the electronic structure and the origin of the insulating gap in VO2.

  15. On new electromagnetic waves in a multicomponent insulator

    NARCIS (Netherlands)

    Dubovik, V. M.

    The dispersion equation for additional transverse electromagnetic waves in a multicomponent amorphous insulator is analyzed in the vicinity of a narrow absorption line. Such waves can be excited due to spatial dispersion associated with fluctuation of the polarizability of insulator molecules. The

  16. Influence of copper on the by-products of different oil-paper insulations

    International Nuclear Information System (INIS)

    Hao Jian; Liao Ruijin; Chen, George; Ma Chao

    2011-01-01

    Transformer failure caused by the corrosion of copper material in transformer attracts great attention of researchers and engineers. In this paper, Karamay No. 25 naphthenic mineral oil, Karamay No. 25 paraffinic mineral oil, Kraft paper and copper were used to compose four combinations of oil-paper insulation samples. The ageing by-products and dielectric properties of the four combinations of oil-paper insulation samples were compared after they were thermally aged at 130 deg. C. The influence of copper on the by-products and dielectric properties of different oil-paper insulations was obtained. The results show that copper can accelerate the ageing rate of insulation oils and reduce their AC breakdown voltage. The content of copper substance dissolved in insulating oil increases with ageing time at first and then decreases. The paper aged in the oil-paper insulation sample with copper has higher moisture content than the one without copper. Results of energy dispersive spectroscopy (EDS) in the scanning electron microscope (SEM) show that there is copper product deposited on the surface of insulation paper. The insulation oil and paper aged in the oil-paper insulation sample with copper have higher dielectric loss and conductivity than that without copper.

  17. Influence of copper on the by-products of different oil-paper insulations

    Energy Technology Data Exchange (ETDEWEB)

    Hao Jian; Liao Ruijin [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University (China); Chen, George [School of Electronics and Computer Science, University of Southampton (United Kingdom); Ma Chao, E-mail: cquhaojian@126.com [Gansu Electric Power Research Institute (China)

    2011-08-12

    Transformer failure caused by the corrosion of copper material in transformer attracts great attention of researchers and engineers. In this paper, Karamay No. 25 naphthenic mineral oil, Karamay No. 25 paraffinic mineral oil, Kraft paper and copper were used to compose four combinations of oil-paper insulation samples. The ageing by-products and dielectric properties of the four combinations of oil-paper insulation samples were compared after they were thermally aged at 130 deg. C. The influence of copper on the by-products and dielectric properties of different oil-paper insulations was obtained. The results show that copper can accelerate the ageing rate of insulation oils and reduce their AC breakdown voltage. The content of copper substance dissolved in insulating oil increases with ageing time at first and then decreases. The paper aged in the oil-paper insulation sample with copper has higher moisture content than the one without copper. Results of energy dispersive spectroscopy (EDS) in the scanning electron microscope (SEM) show that there is copper product deposited on the surface of insulation paper. The insulation oil and paper aged in the oil-paper insulation sample with copper have higher dielectric loss and conductivity than that without copper.

  18. Application of the Finite Elemental Analysis to Modeling Temperature Change of the Vaccine in an Insulated Packaging Container during Transport.

    Science.gov (United States)

    Ge, Changfeng; Cheng, Yujie; Shen, Yan

    2013-01-01

    This study demonstrated an attempt to predict temperatures of a perishable product such as vaccine inside an insulated packaging container during transport through finite element analysis (FEA) modeling. In order to use the standard FEA software for simulation, an equivalent heat conduction coefficient is proposed and calculated to describe the heat transfer of the air trapped inside the insulated packaging container. The three-dimensional, insulated packaging container is regarded as a combination of six panels, and the heat flow at each side panel is a one-dimension diffusion process. The transit-thermal analysis was applied to simulate the heat transition process from ambient environment to inside the container. Field measurements were carried out to collect the temperature during transport, and the collected data were compared to the FEA simulation results. Insulated packaging containers are used to transport temperature-sensitive products such as vaccine and other pharmaceutical products. The container is usually made of an extruded polystyrene foam filled with gel packs. World Health Organization guidelines recommend that all vaccines except oral polio vaccine be distributed in an environment where the temperature ranges between +2 to +8 °C. The primary areas of concern in designing the packaging for vaccine are how much of the foam thickness and gel packs should be used in order to keep the temperature in a desired range, and how to prevent the vaccine from exposure to freezing temperatures. This study uses numerical simulation to predict temperature change within an insulated packaging container in vaccine cold chain. It is our hope that this simulation will provide the vaccine industries with an alternative engineering tool to validate vaccine packaging and project thermal equilibrium within the insulated packaging container.

  19. Electrical insulator assembly with oxygen permeation barrier

    Science.gov (United States)

    Van Der Beck, Roland R.; Bond, James A.

    1994-01-01

    A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.

  20. Inducing magneto-electric response in topological insulator

    International Nuclear Information System (INIS)

    Zeng, Lunwu; Song, Runxia; Zeng, Jing

    2013-01-01

    Utilizing electric potential and magnetic scalar potential formulas, which contain zero-order Bessel functions of the first kind and the constitutive relations of topological insulators, we obtained the induced magnetic scalar potentials and induced magnetic monopole charges which are induced by a point charge in topological insulators. The results show that infinite image magnetic monopole charges are generated by a point electric charge. The magnitude of the induced magnetic monopole charges are determined not only by the point electric charge, but also by the material parameters. - Highlights: ► Electric potential and magnetic scalar potential which contain zero-order Bessel function of the first kind were derived. ► Boundary conditions of topological insulator were built. ► Induced monopole charges were worked out.

  1. Acoustic excitation of containment insulation cover plate

    International Nuclear Information System (INIS)

    Fenech, H.; Rao, A.K.

    1978-01-01

    An experimental and theoretical program has been implemented by NRC-BNL since 1975 at the University of California, Santa Barbara to assess the reliability of the PCRV thermal insulation cover plate and the possible safety problem caused by the failure of this plate. A typical large HTGR PCRV unit [1160 MW(e)] and thermal insulation class A were selected. The upper core cavity is estimated to be the most critical volume where the noise pressure levels are expected to reach 110 to 130 dB (rel. to 2 x 10 -4 dynes/cm 2 ). The noise spectrum in that cavity is a composite of circulator noise, vortex shedding boundary layer turbulence, and flow impingement. Some anticipated safety related problems associated with the thermal insulation failure are examined

  2. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. The design considerations and methods along with the development tests are presented. Special considerations to guard against adverse cracking of the insulation material, to maintain the clamp-pipe stiffness desired during a seismic event, to minimize clamp restraint on the pipe during normal pipe heatup, and to resist clamp rotation or spinning on the pipe are emphasized

  3. Effect of thermal-treatment sequence on sound absorbing and mechanical properties of porous sound-absorbing/thermal-insulating composites

    Directory of Open Access Journals (Sweden)

    Huang Chen-Hung

    2016-01-01

    Full Text Available Due to recent rapid commercial and industrial development, mechanical equipment is supplemented massively in the factory and thus mechanical operation causes noise which distresses living at home. In livelihood, neighborhood, transportation equipment, jobsite construction noises impact on quality of life not only factory noise. This study aims to preparation technique and property evaluation of porous sound-absorbing/thermal-insulating composites. Hollow three-dimensional crimp PET fibers blended with low-melting PET fibers were fabricated into hollow PET/low-melting PET nonwoven after opening, blending, carding, lapping and needle-bonding process. Then, hollow PET/low-melting PET nonwovens were laminated into sound-absorbing/thermal-insulating composites by changing sequence of needle-bonding and thermal-treatment. The optimal thermal-treated sequence was found by tensile strength, tearing strength, sound-absorbing coefficient and thermal conductivity coefficient tests of porous composites.

  4. Highly Insulating Windows Volume Purchase Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-01

    This report documents the development, execution outcomes and lessons learned of the Highly Insulating Windows Volume Purchase (WVP) Program carried out over a three-year period from 2009 through 2012. The primary goals of the program were met: 1) reduce the incremental cost of highly insulating windows compared to ENERGY STAR windows; and 2) raise the public and potential buyers’ awareness of highly insulating windows and their benefits. A key outcome of the program is that the 2013 ENERGY STAR Most Efficient criteria for primary residential windows were adopted from the technical specifications set forth in the WVP program.

  5. Optimization of Refining Craft for Vegetable Insulating Oil

    Science.gov (United States)

    Zhou, Zhu-Jun; Hu, Ting; Cheng, Lin; Tian, Kai; Wang, Xuan; Yang, Jun; Kong, Hai-Yang; Fang, Fu-Xin; Qian, Hang; Fu, Guang-Pan

    2016-05-01

    Vegetable insulating oil because of its environmental friendliness are considered as ideal material instead of mineral oil used for the insulation and the cooling of the transformer. The main steps of traditional refining process included alkali refining, bleaching and distillation. This kind of refining process used in small doses of insulating oil refining can get satisfactory effect, but can't be applied to the large capacity reaction kettle. This paper using rapeseed oil as crude oil, and the refining process has been optimized for large capacity reaction kettle. The optimized refining process increases the acid degumming process. The alkali compound adds the sodium silicate composition in the alkali refining process, and the ratio of each component is optimized. Add the amount of activated clay and activated carbon according to 10:1 proportion in the de-colorization process, which can effectively reduce the oil acid value and dielectric loss. Using vacuum pumping gas instead of distillation process can further reduce the acid value. Compared some part of the performance parameters of refined oil products with mineral insulating oil, the dielectric loss of vegetable insulating oil is still high and some measures are needed to take to further optimize in the future.

  6. Spin-torque generation in topological insulator based heterostructures

    KAUST Repository

    Fischer, Mark H.

    2016-03-11

    Heterostructures utilizing topological insulators exhibit a remarkable spin-torque efficiency. However, the exact origin of the strong torque, in particular whether it stems from the spin-momentum locking of the topological surface states or rather from spin-Hall physics of the topological-insulator bulk, remains unclear. Here, we explore a mechanism of spin-torque generation purely based on the topological surface states. We consider topological-insulator-based bilayers involving ferromagnetic metal (TI/FM) and magnetically doped topological insulators (TI/mdTI), respectively. By ascribing the key theoretical differences between the two setups to location and number of active surface states, we describe both setups within the same framework of spin diffusion of the nonequilibrium spin density of the topological surface states. For the TI/FM bilayer, we find large spin-torque efficiencies of roughly equal magnitude for both in-plane and out-of-plane spin torques. For the TI/mdTI bilayer, we elucidate the dominance of the spin-transfer-like torque. However, we cannot explain the orders of magnitude enhancement reported. Nevertheless, our model gives an intuitive picture of spin-torque generation in topological-insulator-based bilayers and provides theoretical constraints on spin-torque generation due to topological surface states.

  7. Toroidal field magnets for ZEPHYR tape and bitter concepts conductor and insulation materials

    International Nuclear Information System (INIS)

    Breit, E.; Brossmann, U.; Gruber, J.E.; Haubenberger, W.D.; Jandl, O.; Kamm, S.; Mast, F.; Mukherjee, S.; Soell, M.; Springmann, E.

    1981-08-01

    The general design aspects of the Toroidal Field Magnet System for a compact ignition experiment ZEPHYR are discussed. The 17 Tesla field calls for a steel reinforcement of the copper conductor. Two different types of magnet systems, a tape magnet and a Bitter magnet, are possible. In both systems the coils will be arranged in a steel casing. Force transfer is achieved by steel wedges between the coil casings. The mechanical stresses of the magnet structure were calculated by employing finite element methods. The pulse-operated magnet system will be force-cooled by liquid nitrogen to an initial starting temperature of 80 K before each single field pulse is applied. The problems of spacer cooling as well as the finally chosen channel cooling are discussed. The steel-reinforced copper conductor was developed in collaboration with industry, resulting in a high strength (700 N/mm 2 ) copper/austenite compound. The insulation system consisting of a glass/kapton wrapping of the conductors and of vacuum impregnation with an epoxy resin has to withstand high mechanical loads and a neutron/gamma irradiation in the order of 5 x 10 9 rad. The static and cyclic fatigue strength of different insulation systems at ambient and liquid nitrogen temperature has been investigated in mechanical tests of tension, compression and shear samples. The radiation resistance of the insulation resin was tested with gamma and neutron/gamma irradiation to doses of 10 10 rad. The aspects of field diffusion in the tape magnet are given in the appendix. (orig.)

  8. Thermal Transmittance and the Embodied Energy of Timber Frame Lightweight Walls Insulated with Straw and Reed

    Science.gov (United States)

    Miljan, M.; Miljan, J.

    2015-11-01

    Sustainable energy use has become topical in the whole world. Energy gives us comfort we are used to. EU and national regulations determine energy efficiency of the buildings. This is one side of the problem - energy efficiency of houses during exploitation. But the other side is primary energy content of used materials and more rational use of resources during the whole life cycle of a building. The latter value constitutes about 8 - 20% from the whole energy content. Calculations of energy efficiency of materials lead us to energy efficiency of insulation materials and to comparison of natural and industrial materials taking into account their thermal conductivity as well as their primary energy content. Case study of the test house (built in 2012) insulated with straw bales gave the result that thermal transmittance of investigated straw bale walls was according to the minimum energy efficiency requirements set in Estonia U = 0.12 - 0.22 W/m2K (for walls).

  9. Insulation system in an integrated motor compressor

    Energy Technology Data Exchange (ETDEWEB)

    Sihvo, V.

    2010-07-01

    A high-speed and high-voltage solid-rotor induction machine provides beneficial features for natural gas compressor technology. The mechanical robustness of the machine enables its use in an integrated motor-compressor. The technology uses a centrifugal compressor, which is mounted on the same shaft with the high-speed electrical machine driving it. No gearbox is needed as the speed is determined by the frequency converter. The cooling is provided by the process gas, which flows through the motor and is capable of transferring the heat away from the motor. The technology has been used in the compressors in the natural gas supply chain in the central Europe. New areas of application include natural gas compressors working at the wellheads of the subsea gas reservoir. A key challenge for the design of such a motor is the resistance of the stator insulation to the raw natural gas from the well. The gas contains water and heavy hydrocarbon compounds and it is far harsher than the sales gas in the natural gas supply network. The objective of this doctoral thesis is to discuss the resistance of the insulation to the raw natural gas and the phenomena degrading the insulation. The presence of partial discharges is analyzed in this doctoral dissertation. The breakdown voltage of the gas is measured as a function of pressure and gap distance. The partial discharge activity is measured on small samples representing the windings of the machine. The electrical field behavior is also modeled by finite element methods. Based on the measurements it has been concluded that the discharges are expected to disappear at gas pressures above 4 - 5 bar. The disappearance of discharges is caused by the breakdown strength of the gas, which increases as the pressure increases. Based on the finite element analysis, the physical length of a discharge seen in the PD measurements at atmospheric pressure was approximated to be 40 - 120 mum. The chemical aging of the insulation when exposed to raw

  10. Secondary electron emission from insulators

    International Nuclear Information System (INIS)

    Kanaya, K.; Ono, S.; Ishigaki, F.

    1978-01-01

    The high yield of secondary electron emission from insulators due to electron bombardment may be the result of an increase of the depth of escape. The free-electron scattering theory is applied to the high energy of primary beams, but cannot be applied to the low energy of secondary escaping beams because of the large energy gap of the insulators. The plasmon loss with the valence electron is considered when the secondary electrons escape. Based on the energy retardation power formula of the penetration and energy loss of an electron probe into solid targets, secondary electron emissions from insulators are calculated from the assumptions that the distribution of the secondary electrons due to both incident and back-scattered electrons within the target is isotropic and that it follows the absorption law of the Lenard type. The universal yield-energy curve of the secondary electron emission, which is deduced as a function of three parameters such as ionisation potential, valence electron and the back-scattered coefficient in addition to the free-electron density effect, is found to be in good agreement with the experimental results. (author)

  11. Analytical model of heat transfer in porous insulation around cold pipes

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom; Karlsson, Per W.; Korsgaard, Vagn

    2011-01-01

    cloth is wrapped around the cold tube and extended through a slit in the tubular insulation and a slot in the facing to the ambient so that condensed water can evaporate into the air. Some of the moisture in that part of the wicking cloth situated in the slit in the tubular insulation will diffuse......A thermal insulation system is analysed that consists of a cold tube insulated with a porous material faced with a vapour retarding foil.Water vapour will diffuse through the vapour retarding foil and condense on the cold tube. To avoid build-up of water in the insulation a hydrophilic wicking...

  12. Insulating process for HT-7U central solenoid model coils

    International Nuclear Information System (INIS)

    Cui Yimin; Pan Wanjiang; Wu Songtao; Wan Yuanxi

    2003-01-01

    The HT-7U superconducting Tokamak is a whole superconducting magnetically confined fusion device. The insulating system of its central solenoid coils is critical to its properties. In this paper the forming of the insulating system and the vacuum-pressure-impregnating (VPI) are introduced, and the whole insulating process is verified under the super-conducting experiment condition

  13. Cladding Attachment Over Thick Exterior Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States); Eng, P. [Building Science Corporation, Somerville, MA (United States); Lepage, R. [Building Science Corporation, Somerville, MA (United States)

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1. What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2. Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3. What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  14. Electric fields and electrical insulation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    2002-01-01

    The adoption of a field-theoretical approach to problems arising in the framework of electrical insulation is discussed with reference to six main topics, which have been addressed over the last 30 years. These include uniform field electrodes, Green's differential equation, electrode surface...... roughness, induced charge, electrostatic probes, and partial discharge transients, together with several follow-on aspects. Each topic is introduced and thereafter the progress achieved through the use of a field-theoretical approach is reviewed. Because the topics cover a wide spectrum of conditions......, it is amply demonstrated that such an approach can lead to significant progress in many areas of electrical insulation....

  15. Using of Aerogel to Improve Thermal Insulating Properties of Windows

    Science.gov (United States)

    Valachova, Denisa; Zdrazilova, Nada; Panovec, Vladan; Skotnicova, Iveta

    2018-06-01

    For the best possible thermal-technical properties of building structures it is necessary to use materials with very low thermal conductivity. Due to the increasing thermal-technical requirements for building structures, the insulating materials are developed. One of the modern thermal insulating materials is so-called aerogel. Unfortunately, this material is not used in the field of external thermal insulation composite systems because of its price and its properties. The aim of this paper is to present possibilities of using this insulating material in the civil engineering - specifically a usage of aerogel in the production of windows.

  16. Supporting Documentation for the 2008 Update to the Insulation Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL

    2008-02-01

    The Insulation Fact Sheet provides consumers for general guidance and recommended insulation levels for their home. This fact sheet has been on-line since 1995 and this update addresses new insulation materials, as well as updated costs for energy and materials.

  17. Sustainable wall construction and exterior insulation retrofit technology process and structure

    Science.gov (United States)

    Vohra, Arun

    2000-01-01

    A low-cost process for exterior wall insulation retrofit, or new wall construction by stacking layers of fabric tube filled with insulating material against a wall and covering them with mesh and stucco provides a durable structure with good insulating value.

  18. Phase coherent transport in hybrid superconductor-topological insulator devices

    Science.gov (United States)

    Finck, Aaron

    2015-03-01

    Heterostructures of superconductors and topological insulators are predicted to host unusual zero energy bound states known as Majorana fermions, which can robustly store and process quantum information. Here, I will discuss our studies of such heterostructures through phase-coherent transport, which can act as a unique probe of Majorana fermions. We have extensively explored topological insulator Josephson junctions through SQUID and single-junction diffraction patterns, whose unusual behavior give evidence for low-energy Andreev bound states. In topological insulator devices with closely spaced normal and superconducting leads, we observe prominent Fabry-Perot oscillations, signifying gate-tunable, quasi-ballistic transport that can elegantly interact with Andreev reflection. Superconducting disks deposited on the surface of a topological insulator generate Aharonov-Bohm-like oscillations, giving evidence for unusual states lying near the interface between the superconductor and topological insulator surface. Our results point the way towards sophisticated interferometers that can detect and read out the state of Majorana fermions in topological systems. This work was done in collaboration with Cihan Kurter, Yew San Hor, and Dale Van Harlingen. We acknowledge funding from Microsoft Project Q.

  19. Investigation of the Hygrothermal Performance of Alternative Insulation Materials

    DEFF Research Database (Denmark)

    Rode, Carsten; Kristiansen, Finn Harken; Rasmussen, Niels T.

    1999-01-01

    The paper gives an account of hygrothermal investigations carried out on some insulation products which are "alternative" to the ones that are traditionally used in Danish constructions. The alternative products are claimed to be friendly both to the environment and to the labour force. The mater......The paper gives an account of hygrothermal investigations carried out on some insulation products which are "alternative" to the ones that are traditionally used in Danish constructions. The alternative products are claimed to be friendly both to the environment and to the labour force...... is determined for the different materials with a guarded hot plate apparatus in which different vapour pressure conditions can be maintained over the specimens. The apparatus and some results are presented.2. Computational analysis of the hygrothermal performance of constructions with alternative insulation...... products.The hygrothermal performance of constructions with alternative insulation products is analysed with a computational model for combined heat and moisture transfer. The analysis concerns both traditional wall and roof constructions with the alternative insulation products, and some alternative...

  20. Effects of cryogenic reactor irradiation on organic insulators

    International Nuclear Information System (INIS)

    Kato, Teruo

    1995-01-01

    Insulators for the superconducting magnets of fusion reactor are classified as electrical and thermal insulators for which tough organic materials will be used. When the magnet is exposed by fast neutrons and gamma-rays from plasma in a fusion reactor, the fusion reactor systems will cause fatal damage by the degradation of insulators. Therefore, it is necessary to select materials resistant irradiation damage for use as insulators. Electrical and mechanical tests were carried out at 4.2 K without warmup after the reactor irradiation at 5 K. The effects of reactor irradiation at the dose of 10 7 Gy on epoxy resins (bisphenol-A), G-10 CR, VL-E 200 and G-11 CR caused large decreases in mechanical strength. Polyetheretherketone (PEEK), polyimide and phenol novolac resins, which were used to laminate reinforced plastics with glass-cloth against irradiation, showed good resistance. Effects of cryogenic reactor irradiation on several organic materials and epoxy laminate-reinforced plastics with glass-cloth and Kevlar-cloth were also discussed. (author)

  1. Identifying Two-Dimensional Z 2 Antiferromagnetic Topological Insulators

    Science.gov (United States)

    Bègue, F.; Pujol, P.; Ramazashvili, R.

    2018-01-01

    We revisit the question of whether a two-dimensional topological insulator may arise in a commensurate Néel antiferromagnet, where staggered magnetization breaks the symmetry with respect to both elementary translation and time reversal, but retains their product as a symmetry. In contrast to the so-called Z 2 topological insulators, an exhaustive characterization of antiferromagnetic topological phases with the help of topological invariants has been missing. We analyze a simple model of an antiferromagnetic topological insulator and chart its phase diagram, using a recently proposed criterion for centrosymmetric systems [13]. We then adapt two methods, originally designed for paramagnetic systems, and make antiferromagnetic topological phases manifest. The proposed methods apply far beyond the particular examples treated in this work, and admit straightforward generalization. We illustrate this by two examples of non-centrosymmetric systems, where no simple criteria have been known to identify topological phases. We also present, for some cases, an explicit construction of edge states in an antiferromagnetic topological insulator.

  2. Investigation of Vacuum Insulator Surface Dielectric Strength with Nanosecond Pulses

    International Nuclear Information System (INIS)

    Nunnally, W.C.; Krogh, M.; Williams, C.; Trimble, D.; Sampayan, S.; Caporaso, G.

    2003-01-01

    The maximum vacuum insulator surface dielectric strength determines the acceleration electric field gradient possible in a short pulse accelerator. Previous work has indicated that higher electric field strengths along the insulator-vacuum interface might be obtained as the pulse duration is decreased. In this work, a 250 kV, single ns wide impulse source was applied to small diameter, segmented insulators samples in a vacuum to evaluate the multi-layer surface dielectric strength of the sample construction. Resonances in the low inductance test geometry were used to obtain unipolar, pulsed electric fields in excess of 100 MV/m on the insulator surface. The sample construction, experimental arrangement and experimental results are presented for the initial data in this work. Modeling of the multi-layer structure is discussed and methods of improving insulator surface dielectric strength in a vacuum are proposed

  3. Vibrometry Assessment of the External Thermal Composite Insulation Systems Influence on the Façade Airborne Sound Insulation

    Directory of Open Access Journals (Sweden)

    Daniel Urbán

    2018-05-01

    Full Text Available This paper verifies the impact of the use of an external thermal composite system (ETICS on air-borne sound insulation. For optimum accuracy over a wide frequency range, classical microphone based transmission measurements are combined with accelerometer based vibrometry measurements. Consistency is found between structural resonance frequencies and bending wave velocity dispersion curves determined by vibrometry on the one hand and spectral features of the sound reduction index, the ETICS mass-spring-mass resonance induced dip in the acoustic insulation spectrum, and the coincidence induced dip on the other hand. Scanning vibrometry proves to be an effective tool for structural assessment in the design phase of ETICS systems. The measured spectra are obtained with high resolution in wide frequency range, and yield sound insulation values are not affected by the room acoustic features of the laboratory transmission rooms. The complementarity between the microphone and accelerometer based results allows assessing the effect of ETICS on the sound insulation spectrum in an extended frequency range from 20 Hz to 10 kHz. The modified engineering ΔR prediction model for frequency range up to coincidence frequency of external plaster layer is recommended. Values for the sound reduction index obtained by a modified prediction method are consistent with the measured data.

  4. Mott metal-insulator transition in the doped Hubbard-Holstein model

    Science.gov (United States)

    Kurdestany, Jamshid Moradi; Satpathy, S.

    2017-08-01

    Motivated by the current interest in the understanding of the Mott insulators away from half-filling, observed in many perovskite oxides, we study the Mott metal-insulator transition in the doped Hubbard-Holstein model using the Hartree-Fock mean field theory. The Hubbard-Holstein model is the simplest model containing both the Coulomb and the electron-lattice interactions, which are important ingredients in the physics of the perovskite oxides. In contrast to the half-filled Hubbard model, which always results in a single phase (either metallic or insulating), our results show that away from half-filling, a mixed phase of metallic and insulating regions occurs. As the dopant concentration is increased, the metallic part progressively grows in volume, until it exceeds the percolation threshold, leading to percolative conduction. This happens above a critical dopant concentration δc, which, depending on the strength of the electron-lattice interaction, can be a significant fraction of unity. This means that the material could be insulating even for a substantial amount of doping, in contrast to the expectation that doped holes would destroy the insulating behavior of the half-filled Hubbard model. While effects of fluctuation beyond the mean field remain an open question, our results provide a starting point for the understanding of the density-driven metal-insulator transition observed in many complex oxides.

  5. Dielectric heating. Industrial applications; Chauffage dielectrique. Applications industrielles

    Energy Technology Data Exchange (ETDEWEB)

    Roussy, G. [Nancy-1 Univ. Henri Poincare, Dir. de Recherche 54 (France); Rochas, J.F. [Societe Sairem, 75 - Paris (France); Oberlin, C. [Electricite de France (EDF), Div. de Recherche, 75 - Paris (France)

    2003-11-01

    The heating of insulating or badly power conducting products using high frequency (HF) electromagnetic waves and microwaves (MW) is used in several industrial applications. This article presents some examples of conventional or recent applications of dielectric heating in the industry: 1 - selection criteria between HF and MW heating systems; 2 - HF applications: traditional applications (wood forming and sticking, welding of thermoplastic materials, drying of textile materials, correction of the humidity profile in the paper industry, end-baking of biscuits in the food industry), recent applications (over-moulding of automotive glazing materials, gluing and moulding of plastic parts in the automotive industry, drying of the coating of textile ropes), innovative applications; 3 - microwave applications: traditional applications (moderating of frozen meat by 915 MHz microwaves, drying of coatings on polystyrene or sand core models for foundry, pre-vulcanization of rubber sections, 2450 MHz pasteurization of pumpable products with morsels), examples of recent applications (continuous dehydration in vacuum, MW assisted granulator-dryers in the pharmaceutical industry, decontamination of hospital wastes), examples of innovative applications in the chemical sector, applications in progress; 4 - conclusion. (J.S.)

  6. AlGaAs-On-Insulator nonlinear photonics

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta

    We present an AlGaAs-on-insulator platform for integrated nonlinear photonics. We demonstrate the highest reported conversion efficiency and ultra-broadband four-wave mixing for an integrated platform around 1550nm......We present an AlGaAs-on-insulator platform for integrated nonlinear photonics. We demonstrate the highest reported conversion efficiency and ultra-broadband four-wave mixing for an integrated platform around 1550nm...

  7. Manufacturing and Structural Feasibility of Natural Fiber Reinforced Polymeric Structural Insulated Panels for Panelized Construction

    Directory of Open Access Journals (Sweden)

    Nasim Uddin

    2011-01-01

    Full Text Available Natural fibers are emerging in the fields of automobile and aerospace industries to replace the parts such as body panels, seats, and other parts subjected to higher bending strength. In the construction industries, they have the potential to replace the wood and oriented strand boards (OSB laminates in the structural insulated panels (SIPs. They possess numerous advantages over traditional OSB SIPs such as being environmental friendly, recyclable, energy efficient, inherently flood resistant, and having higher strength and wind resistance. This paper mainly focuses on the manufacturing feasibility and structural characterization of natural fiber reinforced structural insulated panels (NSIPs using natural fiber reinforced polymeric (NFRP laminates as skin. To account for the use of natural fibers, the pretreatments are required on natural fibers prior to use in NFRP laminates, and, to address this issue properly, the natural fibers were given bleaching pretreatments. To this end, flexure test and low-velocity impact (LVI tests were carried out on NSIPs in order to evaluate the response of NSIPs under sudden impact loading and uniform bending conditions typical of residential construction. The paper also includes a comparison of mechanical properties of NSIPs with OSB SIPs and G/PP SIPs. The results showed significant increase in the mechanical properties of resulting NSIP panels mainly a 53% increase in load-carrying capacity compared to OSB SIPs. The bending modulus of NSIPs is 190% higher than OSB SIPs and 70% weight reduction compared to OSB SIPs.

  8. Valorization of Tunisian alfa fibres and sumac tannins for the elaboration of biodegradable insulating panels

    Science.gov (United States)

    Saad, Houda; Charrier, Bertrand; Ayed, Naceur; Charrier-El-Bouhtoury, Fatima

    2017-10-01

    Alfa leaves are important renewable raw materials in Tunisia where they are used basically in handcrafts and paper industry. Sumac is also an abundant species in Tunisia known for its high tannin content and is basically used in traditional medicine. To valorize these natural resources, we studied, for the first time, the possibility of making insulating panels based on alfa fibres and sumac tannins based adhesive. Firstly, alfa leaves were treated with an alkali solution as it is one of the standard procedures commonly used in the paper industry to extract cellulosic fibres. Mercerization effects were studied by characterizing fibres thermal properties and fibres surface morphology. Secondly, the sumac tannin based resin was formulated and characterized. Finally, the insulating panel was elaborated and characterized by determining its thermal conductivity. The thermal gravimetric analysis results show improvement in the thermal stability of fibres after alkali treatment. Environmental Scanning Electron Microscopy showed changes on treated alfa surface which could promote the fibre-matrix adhesion. The reactivity of sumac tannins to formaldehyde test (Stiasny number) showed the possible use of sumac tannins in wood adhesive formulation. Thermomechanical analysis and strength analysis of sumac tannin/hexamin based resin highlighted acceptable bonding properties. The thermal conductivity measurement showed an average value equal to 0.110 W/m K. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  9. Electronic reconstruction at the interface between the Mott insulator LaVO{sub 3} and the band insulator SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Stuebinger, Martin; Gabel, Judith; Gagel, Philipp; Sing, Michael; Claessen, Ralph [Universitaet Wuerzburg, Physikalisches Institut and Roentgen Center for Complex Material Systems (RCCM), 97074 Wuerzburg (Germany)

    2016-07-01

    Akin to the well known oxide heterostructure LaAlO{sub 3}/SrTiO{sub 3} (LAO/STO) the formation of a conducting interface is found between the strongly correlated, polar Mott insulator LaV{sup 3+}O{sub 3} (LVO) and the non-polar band insulator STO. Since LaV{sup 3+}O{sub 3} tends to overoxidize to the thermodynamically more favourable LaV{sup 5+}O{sub 4} phase when exposed to air, a suitable passivation is required. Therefore, we have employed pulsed laser deposition thin film growth of LVO films with a crystalline LAO capping layer. In situ photoemission measurements of samples before and after being exposed to air show that the V oxidation state can indeed be stabilized by the LAO capping layer. By transport measurements, we identify an insulator-to-metal transition at a combined LAO/LVO overlayer thickness of 4 to 5 unit cells. With LVO being a Mott insulator, passivation by the LAO capping opens the opportunity to study a band-filling controlled Mott insulator to metal transition induced by a purely electrostatic mechanism without interfering overoxidation of the LVO film.

  10. Thermal insulation layer for the vacuum containers of a thermonuclear device

    International Nuclear Information System (INIS)

    Nishikawa, Masana; Yamada, Masao; Kameari, Akihisa; Niikura, Setsuo.

    1980-01-01

    Purpose: To prevent temperature rise of a thermal insulation layer for a vacuum container of a thermonuclear device higher than allowable value when irradiated by neutron by constructing the layer of a cooling unit in thermal insulation material. Constitution: A metal plate attached with cooling pipes is buried in a thermal insulation material forming a thermal insulation layer to form the layer provided between a vacuum container of a thermonuclear device and a shield. (Yoshihara, H.)

  11. High-fluence implantation in insulators. 1

    International Nuclear Information System (INIS)

    Mazzoldi, P.

    1989-01-01

    The defects which can be formed by ion implantation depend upon the insulator structure and composition. Thus, for glasses and ceramics, different changes are expected in mechanical and tribological properties, network dilatation, induced optical absorption and luminescence, compositional changes and modifications in the chemical behaviour. The modifications induced by ion implantation in the composition of glasses, with particular reference to alkali silicate glasses, the mechanical and tribological properties of ion implanted insulators, in particular glasses and ceramics, and the optical properties are discussed. 56 refs.; 20 figs

  12. Local Thermal Insulating Materials For Thermal Energy Storage ...

    African Journals Online (AJOL)

    Thermal insulation is one of the most important components of a thermal energy storage system. In this paper the thermal properties of selected potential local materials which can be used for high temperature insulation are presented. Thermal properties of seven different samples were measured. Samples consisted of: ...

  13. Wood moisture monitoring during log house thermal insulation mounting

    Directory of Open Access Journals (Sweden)

    Pavla Kotásková

    2011-01-01

    Full Text Available The current designs of thermal insulation for buildings concentrate on the achievement of the required heat transmission coefficient. However, another factor that cannot be neglected is the assessment of the possible water vapour condensation inside the construction. The aim of the study was to find out whether the designed modification of the cladding structure of an existing log house will or will not lead to a risk of possible water vapour condensation in the walls after an additional thermal insulation mounting. The condensation could result in the increase in moisture of the walls and consequently the constructional timber, which would lead to the reduction of the timber construction strength, wood degradation by biotic factors – wood-destroying insects, mildew or wood-destroying fungi. The main task was to compare the theoretically established values of moisture of the constructional timber with the values measured inside the construction using a specific example of a thermal insulated log house. Three versions of thermal insulation were explored to find the solution of a log house reconstruction which would be the optimum for living purposes. Two versions deal with the cladding structure with the insulation from the interior, the third version deals with an external insulation.In a calculation model the results can be affected to a great degree by input values (boundary conditions. This especially concerns the factor of vapour barrier diffusion resistance, which is entered in accordance with the producer’s specifications; however, its real value can be lower as it depends on the perfectness and correctness of the technological procedure. That is why the study also includes thermal technical calculations of all designed insulation versions in the most unfavourable situation, which includes the degradation of the vapour barrier down to 10% efficiency, i.e. the reduction of the diffusion resistance factor to 10% of the original value

  14. Characteristics of high gradient insulators for accelerator and high power flow applications

    International Nuclear Information System (INIS)

    Elizondo, J.M.; Krogh, M.L.; Smith, D.

    1997-07-01

    The high gradient insulator has been demonstrated to operate at levels comparable or better than special geometry or coated insulators. Some patented insulator configurations allow for sophisticated accelerator structures, high power flow interfaces, and microwave applications not previously possible. Sophisticated manufacturing techniques available at AlliedSignal FM and T made this development possible. Bipolar and high power flow applications are specially suited for present insulator designs. The insulator shows a beneficial effect when used under RF fields or RF structures. These insulators can be designed, to a first approximation, from simple electron flight path equations. With a recently developed model of surface flashover physics the authors completed a set of design calculations that include effects such as layer density and dielectric/metal thickness. Experimental data, obtained in the last few years of development, is presented and reviewed. Several insulator fabrication characteristics, indicating critical design parameters, are also presented

  15. Inducing magneto-electric response in topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Lunwu, E-mail: 163.sin@163.com [Jiangsu Key Laboratory for Intelligent Agricultural Equipment, College of Engineering, Nanjing Agricultural University, Nanjing 210031 (China); Song, Runxia [Jiangsu Key Laboratory for Intelligent Agricultural Equipment, College of Engineering, Nanjing Agricultural University, Nanjing 210031 (China); Zeng, Jing [Faculty of Business and Economics, Macquarie University, NSW 2122 (Australia)

    2013-02-15

    Utilizing electric potential and magnetic scalar potential formulas, which contain zero-order Bessel functions of the first kind and the constitutive relations of topological insulators, we obtained the induced magnetic scalar potentials and induced magnetic monopole charges which are induced by a point charge in topological insulators. The results show that infinite image magnetic monopole charges are generated by a point electric charge. The magnitude of the induced magnetic monopole charges are determined not only by the point electric charge, but also by the material parameters. - Highlights: Black-Right-Pointing-Pointer Electric potential and magnetic scalar potential which contain zero-order Bessel function of the first kind were derived. Black-Right-Pointing-Pointer Boundary conditions of topological insulator were built. Black-Right-Pointing-Pointer Induced monopole charges were worked out.

  16. Economic Analysis of Installing Fixed and Removable Insulation for Pipe Wall Thinning Management

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyeongmo; Yun, Hun [KEPCO E and C, Gimcheon (Korea, Republic of)

    2016-12-15

    To perform ultrasonic testing (UT) thickness measurement of the secondary side piping installed in nuclear power plants, the insulation for preventing heat loss should be removed. The type of insulation can be divided into fixed and removable insulation. Fixed and removable insulation have their own strengths and weaknesses. Removable insulation has been installed in the components susceptible to wall thinning caused by FAC and erosion from Shin-Kori unit 1, which commenced its commercial operation in 2011. In this paper, the number of repeated inspections of components and the number of replacements of fixed insulation were estimated and a more economical way was identified based on the manufacturing and installation costs for fixed and removable insulation.

  17. Insulating materials for optoelectronics

    International Nuclear Information System (INIS)

    Agullo-Lopez, F.

    1990-01-01

    Optoelectronics is an interdisciplinary field. Basic functions of an optoelectronic system include the generator of the optical signal, its transmission and handling and, finally, its detection, storage and display. A large variety of semiconductor and insulating materials are used or are being considered to perform those functions. The authors focus on insulating materials, mostly oxides. For signal generation, tunable solid state lasers, either vibronic or those based oon colour centres are briefly described, and their main operating parameters summarized. Reference is made to some developments on fiber and waveguide lasers. Relevant physical features of the silica fibres used for low-loss, long-band, optical transmission are reviewed, as well as present efforts to further reduce attenuation in the mid-infrared range. Particular attention is paid to photorefractive materials (LiNbO 3 , BGO, BSO, etc.), which are being investigated

  18. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2004-01-01

    form the weakest part of the thermal envelope with respect to heat loss coefficient, but on the other hand also play an important role for passive solar energy utilisation. For window orientations other than south, the net energy balance will be close to or below zero. However, the properties......Monolithic silica aerogel offers the possibility of combining super insulation and high solar energy transmittance, which has been the background for a previous and a current EU project on research and development of monolithic silica aerogel as transparent insulation in windows. Generally, windows...... of aerogel glazing will allow for a positive net energy gain even for north facing vertical windows in a Danish climate during the heating season. This means that high quality daylight can be obtained even with additional energy gain. On behalf of the partners of the two EU projects, results related...

  19. Constructions complying with tightened Danish sound insulation requirements for new housing

    OpenAIRE

    Rasmussen, Birgit; Hoffmeyer, Dan

    2010-01-01

    New sound insulation requirements in Denmark in 2008 New Danish Building Regulations with tightened sound insulation requirements were introduced in 2008 (and in 2010 with unchanged acoustic requirements). Compared to the Building Regulations from 1995, the airborne sound insulation requirements were 2 –3 dB stricter and the impact sound insulation requirements 5 dB stricter. The limit values are given using the descriptors R’w and L’n,w as before. For the first time, acoustic requirements fo...

  20. 16 CFR 460.2 - What is home insulation.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false What is home insulation. 460.2 Section 460.2 Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES LABELING AND ADVERTISING OF HOME..., semirigid, flexible, or loose-fill form. Home insulation is for use in old or new homes, condominiums...

  1. Heat resistance insulation for NPP pipelines and components

    International Nuclear Information System (INIS)

    Yurchenko, V.G.; Nazarova, G.A.; Popov, A.M.; Matveeva, N.F.

    1986-01-01

    To insulate hot surfaces of NPP process equipment and pipes it is suggested to use heat resistant insulation of foam aminoimides (FAI). Relative toxicity of aceton and acetaldehyd evolved from FAI in the process of thermal and thermal-oxidative break-down was determined. FAI can be used at 200 deg C

  2. Ultra-thin smart acoustic metasurface for low-frequency sound insulation

    Science.gov (United States)

    Zhang, Hao; Xiao, Yong; Wen, Jihong; Yu, Dianlong; Wen, Xisen

    2016-04-01

    Insulating low-frequency sound is a conventional challenge due to the high areal mass required by mass law. In this letter, we propose a smart acoustic metasurface consisting of an ultra-thin aluminum foil bonded with piezoelectric resonators. Numerical and experimental results show that the metasurface can break the conventional mass law of sound insulation by 30 dB in the low frequency regime (sound insulation performance is attributed to the infinite effective dynamic mass density produced by the smart resonators. It is also demonstrated that the excellent sound insulation property can be conveniently tuned by simply adjusting the external circuits instead of modifying the structure of the metasurface.

  3. Experiment on thermal insulation and sodium deposition of shield plug

    International Nuclear Information System (INIS)

    Hashiguchi, K.; Honda, M.; Shiratori, H.; Ozaki, O.; Suzuki, M.

    1986-01-01

    A series of experiments on temperature distribution and thermal insulation characteristics was conducted using a reduced scale model of LMFBR shield plug. Observation and measurement of sodium deposition were also conducted on the model after the experiment. The effect of annulus natural convection was clarified for temperature and the thermal insulation characteristics from evaluating the result. Temperature distribution analysis was conducted successfully by combining the general purpose structural analysis program NASTRAN and vertical annulus natural convection analysis program VANAC. Moreover, significant effect was substantiated for the annulus convection barrier to increase the thermal insulation performance, narrow horizontal gap structure to prevent sodium deposition and thermal insulation plates. (author)

  4. Magnetohydrodynamic flow in ducts with discontinuous electrical insulation

    International Nuclear Information System (INIS)

    Mistrangelo, C.; Bühler, L.

    2015-01-01

    Highlights: • Liquid metal MHD flows in ducts with flow channel inserts. • Study of the influence of local interruption of electrical insulation. • 3D numerical simulations. - Abstract: In liquid metal blankets the interaction of the moving breeder with the intense magnetic field that confines the fusion plasma results in significant modifications of the velocity distribution and increased pressure drop compared to hydrodynamic flows. Those changes are due to the occurrence of electromagnetic forces that slow down the core flow and which are balanced by large driving pressure heads. The resulting magnetohydrodynamic (MHD) pressure losses are proportional to the electric current density induced in the fluid and they can be reduced by electrically decoupling the wall from the liquid metal. For applications to dual coolant blankets it is foreseen to loosely insert electrically insulating liners into the ducts. In long channels the insulation could consist of a number of shorter inserts, which implies a possible local interruption of the insulation. Three dimensional numerical simulations have been performed to investigate MHD flows in electrically well-conducting channels with internal discontinuous insulating inserts. The local jump in the electric conductivity of the duct wall results in induced 3D electric currents and related electromagnetic forces yielding additional pressure losses and increased velocity in boundary layers parallel to the magnetic field.

  5. Thin Aerogel as a Spacer in Multilayer Insulation

    Science.gov (United States)

    Moroz, Nancy

    2015-01-01

    Cryogenic fluid management is a critical technical area that is needed for future space exploration. A key challenge is the storability of liquid hydrogen (LH2), liquid methane (LCH4), and liquid oxygen (LOX) propellants for long-duration missions. The storage tanks must be well-insulated to prevent over-pressurization and venting, which can lead to unacceptable propellant losses for long-duration missions to Mars and beyond. Aspen Aerogels had validated the key process step to enable the fabrication of thin, low-density aerogel materials. The multilayer aerogel insulation (MLAI) system prototypes were prepared using sheets of aerogel materials with superior thermal performance exceeding current state-of-the-art insulation for space applications. The exceptional properties of this system include a new breakthrough in high-vacuum cryogenic thermal insulation, providing a durable material with excellent thermal performance at a reduced cost when compared to longstanding state-of-the-art multilayer insulation systems. During the Phase II project, further refinement and qualification/system-level testing of the MLAI system will be performed for use in cryogenic storage applications. Aspen has been in discussions with United Launch Alliance, LLC; NASA's Kennedy Space Center; and Yetispace, Inc., to test the MLAI system on rea-lworld tanks such as Vibro-Acoustic Test Article (VATA) or the Cryogenic Orbital Testbed (CRYOTE).

  6. Research on thermal insulation for hot gas ducts

    International Nuclear Information System (INIS)

    Broeckerhoff, P.

    1984-01-01

    The inner surfaces of prestressed reactor vessels and hot gas ducts of Gas Cooled High Temperature Reactors need internal thermal insulation to protect the pressure bearing walls from high temperatures. The design parameters of the insulation depend on the reactor type. In a PNP-plant temperature and pressure of the cooling medium helium are proposed to be 950 deg. C and 40 bars, respectively. The experimental work was started at KFA in 1971 for the HHT-project using three test facilities. At first metallic foil insulation and stuffed fibre insulating systems, the hot gas ducting shrouds of which were made of metal, have been tested. Because of the elevated helium temperature in case of PNP and the resulting lower strength of the metallic parts the interest was directed to rigid ceramic materials for the spacers and the inner shrouds. This led to modified structures designed by the INTERATOM company. Tests were performed at KFA. The main object of the investigations was to study the influence of temperature, pressure and axial pressure gradients on the thermal efficiency of the structures. Moreover, the temperatures within the insulation, at the pressure tube, and at the elements which bear the inner shrouds were measured. Thermal fluxes and effective thermal conductivities in axial and circumferential direction of the pressure tube are given, mainly for the INTERATOM-design with spherical spacers. (author)

  7. Research of long pulse high current diode radial insulation

    International Nuclear Information System (INIS)

    Tan Jie; Chang Anbi; Hu Kesong; Liu Qingxiang; Ma Qiaosheng; Liu Zhong

    2002-01-01

    A radial insulation structure which is used in long pulse high current diode is introduced. The theory of vacuum flashover and the idea of design are briefly introduced. In the research, cone-shaped insulator was used. The geometry structure parameters were optimized by simulating the static electrical field distribution. Experiment was done on a pulse power source with 200 ns pulse width. The maximum voltage 750 kV was obtained, and the average stand-off electrical field of insulator is about 50 kV/cm

  8. Soup Cooking by Thermal Insulation Method

    OpenAIRE

    佐藤, 辰江; 根本, 勢子; サトウ, タツエ; ネモト, セイコ; TATSUE, SATO; SEIKO, NEMOTO

    1992-01-01

    In order to examine the thermal insulation method of soup cooking, we cooked two kinds of soup. The soup cooked by thermal insulation method was compared with the soup cooked by standard boiling method. ln sensory test, it was more aromatic and palatable than the soup by boiling, and some panels commented that it was rather mild. The measured values of pH, specific gravity, acidity and amount of dry weight of souble solids, total-N, formal-N of the soup cooked by the two methods mentioned abo...

  9. Three-dimensional topological insulators and bosonization

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Andrea [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Randellini, Enrico [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Sisti, Jacopo [Scuola Internazionale Superiore di Studi Avanzati (SISSA),Via Bonomea 265, 34136 Trieste (Italy)

    2017-05-25

    Massless excitations at the surface of three-dimensional time-reversal invariant topological insulators possess both fermionic and bosonic descriptions, originating from band theory and hydrodynamic BF theory, respectively. We analyze the corresponding field theories of the Dirac fermion and compactified boson and compute their partition functions on the three-dimensional torus geometry. We then find some non-dynamic exact properties of bosonization in (2+1) dimensions, regarding fermion parity and spin sectors. Using these results, we extend the Fu-Kane-Mele stability argument to fractional topological insulators in three dimensions.

  10. Electrical Performance of Distribution Insulators with Chlorella vulgaris Growth on its Surface

    Directory of Open Access Journals (Sweden)

    Herbert Enrique Rojas Cubides

    2015-06-01

    Full Text Available This paper presents a study about electrical performance of ceramic and polymeric insulators bio-contaminated with alga Chlorella vulgaris. The performed tests involve ANSI 55-2 and ANSI 52-1 ceramic insulators and ANSI DS-15 polymeric insulators, all of them used in distribution systems of Colombia. Biological contamination of insulators is realized using a controlled environment chamber that adjusts the temperature, humidity and light radiation. The laboratory tests include measurements of flashover voltages and leakage currents and they were performed to determine how insulators are affected by biological contamination. After a series of laboratory tests, it was concluded that the presence of Chlorella vulgaris on the contaminated ceramic insulators reduces the wet flashover voltage up to 12% and increases their leakage currents up to 80%. On the other hand, for polymeric insulators the effect of algae growth on flashover voltages was not to strong, although the leakage currents increase up to 60%.

  11. THERMAL INSULATION PROPERTIES RESEARCH OF THE COMPOSITE MATERIAL WATER GLASS–GRAPHITE MICROPARTICLES

    Directory of Open Access Journals (Sweden)

    V. A. Gostev

    2014-05-01

    Full Text Available Research results for the composite material (CM water glass–graphite microparticles with high thermal stability and thermal insulation properties are given. A composition consisting of graphite (42 % by weight, water glass Na2O(SiO2n (50% by weight and the hardener - sodium silicofluoric Na2SiF6 (8% by weight. Technology of such composition receipt is suggested. Experimental samples of the CM with filler particles (graphite and a few microns in size were obtained. This is confirmed by a study of samples by X-ray diffraction and electron microscopy. The qualitative and quantitative phase analysis of the CM structure is done. Load limit values leading to the destruction of CM are identified. The character of the rupture surface is detected. Numerical values of specific heat and thermal conductivity are defined. Dependence of the specific heat capacity and thermal conductivity on temperature at monotonic heating is obtained experimentally. Studies have confirmed the increased thermal insulation properties of the proposed composition. CM with such characteristics can be recommended as a coating designed to reduce heat losses and resistant to high temperatures. Due to accessibility and low cost of its components the proposed material can be produced on an industrial scale.

  12. Investigation of deterioration mechanism of electrical ceramic insulating materials under high temperature

    International Nuclear Information System (INIS)

    Mizutani, Yoshinobu; Ito, Tetsuo; Okamoto, Tatsuki; Kumazawa, Ryoji; Aizawa, Rie; Moriyama, Hideshige

    2000-01-01

    It is thought that ceramic insulator can be applied to electric power equipments that are under high temperature not to be able use organic materials. Our research has suggested components of mica-alumina combined insulation. As the results of and carried out temperature accelerating test, combined insulation life is expected long term over 40 years at over 500-Celsius degrees. However to construct high reliable insulating system, it is clarified deterioration mechanism on combined insulation and evaluates life of that. Therefore we carried out metal behavior test and voltage aging test using mica-sheet and alumina-cloth that are components of combined insulation under high temperature in nitrogen gas atmosphere. It is cleared two metal behavior mechanisms: One is that the opening of insulator are filled up with copper that is oxidized, the other is the metal diffuses in alumina-cloth through surface. And distance of metal behavior is able to be estimated at modulate temperature and in modulate time. It is also cleared that alumina-cloth is deteriorated by metal behavior into alumina-cloth. These results indicate that combined insulation is deteriorated from electrode side by metal behavior and is finally broken down through alumina-cloth. (author)

  13. Multilayer Insulation Ascent Venting Model

    Science.gov (United States)

    Tramel, R. W.; Sutherlin, S. G.; Johnson, W. L.

    2017-01-01

    The thermal and venting transient experienced by tank-applied multilayer insulation (MLI) in the Earth-to-orbit environment is very dynamic and not well characterized. This new predictive code is a first principles-based engineering model which tracks the time history of the mass and temperature (internal energy) of the gas in each MLI layer. A continuum-based model is used for early portions of the trajectory while a kinetic theory-based model is used for the later portions of the trajectory, and the models are blended based on a reference mean free path. This new capability should improve understanding of the Earth-to-orbit transient and enable better insulation system designs for in-space cryogenic propellant systems.

  14. Magnetically insulated transmission line oscillator

    Science.gov (United States)

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  15. Study of Hygrothermal Processes in External Walls with Internal Insulation

    Directory of Open Access Journals (Sweden)

    Biseniece Edite

    2018-03-01

    Full Text Available Being an important contributor to the final energy consumption, historic buildings built before 1945 have high specific heating energy consumption compared to current energy standards and norms. However, they often cannot be insulated from the outside due to their heritage and culture value. Internal insulation is an alternative. However internal insulation faces challenges related to hygrothermal behaviour leading to mold growth, freezing, deterioration and other risks. The goal of this research is to link hygrothermal simulation results with experimental results for internally insulated historic brick masonry to assess correlation between simulated and measured data as well as the most influential parameters. The study is carried out by both a mathematical simulation tool and laboratory tests of historic masonry with internal insulation with four insulation materials (mineral wool, EPS, wood fiber and granulated aerogel in a cold climate (average 4000 heating degree days. We found disparity between measured and simulated hygrothermal performance of studied constructions due to differences in material parameters and initial conditions of materials. The latter plays a more important role than material parameters. Under a steady state of conditions, the condensate tolerating system varies between 72.7 % and 80.5 % relative humidity, but in condensate limiting systems relative humidity variates between 73.3 % and 82.3 %. The temperature between the masonry wall and all insulation materials has stabilized on average at +10 °C. Mold corresponding to Mold index 3 was discovered on wood fiber mat.

  16. Study of Hygrothermal Processes in External Walls with Internal Insulation

    Science.gov (United States)

    Biseniece, Edite; Freimanis, Ritvars; Purvins, Reinis; Gravelsins, Armands; Pumpurs, Aivars; Blumberga, Andra

    2018-03-01

    Being an important contributor to the final energy consumption, historic buildings built before 1945 have high specific heating energy consumption compared to current energy standards and norms. However, they often cannot be insulated from the outside due to their heritage and culture value. Internal insulation is an alternative. However internal insulation faces challenges related to hygrothermal behaviour leading to mold growth, freezing, deterioration and other risks. The goal of this research is to link hygrothermal simulation results with experimental results for internally insulated historic brick masonry to assess correlation between simulated and measured data as well as the most influential parameters. The study is carried out by both a mathematical simulation tool and laboratory tests of historic masonry with internal insulation with four insulation materials (mineral wool, EPS, wood fiber and granulated aerogel) in a cold climate (average 4000 heating degree days). We found disparity between measured and simulated hygrothermal performance of studied constructions due to differences in material parameters and initial conditions of materials. The latter plays a more important role than material parameters. Under a steady state of conditions, the condensate tolerating system varies between 72.7 % and 80.5 % relative humidity, but in condensate limiting systems relative humidity variates between 73.3 % and 82.3 %. The temperature between the masonry wall and all insulation materials has stabilized on average at +10 °C. Mold corresponding to Mold index 3 was discovered on wood fiber mat.

  17. Structure, Mechanism, and Application of Vacuum Insulation Panels in Chinese Buildings

    OpenAIRE

    Peng, Changhai; Yang, Jianqiang

    2016-01-01

    Thermal insulation is one of the most used approaches to reduce energy consumption in buildings. Vacuum insulation panels (VIPs) are new thermal insulation materials that have been used in the domestic and overseas market in the last 20 years. Due to the vacuum thermal insulation technology of these new materials, their thermal conductivity can be as low as 0.004 W/(m·K) at the center of panels. In addition, VIPs that are composites with inorganic core and an envelope out of commonly three me...

  18. Performance of antisolar insulated roof system

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Irshad [Alternative Energy Development Board (AEDB), House No. 1, Main Nazimuddin Road, F-10/4, Islamabad (Pakistan)

    2010-01-15

    Rooms with concrete slab roofs directly exposed to the sun become unbearably hot during summer and very cold during winter. Huge amounts of energy are required to keep them comfortable. Application of thermal insulation on roofs significantly reduces energy required for heating and cooling. The effectiveness of roof insulations may be further enhanced if a layer of antisolar coating is applied on top of the insulation. The antisolar coating reflects most of the incident sunlight and prevents the roof from heating up. This reduces the daily cycles of thermal expansion and contraction which cause cracks in the roof slabs for the rainwater to leak through. The antisolar coating prolongs the useful life of the building structure as well as the life of the insulation that evaporates with heat. The method of application of the antisolar coating has been specially developed to eliminate thermal bridges formed between the edges of the tiles. This report presents the results of an experiment conducted at the Attock Refinery Limited (ARL) Rawalpindi to assess the performance of the antisolar insulated roof system. Record of the room temperature before and after the installation of the system shows a significant reduction in the indoor temperature. The room occupants, who used to experience a very high thermal stress after 10:30 am in spite of the 1.5-ton air conditioner operating in the room, felt much relieved after the installation. They had to turn back the thermostat of the air conditioner and even had to switch it off occasionally. A detailed thermal analysis of the room shows that cost of an antisolar system is paid back in less than a year in the form of savings of energy required for air-conditioning in summer and for gas heating in winter. In addition, the system prevents the addition of 150 kg per year of green house gases to the atmosphere for each square meter of the area covered by the system. It also provides a quieter environment by reducing the operational

  19. Plasma Deposited SiO2 for Planar Self-Aligned Gate Metal-Insulator-Semiconductor Field Effect Transistors on Semi-Insulating InP

    Science.gov (United States)

    Tabory, Charles N.; Young, Paul G.; Smith, Edwyn D.; Alterovitz, Samuel A.

    1994-01-01

    Metal-insulator-semiconductor (MIS) field effect transistors were fabricated on InP substrates using a planar self-aligned gate process. A 700-1000 A gate insulator of Si02 doped with phosphorus was deposited by a direct plasma enhanced chemical vapor deposition at 400 mTorr, 275 C, 5 W, and power density of 8.5 MW/sq cm. High frequency capacitance-voltage measurements were taken on MIS capacitors which have been subjected to a 700 C anneal and an interface state density of lxl0(exp 11)/eV/cq cm was found. Current-voltage measurements of the capacitors show a breakdown voltage of 107 V/cm and a insulator resistivity of 10(exp 14) omega cm. Transistors were fabricated on semi-insulating InP using a standard planar self-aligned gate process in which the gate insulator was subjected to an ion implantation activation anneal of 700 C. MIS field effect transistors gave a maximum extrinsic transconductance of 23 mS/mm for a gate length of 3 microns. The drain current drift saturated at 87.5% of the initial current, while reaching to within 1% of the saturated value after only 1x10(exp 3). This is the first reported viable planar InP self-aligned gate transistor process reported to date.

  20. Insulation boards made of pentane-expanded PIR high-resistance foam; Daemmplatten aus pentan-getriebenen PIR-Hartschaeumen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H.U.; Calgua, E. [Elastogran GmbH, Lemfoerde (Germany)

    1999-07-01

    New pentane-expanded polyisocyanurate formulas for the continuous manufacture of dimensionally stable insulation boards with flexible covers require significantly smaller quantities of halogen-free flame proofing agents compared with polyurethane systems. At the same time they stand up to the stringent fire tests demanded by the building industry. [German] Neue, pentangetriebene Polyisocyanurat-Formulierungen fuer die kontinuierliche Herstellung von dimensionsstabilen Daemmplatten mit flexiblen Deckschichten benoetigen deutlich geringere Mengen an halogenfreien Flammschutzmitteln im Vergleich zu Polyurethan-Systemen. Trotzdem erfuellen sie die anspruchsvollen, in der Bauindustrie geforderten Brandtests. (orig.)

  1. Determination of optimum insulation thickness in pipe for exergetic life cycle assessment

    International Nuclear Information System (INIS)

    Keçebaş, Ali

    2015-01-01

    Highlights: • It is aimed to determine optimum insulation thickness in pipe. • A new methodology is used as exergetic life cycle assessment for this purpose. • It is evaluated for various fuels, different pipe diameters and some combustion parameters. • This methodology is not suitable for determining optimum insulation thickness of a pipe. • There are benefits to our understanding of the need for insulation use in pipes. - Abstract: The energy saving and the environmental impacts’ reduction in the world building sector have gained great importance. Therefore, great efforts have been invested to create energy-saving green buildings. To do so, one of the many things to be done is the insulation of cylindrical pipes, canals and tanks. In the current study, the main focus is on the determination of the optimum insulation thickness of the pipes with varying diameters when different fuels are used. Therefore, through a new method combining exergy analysis and life cycle assessment, optimum insulation thickness of the pipes, total exergetic environmental impact, net saving and payback period were calculated. The effects of the insulation thickness on environmental and combustion parameters were analyzed in a detailed manner. The results revealed that optimum insulation thickness was affected by the temperature of the fuel when it enters into the combustion chamber, the temperature of the stack gas and the temperature of the combustion chamber. Under these optimum effects, the optimum insulation thickness of a 100 mm pipe was determined to be 55.7 cm, 57.2 cm and 59.3 cm for coal, natural gas and fuel–oil, respectively with the ratios of 76.32%, 81.84% and 84.04% net savings in the exergetic environmental impact. As the environmental impacts of the fuels and their products are bigger than those of the insulation material, the values of the optimum insulation thickness of the method used this study was found greater. Moreover, in the pipes with greater

  2. Acoustic quality and sound insulation between dwellings

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    1998-01-01

    to another, however, several of the results show a slope around 4 % per dB. The results may be used to evaluate the acoustic quality level of a certain set of sound insulation requirements, or they may be used as a basis for specifying the desired acoustic quality of future buildings......During the years there have been several large field investigations in different countries with the aim to find a relationship between sound insulation between dwellings and the subjective degree of annoyance. This paper presents an overview of the results, and the difficulties in comparing...... the different findings are discussed. It is tried to establish dose-response relationships between airborne sound insulation or impact sound pressure level according to ISO 717 and the percentage of people being annoyed by noise from neighbours. The slopes of the dose-response curves vary from one investigation...

  3. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, C. J. [Building Science Laboratories, Waterloo, ON (Canada); Fox, M. J. [Building Science Laboratories, Waterloo, ON (Canada); Lstiburek, J. [Building Science Corporation, Westford, MA (United States)

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three fiber glass insulation materials and one stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  4. Concrete elements with better insulation and less thermal bridge effect; Betonelementer med bedre isolering og mindre kuldebroer

    Energy Technology Data Exchange (ETDEWEB)

    Monefeldt Tommerup, H

    2000-09-01

    In this project new concrete sandwich panel solutions with better thermal properties have been developed, usable for highly-insulated buildings, responding to the needs that occur when the demands to the permissible energy consumption for heating is further increased. This is expected to happen in 2005. The improved thermal properties have been obtained without increasing the costs more than of the extra insulation. Removing concrete ribs at window reveals and at horizontal joints enables a thermal improvement as well as reduced costs due to simpler manufacturing of the panel. A natural grouping of concrete sandwich panels into two categories formed the basis of the work. One is panels with covering concrete reveals as typically used in residential housing and office buildings. The other is about panels with load bearing ribs serving as columns, typically used in industrial and commercial building. Of course there are panels that are a combination of the two categories, but this fact has not been crucial for the analyses. (au)

  5. Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei

    2011-01-01

    We study heat transport in a graphene ferromagnet-insulator-superconducting junction. It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor (FIS) junction is an oscillatory function of the barrier strength x in the thin-barrier limit. The gate potential U0 decreases the amplitude of thermal conductance oscillation. Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh. The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.%@@ We study heat transport in a graphene ferromagnet-insulator-superconducting junction.It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor(FIS)junction is an oscillatory function of the barrier strength X in the thin-barrier limit.The gate potential Uo decreases the amplitude of thermal conductance oscillation.Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh.The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.

  6. SAFETY ALERT: Electrical insulation defect on safety helmets

    CERN Multimedia

    HSE Unit

    2013-01-01

    Contrarily to the information provided until 31 May 2013, some “Euro Protection” safety helmets do not respect any of the requirements for electrical insulation.   This alert concerns the safety helmets identified under the following SCEM numbers: 50.43.30.050.4 white 50.43.30.060.2 yellow 50.43.30.070.0 blue This amounts up to several hundreds of helmets on the CERN site. People who need to wear an electrically insulated safety helmet for their activities, must from now on acquire a duly insulated item to be found on the CERN store under the following SCEM numbers: 50.43.30.210.6: Petzl Vertex ST Helmet (without vent) 50.43.30.300.1: IDRA Helmet with a visor for electrical work As for the people who do not need to wear an electrically insulated helmet for their activities, they can continue working with the aforementioned helmets. For your information, please take note of the maximum use limit of each helmet: “Euro Protection” Safety Helme...

  7. Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends.

    Science.gov (United States)

    Kwon, Yoon-Jung; Park, Yeong Don; Lee, Wi Hyoung

    2016-08-02

    Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed.

  8. Electrical Insulation of 500-m High-Tc Superconducting Power Cable

    International Nuclear Information System (INIS)

    Takahashi, T; Ichikawa, M; Suzuki, H; Okamoto, T; Akita, S; Mukoyama, S; Yagi, M; Maruyama, S; Kimura, A

    2006-01-01

    Electrical insulation is one of the essential technologies for the electric power apparatus. Determination of testing voltages and design method of the electrical insulation layer are inextricably linked each other, and are critical to developing and realizing a cold dielectric (CD) type high-Tc superconducting (HTS) power cable. The authors had proposed the electrical insulation design method with concepts of partial discharge-free designs for ac voltage condition. This paper discusses the testing voltages for a 77 kV 1000 A HTS power cable with a length of 500 m, and describes results of various voltage withstand test. As a result, it is concluded that the proposed electrical insulation design method is appropriate for the HTS power cable

  9. COMFORT PROVIDING SYSTEMS IN SPACES WITH ACOUTIC INSULATION

    Directory of Open Access Journals (Sweden)

    Grzegorz KLEKOT

    2014-12-01

    Full Text Available High capacities of currently available devices for sound registering and processing have generated a need for sound insulated spaces dedicated to exchange of confidential information. In such spaces, preventing propagation of vibroacoustic signals both by the way of air and construction elements entails complete insulation of the room. In order to meet this requirement, proper chemical composition of air and stabilized temperature conditions have to be guaranteed. The paper discusses questions related to the process of solving the task of providing thermal comfort and satisfying air quality in a room for confidential discussions. It presents prototype solutions of installations dedicated to stabilize human-friendly conditions inside a modular chamber provided with acoustic insulation.

  10. Chiral topological insulator on Nambu 3-algebraic geometry

    Directory of Open Access Journals (Sweden)

    Kazuki Hasebe

    2014-09-01

    Full Text Available Chiral topological insulator (AIII-class with Landau levels is constructed based on the Nambu 3-algebraic geometry. We clarify the geometric origin of the chiral symmetry of the AIII-class topological insulator in the context of non-commutative geometry of 4D quantum Hall effect. The many-body groundstate wavefunction is explicitly derived as a (l,l,l−1 Laughlin–Halperin type wavefunction with unique K-matrix structure. Fundamental excitation is identified with anyonic string-like object with fractional charge 1/(2(l−12+1. The Hall effect of the chiral topological insulators turns out be a color version of Hall effect, which exhibits a dual property of the Hall and spin-Hall effects.

  11. The short-term effects of antenna insulation thickness on path losses in wireless telemetry implants at microwave frequencies

    Directory of Open Access Journals (Sweden)

    Lukas Kneisz

    2013-07-01

    Full Text Available Various physiological parameters can be monitored non-invasively using wireless biotelemetry links. The development of sophisticated ultra low power consuming transceivers allows the transmission of large amounts of data from the inside of the body to an external receiver in real time at microwave frequencies.Antenna impedance matching is crucial for obtaining an acceptable propagation link budget in a wireless telemetry link. The dielectric properties of biological tissue induce detuning to transceiver antennas when implanted into the body. To counteract detuning problems, implant antennas are coated with biocompatible insulating material. The study investigates the propagation losses of a wireless communication link at different insulation thicknesses of medical grade silicone in the Industrial-Scientific-Medical (ISM radio band at 2.45 GHz. The wireless link consisted of an implantable unit which was placed between two pads of tissue substitute material and an external receiver which was connected to a laptop. Predefined data packets were transmitted from the implant, the received packets were analyzed, packet errors and packet losses were logged and the received signal strength indicator values (RSSI were recorded. Our results showed that the mean RSSI values of insulated transmitter antennas - embedded in tissue equivalent material - provide more safety distance to critical receiver sensitivity level than uncoated antennas.The conducted measurements let us conclude that with increasing thickness of the insulation layer, the antenna becomes less sensitive to detuning by adjacent tissue substitute material. Therefore tuned antennas are less influenced by the surrounding tissue after implantation.

  12. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, C. J. [Building Science Labs., Waterloo, ON (Canada); Fox, M. J. [Building Science Labs., Waterloo, ON (Canada); Lstiburek, J. [Building Science Corporation, Westford, MA (United States)

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three (3) fiber glass insulation materials and one (1) stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  13. Design of the Yang magnetically-insulated transmission line

    International Nuclear Information System (INIS)

    Gu Yuanchao; Song Shenyi

    2002-01-01

    The authors have designed a new magnetically insulated transmission line (MITL) for the Yang accelerator. The differences between the existing line and the designing one are given. The electric strength of some special regions on the lines and the inductance of the lines have been calculated. The authors have checked the states of magnetic insulation on the designing line

  14. Sound insulation between dwellings - Descriptors applied in building regulations in Europe

    DEFF Research Database (Denmark)

    Rasmussen, Birgit; Rindel, Jens Holger

    2010-01-01

    Regulatory sound insulation requirements for dwellings have existed since the 1950s in some countries and descriptors for evaluation of sound insulation have existed for nearly as long. However, the descriptors have changed considerably over time, from simple arithmetic averaging of frequency bands...... was carried out of legal sound insulation requirements in 24 countries in Europe. The comparison of requirements for sound insulation between dwellings revealed significant differences in descriptors as well as levels. This paper focuses on descriptors and summarizes the history of descriptors, the problems...... of the present situation and the benefits of consensus concerning descriptors for airborne and impact sound insulation between dwellings. The descriptors suitable for evaluation should be well-defined under practical situations in buildings and be measurable. Measurement results should be reproducible...

  15. SOME METHODS FOR SAVING HEAT ENERGY WHILE MANUFACTURING VERTICAL INSULATING GLASS UNITS

    Directory of Open Access Journals (Sweden)

    S. A. Shybeka

    2018-01-01

    Full Text Available The paper proposes and considers two constructive methods for saving heat energy while manufacturing vertical insulating glass units with various gas filling of inter-glass space. The first method presupposes manufacturing of insulating glass units having specific thickness which is calculated in accordance with specific features of convective heat exchange in the closed loop circuit. Value of the heat-exchange coefficient depends on gas properties which is filling a chamber capacity (coefficients of thermal conductivity, volumetric expansion, kinematic viscosity, thermometric conducivity, temperature difference on the boundary of interlayer and its thickness. It has been shown that while increasing thickness of gas layer convective heat exchange coefficient is initially decreasing up to specific value and then after insignificant increase it practically remains constant. In this connection optimum thicknesses of filled inter-layers for widely-spread gas in production (dry air, argon, krypton, xenon and for carbon dioxide have determined in the paper. Manufacturing of insulating glass units with large thickness of gas chamber practically does not lead to an increase in resistance to heat transfer but it will increase gas consumption rate. The second industrial economic method is interrelated with application of carbon dioxide СО2 as a filler of inter-glass space which has some advantages in comparison with other gases (small cost due to abundance, nontoxicity, transparency for visual light and absorption of heat rays. Calculations have shown that application of carbon dioxide will make it possible to increase resistance to heat transfer of one-chamber glass unit by 0.05 m²×K/W (with emissivity factor of internal glass – 0.837 or by 0.16 m²×K/W (with emission factor – 0.1 in comparison with the glass unit where a chamber is filled with dry air.

  16. A study on the insulation coordination of 765 kV system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Boo; Shim, Eung Bo [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Lee, Yong Han; Youn, Jae Yeong; Hwang, Chi Woo; Jung, Dong Hak [Korea Electrotechnology Research Inst., Changwon (Korea, Republic of)

    1996-12-31

    Analysis of the power frequency temporary overvoltage. Analysis of switching surges - Fault imitation, closing and re closing, fault clearing. Analysis of lightning surges. Insulation design of 765 kV overhead transmission line. Insulation coordination of 765 kV gas insulated substation. Transient recovery voltage and high speed ground switch (author). 38 refs., 55 figs.

  17. Development and validation of cryogenic foam insulation for LH2 subsonic transports

    Science.gov (United States)

    Anthony, F. M.; Colt, J. Z.; Helenbrook, R. G.

    1981-01-01

    Fourteen foam insulation specimens were tested. Some were plain foam while others contained flame retardants, chopped fiberglass reinforcement and/or vapor barriers. The thermal performance of the insulation was determined by measuring the rate at which LH2 boiled from an aluminum tank insulated with the test material. The test specimens were approximately 50 mm (2 in.) thick. They were structurally scaled so that the test cycle would duplicate the maximum thermal stresses predicted for the thicker insulation of an aircraft liquid hydrogen fuel tank during a typical subsonic flight. The simulated flight cycle of approximately 10 minutes duration heated the other insulation surface to 316 K (110 F) and cooled it to 226 K (20 F) while the inner insulation surface remained at liquid hydrogen temperature of 20 K (-423 F). Two urethane foam insulations exceeded the initial life goal of 2400 simulated flight cycles and sustained 4400 cycles with only minor damage. The addition of fiberglass reinforcement of flame retardant materials to an insulation degraded thermal performance and/or the life of the foam material. Installation of vapor barriers enhanced the structural integrity of the material but did not improve thermal performance. All of the foams tested were available materials; none were developed specifically for LH2 service.

  18. Industry

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  19. Coexistence of metallic and insulating channels in compressed YbB6

    Science.gov (United States)

    Ying, Jianjun; Tang, Lingyun; Chen, Fei; Chen, Xianhui; Struzhkin, Viktor V.

    2018-03-01

    It remains controversial whether compressed YbB6 material is a topological insulator or a Kondo topological insulator. We performed high-pressure transport, x-ray diffraction (XRD), x-ray absorption spectroscopy, and Raman-scattering measurements on YbB6 samples in search for its topological Kondo phase. Both high-pressure powder XRD and Raman measurements show no trace of structural phase transitions in YbB6 up to 50 GPa. The nonmagnetic Yb2 + gradually change to magnetic Yb3 + above 18 GPa concomitantly with the increase in resistivity. However, the transition to the insulating state occurs only around 30 GPa, accompanied by the increase in the shear stress, and anomalies in the pressure dependence of the Raman T2 g mode and in the B atomic position. The resistivity at high pressures can be described by a model taking into account coexisting insulating and metallic channels with the activation energy for the insulating channel about 30 meV. We argue that YbB6 may become a topological Kondo insulator at high pressures above 35 GPa.

  20. Bulk and edge spin transport in topological magnon insulators

    NARCIS (Netherlands)

    Rückriegel, A.; Brataas, A.; Duine, R.A.

    2018-01-01

    We investigate the spin transport properties of a topological magnon insulator, a magnetic insulator characterized by topologically nontrivial bulk magnon bands and protected magnon edge modes located in the bulk band gaps. Employing the Landau-Lifshitz-Gilbert phenomenology, we calculate the spin

  1. Metformin ameliorates insulitis in STZ-induced diabetic mice

    Directory of Open Access Journals (Sweden)

    Guo-Jun Jiang

    2017-04-01

    Full Text Available Background & Aims Metformin is currently the most widely used first-line hypoglycemic agent for diabetes mellitus. Besides glucose-lowering action, there is increasingly interest in the potential anti-inflammatory action of this drug. In the present study, we investigated the actions of metformin on experimental insulitis using STZ-induced diabetic mice. Methods Mice with acute diabetes induced by STZ were administered metformin by gavage. Changes of blood glucose and body weight, and the daily amount of food and water intake were measured. Pancreatic tissues were collected for histologic analyses. Pathological assessment and immunohistochemistry analysis were used to determine the effect of metformin on insulitis. Inflammatory cytokines in the pancreas and insulin levels were measured through ELISA analysis. Results Metformin significantly reduced blood glucose levels and improved aberrant water intake behavior in experimental diabetic mice. No significant differences were observed in terms of body weight and food intake behavior in metformin-treated animals. In the STZ-induced model of diabetes, we found the appearance of pronounced insulitis. However, metformin administration reduced the severity of insulitis assessed by blind pathological scoring. In addition, metformin treatment improved insulin levels in experimental diabetic mice. ELISA assay revealed decreased levels of inflammatory response marker IL-1β and TNF-α in the pancreatic tissues following metformin treatment. Conclusion Metformin attenuated insulitis in the STZ-induced mice model of diabetes. This islet-protective effect might be partly correlated with the anti-inflammatory action of metformin.

  2. Arc damage characteristics of inter-anode insulators in MHD generator

    International Nuclear Information System (INIS)

    Kato, Ken; Takano, Kiyonami

    1990-01-01

    The inter-anode arc caused by a Hall field is driven by a magnetic field into the anode-wall in an MHD generator, which limits the lifetime and performance of the generator. The arc damage to inter-anode insulators of an MHD generator has been studied experimentally, in order to obtain basic data for the design of the inter-anode insulation. The experiment was conducted using a pair of electrodes with an insulator between them. Arc currents was supplied from a DC power source and magnetic field was applied perpendicular to the arc current. Experimental parameters are the insulator thickness, arc current, magnetic field and insulator materials. Quartz glass, boron nitride, magnesia, alumina, silicon carbide, silicon nitride etc. were tested and evaluated. The following conclusions are evident from the experiments. Boron nitride and quartz glass are the most promising inter-anode insulators. Boron nitride has a higher arc voltage and longer cutting time than quartz glass, and it is the best material. Cutting time is approximately proportional to the -0.4 th power of the magnetic field. Loss of insulator is approximately proportional to the 0.7 th power of the arc current. The arc voltage increases linearly with the inter anode gap length. It also increases with magnetic field, but decreases with increase of arc current. An equation which approximates to such relations of arc voltage versus inter-anode gap length, arc current and magnetic field has been obtained. The standard deviation of the error of this equation is 12 % for boron nitride and 15 % for quartz glass. (author)

  3. Intense-proton-beam transport through an insulator beam guide

    International Nuclear Information System (INIS)

    Hanamori, Susumu; Kawata, Shigeo; Kikuchi, Takashi; Fujita, Akira; Chiba, Yasunobu; Hikita, Taisuke; Kato, Shigeru

    1998-01-01

    In this paper we study intense-proton-beam transport through an insulator guide. In our previous papers (Jpn. J. Appl. Phys. 34 (1995) L520, Jpn. J. Appl. Phys. 35 (1996) L1127) we proposed a new system for intense-electron-beam transport using an insulator guide. In contrast to the electron beam, an intense-proton beam tends to generate a virtual anode, because of the large proton mass. The virtual anode formation at the initial stage is prevented by prefilled plasma in this system. During and after this, electrons are extracted from the plasma generated at the insulator surface by the proton beam space charge and expand over the transport area. The proton beam charge is effectively neutralized by the electrons. Consequently, the proton beam propagates efficiently through the insulator beam guide. The electron extraction is self-regulated by the net space charge of the proton beam. (author)

  4. Demonstration of Hybrid Multilayer Insulation for Fixed Thickness Applications

    Science.gov (United States)

    Johnson, Wesley; Fesmire, James; Heckle, Wayne

    2015-01-01

    Once on orbit, high performing insulation systems for cryogenic systems need just as good radiation (optical) properties as conduction properties. This requires the use of radiation shields with low conductivity spacers in between. By varying the height and cross-sectional area of the spacers between the radiation shields, the relative radiation and conduction heat transfers can be manipulated. However, in most systems, there is a fixed thickness or volume allocated to the insulation. In order to understand how various combinations of different multilayer insulation (MLI) systems work together and further validate thermal models of such a hybrid MLI set up, test data is needed. The MLI systems include combinations of Load Bearing MLI (LB-MLI) and traditional MLI. To further simulate the space launch vehicle case wherein both ambient pressure and vacuum environments are addressed, different cold-side thermal insulation substrates were included for select tests.

  5. Status of surface conduction in topological insulators

    International Nuclear Information System (INIS)

    Barua, Sourabh; Rajeev, K. P.

    2014-01-01

    In this report, we scrutinize the thickness dependent resistivity data from the recent literature on electrical transport measurements in topological insulators. A linear increase in resistivity with increase in thickness is expected in the case of these materials since they have an insulating bulk and a conducting surface. However, such a trend is not seen in the resistivity versus thickness data for all the cases examined, except for some samples, where it holds for a range of thickness

  6. Measure Guideline. Internal Insulation of Masonry Walls

    Energy Technology Data Exchange (ETDEWEB)

    Straube, J. F. [Building Science Corporation (BSC), Somerville, MA (United States); Ueno, K. [Building Science Corporation (BSC), Somerville, MA (United States); Schumacher, C. J. [Building Science Corporation (BSC), Somerville, MA (United States)

    2012-07-01

    This measure guideline provides recommendations for interior insulation assemblies that control interstitial condensation and durability risks; recommendations for acceptable thermal performance are also provided. An illustrated guide of high-risk exterior details (which concentrate bulk water), and recommended remediation details is provided. This is followed by a recommended methodology for risk assessment of a masonry interior insulation project: a series of steps are suggested to assess the risks associated with this retrofit, with greater certainty with added steps.

  7. Measure Guideline: Internal Insulation of Masonry Walls

    Energy Technology Data Exchange (ETDEWEB)

    Straube, J. F.; Ueno, K.; Schumacher, C. J.

    2012-07-01

    This measure guideline provides recommendations for interior insulation assemblies that control interstitial condensation and durability risks; recommendations for acceptable thermal performance are also provided. An illustrated guide of high-risk exterior details (which concentrate bulk water), and recommended remediation details is provided. This is followed by a recommended methodology for risk assessment of a masonry interior insulation project: a series of steps are suggested to assess the risks associated with this retrofit, with greater certainty with added steps.

  8. Chiral topological insulator of magnons

    Science.gov (United States)

    Li, Bo; Kovalev, Alexey A.

    2018-05-01

    We propose a magnon realization of 3D topological insulator in the AIII (chiral symmetry) topological class. The topological magnon gap opens due to the presence of Dzyaloshinskii-Moriya interactions. The existence of the topological invariant is established by calculating the bulk winding number of the system. Within our model, the surface magnon Dirac cone is protected by the sublattice chiral symmetry. By analyzing the magnon surface modes, we confirm that the backscattering is prohibited. By weakly breaking the chiral symmetry, we observe the magnon Hall response on the surface due to opening of the gap. Finally, we show that by changing certain parameters, the system can be tuned between the chiral topological insulator, three-dimensional magnon anomalous Hall, and Weyl magnon phases.

  9. Nuclear reactor vessel fuel thermal insulating barrier

    Science.gov (United States)

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  10. Acoustic quality and sound insulation between dwellings

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    1999-01-01

    to another, however, several of the results show a slope around 4 % per dB. The results may be used to evaluate the acoustic quality level of a certain set of sound insulation requirements, or they may be used as a basis for specifying the desired acoustic quality of future buildings.......During the years there have been several large field investigations in different countries with the aim to find a relationship between sound insulation between dwellings and the subjective degree of annoyance. This paper presents an overview of the results, and the dif-ficulties in comparing...... the different findings are discussed. It is tried to establish dose-response relationships between airborne sound insulation or impact sound pressure level according to ISO 717 and the percentage of people being annoyed by noise from neighbours. The slopes of the dose-response curves vary from one investigation...

  11. Insulated piggyBac vectors for insect transgenesis

    Directory of Open Access Journals (Sweden)

    Horn Carsten

    2006-06-01

    Full Text Available Abstract Background Germ-line transformation of insects is now a widely used method for analyzing gene function and for the development of genetically modified strains suitable for pest control programs. The most widely used transposable element for the germ-line transformation of insects is piggyBac. The site of integration of the transgene can influence gene expression due to the effects of nearby transcription enhancers or silent heterochromatic regions. Position effects can be minimized by flanking a transgene with insulator elements. The scs/scs' and gypsy insulators from Drosophila melanogaster as well as the chicken β-globin HS4 insulator function in both Drosophila and mammalian cells. Results To minimize position effects we have created a set of piggyBac transformation vectors that contain either the scs/scs', gypsy or chicken β-globin HS4 insulators. The vectors contain either fluorescent protein or eye color marker genes and have been successfully used for germ-line transformation of Drosophila melanogaster. A set of the scs/scs' vectors contains the coral reef fluorescent protein marker genes AmCyan, ZsGreen and DsRed that have not been optimized for translation in human cells. These marker genes are controlled by a combined GMR-3xP3 enhancer/promoter that gives particularly strong expression in the eyes. This is also the first report of the use of the ZsGreen and AmCyan reef fluorescent proteins as transformation markers in insects. Conclusion The insulated piggyBac vectors should protect transgenes against position effects and thus facilitate fine control of gene expression in a wide spectrum of insect species. These vectors may also be used for transgenesis in other invertebrate species.

  12. The acoustically induced response of reactor thermal insulation at low frequencies

    International Nuclear Information System (INIS)

    Whitton, P.N.

    1979-01-01

    The response of insulation assemblies to sound is considered, and in particular the behaviour in the lower modes. Experimental confirmation of the theoretical results are reported using simulated insulation assemblies excited in a reverberant sound field. It is shown that response increases with the irregularity of cover plate shape and attachment arrangements, and that large variations in response with spatial position in a cavity are possible. Consideration is also given to the sound radiation from the back face of the coverplate in contact with the insulant. The results are important when extrapolating measurements made on insulation specimens in air to reactor conditions. (author)

  13. Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends

    Science.gov (United States)

    Kwon, Yoon-Jung; Park, Yeong Don; Lee, Wi Hyoung

    2016-01-01

    Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed. PMID:28773772

  14. Inverse participation ratio and localization in topological insulator phase transitions

    International Nuclear Information System (INIS)

    Calixto, M; Romera, E

    2015-01-01

    Fluctuations of Hamiltonian eigenfunctions, measured by the inverse participation ratio (IPR), turn out to characterize topological-band insulator transitions occurring in 2D Dirac materials like silicene, which is isostructural with graphene but with a strong spin–orbit interaction. Using monotonic properties of the IPR, as a function of a perpendicular electric field (which provides a tunable band gap), we define topological-like quantum numbers that take different values in the topological-insulator and band-insulator phases. (paper)

  15. Improvement of methods for calculation of sound insulation in buildings

    OpenAIRE

    Mašović, Draško B.

    2015-01-01

    The main object of this work are the methods for calculation of sound insulation based on the classical model of sound propagation in buildings and single-number rating of sound insulation. The aim of the work is inspection of the possibilities for improvement of standard methods for quantification and calculation of sound insulation, in order to achieve higher accuracy of the obtained numerical values and their correlation with subjective impression of the acoustic comfort in buildings. Proc...

  16. Optimization of insulation of a linear Fresnel collector

    Science.gov (United States)

    Ardekani, Mohammad Moghimi; Craig, Ken J.; Meyer, Josua P.

    2017-06-01

    This study presents a simulation based optimization study of insulation around the cavity receiver of a Linear Fresnel Collector. This optimization study focuses on minimizing heat losses from a cavity receiver (maximizing plant thermal efficiency), while minimizing insulation cross-sectional area (minimizing material cost and cavity dead load), which leads to a cheaper and thermally more efficient LFC cavity receiver.

  17. Constructions complying with tightened Danish sound insulation requirements for new housing

    DEFF Research Database (Denmark)

    Rasmussen, Birgit; Hoffmeyer, Dan

    New sound insulation requirements in Denmark in 2008 New Danish Building Regulations with tightened sound insulation requirements were introduced in 2008 (and in 2010 with unchanged acoustic requirements). Compared to the Building Regulations from 1995, the airborne sound insulation requirements...... were 2 –3 dB stricter and the impact sound insulation requirements 5 dB stricter. The limit values are given using the descriptors R’w and L’n,w as before. For the first time, acoustic requirements for dwellings are not found as figures in the Building Regulations. Instead, it is stated......), Denmark. [2] "Lydisolering mellem boliger – Nybyggeri" (Sound insulation between dwellings – Newbuild)". Publication expected in April 2011. The guideline is a part of a series of seven new SBi acoustic guidelines. Project leader Birgit Rasmussen. The series shall replace the existing guidelines 1984...

  18. A Seismic Analysis for Reflective Metal Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyuhyung; Kim, Taesoon [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    U.S. NRC (Nuclear Regulatory Commission) GSI- 191 (Generic Safety Issue-191) is concerned about the head-loss of emergency core cooling pumps caused by calcium silicate insulation debris accumulated on a sump screen when a loss of coolant accident (LOCA). In order to cope with the concern, many nuclear plants in U. S. have been replacing calcium silicate insulation in containment building with reflective metal insulation (RMI). In Korea, RMI has been used for only reactor vessels recently constructed, but the RMI was imported. Therefore, we have been developing the domestic design of RMI to supply to nuclear power plants under operation and construction in relation to the GSI-191. This paper covers that the structural integrity of the RMI assembly was evaluated under SSE (safety shutdown earthquake) load. An analysis model was built for the seismic test system of a reflective metal insulation assembly and pre-stress, modal, and spectrum analysis for the model were performed using a commercial structural analysis code, ANSYS. According to the results of the analyses, the buckles fastening the RMIs showed the structural integrity under the required response spectrum containing the safety shutdown earthquake loads applied to main components in containment building. Consequently, since the RMI isn't disassembled under the SSE load, the RMI is judged not to affect safety related components.

  19. A Seismic Analysis for Reflective Metal Insulation

    International Nuclear Information System (INIS)

    Kim, Kyuhyung; Kim, Taesoon

    2016-01-01

    U.S. NRC (Nuclear Regulatory Commission) GSI- 191 (Generic Safety Issue-191) is concerned about the head-loss of emergency core cooling pumps caused by calcium silicate insulation debris accumulated on a sump screen when a loss of coolant accident (LOCA). In order to cope with the concern, many nuclear plants in U. S. have been replacing calcium silicate insulation in containment building with reflective metal insulation (RMI). In Korea, RMI has been used for only reactor vessels recently constructed, but the RMI was imported. Therefore, we have been developing the domestic design of RMI to supply to nuclear power plants under operation and construction in relation to the GSI-191. This paper covers that the structural integrity of the RMI assembly was evaluated under SSE (safety shutdown earthquake) load. An analysis model was built for the seismic test system of a reflective metal insulation assembly and pre-stress, modal, and spectrum analysis for the model were performed using a commercial structural analysis code, ANSYS. According to the results of the analyses, the buckles fastening the RMIs showed the structural integrity under the required response spectrum containing the safety shutdown earthquake loads applied to main components in containment building. Consequently, since the RMI isn't disassembled under the SSE load, the RMI is judged not to affect safety related components

  20. Comparative Investigation of Pollution Accumulation and Natural Cleaning for Different HV Insulators

    Directory of Open Access Journals (Sweden)

    M. Dimitropoulou

    2015-04-01

    Full Text Available High Voltage insulators are scattered throughout any HV network and a single insulator fault may cause an excessive outage. Reliability is a key issue for electric power systems and fault-free performance of insulators greatly reflects on the reliability of the system. Environmental influence is rather important for the optimum selection of outdoor insulators and, therefore, field measurements provide valuable information. Utilities perform such measurements in order to decide upon the location/route of new HV installations (substations, lines etc and also to optimize the selection, maintenance and replacement of already installed insulators. A rather interesting case in Greek territory is the island of Crete, due to the coastal development of the network and the local weather conditions. The Greek utility has employed a variety of remedies to cope with the pollution problem. Following the positive feedback after the installation on certain tower in the past, a large project to replace all ceramic insulators with new polymer ones of hydrophobic surface is now in progress. Polymer coatings have also been extensively applied on substations and also on certain areas/towers of the transmission network in the past. In order to investigate the pollution accumulation and the impact of natural washing on different insulator types, a series of periodical ESDD and NSDD pollution measurements were conducted in HEDNO’s TALOS High Voltage Test Station for a 3-months period. Multiple measurements were performed on each insulator every month in order to collect additional data. Five different insulators were selected based on the types historically used in the Cretan Network. Along with the standard glass disc profile, two strings of glass fog profile (the one coated with RTV and two long-rod composite insulators of different shed profile and material were used. Results are presented and discussed in this paper.

  1. Gas cluster ion beam equipments for industrial applications

    International Nuclear Information System (INIS)

    Matsuo, J.; Takaoka, G.H.; Yamada, I.

    1995-01-01

    30 keV and 200 keV gas cluster ion beam equipments have been developed for industrial applications. A gas cluster source with a non-cooled nozzle was used for both the equipments. Sufficient monomer ion suppression was achieved by using an ExB filter and chromatic lenses mass filter with low extraction voltage. These equipments are suitable to be used for low-damage surface treatment of metals, insulators and semiconductors without heavy metal contamination. (orig.)

  2. Heat insulating structure for use in transporting and handling gas of high temperature and pressure

    International Nuclear Information System (INIS)

    Mathusima, T.; Sato, T.; Uenishi, A.

    1980-01-01

    A heat insulating structure is described that has a heat-resistant tube disposed in a tubular cylindrical body and defining a passage for a high temperature gas, a heat insulating material disposed between the tube and the tubular cylindrical body and adapted to prevent the heat possessed by the gas from being transmitted to the tubular cylindrical body, and a spring adapted to bias the heat insulating material toward the inner surface of the tubular cylindrical body, so as to prevent the formation of a bypass passage for the gas including the gap between the tubular cylindrical body and the heat insulating material. The heat insulating material consists of a plurality of fibrous heat insulating materials mainly consisting of bulky fibrous materials and a plurality of shaped fibrous heat insulating materials. These fibrous heat insulating materials and the shaped fibrous heat insulating materials are arranged alternatingly and independently in the axial direction. In each of the bulky fibrous heat insulating material, disposed is a spring for biasing the shaped fibrous heat insulating material in the axial direction

  3. Dimensional crossover and cold-atom realization of topological Mott insulators

    Science.gov (United States)

    Scheurer, Mathias S.; Rachel, Stephan; Orth, Peter P.

    2015-02-01

    Interacting cold-atomic gases in optical lattices offer an experimental approach to outstanding problems of many body physics. One important example is the interplay of interaction and topology which promises to generate a variety of exotic phases such as the fractionalized Chern insulator or the topological Mott insulator. Both theoretically understanding these states of matter and finding suitable systems that host them have proven to be challenging problems. Here we propose a cold-atom setup where Hubbard on-site interactions give rise to spin liquid-like phases: weak and strong topological Mott insulators. They represent the celebrated paradigm of an interacting and topological quantum state with fractionalized spinon excitations that inherit the topology of the non-interacting system. Our proposal shall help to pave the way for a controlled experimental investigation of this exotic state of matter in optical lattices. Furthermore, it allows for the investigation of a dimensional crossover from a two-dimensional quantum spin Hall insulating phase to a three-dimensional strong topological insulator by tuning the hopping between the layers.

  4. Design principles for handmade electrical insulation of superconducting joints in W7-X

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, K., E-mail: kerstin.rummel@ipp.mpg.de [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); John, A. [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Sulek, Z. [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Radzikowskiego 152 (Poland)

    2013-10-15

    Highlights: ► In W-7X there are several types of handmade electrical insulation. ► In general insulation based on impregnated glass tapes and special G10 pieces. ► A proper overlapping of glass tapes turned out to be mandatory. ► Detailed qualification and training helps to minimize the failure rate. ► Visual inspection and Paschen tests after every insulation steps are important. -- Abstract: The superconducting magnet system of the Wendelstein 7-X (W7-X) experiment consists of 50 non-planar and 20 planar coils, 121 bus bars and 14 current leads. The connection between bus bars, coils and current leads will be provided by 198 joints. The joints have to be insulated manually during the assembly of the machine in constraint positions and a tight environment. In general the insulation is based on glass tapes impregnated with epoxy resin and special G10 insulating pieces embedded in the glass tape insulation. In critical areas Kapton{sup ®}-foils are embedded in the insulation. All types of insulation were qualified at mock-ups in a 1:1 model of the expected environment in W7-X. The qualification programme comprises thermal cycling between room temperature and 77 K and high voltage tests under air, under vacuum and under reduced pressure (Paschen test). The paper describes the main principles used for different types of handmade Paschen-tight insulations in W7-X and the visual and electrical tests during and after assembly.

  5. Measure Guideline: Basement Insulation Basics

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, R.; Mantha, P.; Puttagunta, S.

    2012-10-01

    This guideline is intended to describe good practices for insulating basements in new and existing homes, and is intended to be a practical resources for building contractors, designers, and also to homeowners.

  6. Topological Insulator Nanowires and Nanoribbons

    KAUST Repository

    Kong, Desheng; Randel, Jason C.; Peng, Hailin; Cha, Judy J.; Meister, Stefan; Lai, Keji; Chen, Yulin; Shen, Zhi-Xun; Manoharan, Hari C.; Cui, Yi

    2010-01-01

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi2Se3 material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive

  7. Reflective Insulation for Energy Conservation in South East Asia

    Science.gov (United States)

    San Teh, Khar; Yarbrough, David W.; Haw Lim, Chin; Salleh, Elias

    2017-05-01

    Thermal resistances have been measured for attic spaces insulated with reflective insulations. Three test units located in Malaysia were instrumented to provide heat flux and temperatures for the calculation of time-average RSI-values (RSI is representing R-value in SI units). The RSI for attics with enclosed reflective air spaces were in the range 2-3 m2·K/W while the uninsulated attics averaged about 0.4 m2·K/W. The RSI-values determined in this project were for heat-flow down, the predominant heat-flow direction for attic spaces in Equatorial regions. The observed thermal resistances due to the installation of the reflective insulation results in an 80-90% annual decrease in the heat transfer across the ceiling. This reduces utility usage for air conditioned units and improved comfort for occupants. The research demonstrates the use of transient data for the determination of thermal insulation performance and usefulness of enclosed reflective air spaces for thermal resistance.

  8. A Solution-Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics

    KAUST Repository

    Kiefer, David; Yu, Liyang; Fransson, Erik; Gó mez, André s; Primetzhofer, Daniel; Amassian, Aram; Campoy-Quiles, Mariano; Mü ller, Christian

    2016-01-01

    Poly(ethylene oxide) is demonstrated to be a suitable matrix polymer for the solution-doped conjugated polymer poly(3-hexylthiophene). The polarity of the insulator combined with carefully chosen processing conditions permits the fabrication of tens of micrometer-thick films that feature a fine distribution of the F4TCNQ dopant:semiconductor complex. Changes in electrical conductivity from 0.1 to 0.3 S cm−1 and Seebeck coefficient from 100 to 60 μV K−1 upon addition of the insulator correlate with an increase in doping efficiency from 20% to 40% for heavily doped ternary blends. An invariant bulk thermal conductivity of about 0.3 W m−1 K−1 gives rise to a thermoelectric Figure of merit ZT ∼ 10−4 that remains unaltered for an insulator content of more than 60 wt%. Free-standing, mechanically robust tapes illustrate the versatility of the developed dopant:semiconductor:insulator ternary blends.

  9. Electrical insulation and conduction coating for fusion experimental devices

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Tsujimura, Seiji; Toyoda, Masahiko; Inoue, Masahiko; Abe, Tetsuya; Murakami, Yoshio

    1996-01-01

    The development of electrical insulation and conduction coating methods that can be applied to large components of fusion experimental devices has been investigated. A thermal spraying method is used to coat the insulation or conduction materials on the structural components because of its applicability for large surfaces. The insulation material chosen was Al 2 O 3 , while Cr 3 C 2 -NiCr and WC-NiCr were chosen as conduction materials. These materials were coated on stainless steel substrates to examine the basic characteristics of the coated layers, such as their adhesive strength to the substrate, thermal shock resistance, electrical resistance, dielectric breakdown voltage, and thermal conductivity. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed adequate frictional properties. The spraying method was tested on a 100- x 1000-mm surface and found to be applicable for large surfaces of experimental fusion devices. 9 refs., 6 figs., 15 tabs

  10. Experimental demonstration of anomalous Floquet topological insulator for sound

    Science.gov (United States)

    Peng, Yu-Gui; Qin, Cheng-Zhi; Zhao, De-Gang; Shen, Ya-Xi; Xu, Xiang-Yuan; Bao, Ming; Jia, Han; Zhu, Xue-Feng

    2016-11-01

    Time-reversal invariant topological insulator is widely recognized as one of the fundamental discoveries in condensed matter physics, for which the most fascinating hallmark is perhaps a spin-based topological protection, the absence of scattering of conduction electrons with certain spins on matter surface. Recently, it has created a paradigm shift for topological insulators, from electronics to photonics, phononics and mechanics as well, bringing about not only involved new physics but also potential applications in robust wave transport. Despite the growing interests in topologically protected acoustic wave transport, T-invariant acoustic topological insulator has not yet been achieved. Here we report experimental demonstration of anomalous Floquet topological insulator for sound: a strongly coupled metamaterial ring lattice that supports one-way propagation of pseudo-spin-dependent edge states under T-symmetry. We also demonstrate the formation of pseudo-spin-dependent interface states due to lattice dislocations and investigate the properties of pass band and band gap states.

  11. A Solution-Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics

    KAUST Repository

    Kiefer, David

    2016-09-01

    Poly(ethylene oxide) is demonstrated to be a suitable matrix polymer for the solution-doped conjugated polymer poly(3-hexylthiophene). The polarity of the insulator combined with carefully chosen processing conditions permits the fabrication of tens of micrometer-thick films that feature a fine distribution of the F4TCNQ dopant:semiconductor complex. Changes in electrical conductivity from 0.1 to 0.3 S cm−1 and Seebeck coefficient from 100 to 60 μV K−1 upon addition of the insulator correlate with an increase in doping efficiency from 20% to 40% for heavily doped ternary blends. An invariant bulk thermal conductivity of about 0.3 W m−1 K−1 gives rise to a thermoelectric Figure of merit ZT ∼ 10−4 that remains unaltered for an insulator content of more than 60 wt%. Free-standing, mechanically robust tapes illustrate the versatility of the developed dopant:semiconductor:insulator ternary blends.

  12. Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes

    Energy Technology Data Exchange (ETDEWEB)

    Grin, A. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2014-09-01

    The goal of this research is to provide durable and long-term water management solutions using exterior insulating sheathing as part of the water management system. It is possible to tape or seal the joints in insulating sheathing to create a drainage plane and even an air control layer. There exists the material durability component of the tape as well as the system durability component being the taped insulating sheathing as the drainage plane. This measure guideline provides best practice and product recommendations from the interviewed contractors and homebuilders who collectively have a vast amount of experience. Three significant issues were discussed with the group, which are required to make taped insulating sheathing a simple, long-term, and durable drainage plane: horizontal joints should be limited or eliminated wherever possible; where a horizontal joint exists use superior materials; and frequent installation inspection and regular trade training are required to maintain proper installation.

  13. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    Science.gov (United States)

    Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2009-01-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.

  14. A new method for analyzing and design of guard electrodes of high voltage insulators chain

    International Nuclear Information System (INIS)

    Vahidi, B.; Mohammad Zadeh, A.

    2002-01-01

    The main aim of this paper is analyzing design of guard electrodes of high voltage insulators chain. These electrodes are used for making the distribution of uniform potential across the insulators chain, reducing leakage current and preventing the degradation of insulators. If the design is not correct or in the case of insulators chain without guard electrodes, the potential distribution will not uniform. Thus the voltage drops on the insulators adjacent to conductors will be more than maximum voltage that can be tolerated by the insulators. Therefore these voltage drops can damage the insulators. In this paper A new method is introduced for analyzing and design of ga urad electrodes of high voltage insulators chain

  15. MHD pressure drop of imperfect insulation of liquid metal flow

    International Nuclear Information System (INIS)

    Horiike, H.; Nishiura, R.; Inoue, S.; Miyazaki, K.

    2000-01-01

    An experiment was performed to study magnetohydrodynamic (MHD) pressure gradient in the case of an imperfect electric insulation coating when using NaK loop. Test channels with uniform defects in their coating were made by painting inner surface with acrylic lacquer insulation. It was found that the exponent to B -- which is 1 for insulated walls, and 2 for conducting ones, was very sensitive to crack fractions lower than 25%. The pressure gradient was found to increase almost linearly with the fraction

  16. Simple test for physical stability of cryogenic tank insulation

    Science.gov (United States)

    Rossello, D.

    1968-01-01

    Qualitative test determines the ability of insulation liners used on liquid hydrogen tanks to withstand stresses produced by the thermal shocks imparted to the insulation during tank filling and drainage. Test specimens are bonded to metal plates with a low thermal expansion coefficient and are immersed in liquid hydrogen.

  17. Corrosion monitoring of insulated pipe using radiographic technique

    International Nuclear Information System (INIS)

    Azali Muhammad; Abd Aziz Mohamed; Abd Razak Hamzah; Mohd Pauzi Ismail; Abd Nassir Ibrahim; Shaharudin Sayuti; Shukri Ahmad

    2001-01-01

    In petrochemical and power plants, detection of corrosion and evaluation of deposit in insulated pipes using radiographic technique are considered as very challenging tasks. In general this degradation problem is attributed to water condensation. It causes the formation of deposit and scale inside the pipe, as well as between the insulation and pipe in cold temperature pipes. On the other hand, for hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the study of corrosion in pipelines, one of the most important parameters to be monitored and measured is he wall thickness. Currently, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is performed using an ultrasonic method. The most common technique is that based on the A-Scan, using either a normal flaw detector or some form of dedicated equipment. However, with recent development of ultrasonic technology, more advance method, namely B-Scan and C-scan techniques are also available. The most notable disadvantage of using this method is that the insulation covering the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason, the possibility of employing other alternative NDT method, namely radiographic testing method was studied. The technique used in this studied are known as tangential technique. In this study it was found that the result found using tangential technique is consistent with the actual thickness of the pipe. Result of this study is presented and discussed in this paper. (Author)

  18. Optimisation of Multilayer Insulation an Engineering Approach

    CERN Document Server

    Chorowski, M; Parente, C; Riddone, G

    2001-01-01

    A mathematical model has been developed to describe the heat flux through multilayer insulation (MLI). The total heat flux between the layers is the result of three distinct heat transfer modes: radiation, residual gas conduction and solid spacer conduction. The model describes the MLI behaviour considering a layer-to-layer approach and is based on an electrical analogy, in which the three heat transfer modes are treated as parallel thermal impedances. The values of each of the transfer mode vary from layer to layer, although the total heat flux remains constant across the whole MLI blanket. The model enables the optimisation of the insulation with regard to different MLI parameters, such as residual gas pressure, number of layers and boundary temperatures. The model has been tested with experimental measurements carried out at CERN and the results revealed to be in a good agreement, especially for insulation vacuum between 10-5 Pa and 10-3 Pa.

  19. Humidity effects on wire insulation breakdown strength.

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  20. Beyond insulation and isolation

    DEFF Research Database (Denmark)

    Højlund, Marie Koldkjær

    2016-01-01

    are insulation and isolation strategies to reduce measurable and perceptual noise levels. However, these strategies do not actively support the need to feel like an integral part of the shared hospital environment, which is a key element in creating healing environments, according to the paradigm of Evidence-Based...

  1. Metal-insulator transition in vanadium dioxide

    International Nuclear Information System (INIS)

    Zylbersztejn, A.; Mott, N.F.

    1975-01-01

    The basic physical parameters which govern the metal-insulator transition in vanadium dioxide are determined through a review of the properties of this material. The major importance of the Hubbard intra-atomic correlation energy in determining the insulating phase, which was already evidence by studies of the magnetic properties of V 1 -/subx/Cr/subx/O 2 alloys, is further demonstrated from an analysis of their electrical properties. An analysis of the magnetic susceptibility of niobium-doped VO 2 yields a picture for the current carrier in the low-temperature phase in which it is accompanied by a spin cloud (owing to Hund's-rule coupling), and has therefore an enhanced mass (m approx. = 60m 0 ). Semiconducting vanadium dioxide turns out to be a borderline case for a classical band-transport description; in the alloys at high doping levels, Anderson localization with hopping transport can take place. Whereas it is shown that the insulating phase cannot be described correctly without taking into account the Hubbard correlation energy, we find that the properties of the metallic phase are mainly determined by the band structure. Metallic VO 2 is, in our view, similar to transition metals like Pt or Pd: electrons in a comparatively wide band screening out the interaction between the electrons in a narrow overlapping band. The magnetic susceptibility is described as exchange enhanced. The large density of states at the Fermi level yields a substantial contribution of the entropy of the metallic electrons to the latent heat. The crystalline distortion removes the band degeneracy so that the correlation energy becomes comparable with the band width and a metal-insulator transition takes place

  2. Stability of alternating current discharges between water drops on insulation surfaces

    International Nuclear Information System (INIS)

    Rowland, S M; Lin, F C

    2006-01-01

    Discharges between water drops are important in the ageing of hydrophobic outdoor insulators. They may also be important in the processes leading up to flashover of these insulators in high pollution conditions. This paper considers discharges between drops when a limited alternating current is available, as experienced by an ageing insulator in service. A phenomenon is identified in which the length of a discharge between two drops is reduced through a particular type of distortion of the drops. This is visually characterized as a liquid protrusion from each of a pair of water drops along the insulator surface. This process is distinct from vibration of the drops, general distortion of their shape and the very fast emission of jet streams seen in very high fields. The process depends upon the discharge current, the resistivity of the moisture and the hydrophobicity of the insulation surface

  3. Prediction of breakdown voltages in novel gases for high voltage insulation

    International Nuclear Information System (INIS)

    Koch, M.

    2015-01-01

    This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich examines the use of sulphur hexafluoride (SF_6) and similar gases as important insulation media for high voltage equipment. Due to its superior insulation properties, SF_6 is widely used in gas-insulated switchgear. However, the gas also has a very high global warming potential and the content of SF_6 in the atmosphere is constantly increasing. The search for new insulation gases using classical breakdown experiments is discussed. A model for SF_6 based on the stepped leader model is described. This calculates the breakdown voltages in arbitrary electrode configurations and under standard voltage waveforms. Thus, the thesis provides a method for the prediction of breakdown voltages of arbitrary field configurations under standard voltage waveforms for gases with electron-attaching properties. With this, further gases can be characterized for usage as high voltage insulation media

  4. Current-induced switching of magnetic molecules on topological insulator surfaces

    Science.gov (United States)

    Locane, Elina; Brouwer, Piet W.

    2017-03-01

    Electrical currents at the surface or edge of a topological insulator are intrinsically spin polarized. We show that such surface or edge currents can be used to switch the orientation of a molecular magnet weakly coupled to the surface or edge of a topological insulator. For the edge of a two-dimensional topological insulator as well as for the surface of a three-dimensional topological insulator the application of a well-chosen surface or edge current can lead to a complete polarization of the molecule if the molecule's magnetic anisotropy axis is appropriately aligned with the current direction. For a generic orientation of the molecule a nonzero but incomplete polarization is obtained. We calculate the probability distribution of the magnetic states and the switching rates as a function of the applied current.

  5. Linear particle accelerator with seal structure between electrodes and insulators

    Science.gov (United States)

    Broadhurst, John H.

    1989-01-01

    An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

  6. High-insulated glass house, Egebjerggaard, Ballerup; Det hoejisolerede glashus. Egebjerggaard, Ballerup

    Energy Technology Data Exchange (ETDEWEB)

    Wittchen, K.B.; Aggerholm, S.

    1999-11-01

    New, super-insulating transparent and translucent glazing offers new perspectives for use of glass in architecture to achieve new facade idioms, spatial and light effects and low energy consumption. The new types of glazing are being tested in practice through the construction of a super-insulated glass house for Ballerup Ejendomsselskab in the district of Egebjerggaard west of Copenhagen. The project is based on SBI Report 220, Super-insulated glass houses (1993), in which use of new, super-insulating transparent and translucent glazing is analysed in relation to architecture, light conditions, indoor climate and energy consumption - for a detached house and a terraced house. (EHS)

  7. TFIIIC bound DNA elements in nuclear organization and insulation.

    Science.gov (United States)

    Kirkland, Jacob G; Raab, Jesse R; Kamakaka, Rohinton T

    2013-01-01

    tRNA genes (tDNAs) have been known to have barrier insulator function in budding yeast, Saccharomyces cerevisiae, for over a decade. tDNAs also play a role in genome organization by clustering at sites in the nucleus and both of these functions are dependent on the transcription factor TFIIIC. More recently TFIIIC bound sites devoid of pol III, termed Extra-TFIIIC sites (ETC) have been identified in budding yeast and these sites also function as insulators and affect genome organization. Subsequent studies in Schizosaccharomyces pombe showed that TFIIIC bound sites were insulators and also functioned as Chromosome Organization Clamps (COC); tethering the sites to the nuclear periphery. Very recently studies have moved to mammalian systems where pol III genes and their associated factors have been investigated in both mouse and human cells. Short interspersed nuclear elements (SINEs) that bind TFIIIC, function as insulator elements and tDNAs can also function as both enhancer - blocking and barrier insulators in these organisms. It was also recently shown that tDNAs cluster with other tDNAs and with ETCs but not with pol II transcribed genes. Intriguingly, TFIIIC is often found near pol II transcription start sites and it remains unclear what the consequences of TFIIIC based genomic organization are and what influence pol III factors have on pol II transcribed genes and vice versa. In this review we provide a comprehensive overview of the known data on pol III factors in insulation and genome organization and identify the many open questions that require further investigation. This article is part of a Special Issue entitled: Transcription by Odd Pols. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Magnon-induced superconductivity in a topological insulator coupled to ferromagnetic and antiferromagnetic insulators

    Science.gov (United States)

    Hugdal, Henning G.; Rex, Stefan; Nogueira, Flavio S.; Sudbø, Asle

    2018-05-01

    We study the effective interactions between Dirac fermions on the surface of a three-dimensional topological insulator due to the proximity coupling to the magnetic fluctuations in a ferromagnetic or antiferromagnetic insulator. Our results show that the magnetic fluctuations can mediate attractive interactions between Dirac fermions of both Amperean and BCS types. In the ferromagnetic case, we find pairing between fermions with parallel momenta, so-called Amperean pairing, whenever the effective Lagrangian for the magnetic fluctuations does not contain a quadratic term. The pairing interaction also increases with increasing Fermi momentum and is in agreement with previous studies in the limit of high chemical potential. If a quadratic term is present, the pairing is instead of BCS type above a certain chemical potential. In the antiferromagnetic case, BCS pairing occurs when the ferromagnetic coupling between magnons on the same sublattice exceeds the antiferromagnetic coupling between magnons on different sublattices. Outside this region in parameter space, we again find that Amperean pairing is realized.

  9. The electric strength of high-voltage transformers insulation at effect of partial dischargers

    International Nuclear Information System (INIS)

    Khoshravan, E.; Zeraatparvar, A.; Gashimov, A.M.; Mehdizadeh, R.N.

    2001-01-01

    Full text : In paper the change of electric strength of high-voltage transformers insulation at the effect of partial discharges with space charge accumulation was investigated. It is revealed that the effect of partial discharges of insulation materials results the reduction of their pulsing electric strength which can restore the own initial value at releasing of saved charge the volume of a material under condition of absence the ineversible structural changes in it. Researches of high-voltage transformers insulation's non-failure operation conditions show, that at increasing of insulation work time in a strong electrical field the reduction of average breakdown voltages with simultaneous increasing of spread in discharge voltage values takes place. It authentically testifies to reduction of short-time discharge voltage of insulation materials during their electrical aging. As the basic reason of insulation electrical aging the partial discharges occurring in gas cavities inside insulation were considered. It is known that the space charges will be formed in insulation elements of high-voltage devices which effects in dielectrical property of these elements including the electric strength and the space charge formation can occur also at partial discharges in an alternating voltage while the service of high-voltage transformers. In the given work the experiments in revealing separate influence partial discharges in pulsing electric strength of insulation materials at presence and at absence inside them the space charge were spent

  10. Acoustic insulator for combined well equipment of acoustic and radioactivity logging

    International Nuclear Information System (INIS)

    Arkad'ev, E.A.; Gorbachev, Yu.I.; Dseban', I.P.; Yagodov, G.I.

    1977-01-01

    The design of an acoustic insulator for cobined well equipment of acoustic and radioactivity logaing made on the basis of studying the velocity of elastic waves propagation and attenuation in cable structures of various marks is described. It is shown that the cable probe of electric loggign equipment which is recommended as an acoustic insulator for combined well equipment has the necessary sound-insulating properties

  11. Quantum fluctuations in insulating ferroelectrics

    International Nuclear Information System (INIS)

    Riseborough, Peter S.

    2010-01-01

    Graphical abstract: It has been proposed that in a ferroelectric insulator, an applied magnetic field may couple the transverse phonon modes and produce left and right circularly polarized phonon modes which are no longer degenerate. We quantize the theory and examine the effects of quantal fluctuations. In particular, we show that the zero point fluctuations result in a large diamagnetic contribution to the magnetic susceptibility. - Abstract: It has been proposed that in a ferroelectric insulator, an applied magnetic field may couple the transverse phonon modes and produce left and right circularly polarized phonon modes which are no longer degenerate. We quantize the theory and examine the effects of quantal fluctuations. In particular, we show that the zero-point fluctuations result in a large diamagnetic contribution to the magnetic susceptibility.

  12. A protocol for lifetime energy and environmental impact assessment of building insulation materials

    International Nuclear Information System (INIS)

    Shrestha, Som S.; Biswas, Kaushik; Desjarlais, Andre O.

    2014-01-01

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist, which provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different building insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines. - Highlights: • We proposed a protocol to evaluate the environmental impacts of insulation materials. • The protocol considers all life cycle stages of an insulation material. • Both the direct environmental impacts and the indirect impacts are defined. • Standardized calculation methods for the ‘avoided operational energy’ is defined. • Standardized calculation methods for the ‘avoided environmental impact’ is defined

  13. Chiral topological excitons in a Chern band insulator

    Science.gov (United States)

    Chen, Ke; Shindou, Ryuichi

    2017-10-01

    A family of semiconductors called Chern band insulators are shown to host exciton bands with nonzero topological Chern integers and chiral exciton edge modes. Using a prototypical two-band Chern insulator model, we calculate a cross-correlation function to obtain the exciton bands and their Chern integers. The lowest exciton band acquires Chern integers such as ±1 and ±2 in the electronic Chern insulator phase. The nontrivial topology can be experimentally observed both by a nonlocal optoelectronic response of exciton edge modes and by a phase shift in the cross-correlation response due to the bulk mode. Our result suggests that magnetically doped HgTe, InAs/GaSb quantum wells, and (Bi,Sb)2Te3 thin films are promising candidates for a platform of topological excitonics.

  14. Conformally encapsulated multi-electrode arrays with seamless insulation

    Energy Technology Data Exchange (ETDEWEB)

    Tabada, Phillipe J.; Shah, Kedar G.; Tolosa, Vanessa; Pannu, Satinderall S.; Tooker, Angela; Delima, Terri; Sheth, Heeral; Felix, Sarah

    2016-11-22

    Thin-film multi-electrode arrays (MEA) having one or more electrically conductive beams conformally encapsulated in a seamless block of electrically insulating material, and methods of fabricating such MEAs using reproducible, microfabrication processes. One or more electrically conductive traces are formed on scaffold material that is subsequently removed to suspend the traces over a substrate by support portions of the trace beam in contact with the substrate. By encapsulating the suspended traces, either individually or together, with a single continuous layer of an electrically insulating material, a seamless block of electrically insulating material is formed that conforms to the shape of the trace beam structure, including any trace backings which provide suspension support. Electrical contacts, electrodes, or leads of the traces are exposed from the encapsulated trace beam structure by removing the substrate.

  15. Interior thermal insulation systems for historical building envelopes

    Science.gov (United States)

    Jerman, Miloš; Solař, Miloš; Černý, Robert

    2017-11-01

    The design specifics of interior thermal insulation systems applied for historical building envelopes are described. The vapor-tight systems and systems based on capillary thermal insulation materials are taken into account as two basic options differing in building-physical considerations. The possibilities of hygrothermal analysis of renovated historical envelopes including laboratory methods, computer simulation techniques, and in-situ tests are discussed. It is concluded that the application of computational models for hygrothermal assessment of interior thermal insulation systems should always be performed with a particular care. On one hand, they present a very effective tool for both service life assessment and possible planning of subsequent reconstructions. On the other, the hygrothermal analysis of any historical building can involve quite a few potential uncertainties which may affect negatively the accuracy of obtained results.

  16. Technique eliminates high voltage arcing at electrode-insulator contact area

    Science.gov (United States)

    Mealy, G.

    1967-01-01

    Coating the electrode-insulator contact area with silver epoxy conductive paint and forcing the electrode and insulator tightly together into a permanent connection, eliminates electrical arcing in high-voltage electrodes supplying electrical power to vacuum facilities.

  17. Bonded stacked-ring insulator for the Antares electron gun

    International Nuclear Information System (INIS)

    Stine, R.D.; Allen, G.R.; Eaton, E.; Weinstein, B.

    1982-01-01

    A large diameter insulator utilizing epoxy bonding which has sufficient mechanical strength to support the 3000 kg cathode/grid assembly was developed. Bonding the insulator simplifies the handling and reduces the number of 0-ring seals to a minimum. We have described the material selection, bonding techniques and electrical design approach

  18. Thermal insulation system design and fabrication specification (nuclear) for the Clinch River Breeder Reactor plant

    International Nuclear Information System (INIS)

    1978-01-01

    This specification defines the design, analysis, fabrication, testing, shipping, and quality requirements of the Insulation System for the Clinch River Breeder Reactor Plant (CRBRP), near Oak Ridge, Tennessee. The Insulation System includes all supports, convection barriers, jacketing, insulation, penetrations, fasteners, or other insulation support material or devices required to insulate the piping and equipment cryogenic and other special applications excluded. Site storage, handling and installation of the Insulation System are under the cognizance of the Purchaser

  19. Corrosion monitoring in insulated pipes using x-ray radiography

    International Nuclear Information System (INIS)

    Azali Muhammad; Abd Razak Hamzah; Abd Aziz Mohamed; Abd Nasir Ibrahim; Suffian Saad; Shaharuddin Sayuti; Shukri Ahmad

    2000-01-01

    In engineering plants, detection of corrosion and evaluation of deposit in insulated pipes using radiography method are considered as very challenging tasks. In general, this degradation problem is attributed to water condensation. It causes the formation of deposit and scale inside the pipe, as well as between the insulation and pipe in cold temperature pipes. On the other hand, for hot temperature pipes the main problem is mainly due to corrosion/erosion attack inside the pipe. In the study of corrosion in pipelines, one of the most important parameters to be monitored and measured is the wall thickness. Currently, most pipeline corrosion monitoring and evaluation for both insulated and non-insulated pipes is performed using an ultrasonic method. The most notable disadvantage of using this method is that the insulation covering the pipe has to be removed before the inspection can be carried out and this is considered as not so cost effective. Due to this reason, the possibility of employing other alternative NDT method, namely radiographic testing method was studied. The technique used in this studied are known as tangential technique. In this study it was found that the result found using tangential technique is consistent with the actual thickness of the pipe. Besides the thickness, types of corrosion can also be identified easily. Result of this study is presented and discussed in this paper. (Author)

  20. Prediction of breakdown voltages in novel gases for high voltage insulation

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.

    2015-07-01

    This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich examines the use of sulphur hexafluoride (SF{sub 6}) and similar gases as important insulation media for high voltage equipment. Due to its superior insulation properties, SF{sub 6} is widely used in gas-insulated switchgear. However, the gas also has a very high global warming potential and the content of SF{sub 6} in the atmosphere is constantly increasing. The search for new insulation gases using classical breakdown experiments is discussed. A model for SF{sub 6} based on the stepped leader model is described. This calculates the breakdown voltages in arbitrary electrode configurations and under standard voltage waveforms. Thus, the thesis provides a method for the prediction of breakdown voltages of arbitrary field configurations under standard voltage waveforms for gases with electron-attaching properties. With this, further gases can be characterized for usage as high voltage insulation media.