WorldWideScience

Sample records for insulator-to-metal transition induced

  1. Phase-field model of insulator-to-metal transition in VO2 under an electric field

    Science.gov (United States)

    Shi, Yin; Chen, Long-Qing

    2018-05-01

    The roles of an electric field and electronic doping in insulator-to-metal transitions are still not well understood. Here we formulated a phase-field model of insulator-to-metal transitions by taking into account both structural and electronic instabilities as well as free electrons and holes in VO2, a strongly correlated transition-metal oxide. Our phase-field simulations demonstrate that in a VO2 slab under a uniform electric field, an abrupt universal resistive transition occurs inside the supercooling region, in sharp contrast to the conventional Landau-Zener smooth electric breakdown. We also show that hole doping may decouple the structural and electronic phase transitions in VO2, leading to a metastable metallic monoclinic phase which could be stabilized through a geometrical confinement and the size effect. This work provides a general mesoscale thermodynamic framework for understanding the influences of electric field, electronic doping, and stress and strain on insulator-to-metal transitions and the corresponding mesoscale domain structure evolution in VO2 and related strongly correlated systems.

  2. Reduction of the Jahn-Teller distortion at the insulator-to-metal transition in mixed valence manganites

    International Nuclear Information System (INIS)

    Garcia-Munoz, J.L.; Suaaidi, M.; Fontcuberta, J.; Rodriguez-Carvajal, J.

    1997-01-01

    The insulator-to-metal transition in the manganite La 0.52 Y 0.15 Ca 0.33 MnO 3 (T IM ∼115 K) has been studied by high-resolution neutron powder diffraction. The cell volume contraction at the Curie point is accompanied by a remarkable decrease of the Jahn-Teller distortion in MnO 6 octahedra. The change of the Mn-O bond lengths at T IM is anisotropic and brings about a drop out of the basal-plane collective distortion mode Q 2 , proposed to be the deformation responsible for the band split of e g↑ orbitals. This is consistent with the double-exchange picture, and precludes simple ferromagnetic exchange. copyright 1997 The American Physical Society

  3. Photoinduced Coherent Spin Fluctuation in Primary Dynamics of Insulator to Metal Transition in Perovskite Cobalt Oxide

    Directory of Open Access Journals (Sweden)

    Arima T.

    2013-03-01

    Full Text Available Coherent spin fluctuation was detected in the photoinduced Mott insulator-metal transition in perovskite cobalt oxide by using 3 optical-cycle infrared pulse. Such coherent spin fluctuation is driven by the perovskite distortion changing orbital gap.

  4. c -Axis Dimer and Its Electronic Breakup: The Insulator-to-Metal Transition in Ti2 O3

    Science.gov (United States)

    Chang, C. F.; Koethe, T. C.; Hu, Z.; Weinen, J.; Agrestini, S.; Zhao, L.; Gegner, J.; Ott, H.; Panaccione, G.; Wu, Hua; Haverkort, M. W.; Roth, H.; Komarek, A. C.; Offi, F.; Monaco, G.; Liao, Y.-F.; Tsuei, K.-D.; Lin, H.-J.; Chen, C. T.; Tanaka, A.; Tjeng, L. H.

    2018-04-01

    We report on our investigation of the electronic structure of Ti2 O3 using (hard) x-ray photoelectron and soft x-ray absorption spectroscopy. From the distinct satellite structures in the spectra, we have been able to establish unambiguously that the Ti-Ti c -axis dimer in the corundum crystal structure is electronically present and forms an a1 ga1 g molecular singlet in the low-temperature insulating phase. Upon heating, we observe a considerable spectral weight transfer to lower energies with orbital reconstruction. The insulator-metal transition may be viewed as a transition from a solid of isolated Ti-Ti molecules into a solid of electronically partially broken dimers, where the Ti ions acquire additional hopping in the a -b plane via the egπ channel, the opening of which requires consideration of the multiplet structure of the on-site Coulomb interaction.

  5. Electron field emission from sp -induced insulating to metallic ...

    Indian Academy of Sciences (India)

    Administrator

    Materials Research Centre, Indian Institute of Science, Bangalore 560 012, India. MS received 20 ... emissions of amorphous carbon films have been investigated. The observed ... water followed by acetone was positioned at the centre of first zone ..... clusters islands, surface geometry, and internal structures of the films.

  6. Pressure-induced structural, magnetic and transport transitions in Sr2FeO3 from first-principles

    Directory of Open Access Journals (Sweden)

    Ting Jia

    2017-05-01

    Full Text Available The serial system Srn+1FenO2n+1(n=1,2,3… with the FeO4 square planar motif exhibits abundant phase transitions under pressure. In this work, we investigate the pressure-induced structural, magnetic and transport transitions in Sr2FeO3 from first-principles. Our results show that the system undergoes a structural transition from Immm to Ammm when the volume decreases by 30%, together with a spin-state transition (SST from high-spin (S = 2 to intermediate-spin (S = 1, an antiferromagnetic-to-ferromagnetic transition and an insulator-to-metal transition (IMT. Besides, the IMT here is a bandwidth controlled transition, but little influenced by the SST.

  7. Femtosecond Near Edge X-ray Absorption Measurement of the VO2 Phase Transition

    International Nuclear Information System (INIS)

    Cavalleri, A.; Chong, H.H.W.; Fourmaux, S.; Glover, T.E.; Heimann, P.A; Kieffer, J.C.; Padmore, H.A.; Schoenlein, R.W.

    2004-01-01

    The authors measure the insulator-to-metal transition in VO 2 using femtosecond Near-Edge X-ray Absorption. Sliced pulses of synchrotron radiation are used to detect the photo-induced dynamics at the 516-eV Vanadium L 3 edge

  8. Ultrafast Dynamics of the VO2 Insulator-to-Metal Transition Observed by Nondegenerate Pump-Probe Spectroscopy

    Directory of Open Access Journals (Sweden)

    Haglund R. F.

    2013-03-01

    Full Text Available Non-degenerate pump (1.5 eV-probe (0.4 eV transmission spectroscopy on vanadium dioxide films grown on glass and three different sapphire substrates shows systematic variations with substrate that correlate with VO2 grain size and laser fluence. Temperature dependent measurements showed changes in the electronic response that is proportional to the metallic fraction.

  9. Pressure-driven phase transitions in TiOCl and the family (Ca, Sr, Ba)Fe2As2

    International Nuclear Information System (INIS)

    Zhang YuZhong; Opahle, Ingo; Jeschke, Harald O; ValentI, Roser

    2010-01-01

    Motivated by recent experimental measurements on pressure-driven phase transitions in Mott insulators as well as the new iron pnictide superconductors, we show that first principles Car-Parrinello molecular dynamics calculations are a powerful method to describe the microscopic origin of such transitions. We present results for (i) the pressure-induced insulator to metal phase transition in the prototypical Mott insulator TiOCl as well as (ii) the pressure-induced structural and magnetic phase transitions in the family of correlated metals AFe 2 As 2 (A = Ca, Sr, Ba). Comparison of our predictions with existing experimental results yields very good agreement.

  10. Thermally induced morphological transition of silver fractals

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey; Kébaili, Nouari

    2014-01-01

    We present both experimental and theoretical study of thermally induced morphological transition of silver nanofractals. Experimentally, those nanofractals formed from deposition and diffusion of preformed silver clusters on cleaved graphite surfaces exhibit dendritic morphologies that are highly...... sensitive to any perturbation, particularly caused by temperature. We analyze and characterize the morphological transition both in time and temperature using the recently developed Monte Carlo simulation approach for the description of nanofractal dynamics and compare the obtained results...

  11. Laser-induced multiphoton transitions

    International Nuclear Information System (INIS)

    Stenholm, S.

    1978-06-01

    Laser induced multiphoton processes are reviewed. The effects of strong fields on atoms are discussed. The perturbation treatment is presented and also its generalization to treat intermediate resonances. The influence of atomic coherence is discussed heuristically and the relation between quantal and classical descriptions of the field is elucidated by reference to the dressed atom description. Atomic ionization experiments are reviewed and the present understanding of multiphoton dissociation of molecules is explained. Finally some prospects for the future are discussed. (author)

  12. New pathway for the formation of metallic cubic phase Ge-Sb-Te compounds induced by an electric current.

    Science.gov (United States)

    Park, Yong-Jin; Cho, Ju-Young; Jeong, Min-Woo; Na, Sekwon; Joo, Young-Chang

    2016-02-23

    The novel discovery of a current-induced transition from insulator to metal in the crystalline phase of Ge2Sb2Te5 and GeSb4Te7 have been studied by means of a model using line-patterned samples. The resistivity of cubic phase Ge-Sb-Te compound was reduced by an electrical current (~1 MA/cm(2)), and the final resistivity was determined based on the stress current density, regardless of the initial resistivity and temperature, which indicates that the conductivity of Ge-Sb-Te compound can be modulated by an electrical current. The minimum resistivity of Ge-Sb-Te materials can be achieved at high kinetic rates by applying an electrical current, and the material properties change from insulating to metallic behavior without a phase transition. The current-induced metal transition is more effective in GeSb4Te7 than Ge2Sb2Te5, which depends on the intrinsic vacancy of materials. Electromigration, which is the migration of atoms induced by a momentum transfer from charge carriers, can easily promote the rearrangement of vacancies in the cubic phase of Ge-Sb-Te compound. This behavior differs significantly from thermal annealing, which accompanies a phase transition to the hexagonal phase. This result suggests a new pathway for modulating the electrical conductivity and material properties of chalcogenide materials by applying an electrical current.

  13. Water-induced ethanol dewetting transition.

    Science.gov (United States)

    Ren, Xiuping; Zhou, Bo; Wang, Chunlei

    2012-07-14

    The dewetting transitions of two hydrophobic plates immersed in pure water, aqueous ethanol solutions with concentrations from 25% to 90%, and pure ethanol were investigated by molecular dynamics simulations, where the dewetting transition was analogous to a first-order phase transition from liquid to vapor. It was found that the dewetting transitions occurred except that in the pure ethanol system. Although the ethanol molecules prefer to locate in the vicinity of the two plates, the inter-plate region is unfavorable for water molecules, due to losing more than one hydrogen bond. Moreover, each inter-plate water molecule forms hydrogen bonds on average with about two ethanol molecules. These intermolecular hydrogen bonds cause water and ethanol to cooperatively fill or exit the inter-plate region. Thus, water molecules play a more important role in the inter-plate filling/empty process, and induce the ethanol dewetting transition. Our results provide insight into the effect of water on the ethanol dewetting phenomena.

  14. Strongly Coupled Magnetic and Electronic Transitions in Multivalent Strontium Cobaltites.

    Science.gov (United States)

    Lee, J H; Choi, Woo Seok; Jeen, H; Lee, H-J; Seo, J H; Nam, J; Yeom, M S; Lee, H N

    2017-11-22

    The topotactic phase transition in SrCoO x (x = 2.5-3.0) makes it possible to reversibly transit between the two distinct phases, i.e. the brownmillerite SrCoO 2.5 that is a room-temperature antiferromagnetic insulator (AFM-I) and the perovskite SrCoO 3 that is a ferromagnetic metal (FM-M), owing to their multiple valence states. For the intermediate x values, the two distinct phases are expected to strongly compete with each other. With oxidation of SrCoO 2.5 , however, it has been conjectured that the magnetic transition is decoupled to the electronic phase transition, i.e., the AFM-to-FM transition occurs before the insulator-to-metal transition (IMT), which is still controversial. Here, we bridge the gap between the two-phase transitions by density-functional theory calculations combined with optical spectroscopy. We confirm that the IMT actually occurs concomitantly with the FM transition near the oxygen content x = 2.75. Strong charge-spin coupling drives the concurrent IMT and AFM-to-FM transition, which fosters the near room-T magnetic transition characteristic. Ultimately, our study demonstrates that SrCoO x is an intriguingly rare candidate for inducing coupled magnetic and electronic transition via fast and reversible redox reactions.

  15. Beam induced transit time signals at SPEAR

    International Nuclear Information System (INIS)

    McConnell, R.A.

    1975-01-01

    Beam induced signals at frequencies related to inter-cavity transit times have been detected at SPEAR. Whether this effect enters significantly into beam instabilities has not yet been determined. Preliminary experiments suggest that under certain conditions at low energy (1.5 GeV) , when μ/sub s/, passes through one of the transit time resonances, some current is lost. Care must be taken, however, not to confuse this effect, if it exists, with synchrobetatron resonances and with an as yet unexplained vertical instability in SPEAR. At high energy (3.7 GeV), no effect has been shown to exist, though detectable signals are present. 2 refs., 2 tabs

  16. Shear induced phase transitions induced in edible fats

    Science.gov (United States)

    Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.

    2003-03-01

    The food industry crystallizes fats under different conditions of temperature and shear to obtain products with desired crystalline phases. Milk fat, palm oil, cocoa butter and chocolate were crystallized from the melt in a temperature controlled Couette cell. Synchrotron x-ray diffraction studies were conducted to examine the role of shear on the phase transitions seen in edible fats. The shear forces on the crystals induced acceleration of the alpha to beta-prime phase transition with increasing shear rate in milk fat and palm oil. The increase was slow at low shear rates and became very strong above 360 s-1. In cocoa butter the acceleration between beta-prime-III and beta-V phase transition increased until a maximum of at 360 s-1, and then decreased, showing competition between enhanced heat transfer and viscous heat generation.

  17. Mott-Hubbard transition and Anderson localization: A generalized dynamical mean-field theory approach

    International Nuclear Information System (INIS)

    Kuchinskii, E. Z.; Nekrasov, I. A.; Sadovskii, M. V.

    2008-01-01

    The DOS, the dynamic (optical) conductivity, and the phase diagram of a strongly correlated and strongly disordered paramagnetic Anderson-Hubbard model are analyzed within the generalized dynamical mean field theory (DMFT + Σ approximation). Strong correlations are taken into account by the DMFT, and disorder is taken into account via an appropriate generalization of the self-consistent theory of localization. The DMFT effective single-impurity problem is solved by a numerical renormalization group (NRG); we consider the three-dimensional system with a semielliptic DOS. The correlated metal, Mott insulator, and correlated Anderson insulator phases are identified via the evolution of the DOS and dynamic conductivity, demonstrating both the Mott-Hubbard and Anderson metal-insulator transition and allowing the construction of the complete zero-temperature phase diagram of the Anderson-Hubbard model. Rather unusual is the possibility of a disorder-induced Mott insulator-to-metal transition

  18. Pressure induced phase transition behaviour in -electron based ...

    Indian Academy of Sciences (India)

    The present review on the high pressure phase transition behaviour of ... For instance, closing of energy gaps lead to metal–insulator transitions [4], shift in energy ... systematic study of the pressure induced structural sequences has become ...

  19. Origins of pressure-induced protein transitions.

    Science.gov (United States)

    Chalikian, Tigran V; Macgregor, Robert B

    2009-12-18

    The molecular mechanisms underlying pressure-induced protein denaturation can be analyzed based on the pressure-dependent differences in the apparent volume occupied by amino acids inside the protein and when they are exposed to water in an unfolded conformation. We present here an analysis for the peptide group and the 20 naturally occurring amino acid side chains based on volumetric parameters for the amino acids in the interior of the native state, the micelle-like interior of the pressure-induced denatured state, and the unfolded conformation modeled by N-acetyl amino acid amides. The transfer of peptide groups from the protein interior to water becomes increasingly favorable as pressure increases. Thus, solvation of peptide groups represents a major driving force in pressure-induced protein denaturation. Polar side chains do not appear to exhibit significant pressure-dependent changes in their preference for the protein interior or solvent. The transfer of nonpolar side chains from the protein interior to water becomes more unfavorable as pressure increases. We conclude that a sizeable population of nonpolar side chains remains buried inside a solvent-inaccessible core of the pressure-induced denatured state. At elevated pressures, this core may become packed almost as tightly as the interior of the native state. The presence and partial disappearance of large intraglobular voids is another driving force facilitating pressure-induced denaturation of individual proteins. Our data also have implications for the kinetics of protein folding and shed light on the nature of the folding transition state ensemble.

  20. Composition-induced structural, electrical, and magnetic phase transitions in AX-type mixed-valence cobalt oxynitride epitaxial thin films

    International Nuclear Information System (INIS)

    Takahashi, Jumpei; Oka, Daichi; Hirose, Yasushi; Yang, Chang; Fukumura, Tomoteru; Hasegawa, Tetsuya; Nakao, Shoichiro; Harayama, Isao; Sekiba, Daiichiro

    2015-01-01

    Synthesis of mid- to late-transition metal oxynitrides is generally difficult by conventional thermal ammonolysis because of thermal instability. In this letter, we synthesized epitaxial thin films of AX-type phase-pure cobalt oxynitrides (CoO x N y ) by using nitrogen-plasma-assisted pulsed laser deposition and investigated their structural, electrical, and magnetic properties. The CoO x N y thin films with 0 ≤ y/(x + y) ≤ 0.63 grown on MgO (100) substrates showed a structural phase transition from rock salt (RS) to zinc blend at the nitrogen content y/(x + y) ∼ 0.5. As the nitrogen content increased, the room-temperature electrical resistivity of the CoO x N y thin films monotonically decreased from the order of 10 5  Ω cm to 10 −4  Ω cm. Furthermore, we observed an insulator-to-metal transition at y/(x + y) ∼ 0.34 in the RS-CoO x N y phase, which has not yet been reported in Co 2+ /Co 3+ mixed-valence cobalt oxides with octahedral coordination. The low resistivity in the RS-CoO x N y phase, on the 10 −3  Ω cm order, may have originated from the intermediate spin state of Co 3+ stabilized by the lowered crystal field symmetry of the CoO 6−n N n octahedra (n = 1, 2,…5). Magnetization measurements suggested that a magnetic phase transition occurred in the RS-CoO x N y films during the insulator-to-metal transition. These results demonstrate that low-temperature epitaxial growth is a promising approach for exploring novel electronic functionalities in oxynitrides

  1. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    1988-12-01

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.

  2. Gravitationally self-induced phase transition

    International Nuclear Information System (INIS)

    Novello, M.; Duque, S.L.S.

    1990-01-01

    We propose a new mechanism by means of which a phase transition can be stimulated by self-gravitating matter. We suggest that this model could be used to explain the observed isotropy of the Universe. (orig.)

  3. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures, such as b......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  4. UV light induced insulator-metal transition in ultra-thin ZnO/TiO{sub x} stacked layer grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Saha, D., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Misra, P., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Joshi, M. P.; Kukreja, L. M. [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)

    2016-08-28

    In the present study, atomic layer deposition has been used to grow a series of Ti incorporated ZnO thin films by vertically stacking different numbers (n = 1–7) of ZnO/TiO{sub x} layers on (0001) sapphire substrates. The effects of defect states mediated chemisorption of O{sub 2} and/OH groups on the electrical properties of these films have been investigated by illuminating the samples under UV light inside a high vacuum optical cryostat. The ultra-thin film having one stacked layer (n = 1) did not show any change in its electrical resistance upon UV light exposure. On the contrary, marginal drop in the electrical resistivity was measured for the samples with n ≥ 3. Most surprisingly, the sample with n = 2 (thickness ∼ 12 nm) showed an insulator to metal transition upon UV light exposure. The temperature dependent electrical resistivity measurement on the as grown film (n = 2) showed insulating behaviour, i.e., diverging resistivity on extrapolation to T→ 0 K. However, upon UV light exposure, it transformed to a metallic state, i.e., finite resistivity at T → 0 K. Such an insulator-metal transition plausibly arises due to the de-trapping of conduction electrons from the surface defect sites which resulted in an upward shift of the Fermi level above the mobility edge. The low-temperature electron transport properties on the insulating film (n = 2) were investigated by a combined study of zero field electrical resistivity ρ(T) and magnetoresistance (MR) measurements. The observed negative MR was found to be in good agreement with the magnetic field induced suppression of quantum interference between forward-going paths of tunnelling electrons. Both ρ(T) and MR measurements provided strong evidence for the Efros-Shklovskii type variable range hopping conduction in the low-temperature (≤40 K) regime. Such studies on electron transport in ultra-thin n-type doped ZnO films are crucial to achieve optimum functionality

  5. Pressure induced insulator–metal transition and giant negative piezoresistance in Pr{sub 0.6}Ca{sub 0.4}Mn{sub 0.96}Al{sub 0.04}O{sub 3} polycrystal

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, S., E-mail: sarumugam1963@yahoo.com [Centre for High Pressure Research, School of Physics, Bharathidasan University, Tiruchirapalli 620024, Tamil Nadu (India); Thiyagarajan, R. [Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203 (China); Kalaiselvan, G.; Sivaprakash, P. [Centre for High Pressure Research, School of Physics, Bharathidasan University, Tiruchirapalli 620024, Tamil Nadu (India)

    2016-11-01

    The effect of external hydrostatic pressure (P) on the magnetization (M) and resistivity (ρ) properties of charge-orbital (CO) ordered-insulating phase-separated manganite Pr{sub 0.6}Ca{sub 0.4}Mn{sub 0.96}Al{sub 0.04}O{sub 3} system is reported here. At ambient P, CO ordering transition and spin-canting in the AFM are observed at 223 K and 55 K respectively in M(T) and ρ(T) measurements. Application of P increases simultaneously the magnitude of magnetization (M) and transition temperature, and weakens the CO ordering in M(T) measurements up to 0.98 GPa. During ρ(T) measurements, P induces an insulator–metallic transition (T{sub IM}) at 1.02 GPa, and further increase of P up to 2.84 GPa leads to increase of T{sub IM} (dT{sub IM}/dP =21.6 K/GPa). ρ at T{sub IM} is reduced about three orders of magnitude at 2.84 GPa, and leads to the giant negative piezoresistance (~98%). These results are analyzed separately in two temperature regions i.e., below and above T{sub IM} by power function equation and small polaronic hopping model respectively. It is understood from these analyses that the application of P suppresses the Jahn–Teller distortions, electron–electron and electron–magnon scattering factors, and induces the insulator–metal transition in Pr{sub 0.6}Ca{sub 0.4}Mn{sub 0.96}Al{sub 0.04}O{sub 3} system. - Highlights: • Application of P on Pr{sub 0.6}Ca{sub 0.4}Mn{sub 0.96}Al{sub 0.04}O{sub 3} reduces resistivity (ρ) remarkably at low-temperatures, and exhibits an insulator to metallic transition at 1.02 GPa. • The reduction in ρ by P is about three orders of magnitude at 2.84 GPa, leads to the giant negative piezoresistance about 98%. • The effect of the suppression of Jahn–Teller distortions, electron–electron and electron–magnon scattering under an applied P exhibits to the metal-Insulator transition. • The phase-separation in this system has been tuned by both internal and external perturbations.

  6. Ordering transitions induced by Coulomb interactions

    International Nuclear Information System (INIS)

    Rovere, M.; Senatore, G.; Tosi, M.P.

    1988-11-01

    We briefly review recent progress in treating phase transitions to ordered states driven by Coulomb interactions. Wigner crystallization of the one-component plasma, in the degenerate Fermi limit and in the classical limit, is the foremost example and developments in its theory are discussed in some detail. Attention is also given to quasi-twodimensional realizations of the plasma model in the laboratory. The usefulness of these ideas in relation to freezing and ordering transitions is illustrated with reference to alkali metals, elemental and polar semiconductors, and various types of ionic systems (molten salts, colloidal suspensions and astrophysical plasmas). (author). 70 refs, 5 figs

  7. Determining hyperfine transitions with electromagnetically induced transparency and optical pumping

    International Nuclear Information System (INIS)

    Lee Yi-Chi; Tsai Chin-Chun; Huang Chen-Han; Chui Hsiang-Chen; Chang Yung-Yung

    2011-01-01

    A system is designed to observe the phenomena of electromagnetically induced transparency and optical pumping in cesium D 1 and D 2 lines at room temperature. When a pump laser is frequency-locked on the top of a hyperfine transition and the frequency of the probe laser scans over another hyperfine transition, a spectrum of V-type electromagnetically induced transparency or an optical pumping can be observed depending on whether the two lasers share a common ground state. Therefore, these results can be used to identify the unknown hyperfine transitions of the D 1 line transitions. For educational purposes, this system is helpful for understanding the electromagnetically induced transparency and the optical pumping

  8. The transition time induced narrow linewidth of the electromagnetically induced transparency in caesium vapour

    International Nuclear Information System (INIS)

    Li Luming; Peng Xiang; Liu Cheng; Guo Hong; Chen Xuzong

    2004-01-01

    We observed a narrow linewidth (∼60 kHz) in a Doppler-broadened system showing electromagnetically induced transparency in caesium atomic vapour. The transition time induced reduction of the linewidth is illustrated both theoretically and experimentally

  9. Induced waveform transitions of dissipative solitons

    Science.gov (United States)

    Kochetov, Bogdan A.; Tuz, Vladimir R.

    2018-01-01

    The effect of an externally applied force upon the dynamics of dissipative solitons is analyzed in the framework of the one-dimensional cubic-quintic complex Ginzburg-Landau equation supplemented by a potential term with an explicit coordinate dependence. The potential accounts for the external force manipulations and consists of three symmetrically arranged potential wells whose depth varies along the longitudinal coordinate. It is found out that under an influence of such potential a transition between different soliton waveforms coexisting under the same physical conditions can be achieved. A low-dimensional phase-space analysis is applied in order to demonstrate that by only changing the potential profile, transitions between different soliton waveforms can be performed in a controllable way. In particular, it is shown that by means of a selected potential, stationary dissipative soliton can be transformed into another stationary soliton as well as into periodic, quasi-periodic, and chaotic spatiotemporal dissipative structures.

  10. Irradiation induced crystalline to amorphous transition

    International Nuclear Information System (INIS)

    Bourgoin, J.

    1980-01-01

    Irradiation of a crystalline solid with energetic heavy particles results in cascades of defects which, with increasing dose, overlap and form a continuous disordered layer. In semiconductors the physical properties of such disordered layers are found to be similar to those of amorphous layers produced by evaporation. It is shown in the case of silicon, that the transition from a disordered crystalline (X) layer to an amorphous (α) layer occurs when the Gibbs energy of the X phase and of the defects it contains becomes larger than the Gibbs energy of the α phase. (author)

  11. Disorder-induced transitions in resonantly driven Floquet topological insulators

    Science.gov (United States)

    Titum, Paraj; Lindner, Netanel H.; Refael, Gil

    2017-08-01

    We investigate the effects of disorder in Floquet topological insulators (FTIs) occurring in semiconductor quantum wells. Such FTIs are induced by resonantly driving a transition between the valence and conduction bands. We show that when disorder is added, the topological nature of such FTIs persists as long as there is a mobility gap at the resonant quasienergy. For strong enough disorder, this gap closes and all the states become localized as the system undergoes a transition to a trivial insulator. Interestingly, the effects of disorder are not necessarily adverse: we show that in the same quantum well, disorder can also induce a transition from a trivial to a topological system, thereby establishing a Floquet topological Anderson insulator (FTAI). We identify the conditions on the driving field necessary for observing such a transition.

  12. Field-induced stacking transition of biofunctionalized trilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Masato Nakano, C. [Flintridge Preparatory School, La Canada, California 91011 (United States); Sajib, Md Symon Jahan; Samieegohar, Mohammadreza; Wei, Tao [Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, Texas 77710 (United States)

    2016-02-01

    Trilayer graphene (TLG) is attracting a lot of attention as their stacking structures (i.e., rhombohedral vs. Bernal) drastically affect electronic and optical properties. Based on full-atom molecular dynamics simulations, we here predict electric field-induced rhombohedral-to-Bernal transition of TLG tethered with proteins. Furthermore, our simulations show that protein's electrophoretic mobility and diffusivity are enhanced on TLG surface. This phenomenon of controllable TLG stacking transition will contribute to various applications including biosensing.

  13. Laser induced single-crystal transition in polycrystalline silicon

    International Nuclear Information System (INIS)

    Vitali, G.; Bertolotti, M.; Foti, G.; Rimini, E.

    1978-01-01

    Transition to single crystal of polycrystalline Si material underlying a Si crystal substrate of 100 orientation was obtained via laser irradiation. The changes in the structure were analyzed by reflection high energy electron diffraction and by channeling effect technique using 2.0 MeV He Rutherford scattering. The power density required to induce the transition in a 4500 A thick polycrystalline layer is about 70 MW/cm 2 (50ns). The corresponding amorphous to single transition has a threshold of about 45 MW/cm 2 . (orig.) 891 HPOE [de

  14. Entanglement transitions induced by large deviations

    Science.gov (United States)

    Bhosale, Udaysinh T.

    2017-12-01

    The probability of large deviations of the smallest Schmidt eigenvalue for random pure states of bipartite systems, denoted as A and B , is computed analytically using a Coulomb gas method. It is shown that this probability, for large N , goes as exp[-β N2Φ (ζ ) ] , where the parameter β is the Dyson index of the ensemble, ζ is the large deviation parameter, while the rate function Φ (ζ ) is calculated exactly. Corresponding equilibrium Coulomb charge density is derived for its large deviations. Effects of the large deviations of the extreme (largest and smallest) Schmidt eigenvalues on the bipartite entanglement are studied using the von Neumann entropy. Effect of these deviations is also studied on the entanglement between subsystems 1 and 2, obtained by further partitioning the subsystem A , using the properties of the density matrix's partial transpose ρ12Γ. The density of states of ρ12Γ is found to be close to the Wigner's semicircle law with these large deviations. The entanglement properties are captured very well by a simple random matrix model for the partial transpose. The model predicts the entanglement transition across a critical large deviation parameter ζ . Log negativity is used to quantify the entanglement between subsystems 1 and 2. Analytical formulas for it are derived using the simple model. Numerical simulations are in excellent agreement with the analytical results.

  15. Coloured-noise-induced transitions in nonlinear structures

    International Nuclear Information System (INIS)

    Mankin, R.; Laas, T.; Soika, E.; Sauga, A.; Rekker, A.; Ainsaar, A.; Ugaste, Ue.

    2008-01-01

    In a stochastic framework, macroscopic approaches are sought to describe microscopic interaction between different species. Coloured-noise-induced transitions in stochastic N-species Lotka-Volterra systems are considered analytically as an appropriate model expendable to many natural and nano-technological processes. All the results discussed are computed by means of a dynamical mean-field approximation. It is demonstrated that interplay of coloured noise and interaction intensities of species can generate a variety of cooperation effects, such as discontinuous transitions of the mean population density, noise-induced Hopf bifurcations and relaxation oscillation. The necessary conditions for the cooperation effects are also discussed. Particularly, it is established that, in the case of the Beddington functional response, in certain parameter regions of the model an increase in noise correlation time can cause multiple transitions (more than two) between relaxation oscillatory regimes and equilibrium states. (authors)

  16. Fermionic phase transition induced by the effective impurity in holography

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Li-Qing [IFSA Collaborative Innovation Center, Department of Physics and Astronomy,Shanghai Jiao Tong University, Shanghai 200240 (China); School of Physics and Electronic Information, Shangrao Normal University,Shangrao 334000 (China); Kuang, Xiao-Mei [Department of Physics, National Technical University of Athens,GR-15780 Athens (Greece); Instituto de Física, Pontificia Universidad Católica de Valparaíso,Casilla 4059, Valparaíso (Chile); Wang, Bin [IFSA Collaborative Innovation Center, Department of Physics and Astronomy,Shanghai Jiao Tong University, Shanghai 200240 (China); Wu, Jian-Pin [Institute of Gravitation and Cosmology, Department of Physics,School of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190 (China)

    2015-11-20

    We investigate the holographic fermionic phase transition induced by the effective impurity in holography, which is introduced by massless scalar fields in Einstein-Maxwell-massless scalar gravity. We obtain a phase diagram in (α,T) plane separating the Fermi liquid phase and the non-Fermi liquid phase.

  17. Shear-induced transitions in a ternary polymeric system

    NARCIS (Netherlands)

    Zvelindovsky, AV; Sevink, GJA; Fraaije, JGEM

    The first three-dimensional simulation of shear-induced phase transitions in a polymeric system has been performed. The method is based on dynamic density-functional theory. The pathways between a bicontinuous phase with developing gyroid mesostructure and a lamellar/cylinder phase coexistence are

  18. Transitional free convection flows induced by thermal line sources

    NARCIS (Netherlands)

    Bastiaans, R.J.M.

    1993-01-01

    In the present study the usefullness of a large eddy simulation for transition is examined. Numerical results of such simulations are presented from a study to determine the characteristics of a flow induced by a thermal line source. The first bifurcation to time dependent motion and the route to

  19. Condensate-induced transitions and critical spin chains

    NARCIS (Netherlands)

    Månsson, T.; Lahtinen, V.; Suorsa, J.; Ardonne, E.

    2013-01-01

    We show that condensate-induced transitions between two-dimensional topological phases provide a general framework to relate one-dimensional spin models at their critical points. We demonstrate this using two examples. First, we show that two well-known spin chains, namely, the XY chain and the

  20. Ultrafast Hot Electron Induced Phase Transitions in Vanadium Dioxide

    Directory of Open Access Journals (Sweden)

    Haglund R. F.

    2013-03-01

    Full Text Available The Au/Cr/VO2/Si system was investigated in pump–probe experiments. Hot-electrons generated in the Au were found to penetrate into the underlying VO2 and couple with its lattice inducing a semiconductor-to-metal phase transition in ~2 picoseconds.

  1. Nuclear transitions induced by atomic excitations

    International Nuclear Information System (INIS)

    Dyer, P.; Bounds, J.A.; Haight, R.C.; Luk, T.S.

    1988-01-01

    In the two-step pumping scheme for a gamma-ray laser, an essential step is that of exciting the nucleus from a long-lived storage isomer to a nearby short- lived state that then decays to the upper lasing level. An experiment is in progress to induce this transfer by first exciting the atomic electrons with UV photons. The incident photons couple well to the electrons, which then couple via a virtual photon to the nucleus. As a test case, excitation of the 235 U nucleus is being sought, using a high- brightness UV laser. The excited nuclear state, having a 26- minute half-life, decays by internal conversion, resulting in emission of an atomic electron. A pulsed infrared laser produces an atomic beam of 235 U which is then bombarded by the UV laser beam. Ions are collected, and conversion electrons are detected by a channel electron multiplier. In preliminary experiments, an upper limit of 7 x 10 -5 has been obtained for the probability of exciting a 235 U atom in the UV beam for one picosecond at an intensity of about 10 15 W/cm 2 . Experiments with higher sensitivities and at higher UV beam intensities are underway

  2. An intermittency model for predicting roughness induced transition

    Science.gov (United States)

    Ge, Xuan; Durbin, Paul

    2014-11-01

    An extended model for roughness-induced transition is proposed based on an intermittency transport equation for RANS modeling formulated in local variables. To predict roughness effects in the fully turbulent boundary layer, published boundary conditions for k and ω are used, which depend on the equivalent sand grain roughness height, and account for the effective displacement of wall distance origin. Similarly in our approach, wall distance in the transition model for smooth surfaces is modified by an effective origin, which depends on roughness. Flat plate test cases are computed to show that the proposed model is able to predict the transition onset in agreement with a data correlation of transition location versus roughness height, Reynolds number, and inlet turbulence intensity. Experimental data for a turbine cascade are compared with the predicted results to validate the applicability of the proposed model. Supported by NSF Award Number 1228195.

  3. Field-induced valence transition in rare-earth system

    International Nuclear Information System (INIS)

    Chattopadhaya, A.; Ghatak, S.K.

    2000-01-01

    The magnetic field-induced valence transition in rare-earth compound has been examined based on a pseudospin S=1 Ising model proposed earlier for valence transition. The model includes finite mixing between two pertinent ionic configurations (magnetic and non-magnetic) separated by an energy gap and with intersite interaction between rare-earth ions. Using the mean field approximation the magnetic behaviour and the critical field (H c ) for transition are obtained as a function of energy gap and temperature. The phase boundary defined in terms of reduced field H c /H co and reduced temperature T/T v (T v being valence transition temperature in absence of field) is nearly independent of energy gap. These results are in qualitative agreement with experimental observation in Yb- and Eu-compounds

  4. Noise-induced transition in a quantum system

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Pulak Kumar [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Barik, Debashis [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Ray, Deb Shankar [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India)

    2005-07-04

    We examine the noise-induced transition in a fluctuating bistable potential of a driven quantum system in thermal equilibrium. Making use of a Wigner canonical thermal distribution for description of the statistical properties of the thermal bath, we explore the generic effects of quantization like vacuum field fluctuation and tunneling in the characteristic stationary probability distribution functions undergoing transition from unimodal to bimodal nature and in signal-to-noise ratio characterizing the cooperative effect among the noise processes and the weak periodic signal.

  5. Noise-induced transition in a quantum system

    International Nuclear Information System (INIS)

    Ghosh, Pulak Kumar; Barik, Debashis; Ray, Deb Shankar

    2005-01-01

    We examine the noise-induced transition in a fluctuating bistable potential of a driven quantum system in thermal equilibrium. Making use of a Wigner canonical thermal distribution for description of the statistical properties of the thermal bath, we explore the generic effects of quantization like vacuum field fluctuation and tunneling in the characteristic stationary probability distribution functions undergoing transition from unimodal to bimodal nature and in signal-to-noise ratio characterizing the cooperative effect among the noise processes and the weak periodic signal

  6. Pressure-induced magnetic transition in CeP

    International Nuclear Information System (INIS)

    Naka, T.; Matsumoto, T.; Mori, N.; Okayama, Y.; Haga, Y.; Suzuki, T.

    1997-01-01

    Pressure dependence of magnetization in CeP is investigated up to 2 GPa. Multi-step transitions are induced by pressure. An antiferromagnetic transition at T N =11 K below 0.1 GPa develops into two (magnetic) transitions at T L and T H in the region of 0.1 L , T H and T d above 1.3 GPa. For decreasing temperature an abrupt increase of magnetization, M(T), has been observed below T H and a round maximum of magnetization appears at T L for P≥0.4 GPa. Above 1.3 GPa, an anomalous decrease of M(T) begins at T d =10 K. Using previously reported 31 P-NMR shift data it is shown that the pressure dependence of a characteristic temperature, which is proportional to the crystal field splitting in the paramagnetic temperature region, decreases rapidly with increasing pressure. (orig.)

  7. Composition-induced structural, electrical, and magnetic phase transitions in AX-type mixed-valence cobalt oxynitride epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Jumpei; Oka, Daichi [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012 (Japan); Hirose, Yasushi, E-mail: hirose@chem.s.u-tokyo.ac.jp; Yang, Chang; Fukumura, Tomoteru; Hasegawa, Tetsuya [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Nakao, Shoichiro [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Harayama, Isao; Sekiba, Daiichiro [University of Tsukuba Tandem Accelerator Complex (UTTAC), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577 (Japan)

    2015-12-07

    Synthesis of mid- to late-transition metal oxynitrides is generally difficult by conventional thermal ammonolysis because of thermal instability. In this letter, we synthesized epitaxial thin films of AX-type phase-pure cobalt oxynitrides (CoO{sub x}N{sub y}) by using nitrogen-plasma-assisted pulsed laser deposition and investigated their structural, electrical, and magnetic properties. The CoO{sub x}N{sub y} thin films with 0 ≤ y/(x + y) ≤ 0.63 grown on MgO (100) substrates showed a structural phase transition from rock salt (RS) to zinc blend at the nitrogen content y/(x + y) ∼ 0.5. As the nitrogen content increased, the room-temperature electrical resistivity of the CoO{sub x}N{sub y} thin films monotonically decreased from the order of 10{sup 5} Ω cm to 10{sup −4} Ω cm. Furthermore, we observed an insulator-to-metal transition at y/(x + y) ∼ 0.34 in the RS-CoO{sub x}N{sub y} phase, which has not yet been reported in Co{sup 2+}/Co{sup 3+} mixed-valence cobalt oxides with octahedral coordination. The low resistivity in the RS-CoO{sub x}N{sub y} phase, on the 10{sup −3} Ω cm order, may have originated from the intermediate spin state of Co{sup 3+} stabilized by the lowered crystal field symmetry of the CoO{sub 6−n}N{sub n} octahedra (n = 1, 2,…5). Magnetization measurements suggested that a magnetic phase transition occurred in the RS-CoO{sub x}N{sub y} films during the insulator-to-metal transition. These results demonstrate that low-temperature epitaxial growth is a promising approach for exploring novel electronic functionalities in oxynitrides.

  8. Stress induces pain transition by potentiation of AMPA receptor phosphorylation.

    Science.gov (United States)

    Li, Changsheng; Yang, Ya; Liu, Sufang; Fang, Huaqiang; Zhang, Yong; Furmanski, Orion; Skinner, John; Xing, Ying; Johns, Roger A; Huganir, Richard L; Tao, Feng

    2014-10-08

    Chronic postsurgical pain is a serious issue in clinical practice. After surgery, patients experience ongoing pain or become sensitive to incident, normally nonpainful stimulation. The intensity and duration of postsurgical pain vary. However, it is unclear how the transition from acute to chronic pain occurs. Here we showed that social defeat stress enhanced plantar incision-induced AMPA receptor GluA1 phosphorylation at the Ser831 site in the spinal cord and greatly prolonged plantar incision-induced pain. Interestingly, targeted mutation of the GluA1 phosphorylation site Ser831 significantly inhibited stress-induced prolongation of incisional pain. In addition, stress hormones enhanced GluA1 phosphorylation and AMPA receptor-mediated electrical activity in the spinal cord. Subthreshold stimulation induced spinal long-term potentiation in GluA1 phosphomimetic mutant mice, but not in wild-type mice. Therefore, spinal AMPA receptor phosphorylation contributes to the mechanisms underlying stress-induced pain transition. Copyright © 2014 the authors 0270-6474/14/3413737-10$15.00/0.

  9. Field-induced transitions in DySb

    International Nuclear Information System (INIS)

    Brun, T.O.; Lander, G.H.; Korty, F.W.; Kouvel, J.S.

    1974-01-01

    The NaCl-structured compound DySb, which in zero field transforms abruptly at T/sub N/ approximately 9.5 0 K to a Type-II antiferromagnetic (A) state with a nearly tetragonal lattice distortion, was previously found to exhibit rapid field-induced changes in magnetization at 1.5 0 K. The field-induced transitions in a DySb crystal have been studied by neutron diffraction and magnetization measurements in fields up to approximately 60 kOe applied parallel to each of the principal axes. In the broken bracket 100 broken bracket case, the transition from the A to an intermediate ferrimagnetic (Q) state is first-order at 4.2 0 K (critical field H/sub c/ approximately 21 kOe) but is continuous from approximately 6 0 K up to T/sub N/: as H/sub c/ → 0. The Q-to-paramagnetic (P) transition is rapid but continuous at 4.2 0 K (H/sub c/ approximately 40 kOe) and becomes broad as T/sub N/ is approached. In the broken bracket 110 broken bracket case the A-to-Q transition remains essentially first-order from 4.2 0 K (H/sub c/ approximately 15 kOe) up to T/sub N/; above T/sub N/ rapid P-to-Q transitions occur at very high fields. The magnetic structure of the Q state is found to be that of HoP. (U.S.)

  10. Water-induced convection in the Earth's mantle transition zone

    Science.gov (United States)

    Richard, Guillaume C.; Bercovici, David

    2009-01-01

    Water enters the Earth's mantle by subduction of oceanic lithosphere. Most of this water immediately returns to the atmosphere through arc volcanism, but a part of it is expected as deep as the mantle transition zone (410-660 km depth). There, slabs can be deflected and linger before sinking into the lower mantle. Because it lowers the density and viscosity of the transition zone minerals (i.e., wadsleyite and ringwoodite), water is likely to affect the dynamics of the transition zone mantle overlying stagnant slabs. The consequences of water exchange between a floating slab and the transition zone are investigated. In particular, we focus on the possible onset of small-scale convection despite the adverse thermal gradient (i.e., mantle is cooled from below by the slab). The competition between thermal and hydrous effects on the density and thus on the convective stability of the top layer of the slab is examined numerically, including water-dependent density and viscosity and temperature-dependent water solubility. For plausible initial water content in a slab (≥0.5 wt %), an episode of convection is likely to occur after a relatively short time delay (5-20 Ma) after the slab enters the transition zone. However, water induced rheological weakening is seen to be a controlling parameter for the onset time of convection. Moreover, small-scale convection above a stagnant slab greatly enhances the rate of slab dehydration. Small-scale convection also facilitates heating of the slab, which in itself may prolong the residence time of the slab in the transition zone.

  11. Hypoxia activated EGFR signaling induces epithelial to mesenchymal transition (EMT.

    Directory of Open Access Journals (Sweden)

    Ashish Misra

    Full Text Available Metastasis is a multi-step process which requires the conversion of polarized epithelial cells to mesenchymal cells, Epithelial-Mesenchymal Transition (EMT. EMT is essential during embryonic morphogenesis and has been implicated in the progression of primary tumors towards metastasis. Hypoxia is known to induce EMT; however the molecular mechanism is still poorly understood. Using the A431 epithelial cancer cell line, we show that cells grown under hypoxic conditions migrated faster than cells grown under normal oxygen environment. Cells grown under hypoxia showed reduced adhesion to the extracellular matrix (ECM probably due to reduced number of Vinculin patches. Growth under hypoxic conditions also led to down regulation of E-cadherin and up regulation of vimentin expression. The increased motility of cells grown under hypoxia could be due to redistribution of Rac1 to the plasma membrane as opposed to increased expression of Rac1. EGF (Epidermal Growth Factor is a known inducer of EMT and growth of A431 cells in the absence of oxygen led to increased expression of EGFR (EGF Receptor. Treatment of A431 cells with EGF led to reduced cell adhesion to ECM, increased cell motility and other EMT characteristics. Furthermore, this transition was blocked by the monoclonal antibody Cetuximab. Cetuximab also blocked the hypoxia-induced EMT suggesting that cell growth under hypoxic conditions led to activation of EGFR signaling and induction of EMT phenotype.

  12. Transition in complex calcium bursting induced by IP3 degradation

    International Nuclear Information System (INIS)

    Zhang Feng; Lu Qishao; Su Jianzhong

    2009-01-01

    Complex intracellular Ca 2+ oscillations are systematically investigated in a mathematical model based on the mechanism of Ca 2+ -induced Ca 2+ release (CICR), taking account of the Ca 2+ -stimulated degradation of inositol 1,4,5-trisphosphate (IP 3 ) by a 3-kinase. Periodic, quasi-periodic and chaotic bursting oscillations exist in a wide range of parameter values and occur alternatively as the parameters change slightly. The transition among them can be observed by the evidence in their interspike interval and the Lyapunov exponent. These results reveal the role of agonist-stimulated of IP 3 degradation as a possible source for complex patterns in Ca 2+ signaling.

  13. Induced magnetism in transition metal intercalated graphitic systems

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-10-26

    We investigate the structure, chemical bonding, electronic properties, and magnetic behavior of a three-dimensional graphitic network in aba and aaa stacking with intercalated transition metal atoms (Mn, Fe, Co, Ni, and Cu). Using density functional theory, we find induced spin-polarization of the C atoms both when the graphene sheets are aba stacked (forming graphite) and aaa stacked (resembling bi-layer graphene). The magnetic moment induced by Mn, Fe, and Co turns out to vary from 1.38 μB to 4.10 μB, whereas intercalation of Ni and Cu does not lead to a magnetic state. The selective induction of spin-polarization can be utilized in spintronic and nanoelectronic applications.

  14. Induced magnetism in transition metal intercalated graphitic systems

    KAUST Repository

    Kaloni, Thaneshwor P.; Schwingenschlö gl, Udo; Upadhyay Kahaly, M.

    2011-01-01

    We investigate the structure, chemical bonding, electronic properties, and magnetic behavior of a three-dimensional graphitic network in aba and aaa stacking with intercalated transition metal atoms (Mn, Fe, Co, Ni, and Cu). Using density functional theory, we find induced spin-polarization of the C atoms both when the graphene sheets are aba stacked (forming graphite) and aaa stacked (resembling bi-layer graphene). The magnetic moment induced by Mn, Fe, and Co turns out to vary from 1.38 μB to 4.10 μB, whereas intercalation of Ni and Cu does not lead to a magnetic state. The selective induction of spin-polarization can be utilized in spintronic and nanoelectronic applications.

  15. Magnetically induced electrical transport and dielectric properties of 3d transition elemental substitution at the Mn-site in Nd0.67Ba0.33MnO3 manganites

    Science.gov (United States)

    Sudakshina, B.; Arun, B.; Chandrasekhar, K. Devi; Yang, H. D.; Vasundhara, M.

    2018-05-01

    We have investigated the temperature dependence of electrical transport and dielectric properties along with magnetoresistance and magneto dielectric behavior in Nd0.67Ba0.33Mn0.9TR0.1O3 (TR= Cr, Fe, Co, Ni, Cu) manganites. All the compounds crystallized into an orthorhombic structure with Imma space group. Nd0.67Ba0.33MnO3 shows insulating to metallic behavior at intermediate temperatures, but, with the substitution of transitional elements it shows insulating in nature, down to lowest temperature measured for all the compounds. Dielectric measurement shows the intrinsic behavior of these lossy materials. A large value of magneto resistance is obtained for all the compounds and considerable amount of magneto-dielectric effect is shown for all the substituted compounds at lower temperatures.

  16. Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks.

    Science.gov (United States)

    Onaga, Tomokatsu; Gleeson, James P; Masuda, Naoki

    2017-09-08

    Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The spreading of infections on such temporal networks can differ dramatically from spreading on static networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher epidemic threshold) when the node's concurrency is low, but can also enhance epidemics when the concurrency is high. We analytically determine different phases of this concurrency-induced transition, and confirm our results with numerical simulations.

  17. Nuclear level density variation with angular momentum induced shape transition

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2016-01-01

    Variation of Nuclear level density (NLD) with the excitation energy and angular momentum in particular has been a topic of interest in the recent past and there have been continuous efforts in this direction on the theoretical and experimental fronts but a conclusive trend in the variation of nuclear level density parameter with angular momentum has not been achieved so far. A comprehensive investigation of N=68 isotones around the compound nucleus 119 Sb from neutron rich 112 Ru (Z=44) to neutron deficient 127 Pr (Z= 59) nuclei is presented to understand the angular momentum induced variations in inverse level density parameter and the possible influence of deformation and structural transitions on the variations on NLd

  18. Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks

    Science.gov (United States)

    Onaga, Tomokatsu; Gleeson, James P.; Masuda, Naoki

    2017-09-01

    Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The spreading of infections on such temporal networks can differ dramatically from spreading on static networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher epidemic threshold) when the node's concurrency is low, but can also enhance epidemics when the concurrency is high. We analytically determine different phases of this concurrency-induced transition, and confirm our results with numerical simulations.

  19. Strain-induced topological quantum phase transition in phosphorene oxide

    Science.gov (United States)

    Kang, Seoung-Hun; Park, Jejune; Woo, Sungjong; Kwon, Young-Kyun

    Using ab initio density functional theory, we investigate the structural stability and electronic properties of phosphorene oxides (POx) with different oxygen compositions x. A variety of configurations are modeled and optimized geometrically to search for the equilibrium structure for each x value. Our electronic structure calculations on the equilibrium configuration obtained for each x reveal that the band gap tends to increase with the oxygen composition of x 0.5. We further explore the strain effect on the electronic structure of the fully oxidized phosphorene, PO, with x = 1. At a particular strain without spin-orbit coupling (SOC) is observed a band gap closure near the Γ point in the k space. We further find the strain in tandem with SOC induces an interesting band inversion with a reopened very small band gap (5 meV), and thus gives rise to a topological quantum phase transition from a normal insulator to a topological insulator. Such a topological phase transition is confirmed by the wave function analysis and the band topology identified by the Z2 invariant calculation.

  20. Sample Size Induced Brittle-to-Ductile Transition of Single-Crystal Aluminum Nitride

    Science.gov (United States)

    2015-08-01

    ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal Aluminum...originator. ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal...Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal Aluminum Nitride 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  1. Insulator-metal transition in substrate-independent VO2 thin film for phase-change devices.

    Science.gov (United States)

    Taha, Mohammad; Walia, Sumeet; Ahmed, Taimur; Headland, Daniel; Withayachumnankul, Withawat; Sriram, Sharath; Bhaskaran, Madhu

    2017-12-20

    Vanadium has 11 oxide phases, with the binary VO 2 presenting stimuli-dependent phase transitions that manifest as switchable electronic and optical features. An elevated temperature induces an insulator-to-metal transition (IMT) as the crystal reorients from a monoclinic state (insulator) to a tetragonal arrangement (metallic). This transition is accompanied by a simultaneous change in optical properties making VO 2 a versatile optoelectronic material. However, its deployment in scalable devices suffers because of the requirement of specialised substrates to retain the functionality of the material. Sensitivity to oxygen concentration and larger-scale VO 2 synthesis have also been standing issues in VO 2 fabrication. Here, we address these major challenges in harnessing the functionality in VO 2 by demonstrating an approach that enables crystalline, switchable VO 2 on any substrate. Glass, silicon, and quartz are used as model platforms to show the effectiveness of the process. Temperature-dependent electrical and optical characterisation is used demonstrating three to four orders of magnitude in resistive switching, >60% chromic discrimination at infrared wavelengths, and terahertz property extraction. This capability will significantly broaden the horizon of applications that have been envisioned but remained unrealised due to the lack of ability to realise VO 2 on any substrate, thereby exploiting its untapped potential.

  2. 5th International Workshop on Desorption Induced by Electronic Transitions

    CERN Document Server

    Jennison, Dwight R; Stechel, Ellen B; DIET V; Desorption induced by electronic transitions

    1993-01-01

    This volume in the Springer Series on Surface Sciences presents a recent account of advances in the ever-broadening field of electron-and photon-stimulated sur­ face processes. As in previous volumes, these advances are presented as the proceedings of the International Workshop on Desorption Induced by Electronic Transitions; the fifth workshop (DIET V) was held in Taos, New Mexico, April 1-4, 1992. It will be abundantly clear to the reader that "DIET" is not restricted to desorption, but has for several years included photochemistry, non-thermal surface modification, exciton self-trapping, and many other phenomena that are induced by electron or photon bombardment. However, most stimulated surface processes do share a common physics: initial electronic excitation, localization of the excitation, and conversion of electronic energy into nuclear kinetic energy. It is the rich variation of this theme which makes the field so interesting and fruitful. We have divided the book into eleven parts in orde...

  3. 2nd International Workshop on Desorption Induced by Electronic Transitions

    CERN Document Server

    Menzel, Dietrich

    1985-01-01

    The second workshop on Desorption Induced by Electronic Transitions (DIET II) took place October 15-17, 1984, in SchloB Elmau, Bavaria. DIET II, fol­ lowing the great success of DIET I (edited by N. H. Tolk, M. M. Traum, J. C. Tully, T. E. Madey and published in Springer Ser. Chem. Phys. , Vol. 24), again brought together over 60 workers in this exciting field. The "hard co­ re of experts" was essentially the same as in DIET I but the general overlap of participants between the two meetings was small. While DIET I had the function of an exposition of the status of the field DIET II focussed more on new developments. The main emphasis was again on the microscopic under­ standing of DIET but a number of side aspects and the application of DIET ideas to other fields such as sputtering, laser-induced desorption, fractu­ re, erosion, etc. were considered, too. New mechanisms and new refined expe­ rimental techniques were proposed and discussed at the meeting critically but with great enthusiasm. In addition t...

  4. Ultrafast photo-induced hidden phases in strained manganite thin films

    Science.gov (United States)

    Zhang, Jingdi; McLeod, A. S.; Zhang, Gu-Feng; Stoica, Vladimir; Jin, Feng; Gu, Mingqiang; Gopalan, Venkatraman; Freeland, John W.; Wu, Wenbin; Rondinelli, James; Wen, Haidan; Basov, D. N.; Averitt, R. D.

    Correlated transition metal oxides (TMOs) are particularly sensitive to external control because of energy degeneracy in a complex energy landscape that promote a plethora of metastable states. However, it remains a grand challenge to actively control and fully explore the rich landscape of TMOs. Dynamic control with pulsed photons can overcome energetic barriers, enabling access to transient or metastable states that are not thermally accessible. In the past, we have demonstrated that mode-selective single-laser-pulse excitation of a strained manganite thin film La2/3Ca1/3MnO3 initiates a persistent phase transition from an emergent antiferromagnetic insulating ground state to a ferromagnetic metallic metastable state. Beyond the photo-induced insulator to metal transition, we recently discovered a new peculiar photo-induced hidden phase, identified by an experimental approach that combines ultrafast pump-probe spectroscopy, THz spectroscopy, X-ray diffraction, cryogenic near-field spectroscopy and SHG probe. This work is funded by the DOE, Office of Science, Office of Basic Energy Science under Award Numbers DE-SC0012375 and DE-SC0012592.

  5. Direct contact condensation induced transition from stratified to slug flow

    International Nuclear Information System (INIS)

    Strubelj, Luka; Ezsoel, Gyoergy; Tiselj, Iztok

    2010-01-01

    Selected condensation-induced water hammer experiments performed on PMK-2 device were numerically modelled with three-dimensional two-fluid models of computer codes NEPTUNE C FD and CFX. Experimental setup consists of the horizontal pipe filled with the hot steam that is being slowly flooded with cold water. In most of the experimental cases, slow flooding of the pipe was abruptly interrupted by a strong slugging and water hammer, while in the selected experimental runs performed at higher initial pressures and temperatures that are analysed in the present work, the transition from the stratified into the slug flow was not accompanied by the water hammer pressure peak. That makes these cases more suitable tests for evaluation of the various condensation models in the horizontally stratified flows and puts them in the range of the available CFD (Computational Fluid Dynamics) codes. The key models for successful simulation appear to be the condensation model of the hot vapour on the cold liquid and the interfacial momentum transfer model. The surface renewal types of condensation correlations, developed for condensation in the stratified flows, were used in the simulations and were applied also in the regions of the slug flow. The 'large interface' model for inter-phase momentum transfer model was compared to the bubble drag model. The CFD simulations quantitatively captured the main phenomena of the experiments, while the stochastic nature of the particular condensation-induced water hammer experiments did not allow detailed prediction of the time and position of the slug formation in the pipe. We have clearly shown that even the selected experiments without water hammer present a tough test for the applied CFD codes, while modelling of the water hammer pressure peaks in two-phase flow, being a strongly compressible flow phenomena, is beyond the capability of the current CFD codes.

  6. Direct investigations of deformation and yield induced structure transitions in polyamide 6 below glass transition temperature with WAXS and SAXS

    DEFF Research Database (Denmark)

    Guo, Huilong; Wang, Jiayi; Zhou, Chengbo

    2015-01-01

    Deformation and yield induced structure transitions of polyamide 6 (PA6) were detected with the combination of the wide- and small-angle X-ray scattering (WAXS and SAXS) at 30 degrees C below glass transition temperature (T-g) of PA6. During deformation, gamma-alpha phase transition was found...... at elastic stage. The concentrated stress in crystals at elastic stage provided adequate energy for the direct gamma-alpha phase transition under T-g. The force to promote the gamma-phase into a phase directly is insufficient at the yield stage and a transient phase as a compromise was formed. The transient...... phase was confirmed by DSC measurements and assisted the gamma-alpha phase transition indirectly. The gamma-phase slips into incomplete fragments at yield point, and the parts along tensile direction are responsible for the formation of transient phase. The gamma-fragments after yield is oriented...

  7. 3rd International Workshop on Desorption Induced by Electronic Transitions

    CERN Document Server

    Knotek, Michael

    1988-01-01

    These proceedings are the result of the third international workshop on Desorption Induced by Electronic Transitions, DIET III, which took place on Shelter Island, NY, May. 20-22, 1987. The work contained in this volume is an excellent summary of the current status of the field and should be a valuable reference text for both "seasoned" researchers and newcomers in the field of DIET. Based on the success of the meeting it seems clear that interest and enthusiasm in the field is strong. It is also apparent, from the many lively discussions during the meeting, that many unanswered questions (and controversies) remain to be solved. It was particularly pleasing to see many new participants from new and rapidly advancing fields, ranging from gas phase dynamics to semiconductor processing. The resulting cross-fertilization from these separate but related fields is playing an important role in helping us understand desorption processes at solid surfaces. In general, the topics covered during the course of the worksh...

  8. Bifurcation of transition paths induced by coupled bistable systems.

    Science.gov (United States)

    Tian, Chengzhe; Mitarai, Namiko

    2016-06-07

    We discuss the transition paths in a coupled bistable system consisting of interacting multiple identical bistable motifs. We propose a simple model of coupled bistable gene circuits as an example and show that its transition paths are bifurcating. We then derive a criterion to predict the bifurcation of transition paths in a generalized coupled bistable system. We confirm the validity of the theory for the example system by numerical simulation. We also demonstrate in the example system that, if the steady states of individual gene circuits are not changed by the coupling, the bifurcation pattern is not dependent on the number of gene circuits. We further show that the transition rate exponentially decreases with the number of gene circuits when the transition path does not bifurcate, while a bifurcation facilitates the transition by lowering the quasi-potential energy barrier.

  9. Epitaxial growth of higher transition-temperature VO2 films on AlN/Si

    Directory of Open Access Journals (Sweden)

    Tetiana Slusar

    2016-02-01

    Full Text Available We report the epitaxial growth and the mechanism of a higher temperature insulator-to-metal-transition (IMT of vanadium dioxide (VO2 thin films synthesized on aluminum nitride (AlN/Si (111 substrates by a pulsed-laser-deposition method; the IMT temperature is TIMT ≈ 350 K. X-ray diffractometer and high resolution transmission electron microscope data show that the epitaxial relationship of VO2 and AlN is VO2 (010 ‖ AlN (0001 with VO2 [101] ‖   AlN   [ 2 1 ̄ 1 ̄ 0 ] zone axes, which results in a substrate-induced tensile strain along the in-plane a and c axes of the insulating monoclinic VO2. This strain stabilizes the insulating phase of VO2 and raises TIMT for 10 K higher than TIMT single crystal ≈ 340 K in a bulk VO2 single crystal. Near TIMT, a resistance change of about four orders is observed in a thick film of ∼130 nm. The VO2/AlN/Si heterostructures are promising for the development of integrated IMT-Si technology, including thermal switchers, transistors, and other applications.

  10. Effects of phase transition induced density fluctuations on pulser dynamics

    International Nuclear Information System (INIS)

    Bagchi, Partha; Das, Arpan; Srivastava, Ajit M.; Layek, Biswanath

    2016-01-01

    We show that density fluctuations during phase transitions in pulsar cores may have non-trivial effects on pulsar timings, and may also possibly account for glitches and anti-glitches. These density fluctuations invariably lead to non-zero off-diagonal components of the moment of inertia, leading to transient wobbling of star. Thus, accurate measurements of pulsar timing and intensity modulations (from wobbling) may be used to identify the specific pattern of density fluctuations, hence the particular phase transition, occurring inside the pulsar core. Changes in quadrupole moment from rapidly evolving density fluctuations during the transition, with very short time scales, may provide a new source for gravitational waves. (author)

  11. Influence of shock induced polymorphic transition on penetration in steel

    International Nuclear Information System (INIS)

    Hereil, P.L.; Fanget, A.

    1994-01-01

    The effects of polymorphic transition for the impact of a 27NCD10 steel projectile on a 27NCD10 steel target at 1280 m/s is presented. Comparisons between results of 2D numerical calculations performed with and without polymorphic transition show the influence of this phenomenon on stress distribution and tension zones in the target and in the projectile. Good agreement between experimental and calculated free surface velocity profiles is obtained with polymorphic transition and damage models taken into account. (orig.)

  12. Solid-solid phase transitions in Fe nanowires induced by axial strain

    International Nuclear Information System (INIS)

    Sandoval, Luis; Urbassek, Herbert M

    2009-01-01

    By means of classical molecular-dynamics simulations we investigate the solid-solid phase transition from a bcc to a close-packed crystal structure in cylindrical iron nanowires, induced by axial strain. The interatomic potential employed has been shown to be capable of describing the martensite-austenite phase transition in iron. We study the stress versus strain curves for different temperatures and show that for a range of temperatures it is possible to induce a solid-solid phase transition by axial strain before the elasticity is lost; these transition temperatures are below the bulk transition temperature. The two phases have different (non-linear) elastic behavior: the bcc phase softens, while the close-packed phase stiffens with temperature. We also consider the reversibility of the transformation in the elastic regimes, and the role of the strain rate on the critical strain necessary for phase transition.

  13. Observation of a Dissipation-Induced Classical to Quantum Transition

    Directory of Open Access Journals (Sweden)

    J. Raftery

    2014-09-01

    Full Text Available Here, we report the experimental observation of a dynamical quantum phase transition in a strongly interacting open photonic system. The system studied, comprising a Jaynes-Cummings dimer realized on a superconducting circuit platform, exhibits a dissipation-driven localization transition. Signatures of the transition in the homodyne signal and photon number reveal this transition to be from a regime of classical oscillations into a macroscopically self-trapped state manifesting revivals, a fundamentally quantum phenomenon. This experiment also demonstrates a small-scale realization of a new class of quantum simulator, whose well-controlled coherent and dissipative dynamics is suited to the study of quantum many-body phenomena out of equilibrium.

  14. Stochastic resonance induced by novel random transitions of motion of FitzHugh-Nagumo neuron model

    International Nuclear Information System (INIS)

    Zhang Guangjun; Xu Jianxue

    2005-01-01

    In contrast to the previous studies which have dealt with stochastic resonance induced by random transitions of system motion between two coexisting limit cycle attractors in the FitzHugh-Nagumo (FHN) neuron model after Hopf bifurcation and which have dealt with the phenomenon of stochastic resonance induced by external noise when the model with periodic input has only one attractor before Hopf bifurcation, in this paper we have focused our attention on stochastic resonance (SR) induced by a novel transition behavior, the transitions of motion of the model among one attractor on the left side of bifurcation point and two attractors on the right side of bifurcation point under the perturbation of noise. The results of research show: since one bifurcation of transition from one to two limit cycle attractors and the other bifurcation of transition from two to one limit cycle attractors occur in turn besides Hopf bifurcation, the novel transitions of motion of the model occur when bifurcation parameter is perturbed by weak internal noise; the bifurcation point of the model may stochastically slightly shift to the left or right when FHN neuron model is perturbed by external Gaussian distributed white noise, and then the novel transitions of system motion also occur under the perturbation of external noise; the novel transitions could induce SR alone, and when the novel transitions of motion of the model and the traditional transitions between two coexisting limit cycle attractors after bifurcation occur in the same process the SR also may occur with complicated behaviors types; the mechanism of SR induced by external noise when FHN neuron model with periodic input has only one attractor before Hopf bifurcation is related to this kind of novel transition mentioned above

  15. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers

    KAUST Repository

    Cheng, Yingchun; Zhu, Zhiyong; Tahir, Muhammad; Schwingenschlö gl, Udo

    2013-01-01

    . We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te

  16. Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals: Adsorption-Induced Transitions in ZIF-8

    KAUST Repository

    Zhang, Chen

    2014-09-04

    © 2014 American Chemical Society. Understanding the crystal-size dependence of both guest adsorption and structural transitions of nanoporous solids is crucial to the development of these materials. We find that nano-sized metal-organic framework (MOF) crystals have significantly different guest adsorption properties compared to the bulk material. A new methodology is developed to simulate the adsorption and transition behavior of entire MOF nanoparticles. Our simulations predict that the transition pressure significantly increases with decreasing particle size, in agreement with crystal-size-dependent experimental measurements of the N2-ZIF-8 system. We also propose a simple core-shell model to examine this effect on length scales that are inaccessible to simulations and again find good agreement with experiments. This study is the first to examine particle size effects on structural transitions in ZIFs and provides a thermodynamic framework for understanding the underlying mechanism.

  17. Effects of phase transition induced density fluctuations on pulsar dynamics

    Directory of Open Access Journals (Sweden)

    Partha Bagchi

    2015-07-01

    Full Text Available We show that density fluctuations during phase transitions in pulsar cores may have non-trivial effects on pulsar timings, and may also possibly account for glitches and anti-glitches. These density fluctuations invariably lead to non-zero off-diagonal components of the moment of inertia, leading to transient wobbling of star. Thus, accurate measurements of pulsar timing and intensity modulations (from wobbling may be used to identify the specific pattern of density fluctuations, hence the particular phase transition, occurring inside the pulsar core. Changes in quadrupole moment from rapidly evolving density fluctuations during the transition, with very short time scales, may provide a new source for gravitational waves.

  18. Laser induced popcornlike conformational transition of nanodiamond as a nanoknife

    International Nuclear Information System (INIS)

    Chang, C.-C.; Chen, P.-H.; Chu, H.-L.; Lee, T.-C.; Chou, C.-C.; Chao, J.-I; Su, C.-Y.; Chen, J.S.; Tsai, J.-S.; Tsai, C.-M.; Ho, Y.-P.; Sun, K.W.; Cheng, C.-L.; Chen, F.-R.

    2008-01-01

    Nanodiamond (ND) is surrounded by layers of graphite on its surface. This unique structure feature creates unusual fluorescence spectra, which can be used as an indicator to monitor its surface modification. Meanwhile, the impurity, nitroso (C-N=O) inside the ND can be photolyzed by two-photon absorption, releasing NO to facilitate the formation of a sp 3 diamond structure in the core of ND and transforming it into a sp 2 graphite structure. Such a conformational transition enlarges the size of ND from 8 to 90 nm, resulting in a popcornlike structure. This transition reaction may be useful as nanoknives in biomedical application

  19. Phase transitions induced by the Aharonov-Bohm field

    International Nuclear Information System (INIS)

    Krive, I.V.; Naftulin, S.A.

    1990-07-01

    The influence of the Aharonov-Bohm flux (φ) on the order parameters of the 3-dimensional Gross-Neveu model and CP N -model in R 2 xS 1 space is considered. It is shown that the variation of flux causes the order parameter oscillations and for the small enough length of circular coordinate l c these oscillations attended with re-ordering phase transitions (i.e. the repeating transitions between the ordered and the disordered phases of the models in question). (author). 22 refs, 3 figs

  20. Jamming transitions induced by an attraction in pedestrian flow

    Science.gov (United States)

    Kwak, Jaeyoung; Jo, Hang-Hyun; Luttinen, Tapio; Kosonen, Iisakki

    2017-08-01

    We numerically study jamming transitions in pedestrian flow interacting with an attraction, mostly based on the social force model for pedestrians who can join the attraction. We formulate the joining probability as a function of social influence from others, reflecting that individual choice behavior is likely influenced by others. By controlling pedestrian influx and the social influence parameter, we identify various pedestrian flow patterns. For the bidirectional flow scenario, we observe a transition from the free flow phase to the freezing phase, in which oppositely walking pedestrians reach a complete stop and block each other. On the other hand, a different transition behavior appears in the unidirectional flow scenario, i.e., from the free flow phase to the localized jam phase and then to the extended jam phase. It is also observed that the extended jam phase can end up in freezing phenomena with a certain probability when pedestrian flux is high with strong social influence. This study highlights that attractive interactions between pedestrians and an attraction can trigger jamming transitions by increasing the number of conflicts among pedestrians near the attraction. In order to avoid excessive pedestrian jams, we suggest suppressing the number of conflicts under a certain level by moderating pedestrian influx especially when the social influence is strong.

  1. Peer Rejection Cues Induce Cardiac Slowing after Transition into Adolescence

    Science.gov (United States)

    Gunther Moor, Bregtje; Bos, Marieke G. N.; Crone, Eveline A.; van der Molen, Maurits W.

    2014-01-01

    The present study examined developmental and gender differences in sensitivity to peer rejection across the transition into adolescence by examining beat-by-beat heart rate responses. Children between the ages of 8 and 14 years were presented with unfamiliar faces of age-matched peers and were asked to predict whether they would be liked by the…

  2. Disorder-induced topological transitions in multichannel Majorana wires

    NARCIS (Netherlands)

    Pekerten, B.; Teker, A.; Bozat, Ö.; Wimmer, M.T.; Adagideli, I

    2017-01-01

    In this work, we investigate the effect of disorder on the topological properties of multichannel superconductor nanowires. While the standard expectation is that the spectral gap is closed and opened at transitions that change the topological index of the wire, we show that the closing and

  3. On Reynolds number dependence of micro-ramp-induced transition

    NARCIS (Netherlands)

    Ye, Q.; Schrijer, F.F.J.; Scarano, F.

    2018-01-01

    The variation of transitional flow features past a micro-ramp is investigated when the Reynolds number is decreased approaching the critical regime. Experiments are conducted in the incompressible flow spanning from supercritical to subcritical roughness-height-based Reynolds number ( , 730, 460

  4. Jamming transitions induced by an attraction in pedestrian flow.

    Science.gov (United States)

    Kwak, Jaeyoung; Jo, Hang-Hyun; Luttinen, Tapio; Kosonen, Iisakki

    2017-08-01

    We numerically study jamming transitions in pedestrian flow interacting with an attraction, mostly based on the social force model for pedestrians who can join the attraction. We formulate the joining probability as a function of social influence from others, reflecting that individual choice behavior is likely influenced by others. By controlling pedestrian influx and the social influence parameter, we identify various pedestrian flow patterns. For the bidirectional flow scenario, we observe a transition from the free flow phase to the freezing phase, in which oppositely walking pedestrians reach a complete stop and block each other. On the other hand, a different transition behavior appears in the unidirectional flow scenario, i.e., from the free flow phase to the localized jam phase and then to the extended jam phase. It is also observed that the extended jam phase can end up in freezing phenomena with a certain probability when pedestrian flux is high with strong social influence. This study highlights that attractive interactions between pedestrians and an attraction can trigger jamming transitions by increasing the number of conflicts among pedestrians near the attraction. In order to avoid excessive pedestrian jams, we suggest suppressing the number of conflicts under a certain level by moderating pedestrian influx especially when the social influence is strong.

  5. Cubic to hexagonal phase transition induced by electric field

    Czech Academy of Sciences Publication Activity Database

    Giacomelli, F. C.; Silveira, N.; Nallet, F.; Černoch, Peter; Steinhart, Miloš; Štěpánek, Petr

    2010-01-01

    Roč. 43, č. 9 (2010), s. 4261-4267 ISSN 0024-9297 R&D Projects: GA ČR GAP208/10/1600 Institutional research plan: CEZ:AV0Z40500505 Keywords : order to order transition (OOT) * electric field * block copolymers Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.838, year: 2010

  6. Magnetic phase transition induced by electrostatic gating in two-dimensional square metal-organic frameworks

    Science.gov (United States)

    Wang, Yun-Peng; Li, Xiang-Guo; Liu, Shuang-Long; Fry, James N.; Cheng, Hai-Ping

    2018-03-01

    We investigate theoretically magnetism and magnetic phase transitions induced by electrostatic gating of two-dimensional square metal-organic framework compounds. We find that electrostatic gating can induce phase transitions between homogeneous ferromagnetic and various spin-textured antiferromagnetic states. Electronic structure and Wannier function analysis can reveal hybridizations between transition-metal d orbitals and conjugated π orbitals in the organic framework. Mn-containing compounds exhibit a strong d -π hybridization that leads to partially occupied spin-minority bands, in contrast to compounds containing transition-metal ions other than Mn, for which electronic structure around the Fermi energy is only slightly spin split due to weak d -π hybridization and the magnetic interaction is of the Ruderman-Kittel-Kasuya-Yosida type. We use a ferromagnetic Kondo lattice model to understand the phase transition in Mn-containing compounds in terms of carrier density and illuminate the complexity and the potential to control two-dimensional magnetization.

  7. Amorphous-polycrystal transition induced by laser pulse in self-ion implanted silicon

    International Nuclear Information System (INIS)

    Foti, G.; Rimini, E.; Vitali, G.; Bertolotti, M.

    1977-01-01

    Reflection high energy electron diffraction has been used to investigate the amorphous to polycrystalline structure transition in silicon induced by laser pulse. The power density of the ruby laser pulse, in the free generation mode, has been maintained below the threshold to induce surface damage. Depth analysis has been carried out in silicon crystal using the channeling effect technique. (orig.) [de

  8. Chemically induced transition phenomena in polyurethanes as seen from generalized mode Grueneisen parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, U; Philipp, M; Bactavatchalou, R; Sanctuary, R; Baller, J; Zielinski, B; Krueger, J K [Laboratoire de Physique des Materiaux, Universite du Luxembourg, 162A, Avenue de la Faiencerie, L-1115 (Luxembourg); Possart, W; Alnot, P [Laboratoire Europeen de Recherche, Universitaire Saarland-Lorraine (Luxembourg)], E-mail: ulrich.mueller@uni.lu

    2008-05-21

    Many phenomenological properties of reactive polymers like polyurethanes increase or decrease continuously in the course of the curing process before saturating at the end of the chemical reaction. This holds true for instance for the mass density, the refractive index, the chemical turnover and the hypersonic properties. The reason for this monotone behaviour is that the chemical reaction behaves like a continuous succession of irreversible phase transitions. These transitions are superposed by the sol-gel transition and possibly by the chemically induced glass transition, with the drawback that the latter two highlighted transitions are often hidden by the underlying curing process. In this work we propose generalized mode Grueneisen parameters as an alternative probe for elucidating the polymerization process itself and the closely related transition phenomena. As a model system we use polyurethane composed of a diisocyanate and varying ratios of difunctional and trifunctional alcohols.

  9. Communication: Electronic flux induced by crossing the transition state

    Science.gov (United States)

    Jia, Dongming; Manz, Jörn; Yang, Yonggang

    2018-01-01

    We present a new effect of chemical reactions, e.g., isomerizations, that occurs when the reactants pass along the transition state, on the way to products. It is based on the well-known fact that at the transition state, the electronic structure of one isomer changes to the other. We discover that this switch of electronic structure causes a strong electronic flux that is well distinguishable from the usual flux of electrons that travel with the nuclei. As a simple but clear example, the effect is demonstrated here for bond length isomerization of Na2 (21Σu+), with adiabatic crossing the barrier between the inner and outer wells of the double minimum potential that support different "Rydberg" and "ionic" type electronic structures, respectively.

  10. Geometry-induced phase transition in fluids: Capillary prewetting

    OpenAIRE

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2013-01-01

    We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangu...

  11. Geometry-induced phase transition in fluids: capillary prewetting.

    Science.gov (United States)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2013-02-01

    We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-μ plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature T(cw). The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>T(cw), the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.

  12. Numerical investigation of hypersonic flat-plate boundary layer transition mechanism induced by different roughness shapes

    Science.gov (United States)

    Zhou, Yunlong; Zhao, Yunfei; Xu, Dan; Chai, Zhenxia; Liu, Wei

    2016-10-01

    The roughness-induced laminar-turbulent boundary layer transition is significant for high-speed aerospace applications. The transition mechanism is closely related to the roughness shape. In this paper, high-order numerical method is used to investigate the effect of roughness shape on the flat-plate laminar-to-turbulent boundary layer transition. Computations are performed in both the supersonic and hypersonic regimes (free-stream Mach number from 3.37 up to 6.63) for the square, cylinder, diamond and hemisphere roughness elements. It is observed that the square and diamond roughness elements are more effective in inducing transition compared with the cylinder and hemisphere ones. The square roughness element has the longest separated region in which strong unsteadiness exists and the absolute instability is formed, thus resulting in the earliest transition. The diamond roughness element has a maximum width of the separated region leading to the widest turbulent wake region far downstream. Furthermore, transition location moves backward as the Mach number increases, which indicates that the compressibility significantly suppresses the roughness-induced boundary layer transition.

  13. Identification of salivary components that induce transition of hyphae to yeast in Candida albicans.

    Science.gov (United States)

    Leito, Jelani T D; Ligtenberg, Antoon J M; Nazmi, Kamran; Veerman, Enno C I

    2009-10-01

    Candida albicans, the major human fungal pathogen, undergoes a reversible morphological transition from single yeast cells to pseudohyphae and hyphae filaments. The hyphae form is considered the most invasive form of the fungus. The purpose of this study is to investigate the effect of saliva on hyphae growth of C. albicans. Candida albicans hyphae were inoculated in Roswell Park Memorial Institute medium with whole saliva, parotid saliva or buffer mimicking the saliva ion composition, and cultured for 18 h at 37 degrees C under aerobic conditions with 5% CO(2). Whole saliva and parotid saliva induced transition to yeast growth, whereas the culture with buffer remained in the hyphae form. Parotid saliva was fractionated on a reverse-phase C8 column and each fraction was tested for inducing transition to yeast growth. By immunoblotting, the salivary component in the active fraction was identified as statherin, a phosphoprotein of 43 amino acids that has been implicated in remineralization of the teeth. Synthetically made statherin induced transition of hyphae to yeast. By deletion of five amino acids at the negatively charged N-terminal site (DpSpSEE), yeast-inducing activity and binding to C. albicans were increased. In conclusion, statherin induces transition to yeast of C. albicans hyphae and may thus contribute to the oral defense against candidiasis.

  14. Electrically induced phase transition in GeSbTe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bruns, Gunnar; Schlockermann, Carl; Woda, Michael; Wuttig, Matthias [I. Physikalisches Institut Ia, RWTH Aachen, 52056 Aachen (Germany)

    2008-07-01

    While phase change materials have already successfully been applied in rewriteable optical data storage, they are now also promising to form the basis for novel non-volatile electrical data storage devices. To understand the physical concepts of these so-called Phase Change Random Access Memory (PCRAM) it is mandatory to gain a deeper insight into the switching process between the highly resistive amorphous and the lowly resistive crystalline phase. The fast phase transitions between the amorphous and crystalline state of GeSbTe-based alloys has so far often been studied using pulsed laser irradiation. In this work an alternative approach is employed to investigate this transition. Electrical pulses are used to rapidly and reversibly switch between the two states. For these experiments a setup was built with a specially designed contacting circuit board to meet the requirements of electrical measurements on a nanosecond timescale. The influence of the pulse parameters on the change of device resistance was determined for different initial states. Furthermore the high time resolution of 0.4 ns allows investigation of transient electrical effects like the so-called threshold switching first described by Ovshinsky in the late 1960s.

  15. Electrically induced phase transition in GeSbTe alloys

    International Nuclear Information System (INIS)

    Bruns, Gunnar; Schlockermann, Carl; Woda, Michael; Wuttig, Matthias

    2008-01-01

    While phase change materials have already successfully been applied in rewriteable optical data storage, they are now also promising to form the basis for novel non-volatile electrical data storage devices. To understand the physical concepts of these so-called Phase Change Random Access Memory (PCRAM) it is mandatory to gain a deeper insight into the switching process between the highly resistive amorphous and the lowly resistive crystalline phase. The fast phase transitions between the amorphous and crystalline state of GeSbTe-based alloys has so far often been studied using pulsed laser irradiation. In this work an alternative approach is employed to investigate this transition. Electrical pulses are used to rapidly and reversibly switch between the two states. For these experiments a setup was built with a specially designed contacting circuit board to meet the requirements of electrical measurements on a nanosecond timescale. The influence of the pulse parameters on the change of device resistance was determined for different initial states. Furthermore the high time resolution of 0.4 ns allows investigation of transient electrical effects like the so-called threshold switching first described by Ovshinsky in the late 1960s

  16. Determination of hyperfine-induced transition rates from observations of a planetary nebula.

    Science.gov (United States)

    Brage, Tomas; Judge, Philip G; Proffitt, Charles R

    2002-12-31

    Observations of the planetary nebula NGC3918 made with the STIS instrument on the Hubble Space Telescope reveal the first unambiguous detection of a hyperfine-induced transition 2s2p 3P(o)(0)-->2s2 1S0 in the berylliumlike emission line spectrum of N IV at 1487.89 A. A nebular model allows us to confirm a transition rate of 4x10(-4) sec(-1)+/-33% for this line. The measurement represents the first independent confirmation of the transition rate of hyperfine-induced lines in low ionization stages, and it provides support for the techniques used to compute these transitions for the determination of very low densities and isotope ratios.

  17. Noise-and delay-induced phase transitions of the dimer–monomer surface reaction model

    International Nuclear Information System (INIS)

    Zeng Chunhua; Wang Hua

    2012-01-01

    Highlights: ► We study the dimer–monomer surface reaction model. ► We show that noise induces first-order irreversible phase transition (IPT). ► Combination of noise and time-delayed feedback induce first- and second-order IPT. ► First- and second-order IPT is viewed as noise-and delay-induced phase transitions. - Abstract: The effects of noise and time-delayed feedback in the dimer–monomer (DM) surface reaction model are investigated. Applying small delay approximation, we construct a stochastic delayed differential equation and its Fokker–Planck equation to describe the state evolution of the DM reaction model. We show that the noise can only induce first-order irreversible phase transition (IPT) characteristic of the DM model, however the combination of the noise and time-delayed feedback can simultaneously induce first- and second-order IPT characteristics of the DM model. Therefore, it is shown that the well-known first- and second-order IPT characteristics of the DM model may be viewed as noise-and delay-induced phase transitions.

  18. Decoherence-induced transition from photon correlation to anti-correlation

    International Nuclear Information System (INIS)

    Xu, Q

    2014-01-01

    Decoherence tends to induce the quantum-to-classical transition, which leads to a crucial obstacle in the realization of reliable quantum information processing. Counterintuitively, we propose that the decoherence due to phase decay brings about the switch from photon correlation to anti-correlation. Stronger decoherence also gives rise to an enhancement of the transition from photon correlation to anti-correlation. This breaks the conventional correlation of strong decoherence with fast decorrelation. (letters)

  19. Hydrostatic-pressure induced phase transition of phonons in single-walled nanotubes

    International Nuclear Information System (INIS)

    Feng Peng; Meng Qingchao

    2009-01-01

    We study the effect of the hydrostatic pressure on the phonons in single-walled carbon nanotubes (SWNTs) in a magnetic field. We calculate the magnetic moments of the phonons using a functional integral technique, and find that the phonons in SWNTs undergo a pressure-induced phase transition from the paramagnetic phase to the diamagnetic phase under hydrostatic pressure 2 GPa. We explain the mechanism of generating this phase transition.

  20. A computational study of pressure-induced structural transition in ThSb

    International Nuclear Information System (INIS)

    Trinadh, Ch.U.M.; Rajagopalan, M.; Natarajan, S.

    1997-01-01

    The pressure induced phase transition from NaCl-type to CsCl-type structure in ThSb was studied using total energy calculations by tight-binding linear muffin tin orbital (TBLMTO) method within atomic sphere approximation (ASA). The density of states (DOS) at ambient pressure was compared with resonant photoemission studies (PES). The variation in interatomic distances during the transition was found to be in agreement with high pressure x-ray diffraction (HPXRD) studies. (author)

  1. Transition probability of the 5971-A line in neutral uranium from collision-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gagne, J.M.; Mongeau, B.; Demers, Y.; Pianarosa, P.

    1981-01-01

    From collision-induced fluorescence spectroscopy measurements, we have determined the transition probability Aof the 5971-A transition in neutral uranium. Our value, A 5971 = (5.9 +- 1.8) x 10 5 sec -1 , is, within experimental error, in good agreement with the previous determination of Corliss, A 5971 = (7.3 +- 3.0) x 10 5 sec -1 [J. Res. Nat. Bur. Stand. Sect. A 80,1 (1976)

  2. Ab initio molecular dynamics study of pressure-induced phase transition in ZnS

    International Nuclear Information System (INIS)

    Martinez, Israel; Durandurdu, Murat

    2006-01-01

    The pressure-induced phase transition in zinc sulfide is studied using a constant-pressure ab initio technique. The reversible phase transition from the zinc-blende structure to a rock-salt structure is successfully reproduced through the simulations. The transformation mechanism at the atomistic level is characterized and found to be due to a monoclinic modification of the simulation cell, similar to that obtained in SiC. This observation supports the universal transition state of high-pressure zinc-blende to rock-salt transition in semiconductor compounds. We also study the role of stress deviations on the transformation mechanism and find that the system follows the same transition pathway under nonhydrostatic compressions as well

  3. Defect-induced transitions in synchronous asymmetric exclusion processes

    International Nuclear Information System (INIS)

    Liu Mingzhe; Wang Ruili; Jiang Rui; Hu Maobin; Gao Yang

    2009-01-01

    The effects of a single local defect in synchronous asymmetric exclusion processes are investigated via theoretical analysis and Monte Carlo simulations. Our theoretical analysis shows that there are four possible stationary phases, i.e., the (low density, low density), (low density, high density), (high density, low density) and (high density, high density) in the system. In the (high density, low density) phase, the system can reach a maximal current which is determined by the local defect, but independent of boundary conditions. A phenomenological domain wall approach is developed to predict dynamic behavior at phase boundaries. The effects of defective hopping probability p on density profiles and currents are investigated. Our investigation shows that the value of p determines phase transitions when entrance rate α and exit rate β are fixed. Density profiles and currents obtained from theoretical calculations are in agreement with Monte Carlo simulations

  4. Field-induced phase transitions in antiferromagnetic systems

    International Nuclear Information System (INIS)

    Smeets, J.P.M.

    1984-05-01

    Neutron scattering experiments and magnetization measurements are carried out on cobalt bromide hexahydrate, of which 48% of the water molecules are replaced by deuterium oxide molecules. Results were compared with data obtained from non-deuterated cobalt bromide hexahydrate. Neutron scattering experiments showed the importance of the deuterium fraction. Interplay exists between the crystallographic system and the magnetic system, which is influenced by changing the deuterium fraction. Neutron scattering and magnetization experiments on partially deuterated RbFeCl 3 .2H 2 O and CsFeCl 3 .2H 2 O were performed to study the magnetic phase transitions in these quasi one-dimensional Ising compounds. The observed behaviour in the various phases can be described by the nucleation theory of chain reversals. (Auth.)

  5. Pressure-induced phase transition of 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6

    Science.gov (United States)

    Takekiyo, Takahiro; Hatano, Naohiro; Imai, Yusuke; Abe, Hiroshi; Yoshimura, Yukihiro

    2011-03-01

    We have investigated the pressure-induced Raman spectral change of 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) using Raman spectroscopy. The relative Raman intensity at 590 cm-1 of the CH2 rocking band assigned to the gauche conformer of the NCCC dihedral angle of the butyl group in the [bmim]+ cation increases when the pressure-induced liquid-crystalline phase transition occurs, while that at 610 cm-1 assigned to the trans conformer decreases. Our results show that the high-pressure phase transition of [bmim][PF6] causes the increase of the gauche conformer of the [bmim]+ cation.

  6. Photo-induced phase transition: from where it comes and to where it goes?

    International Nuclear Information System (INIS)

    Koshihara, Shin-ya

    2005-01-01

    It is an attractive target for materials science to find a system which shows the phase transition triggered by external stimulation of light. The purpose of our study is to review experimental evidences indicating that the photo-injected local excitation can really trigger the cooperative phenomena in solids. In this sense, this unique photo-induced effect can be named as photo-induced phase transition (PIPT). Here, I will also make brief review on the experimental research on PIPT combining with a development of ultra-fast quantum electronics technology

  7. Transition polarizability model of induced resonance Raman optical activity

    Czech Academy of Sciences Publication Activity Database

    Yamamoto, S.; Bouř, Petr

    2013-01-01

    Roč. 34, č. 25 (2013), s. 2152-2158 ISSN 0192-8651 R&D Projects: GA ČR GAP208/11/0105; GA ČR GA13-03978S; GA MŠk(CZ) LH11033 Grant - others:AV ČR(CZ) M200551205 Institutional support: RVO:61388963 Keywords : induced resonance Raman optical activity * europium complexes * density functional computations * light scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.601, year: 2013

  8. Colored-noise-induced discontinuous transitions in symbiotic ecosystems

    Science.gov (United States)

    Mankin, Romi; Sauga, Ako; Ainsaar, Ain; Haljas, Astrid; Paunel, Kristiina

    2004-06-01

    A symbiotic ecosystem is studied by means of the Lotka-Volterra stochastic model, using the generalized Verhulst self-regulation. The effect of fluctuating environment on the carrying capacity of a population is taken into account as dichotomous noise. The study is a follow-up of our investigation of symbiotic ecosystems subjected to three-level (trichotomous) noise [R. Mankin, A. Ainsaar, A. Haljas, and E. Reiter, Phys. Rev. E 65, 051108 (2002)]. Relying on the mean-field theory, an exact self-consistency equation for stationary states is derived. In some cases the mean field exhibits hysteresis as a function of noise parameters. It is established that random interactions with the environment can cause discontinuous transitions. The dependence of the critical coupling strengths on the noise parameters is found and illustrated by phase diagrams. Predictions from the mean-field theory are compared with the results of numerical simulations. Our results provide a possible scenario for catastrophic shifts of population sizes observed in nature.

  9. Pressure induced phase transition in HfTiO4

    International Nuclear Information System (INIS)

    Mishra, A.K.; Garg, Nandini; Sharma, Surinder M.; Panneerselvam, G.

    2012-01-01

    Hafnium titanate is a low thermal expansion ceramic with a very good absorption cross section for thermal neutrons and a high refractoriness, thus making it a desirable nuclear material. At ambient conditions it crystallizes with the orthorhombic structure (space group Pbcn). The material properties of this ceramic have been studied as a function of temperature. However, apart from a lone shock study several decades ago there is no study at static high pressure on this compound. Since this ceramic is used as control rods in nuclear reactors it is important to understand its phase stability at different thermodynamic conditions. Therefore to understand the high pressure behaviour of hafnium titanate we have carried out diamond anvil cell based X-ray diffraction studies up to ∼20 GPa. The studies on this ceramic show that its structure is stable till 11 GPa. However, at ∼11.7 GPa appearance of new diffraction peaks indicate that it undergoes a structural phase transition to a low symmetry structure

  10. TRANSIT

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. TRANSIT. SYSTEM: DETERMINE 2D-POSITION GLOBALLY BUT INTERMITTENT (POST-FACTO). IMPROVED ACCURACY. PRINCIPLE: POLAR SATELLITES WITH INNOVATIONS OF: GRAVITY-GRADIENT ATTITUDE CONTROL; DRAG COMPENSATION. WORKS ...

  11. Pressure induced phase transitions in transition metal nitrides: Ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Anurag; Chauhan, Mamta [Advanced Material Research Lab, Indian Institute of Information Technology and Management, Gwalior 474010 (India); Singh, R.K. [Department of Physics, ITM University, Gurgaon 122017 (India)

    2011-12-15

    We have analyzed the stability of transition metal nitrides (TMNs) XN (X = Ti, Zr, Hf, V, Nb, Ta) in their original rocksalt (B1) and hypothetical CsCl (B2) type phases under high compression. The ground state total energy calculation approach of the system has been used through the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) type parameterization as exchange correlation functional. In the whole series of nitrides taken into consideration, tantalum nitride is found to be the most stable. We have observed that under compression the original B1-type phase of these nitrides transforms to a B2-type phase. We have also discussed the computation of ground state properties, like the lattice constant (a), bulk modulus (B{sub 0}) and first order pressure derivative of the bulk modulus (B'{sub 0}) of the TMNs and their host elements. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Large magnetoresistance dips and perfect spin-valley filter induced by topological phase transitions in silicene

    Science.gov (United States)

    Prarokijjak, Worasak; Soodchomshom, Bumned

    2018-04-01

    Spin-valley transport and magnetoresistance are investigated in silicene-based N/TB/N/TB/N junction where N and TB are normal silicene and topological barriers. The topological phase transitions in TB's are controlled by electric, exchange fields and circularly polarized light. As a result, we find that by applying electric and exchange fields, four groups of spin-valley currents are perfectly filtered, directly induced by topological phase transitions. Control of currents, carried by single, double and triple channels of spin-valley electrons in silicene junction, may be achievable by adjusting magnitudes of electric, exchange fields and circularly polarized light. We may identify that the key factor behind the spin-valley current filtered at the transition points may be due to zero and non-zero Chern numbers. Electrons that are allowed to transport at the transition points must obey zero-Chern number which is equivalent to zero mass and zero-Berry's curvature, while electrons with non-zero Chern number are perfectly suppressed. Very large magnetoresistance dips are found directly induced by topological phase transition points. Our study also discusses the effect of spin-valley dependent Hall conductivity at the transition points on ballistic transport and reveals the potential of silicene as a topological material for spin-valleytronics.

  13. Ebselen induces mitochondrial permeability transition because of its interaction with adenine nucleotide translocase.

    Science.gov (United States)

    Pavón, Natalia; Correa, Francisco; Buelna-Chontal, Mabel; Hernández-Esquivel, Luz; Chávez, Edmundo

    2015-10-15

    Mitochondrial permeability transition is a process established through massive Ca(2+) load in addition to an inducer reagent. Ebselen (Ebs), an antioxidant seleno compound, has been introduced as a reagent which inhibits mitochondrial dysfunction induced by permeability transition. Paradoxically enough, it has been shown that Ebs may also be able to induce the opening of the mitochondrial non-selective pores. This study was performed with the purpose of establishing the membrane system involved in Ebs-induced pore opening. Permeability transition was appraised by analyzing the following: i) matrix Ca(2+) release, and mitochondrial swelling, ii) efflux of cytochrome c, and iii) the inhibition of superoxide dismutase. All of these adverse reactions were inhibited by N-ethylmaleimide and cyclosporin A. At concentrations from 5 to 20 μM, we found that Ebs induces non-specific membrane permeability. Remarkably, Ebs blocks the binding of the fluorescent reagent eosin-5-maleimide to the thiol groups of the adenine nucleotide translocase. Based on the above, it is tempting to hypothesize that Ebs induces pore opening through its binding to the ADP/ATP carrier. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Pressure-induced transition in the grain boundary of diamond

    Science.gov (United States)

    Chen, J.; Tang, L.; Ma, C.; Fan, D.; Yang, B.; Chu, Q.; Yang, W.

    2017-12-01

    Equation of state of diamond powder with different average grain sizes was investigated using in situ synchrotron x-ray diffraction and a diamond anvil cell (DAC). Comparison of compression curves was made for two samples with average grain size of 50nm and 100nm. The two specimens were pre-pressed into pellets and loaded in the sample pressure chamber of the DAC separately to minimized differences of possible systematic errors for the two samples. Neon gas was used as pressure medium and ruby spheres as pressure calibrant. Experiments were conducted at room temperature and high pressures up to 50 GPa. Fitting the compression data in the full pressure range into the third order Birch-Murnaghan equation of state yields bulk modulus (K) and its pressure derivative (K') of 392 GPa and 5.3 for 50nm sample and 398GPa and 4.5 for 100nm sample respectively. Using a simplified core-shell grain model, this result indicates that the grain boundary has an effective bulk modulus of 54 GPa. This value is similar to that observed for carbon nanotube[1] validating the recent theoretical diamond surface modeling[2]. Differential analysis of the compression cures demonstrates clear relative compressibility change at the pressure about 20 GPa. When fit the compression data below and above this pressure separately, the effect of grain size on bulk modulus reverses in the pressure range above 20 GPa. This observation indicates a possible transition of grain boundary structure, likely from sp2 hybridization at the surface[2] towards sp3like orbital structure which behaves alike the inner crystal. [1] Jie Tang, Lu-Chang Qin, Taizo Sasaki, Masako Yudasaka, Akiyuki Matsushita, and Sumio Iijima, Compressibility and Polygonization of Single-Walled Carbon Nanotubes under Hydrostatic Pressure, Physical Review Letters, 85(9), 1187-1198, 2000. [2] Shaohua Lu, Yanchao Wang, Hanyu Liu, Mao-sheng Miao, and Yanming Ma, Self-assembled ultrathin nanotubes on diamond (100) surface, Nature

  15. Positron annihilation and pressure-induced electronic s-d transition

    International Nuclear Information System (INIS)

    McMahan, A.K.; Skriver, H.L.

    1985-06-01

    The polycrystalline, partial annihilation rates for positrons in compressed cesium have been calculated using the linear muffin-tin orbitals method. These results suggest that the pressure-induced electronic s-d transition in Cs should be directly observable by momentum sensitive positron annihilation experiments

  16. Multiple pathways in pressure-induced phase transition of coesite

    Science.gov (United States)

    Liu, Wei; Wu, Xuebang; Liu, Changsong; Miranda, Caetano R.; Scandolo, Sandro

    2017-01-01

    High-pressure single-crystal X-ray diffraction method with precise control of hydrostatic conditions, typically with helium or neon as the pressure-transmitting medium, has significantly changed our view on what happens with low-density silica phases under pressure. Coesite is a prototype material for pressure-induced amorphization. However, it was found to transform into a high-pressure octahedral (HPO) phase, or coesite-II and coesite-III. Given that the pressure is believed to be hydrostatic in two recent experiments, the different transformation pathways are striking. Based on molecular dynamic simulations with an ab initio parameterized potential, we reproduced all of the above experiments in three transformation pathways, including the one leading to an HPO phase. This octahedral phase has an oxygen hcp sublattice featuring 2 × 2 zigzag octahedral edge-sharing chains, however with some broken points (i.e., point defects). It transforms into α-PbO2 phase when it is relaxed under further compression. We show that the HPO phase forms through a continuous rearrangement of the oxygen sublattice toward hcp arrangement. The high-pressure amorphous phases can be described by an fcc and hcp sublattice mixture. PMID:29162690

  17. Contribution to the investigation of phase transitions induced by irradiation in insulating crystalline ceramics

    International Nuclear Information System (INIS)

    Simeone, D.

    2003-01-01

    The author gives a rather detailed overview of his research activities on the behaviour of ceramics subjected to irradiations by charged or not-charged particles. He reports the development of a new application of low incidence X ray diffraction to assess the evolutions within irradiated solids. Coupling this technique with Raman spectroscopy studies enabled the monitoring of order parameter evolution in these solids. He shows that, in some oxides, irradiation effects entail order-disorder type transitions and, more surprisingly, displacive phase transitions. From this experimental work, he developed a modelling of these phase transitions induced by irradiation. Quantitative data obtained on the evolutions of order parameters enabled these phase transitions to be explained within the frame of the thermodynamics of off-equilibrium phenomena

  18. Noise-induced transitions and resonant effects in nonlinear systems

    Science.gov (United States)

    Zaikin, Alexei

    2003-02-01

    Our every-day experience is connected with different acoustical noise or music. Usually noise plays the role of nuisance in any communication and destroys any order in a system. Similar optical effects are known: strong snowing or raining decreases quality of a vision. In contrast to these situations noisy stimuli can also play a positive constructive role, e.g. a driver can be more concentrated in a presence of quiet music. Transmission processes in neural systems are of especial interest from this point of view: excitation or information will be transmitted only in the case if a signal overcomes a threshold. Dr. Alexei Zaikin from the Potsdam University studies noise-induced phenomena in nonlinear systems from a theoretical point of view. Especially he is interested in the processes, in which noise influences the behaviour of a system twice: if the intensity of noise is over a threshold, it induces some regular structure that will be synchronized with the behaviour of neighbour elements. To obtain such a system with a threshold one needs one more noise source. Dr. Zaikin has analyzed further examples of such doubly stochastic effects and developed a concept of these new phenomena. These theoretical findings are important, because such processes can play a crucial role in neurophysics, technical communication devices and living sciences. Unsere alltägliche Erfahrung ist mit verschiedenen akustischen Einfluessen wie Lärm, aber auch Musik verbunden. Jeder weiss, wie Lärm stören kann und Kommunikation behindert oder gar unterbindet. Ähnliche optische Effekte sind bekannt: starkes Schneetreiben oder Regengüsse verschlechtern die Sicht und lassen uns Umrisse nur noch schemenhaft erkennen. Jedoch koennen ähnliche Stimuli auch sehr positive Auswirkungen haben: Autofahrer fahren bei leiser Musik konzentrierter -- die Behauptung von Schulkindern, nur bei dröhnenden Bässen die Mathehausaufgaben richtig rechnen zu können, ist allerdings nicht wissenschaftlich

  19. Hyperfine Induced Transitions as Diagnostics of Isotopic Composition and Densities of Low-Density Plasmas

    Science.gov (United States)

    Brage, Tomas; Judge, Philip G.; Aboussaïd, Abdellatif; Godefroid, Michel R.; Jönsson, Per; Ynnerman, Anders; Froese Fischer, Charlotte; Leckrone, David S.

    1998-06-01

    The J = 0 --> J' = 0 radiative transitions, usually viewed as allowed through two-photon decay, may also be induced by the hyperfine (HPF) interaction in atoms or ions having a nonzero nuclear spin. We compute new and review existing decay rates for the nsnp 3PoJ --> ns2 1SJ'=0 transitions in ions of the Be (n = 2) and Mg (n = 3) isoelectronic sequences. The HPF induced decay rates for the J = 0 --> J' = 0 transitions are many orders of magnitude larger than those for the competing two-photon processes, and when present are typically 1 or 2 orders of magnitude smaller than the decay rates of the magnetic quadrupole (J = 2 --> J' = 0) transitions for these ions. Several HPF induced transitions are potentially of astrophysical interest in ions of C, N, Na, Mg, Al, Si, K, Cr, Fe, and Ni. We highlight those cases that may be of particular diagnostic value for determining isotopic abundance ratios and/or electron densities from UV or EUV emission-line data. We present our atomic data in the form of scaling laws so that, given the isotopic nuclear spin and magnetic moment, a simple expression yields estimates for HPF induced decay rates. We examine some UV and EUV solar and nebular data in light of these new results and suggest possible applications for future study. We could not find evidence for the existence of HPF induced lines in the spectra we examined, but we demonstrate that existing data have come close to providing interesting upper limits. For the planetary nebula SMC N2, we derive an upper limit of 0.1 for 13C/12C from Goddard High-Resolution Spectrograph data obtained by Clegg. It is likely that more stringent limits could be obtained using newer data with higher sensitivities in a variety of objects.

  20. Optimal autaptic and synaptic delays enhanced synchronization transitions induced by each other in Newman–Watts neuronal networks

    International Nuclear Information System (INIS)

    Wang, Baoying; Gong, Yubing; Xie, Huijuan; Wang, Qi

    2016-01-01

    Highlights: • Optimal autaptic delay enhanced synchronization transitions induced by synaptic delay in neuronal networks. • Optimal synaptic delay enhanced synchronization transitions induced by autaptic delay. • Optimal coupling strength enhanced synchronization transitions induced by autaptic or synaptic delay. - Abstract: In this paper, we numerically study the effect of electrical autaptic and synaptic delays on synchronization transitions induced by each other in Newman–Watts Hodgkin–Huxley neuronal networks. It is found that the synchronization transitions induced by synaptic delay vary with varying autaptic delay and become strongest when autaptic delay is optimal. Similarly, the synchronization transitions induced by autaptic delay vary with varying synaptic delay and become strongest at optimal synaptic delay. Also, there is optimal coupling strength by which the synchronization transitions induced by either synaptic or autaptic delay become strongest. These results show that electrical autaptic and synaptic delays can enhance synchronization transitions induced by each other in the neuronal networks. This implies that electrical autaptic and synaptic delays can cooperate with each other and more efficiently regulate the synchrony state of the neuronal networks. These findings could find potential implications for the information transmission in neural systems.

  1. Control of magnetic relaxation by electric-field-induced ferroelectric phase transition and inhomogeneous domain switching

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Tianxiang; Emori, Satoru; Wang, Xinjun; Hu, Zhongqiang; Xie, Li; Gao, Yuan; Lin, Hwaider; Sun, Nian, E-mail: n.sun@neu.edu [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States); Peng, Bin; Liu, Ming, E-mail: mingliu@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, Xi' an Jiaotong University, Xi' an 710049 (China); Jiao, Jie; Luo, Haosu [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800 (China); Budil, David [Department of Chemistry, Northeastern University, Boston, Massachusetts 02115 (United States); Jones, John G.; Howe, Brandon M.; Brown, Gail J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States)

    2016-01-04

    Electric-field modulation of magnetism in strain-mediated multiferroic heterostructures is considered a promising scheme for enabling memory and magnetic microwave devices with ultralow power consumption. However, it is not well understood how electric-field-induced strain influences magnetic relaxation, an important physical process for device applications. Here, we investigate resonant magnetization dynamics in ferromagnet/ferroelectric multiferroic heterostructures, FeGaB/PMN-PT and NiFe/PMN-PT, in two distinct strain states provided by electric-field-induced ferroelectric phase transition. The strain not only modifies magnetic anisotropy but also magnetic relaxation. In FeGaB/PMN-PT, we observe a nearly two-fold change in intrinsic Gilbert damping by electric field, which is attributed to strain-induced tuning of spin-orbit coupling. By contrast, a small but measurable change in extrinsic linewidth broadening is attributed to inhomogeneous ferroelastic domain switching during the phase transition of the PMN-PT substrate.

  2. Protective Effects of Clenbuterol against Dexamethasone-Induced Masseter Muscle Atrophy and Myosin Heavy Chain Transition.

    Directory of Open Access Journals (Sweden)

    Daisuke Umeki

    Full Text Available Glucocorticoid has a direct catabolic effect on skeletal muscle, leading to muscle atrophy, but no effective pharmacotherapy is available. We reported that clenbuterol (CB induced masseter muscle hypertrophy and slow-to-fast myosin heavy chain (MHC isoform transition through direct muscle β2-adrenergic receptor stimulation. Thus, we hypothesized that CB would antagonize glucocorticoid (dexamethasone; DEX-induced muscle atrophy and fast-to-slow MHC isoform transition.We examined the effect of CB on DEX-induced masseter muscle atrophy by measuring masseter muscle weight, fiber diameter, cross-sectional area, and myosin heavy chain (MHC composition. To elucidate the mechanisms involved, we used immunoblotting to study the effects of CB on muscle hypertrophic signaling (insulin growth factor 1 (IGF1 expression, Akt/mammalian target of rapamycin (mTOR pathway, and calcineurin pathway and atrophic signaling (Akt/Forkhead box-O (FOXO pathway and myostatin expression in masseter muscle of rats treated with DEX and/or CB.Masseter muscle weight in the DEX-treated group was significantly lower than that in the Control group, as expected, but co-treatment with CB suppressed the DEX-induced masseter muscle atrophy, concomitantly with inhibition of fast-to-slow MHC isoforms transition. Activation of the Akt/mTOR pathway in masseter muscle of the DEX-treated group was significantly inhibited compared to that of the Control group, and CB suppressed this inhibition. DEX also suppressed expression of IGF1 (positive regulator of muscle growth, and CB attenuated this inhibition. Myostatin protein expression was unchanged. CB had no effect on activation of the Akt/FOXO pathway. These results indicate that CB antagonizes DEX-induced muscle atrophy and fast-to-slow MHC isoform transition via modulation of Akt/mTOR activity and IGF1 expression. CB might be a useful pharmacological agent for treatment of glucocorticoid-induced muscle atrophy.

  3. The investigation of order–disorder transition process of ZSM-5 induced by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Wang, Lianjun, E-mail: wanglj@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Jiang, Wan [Engineering Research Center of Advanced Glasses Manufacturing Technology, MOE, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Lin, He, E-mail: linhe@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 239 Zhangheng Road, Pudong, Shanghai 200120 (China)

    2014-04-01

    Based on the amorphization of zeolites, an order–disorder transition method was used to prepare silica glass via Spark Plasma Sintering (SPS). In order to get a better understanding about the mechanism of amorphization induced by SPS, the intermediate products in this process were prepared and characterized by different characterization techniques. X-ray diffraction and High-energy synchrotron X-ray scattering show a gradual transformation from ordered crystal to glass. Local structural changes in glass network including Si–O bond length, O–Si–O bond angle, size of rings, coordination were detected by Infrared spectroscopy and {sup 29}Si magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy. Topologically ordered, amorphous material with a different intermediate-range structure can be obtained by precise control of intermediate process which can be expected to optimize and design material. - Graphical abstract: Low-density, ordered zeolites collapse to the rigid amorphous glass through spark plasma sintering. The intermediate-range structure formed in the process of order–disorder transition may give rise to specific property. - Highlights: • Order–disorder transition process of ZSM-5 induced by spark plasma sintering was investigated using several methods including XRD, High-energy synchrotron X-ray scattering, SAXS, IR, NMR, ect. • Order–disorder transition induced by SPS was compared with TIA and PIA. • Three stages has been divided during the whole process. • The collapse temperature range which may give rise to intermediate-range structure has been located.

  4. Transition from condensation-induced counter-current flow to dispersed flow

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2004-01-01

    Model of transition from the horizontally stratified condensation-induced counter-current flow to slug flow has been analyzed with computer code WAHA and compared to the experimental data obtained in the steamline of the PMK2 test facility of Hungarian Atomic Energy Institute. The experiment was performed in the steamline initially filled with hot vapor that was gradually flooded with cold liquid. Successful simulation of the condensation-induced water hammer that follows the transition, requires accurate description of the horizontally stratified and slug flow regimes and criteria for transition between both flow regimes. Current version of the WAHA code, not verified for the condensation induced type of the water hammer, predicts the water-hammer pressure peak that exceeds 600 bar, while the measured pressure is p m = 170 ± 50 bar. Sensitivity analysis of the inter-phase exchange terms and transition conditions, pointed to the most important closure relations for heat, mass and momentum transfer. The main conclusion of the analysis is large uncertainty of the simulations: minor modification of the crucial correlations can lead to a severe water-hammer in one case, or to the 'calm' transient without pressure peaks in the other case. Large uncertainty is observed in experiments. The same simulation was performed also with RELAP5 code. However, no water hammer was predicted. (author)

  5. Pressure-induced metal-insulator transition in spinel compound CuV2S4

    International Nuclear Information System (INIS)

    Okada, H.; Koyama, K.; Hedo, M.; Uwatoko, Y.; Watanabe, K.

    2008-01-01

    In order to investigate the pressure effect on electrical properties of CuV 2 S 4 , we performed the electrical resistivity measurements under high pressures up to 8 GPa for a high-quality polycrystalline sample. The charge density wave (CDW) transition temperatures increase with increasing pressure. The residual resistivity rapidly increases with increasing pressure over 4 GPa, and the temperature dependence of the electrical resistivity at 8 GPa exhibits a semiconducting behavior below about 150 K, indicating that a pressure-induced metal-insulator transition occurs in CuV 2 S 4 at 8 GPa

  6. Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition.

    Science.gov (United States)

    Glazyrin, K; Pourovskii, L V; Dubrovinsky, L; Narygina, O; McCammon, C; Hewener, B; Schünemann, V; Wolny, J; Muffler, K; Chumakov, A I; Crichton, W; Hanfland, M; Prakapenka, V B; Tasnádi, F; Ekholm, M; Aichhorn, M; Vildosola, V; Ruban, A V; Katsnelson, M I; Abrikosov, I A

    2013-03-15

    We discover that hcp phases of Fe and Fe(0.9)Ni(0.1) undergo an electronic topological transition at pressures of about 40 GPa. This topological change of the Fermi surface manifests itself through anomalous behavior of the Debye sound velocity, c/a lattice parameter ratio, and Mössbauer center shift observed in our experiments. First-principles simulations within the dynamic mean field approach demonstrate that the transition is induced by many-electron effects. It is absent in one-electron calculations and represents a clear signature of correlation effects in hcp Fe.

  7. Equations describing coherent and partially coherent multilevel molecular excitation induced by pulsed Raman transitions: III

    International Nuclear Information System (INIS)

    Shore, B.W.; Sacks, R.; Karr, T.

    1987-01-01

    This memo discusses the equations of motion used to describe multilevel molecular excitation induced by Raman transitions. These equations are based upon the time-dependent Schroedinger equation expressed in a basis of molecular energy states. A partition of these states is made into two sets, those that are far from resonance (and hence unpopulated) and those that are close to resonance, either by one-photon transition or two-photon (Raman) processes. By adiabatic elimination an effective Schroedinger equation is obtained for the resonance states alone. The effective Hamiltonian is expressible in terms of a polarizibility operator

  8. Magnetostrictive hypersound generation by spiral magnets in the vicinity of magnetic field induced phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Bychkov, Igor V. [Chelyabinsk State University, 129 Br. Kashirinykh Str., Chelyabinsk 454001 (Russian Federation); South Ural State University (National Research University), 76 Lenin Prospekt, Chelyabinsk 454080 (Russian Federation); Kuzmin, Dmitry A., E-mail: kuzminda@csu.ru [Chelyabinsk State University, 129 Br. Kashirinykh Str., Chelyabinsk 454001 (Russian Federation); South Ural State University (National Research University), 76 Lenin Prospekt, Chelyabinsk 454080 (Russian Federation); Kamantsev, Alexander P.; Koledov, Victor V.; Shavrov, Vladimir G. [Kotelnikov Institute of Radio-engineering and Electronics of RAS, Mokhovaya Street 11-7, Moscow 125009 (Russian Federation)

    2016-11-01

    In present work we have investigated magnetostrictive ultrasound generation by spiral magnets in the vicinity of magnetic field induced phase transition from spiral to collinear state. We found that such magnets may generate transverse sound waves with the wavelength equal to the spiral period. We have examined two types of spiral magnetic structures: with inhomogeneous exchange and Dzyaloshinskii–Moriya interactions. Frequency of the waves from exchange-caused spiral magnetic structure may reach some THz, while in case of Dzyaloshinskii–Moriya interaction-caused spiral it may reach some GHz. These waves will be emitted like a sound pulses. Amplitude of the waves is strictly depends on the phase transition speed. Some aspects of microwaves to hypersound transformation by spiral magnets in the vicinity of phase transition have been investigated as well. Results of the work may be interesting for investigation of phase transition kinetics as well, as for various hypersound applications. - Highlights: • Magnetostrictive ultrasound generation by spiral magnets at phase transition (PT) is studied. • Spiral magnets during PT may generate transverse sound with wavelength equal to spiral period. • Amplitude of the sound is strictly depends on the phase transition speed. • Microwave-to-sound transformation in the vicinity of PT is investigated as well.

  9. Nuclear beta decay induced by intense electromagnetic fields: Forbidden transition examples

    International Nuclear Information System (INIS)

    Reiss, H.R.

    1983-01-01

    A formalism developed earlier for the effect on nuclear beta decay of an intense plane-wave electromagnetic field is applied to three examples of forbidden beta transitions. The examples represent cases where the nuclear ''fragment'' contains one, two, and three nucleons; where the nuclear fragment is defined to be that smallest sub-unit of the nucleus containing the nucleon which undergoes beta decay plus any other nucleons directly angular-momentum coupled to it in initial or final states. The single-nucleon-fragment example is 113 Cd, which has a fourth-forbidden transition. The two-nucleon-fragment example is 90 Sr, which is first-forbidden. The three-nucleon-fragment example is 87 Rb, which is third-forbidden. An algebraic closed-form transition probability is found in each case. At low external-field intensity, the transition probability is proportional to z/sup L/, where z is the field intensity parameter and L is the degree of forbiddenness. At intermediate intensities, the transition probability behaves as z/sup L/-(1/2). At higher intensities, the transition probability contains the z/sup L/-(1/2) factor, a declining exponential factor, and an alternating polynomial in z. This high-intensity transition probability possesses a maximum value, which is found for each of the examples. A general rule, z = q 2 (2L-1), where q is the number of particles in the fragment, is found for giving an upper limit on the intensity at which the maximum transition probability occurs. Field-induced beta decay half-lives for all the examples are dramatically reduced from natural half-lives when evaluated at the optimum field intensity. Relative half-life reduction is greater the higher the degree of forbiddenness

  10. Pressure-induced colossal piezoresistance effect and the collapse of the polaronic state in the bilayer manganite (La0.4Pr0.6)1.2Sr1.8Mn2O7

    International Nuclear Information System (INIS)

    Thiyagarajan, R; Manivannan, N; Arumugam, S; Esakki Muthu, S; Tamilselvan, N R; Yoshino, H; Murata, K; Sekar, C; Apostu, M O; Suryanarayanan, R; Revcolevschi, A

    2012-01-01

    We have investigated the effect of hydrostatic pressure as a function of temperature on the resistivity of a single crystal of the bilayer manganite (La 0.4 Pr 0.6 ) 1.2 Sr 1.8 Mn 2 O 7 . Whereas a strong insulating behaviour is observed at all temperatures at ambient pressure, a clear transition into a metallic-like behaviour is induced when the sample is subjected to a pressure (P) of ∼1.0 GPa at T 6 in the low temperature region at moderate pressures is observed. When the pressure is increased further (5.5 GPa), the high temperature polaronic state disappears and a metallic behaviour is observed. The insulator to metal transition temperature exponentially increases with pressure and the distinct peak in the resistivity that is observed at 1.0 GPa almost vanishes for P > 7.0 GPa. A modification in the orbital occupation of the e g electron between 3d x 2 -y 2 and 3d z 2 -r 2 states, as proposed earlier, leading to a ferromagnetic double-exchange phenomenon, can qualitatively account for our data. (paper)

  11. Firing patterns transition and desynchronization induced by time delay in neural networks

    Science.gov (United States)

    Huang, Shoufang; Zhang, Jiqian; Wang, Maosheng; Hu, Chin-Kun

    2018-06-01

    We used the Hindmarsh-Rose (HR) model (Hindmarsh and Rose, 1984) to study the effect of time delay on the transition of firing behaviors and desynchronization in neural networks. As time delay is increased, neural networks exhibit diversity of firing behaviors, including regular spiking or bursting and firing patterns transitions (FPTs). Meanwhile, the desynchronization of firing and unstable bursting with decreasing amplitude in neural system, are also increasingly enhanced with the increase of time delay. Furthermore, we also studied the effect of coupling strength and network randomness on these phenomena. Our results imply that time delays can induce transition and desynchronization of firing behaviors in neural networks. These findings provide new insight into the role of time delay in the firing activities of neural networks, and can help to better understand the firing phenomena in complex systems of neural networks. A possible mechanism in brain that can cause the increase of time delay is discussed.

  12. Nonmonotonic anisotropy in charge conduction induced by antiferrodistortive transition in metallic SrTiO3

    Science.gov (United States)

    Tao, Qian; Loret, Bastien; Xu, Bin; Yang, Xiaojun; Rischau, Carl Willem; Lin, Xiao; Fauqué, Benoît; Verstraete, Matthieu J.; Behnia, Kamran

    2016-07-01

    Cubic SrTiO3 becomes tetragonal below 105 K. The antiferrodistortive (AFD) distortion leads to clockwise and counterclockwise rotation of adjacent TiO6 octahedra. This insulator becomes a metal upon the introduction of extremely low concentration of n -type dopants. However, signatures of the structural phase transition in charge conduction have remained elusive. Employing the Montgomery technique, we succeed in resolving the anisotropy of charge conductivity induced by the AFD transition, in the presence of different types of dopants. We find that the slight lattice distortion (liquids, the anisotropy has opposite signs for elastic and inelastic scattering. Increasing the concentration of dopants leads to a drastic shift in the temperature of the AFD transition either upward or downward. The latter result puts strong constraints on any hypothetical role played by the AFD soft mode in the formation of Cooper pairs and the emergence of superconductivity in SrTiO3.

  13. First-principles assessment of potential ultrafast laser-induced structural transition in Ni

    Energy Technology Data Exchange (ETDEWEB)

    Bévillon, E.; Colombier, J.P., E-mail: jean.philippe.colombier@univ-st-etienne.fr; Stoian, R.

    2016-06-30

    Highlights: • First-principles theory calculations in nonequilibrium conditions. • Electronic temperatures fully and consistently taken into account. • Evaluation of an ultrafast laser-induced solid-to-solid transition in Ni. • Relative energies, phonon spectra and energy path are evaluated. • Discussion on the generation of non-thermal forces in metals. - Abstract: The possibility to trigger ultrafast solid-to-solid transitions in transition metals under femtosecond laser irradiation is investigated by means of first-principles calculations. Electronic heating can drastically modify screening, charge distribution and atomic binding features, potentially determining new structural relaxation paths in the solid phase, before thermodynamic solid-to-liquid transformations set in. Consequently, we evaluate here the effect of electronic excitation on structural stability and conditions for structural transitions. Ni is chosen as a case study for the probability of a solid transition, and the stability of its FCC phase is compared to the non-standard HCP structure while accounting for the heating of the electronic subsystem. From a phonon spectra analysis, we show that the thermodynamic stability order reverses at an electronic temperature of around 10{sup 4} K. Both structures exhibit a dynamic stability, indicating they present a metastability depending on the heating. However, the general hardening of phonon modes with the increase of the electronic temperature points out that no transformation will occur, as confirmed by the study of a typical FCC to HCP diffusionless transformation path, showing an increasing energy barrier. Finally, based on electronic density of states interpretation, the tendency of different metal categories to undergo or not an ultrafast laser-induced structural transition is discussed.

  14. Distribution, transition and thermodynamic stability of protein conformations in the denaturant-induced unfolding of proteins.

    Science.gov (United States)

    Bian, Liujiao; Ji, Xu

    2014-01-01

    Extensive and intensive studies on the unfolding of proteins require appropriate theoretical model and parameter to clearly illustrate the feature and characteristic of the unfolding system. Over the past several decades, four approaches have been proposed to describe the interaction between proteins and denaturants, but some ambiguity and deviations usually occur in the explanation of the experimental data. In this work, a theoretical model was presented to show the dependency of the residual activity ratio of the proteins on the molar denaturant concentration. Through the characteristic unfolding parameters ki and Δmi in this model, the distribution, transition and thermodynamic stability of protein conformations during the unfolding process can be quantitatively described. This model was tested with the two-state unfolding of bovine heart cytochrome c and the three-state unfolding of hen egg white lysozyme induced by both guanidine hydrochloride and urea, the four-state unfolding of bovine carbonic anhydrase b induced by guanidine hydrochloride and the unfolding of some other proteins induced by denaturants. The results illustrated that this model could be used accurately to reveal the distribution and transition of protein conformations in the presence of different concentrations of denaturants and to evaluate the unfolding tendency and thermodynamic stability of different conformations. In most denaturant-induced unfolding of proteins, the unfolding became increasingly hard in next transition step and the proteins became more unstable as they attained next successive stable conformation. This work presents a useful method for people to study the unfolding of proteins and may be used to describe the unfolding and refolding of other biopolymers induced by denaturants, inducers, etc.

  15. Recombination of charge carriers on radiation-induced defects in silicon doped by transition metals impurities

    CERN Document Server

    Kazakevich, L A

    2003-01-01

    It has been studied the peculiarities of recombination of nonequilibrium charge carriers on radiation-induced defects in received according to Czochralski method p-silicon (p approx 3 - 20 Ohm centre dot cm), doped by one of the impurities of transition metals of the IV-th group of periodic table (titanium, zirconium, hafnium). Experimental results are obtained out of the analysis of temperature and injection dependence of the life time of charge carriers. The results are explained taking into consideration the influences of elastic stress fields created by the aggregates of transition metals atoms on space distribution over the crystal of oxygen and carbon background impurities as well as on the migration of movable radiation-induced defects during irradiation. (authors).

  16. Pressure-Induced Polyamorphic Transition in Nanoscale TiO2

    International Nuclear Information System (INIS)

    Swamy, Varghese; Muddle, Barry C.

    2009-01-01

    The detection and characterization of pressure-induced amorphization in 20 GPa and ambient temperature is documented. The characterization employed in situ high-pressure angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy in diamond-anvil cells. Comparative Raman spectroscopy allows the local structures of the high-density amorphous (HDA) form obtained at high pressures and its low-pressure (<10-15 GPa) low-density amorphous (LDA) analogue to be related to the baddeleyite-TiO2 and TiO2-II structures, respectively. The pressure-induced amorphization and the HDA-LDA transition in nanoscale TiO2 bear broad similarities to transitions in the Si and H2O systems.

  17. Circular dichroism of magnetically induced transitions for D2 lines of alkali atoms

    Science.gov (United States)

    Tonoyan, A.; Sargsyan, A.; Klinger, E.; Hakhumyan, G.; Leroy, C.; Auzinsh, M.; Papoyan, A.; Sarkisyan, D.

    2018-03-01

    In this letter we study magnetic circular dichroism in alkali atoms exhibiting asymmetric behaviour of magnetically induced transitions. The magnetic field \\textbf{B}\\parallel\\textbf{k} induces transitions between Δ F = +/-2 hyperfine levels of alkali atoms and in the range of ∼0.1{\\text{--}}3 \\text{kG} magnetic field, the intensities of these transitions experience significant enhancement. We have inferred a general rule applicable for the D 2 lines of all alkali atoms, that is the transition intensity enhancement is around four times larger for the case of σ+ than for σ- excitation for Δ F = +2 , whereas it is several hundreds of thousand times larger in the case of σ- than that for σ+ polarization for Δ F = -2 . This asymmetric behaviour results in circular dichroism. For experimental verification we employed half-wavelength-thick atomic vapor nanocells using a derivative of the selective reflection technique, which provides a sub-Doppler spectroscopic linewidth (∼50 \\text{MHz} ). The presented theoretical curves well describe the experimental results. This effect can find applications particularly in parity violation experiments.

  18. Controlling the delocalization-localization transition of light via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Cheng Jing; Huang Guoxiang

    2011-01-01

    We propose a scheme to realize a transition from delocalization to localization of light waves via electromagnetically induced transparency. The system we suggested is a resonant cold atomic ensemble having N configuration, with a control field consisting of two pairs of laser beams with different cross angles, which produce an electromagnetically induced quasiperiodic waveguide (EIQPW) for the propagation of a signal field. By appropriately tuning the incommensurate rate or relative modulation strength between the two pairs of control-field components, the signal field can exhibit the delocalization-localization transition as it transports inside the atomic ensemble. The delocalization-localization transition point is determined and the propagation property of the signal field is studied in detail. Our work provides a way of realizing wave localization via atomic coherence, which is quite different from the conventional, off-resonant mechanism-based Aubry-Andre model, and the great controllability of the EIQPW also allows an easy manipulation of the delocalization-localization transition.

  19. Study on gamma-ray transitions induced in nuclear spin isomers by X-rays

    International Nuclear Information System (INIS)

    Yang Tianli; Hao Fanhua; Liu Xiaoya; Gong Jian

    2005-10-01

    The development of induced X-ray has been summarized for high spin isomer. the radiation model, transition mechanism and experiment plan have been introduced. The experiments about isomers 180m Ta and 178m2 Hf have been narrated in detail respectively, and the analysis between those results have been obtained. The reasonable theoretical frame and good experimental data have offered the powerful technique base for pumping γ-ray laser with low energy. (authors)

  20. Magnetic-field induced phase transitions in intermetallic rare-earth ferrimagnets with a compensation point

    Czech Academy of Sciences Publication Activity Database

    Sabdenov, Ch.K.; Davydova, M.D.; Zvezdin, K.A.; Gorbunov, Denis; Tereshina, I. S.; Andreev, Alexander V.; Zvezdin, A. K.

    2017-01-01

    Roč. 43, č. 5 (2017), s. 551-558 ISSN 1063-777X R&D Projects: GA ČR GA16-03593S Institutional support: RVO:68378271 Keywords : rare-earth intermetallics * phase diagram * field-induced transition * magnetic anisotropy * high magnetic fields Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.804, year: 2016

  1. Characterization of the Respiration-Induced Yeast Mitochondrial Permeability Transition Pore

    OpenAIRE

    Bradshaw, Patrick C.; Pfeiffer, Douglas R.

    2013-01-01

    When isolated mitochondria from the yeast Saccharomyces cerevisiae oxidize respiratory substrates in the absence of phosphate and ADP, the yeast mitochondrial unselective channel, also called the yeast permeability transition pore (yPTP), opens in the inner membrane dissipating the electrochemical gradient. ATP also induces yPTP opening. yPTP opening allows mannitol transport into isolated mitochondria of laboratory yeast strains, but mannitol is not readily permeable throug...

  2. Wettability transition induced transformation and entrapment of polymer nanostructures in cylindrical nanopores.

    Science.gov (United States)

    Feng, Xunda; Mei, Shilin; Jin, Zhaoxia

    2011-12-06

    We apply the concept of wettability transition to manipulate the morphology and entrapment of polymer nanostructures inside cylindrical nanopores of anodic aluminum oxide (AAO) membranes. When AAO/polystyrene (PS) hybrids, i.e., AAO/PS nanorods or AAO/PS nanotubes, are immersed into a polyethylene glycol (PEG) reservoir above the glass transition temperature of PS, a wettability transition from wetting to nonwetting of PS can be triggered due to the invasion of the more wettable PEG melt. The wettability transition enables us to develop a nondestructive method to entrap hemispherically capped nanorods inside nanopores. Moreover, we can obtain single nanorods with the desired aspect ratio by further dissolving the AAO template, in contrast to the drawbacks of nonuniformity or destructiveness from the conventional ultrasonication method. In the case of AAO/PS nanotubes, the wettability transition induced dewetting of PS nanotube walls results in the disconnection and entrapment of nonwetting PS domains (i.e., nanospheres, nanocapsules, or capped nanorods). Moreover, PEG is then washed to recover the pristine wettability of PS on the alumina surface; further annealing of the PS nanospheres inside AAO nanopores under vacuum can generate some unique nanostructures, particularly semicylindrical nanorods. © 2011 American Chemical Society

  3. Pressure-induced irreversible metallization accompanying the phase transitions in S b2S3

    Science.gov (United States)

    Dai, Lidong; Liu, Kaixiang; Li, Heping; Wu, Lei; Hu, Haiying; Zhuang, Yukai; Yang, Linfei; Pu, Chang; Liu, Pengfei

    2018-01-01

    We have revealed S b2S3 to have two phase transitions and to undergo metallization using a diamond anvil cell at around 5.0, 15.0, and 34.0 GPa, respectively. These results were obtained on the basis of high-pressure Raman spectroscopy, temperature-dependent conductivity measurements, atomic force microscopy, high-resolution transmission electron microscopy, and first-principles calculations. The first phase transition at ˜5.0 GPa is an isostructural phase transition, which is manifested in noticeable changes in five Raman-active modes and the slope of the conductivity because of a change in the electronic structure. The second pressure-induced phase transition was characterized by a discontinuous change in the slope of conductivity and a new low-intensity Raman mode at ˜15.0 GPa . Furthermore, a semiconductor-to-metal transition was found at ˜34.0 GPa , which was accompanied by irreversible metallization, and it could be attributed to the permanently plastic deformation of the interlayer spacing. This high-pressure behavior of S b2S3 will help us to understand the universal crystal structure evolution and electrical characteristics for A2B3 -type compounds, and to facilitate their application in electronic devices.

  4. Experimental study of boundary layer transition on an airfoil induced by periodically passing wake (II)

    Energy Technology Data Exchange (ETDEWEB)

    Park, T.C. [Seoul National University Graduate School, Seoul (Korea); Jeon, W.P.; Kang, S.H. [Seoul National University, Seoul (Korea)

    2001-06-01

    This paper describes the phenomena of wake-induced transition of the boundary layers on a NACA0012 airfoil using measured phase-averaged data. Especially, the phase-averaged wall shear stresses are reasonably evaluated using the principle of Computational Preston Tube Method. Due to the passing wake, the turbulent patch is generated in the laminar boundary layer on the airfoil and the boundary layer becomes temporarily transitional. The patches propagate downstream with less speed than free-stream velocity and merge with each other at further downstream station, and the boundary layer becomes more transitional. The generation of turbulent patch at the leading edge of the airfoil mainly depends on velocity defects and turbulent intensity profiles of passing wakes. However, the growth and merging of turbulent patches depend on local streamwise pressure gradients as well as characteristics of turbulent patches. In this transition process, the present experimental data show very similar features to the previous numerical and experimental studies. It is confirmed that the two phase-averaged mean velocity dips appear in the outer region of transitional boundary layer for each passing cycle. Relatively high values of the phase-averaged turbulent fluctuations in the outer region indicate the possibility that breakdown occurs in the outer layer not near the wall. (author). 21 refs., 12 figs.

  5. Hyperfine Induced Transitions as Diagnostics of Low Density Plasmas and Isotopic Abundance ratios.

    Science.gov (United States)

    Brage, T.; Judge, P. G.; Aboussaid, A.; Godefroid, M. R.; Jonsson, P.; Leckrone, D. S.

    1996-05-01

    We propose a new diagnostics of isotope abundance ratios and electron densities for low density plasmas, in the form of J = 0 -> J(') = 0 radiative transitions. These are usually viewed as being allowed only through two-photon decay, but they may also be induced by the hyperfine (HPF) interaction in atomic ions. This predicts a companion line to the E1] and M2 lines in the UV0.01 multiplet of ions isoelectronic to beryllium (e.g. C III, N IV, O V and Fe XXII) or magnesium (e.g. Si II, Ca IX, Fe XV and Ni XVII). As an example the companion line to the well known lambda lambda 1906.7,1908.7 lines in C III will be at 1909.597 Angstroms, but only present in the (13) C isotope (which has nuclear spin different from zero). We present new and accurate decay rates for the nsnp (3P^oJ) -> ns(2) (1S_{J('}=0)) transitions in ions of the Be (n=2) and Mg (n=3) isoelectronic sequences. We show that the HPF induced decay rates for the J = 0 -> J(') = 0 transitions are many orders of magnitude larger than those for the competing two-photon processes and, when present, are typically one or two orders of magnitude smaller than the decay rates of the magnetic quadrupole ( J = 2-> J(') = 0) transitions for these ions. We show that several of these HPF-induced transitions are of potential astrophysical interest, in ions of C, N, Na, Mg, Al, Si, K, Cr, Fe and Ni. We highlight those cases that may be of particular diagnostic value for determining isotopic abundance ratios and/or electron densities from UV or EUV emission line data. We present our atomic data in the form of scaling laws so that, given the isotopic nuclear spin and magnetic moment, a simple expression yields estimates for HPF induced decay rates. We examine some UV solar and nebular data in the light of these new results and suggest possible cases for future study. We could not find evidence for the existence of HPF induced lines in the spectra we examined, but we demonstrate that existing data have come close to providing

  6. Ultrafast studies of shock-induced melting and phase transitions at LCLS

    Science.gov (United States)

    McMahon, Malcolm

    The study of shock-induced phase transitions, which is vital to the understanding of material response to rapid pressure changes, dates back to the 1950s, when Bankcroft et al reported a transition in iron. Since then, many transitions have been reported in a wide range of materials, but, due to the lack of sufficiently bright x-ray sources, the structural details of these new phases has been notably lacking. While the development of nanosecond in situ x-ray diffraction has meant that lattice-level studies of such phenomena have become possible, including studies of the phase transition reported 60 years ago in iron, the quality of the diffraction data from such studies is noticeably poorer than that obtained from statically-compressed samples on synchrotrons. The advent of x-ray free electron lasers (XFELs), such as the LCLS, has resulted in an unprecedented improvement in the quality of diffraction data that can be obtained from shock-compressed matter. Here I describe the results from three recent experiment at the LCLS that looked at the solid-solid and solid-liquid phase transitions in Sb, Bi and Sc using single 50 fs x-ray exposures. The results provide new insight into the structural changes and melting induced by shock compression. This work is supported by EPSRC under Grant No. EP/J017051/1. Use of the LCLS, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

  7. Transition Metal Chelator Induces Progesterone Production in Mouse Cumulus-Oocyte Complexes and Corpora Lutea.

    Science.gov (United States)

    Tian, X; Anthony, K; Diaz, Francisco J

    2017-04-01

    Progesterone production is upregulated in granulosa cells (cumulus and mural) after the LH surge, but the intra-follicular mechanisms regulating this transition are not completely known. Recent findings show that the transition metal chelator, N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN), impairs ovarian function. In this study, we provide evidence that chelating transition metals, including zinc, enhances progesterone production. The findings show that TPEN (transition metal chelator) increases abundance of Cyp11a1 and Star messenger RNA (mRNA) between 8- and 20-fold and progesterone production more than 3-fold in cultured cumulus-oocyte complexes (COC). Feeding a zinc-deficient diet for 10 days, but not 3 days, increased Star, Hsd3b, and prostaglandin F2 alpha receptor (Ptgfr) mRNA ~2.5-fold, suggesting that the effect of TPEN is through modulation of zinc availability. Progesterone from cumulus cells promotes oocyte developmental potential. Blocking progesterone production with epostane during maturation reduced subsequent blastocyst formation from 89 % in control to 18 % in epostane-treated complexes, but supplementation with progesterone restored blastocyst developmental potential to 94 %. Feeding a zinc-deficient diet for 5 days before ovulation did not affect the number of CL, STAR protein, or serum progesterone. However, incubating luteal tissue with TPEN increased abundance of Star, Hsd3b, and Ptgfr mRNA 2-3-fold and increased progesterone production 3-fold. TPEN is known to abolish SMAD2/3 signaling in cumulus cells. However, treatment of COC with the SMAD2/3 phosphorylation inhibitor, SB421542, did not by itself induce steroidogenic transcripts but did potentiate EGF-induced Star mRNA expression. Collectively, the results show that depletion of transition metals with TPEN acutely enhances progesterone biosynthesis in COC and luteal tissue.

  8. Bleomycin induced epithelial–mesenchymal transition (EMT) in pleural mesothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Li-Jun [Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Ye, Hong [Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Key Laboratory of Pulmonary Diseases, Ministry of Health of China, Wuhan, Hubei (China); Zhang, Qian; Li, Feng-Zhi; Song, Lin-Jie; Yang, Jie; Mu, Qing [Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Rao, Shan-Shan [Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Cai, Peng-Cheng [Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Xiang, Fei; Zhang, Jian-Chu [Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Key Laboratory of Pulmonary Diseases, Ministry of Health of China, Wuhan, Hubei (China); Su, Yunchao [Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, GA (United States); Xin, Jian-Bao, E-mail: 814643835@qq.com [Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Key Laboratory of Pulmonary Diseases, Ministry of Health of China, Wuhan, Hubei (China); Ma, Wan-Li, E-mail: whmawl@aliyun.com [Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Key Laboratory of Pulmonary Diseases, Ministry of Health of China, Wuhan, Hubei (China)

    2015-03-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease characterized by the development of subpleural foci of myofibroblasts that contribute to the exuberant fibrosis. Recent studies revealed that pleural mesothelial cells (PMCs) undergo epithelial–mesenchymal transition (EMT) and play a pivotal role in IPF. In animal model, bleomycin induces pulmonary fibrosis exhibiting subpleural fibrosis similar to what is seen in human IPF. It is not known yet whether bleomycin induces EMT in PMCs. In the present study, PMCs were cultured and treated with bleomycin. The protein levels of collagen-I, mesenchymal phenotypic markers (vimentin and α-smooth muscle actin), and epithelial phenotypic markers (cytokeratin-8 and E-cadherin) were measured by Western blot. PMC migration was evaluated using wound-healing assay of culture PMCs in vitro, and in vivo by monitoring the localization of PMC marker, calretinin, in the lung sections of bleomycin-induced lung fibrosis. The results showed that bleomycin induced increases in collagen-I synthesis in PMC. Bleomycin induced significant increases in mesenchymal phenotypic markers and decreases in epithelial phenotypic markers in PMC, and promoted PMC migration in vitro and in vivo. Moreover, TGF-β1-Smad2/3 signaling pathway involved in the EMT of PMC was demonstrated. Taken together, our results indicate that bleomycin induces characteristic changes of EMT in PMC and the latter contributes to subpleural fibrosis. - Highlights: • Bleomycin induces collagen-I synthesis in pleural mesothelial cells (PMCs). • Bleomycin induces increases in vimentin and α-SMA protein in PMCs. • Bleomycin induces decreases in cytokeratin-8 and E-cadherin protein in PMCs • TGF-β1-Smad2/3 signaling pathway is involved in the PMC EMT induced by bleomycin.

  9. Bleomycin induced epithelial–mesenchymal transition (EMT) in pleural mesothelial cells

    International Nuclear Information System (INIS)

    Chen, Li-Jun; Ye, Hong; Zhang, Qian; Li, Feng-Zhi; Song, Lin-Jie; Yang, Jie; Mu, Qing; Rao, Shan-Shan; Cai, Peng-Cheng; Xiang, Fei; Zhang, Jian-Chu; Su, Yunchao; Xin, Jian-Bao; Ma, Wan-Li

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease characterized by the development of subpleural foci of myofibroblasts that contribute to the exuberant fibrosis. Recent studies revealed that pleural mesothelial cells (PMCs) undergo epithelial–mesenchymal transition (EMT) and play a pivotal role in IPF. In animal model, bleomycin induces pulmonary fibrosis exhibiting subpleural fibrosis similar to what is seen in human IPF. It is not known yet whether bleomycin induces EMT in PMCs. In the present study, PMCs were cultured and treated with bleomycin. The protein levels of collagen-I, mesenchymal phenotypic markers (vimentin and α-smooth muscle actin), and epithelial phenotypic markers (cytokeratin-8 and E-cadherin) were measured by Western blot. PMC migration was evaluated using wound-healing assay of culture PMCs in vitro, and in vivo by monitoring the localization of PMC marker, calretinin, in the lung sections of bleomycin-induced lung fibrosis. The results showed that bleomycin induced increases in collagen-I synthesis in PMC. Bleomycin induced significant increases in mesenchymal phenotypic markers and decreases in epithelial phenotypic markers in PMC, and promoted PMC migration in vitro and in vivo. Moreover, TGF-β1-Smad2/3 signaling pathway involved in the EMT of PMC was demonstrated. Taken together, our results indicate that bleomycin induces characteristic changes of EMT in PMC and the latter contributes to subpleural fibrosis. - Highlights: • Bleomycin induces collagen-I synthesis in pleural mesothelial cells (PMCs). • Bleomycin induces increases in vimentin and α-SMA protein in PMCs. • Bleomycin induces decreases in cytokeratin-8 and E-cadherin protein in PMCs • TGF-β1-Smad2/3 signaling pathway is involved in the PMC EMT induced by bleomycin

  10. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2014-01-01

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  11. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong

    2014-02-07

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  12. Improved-Delayed-Detached-Eddy Simulation of cavity-induced transition in hypersonic boundary layer

    International Nuclear Information System (INIS)

    Xiao, Lianghua; Xiao, Zhixiang; Duan, Zhiwei; Fu, Song

    2015-01-01

    Highlights: • This work is about hypersonic cavity-induced transition with IDDES approach. • The length-to-width-to-depth ratio of the cavity is 19.9:3.57:1 at AoA −10° and −15°. • Flow remains laminar at −10°, transition occurs at −15° and cavity changed from open to close type. • Streamwise vortices, impingement shock, traveling shocks and exit shock are observed. • Breakdown of these vortices triggering rapid flow transition. - Abstract: Hypersonic flow transition from laminar to turbulent due to the surface irregularities, like local cavities, can greatly affect the surface heating and skin friction. In this work, the hypersonic flows over a three-dimensional rectangular cavity with length-to-width-to-depth ratio, L:W:D, of 19.9:3.57:1 at two angles of attack (AoA) were numerically studied with Improved-Delayed-Detached-Eddy Simulation (IDDES) method to highlight the mechanism of transition triggered by the cavity. The present approach was firstly applied to the transonic flow over M219 rectangular cavity. The results, including the fluctuating pressure and frequency, agreed with experiment well. In the hypersonic case at Mach number about 9.6 the cavity is seen as “open” at AoA of −10° but “closed” at AoA of −15° unconventional to the two-dimensional cavity case where the flow always exhibits closed cavity feature when the length-to-depth ratio L/D is larger than 14. For the open cavity flow, the shear layer is basically steady and the flow maintains laminar. For the closed cavity case, the external flow goes into the cavity and impinges on the bottom floor. High intensity streamwise vortices, impingement shock and exit shock are observed causing breakdown of these vortices triggering rapid flow transition

  13. Resistance to antitumor chemotherapy due to bounded-noise-induced transitions

    Science.gov (United States)

    D'Onofrio, Alberto; Gandolfi, Alberto

    2010-12-01

    Tumor angiogenesis is a landmark of solid tumor development, but it is also directly relevant to chemotherapy. Indeed, the density and quality of neovessels may influence the effectiveness of therapies based on blood-born agents. In this paper, first we define a deterministic model of antiproliferative chemotherapy in which the drug efficacy is a unimodal function of vessel density, and then we show that under constant continuous infusion therapy the tumor-vessel system may be multistable. However, the actual drug concentration profiles are affected by bounded even if possibly large fluctuations. Through numerical simulations, we show that the tumor volume may undergo transitions to the higher equilibrium value induced by the bounded noise. In case of periodically delivered boli-based chemotherapy, we model the fluctuations due to time variability of both the drug clearance rate and the distribution volume, as well as those due to irregularities in drug delivery. We observed noise-induced transitions also in case of periodic delivering. By applying a time dense scheduling with constant average delivered drug (metronomic scheduling), we observed an easier suppression of the transitions. Finally, we propose to interpret the above phenomena as an unexpected non-genetic kind of resistance to chemotherapy.

  14. Polymer relaxations in thin films in the vicinity of a penetrant or a temperature induced glass transition

    NARCIS (Netherlands)

    Ogieglo, Wojciech; Wessling, Matthias; Benes, Nieck Edwin

    2014-01-01

    The transient properties of thin glassy polymer films in the vicinity of the glass transition are investigated. We compare the differences and similarities between sorption and temperature induced glass transitions, referred to as Pg and Tg, respectively. The experimental technique used is in situ

  15. Propofol and magnesium attenuate isoflurane-induced caspase-3 activation via inhibiting mitochondrial permeability transition pore

    Directory of Open Access Journals (Sweden)

    Zhang Yiying

    2012-08-01

    Full Text Available Abstract Background The inhalation anesthetic isoflurane has been shown to open the mitochondrial permeability transition pore (mPTP and induce caspase activation and apoptosis, which may lead to learning and memory impairment. Cyclosporine A, a blocker of mPTP opening might attenuate the isoflurane-induced mPTP opening, lessening its ripple effects. Magnesium and anesthetic propofol are also mPTP blockers. We therefore set out to determine whether propofol and magnesium can attenuate the isoflurane-induced caspase activation and mPTP opening. Methods We investigated the effects of magnesium sulfate (Mg2+, propofol, and isoflurane on the opening of mPTP and caspase activation in H4 human neuroglioma cells stably transfected to express full-length human amyloid precursor protein (APP (H4 APP cells and in six day-old wild-type mice, employing Western blot analysis and flowcytometry. Results Here we show that Mg2+ and propofol attenuated the isoflurane-induced caspase-3 activation in H4-APP cells and mouse brain tissue. Moreover, Mg2+ and propofol, the blockers of mPTP opening, mitigated the isoflurane-induced mPTP opening in the H4-APP cells. Conclusion These data illustrate that Mg2+ and propofol may ameliorate the isoflurane-induced neurotoxicity by inhibiting its mitochondrial dysfunction. Pending further studies, these findings may suggest the use of Mg2+ and propofol in preventing and treating anesthesia neurotoxicity.

  16. Pressure-induced phase transitions in nanocrystalline ReO3

    International Nuclear Information System (INIS)

    Biswas, Kanishka; Muthu, D V S; Sood, A K; Kruger, M B; Chen, B; Rao, C N R

    2007-01-01

    Pressure-induced phase transitions in the nanocrystals of ReO 3 with an average diameter of ∼12 nm have been investigated in detail by using synchrotron x-ray diffraction and the results compared with the literature data of bulk samples of ReO 3 . The study shows that the ambient-pressure cubic I phase (space group Pm3-barm) transforms to a monoclinic phase (space group C 2/c), then to a rhombohedral I phase (space group R3-barc), and finally to another rhombohedral phase (rhombohedral II, space group R3-barc) with increasing pressure over the 0.0-20.3 GPa range. The cubic I to monoclinic transition is associated with the largest volume change (∼5%), indicative of a reconstructive transition. The transition pressures are generally lower than those known for bulk ReO 3 . The cubic II (Im3-bar) or tetragonal (P4/mbm) phases do not occur at lower pressures. The nanocrystals are found to be more compressible than bulk ReO 3 . On decompression to ambient pressure, the structure does not revert back to the cubic I structure

  17. Laser-induced microscopic phase-transition on an ionic liquid

    International Nuclear Information System (INIS)

    Iguchi, Natsuki; Datta, Alokmay; Yoshikawa, Kenichi; Ma Yue

    2009-01-01

    Nematic-isotropic transition is induced in a 5 μm 'droplet' within an oriented bulk of a mixture of a liquid crystalline material with a room-temperature ionic liquid, by a laser working at 532 nm with an output power of 200 mW and a beam diameter of 1 μm. No microscopic phase transition is observed either in absence of the ionic liquid or at the other wavelength of 1064 nm, available to the Nd-YAG laser. This indicates the essential role on a resonant transfer of energy to the ionic liquid from the laser radiation, which is subsequently transferred to the liquid crystal. Spectroscopy of the pure liquid crystal and ionic liquid samples confirms this concept. Spatio-temporal image of the droplet growth shows, however, that the phase transition remains confined within the microscopic domain for the first 50 s, and then spreads out rapidly. Since resonant, quantum transitions between molecular levels takes place in less than microseconds, the about seven orders of magnitude slowing down of energy transfer observed here suggests unique hierarchical dynamics including the coupling between the intra-molecular motions in the ionic liquid and the inter-molecular forces between ionic liquid and liquid crystal.

  18. Nonlinear Parametric Excitation Effect Induces Stability Transitions in Swimming Direction of Flexible Superparamagnetic Microswimmers.

    Science.gov (United States)

    Harduf, Yuval; Jin, Dongdong; Or, Yizhar; Zhang, Li

    2018-04-05

    Microscopic artificial swimmers have recently become highly attractive due to their promising potential for biomedical microrobotic applications. Previous pioneering work has demonstrated the motion of a robotic microswimmer with a flexible chain of superparamagnetic beads, which is actuated by applying an oscillating external magnetic field. Interestingly, they have shown that the microswimmer's orientation undergoes a 90°-transition when the magnetic field's oscillation amplitude is increased above a critical value. This unexpected transition can cause severe problems in steering and manipulation of flexible magnetic microrobotic swimmers. Thus, theoretical understanding and analysis of the physical origins of this effect are of crucial importance. In this work, we investigate this transition both theoretically and experimentally by using numerical simulations and presenting a novel flexible microswimmer with an anisotropic superparamagnetic head. We prove that this effect depends on both frequency and amplitude of the oscillating magnetic field, and demonstrate existence of an optimal amplitude achieving maximal swimming speed. Asymptotic analysis of a minimal two-link model reveals that the changes in the swimmer's direction represent stability transitions, which are induced by a nonlinear parametric excitation.

  19. Pressure induced structural phase transition of OsB2: First-principles calculations

    International Nuclear Information System (INIS)

    Ren Fengzhu; Wang Yuanxu; Lo, V.C.

    2010-01-01

    Orthorhombic OsB 2 was synthesized at 1000 deg. C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2 . An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3 /mmc structure (high-pressure phase) is stable for OsB 2 . We expect the phase transition can be further confirmed by the experimental work. - Abstract: Graphical Abstract Legend (TOC Figure): Table of Contents Figure Pressure induced structural phase transition from the orthorhombic structure to the hexagonal one for OsB 2 takes place under 10.8 GPa (0 K), 10.35 GPa (300, 1000 K) by the first-principles predictions.

  20. The excitonic insulator route through a dynamical phase transition induced by an optical pulse

    Energy Technology Data Exchange (ETDEWEB)

    Brazovskii, S., E-mail: brazov@lptms.u-psud.fr [Université Paris-Saclay, LPTMS, CNRS, Univ. Paris-sud (France); Kirova, N. [Université Paris-Saclay, LPS, CNRS, Univ. Paris-sud (France)

    2016-03-15

    We consider a dynamical phase transition induced by a short optical pulse in a system prone to thermodynamical instability. We address the case of pumping to excitons whose density contributes directly to the order parameter. To describe both thermodynamic and dynamic effects on equal footing, we adopt a view of the excitonic insulator for the phase transition and suggest a formation of the Bose condensate for the pumped excitons. The work is motivated by experiments in donor–acceptor organic compounds with a neutral- ionic phase transition coupled to the spontaneous lattice dimerization and to charge transfer excitons. The double nature of the ensemble of excitons leads to an intricate time evolution, in particular, to macroscopic quantum oscillations from the interference between the Bose condensate of excitons and the ground state of the excitonic insulator. The coupling of excitons and the order parameter also leads to self-trapping of their wave function, akin to self-focusing in optics. The locally enhanced density of excitons can surpass a critical value to trigger the phase transformation, even if the mean density is below the required threshold. The system is stratified in domains that evolve through dynamical phase transitions and sequences of merging. The new circumstances in experiments and theory bring to life, once again, some remarkable inventions made by L.V. Keldysh.

  1. Experimental study of boundary-layer transition on an airfoil induced by periodically passing wake

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, W.P. [Center for Turbulence and Flow Control Research Institute of Advanced Machinery and Design, Seoul National University (Korea); Park, T.C.; Kang, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University (Korea)

    2002-02-01

    Hot-wire measurements are performed in boundary-layer flows developing on a NACA 0012 airfoil over which wakes pass periodically. The periodic wakes are generated by rotating circular cylinders clockwise or counterclockwise around the airfoil. The time- and phase-averaged mean streamwise velocities and turbulence fluctuations are measured to investigate the phenomena of wake-induced transition. Especially, the phase-averaged wall shear stresses are evaluated using a computational Preston tube method. The passing wakes significantly change the pressure distribution on the airfoil, which has influence on the transition process of the boundary layer. The orientation of the passing wake alters the pressure distribution in a different manner. Due to the passing wake, the turbulent patches are generated inside the laminar boundary layer on the airfoil, and the boundary layer becomes temporarily transitional. The patches propagate downstream at a speed smaller than the free-stream velocity and merge together further downstream. Relatively high values of phase-averaged turbulence fluctuations in the outer part of the boundary layer indicate the possibility that breakdown occurs in the outer layer away from the wall. It is confirmed that the phase-averaged mean velocity profile has two dips in the outer region of the transitional boundary layer for each passing cycle. (orig.)

  2. Electronic transitions in quantum dots and rings induced by inhomogeneous off-centered light beams.

    Science.gov (United States)

    Quinteiro, G F; Lucero, A O; Tamborenea, P I

    2010-12-22

    We theoretically investigate the effect of inhomogeneous light beams with (twisted light) and without (plane-wave light) orbital angular momentum on semiconductor-based nanostructures, when the symmetry axes of the beam and the nanostructure are displaced parallel to each other. Exact analytical results are obtained by expanding the off-centered light field in terms of the appropriate light modes centered around the nanostructure. We demonstrate how electronic transitions involving the transfer of different amounts of orbital angular momentum are switched on and off as a function of the separation between the axes of the beam and the system. In particular, we show that even off-centered plane-wave beams induce transitions such that the angular momenta of the initial and final states are different.

  3. Addendum to "Colored-noise-induced discontinuous transitions in symbiotic ecosystems".

    Science.gov (United States)

    Sauga, Ako; Mankin, Romi

    2005-06-01

    A symbiotic ecosystem with Gompertz self-regulation and with adaptive competition between populations is studied by means of a N-species Lotka-Volterra stochastic model. The influence of fluctuating environment on the carrying capacity of a population is modeled as a dichotomous noise. The study is a follow up of previous investigations of symbiotic ecosystems subjected to the generalized Verhulst self-regulation [Phys. Rev. E 69, 061106 (2004); 65, 051108 (2002)]. In the framework of mean-field approximation the behavior of the solutions of the self-consistency equation for a stationary system is examined analytically in the full phase space of system parameters. Depending on the mutual interplay of symbiosis and competition of species, variation of noise parameters (amplitude, correlation time) can induce doubly unidirectional discontinuous transitions as well as single unidirectional discontinuous transitions of the mean population size.

  4. Addendum to ``Colored-noise-induced discontinuous transitions in symbiotic ecosystems''

    Science.gov (United States)

    Sauga, Ako; Mankin, Romi

    2005-06-01

    A symbiotic ecosystem with Gompertz self-regulation and with adaptive competition between populations is studied by means of a N -species Lotka-Volterra stochastic model. The influence of fluctuating environment on the carrying capacity of a population is modeled as a dichotomous noise. The study is a follow up of previous investigations of symbiotic ecosystems subjected to the generalized Verhulst self-regulation [Phys. Rev. E 69, 061106 (2004); 65, 051108 (2002)]. In the framework of mean-field approximation the behavior of the solutions of the self-consistency equation for a stationary system is examined analytically in the full phase space of system parameters. Depending on the mutual interplay of symbiosis and competition of species, variation of noise parameters (amplitude, correlation time) can induce doubly unidirectional discontinuous transitions as well as single unidirectional discontinuous transitions of the mean population size.

  5. Field induced magnetic phase transition as a magnon Bose Einstein condensation

    Directory of Open Access Journals (Sweden)

    Teodora Radu et al

    2007-01-01

    Full Text Available We report specific heat, magnetocaloric effect and magnetization measurements on single crystals of the frustrated quasi-2D spin -½ antiferromagnet Cs2CuCl4 in the external magnetic field 0≤B≤12 T along a-axis and in the temperature range 0.03 K≤T≤6 K. Decreasing the applied magnetic field B from high fields leads to the closure of the field induced gap in the magnon spectrum at a critical field Bcsimeq8.44 T and a long-range incommensurate state below Bc. In the vicinity of Bc, the phase transition boundary is well described by the power law TN~(Bc-B1/phi with the measured critical exponent phisimeq1.5. These findings provide experimental evidence that the scaling law of the transition temperature TN can be described by the universality class of 3D Bose–Einstein condensation (BEC of magnons.

  6. Laser-induced breakdown spectroscopy with laser irradiation resonant with vibrational transitions

    International Nuclear Information System (INIS)

    Khachatrian, Ani; Dagdigian, Paul J.

    2010-01-01

    An investigation of laser-induced breakdown spectroscopy (LIBS) of polymers, both in bulk form and spin coated on Si wafers, with laser irradiation in the mid-infrared spectral region is presented. Of particular interest is whether the LIBS signals are enhanced when the laser wavelength is resonant with a fundamental vibrational transition of the polymer. Significant increases in the LIBS signals were observed for irradiation on hydride stretch fundamental transitions, and the magnitude of the enhancement showed a strong dependence on the mode excited. The role of the substrate was investigated by comparison of results for bulk and spin-coated samples. The polymers investigated were Nylon 12 and poly(vinyl alcohol-co-ethylene).

  7. Redox Active Transition Metal ions Make Melanin Susceptible to Chemical Degradation Induced by Organic Peroxide.

    Science.gov (United States)

    Zadlo, Andrzej; Pilat, Anna; Sarna, Michal; Pawlak, Anna; Sarna, Tadeusz

    2017-12-01

    With aging, retinal pigment epithelium melanosomes, by fusion with the age pigment lipofuscin, form complex granules called melanolipofuscin. Lipofuscin granules may contain oxidized proteins and lipid hydroperoxides, which in melanolipofuscin could chemically modify melanin polymer, while transition metal ions present in melanin can accelerate such oxidative modifications. The aim of this research was to examine the effect of selected transition metal ions on melanin susceptibility to chemical modification induced by the water-soluble tert-butyl hydroperoxide used as an oxidizing agent. Synthetic melanin obtained by DOPA autooxidation and melanosomes isolated from bovine retinal pigment epithelium were analyzed. To monitor tert-butyl hydroperoxide-induced oxidative changes of DMa and BMs, electron paramagnetic resonance spectroscopy, UV-vis absorption spectroscopy, dynamic light scattering, atomic force microscopy and electron paramagnetic resonance oximetry were employed. These measurements revealed that both copper and iron ions accelerated chemical degradation induced by tert-butyl hydroperoxide, while zinc ions had no effect. Strong prooxidant action was detected only in the case of melanosomes and melanin degraded in the presence of iron. It can be postulated that similar chemical processes, if they occur in situ in melanolipofuscin granules of the human retinal pigment epithelium, would modify antioxidant properties of melanin and its reactivity.

  8. Methotrexate-induced intestinal mucositis delays gastric emptying and gastrointestinal transit of liquids in awake rats

    Directory of Open Access Journals (Sweden)

    Pedro M. G. Soares

    2011-03-01

    Full Text Available CONTEXT: Methotrexate and other anticancer agents can induce intestinal mucositis, which is one of the most common limiting factor that prevent further dose escalation of the methotrexate. OBJECTIVES: To evaluate the gastric emptying and gastrointestinal transit of liquids in methotrexate-induced intestinal mucositis. METHODS: Wistar rats received methotrexate (2.5 mg/kg/day for 3 days, subcutaneously or saline. After 1, 3 and 7 days, sections of duodenum, jejunum and ileum were removed for assessment of epithelial damage and myeloperoxidase activity (biochemical marker of granulocyte infiltration. Others rats were pre-treated with methotrexate or saline, gavage-fed after 3 or 7 days with a standard test liquid meal, and sacrificed 10, 20 or 30-min later. Gastric and small intestine dye recoveries were measured by spectrophotometry. RESULTS: After 3 days of methotrexate, there was an epithelial intestinal damage in all segments, with myeloperoxidase activity increase in both in duodenum and ileum. Seven days after methotrexate, we observed a complete reversion of this intestinal damage. There was an increase in gastric dye recoveries after 10, 20, and 30-min post-prandial intervals after 3 days, but not after 7 days, of methotrexate. Intestine dye recoveries were decreased in the first and second segments at 10 min, in the third at 20 min, and in the second and third at 30 min, only after 3 days of methotrexate treatment. CONCLUSION: Methotrexate-induced intestinal mucositis delays gastric emptying and gastrointestinal transit of liquids in awake rats.

  9. Paeoniflorin prevents hypoxia-induced epithelial–mesenchymal transition in human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Zhou Z

    2016-04-01

    Full Text Available Zhenyu Zhou,1,* Shunchang Wang,1,* Caijuan Song,2 Zhuang Hu11Department of Thyroid and Breast, Huaihe Hospital, Henan University, Kaifeng, 2Department of Immunization Program, Zhengzhou Center for Disease Control and Prevention, Zhengzhou, People’s Republic of China*These authors contributed equally to this workAbstract: Paeoniflorin (PF is a monoterpene glycoside extracted from the root of Paeonia lactiflora Pall. Previous studies have demonstrated that PF inhibits the growth, invasion, and metastasis of tumors in vivo and in vitro. However, the effect of PF on hypoxia-induced epithelial–mesenchymal transition (EMT in breast cancer cells remains unknown. Therefore, the objective of this study was to investigate the effect of PF on hypoxia-induced EMT in breast cancer cells, as well as characterize the underlying mechanism. The results presented in this study demonstrate that PF blocks the migration and invasion of breast cancer cells by repressing EMT under hypoxic conditions. PF also significantly attenuated the hypoxia-induced increase in HIF-1α level. Furthermore, PF prevented hypoxia-induced expression of phosphorylated PI3K and Akt in MDA-MB-231 cells. In conclusion, PF prevented hypoxia-induced EMT in breast cancer cells by inhibiting HIF-1α expression via modulation of PI3K/Akt signaling pathway. This finding provides evidence that PF can serve as a therapeutic agent for the treatment of breast cancer.Keywords: paeoniflorin, breast cancer, hypoxia, epithelial–mesenchymal transition, PI3K/Akt signaling pathway

  10. Characterization of the respiration-induced yeast mitochondrial permeability transition pore.

    Science.gov (United States)

    Bradshaw, Patrick C; Pfeiffer, Douglas R

    2013-12-01

    When isolated mitochondria from the yeast Saccharomyces cerevisiae oxidize respiratory substrates in the absence of phosphate and ADP, the yeast mitochondrial unselective channel, also called the yeast permeability transition pore (yPTP), opens in the inner membrane, dissipating the electrochemical gradient. ATP also induces yPTP opening. yPTP opening allows mannitol transport into isolated mitochondria of laboratory yeast strains, but mannitol is not readily permeable through the yPTP in an industrial yeast strain, Yeast Foam. The presence of oligomycin, an inhibitor of ATP synthase, allowed for respiration-induced mannitol permeability in mitochondria from this strain. Potassium (K+) had varied effects on the respiration-induced yPTP, depending on the concentration of the respiratory substrate added. At low respiratory substrate concentrations K+ inhibited respiration-induced yPTP opening, while at high substrate concentrations this effect diminished. However, at the high respiratory substrate concentrations, the presence of K+ partially prevented phosphate inhibition of yPTP opening. Phosphate was found to inhibit respiration-induced yPTP opening by binding a site on the matrix space side of the inner membrane in addition to its known inhibitory effect of donating protons to the matrix space to prevent the pH change necessary for yPTP opening. The respiration-induced yPTP was also inhibited by NAD, Mg2+, NH4 + or the oxyanion vanadate polymerized to decavanadate. The results demonstrate similar effectors of the respiration-induced yPTP as those previously described for the ATP-induced yPTP and reconcile previous strain-dependent differences in yPTP solute selectivity. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Lightning-Discharge Initiation as a Noise-Induced Kinetic Transition

    Science.gov (United States)

    Iudin, D. I.

    2017-10-01

    The electric fields observed in thunderclouds have the peak values one order of magnitude smaller than the electric strength of air. This fact renders the issue of the lightning-discharge initiation one of the most intriguing problems of thunderstorm electricity. In this work, the lightning initiation in a thundercloud is considered as a noise-induced kinetic transition. The stochastic electric field of the charged hydrometeors is the noise source. The considered kinetic transition has some features which distinguish it from other lightning-initiation mechanisms. First, the dynamic realization of this transition, which is due to interaction of the electron and ion components, is extended for a time significantly exceeding the spark-discharge development time. In this case, the fast attachment of electrons generated by supercritical bursts of the electric field of hydrometeors is balanced during long-term time intervals by the electron-release processes when the negative ions are destroyed. Second, an important role in the transition kinetics is played by the stochastic drift of electrons and ions caused by the small-scale fluctuations of the field of charged hydrometeors. From the formal mathematical viewpoint, this stochastic drift is indistinguishable from the scalar-impurity advection in a turbulent flow. In this work, it is shown that the efficiency of "advective mixing" is several orders of magnitude greater than that of the ordinary diffusion. Third, the considered transition leads to a sharp increase in the conductivity in the exponentially rare compact regions of space against the background of the vanishingly small variations in the average conductivity of the medium. In turn, the spots with increased conductivity are polarized in the mean field followed by the streamer initiation and discharge contraction.

  12. Design And Ground Testing For The Expert PL4/PL5 'Natural And Roughness Induced Transition'

    Science.gov (United States)

    Masutti, Davie; Chazot, Olivier; Donelli, Raffaele; de Rosa, Donato

    2011-05-01

    Unpredicted boundary layer transition can impact dramatically the stability of the vehicle, its aerodynamic coefficients and reduce the efficiency of the thermal protection system. In this frame, ESA started the EXPERT (European eXPErimental Reentry Testbed) program to pro- vide and perform in-flight experiments in order to obtain aerothermodynamic data for the validation of numerical models and of ground-to-flight extrapolation methodologies. Considering the boundary layer transition investigation, the EXPERT vehicle is equipped with two specific payloads, PL4 and PL5, concerning respectively the study of the natural and roughness induced transition. The paper is a survey on the design process of these two in-flight experiments and it covers the major analyses and findings encountered during the development of the payloads. A large amount of transition criteria have been investigated and used to estimate either the dangerousness of the height of the distributed roughness, arising due to nose erosion, or the effectiveness of height of the isolated roughness element forcing the boundary layer transition. Supporting the PL4 design, linear stability computations and CFD analyses have been performed by CIRA on the EXPERT flight vehicle to determine the amplification factor of the boundary layer instabilities at different point of the re-entry trajectory. Ground test experiments regarding the PL5 are carried on in the Mach 6 VKI H3 Hypersonic Wind Tunnel with a Reynolds numbers ranging from 18E6/m to 26E6/m. Infrared measurements (Stanton number) and flow visualization are used on a 1/16 scaled model of the EXPERT vehicle and a flat plate to validate the Potter and Whitfield criterion as a suitable methodology for ground-to-flight extrapolation and the payload design.

  13. Laser-induced fluorescences due to quadrupole moment transition and Stark effect in a He glow discharge

    International Nuclear Information System (INIS)

    Sakai, Hisashi; Takiyama, Ken; Kimura, Masahiko; Yamasaki, Motokuni; Fujita, Toshiaki; Oda, Toshiatsu; Kawasaki, Ken.

    1993-01-01

    The electric quadrupole moment transition and the Stark effect are investigated in a He hollow cathode discharge with laser-induced fluorescence method. It is shown that the forbidden transition from 2 1 S to 3 1 D in the negative glow is dominantly due to the quadrupole moment transition. This absorption coefficient is obtained from the laser-induced fluorescence intensity measurement in which the collisional transfers are taken into account. The result agrees with the theoretical coefficient. In the cathode dark space the fluorescence due to the Stark effect is also observed. Spatial distribution of the fluorescence is discussed, compared with the electric field distribution in the dark space. (author)

  14. Pressure-induced phase transitions in single-crystalline Cu4Bi4S9 nanoribbons

    International Nuclear Information System (INIS)

    Hu Jing-Yu; Li Jing; Zhao Qing; Shi Li-Jie; Zou Bing-Suo; Zhang Si-Jia; Zhao Hao-Fei; Zhang Qing-Hua; Yao Yuan; Zhu Ke; Liu Yu-Long; Jin Chang-Qing; Yu Ri-Cheng; Li Yan-Chun; Li Xiao-Dong; Liu Jing

    2013-01-01

    In situ angle dispersive synchrotron X-ray diffraction and Raman scattering measurements under pressure are employed to study the structural evolution of Cu 4 Bi 4 S 9 nanoribbons, which are fabricated by using a facile solvothermal method. Both experiments show that a structural phase transition occurs near 14.5 GPa, and there is a pressure-induced reversible amorphization at about 25.6 GPa. The electrical transport property of a single Cu 4 Bi 4 S 9 nanoribbon under different pressures is also investigated

  15. Nearest neighbor affects G:C to A:T transitions induced by alkylating agents.

    OpenAIRE

    Glickman, B W; Horsfall, M J; Gordon, A J; Burns, P A

    1987-01-01

    The influence of local DNA sequence on the distribution of G:C to A:T transitions induced in the lacI gene of E. coli by a series of alkylating agents has been analyzed. In the case of nitrosoguanidine, two nitrosoureas and a nitrosamine, a strong preference for mutation at sites proceeded 5' by a purine base was noted. This preference was observed with both methyl and ethyl donors where the predicted common ultimate alkylating species is the alkyl diazonium ion. In contrast, this preference ...

  16. Micropore extrusion-induced alignment transition from perpendicular to parallel of cylindrical domains in block copolymers.

    Science.gov (United States)

    Qu, Ting; Zhao, Yongbin; Li, Zongbo; Wang, Pingping; Cao, Shubo; Xu, Yawei; Li, Yayuan; Chen, Aihua

    2016-02-14

    The orientation transition from perpendicular to parallel alignment of PEO cylindrical domains of PEO-b-PMA(Az) films has been demonstrated by extruding the block copolymer (BCP) solutions through a micropore of a plastic gastight syringe. The parallelized orientation of PEO domains induced by this micropore extrusion can be recovered to perpendicular alignment via ultrasonication of the extruded BCP solutions and subsequent annealing. A plausible mechanism is proposed in this study. The BCP films can be used as templates to prepare nanowire arrays with controlled layers, which has enormous potential application in the field of integrated circuits.

  17. Pressure-induced phase transitions of multiferroic BiFeO3

    OpenAIRE

    XiaoLi, Zhang; Ye, Wu; Qian, Zhang; JunCai, Dong; Xiang, Wu; Jing, Liu; ZiYu, Wu; DongLiang, Chen

    2013-01-01

    Pressure-induced phase transitions of multiferroic BiFeO3 have been investigated using synchrotron radiation X-ray diffraction with diamond anvil cell technique at room temperature. Present experimental data clearly show that rhombohedral (R3c) phase of BiFeO3 first transforms to monoclinic (C2/m) phase at 7 GPa, then to orthorhombic (Pnma) phase at 11 GPa, which is consistent with recent theoretical ab initio calculation. However, we observe another peak at 2{\\theta}=7{\\deg} in the pressure ...

  18. Stress-induced state transitions in flexible liquid-crystal devices

    International Nuclear Information System (INIS)

    Ho, I-Lin; Chang, Yia-Chung

    2012-01-01

    This work studies the stress-strain dynamics for the transient optoelectronic characteristics of flexible liquid-crystal (LC) devices. Due to the fast response of LC directors, the configuration of the LC is assumed to be in quasi-equilibrium during the process of elastic deformations of the flexible structures. The LC medium hence can be treated effectively as a thin-film layer and can approximately follow the strain-stress mechanism in the solids. Relevant theoretical algorithms are studied in this work, and numerical results present the stress-induced state transitions in the π cell.

  19. The transition between monostable and bistable states induced by time delay in intracellular calcium oscillation

    International Nuclear Information System (INIS)

    Duan, Wei-Long

    2013-01-01

    The revised role of the time delay of active processes with colored noises of transmission of intracellular Ca 2+ in intracellular calcium oscillation (ICO) is investigated by means of a first-order algorithm based on stochastic simulation. The simulation results indicate that time delay induces a double critical phenomenon and a transition between the monostable and bistable states of the ICO system. In addition, as the time delay increases, for a cytosolic Ca 2+ concentration with weak colored noises there appears a calcium burst, and the Ca 2+ concentration of the calcium store shows nonmonotonic variation. (paper)

  20. Laser-induced gratings in the gas phase excited via Raman-active transitions

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, D N [General Physics Inst., Russian Academy of Sciences, Moscow (Russian Federation); Bombach, R; Hemmerling, B; Hubschmid, W [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    We report on a new time resolved coherent Raman technique that is based on the generation of thermal gratings following a population change among molecular levels induced by stimulated Raman pumping. This is achieved by spatially and temporally overlapping intensity interference patterns generated independently by two lasers. When this technique is used in carbon dioxide, employing transitions which belong to the Q-branches of the {nu}{sub 1}/2{nu}{sub 2} Fermi dyad, it is possible to investigate molecular energy transfer processes. (author) 2 figs., 10 refs.

  1. Dipolar-induced interplay between inter-level physics and macroscopic phase transitions in triple-well potentials

    International Nuclear Information System (INIS)

    Zhang Aixia; Xue Jukui

    2012-01-01

    We propose a scheme to reveal the interplay between dipole–dipole interaction (DDI), inter-level coupling and macroscopic phase transitions in dipolar condensates. By considering a macroscopic sample of dipolar bosons in triple-well potentials, DDI-induced coupling between the inter-level physics and the macroscopic phase transitions is presented. When the DDI exceeds certain thresholds, the degeneracy of the two lowest energy levels and the excitation of new eigenstates occur, respectively. Interestingly, these thresholds give the boundaries of various quantum phase transitions. That is, the quantum phase transitions are the consequence of the levels' degeneracy and the new eigenstates' excitation. Furthermore, DDI-induced long-range macroscopic Josephson oscillations are observed and long-range coherent quantum transportation is achieved. Our results give clear proof of the interplay between the multi-level physics and quantum phase transitions, and also provide a way for designing the long-range coherent quantum transportation. (paper)

  2. Cigarette smoke-induced alveolar epithelial-mesenchymal transition is mediated by Rac1 activation.

    Science.gov (United States)

    Shen, Hui-juan; Sun, Yan-hong; Zhang, Shui-juan; Jiang, Jun-xia; Dong, Xin-wei; Jia, Yong-liang; Shen, Jian; Guan, Yan; Zhang, Lin-hui; Li, Fen-fen; Lin, Xi-xi; Wu, Xi-mei; Xie, Qiang-min; Yan, Xiao-feng

    2014-06-01

    Epithelial-mesenchymal transition (EMT) is the major pathophysiological process in lung fibrosis observed in chronic obstructive pulmonary disease (COPD) and lung cancer. Smoking is a risk factor for developing EMT, yet the mechanism remains largely unknown. In this study, we investigated the role of Rac1 in cigarette smoke (CS) induced EMT. EMT was induced in mice and pulmonary epithelial cells by exposure of CS and cigarette smoke extract (CSE) respectively. Treatment of pulmonary epithelial cells with CSE elevated Rac1 expression associated with increased TGF-β1 release. Blocking TGF-β pathway restrained CSE-induced changes in EMT-related markers. Pharmacological inhibition or knockdown of Rac1 decreased the CSE exposure induced TGF-β1 release and ameliorated CSE-induced EMT. In CS-exposed mice, pharmacological inhibition of Rac1 reduced TGF-β1 release and prevented aberrations in expression of EMT markers, suggesting that Rac1 is a critical signaling molecule for induction of CS-stimulated EMT. Furthermore, Rac1 inhibition or knockdown abrogated CSE-induced Smad2 and Akt (PKB, protein kinase B) activation in pulmonary epithelial cells. Inhibition of Smad2, PI3K (phosphatidylinositol 3-kinase) or Akt suppressed CSE-induced changes in epithelial and mesenchymal marker expression. Altogether, these data suggest that CS initiates EMT through Rac1/Smad2 and Rac1/PI3K/Akt signaling pathway. Our data provide new insights into the fundamental basis of EMT and suggest a possible new course of therapy for COPD and lung cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Triptolide suppresses paraquat induced idiopathic pulmonary fibrosis by inhibiting TGFB1-dependent epithelial mesenchymal transition.

    Science.gov (United States)

    Chen, Hong; Chen, Qun; Jiang, Chun-Ming; Shi, Guang-Yue; Sui, Bo-Wen; Zhang, Wei; Yang, Li-Zhen; Li, Zhu-Ying; Liu, Li; Su, Yu-Ming; Zhao, Wen-Cheng; Sun, Hong-Qiang; Li, Zhen-Zi; Fu, Zhou

    2018-03-01

    Idiopathic pulmonary fibrosis (IPF) and tumor are highly similar to abnormal cell proliferation that damages the body. This malignant cell evolution in a stressful environment closely resembles that of epithelial-mesenchymal transition (EMT). As a popular EMT-inducing factor, TGFβ plays an important role in the progression of multiple diseases. However, the drugs that target TGFB1 are limited. In this study, we found that triptolide (TPL), a Chinese medicine extract, exerts an anti-lung fibrosis effect by inhibiting the EMT of lung epithelial cells. In addition, triptolide directly binds to TGFβ and subsequently increase E-cadherin expression and decrease vimentin expression. In in vivo studies, TPL improves the survival state and inhibits lung fibrosis in mice. In summary, this study revealed the potential therapeutic effect of paraquat induced TPL in lung fibrosis by regulating TGFβ-dependent EMT progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model.

    Directory of Open Access Journals (Sweden)

    Ingrid Moen

    Full Text Available Tumor hypoxia is relevant for tumor growth, metabolism and epithelial-to-mesenchymal transition (EMT. We report that hyperbaric oxygen (HBO treatment induced mesenchymal-to-epithelial transition (MET in a dimethyl-alpha-benzantracene induced mammary rat adenocarcinoma model, and the MET was associated with extensive coordinated gene expression changes and less aggressive tumors. One group of tumor bearing rats was exposed to HBO (2 bar, pO(2 = 2 bar, 4 exposures à 90 minutes, whereas the control group was housed under normal atmosphere (1 bar, pO(2 = 0.2 bar. Treatment effects were determined by assessment of tumor growth, tumor vascularisation, tumor cell proliferation, cell death, collagen fibrils and gene expression profile. Tumor growth was significantly reduced (approximately 16% after HBO treatment compared to day 1 levels, whereas control tumors increased almost 100% in volume. Significant decreases in tumor cell proliferation, tumor blood vessels and collagen fibrils, together with an increase in cell death, are consistent with tumor growth reduction and tumor stroma influence after hyperoxic treatment. Gene expression profiling showed that HBO induced MET. In conclusion, hyperoxia induced MET with coordinated expression of gene modules involved in cell junctions and attachments together with a shift towards non-tumorigenic metabolism. This leads to more differentiated and less aggressive tumors, and indicates that oxygen per se might be an important factor in the "switches" of EMT and MET in vivo. HBO treatment also attenuated tumor growth and changed tumor stroma, by targeting the vascular system, having anti-proliferative and pro-apoptotic effects.

  5. Evodiamine attenuates TGF-β1-induced fibroblast activation and endothelial to mesenchymal transition.

    Science.gov (United States)

    Wu, Qing-Qing; Xiao, Yang; Jiang, Xiao-Han; Yuan, Yuan; Yang, Zheng; Chang, Wei; Bian, Zhou-Yan; Tang, Qi-Zhu

    2017-06-01

    The aim of this study is to investigate the effect of evodiamine on fibroblast activation in cardiac fibroblasts and endothelial to mesenchymal transition (EndMT) in human umbilical vein endothelial cells (HUVECs). Neonatal rat cardiac fibroblasts were stimulated with transforming growth factor beta 1 (TGF-β1) to induce fibroblast activation. After co-cultured with evodiamine (5, 10 μM), the proliferation and pro-fibrotic proteins expression of cardiac fibroblasts were evaluated. HUVECs were also stimulated with TGF-β1 to induce EndMT and treated with evodiamine (5, 10 μM) at the same time. The EndMT response in the HUVECs was evaluated as well as the capacity of the transitioned endothelial cells migrating to surrounding tissue. As a result, Evodiamine-blunted TGF-β1 induced activation of cardiac fibroblast into myofibroblast as assessed by the decreased expressions of α-SMA. Furthermore, evodiamine reduced the increased protein expression of fibrosis markers in neonatal and adult rat cardiac fibroblasts induced by TGF-β1. HUVECs stimulated with TGF-β1 exhibited lower expression levels of CD31, CD34, and higher levels of α-SMA, vimentin than the control cells. This phenotype was eliminated in the HUVECs treated with both 5 and 10 μM evodiamine. Evodiamine significantly reduced the increase in migration ability that occurred in response to TGF-β1 in HUVECs. In addition, the activation of Smad2, Smad3, ERK1/2, and Akt, and the nuclear translocation of Smad4 in both cardiac fibroblasts and HUVEC were blocked by evodiamine treatment. Thus, evodiamine could prevent cardiac fibroblasts from activation into myofibroblast and protect HUVEC against EndMT. These effects may be mediated by inhibition of the TGFβ pathway in both cardiac fibroblasts and HUVECs.

  6. Pressure-induced transition in Tl2MoO4

    International Nuclear Information System (INIS)

    Machon, Denis; Friese, Karen; Breczewski, Tomasz; Grzechnik, Andrzej

    2010-01-01

    Tl 2 MoO 4 has been studied under high-pressure by X-ray diffraction, Raman spectroscopy, and optical absorption measurements. A first-order phase transition is observed at 3.5±0.5 GPa. The nature (ordered vs. disordered) of the high-pressure phase strongly depends on the local hydrostatic conditions. Optical absorption measurements tend to show that this transition is concomitant with an electronic structure transformation. Prior to the transition, single crystal X-ray diffraction shows that pressure induces interactions between MoO 4 fragments and the Mo coordination number tends to increase. In addition, the stereoactivity of the lone-pair electrons on the three symmetrically independent Tl-sites is not uniform; while for two sites the stereoactivity decreases with increasing pressures for the third site the stereoactivity increases. - Graphical Abstract: (up) Structural evolutions of Tl 2 MoO 4 in the low-pressure phase. (Down) Optical properties of the high-pressure phase as a function of pressure. Display Omitted

  7. Light-induced ultrafast phase transitions in VO2 thin film

    International Nuclear Information System (INIS)

    Lysenko, S.; Rua, A.J.; Vikhnin, V.; Jimenez, J.; Fernandez, F.; Liu, H.

    2006-01-01

    Vanadium dioxide shows a passive and reversible change from a monoclinic insulator phase to a metallic tetragonal rutile structure when the sample temperature is close to and over 68 deg. C. As a kind of functional material, VO 2 thin films deposited on fused quartz substrates were successfully prepared by the pulsed laser deposition (PLD) technique. With laser illumination at 400 nm on the obtained films, the phase transition (PT) occurred. The observed light-induced PT was as fast as the laser pulse duration of 100 fs. Using a femtosecond laser system, the relaxation processes in VO 2 were studied by optical pump-probe spectroscopy. Upon a laser excitation an instantaneous response in the transient reflectivity and transmission was observed followed by a relatively longer relaxation process. The alteration is dependent on pump power. The change in reflectance reached a maximum value at a pump pulse energy between 7 and 14 mJ/cm 2 . The observed PT is associated with the optical interband transition in VO 2 thin film. It suggests that with a pump laser illuminating on the film, excitation from the d θ,ε - state of valence band to the unoccupied excited mixed d θ,ε -π* - state of the conduction band in the insulator phase occurs, followed by a resonant transition to an unoccupied excited mixed d θ,ε -π* - state of the metallic phase band

  8. Kinetic Transition of Crystal Morphology from Nanoparticles to Dendrites during Electron Beam Induced Deposition of Gold

    Science.gov (United States)

    Park, Jeung Hun; Schneider, Nicholas; Bau, Haim; Kodambaka, Suneel; Ross, Frances

    2015-03-01

    We studied the kinetic transition from compact nanoparticle to dendritic morphology during electron beam-induced Au deposition using in situ liquid cell-based transmission electron microcopy. Radiolysis of water by electrons generates radicals and molecular species. Hydrated electrons and hydrogen and hydroxide radicals can act as reducing agents and initiate the reduction of the water-soluble precursor, HAuCl4, resulting in the precipitation of Au as nanostructures. We tracked nucleation, growth, and morphological transition of Au from movies recorded in situ, as a function of irradiated dose and liquid thickness. We identified several distinct regimes that depend on the irradiation time: (1) nucleation; (2) linear volumetric growth; (3) formation of dendritic structures; (4) coalescence and dissolution. A diffusion and reaction model for the radiolytic species and metal ions in the confined geometry of the irradiated volume is used to understand the nucleation sites and morphological transitions. We finally describe how nanoparticles can be made to grow in a stepwise manner by switching the supply of Au ions on and off electrochemically, and discuss possibilities for creating more complex nanostructures. This research was partially funded by the National Science Foundation (DMR-1310639, CMMI-1129722, and CBET-1066573).

  9. Experimental study of boundary layer transition on an airfoil induced by periodically passing wake (I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, T.C. [Seoul National University Graduate School, Seoul (Korea); Jeon, W.P.; Kang, S.H. [Seoul National University, Seoul (Korea)

    2001-06-01

    Hot-wire measurements are performed in boundary layers developing on a NACA0012 airfoil over which wakes pass periodically. The Reynolds number based on chord length of the airfoil is 2X10{sup 5} and the wakes are generated by circular cylinders rotating clockwise and counterclockwise around the airfoil. This paper and its companion Part II describe the phenomena of wake-induced transition of the boundary layers on the airfoil using measured data; phase- and time-averaged streamwise mean velocities, turbulent fluctuations, integral parameters and wall skin frictions. This paper describes the background and facility together with results of time-averaged quantities. Due to the passing wake with mean velocity defects and high turbulence intensities, the laminar boundary layer is periodically disturbed at the upstream station and becomes steady-state transitional boundary layer at the downstream station. The velocity defect in the passing wake changes the local pressure at the leading of the airfoil, significantly affects the time-mean pressure distribution on the airfoil and eventually, has influence on the transition process of the boundary layer. (author). 22 refs., 9 figs.

  10. Induced adult stem (iAS) cells and induced transit amplifying progenitor (iTAP) cells-a possible alternative to induced pluripotent stem (iPS) cells?

    Science.gov (United States)

    Heng, Boon Chin; Richards, Mark; Ge, Zigang; Shu, Yimin

    2010-02-01

    The successful derivation of iPSC lines effectively demonstrates that it is possible to reset the 'developmental clock' of somatic cells all the way back to the initial embryonic state. Hence, it is plausible that this clock may instead be turned back half-way to a less immature developmental stage that is more directly applicable to clinical therapeutic applications or for in vitro pharmacology/toxicology screening assays. Such a suitable developmental state is postulated to be either the putative transit amplifying progenitor stage or adult stem cell stage. It is hypothetically possible to reprogram mature and terminally differentiated somatic cells back to the adult stem cell or transit amplifying progenitor stage, in a manner similar to the derivation of iPSC. It is proposed that the terminology 'Induced Adult Stem Cells' (iASC) or 'Induced Transit Amplifying Progenitor Cells' (iTAPC) be used to described such reprogrammed somatic cells. Of particular interest, is the possibility of resetting the developmental clock of mature differentiated somatic cells of the mesenchymal lineage, explanted from adipose tissue, bone marrow and cartilage. The putative adult stem cell sub-population from which these cells are derived, commonly referred to as 'mesenchymal stem cells', are highly versatile and hold much therapeutic promise in regenerative medicine, as attested to by numerous human clinical trials and animal studies. Perhaps it may be appropriate to term such reprogrammed cells as 'Induced Mesenchymal Stem Cells' (iMSC) or as 'Induced Mesenchumal Progenitor Cells' (iMPC). Given that cells from the same organ/tissue will share some commonalities in gene expression, we hypothesize that the generation of iASC or iTAPC would be more efficient as compared to iPSC generation, since a common epigenetic program must exist between the reprogrammed cells, adult stem cell or progenitor cell types and terminally differentiated cell types from the same organ/tissue.

  11. Double hydrogen bonded ferroelectric liquid crystals: A study of field induced transition (FiT)

    Science.gov (United States)

    Vijayakumar, V. N.; Madhu Mohan, M. L. N.

    2009-12-01

    A novel series of chiral hydrogen bonded liquid crystals have been isolated. Hydrogen bond was formed between chiral nonmesogen ingredient levo tartaric acid and mesogenic p-n-alkoxybenzoic acids. Phase diagram was constructed from the transition temperatures obtained by DSC and polarizing optical microscopic (POM) studies. Thermal and electrical properties exhibited by three complexes namely LTA+8BA, LTA+7BA and LTA+5BA were discussed. Salient feature of the present work was the observation of a reentrant smectic ordering in LTA+8BA complex designated as C r∗ phase. This reentrant phenomenon was confirmed by DSC thermograms, optical textures of POM and temperature variation of capacitance and dielectric loss studies. Tilt angle was measured in smectic C ∗ and reentrant smectic C r∗ phases. Another interesting feature of the present investigation was the observation of a field induced transition (FiT) in the LTA+ nBA homologous series. Three threshold field values were noticed which give rise to two new phases (E 1 and E 2) induced by electric field and on further enhancement of the applied field the mesogen behaves like an optical shutter. FiT is reversible in the sense that when applied field is removed the original texture was restored.

  12. Role of mitochondrial permeability transition in human renal tubular epithelial cell death induced by aristolochic acid

    International Nuclear Information System (INIS)

    Qi Xinming; Cai Yan; Gong Likun; Liu Linlin; Chen Fangping; Xiao Ying; Wu Xiongfei; Li Yan; Xue Xiang; Ren Jin

    2007-01-01

    Aristolochic acid (AA), a natural nephrotoxin and carcinogen, can induce a progressive tubulointerstitial nephropathy. However, the mechanism by which AA causes renal injury remains largely unknown. Here we reported that the mitochondrial permeability transition (MPT) plays an important role in the renal injury induced by aristolochic acid I (AAI). We found that in the presence of Ca 2+ , AAI caused mitochondrial swelling, leakage of Ca 2+ , membrane depolarization, and release of cytochrome c in isolated kidney mitochondria. These alterations were suppressed by cyclosporin A (CsA), an agent known to inhibit MPT. Culture of HK-2 cell, a human renal tubular epithelial cell line for 24 h with AAI caused a decrease in cellular ATP, mitochondrial membrane depolarization, cytochrome c release, and increase of caspase 3 activity. These toxic effects of AAI were attenuated by CsA and bongkrekic acid (BA), another specific MPT inhibitor. Furthermore, AAI greatly inhibited the activity of mitochondrial adenine nucleotide translocator (ANT) in isolated mitochondria. We suggested that ANT may mediate, at least in part, the AAI-induced MPT. Taken together, these results suggested that MPT plays a critical role in the pathogenesis of HK-2 cell injury induced by AAI and implied that MPT might contribute to human nephrotoxicity of aristolochic acid

  13. Mitochondrial permeability transition pore inhibitors prevent ethanol-induced neuronal death in mice.

    Science.gov (United States)

    Lamarche, Frederic; Carcenac, Carole; Gonthier, Brigitte; Cottet-Rousselle, Cecile; Chauvin, Christiane; Barret, Luc; Leverve, Xavier; Savasta, Marc; Fontaine, Eric

    2013-01-18

    Ethanol induces brain injury by a mechanism that remains partly unknown. Mitochondria play a key role in cell death processes, notably through the opening of the permeability transition pore (PTP). Here, we tested the effect of ethanol and PTP inhibitors on mitochondrial physiology and cell viability both in vitro and in vivo. Direct addition of ethanol up to 100 mM on isolated mouse brain mitochondria slightly decreased oxygen consumption but did not affect PTP regulation. In comparison, when isolated from ethanol-treated (two doses of 2 g/kg, 2 h apart) 7-day-old mouse pups, brain mitochondria displayed a transient decrease in oxygen consumption but no change in PTP regulation or H2O2 production. Conversely, exposure of primary cultured astrocytes and neurons to 20 mM ethanol for 3 days led to a transient PTP opening in astrocytes without affecting cell viability and to a permanent PTP opening in 10 to 20% neurons with the same percentage of cell death. Ethanol-treated mouse pups displayed a widespread caspase-3 activation in neurons but not in astrocytes and dramatic behavioral alterations. Interestingly, two different PTP inhibitors (namely, cyclosporin A and nortriptyline) prevented both ethanol-induced neuronal death in vivo and ethanol-induced behavioral modifications. We conclude that PTP opening is involved in ethanol-induced neurotoxicity in the mouse.

  14. Metabolic activation of hepatotoxic drug (benzbromarone) induced mitochondrial membrane permeability transition

    Energy Technology Data Exchange (ETDEWEB)

    Shirakawa, Maho; Sekine, Shuichi; Tanaka, Ayaka [The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba (Japan); Horie, Toshiharu [Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo (Japan); Ito, Kousei, E-mail: itokousei@chiba-u.jp [The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba (Japan)

    2015-10-01

    The risk of drug-induced liver injury (DILI) is of great concern to the pharmaceutical industry. It is well-known that metabolic activation of drugs to form toxic metabolites (TMs) is strongly associated with DILI onset. Drug-induced mitochondrial dysfunction is also strongly associated with increased risk of DILI. However, it is difficult to determine the target of TMs associated with exacerbation of DILI because of difficulties in identifying and purifying TMs. In this study, we propose a sequential in vitro assay system to assess TM formation and their ability to induce mitochondrial permeability transition (MPT) in a one-pot process. In this assay system, freshly-isolated rat liver mitochondria were incubated with reaction solutions of 44 test drugs preincubated with liver microsomes in the presence or absence of NADPH; then, NADPH-dependent MPT pore opening was assessed as mitochondrial swelling. In this assay system, several hepatotoxic drugs, including benzbromarone (BBR), significantly induced MPT in a NADPH-dependent manner. We investigated the rationality of using BBR as a model drug, since it showed the most prominent MPT in our assay system. Both the production of a candidate toxic metabolite of BBR (1′,6-(OH){sub 2} BBR) and NADPH-dependent MPT were inhibited by several cytochrome P450 (CYP) inhibitors (clotrimazole and SKF-525A, 100 μM). In summary, this assay system can be used to evaluate comprehensive metabolite-dependent MPT without identification or purification of metabolites. - Highlights: • We constructed a sequential assay system for toxic metabolite induced MPT in one pot. • 14 drugs (e.g. benzbromarone (BBR)) induced toxic metabolite dependent MPT. • Both the production of toxic metabolite and MPT could be inhibited by CYP inhibitors. • This system could evaluate the comprehensive MPT without purification of metabolites.

  15. Temperature-induced transitions between domain structures of ultrathin magnetic films

    International Nuclear Information System (INIS)

    Polyakova, T.; Zablotskii, V.

    2005-01-01

    Full text: Understanding of the influence of temperature on behavior of domain patterns of ultrathin magnetic films is of high significance for the fundamental physics of nanomagnetism as well as for technological applications. A thickness-dependent Curie temperature of ultrathin films may cause many interesting phenomena in the thermal evolution of domain structures (DS): i) nontrivial changes of the anisotropy constants as a function of the film thickness; ii) so-called inverse melting of DSs (processes where a more symmetric domain phase is found at lower temperatures than at higher temperatures - the inverse phase sequence) [1]; iii) temperature-induced transitions between domain structures. The possibility of such transitions is determined by lowering of the potential barriers separating different magnetization states as the film temperature approaches the Curie point. In this case with an increase of temperature, due to a significant decrease of the anisotropy constant, the domain wall energy is low enough and allows the system to reach equilibrium by a change of the domain wall number in the sample. This manifests itself in a transition from a metastable DS to a more stable DS which corresponds to new values of the anisotropy constant and magnetizations saturation. Thus, the temperature-induced transitions are driven by temperature changes of the magnetic parameters of the film. The key parameters controlling the DS geometry and period are the characteristic length, l c =σ/4πM S 2 (the ratio between the domain wall and demagnetization energies), and the quality factor Q =K/2πM S 2 (K is the first anisotropy constant). We show that for films with a pronounced nonmonotonic temperature dependence of l c one can expect a counter thermodynamic behavior: the inverse phase sequence and cooling-induced disordering. On changing temperature the existing domain structure should accommodate itself under new magnitudes of l c and Q. There are the two possible

  16. Multiple magnetic transitions, dynamical magnetic liquid and magnetic glass in La{sub 1−x−y}Pr{sub y}Ca{sub x}MnO{sub 3} (x≈0.42, y≈0.40) thin films: A thickness dependent study

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vasudha; Kandpal, Lalit M.; Siwach, P.K.; Awana, V.P.S. [CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); AcSIR at CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Singh, H.K., E-mail: hks65@nplindia.org [CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); AcSIR at CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)

    2015-11-15

    The influence of substrate induced strain and its relaxation on the evolution of the multiple magnetic transitions and ensuing modifications in the degree of phase separation, the nature of the dynamical magnetic liquid, the randomly frozen glass and insulator–metal transitions have been investigated in single crystalline La{sub 1−x−y}Pr{sub y}Ca{sub x}MnO{sub 3} (x≈0.42, y≈0.40) in t~20–140 nm thick films deposited on LaAlO{sub 3} (001) substrates. The ferromagnetic (FM) transition temperature (T{sub C}) first decreases as the film thickness is increased from t~20 nm to t~60 nm and then increases with increasing film thickness. In contrast the charge ordering (CO), antiferromagnetic (AFM) and glass transition temperatures shift towards higher values with increasing film thickness. The field cooled cooling (FCC) and field cooled warming (FCW) magnetization (M–T) of films having t≥60 nm shows pronounced hysteresis and ΔT{sub C}=T{sub C}{sup FCW}−T{sub C}{sup FCC} decreases concomitantly from 46 K to 35 K as the thickness increases from ~60 to ~140 nm. The thinnest film shows insulator to metal transitions (IMT) only at magnetic field H>40 kOe. Films with t≥T{sub C} show sharp hysteretic IMT, with ΔT{sub IM}=T{sub IM}{sup W}−T{sub IM}{sup C} decreasing from ~70 K to ~50 K as the thickness increases from ~60 nm to ~140 nm. Such strong hysteresis is a characteristic of first order phase transition and also a signature of magnetic liquid like phase created by the magnetic frustration created by the delicate balance between FM and AFM/CO phases. The H induced AFM/CO to FM transition reduces ΔT{sub IM} and at higher fields the phase transition appears akin to the second order. The observed difference in the magnetic and transport properties have been explained in terms of the substrate induced strain at lower film thickness and its relaxation at higher thickness. - Highlights: • Different thickness La{sub 1−x−y}Pr{sub y}Ca{sub x}MnO{sub 3

  17. Pressure-induced phase transitions in acentric BaHf(BO{sub 3}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mączka, Mirosław, E-mail: m.maczka@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Szymborska-Małek, Katarzyna [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Sousa Pinheiro, Gardenia de [Departamento de Física, Universidade Federal do Piauí, Teresina, PI 64049-550 (Brazil); Cavalcante Freire, Paulo Tarso [Departamento de Fisica, Universidade Federal do Ceara, Fortaleza CE-60455-970 (Brazil); Majchrowski, Andrzej [Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warszawa (Poland)

    2015-08-15

    High-pressure Raman scattering studies revealed that BaHf(BO{sub 3}){sub 2} is more compressible than calcite-type orthoborates and calcite, aragonite or dolomite carbonates. It undergoes a first-order reversible pressure-induced phase transition in the 3.9–4.4 GPa pressure range. Second structural change is observed at 9.2 GPa. The intermediate phase is most likely trigonal. However, Raman results suggest increase in the number of distinct BO{sub 3} groups from two in the ambient pressure phase to at least three in the intermediate phase. This intermediate phase is also strongly compressible and strong pressure dependence of the lattice modes proves that the main changes under pressure occur within the layers built from BaO{sub 6} and HfO{sub 6} octahedra. The second phase transition leads most likely to lowering of the trigonal symmetry, as evidenced by significant increase of the number of observed bands. The pressure coefficients of the Raman bands of the high-pressure phase are relatively small, suggesting more dense arrangement of the metal–oxygen polyhedra and BO{sub 3} groups in this phase. It is worth noting that the high-pressure phase was not reached in the second compression experiment up to 10 GPa. This behavior can be most likely attributed to worse hydrostatic conditions of the first experiment. - Graphical abstract: Raman spectra of BaHf(BO{sub 3}){sub 2} recorded at different pressures during compression showing onset of pressure-induced phase transitions. - Highlights: • High-pressure Raman spectra were measured for BaHf(BO{sub 3}){sub 2.} • BaHf(BO{sub 3}){sub 2} undergoes a reversible first-order phase transition at 3.9–4.4 GPa into a trigonal phase. • The intermediate trigonal phase is strongly compressible second structural transformation is observed at 9.2 GPa under non-perfect hydrostatic conditions.

  18. Research of TGF-beta1 Inducing Lung Adencarcinoma PC9 Cells to Mesenchymal Cells Transition

    Directory of Open Access Journals (Sweden)

    Xiaofeng CHEN

    2010-01-01

    Full Text Available Background and objective It has been proven that epithelial-mesenchymal transition (EMT not only correlated with embryonic development but also could promote tumor invasion and metastasis. Transforming growth factor beta-1 (TGF-β1 has been identified as the main inducer of tumor EMT. The aim of this study was to investigate the effects of TGF-β1 on EMT and PI3K/AKT signaling pathway in lung adencarcinoma PC9 cells. Methods Cultured PC9 cells were treated with different concentrations of TGF-β1 for 48 h. The morphological changes were observed under phase-contrast microscopy; EMT relative marker protein changes were assessed by Western blot and immunoflurescence staining. In addition, the expression of AKT and P-AKT were also measured by Western blot. Results The data showed that TGF-β1 could induce PC9 morphological alteration from epithelial to mesenchymal and upregulate the expression of mesenchymal maker protein Fibronectin. Obviously, the expression of P-AKT was downregulated by TGF-β1 treatment for 48 h. Conclusion TGF-β1 might induce EMT of PC9 cells , accompanied by the changes of PI3K/AKT signaling pathway.

  19. Alcohol-induced structural transitions in the acid-denatured Bacillus licheniformis α-amylase

    Directory of Open Access Journals (Sweden)

    Adyani Azizah Abd Halim

    2017-01-01

    Full Text Available Alcohol-induced structural changes in the acid-denatured Bacillus licheniformis α-amylase (BLA at pH 2.0 were studied by far-ultra violet circular dichroism, intrinsic, three-dimensional and 8-anilino-1-naphthalene sulfonic acid (ANS fluorescence, acrylamide quenching and thermal denaturation. All the alcohols used in this study produced partial refolding in the acid-denatured BLA as evident from the increased mean residue ellipticity at 222 nm, increased intrinsic fluorescence and decreased ANS fluorescence. The order of effectiveness of these alcohols to induce a partially folded state of BLA was found to be: 2,2,2-trifluoroethanol/tert-butanol > 1-propanol/2-propanol > 2-chloroethanol > ethanol > methanol. Three-dimensional fluorescence and acrylamide quenching results obtained in the presence of 5.5 M tert-butanol also suggested formation of a partially folded state in the acid-denatured BLA. However, 5.5 M tert-butanol-induced state of BLA showed a non-cooperative thermal transition. All these results suggested formation of a partially folded state of the acid-denatured BLA in the presence of these alcohols. Furthermore, their effectiveness was found to be guided by their chain length, position of methyl groups and presence of the substituents.

  20. IGF-1 induces the epithelial-mesenchymal transition via Stat5 in hepatocellular carcinoma.

    Science.gov (United States)

    Zhao, Chuanzong; Wang, Qian; Wang, Ben; Sun, Qi; He, Zhaobin; Hong, Jianguo; Kuehn, Florian; Liu, Enyu; Zhang, Zongli

    2017-12-19

    It has been reported that the epithelial-mesenchymal transition (EMT) plays an important role in hepatocellular carcinoma (HCC). However, the relationship between the insulin-like growth factor-1 (IGF-1) and EMT of HCC was not fully elucidated. In the present work, we found that the expression of N-cadherin, Vimentin, Snail1, Snail2, and Twist1 was positively associated with IGF-1R expression, while E-cadherin expression was negatively associated with IGF-1 expression in human HCC samples. Furthermore, we observed that IGF-1 up-regulated the expression of N-cadherin, Vimentin, Snail1, Snail2 and Twist1, and down-regulated the expression of E-cadherin. In addition, Stat5 was induced in IGF-1-treated HepG2 and Hep3B cells, and Stat5 inhibition or siRNA significantly affected IGF-1-induced EMT in HepG2 and Hep3B cells. In conclusion, IGF-1 induces EMT of HCC via Stat5 signaling pathway. Thus, IGF-1/Stat5 can be recommended as a potential and novel therapeutic strategy for HCC patients.

  1. DUST FILTRATION BY PLANET-INDUCED GAP EDGES: IMPLICATIONS FOR TRANSITIONAL DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhaohuan; Dong Ruobing [Department of Astrophysical Sciences, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Nelson, Richard P. [Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Espaillat, Catherine [Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hartmann, Lee, E-mail: zhzhu@astro.princeton.edu, E-mail: rdong@astro.princeton.edu, E-mail: lhartm@umich.edu, E-mail: r.p.nelson@qmul.ac.uk, E-mail: cespaillat@cfa.harvard.edu [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States)

    2012-08-10

    By carrying out two-dimensional two-fluid global simulations, we have studied the response of dust to gap formation by a single planet in the gaseous component of a protoplanetary disk-the so-called dust filtration mechanism. We have found that a gap opened by a giant planet at 20 AU in an {alpha} = 0.01, M-dot =10{sup -8} M{sub Sun} yr{sup -1} disk can effectively stop dust particles larger than 0.1 mm drifting inward, leaving a submillimeter (submm) dust cavity/hole. However, smaller particles are difficult to filter by a gap induced by a several M{sub J} planet due to (1) dust diffusion and (2) a high gas accretion velocity at the gap edge. Based on these simulations, an analytic model is derived to understand what size particles can be filtered by the planet-induced gap edge. We show that a dimensionless parameter T{sub s} /{alpha}, which is the ratio between the dimensionless dust stopping time and the disk viscosity parameter, is important for the dust filtration process. Finally, with our updated understanding of dust filtration, we have computed Monte Carlo radiative transfer models with variable dust size distributions to generate the spectral energy distributions of disks with gaps. By comparing with transitional disk observations (e.g., GM Aur), we have found that dust filtration alone has difficulties depleting small particles sufficiently to explain the near-IR deficit of moderate M-dot transitional disks, except under some extreme circumstances. The scenario of gap opening by multiple planets studied previously suffers the same difficulty. One possible solution is to invoke both dust filtration and dust growth in the inner disk. In this scenario, a planet-induced gap filters large dust particles in the disk, and the remaining small dust particles passing to the inner disk can grow efficiently without replenishment from fragmentation of large grains. Predictions for ALMA have also been made based on all these scenarios. We conclude that dust filtration

  2. DUST FILTRATION BY PLANET-INDUCED GAP EDGES: IMPLICATIONS FOR TRANSITIONAL DISKS

    International Nuclear Information System (INIS)

    Zhu Zhaohuan; Dong Ruobing; Nelson, Richard P.; Espaillat, Catherine; Hartmann, Lee

    2012-01-01

    By carrying out two-dimensional two-fluid global simulations, we have studied the response of dust to gap formation by a single planet in the gaseous component of a protoplanetary disk—the so-called dust filtration mechanism. We have found that a gap opened by a giant planet at 20 AU in an α = 0.01, M-dot =10 -8 M ☉ yr -1 disk can effectively stop dust particles larger than 0.1 mm drifting inward, leaving a submillimeter (submm) dust cavity/hole. However, smaller particles are difficult to filter by a gap induced by a several M J planet due to (1) dust diffusion and (2) a high gas accretion velocity at the gap edge. Based on these simulations, an analytic model is derived to understand what size particles can be filtered by the planet-induced gap edge. We show that a dimensionless parameter T s /α, which is the ratio between the dimensionless dust stopping time and the disk viscosity parameter, is important for the dust filtration process. Finally, with our updated understanding of dust filtration, we have computed Monte Carlo radiative transfer models with variable dust size distributions to generate the spectral energy distributions of disks with gaps. By comparing with transitional disk observations (e.g., GM Aur), we have found that dust filtration alone has difficulties depleting small particles sufficiently to explain the near-IR deficit of moderate M-dot transitional disks, except under some extreme circumstances. The scenario of gap opening by multiple planets studied previously suffers the same difficulty. One possible solution is to invoke both dust filtration and dust growth in the inner disk. In this scenario, a planet-induced gap filters large dust particles in the disk, and the remaining small dust particles passing to the inner disk can grow efficiently without replenishment from fragmentation of large grains. Predictions for ALMA have also been made based on all these scenarios. We conclude that dust filtration with planet(s) in the disk is a

  3. Spontaneous and field-induced phase transitions in TbFe.sub.5./sub.Al.sub.7./sub..

    Czech Academy of Sciences Publication Activity Database

    Gorbunov, Denis; Yasin, S.; Andreev, Alexander V.; Mushnikov, N. V.; Skourski, Y.; Zherlitsyn, S.; Wosnitza, J.

    2014-01-01

    Roč. 535, Sep (2014), 56-63 ISSN 0304-8853 R&D Projects: GA ČR GAP204/12/0150 Grant - others:AVČR(CZ) M100101203 Institutional support: RVO:68378271 Keywords : rare-earth intermetallics * ferrimagnetism * magnetic anisotropy * spin-reorientation transition * high magnetic fields * field-induced transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.970, year: 2014

  4. Pressure-induced α->ω transition in titanium metal: a systematic study of the effects of uniaxial stress

    International Nuclear Information System (INIS)

    Errandonea, Daniel; Meng, Y.; Somayazulu, M.; Haeusermann, D.

    2005-01-01

    The effects of uniaxial stress on the pressure-induced α->ω transition in pure titanium (Ti) are investigated by means of angle dispersive X-ray diffraction in a diamond-anvil cell. Experiments under four different pressure environments reveal that: (1) the onset of the transition depends on the pressure medium used, going from 4.9GPa (no pressure medium) to 10.5GPa (argon pressure medium); (2) the α and ω phases coexist over a rather large pressure range, which depends on the pressure medium employed; (3) the hysteresis and quenchability of the ω phase is affected by differences in the sample pressure environment; and (4) a short-term laser heating of Ti lowers the α->ω transition pressure. Possible transition mechanisms are discussed in the light of the present results, which clearly demonstrate the influence of uniaxial stress in the α->ω transition

  5. Electron heating mode transition induced by mixing radio frequency and ultrahigh frequency dual frequency powers in capacitive discharges

    International Nuclear Information System (INIS)

    Sahu, B. B.; Han, Jeon G.

    2016-01-01

    Electron heating mode transitions induced by mixing the low- and high-frequency power in dual-frequency nitrogen discharges at 400 mTorr pressure are presented. As the low-frequency (13.56 MHz) power decreases and high-frequency (320 MHz) power increases for the fixed power of 200 W, there is a transition of electron energy distribution function (EEDF) from Druyvesteyn to bi-Maxwellian type characterized by a distinguished warm electron population. It is shown that this EEDF evolution is attributed to the transition from collisional to collisionless stochastic heating of the low-energy electrons.

  6. Tricritical behaviour in the phase transition induced by electron-hole pairing

    International Nuclear Information System (INIS)

    Crisan, M.

    1980-01-01

    The electron-hole pairing, which is possible in metals or semiconductors, can give condensed phases with two order parameters. If the coupling between the two order parameters is considered, the free energy functional is similar with the free energy of a n-component spin system with cubic anisotropy. Using the Wagner hypothesis (tricritical scaling) the non-linear scaling fields have been calculated. In order to perform the calculation of the nonlinear fields we used the method given by Rudnick and Nelson to solve the recursion relations for the 4-epsilon-dimensional system with n=6 components. The present calculation in the frame-work of the renormalization-group approach confirms the result obtained in the mean-field theory that the coupling of the two order parameters induces a first order phase transition. (author)

  7. Pressure-induced phase transitions of multiferroic BiFeO3

    International Nuclear Information System (INIS)

    Zhang Xiaoli; Dong Juncai; Liu Jing; Chen Dongliang; Wu Ye; Zhang Qian; Wu Xiang; Wu Ziyu

    2013-01-01

    Pressure-induced phase transitions of multiferroic BiFeO 3 have been investigated using synchrotron radiation X-ray diffraction with diamond anvil cell technique at room temperature. Present experimental data clearly show that rhombohedral (R3c) phase of BiFeO 3 first transforms to monoclinic (C2/m) phase at 7 GPa, then to orthorhombic (Pnma) phase at 11 GPa, which is consistent with recent theoretical ab initio calculation. However, we observe another peak at 2θ=7° in the pressure range of 5-7 GPa that has not been reported previously. Further analysis reveals that this reflection peak is attributed to the orthorhombic (Pbam) phase, indicating the coexistence of monoclinic phase with orthorhombic phase in low pressure range. (authors)

  8. Inducing the Internationalisation of Family Manufacturing Firms from a Transition Context

    DEFF Research Database (Denmark)

    Marinova, Svetla Trifonova; Marinov, Marin Alexandrov

    2017-01-01

    to early export inducement despite the fusion of ownership and control, and regardless of transition context volatility and inefficiency. Research limitations/implications - The limitations include the sample size and its industry embeddedness confining generalisability. The key implications...... into the start of internationalisation via exporting and its initiating features. Design/methodology/approach – The study employs a qualitative research approach. Data were collected through semi-structured interviews from informants with conclusive decision-making power and subsequently analysed using...... a combination of inductive and deductive coding. Findings – The findings show that the sample firms internationalised early exhibiting mostly proactive behaviour in finding international clients. Owners-managers’ international orientation and commitment combined with contacts in their social spaces lead...

  9. A physically-based correlation of irradiation-induced transition temperature shifts for RPV steels

    International Nuclear Information System (INIS)

    Eason, E.D.; Odette, G.R.; Nanstad, R.K.; Yamamoto, T.

    2013-01-01

    This paper presents a physically-based, empirically calibrated model for estimating irradiation-induced transition temperature shifts in reactor pressure vessel steels, based on a broader database and more complete understanding of embrittlement mechanisms than was available for earlier models. Brief descriptions of the underlying radiation damage mechanisms and the database are included, but the emphasis is on the model and the quality of its fit to U.S. power reactor surveillance data. The model is compared to a random sample of surveillance data that were set aside and not used in fitting and to selected independent data from test reactor irradiations, in both cases showing good ability to predict data that were not used for calibration. The model is a good fit to the surveillance data, with no significant residual error trends for variables included in the model or additional variables that could be included

  10. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors

    KAUST Repository

    Zhu, Zhiyong

    2011-10-14

    Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.

  11. Local Peltier-effect-induced reversible metal–insulator transition in VO2 nanowires

    International Nuclear Information System (INIS)

    Takami, Hidefumi; Kanki, Teruo; Tanaka, Hidekazu

    2016-01-01

    We report anomalous resistance leaps and drops in VO 2 nanowires with operating current density and direction, showing reversible and nonvolatile switching. This event is associated with the metal–insulator phase transition (MIT) of local nanodomains with coexistence states of metallic and insulating phases induced by thermoelectric cooling and heating effects. Because the interface of metal and insulator domains has much different Peltier coefficient, it is possible that a significant Peltier effect would be a source of the local MIT. This operation can be realized by one-dimensional domain configuration in VO 2 nanowires because one straight current path through the electronic domain-interface enables theoretical control of thermoelectric effects. This result will open a new method of reversible control of electronic states in correlated electron materials.

  12. Local Peltier-effect-induced reversible metal–insulator transition in VO{sub 2} nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Takami, Hidefumi; Kanki, Teruo, E-mail: kanki@sanken.osaka-u.ac.jp, E-mail: h-tanaka@sanken.osaka-u.ac.jp; Tanaka, Hidekazu, E-mail: kanki@sanken.osaka-u.ac.jp, E-mail: h-tanaka@sanken.osaka-u.ac.jp [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2016-06-15

    We report anomalous resistance leaps and drops in VO{sub 2} nanowires with operating current density and direction, showing reversible and nonvolatile switching. This event is associated with the metal–insulator phase transition (MIT) of local nanodomains with coexistence states of metallic and insulating phases induced by thermoelectric cooling and heating effects. Because the interface of metal and insulator domains has much different Peltier coefficient, it is possible that a significant Peltier effect would be a source of the local MIT. This operation can be realized by one-dimensional domain configuration in VO{sub 2} nanowires because one straight current path through the electronic domain-interface enables theoretical control of thermoelectric effects. This result will open a new method of reversible control of electronic states in correlated electron materials.

  13. Strain-induced phase transition and electron spin-polarization in graphene spirals.

    Science.gov (United States)

    Zhang, Xiaoming; Zhao, Mingwen

    2014-07-16

    Spin-polarized triangular graphene nanoflakes (t-GNFs) serve as ideal building blocks for the long-desired ferromagnetic graphene superlattices, but they are always assembled to planar structures which reduce its mechanical properties. Here, by joining t-GNFs in a spiral way, we propose one-dimensional graphene spirals (GSs) with superior mechanical properties and tunable electronic structures. We demonstrate theoretically the unique features of electron motion in the spiral lattice by means of first-principles calculations combined with a simple Hubbard model. Within a linear elastic deformation range, the GSs are nonmagnetic metals. When the axial tensile strain exceeds an ultimate strain, however, they convert to magnetic semiconductors with stable ferromagnetic ordering along the edges. Such strain-induced phase transition and tunable electron spin-polarization revealed in the GSs open a new avenue for spintronics devices.

  14. Adjustment of Adiabatic Transition Magnetic Field of Solenoid-Induced Helicla Wiggler

    CERN Document Server

    Tsunawaki, Y

    2005-01-01

    We have been constructed a solenoid-induced helical wiggler for a compact free electron maser operated in a usual small laboratory which does not have electric source capacity available enough. It consists of two staggered-iron arrays inserted perpendicularly to each other in a solenoid electromagnet. In order to lead/extract an electron beam into/from the wiggler, adiabatic transition (AT) field is necessary at both ends of the wiggler. In this work the AT field was produced by setting staggered-nickel plates with different thickness in the five periods. The thickness of each nickel plate was decided by the field analysis using the MAGTZ computational code based on a magnetic moment method. Exact thickness was, however, found by the precise measurement of the field distribution with the greatest circumspection to obtain a homogeneous increment of the AT field. The change of AT field distribution was studied by referring to an equivalent electric circuit of the wiggler.

  15. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2011-01-01

    Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.

  16. [Factors inducing transition from growth to dormancy in rhizobacteria Azospirillum brasilense].

    Science.gov (United States)

    Kushneruk, M A; Tugarova, A V; Il'chukova, A V; Slavkina, E A; Starichkova, N I; Bogatyrev, V A; Antoniuk, L P

    2013-01-01

    The factors suppressing division of the cells of the rhizobacterium Azospirillum brasilense and inducing their transition to a dormant state were analyzed. These included the presence of hexylresorcinol or heavy metals (Cu and Co) in the medium, oxygen stress, and transfer of the cells into the physiological saline or phosphate buffer solution. The results were used to develop a protocol for obtaining of uncultured cells of A. brasilense Sp245, a natural symbiont of wheat. The cells lost their ability to grow on synthetic agar medium, but could revert to growth when incubated in freshly prepared liquid medium. Needle-shaped crystals differing from struvite, which has been previously reported for this strain, were found in the dormant culture of A. brasilense Sp245.

  17. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers

    KAUST Repository

    Cheng, Yingchun

    2013-06-01

    The Rashba effect in quasi two-dimensional materials, such as noble metal surfaces and semiconductor heterostructures, has been investigated extensively, while interest in real two-dimensional systems has just emerged with the discovery of graphene. We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te). In contrast to the non-polar systems with X = Y, in the polar systems with X ≠ Y the Rashba splitting at the Γ-point for the uppermost valence band is caused by the broken mirror symmetry. An enhancement of the splitting can be achieved by increasing the spin-orbit coupling and/or the potential gradient. © Copyright EPLA, 2013.

  18. Terahertz Pulse Generation in Underdense Relativistic Plasmas: From Photoionization-Induced Radiation to Coherent Transition Radiation

    Science.gov (United States)

    Déchard, J.; Debayle, A.; Davoine, X.; Gremillet, L.; Bergé, L.

    2018-04-01

    Terahertz to far-infrared emission by two-color, ultrashort optical pulses interacting with underdense helium gases at ultrahigh intensities (>1019 W /cm2 ) is investigated by means of 3D particle-in-cell simulations. The terahertz field is shown to be produced by two mechanisms occurring sequentially, namely, photoionization-induced radiation (PIR) by the two-color pulse, and coherent transition radiation (CTR) by the wakefield-accelerated electrons escaping the plasma. We exhibit laser-plasma parameters for which CTR proves to be the dominant process, providing terahertz bursts with field strength as high as 100 GV /m and energy in excess of 10 mJ. Analytical models are developed for both the PIR and CTR processes, which correctly reproduce the simulation data.

  19. Optically and thermally controlled terahertz metamaterial via transition between direct and indirect electromagnetically induced transparency

    Directory of Open Access Journals (Sweden)

    Jiawei Sui

    2014-12-01

    Full Text Available This passage presents a design of tunable terahertz metamaterials via transition between indirect and direct electromagnetically induced transparency (EIT effects by changing semiconductor InSb’s properties to terahertz wave under optical and thermal stimuli. Mechanical model and its electrical circuit model are utilized in analytically calculating maximum transmission of transparency window. Simulated results show consistency with the analytical expressions. The results show that the metamaterials hold 98.4% modulation depth at 189 GHz between 300 K, σInSb =256000 S/m, and 80 K, σInSb =0.0162 S/m conditions , 1360 ps recovery time of the excited electrons in InSb under optical stimulus at 300 K mainly considering the direct EIT effect, and minimum bandwidth 1 GHz.

  20. Control of the Speed of a Light-Induced Spin Transition through Mesoscale Core-Shell Architecture.

    Science.gov (United States)

    Felts, Ashley C; Slimani, Ahmed; Cain, John M; Andrus, Matthew J; Ahir, Akhil R; Abboud, Khalil A; Meisel, Mark W; Boukheddaden, Kamel; Talham, Daniel R

    2018-05-02

    The rate of the light-induced spin transition in a coordination polymer network solid dramatically increases when included as the core in mesoscale core-shell particles. A series of photomagnetic coordination polymer core-shell heterostructures, based on the light-switchable Rb a Co b [Fe(CN) 6 ] c · mH 2 O (RbCoFe-PBA) as core with the isostructural K j Ni k [Cr(CN) 6 ] l · nH 2 O (KNiCr-PBA) as shell, are studied using temperature-dependent powder X-ray diffraction and SQUID magnetometry. The core RbCoFe-PBA exhibits a charge transfer-induced spin transition (CTIST), which can be thermally and optically induced. When coupled to the shell, the rate of the optically induced transition from low spin to high spin increases. Isothermal relaxation from the optically induced high spin state of the core back to the low spin state and activation energies associated with the transition between these states were measured. The presence of a shell decreases the activation energy, which is associated with the elastic properties of the core. Numerical simulations using an electro-elastic model for the spin transition in core-shell particles supports the findings, demonstrating how coupling of the core to the shell changes the elastic properties of the system. The ability to tune the rate of optically induced magnetic and structural phase transitions through control of mesoscale architecture presents a new approach to the development of photoswitchable materials with tailored properties.

  1. Sox5 induces epithelial to mesenchymal transition by transactivation of Twist1

    International Nuclear Information System (INIS)

    Pei, Xin-Hong; Lv, Xin-Quan; Li, Hui-Xiang

    2014-01-01

    Highlights: • Depletion of Sox5 inhibits breast cancer proliferation, migration, and invasion. • Sox5 transactivates Twist1 expression. • Sox5 induces epithelial to mesenchymal transition through transactivation of Twist1 expression. - Abstract: The epithelial to mesenchymal transition (EMT), a highly conserved cellular program, plays an important role in normal embryogenesis and cancer metastasis. Twist1, a master regulator of embryonic morphogenesis, is overexpressed in breast cancer and contributes to metastasis by promoting EMT. In exploring the mechanism underlying the increased Twist1 in breast cancer cells, we found that the transcription factor SRY (sex-determining region Y)-box 5(Sox5) is up-regulation in breast cancer cells and depletion of Sox5 inhibits breast cancer cell proliferation, migration, and invasion. Furthermore, depletion of Sox5 in breast cancer cells caused a dramatic decrease in Twist1 and chromosome immunoprecipitation assay showed that Sox5 can bind directly to the Twist1 promoter, suggesting that Sox5 transactivates Twist1 expression. We further demonstrated that knockdown of Sox5 up-regulated epithelial phenotype cell biomarker (E-cadherin) and down-regulated mesenchymal phenotype cell biomarkers (N-cadherin, Vimentin, and Fibronectin 1), resulting in suppression of EMT. Our study suggests that Sox5 transactivates Twist1 expression and plays an important role in the regulation of breast cancer progression

  2. Decompression-induced melting of ice IV and the liquid-liquid transition in water

    Science.gov (United States)

    Mishima, Osamu; Stanley, H. Eugene

    1998-03-01

    Although liquid water has been the focus of intensive research for over 100 years, a coherent physical picture that unifies all of the known anomalies of this liquid, is still lacking. Some of these anomalies occur in the supercooled region, and have been rationalized on the grounds of a possible retracing of the liquid-gas spinodal (metastability limit) line into the supercooled liquid region, or alternatively the presence of a line of first-order liquid-liquid phase transitions in this region which ends in a critical point,. But these ideas remain untested experimentally, in part because supercooled water can be probed only above the homogeneous nucleation temperature TH at which water spontaneously crystallizes. Here we report an experimental approach that is not restricted by the barrier imposed by TH, involving measurement of the decompression-induced melting curves of several high-pressure phases of ice in small emulsified droplets. We find that the melting curve for ice IV seems to undergo a discontinuity at precisely the location proposed for the line of liquid-liquid phase transitions. This is consistent with, but does not prove, the coexistence of two different phases of (supercooled) liquid water. From the experimental data we calculate a possible Gibbs potential surface and a corresponding equation of state for water, from the forms of which we estimate the coordinates of the liquid-liquid critical point to be at pressure Pc ~ 0.1GPa and temperature Tc ~ 220K.

  3. Quantum-to-classical transition and gravity-induced instabilities (in progress)

    International Nuclear Information System (INIS)

    Lima, William C.C.

    2013-01-01

    Full text: It has been argued that gravitational fields produced by realistic matter distributions can induce the vacuum fluctuations of some non-minimally coupled free scalar field to go through a phase of exponential amplification. For the particular case of the formation of a neutron star, the energy density of the field in its initial vacuum state rivals the one of the star in a lapse of just a few milliseconds after the effect has been triggered. From this point on back reaction effects must be taken into account in order to predict the fate of both the star and scalar field. Classical analyses have shown that, at least for some values of the mass-radius ratio of the star and the non-minimal coupling parameter, a non-null scalar field profile could stabilize the system. The aim of our study is to shed some light on the back reaction process from the perspective of the quantum-to-classical transition that will occur once the classical background spacetime reacts to the unstable quantum field. In particular, the transition to a classical regime requires the specification of a well-defined classical initial state for the field. This can be accomplished analyzing the quantum state of the field around the time back reaction effects become important. (author)

  4. Epithelial-Mesenchymal Transition in Kidney Tubular Epithelial Cells Induced by Globotriaosylsphingosine and Globotriaosylceramide.

    Directory of Open Access Journals (Sweden)

    Yeo Jin Jeon

    Full Text Available Fabry disease is a lysosomal storage disorder caused by deficiency of alpha-galactosidase A (α-gal A, which results in the deposition of globotriaosylceramide (Gb3 in the vascular endothelium. Globotriaosylsphingosine (lyso-Gb3, a deacylated Gb3, is also increased in the plasma of patients with Fabry disease. Renal fibrosis is a key feature of advanced Fabry disease patients. Therefore, we evaluated the association of Gb3 and lyso-Gb3 accumulation and the epithelial-mesenchymal transition (EMT on tubular epithelial cells of the kidney. In HK2 cells, exogenous treatments of Gb3 and lyso-Gb3 increased the expression of TGF-β, EMT markers (N-cadherin and α-SMA, and phosphorylation of PI3K/AKT, and decreased the expression of E-cadherin. Lyso-Gb3, rather than Gb3, strongly induced EMT in HK2 cells. In the mouse renal mesangial cell line, SV40 MES 13 cells, Gb3 strongly induced phenotype changes. The EMT induced by Gb3 was inhibited by enzyme α-gal A treatment, but EMT induced by lyso-Gb3 was not abrogated by enzyme treatment. However, TGF-β receptor inhibitor (TRI, SB525334 inhibited the activation of TGF-β and EMT markers in HK2 cells with Gb3 and lyso-Gb3 treatments. This study suggested that increased plasma lyso-Gb3 has a crucial role in the development of renal fibrosis through the cell-specific induction of the EMT in Fabry disease, and that TRI treatment, alongside enzyme replacement therapy, could be a potential therapeutic option for patients with Fabry disease.

  5. Radiation-induced structural transitions in composite materials with strong interaction of polymer components

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Koztaeva, U.P.

    2002-01-01

    In earlier papers the internal friction (IF) method was applied to studies of structural relaxation in different types of polymer-based composite materials (glass-cloth, paper-based and foiled laminates impregnated by epoxy and phenolic resins) irradiated by 2 MeV electrons in the dose range of 0.1-50.0 MGy. Selectivity and high sensibility of the internal friction method allowed to distinguish glassy transitions in different structural components of the composites. The relaxation processes observed were identified and attributed to structural alterations in the polymer filler, the binder and the boundary layers. It was shown that changes in the parameters of relaxation maximums during irradiation can be considered as quantitative characteristics for the degree of radiation-induced degradation or cross-linking of polymer molecules. This paper deals with specific features of IF spectra in paper-based laminates where both the filler fibers and the binder are strongly interacting polymers. Anisotropy of viscous and elastic properties is very weak for this kind of materials, so that IF measurements give nearly the same result independently on the filler fiber orientation in the sample. The main reasons for it are the rigid chain structure of fillers (polyethylene-terephthalate and cellulose) and the good adhesion strengthened by diffusion of the epoxy or phenolic binder to defect regions of the filler.The IF temperature dependence observed in paper-based laminates is represented by superposition of two very broad relaxation maximums associated with transitions from glassy to high-elastic state in structural components, each based on one of the polymers. The inflection points characteristic for IF temperature dependence in paper-based laminates give a reason to treat them as a superposition of α-peaks associated with transitions from glassy to high-elastic state in structural components of a composite based on the binder and the filler, respectively. Another

  6. Chronic respiratory aeroallergen exposure in mice induces epithelial-mesenchymal transition in the large airways.

    Directory of Open Access Journals (Sweden)

    Jill R Johnson

    Full Text Available Chronic allergic asthma is characterized by Th2-polarized inflammation and leads to airway remodeling and fibrosis but the mechanisms involved are not clear. To determine whether epithelial-mesenchymal transition contributes to airway remodeling in asthma, we induced allergic airway inflammation in mice by intranasal administration of house dust mite (HDM extract for up to 15 consecutive weeks. We report that respiratory exposure to HDM led to significant airway inflammation and thickening of the smooth muscle layer in the wall of the large airways. Transforming growth factor beta-1 (TGF-β1 levels increased in mouse airways while epithelial cells lost expression of E-cadherin and occludin and gained expression of the mesenchymal proteins vimentin, alpha-smooth muscle actin (α-SMA and pro-collagen I. We also observed increased expression and nuclear translocation of Snail1, a transcriptional repressor of E-cadherin and a potent inducer of EMT, in the airway epithelial cells of HDM-exposed mice. Furthermore, fate-mapping studies revealed migration of airway epithelial cells into the sub-epithelial regions of the airway wall. These results show the contribution of EMT to airway remodeling in chronic asthma-like inflammation and suggest that Th2-polarized airway inflammation can trigger invasion of epithelial cells into the subepithelial regions of the airway wall where they contribute to fibrosis, demonstrating a previously unknown plasticity of the airway epithelium in allergic airway disease.

  7. Transit through the flea vector induces a pretransmission innate immunity resistance phenotype in Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Viveka Vadyvaloo

    2010-02-01

    Full Text Available Yersinia pestis, the agent of plague, is transmitted to mammals by infected fleas. Y. pestis exhibits a distinct life stage in the flea, where it grows in the form of a cohesive biofilm that promotes transmission. After transmission, the temperature shift to 37 degrees C induces many known virulence factors of Y. pestis that confer resistance to innate immunity. These factors are not produced in the low-temperature environment of the flea, however, suggesting that Y. pestis is vulnerable to the initial encounter with innate immune cells at the flea bite site. In this study, we used whole-genome microarrays to compare the Y. pestis in vivo transcriptome in infective fleas to in vitro transcriptomes in temperature-matched biofilm and planktonic cultures, and to the previously characterized in vivo gene expression profile in the rat bubo. In addition to genes involved in metabolic adaptation to the flea gut and biofilm formation, several genes with known or predicted roles in resistance to innate immunity and pathogenicity in the mammal were upregulated in the flea. Y. pestis from infected fleas were more resistant to phagocytosis by macrophages than in vitro-grown bacteria, in part attributable to a cluster of insecticidal-like toxin genes that were highly expressed only in the flea. Our results suggest that transit through the flea vector induces a phenotype that enhances survival and dissemination of Y. pestis after transmission to the mammalian host.

  8. Time-Resolved Studies of Laser-Induced Phase Transitions in Gallium Arsenide

    Science.gov (United States)

    Siegal, Yakir

    This thesis describes a series of time-resolved experiments of the linear and nonlinear optical properties of GaAs during laser-induced phase transitions. The first set of experiments consists of a direct determination of the behavior of the linear dielectric constant at photon energies of 2.2 eV and 4.4 eV following excitation of the sample with 1.9-eV, 70-fs laser pulses spanning a fluence range from 0 to 2.5 kJ/m^2. The results from this set of experiments were used to extract the behavior of the second-order optical susceptibility from second-harmonic generation measurements made under identical excitation conditions. These experiments are unique because they provide explicit information on the behavior of intrinsic material properties--the linear and nonlinear optical susceptibilities--during laser-induced phase transitions in semiconductors without the ambiguities in interpretation that are generally inherent in reflectivity and second-harmonic generation measurements. The dielectric constant data indicate a drop in the average bonding-antibonding splitting of GaAs following the laser pulse excitation. This behavior leads to a collapse of the band-gap on a picosecond time scale for excitation at fluences near the damage threshold of 1.0 kJ/m ^2 and even faster at higher excitation fluences. The changes in the electronic band structure result from a combination of electronic screening by the excited free carriers and structural deformation of the lattice caused by the destabilization of the covalent bonds. The behavior of the second-order susceptibility shows that the material loses long-range order before the average bonding-antibonding splitting, which is more sensitive to short-range structure, changes significantly. Loss of long-range order and a drop of more than 2 eV in the average bonding-antibonding splitting are seen even at fluences below the damage threshold, a regime in which the laser-induced changes are reversible.

  9. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Araki Hiromasa

    2007-04-01

    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  10. Theoretical study of the partial molar volume change associated with the pressure-induced structural transition of ubiquitin.

    Science.gov (United States)

    Imai, Takashi; Ohyama, Shusaku; Kovalenko, Andriy; Hirata, Fumio

    2007-09-01

    The partial molar volume (PMV) change associated with the pressure-induced structural transition of ubiquitin is analyzed by the three-dimensional reference interaction site model (3D-RISM) theory of molecular solvation. The theory predicts that the PMV decreases upon the structural transition, which is consistent with the experimental observation. The volume decomposition analysis demonstrates that the PMV reduction is primarily caused by the decrease in the volume of structural voids in the protein, which is partially canceled by the volume expansion due to the hydration effects. It is found from further analysis that the PMV reduction is ascribed substantially to the penetration of water molecules into a specific part of the protein. Based on the thermodynamic relation, this result implies that the water penetration causes the pressure-induced structural transition. It supports the water penetration model of pressure denaturation of proteins proposed earlier.

  11. Mechanism of the monoclinic-to-tetragonal phase transition induced in zirconia and hafnia by swift heavy ions

    International Nuclear Information System (INIS)

    Benyagoub, Abdenacer

    2005-01-01

    Recent results demonstrated that defect formation or amorphization are not the only structural changes induced by swift heavy ions in crystalline materials and that under certain circumstances crystalline-to-crystalline phase transitions can also occur. For instance, it was found that both zirconia and hafnia transform from the monoclinic to the tetragonal phase with a kinetics involving a double ion impact process. In order to understand the origin of this ion-beam induced phase transition, the behavior of these twin oxides was analyzed and compared. In fact, the likeness of these materials offered the unique opportunity to impose drastic constraints on the possible models proposed to explain the creation of atomic displacements in the wake of swift heavy ions. This comparison clearly suggests that the thermal spike is the most appropriate process which governs the transition from the monoclinic to the tetragonal phase in zirconia and hafnia

  12. Temperature-induced phase transition in hydrogels of interpenetrating networks poly(N-isopropylmethacrylamide)/poly(N-isopropylacrylamide)

    Czech Academy of Sciences Publication Activity Database

    Šťastná, J.; Hanyková, L.; Sedláková, Zdeňka; Valentová, H.; Spěváček, Jiří

    2013-01-01

    Roč. 291, č. 10 (2013), s. 2409-2417 ISSN 0303-402X R&D Projects: GA ČR GA202/09/1281 Institutional support: RVO:61389013 Keywords : temperature-induced volume phase transition * poly (N-isopropylmethacrylamide) poly (Nisopropylacrylamide) interpenetrating network * 1H NMR spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.410, year: 2013

  13. Electronic structure of UN based on specific heat and field-induced transitions up to 65 T

    Czech Academy of Sciences Publication Activity Database

    Troć, R.; Samsel-Czekała, M.; Pikul, A.; Andreev, Alexander V.; Gorbunov, Denis; Skourski, Y.; Sznajd, J.

    2016-01-01

    Roč. 94, č. 22 (2016), 1-14, č. článku 224415. ISSN 2469-9950 R&D Projects: GA ČR GA16-03593S Institutional support: RVO:68378271 Keywords : uranium mononitride * antiferromagnetism * field-induced transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  14. Evidence for a pressure-induced spin transition in olivine-type LiFePO4 triphylite

    Science.gov (United States)

    Núñez Valdez, Maribel; Efthimiopoulos, Ilias; Taran, Michail; Müller, Jan; Bykova, Elena; McCammon, Catherine; Koch-Müller, Monika; Wilke, Max

    2018-05-01

    We present a combination of first-principles and experimental results regarding the structural and magnetic properties of olivine-type LiFePO4 under pressure. Our investigations indicate that the starting P b n m phase of LiFePO4 persists up to 70 GPa. Further compression leads to an isostructural transition in the pressure range of 70-75 GPa, inconsistent with a former theoretical study. Considering our first-principles prediction for a high-spin to low-spin transition of Fe2 + close to 72 GPa, we attribute the experimentally observed isostructural transition to a change in the spin state of Fe2 + in LiFePO4. Compared to relevant Fe-bearing minerals, LiFePO4 exhibits the largest onset pressure for a pressure-induced spin state transition.

  15. Metal-Insulator Transition in Copper Oxides Induced by Apex Displacements

    Directory of Open Access Journals (Sweden)

    Swagata Acharya

    2018-05-01

    Full Text Available High temperature superconductivity has been found in many kinds of compounds built from planes of Cu and O, separated by spacer layers. Understanding why critical temperatures are so high has been the subject of numerous investigations and extensive controversy. To realize high temperature superconductivity, parent compounds are either hole doped, such as La_{2}CuO_{4} (LCO with Sr (LSCO, or electron doped, such as Nd_{2}CuO_{4} (NCO with Ce (NCCO. In the electron-doped cuprates, the antiferromagnetic phase is much more robust than the superconducting phase. However, it was recently found that the reduction of residual out-of-plane apical oxygen dramatically affects the phase diagram, driving those compounds to a superconducting phase. Here we use a recently developed first-principles method to explore how displacement of the apical oxygen (AO in LCO affects the optical gap, spin and charge susceptibilities, and superconducting order parameter. By combining quasiparticle self-consistent GW (QS GW and dynamical mean-field theory (DMFT, we show that LCO is a Mott insulator, but small displacements of the apical oxygen drive the compound to a metallic state through a localization-delocalization transition, with a concomitant maximum in d-wave order parameter at the transition. We address the question of whether NCO can be seen as the limit of LCO with large apical displacements, and we elucidate the deep physical reasons why the behavior of NCO is so different from the hole-doped materials. We shed new light on the recent correlation observed between T_{c} and the charge transfer gap, while also providing a guide towards the design of optimized high-T_{c} superconductors. Further, our results suggest that strong correlation, enough to induce a Mott gap, may not be a prerequisite for high-T_{c} superconductivity.

  16. Phase-Transition-Induced Pattern Formation Applied to Basic Research on Homeopathy: A Systematic Review.

    Science.gov (United States)

    Kokornaczyk, Maria Olga; Scherr, Claudia; Bodrova, Natalia Borisovna; Baumgartner, Stephan

    2018-05-16

     Methods based on phase-transition-induced pattern formation (PTPF) are increasingly used in medical research. Frequent application fields are medical diagnosis and basic research in homeopathy. Here, we present a systematic review of experimental studies concerning PTPF-based methods applied to homeopathy research. We also aimed at categorizing the PTPF methods included in this review.  Experimental studies were collected from scientific databases (PubMed, Web of Science, Russian eLibrary) and from experts in the research field in question, following the PRISMA guidelines. The studies were rated according to pre-defined scientific criteria.  The review included 15 experimental studies. We identified seven different PTPF methods applied in 12 experimental models. Among these methods, phase-transition was triggered through evaporation, freezing, or solution, and in most cases led to the formation of crystals. First experimental studies concerning the application of PTPF methods in homeopathic research were performed in the first half of the 20th century; however, they were not continued in the following years. Only in the last decade, different research groups re-launched the idea, introducing new experimental approaches and computerized pattern evaluation techniques. The here-identified PTPF methods are for the first time proposed to be classified as one group of methods based on the same basic physical phenomenon.  Although the number of experimental studies in the area is still rather limited, the long tradition in the application of PTPF methods and the dynamics of the present developments point out the high potential of these methods and indicate that they might meet the demand for scientific methods to study potentized preparations. The Faculty of Homeopathy.

  17. Inorganic Nanoparticle Induced Morphological Transition for Confined Self-Assembly of Block Copolymers within Emulsion Droplets.

    Science.gov (United States)

    Zhang, Yan; He, Yun; Yan, Nan; Zhu, Yutian; Hu, Yuexin

    2017-09-07

    Recently, it has been reported that the incorporation of functional inorganic nanoparticles (NPs) into the three-dimensional (3D) confined self-assembly of block copolymers (BCPs) creates the unique nanostructured hybrid composites, which can not only introduce new functions to BCPs but also induce some interesting morphological transitions of BCPs. In the current study, we systematically investigate the cooperative self-assembly of a series of size-controlled and surface chemistry-tunable gold nanoparticles (AuNPs) and polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer within the emulsion droplets. The influences of the size, content, and surface chemistry of the AuNPs on the coassembled nanostructures as well as the spatial distribution of AuNPs in the hybrid particles are examined. It is found that the size and content of the AuNPs are related to the entropic interaction, while the surface chemistry of AuNPs is related to the enthalpic interaction, which can be utilized to tailor the self-assembled morphologies of block copolymer confined in the emulsion droplets. As the content of PS-coated AuNPs increases, the morphology of the resulting AuNPs/PS-b-P2VP hybrid particles changes from the pupa-like particles to the bud-like particles and then to the onion-like particles. However, a unique morphological transition from the pupa-like particles to the mushroom-like particles is observed as the content of P4VP-coated AuNPs increases. More interestingly, it is observed that the large AuNPs are expelled to the surface of the BCP particles to reduce the loss in the conformational entropy of the block segment, which can arrange into the strings of necklaces on the surfaces of the hybrid particles.

  18. In-field X-ray and neutron diffraction studies of re-entrant charge-ordering and field induced metastability in La0.175Pr0.45Ca0.375MnO3-δ

    Science.gov (United States)

    Sharma, Shivani; Shahee, Aga; Yadav, Poonam; da Silva, Ivan; Lalla, N. P.

    2017-11-01

    Low-temperature high-magnetic field (2 K, 8 T) (LTHM) powder X-ray diffraction (XRD) and time of flight powder neutron diffraction (NPD), low-temperature transmission electron microscopic (TEM), and resistivity and magnetization measurements have been carried out to investigate the re-entrant charge ordering (CO), field induced structural phase transitions, and metastability in phase-separated La0.175Pr0.45Ca0.375MnO3-δ (LPCMO). Low-temperature TEM and XRD studies reveal that on cooling under zero-field, paramagnetic Pnma phase transforms to P21/m CO antiferromagnetic (AFM) insulating phase below ˜233 K. Unlike reported literature, no structural signature of CO AFM P21/m to ferromagnetic (FM) Pnma phase-transition during cooling down to 2 K under zero-field was observed. However, the CO phase was found to undergo a re-entrant transition at ˜40 K. Neutron diffraction studies revealed a pseudo CE type spin arrangement of the observed CO phase. The low-temperature resistance, while cooled under zero-field, shows insulator to metal like transition below ˜105 K with minima at ˜25 K. On application of field, the CO P21/m phase was found to undergo field-induced transition to FM Pnma phase, which shows irreversibility on field removal below ˜40 K. Zero-field warming XRD and NPD studies reveal that field-induced FM Pnma phase is a metastable phase, which arise due to the arrest of kinetics of the first-order phase transition of FM Pnma to CO-AFM P21/m phase, below 40 K. Thus, a strong magneto-structural coupling is observed for this system. A field-temperature (H-T) phase-diagram has been constructed based on the LTHM-XRD, which matches very nicely with the reported H-T phase-diagram constructed based on magnetic measurements. Due to the occurrence of gradual growth of the re-entrant CO phase and the absence of a clear structural signature of phase-separation of CO-AFM P21/m and FM Pnma phases, the H-T minima in the phase-diagram of the present LPCMO sample has been

  19. Snail1 induces epithelial-to-mesenchymal transition and tumor initiating stem cell characteristics

    International Nuclear Information System (INIS)

    Dang, Hien; Ding, Wei; Emerson, Dow; Rountree, C Bart

    2011-01-01

    Tumor initiating stem-like cells (TISCs) are a subset of neoplastic cells that possess distinct survival mechanisms and self-renewal characteristics crucial for tumor maintenance and propagation. The induction of epithelial-mesenchymal-transition (EMT) by TGFβ has been recently linked to the acquisition of TISC characteristics in breast cancer. In HCC, a TISC and EMT phenotype correlates with a worse prognosis. In this work, our aim is to elucidate the underlying mechanism by which cells acquire tumor initiating characteristics after EMT. Gene and protein expression assays and Nanog-promoter luciferase reporter were utilized in epithelial and mesenchymal phenotype liver cancer cell lines. EMT was analyzed with migration/invasion assays. TISC characteristics were analyzed with tumor-sphere self-renewal and chemotherapy resistance assays. In vivo tumor assay was performed to investigate the role of Snail1 in tumor initiation. TGFβ induced EMT in epithelial cells through the up-regulation of Snail1 in Smad-dependent signaling. Mesenchymal liver cancer post-EMT demonstrates TISC characteristics such as tumor-sphere formation but are not resistant to cytotoxic therapy. The inhibition of Snail1 in mesenchymal cells results in decreased Nanog promoter luciferase activity and loss of self-renewal characteristics in vitro. These changes confirm the direct role of Snail1 in some TISC traits. In vivo, the down-regulation of Snail1 reduced tumor growth but was not sufficient to eliminate tumor initiation. In summary, TGFβ induces EMT and TISC characteristics through Snail1 and Nanog up-regulation. In mesenchymal cells post-EMT, Snail1 directly regulates Nanog expression, and loss of Snail1 regulates tumor growth without affecting tumor initiation

  20. Photo-induced charge-transfer phase transition of rubidium manganese hexacyanoferrate in ferromagnetic and paramagnetic states

    International Nuclear Information System (INIS)

    Tokoro, Hiroko; Hashimoto, Kazuhito; Ohkoshi, Shin-ichi

    2007-01-01

    A charge transfer phase transition with thermal hysteresis loop is observed in a series of rubidium manganese hexacyanoferrates, RbMn[Fe(China) 6 ] (1), Rb 0.88 Mn[Fe(China) 6 ] 0.96 .0.6H 2 O (2), and Rb 0.97 Mn[Fe(China) 6 ] 0.99 .0.2H 2 O (3). This phase transition is accompanied by a structural change from cubic (F4-bar 3m) to tetragonal (I4-bar m2). Its high-temperature (HT) and low-temperature (LT) phases are composed of Mn II (S=2/5)NC-Fe III (S=1/2) and Mn III (S=2)-NC-Fe II (S=0), respectively. The phase transition is caused by a metal-to-metal charge transfer from Mn II to Fe III and a Jahn-Teller distortion of the produced Mn III ion. At the ferromagnetic state in LT phase of 2, the photo-induced phase transition is observed, i.e., magnetization is quenched by the irradiation with only one shot of laser pulse. This phenomenon is caused by a photo-induced phase transition from the LT phase to the HT phase. In 3, optical switching between LT and HT phases at room temperature in paramagnetic region is observed

  1. Kinetics of the stress induced phase transition in quartz by real-time neutron scattering

    International Nuclear Information System (INIS)

    Gibhardt, H.; Eckold, G.; Guethoff, F.

    1999-01-01

    Complete text of publication follows. The stability regime of the incommensurate phase of quartz is influenced by uniaxial stress. Hence, the phase transition can be induced under isothermal conditions by the application of external mechanical forces. Using real-time neutron scattering the time evolution of structural changes is investigated id detail during stress variations. The time dependent behaviour of the satellite reflection is compared with that one of the fundamental Bragg reflection which - via primary extinction - gives information about the perfection of the crystal. On increasing stress the perfection of the lattice is destroyed immediately while the modulated structure is built up with a delay of about 1 s. Decreasing the stress leads to a reverse behaviour. Moreover, there is evidence that under periodical load residual non-relaxed strain fields survive leading to a different temperature dependence as compared to static conditions. This finding is compatible with pronounced hysteresis effects observed under cycling stress. It is argued that these residual strains are associated with non-relaxed topological 4-line defects, that drive the structural changes in quartz (1). (author)

  2. Pressure-induced phase transition in KxFe2-yS2

    International Nuclear Information System (INIS)

    Tsuchiya, Yuu; Ikeda, Shugo; Kobayashi, Hisao; Zhang, Xiao-Wei; Kishimoto, Shunji; Kikegawa, Takumi; Hirao, Naohisa; Kawaguchi, Saori I.; Ohishi, Yasuo

    2017-01-01

    The structural and electronic properties of high-quality K 0.66(6) Fe 1.75(10) S 2 single crystals have been investigated by angle-resolved X-ray diffraction and 57 Fe nuclear forward scattering using synchrotron radiation under pressure at room temperature. The samples exhibit phase separation into antiferromagnetic ordered K 2 Fe 4 S 5 and nonmagnetic K x Fe 2 S 2 phases. It was found that a pressure-induced phase transition occurs at p c = 5.9(4) GPa with simultaneous suppression of the antiferromagnetic and Fe vacancy orders. >From the results of 57 Fe nuclear forward scattering, the refined magnetic hyperfine field remains unchanged with pressure below p c , suggesting that the Néel temperature does not decrease with pressure up to p c . Above p c , all Fe atoms in K 0.66 Fe 1.75 S 2 are in the same nonmagnetic state. A discontinuous increase in the center shift was observed at p c , reflecting a change in the Fe electronic state in K 0.66 Fe 1.75 S 2 . (author)

  3. Theoretical study of orbital ordering induced structural phase transition in iron pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Jena, Sushree Sangita, E-mail: sushree@iopb.res.in; Rout, G. C., E-mail: gcr@iopb.res.in [Physics Enclave, Plot No-664/4825, Lane-4A, Shree Vihar, Bhubaneswar-24, Odisha (India); Panda, S. K., E-mail: skp@iopb.res.in

    2016-05-06

    We attribute the structural phase transition (SPT) in the parent compounds of the iron pnictides to orbital ordering. Due to anisotropy of the d{sub xz} and d{sub yz} orbitals in the xy plane, orbital ordering makes the orthorhombic structure more favorable and thus inducing the SPT. We consider a one band model Hamiltonian consisting of first and second-nearest-neighbor hopping of the electrons. We introduce Jahn-Tellar (JT) distortion in the system arising due to the orbital ordering present in this system. We calculate the electron Green’s function by using Zuvareb’s Green’s function technique and hence calculate an expression for the temperature dependent lattice strain which is computed numerically and self-consistently. The temperature dependent electron specific heat is calculated by minimizing the free energy of the system. The lattice strain is studied by varying the JT coupling and elastic constant of the system. The structural anomaly is studied through the electron occupation number and the specific heat by varying the physical parameters like JT coupling, lattice constant, chemical potential and hopping integrals of the system.

  4. Monovalent cation induced structural transitions in telomeric DNAs: G-DNA folding intermediates

    International Nuclear Information System (INIS)

    Hardin, C.C.; Watson, T.; Henderson, E.; Prosser, J.K.

    1991-01-01

    Telomeric DNA consists of G- and C-rich strands that are always polarized such that the G-rich strand extends past the 3' end of the duplex to form a 12-16-base overhang. These overhanging strands can self-associate in vitro to form intramolecular structures that have several unusual physical properties and at least one common feature, the presence of non-Watson-Crick G·G base pairs. The term G-DNA was coined for this class of structures. On the basis of gel electrophoresis, imino proton NMR, and circular dichroism (CD) results, the authors find that changing the counterions from sodium to potassium specifically induces conformational transitions in the G-rich telomeric DNA from Tetrahymena, d(T 2 G 4 ) 4 (TET4), which results in a change from the intramolecular species to an apparent multistranded structure, accompanied by an increase in the melting temperature of the base pairs of >25 degree, as monitored by loss of the imino proton NMR signals. They infer that the multistranded structure is a quadruplex. The results indicate that specific differences in ionic interactions can result in a switch in telomeric DNAs between intramolecular hairpin-like or quadruplex-containing species and intermolecular quadruplex structures, all of which involve G·G base pairing interaction. They propose a model in which duplex or hairpin forms of G-DNA are folding intermediates in the formation of either 1-, 2-, or 4-stranded quadruplex structures

  5. Metal-insulator transition induced in CaVO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gu Man [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, Virginia 22904 (United States); Laverock, Jude; Chen, Bo; Smith, Kevin E. [Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 (United States); Wolf, Stuart A. [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, Virginia 22904 (United States); Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., Charlottesville, Virginia 22904 (United States); Lu Jiwei [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., Charlottesville, Virginia 22904 (United States)

    2013-04-07

    Stoichiometric CaVO{sub 3} (CVO) thin films of various thicknesses were grown on single crystal SrTiO{sub 3} (STO) (001) substrates using a pulsed electron-beam deposition technique. The CVO films were capped with a 2.5 nm STO layer. We observed a temperature driven metal-insulator transition (MIT) in CVO films with thicknesses below 4 nm that was not observed in either thick CVO films or STO films. The emergence of this MIT can be attributed to the reduction in effective bandwidth due to a crossover from a three-dimensional metal to a two-dimensional insulator. The insulating phase was only induced with a drive current below 0.1 {mu}A. X-ray absorption measurements indicated different electronic structures for thick and very thin films of CVO. Compared with the thick film ({approx}60 nm), thin films of CVO (2-4 nm) were more two-dimensional with the V charge state closer to V{sup 4+}.

  6. Metal-insulator transition induced in CaVO3 thin films

    International Nuclear Information System (INIS)

    Gu Man; Laverock, Jude; Chen, Bo; Smith, Kevin E.; Wolf, Stuart A.; Lu Jiwei

    2013-01-01

    Stoichiometric CaVO 3 (CVO) thin films of various thicknesses were grown on single crystal SrTiO 3 (STO) (001) substrates using a pulsed electron-beam deposition technique. The CVO films were capped with a 2.5 nm STO layer. We observed a temperature driven metal-insulator transition (MIT) in CVO films with thicknesses below 4 nm that was not observed in either thick CVO films or STO films. The emergence of this MIT can be attributed to the reduction in effective bandwidth due to a crossover from a three-dimensional metal to a two-dimensional insulator. The insulating phase was only induced with a drive current below 0.1 μA. X-ray absorption measurements indicated different electronic structures for thick and very thin films of CVO. Compared with the thick film (∼60 nm), thin films of CVO (2–4 nm) were more two-dimensional with the V charge state closer to V 4+ .

  7. Pressure-induced phase transitions in silicon studied by neural network-based metadynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Behler, Joerg [Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Lugano (Switzerland); Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Martonak, Roman [Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Lugano (Switzerland); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina F2, 84248 Bratislava (Slovakia); Donadio, Davide [Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Lugano (Switzerland); Department of Chemistry, UC Davis, One Shields Ave., Davis, CA 95616 (United States); Parrinello, Michele [Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, Lugano (Switzerland)

    2008-12-15

    We present a combination of the metadynamics method for the investigation of pressure-induced phase transitions in solids with a neural network representation of high-dimensional density-functional theory (DFT) potential-energy surfaces. In a recent illustration of the method for the complex high-pressure phase diagram of silicon[Behler et al., Phys. Rev. Lett. 100, 185501 (2008)] we have shown that the full sequence of phases can be reconstructed by a series of subsequent simulations. In the present paper we give a detailed account of the underlying methodology and discuss the scope and limitations of the approach, which promises to be a valuable tool for the investigation of a variety of inorganic materials. The method is several orders of magnitude faster than a direct coupling of metadynamics with electronic structure calculations, while the accuracy is essentially maintained, thus providing access to extended simulations of large systems. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Semimetal-semiconductor transitions in bismuth-antimony films and nanowires induced by size quantization

    International Nuclear Information System (INIS)

    Nikolaeva, A.A.; Konopko, L.A.; Grabov, V.M.; Komarov, V.A.; Kablukova, N.; Popov, I.A.

    2013-01-01

    Full text:Single-crystal bismuth films and nanowires undergo a transformation from semimetal to semiconductor (SMSC) thanks to the manifestation of quantum size effects, which modify phonon transport, which may be of practical interest. This effect must be most pronounced in single Bi 1-x Sb x nanostructures in the semimetal phase(x < 0.04) with a minimal overlapping of L and T bands. In this paper we present the experimental results an investigation of the low- temperature electrical transport, thermoelectrical properties, SdH oscillations of BiSb films, grown by vacuum thermal evaporation and nanowires prepared by a modified Ulitovsky - Teilor technique. We confirmed with X-ray diffraction that the trigonal axis were perpendicular to the film plane. The single Bi-2at% Sb nanowires with diameter 100-1000nm were represented single crystals in glass capillary with (1011) orientation along the wire axis. The investigations the Shubnikov de Haas oscillations shows, that overlapping L and-T- bands was in two time smaller, than in pure Bi. The quantum dimensional effect induced SMSC transition is observed in Bi-Sb films and nanowires at the wires diameters up to five times greater, than in pure Bi. That experimental fact on the one site will be allow to go at higher temperatures with the same diameters nanowires, and on the other hand allows to separate effects connected with surface state and QSE. We also discuss the thermoelectric properties for optimizing their performance for certain, such as thermoelectrics.

  9. Environment-induced decoherence and the transition from quantum to classical

    International Nuclear Information System (INIS)

    Paz, J.P.; Zurek, W.H.

    2001-01-01

    We study dynamics of quantum open systems, paying special attention to these aspects of their evolution which are relevant to the transition from quantum to classical. We begin with a discussion of the conditional dynamics of simple systems. The resulting models are straightforward but suffice to illustrate basic physical ideas behind quantum measurements and decoherence. To discuss decoherence and environment-induced superselection (einselection) in a more general setting, we sketch perturbative as well as exact derivations of several master equations valid for various systems. Using these equations we study einselection employing the general strategy of the predictability sieve. Assumptions that are usually made in the discussion of decoherence are critically reexamined along with the 'standard lore' to which they lead. Restoration of quantum-classical correspondence in systems that are classically chaotic is discussed. The dynamical second law - it is shown - can be traced to the same phenomena that allow for the restoration of the correspondence principle in de-cohering chaotic systems (where it is otherwise lost on a very short time-scale). Quantum error correction is discussed as an example of an anti-decoherence strategy. Implications of decoherence and einselection for the interpretation of quantum theory are briefly pointed out. (authors)

  10. Nearest neighbor affects G:C to A:T transitions induced by alkylating agents.

    Science.gov (United States)

    Glickman, B W; Horsfall, M J; Gordon, A J; Burns, P A

    1987-01-01

    The influence of local DNA sequence on the distribution of G:C to A:T transitions induced in the lacI gene of E. coli by a series of alkylating agents has been analyzed. In the case of nitrosoguanidine, two nitrosoureas and a nitrosamine, a strong preference for mutation at sites proceeded 5' by a purine base was noted. This preference was observed with both methyl and ethyl donors where the predicted common ultimate alkylating species is the alkyl diazonium ion. In contrast, this preference was not seen following treatment with ethylmethanesulfonate. The observed preference for 5'PuG-3' site over 5'-PyG-3' sites corresponds well with alterations observed in the Ha-ras oncogene recovered after treatment with NMU. This indicates that the mutations recovered in the oncogenes are likely the direct consequence of the alkylation treatment and that the local sequence effects seen in E. coli also appear to occur in mammalian cells. PMID:3329097

  11. Nearest neighbor affects G:C to A:T transitions induced by alkylating agents

    Energy Technology Data Exchange (ETDEWEB)

    Glickman, B.W.; Horsfall, M.J.; Gordon, A.J.E.; Burns, P.A.

    1987-12-01

    The influence of local DNA sequence on the distribution of G:C to A:T transitions induced in the lacI gene of E. coli by a series of alkylating agents has been analyzed. In the case of nitrosoguanidine, two nitrosoureas and a nitrosamine, a strong preference for mutation at sites proceeded 5' by a purine base was noted. This preferences was observed with both methyl and ethyl donors where the predicted common ultimate alkylating species in the alkyl diazonium ion. In contrast, this preferences was not seen following treatment with ethylmethanesulfonate. The observed preference for 5'PuG-3' site over 5'-PyG-3' sites corresponds well with alterations observed in the Ha-ras oncogene recovered after treatment with NMU. This indicates that the mutations recovered in the oncogenes are likely the direct consequence of the alkylation treatment and that the local sequence effects seen in E. coli also appear to occur in mammalian cells.

  12. Coupled Reversible and Irreversible Bistable Switches Underlying TGFβ-induced Epithelial to Mesenchymal Transition

    Science.gov (United States)

    Tian, Xiao-Jun; Zhang, Hang; Xing, Jianhua

    2013-01-01

    Epithelial to mesenchymal transition (EMT) plays an important role in embryonic development, tissue regeneration, and cancer metastasis. Whereas several feedback loops have been shown to regulate EMT, it remains elusive how they coordinately modulate EMT response to TGF-β treatment. We construct a mathematical model for the core regulatory network controlling TGF-β-induced EMT. Through deterministic analyses and stochastic simulations, we show that EMT is a sequential two-step program in which an epithelial cell first is converted to partial EMT then to the mesenchymal state, depending on the strength and duration of TGF-β stimulation. Mechanistically the system is governed by coupled reversible and irreversible bistable switches. The SNAIL1/miR-34 double-negative feedback loop is responsible for the reversible switch and regulates the initiation of EMT, whereas the ZEB/miR-200 feedback loop is accountable for the irreversible switch and controls the establishment of the mesenchymal state. Furthermore, an autocrine TGF-β/miR-200 feedback loop makes the second switch irreversible, modulating the maintenance of EMT. Such coupled bistable switches are robust to parameter variation and molecular noise. We provide a mechanistic explanation on multiple experimental observations. The model makes several explicit predictions on hysteretic dynamic behaviors, system response to pulsed stimulation, and various perturbations, which can be straightforwardly tested. PMID:23972859

  13. Pressure-induced spin reorientation transition in layered ferromagnetic insulator Cr2Ge2Te6

    Science.gov (United States)

    Lin, Zhisheng; Lohmann, Mark; Ali, Zulfikhar A.; Tang, Chi; Li, Junxue; Xing, Wenyu; Zhong, Jiangnan; Jia, Shuang; Han, Wei; Coh, Sinisa; Beyermann, Ward; Shi, Jing

    2018-05-01

    The anisotropic magnetoresistance (AMR) of Cr2Ge2Te6 (CGT), a layered ferromagnetic insulator, is investigated under an applied hydrostatic pressure up to 2 GPa. The easy-axis direction of the magnetization is inferred from the AMR saturation feature in the presence and absence of an applied pressure. At zero applied pressure, the easy axis is along the c direction or perpendicular to the layer. Upon application of a hydrostatic pressure > 1 GPa, the uniaxial anisotropy switches to easy-plane anisotropy which drives the equilibrium magnetization from the c axis to the a b plane at zero magnetic field, which amounts to a giant magnetic anisotropy energy change (> 100%). As the temperature is increased across the Curie temperature, the characteristic AMR effect gradually decreases and disappears. Our first-principles calculations confirm the giant magnetic anisotropy energy change with moderate pressure and assign its origin to the increased off-site spin-orbit interaction of Te atoms due to a shorter Cr-Te distance. Such a pressure-induced spin reorientation transition is very rare in three-dimensional ferromagnets, but it may be common to other layered ferromagnets with similar crystal structures to CGT, and therefore offers a unique way to control magnetic anisotropy.

  14. The electronic origin of shear-induced direct to indirect gap transition and anisotropy diminution in phosphorene.

    Science.gov (United States)

    Sa, Baisheng; Li, Yan-Ling; Sun, Zhimei; Qi, Jingshan; Wen, Cuilian; Wu, Bo

    2015-05-29

    Artificial monolayer black phosphorus, so-called phosphorene, has attracted global interest with its distinguished anisotropic, optoelectronic, and electronic properties. Here, we unraveled the shear-induced direct-to-indirect gap transition and anisotropy diminution in phosphorene based on first-principles calculations. Lattice dynamic analysis demonstrates that phosphorene can sustain up to 10% applied shear strain. The bandgap of phosphorene experiences a direct-to- indirect transition when 5% shear strain is applied. The electronic origin of the direct-to-indirect gap transition from 1.54 eV at ambient conditions to 1.22 eV at 10% shear strain for phosphorene is explored. In addition, the anisotropy diminution in phosphorene is discussed by calculating the maximum sound velocities, effective mass, and decomposed charge density, which signals the undesired shear-induced direct-to-indirect gap transition in applications of phosphorene for electronics and optoelectronics. On the other hand, the shear-induced electronic anisotropy properties suggest that phosphorene can be applied as the switcher in nanoelectronic applications.

  15. Gigantic magnetoelectric effect caused by magnetic-field-induced canted antiferromagnetic-paramagnetic transition in quasi-two-dimensional Ca2CoSi2O7 crystal

    Science.gov (United States)

    Akaki, M.; Tozawa, J.; Akahoshi, D.; Kuwahara, H.

    2009-05-01

    We have investigated the magnetic and dielectric properties of Ca2CoSi2O7 crystal. The dielectricity and magnetism of Ca2CoSi2O7 are strongly coupled below a canted antiferromagnetic transition temperature (TN). Magnetic fields induce electric polarization below TN. Interestingly, the magnetic-field-induced electric polarization is detected even without poling electric fields. Below TN, a canted antiferromagnetic-paramagnetic transition is induced by magnetic fields. The large magnetocapacitance is observed around TN. The origin of the large magnetocapacitance is due to the magnetic-field-induced the canted antiferromagnetic-paramagnetic transition.

  16. Pressure-induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO3.

    Science.gov (United States)

    Wu, Zhigang; Cohen, Ronald E

    2005-07-15

    We find an unexpected tetragonal-to-monoclinic-to-rhombohedral-to-cubic phase transition sequence induced by pressure, and a morphotropic phase boundary in a pure compound using first-principles calculations. Huge dielectric and piezoelectric coupling constants occur in the transition regions, comparable to those observed in the new complex single-crystal solid-solution piezoelectrics such as Pb(Mg(1/3)Nb(2/3))O3-PbTiO3, which are expected to revolutionize electromechanical applications. Our results show that morphotropic phase boundaries and giant piezoelectric effects do not require intrinsic disorder, and open the possibility of studying this effect in simple systems.

  17. Boundary-layer development and transition due to free-stream exothermic reactions in shock-induced flows

    Science.gov (United States)

    Hall, J. L.

    1974-01-01

    A study of the effect of free-stream thermal-energy release from shock-induced exothermic reactions on boundary-layer development and transition is presented. The flow model is that of a boundary layer developing behind a moving shock wave in two-dimensional unsteady flow over a shock-tube wall. Matched sets of combustible hydrogen-oxygen-nitrogen mixtures and inert hydrogen-nitrogen mixtures were used to obtain transition data over a range of transition Reynolds numbers from 1,100,000 to 21,300,000. The heat-energy is shown to significantly stabilize the boundary layer without changing its development character. A method for application of this data to flat-plate steady flows is included.

  18. The dynamics of the laser-induced metal-semiconductor phase transition of samarium sulfide (SmS)

    International Nuclear Information System (INIS)

    Kaempfer, Tino

    2009-01-01

    The present thesis is dedicated to the experimental study of the metal-semiconductor phase transition of samarium sulfide (SmS): Temperature- and time-resolved experiments on the characterization of the phase transition of mixed-valence SmS samples (M-SmS) are presented. The measurement of the dynamics of the laser-induced phase transition pursues via time-resolved ultrashort-time microscopy and by X-ray diffraction with sub-picosecond time resolution. The electronic and structural processes, which follow an excitation of M-SmS with infrared femtosecond laser pulses, are physically interpreted on the base of the results obtained in this thesis and model imaginations. [de

  19. Inelastic transitions of atoms and molecules induced by van der Waals interaction with a surface

    International Nuclear Information System (INIS)

    Baudon, J.; Hamamda, M.; Boustimi, M.; Bocvarski, V.; Taillandier-Loize, T.; Dutier, G.; Perales, F.; Ducloy, M.

    2012-01-01

    Inelastic processes occuring in thermal-velocity metastable atoms and molecules passing at a mean distance (1–100 nm) are investigated. These processes are caused by the quadrupolar part of the van der Waals interaction: fine-structure transitions in atoms (Ar ∗ , Kr ∗ ), rovibrational transitions in N 2 ∗ ( 3 Σ u + ), transitions among magnetic sub-levels in the presence of a magnetic field.

  20. Time-delay-induced phase-transition to synchrony in coupled bursting neurons

    Science.gov (United States)

    Adhikari, Bhim Mani; Prasad, Awadhesh; Dhamala, Mukeshwar

    2011-06-01

    Signal transmission time delays in a network of nonlinear oscillators are known to be responsible for a variety of interesting dynamic behaviors including phase-flip transitions leading to synchrony or out of synchrony. Here, we uncover that phase-flip transitions are general phenomena and can occur in a network of coupled bursting neurons with a variety of coupling types. The transitions are marked by nonlinear changes in both temporal and phase-space characteristics of the coupled system. We demonstrate these phase-transitions with Hindmarsh-Rose and Leech-Heart interneuron models and discuss the implications of these results in understanding collective dynamics of bursting neurons in the brain.

  1. A stress-induced phase transition model for semi-crystallize shape memory polymer

    Science.gov (United States)

    Guo, Xiaogang; Zhou, Bo; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2014-03-01

    The developments of constitutive models for shape memory polymer (SMP) have been motivated by its increasing applications. During cooling or heating process, the phase transition which is a continuous time-dependent process happens in semi-crystallize SMP and the various individual phases form at different temperature and in different configuration. Then, the transformation between these phases occurred and shape memory effect will emerge. In addition, stress applied on SMP is an important factor for crystal melting during phase transition. In this theory, an ideal phase transition model considering stress or pre-strain is the key to describe the behaviors of shape memory effect. So a normal distributed model was established in this research to characterize the volume fraction of each phase in SMP during phase transition. Generally, the experiment results are partly backward (in heating process) or forward (in cooling process) compared with the ideal situation considering delay effect during phase transition. So, a correction on the normal distributed model is needed. Furthermore, a nonlinear relationship between stress and phase transition temperature Tg is also taken into account for establishing an accurately normal distributed phase transition model. Finally, the constitutive model which taking the stress as an influence factor on phase transition was also established. Compared with the other expressions, this new-type model possesses less parameter and is more accurate. For the sake of verifying the rationality and accuracy of new phase transition and constitutive model, the comparisons between the simulated and experimental results were carried out.

  2. A permeability transition in liver mitochondria and liposomes induced by α,ω-dioic acids and Ca(2+).

    Science.gov (United States)

    Dubinin, Mikhail V; Samartsev, Victor N; Astashev, Maxim E; Kazakov, Alexey S; Belosludtsev, Konstantin N

    2014-11-01

    The article examines the molecular mechanism of the Ca(2+)-dependent cyclosporin A (CsA)-insensitive permeability transition in rat liver mitochondria induced by α,ω-dioic acids. The addition of α,ω-hexadecanedioic acid (HDA) to Ca(2+)-loaded liver mitochondria was shown to induce a high-amplitude swelling of the organelles, a drop of membrane potential and the release of Ca(2+) from the matrix, the effects being insensitive to CsA. The experiments with liposomes loaded with sulforhodamine B (SRB) revealed that, like palmitic acid (PA), HDA was able to cause permeabilization of liposomal membranes. However, the kinetics of HDA- and PA-induced release of SRB from liposomes was different, and HDA was less effective than PA in the induction of SRB release. Using the method of ultrasound interferometry, we also showed that the addition of Ca(2+) to HDA-containing liposomes did not change the phase state of liposomal membranes-in contrast to what was observed when Ca(2+) was added to PA-containing vesicles. It was suggested that HDA/Ca(2+)- and PA/Ca(2+)-induced permeability transition occurs by different mechanisms. Using the method of dynamic light scattering, we further revealed that the addition of Ca(2+) to HDA-containing liposomes induced their aggregation/fusion. Apparently, these processes result in a partial release of SRB due to the formation of fusion pores. The possibility that this mechanism underlies the HDA/Ca(2+)-induced permeability transition of the mitochondrial membrane is discussed.

  3. Correlation of irradiation-induced transition temperature increases from Cv and KJc/KIc data

    International Nuclear Information System (INIS)

    Hiser, A.L.

    1990-03-01

    Reactor pressure vessel (RPV) surveillance capsules contain Charpy-V (C v ) specimens, but many do not contain fracture toughness specimens; accordingly, the radiation-induced shift (increase) in the brittle-to-ductile transition region (ΔT) is based upon the ΔT determined from notch ductility (C v ) tests. Since the ASME K Ic and K IR reference fracture toughness curves are shifted by the ΔT from C v , assurance that this ΔT does not underestimate ΔT associated with the actual irradiated fracture toughness is required to provide confidence that safety margins do not fall below assumed levels. To assess this behavior, comparisons of ΔT's defined by elastic-plastic fracture toughness and C v tests have been made using data from RPV base and weld metals in which irradiations were made under test reactor conditions. Using ''as-measure'' fracture toughness values (K Jc ), average comparisons between ΔT(C v ) and ΔT(K Jc ) are: (a) All data: ΔT(K Jc at sign 100 MPa√ bar m) = ΔT(C v at sign 41 J) +10 degree C; (b) Plates only: ΔT(K Jc at sign 100 MPa√ bar m) = ΔT(C v at sign 41 J) +15 degree C; and (c) Welds only: ΔT(K Jc at sign 100 MPa√ bar m) = ΔT(C v at sign 41 J) -1 degree C. Fluence rate is found to have no significant effect on the relationship between ΔT(C v ) and ΔT(K Jc ). 12 refs., 12 figs., 5 tabs

  4. Ca-site substitution induced a metal-insulator transition in manganite CaMnO3

    International Nuclear Information System (INIS)

    Sousa, D.; Nunes, M.R.; Silveira, C.; Matos, I.; Lopes, A.B.; Melo Jorge, M.E.

    2008-01-01

    A systematic study of the A-site doping in Mn(IV)-rich perovskite manganites Ca 1-x Ho x MnO 3 , over a large homogeneity range (0.1 ≤ x ≤ 0.4), has been performed. A significant increase in the lattice parameters indicated the presence of mixed valence state of Mn: Mn 3+ and Mn 4+ . The substitution of calcium by holmium also induces strong changes in the electrical properties. We found that small Ho concentration produces an important decrease in the electrical resistivity and induces an electrical transition, the temperature corresponding to the metal-insulator transition (T MI ) shifts with the holmium content. This electrical behavior is attributed to the Mn 3+ ions content and a charge order effect

  5. HGFA Is an Injury-Regulated Systemic Factor that Induces the Transition of Stem Cells into GAlert

    Directory of Open Access Journals (Sweden)

    Joseph T. Rodgers

    2017-04-01

    Full Text Available Summary: The activation of quiescent stem cells into the cell cycle is a key step in initiating the process of tissue repair. We recently reported that quiescent stem cells can transition into GAlert, a cellular state in which they have an increased functional ability to activate and participate in tissue repair. However, the precise molecular signals that induce GAlert in stem cells have remained elusive. Here, we show that the injury-induced regulation of hepatocyte growth factor (HGF proteolytic processing via the systemic protease, hepatocyte growth factor activator (HGFA, stimulates GAlert in skeletal muscle stem cells (MuSCs and fibro-adipogenic progenitors (FAPs. We demonstrate that administering active HGFA to animals is sufficient to induce GAlert in stem cells throughout the body and to significantly accelerate the processes of stem cell activation and tissue repair. Our data suggest that factors that induce GAlert will have broad therapeutic applications for regenerative medicine and wound healing. : Rodgers et al. show that HGFA is a systemic protease that is activated by tissue injury and relays a signal to stem cells in non-injured tissues that induces their transition into a primed, “GAlert” state in which they possess an enhanced potential to activate and repair tissue damage. Keywords: satellite cells, muscle stem cells, fibro-adipogenic progenitors, HGFA, HGF, mTORC1, cMet, stem cell quiescence, stem cell activation, GAlert

  6. Variable-temperature Microwave Impedance Microscope with Light Stimulation for Research on Photo-induced Phase Transitions

    Science.gov (United States)

    2017-07-24

    SECURITY CLASSIFICATION OF: The DURIP program "Variable-temperature Microwave Impedance Microscope with Light Stimulation for Research on Photo... Stimulation for Research on Photo- induced Phase Transitions The views, opinions and/or findings contained in this report are those of the author(s) and should...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions

  7. Leptin-induced cardioprotection involves JAK/STAT signaling that may be linked to the mitochondrial permeability transition pore

    OpenAIRE

    Smith, Christopher C. T.; Dixon, Richard A.; Wynne, Abigail M.; Theodorou, Louise; Ong, Sang-Ging; Subrayan, Sapna; Davidson, Sean M.; Hausenloy, Derek J.; Yellon, Derek M.

    2010-01-01

    Leptin-induced protection against myocardial ischemia-reperfusion (I/R) injury involves the activation of the reperfusion injury salvage kinase pathway, incorporating phosphatidylinositol 3-kinase-Akt/protein kinase B and p44/42 MAPK, and the inhibition of the mitochondrial permeability transition pore (MPTP). Recently published data indicate that the JAK/STAT signaling pathway, which mediates the metabolic actions of leptin, also plays a pivotal role in cardioprotection. Consequently, in the...

  8. Stratification-induced order--disorder phase transitions in molecularly thin confined films

    International Nuclear Information System (INIS)

    Schoen, M.; Diestler, D.J.; Cushman, J.H.

    1994-01-01

    By means of grand canonical ensemble Monte Carlo simulations of a monatomic film confined between unstructured (i.e., molecularly smooth) rigidly fixed solid surfaces (i.e., walls), we investigate the mechanism of molecular stratification, i.e., the tendency of atoms to arrange themselves in layers parallel with the walls. Stratification is accompanied by a heretofore unnoticed order--disorder phase transition manifested as a maximum in density fluctuations at the transition point. The transition involves phases with different transverse packing characteristics, although the number of layers accommodated between the walls remains unchanged during the transition, which occurs periodically as the film thickens. However, with increasing thickness, an increasingly smaller proportion of the film is structurally affected by the transition. Thus, the associated maximum in density fluctuations diminishes rapidly with film thickness

  9. Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites.

    Science.gov (United States)

    Dobrovolsky, Alexander; Merdasa, Aboma; Unger, Eva L; Yartsev, Arkady; Scheblykin, Ivan G

    2017-06-26

    Solution-processed organometal halide perovskites are hybrid crystalline semiconductors highly interesting for low-cost and efficient optoelectronics. Their properties are dependent on the crystal structure. Literature shows a variety of crystal phase transition temperatures and often a spread of the transition over tens of degrees Kelvin. We explain this inconsistency by demonstrating that the temperature of the tetragonal-to-orthorhombic phase transition in methylammonium lead triiodide depends on the concentration and nature of local defects. Phase transition in individual nanowires was studied by photoluminescence microspectroscopy and super-resolution imaging. We propose that upon cooling from 160 to 140 K, domains of the crystal containing fewer defects stay in the tetragonal phase longer than highly defected domains that readily transform to the high bandgap orthorhombic phase at higher temperatures. The existence of relatively pure tetragonal domains during the phase transition leads to drastic photoluminescence enhancement, which is inhomogeneously distributed across perovskite microcrystals.Understanding crystal phase transition in materials is of fundamental importance. Using luminescence spectroscopy and super-resolution imaging, Dobrovolsky et al. study the transition from the tetragonal to orthorhombic crystal phase in methylammonium lead triiodide nanowires at low temperature.

  10. Theoretical potential for low energy consumption phase change memory utilizing electrostatically-induced structural phase transitions in 2D materials

    Science.gov (United States)

    Rehn, Daniel A.; Li, Yao; Pop, Eric; Reed, Evan J.

    2018-01-01

    Structural phase-change materials are of great importance for applications in information storage devices. Thermally driven structural phase transitions are employed in phase-change memory to achieve lower programming voltages and potentially lower energy consumption than mainstream nonvolatile memory technologies. However, the waste heat generated by such thermal mechanisms is often not optimized, and could present a limiting factor to widespread use. The potential for electrostatically driven structural phase transitions has recently been predicted and subsequently reported in some two-dimensional materials, providing an athermal mechanism to dynamically control properties of these materials in a nonvolatile fashion while achieving potentially lower energy consumption. In this work, we employ DFT-based calculations to make theoretical comparisons of the energy required to drive electrostatically-induced and thermally-induced phase transitions. Determining theoretical limits in monolayer MoTe2 and thin films of Ge2Sb2Te5, we find that the energy consumption per unit volume of the electrostatically driven phase transition in monolayer MoTe2 at room temperature is 9% of the adiabatic lower limit of the thermally driven phase transition in Ge2Sb2Te5. Furthermore, experimentally reported phase change energy consumption of Ge2Sb2Te5 is 100-10,000 times larger than the adiabatic lower limit due to waste heat flow out of the material, leaving the possibility for energy consumption in monolayer MoTe2-based devices to be orders of magnitude smaller than Ge2Sb2Te5-based devices.

  11. Diffusion-induced periodic transition between oscillatory modes in amplitude-modulated patterns

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaodong; He, Yuxiu; Wang, Shaorong; Gao, Qingyu, E-mail: gaoqy@cumt.edu.cn [College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008 (China); Epstein, Irving R., E-mail: epstein@brandeis.edu [Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110 (United States); Wang, Qun [School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116 (China)

    2014-06-15

    We study amplitude-modulated waves, e.g., wave packets in one dimension, overtarget spirals and superspirals in two dimensions, under mixed-mode oscillatory conditions in a three-variable reaction-diffusion model. New transition zones, not seen in the homogeneous system, are found, in which periodic transitions occur between local 1{sup N−1} and 1{sup N} oscillations. Amplitude-modulated complex patterns result from periodic transition between (N − 1)-armed and N-armed waves. Spatial recurrence rates provide a useful guide to the stability of these modulated patterns.

  12. Transitions induced by speed in self-propelled particles system with attractive interactions

    Science.gov (United States)

    Cambui, Dorilson. S.; Rosas, Alexandre

    2018-05-01

    In this work, we consider a system of self-propelled particles with attractive interactions in two dimensions. The model presents an order-disorder transition with the speed playing the role of the control parameter. In order to characterize the transition, we investigate the behavior of the order parameter and the Binder cumulant as a function of the speed. Our main finding is that the transition can be either continuous or discontinuous depending on two parameter of the model: the strength of the noise and the radius of attraction.

  13. Pressure-induced transition-temperature reduction in ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yang Cuizhuo; Liu Yanguo; Sun Hongyu; Guo Defeng; Li Xiaohong; Li Wei; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao (China); Liu Baoting [College of Physics Science and Technology, Hebei University, 071002 Baoding (China)], E-mail: xyzh66@ysu.edu.cn

    2008-03-05

    The study of the structural transition in nanoscale materials is of particular interest for their potential applications. In the present study, we have observed a lower temperature T = 250 deg. C for the phase transition from the sphalerite structure to the wurtzite structure in ZnS nanoparticles under a pressure of 1 GPa, as compared to those, T = 400 and 1020 deg. C, for ZnS nanoparticles and bulk ZnS under normal pressure, respectively. The reduced transition temperature is attributed to the applied pressure leading to tight particle-particle contacts, which change the surface (or interfacial) environment of the nanoparticles and thus their surface (or interfacial) energy.

  14. Pressure-induced transition-temperature reduction in ZnS nanoparticles

    International Nuclear Information System (INIS)

    Yang Cuizhuo; Liu Yanguo; Sun Hongyu; Guo Defeng; Li Xiaohong; Li Wei; Zhang Xiangyi; Liu Baoting

    2008-01-01

    The study of the structural transition in nanoscale materials is of particular interest for their potential applications. In the present study, we have observed a lower temperature T = 250 deg. C for the phase transition from the sphalerite structure to the wurtzite structure in ZnS nanoparticles under a pressure of 1 GPa, as compared to those, T = 400 and 1020 deg. C, for ZnS nanoparticles and bulk ZnS under normal pressure, respectively. The reduced transition temperature is attributed to the applied pressure leading to tight particle-particle contacts, which change the surface (or interfacial) environment of the nanoparticles and thus their surface (or interfacial) energy

  15. Hypoxia inducible factor-1α-dependent epithelial to mesenchymal transition under hypoxic conditions in prostate cancer cells.

    Science.gov (United States)

    Li, Mingchuan; Wang, Yong Xing; Luo, Yong; Zhao, Jiahui; Li, Qing; Zhang, Jiao; Jiang, Yongguang

    2016-07-01

    Prostate cancer is the most commonly diagnosed cancer in men and the second leading cause of cancer death. Hypoxia is an environmental stimulus that plays an important role in the development and cancer progression especially for solid tumors. The key regulator under hypoxic conditions is stabilized hypoxia-inducible factor (HIF)-1α. In the present study, immune-fluorescent staining, siRNAs, qRT-PC, immunoblotting, cell migration and invasion assays were carried out to test typical epithelial to mesenchymal transition under hypoxia and the key regulators of this process in PC3, a human prostate cancer cell line. Our data demonstrated that hypoxia induces diverse molecular, phenotypic and functional changes in prostate cancer cells that are consistent with EMT. We also showed that a cell signal factor such as HIF-1α, which might be stabilized under hypoxic environment, is involved in EMT and cancer cell invasive potency. The induced hypoxia could be blocked by HIF-1α gene silencing and reoxygenation of EMT in prostate cancer cells, hypoxia partially reversed accompanied by a process of mesenchymal-epithelial reverting transition (MErT). EMT might be induced by activation of HIF-1α-dependent cell signaling in hypoxic prostate cancer cells.

  16. Representing environment-induced helix-coil transitions in a coarse grained peptide model

    Science.gov (United States)

    Dalgicdir, Cahit; Globisch, Christoph; Sayar, Mehmet; Peter, Christine

    2016-10-01

    Coarse grained (CG) models are widely used in studying peptide self-assembly and nanostructure formation. One of the recurrent challenges in CG modeling is the problem of limited transferability, for example to different thermodynamic state points and system compositions. Understanding transferability is generally a prerequisite to knowing for which problems a model can be reliably used and predictive. For peptides, one crucial transferability question is whether a model reproduces the molecule's conformational response to a change in its molecular environment. This is of particular importance since CG peptide models often have to resort to auxiliary interactions that aid secondary structure formation. Such interactions take care of properties of the real system that are per se lost in the coarse graining process such as dihedral-angle correlations along the backbone or backbone hydrogen bonding. These auxiliary interactions may then easily overstabilize certain conformational propensities and therefore destroy the ability of the model to respond to stimuli and environment changes, i.e. they impede transferability. In the present paper we have investigated a short peptide with amphiphilic EALA repeats which undergoes conformational transitions between a disordered and a helical state upon a change in pH value or due to the presence of a soft apolar/polar interface. We designed a base CG peptide model that does not carry a specific (backbone) bias towards a secondary structure. This base model was combined with two typical approaches of ensuring secondary structure formation, namely a C α -C α -C α -C α pseudodihedral angle potential or a virtual site interaction that mimics hydrogen bonding. We have investigated the ability of the two resulting CG models to represent the environment-induced conformational changes in the helix-coil equilibrium of EALA. We show that with both approaches a CG peptide model can be obtained that is environment-transferable and that

  17. Pressure-induced Td to 1T′ structural phase transition in WTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yonghui [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Chen, Xuliang, E-mail: xlchen@hmfl.ac.cn, E-mail: zryang@issp.ac.cn; Zhang, Ranran; Wang, Xuefei; An, Chao; Zhou, Ying [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Li, Nana [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); Pan, Xingchen [National Laboratory of Solid State Microstructures, College of Physics, Nanjing University, Nanjing 210093 (China); Song, Fengqi; Wang, Baigeng [National Laboratory of Solid State Microstructures, College of Physics, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Yang, Wenge [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); High Pressure Synergetic Consortium, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, IL 60439 (United States); Yang, Zhaorong, E-mail: xlchen@hmfl.ac.cn, E-mail: zryang@issp.ac.cn [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Zhang, Yuheng [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-07-15

    WTe{sub 2} is provoking immense interest owing to its extraordinary properties, such as large positive magnetoresistance, pressure-driven superconductivity and possible type-II Weyl semimetal state. Here we report results of high-pressure synchrotron X-ray diffraction (XRD), Raman and electrical transport measurements on WTe{sub 2}. Both the XRD and Raman results reveal a structural transition upon compression, starting at 6.0 GPa and completing above 15.5 GPa. We have determined that the high-pressure lattice symmetry is monoclinic 1T′ with space group of P2{sub 1}/m. This transition is related to a lateral sliding of adjacent Te-W-Te layers and results in a collapse of the unit cell volume by ∼20.5%. The structural transition also casts a pressure range with the broadened superconducting transition, where the zero resistance disappears.

  18. Local distortion induced metal-to-insulator phase transition in PrRu4P12

    International Nuclear Information System (INIS)

    Cao, D.; Heffner, R.H.; Jeong, I.-K.; Bauer, E.D.; Bridges, F.; Yuhasz, W.M.; Maple, M.B.

    2005-01-01

    Extended x-ray absorption fine structure (EXAFS) experiments have been carried out on PrRu 4 P 12 and PrOs 4 P 12 to study the metal-to-insulator (MI) phase transition in PrRu 4 P 12 . No Pr displacement was observed across the MI transition temperature from the EXAFS data. Instead, our EXAFS data clearly show that a Ru displacement is associated with this MI transition. The very high Debye temperature for the Ru-P bond (Θ D =690 K) suggests that a slight rotation/displacement of relatively rigid RuP 6 octahedra leads to this small Ru displacement, which accompanies the MI transition at 62 K in PrRu 4 P 12

  19. Semiconductor-metal transition induced by giant Stark effect in blue phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Peng-Yu; Chen, Shi-Zhang; Zhou, Wu-Xing; Chen, Ke-Qiu, E-mail: keqiuchen@hnu.edu.cn

    2017-06-28

    The electronic structures and transport properties in monolayer blue phosphorene nanoribbons (BPNRs) with transverse electric field have been studied by using density functional theory and nonequilibrium Green's functions method. The results show that the band gaps of BPNRs with both armchair and zigzag edges are linearly decreased with the increasing of the strength of transverse electric field. A semiconductor-metal transition occurs when the electric field strength reaches to 5 V/nm. The Stark coefficient presents a linear dependency on BPNRs widths, and the slopes of both zBPNRs and aBPNRs are 0.41 and 0.54, respectively, which shows a giant Stark effect occurs. Our studies show that the semiconductor-metal transition originates from the giant Stark effect. - Highlights: • The electronic transport in blue phosphorene nanoribbons. • Semiconductor-metal transition can be observed. • The semiconductor-metal transition originates from the giant Stark effect.

  20. Activity induced phase transition in mixtures of active and passive agents

    Science.gov (United States)

    Sinha Mahapatra, Pallab; Kulkarni, Ajinkya

    2017-11-01

    Collective behaviors of self-propelling agents are ubiquitous in nature that produces interesting patterns. The objective of this study is to investigate the phase transition in mixtures of active and inert agents suspended in a liquid. A modified version of the Vicsek Model has been used (see Ref.), where the particles are modeled as soft disks with finite mass, confined in a square domain. The particles are required to align their local motion to their immediate neighborhood, similar to the Vicsek model. We identified the transition from disorganized thermal-like motion to an organized vortical motion. We analyzed the nature of the transition by using different order parameters. Furthermore the switching between the phases has been investigated via artificial nucleation of randomly picked active agents spanning the entire domain. Finally the motivation for this phase transition has been explained via average dissipation and the mean square displacement (MSD) of the agents.

  1. Electric-field-induced modification of the magnon energy, exchange interaction, and curie temperature of transition-metal thin films.

    Science.gov (United States)

    Oba, M; Nakamura, K; Akiyama, T; Ito, T; Weinert, M; Freeman, A J

    2015-03-13

    The electric-field-induced modification in the Curie temperature of prototypical transition-metal thin films with the perpendicular magnetic easy axis, a freestanding Fe(001) monolayer and a Co monolayer on Pt(111), is investigated by first-principles calculations of spin-spiral structures in an external electric field (E field). An applied E field is found to modify the magnon (spin-spiral formation) energy; the change arises from the E-field-induced screening charge density in the spin-spiral states due to p-d hybridizations. The Heisenberg exchange parameters obtained from the magnon energy suggest an E-field-induced modification of the Curie temperature, which is demonstrated via Monte Carlo simulations that take the magnetocrystalline anisotropy into account.

  2. Measurements of excited-state-to-excited-state transition probabilities and photoionization cross-sections using laser-induced fluorescence and photoionization signals

    International Nuclear Information System (INIS)

    Shah, M.L.; Sahoo, A.C.; Pulhani, A.K.; Gupta, G.P.; Dikshit, B.; Bhatia, M.S.; Suri, B.M.

    2014-01-01

    Laser-induced photoionization and fluorescence signals were simultaneously observed in atomic samarium using Nd:YAG-pumped dye lasers. Two-color, three-photon photoionization and two-color fluorescence signals were recorded simultaneously as a function of the second-step laser power for two photoionization pathways. The density matrix formalism has been employed to analyze these signals. Two-color laser-induced fluorescence signal depends on the laser powers used for the first and second-step transitions as well as the first and second-step transition probability whereas two-color, three-photon photoionization signal depends on the third-step transition cross-section at the second-step laser wavelength along with the laser powers and transition probability for the first and second-step transitions. Two-color laser-induced fluorescence was used to measure the second-step transition probability. The second-step transition probability obtained was used to infer the photoionization cross-section. Thus, the methodology combining two-color, three-photon photoionization and two-color fluorescence signals in a single experiment has been established for the first time to measure the second-step transition probability as well as the photoionization cross-section. - Highlights: • Laser-induced photoionization and fluorescence signals have been simultaneously observed. • The density matrix formalism has been employed to analyze these signals. • Two-color laser-induced fluorescence was used to measure the second-step transition probability. • The second-step transition probability obtained was used to infer the photoionization cross-section. • Transition probability and photoionization cross-section have been measured in a single experiment

  3. Composition-induced structural phase transitions in the (Ba1-xLax)2In2O5+x (0=

    International Nuclear Information System (INIS)

    Tenailleau, C.; Pring, A.; Moussa, S.M.; Liu, Y.; Withers, R.L.; Tarantino, S.; Zhang, M.; Carpenter, M.A.

    2005-01-01

    Composition-induced structural phase changes across the high temperature, fast oxide ion conducting (Ba 1-x La x ) 2 In 2 O 5+x , 0= orthorhombic transition, while the cubic->tetragonal transition could be continuous. Differences between the variation with composition of spectral parameters and of macroscopic strain parameters are consistent with a substantial order/disorder component for the transitions. There is also evidence for precursor effects within the cubic structure before symmetry is broken

  4. YB-1 overexpression promotes a TGF-β1-induced epithelial–mesenchymal transition via Akt activation

    International Nuclear Information System (INIS)

    Ha, Bin; Lee, Eun Byul; Cui, Jun; Kim, Yosup; Jang, Ho Hee

    2015-01-01

    The Y-box binding protein-1 (YB-1) is a transcription/translation regulatory protein, and the expression thereof is associated with cancer aggressiveness. In the present study, we explored the regulatory effects of YB-1 during the transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) in lung adenocarcinoma cells. Downregulation of YB-1 increased E-cadherin promoter activity, and upregulation of YB-1 decreased promoter activity, suggesting that the YB-1 level may be correlated with the EMT. TGF-β1 induced YB-1 expression, and TGF-β1 translocated cytosolic YB-1 into the nucleus. YB-1 overexpression promoted TGF-β1-induced downregulation of epithelial markers, upregulation of mesenchymal markers, and cell migration. Moreover, YB-1 overexpression enhanced the expression of E-cadherin transcriptional repressors via TGF-β1-induced Akt activation. Our findings afford new insights into the role played by YB-1 in the TGF-β1 signaling pathway. - Highlights: • YB-1 regulates E-cadherin expression in A549 cells. • TGF-β1 induces upregulating and nuclear localization of YB-1. • YB-1 overexpression accelerates TGF-β1-induced EMT and cell migration. • YB-1 regulates Snail and Slug expression via Akt activation

  5. Pressure induced structural phase transition in solid oxidizer KClO3: A first-principles study

    Science.gov (United States)

    Yedukondalu, N.; Ghule, Vikas D.; Vaitheeswaran, G.

    2013-05-01

    High pressure behavior of potassium chlorate (KClO3) has been investigated from 0 to 10 GPa by means of first principles density functional theory calculations. The calculated ground state parameters, transition pressure, and phonon frequencies using semiempirical dispersion correction scheme are in excellent agreement with experiment. It is found that KClO3 undergoes a pressure induced first order phase transition with an associated volume collapse of 6.4% from monoclinic (P21/m) → rhombohedral (R3m) structure at 2.26 GPa, which is in good accord with experimental observation. However, the transition pressure was found to underestimate (0.11 GPa) and overestimate (3.57 GPa) using local density approximation and generalized gradient approximation functionals, respectively. Mechanical stability of both the phases is explained from the calculated single crystal elastic constants. In addition, the zone center phonon frequencies have been calculated using density functional perturbation theory at ambient as well as at high pressure and the lattice modes are found to soften under pressure between 0.6 and 1.2 GPa. The present study reveals that the observed structural phase transition leads to changes in the decomposition mechanism of KClO3 which corroborates with the experimental results.

  6. Partial inertia induces additional phase transition in the majority vote model.

    Science.gov (United States)

    Harunari, Pedro E; de Oliveira, M M; Fiore, C E

    2017-10-01

    Explosive (i.e., discontinuous) transitions have aroused great interest by manifesting in distinct systems, such as synchronization in coupled oscillators, percolation regime, absorbing phase transitions, and more recently, the majority-vote model with inertia. In the latter, the model rules are slightly modified by the inclusion of a term depending on the local spin (an inertial term). In such a case, Chen et al. [Phys Rev. E 95, 042304 (2017)2470-004510.1103/PhysRevE.95.042304] have found that relevant inertia changes the nature of the phase transition in complex networks, from continuous to discontinuous. Here we give a further step by embedding inertia only in vertices with degree larger than a threshold value 〈k〉k^{*}, 〈k〉 being the mean system degree and k^{*} the fraction restriction. Our results, from mean-field analysis and extensive numerical simulations, reveal that an explosive transition is presented in both homogeneous and heterogeneous structures for small and intermediate k^{*}'s. Otherwise, a large restriction can sustain a discontinuous transition only in the heterogeneous case. This shares some similarities with recent results for the Kuramoto model [Phys. Rev. E 91, 022818 (2015)PLEEE81539-375510.1103/PhysRevE.91.022818]. Surprisingly, intermediate restriction and large inertia are responsible for the emergence of an extra phase, in which the system is partially synchronized and the classification of phase transition depends on the inertia and the lattice topology. In this case, the system exhibits two phase transitions.

  7. Low to High Spin-State Transition Induced by Charge Ordering in Antiferromagnetic YBaCo2O5

    International Nuclear Information System (INIS)

    Vogt, T.; Woodward, P. M.; Karen, P.; Hunter, B. A.; Henning, P.; Moodenbaugh, A. R.

    2000-01-01

    The oxygen-deficient double perovskite YBaCo 2 O 5 , containing corner-linked CoO 5 square pyramids as principal building units, undergoes a paramagnetic to antiferromagnetic spin ordering at 330 K. This is accompanied by a tetragonal to orthorhombic distortion. Below 220 K orbital ordering and long-range Co 2+ /Co 3+ charge ordering occur as well as a change in the Co 2+ spin state from low to high spin. This transition is shown to be very sensitive to the oxygen content of the sample. To our knowledge this is the first observation of a spin-state transition induced by long-range orbital and charge ordering. (c) 2000 The American Physical Society

  8. Microstructure processes induced by phase transitions in a CuAu alloy as studied by acoustic emission and optical cinematography

    Energy Technology Data Exchange (ETDEWEB)

    Masek, P.; Chmelik, F.; Sima, V. [Charles Univ., Prague (Czech Republic). Dept. of Metal Physics; Brinck, A.; Neuhaeuser, H. [Technische Univ. Braunschweig (Germany). Inst. fuer Metallphysik und Nukleare Festkoerperphysik

    1999-01-15

    Combined acoustic emission measurements and surface cinematography observations have been applied to determine the structure evolution during thermal loading of the CuAu alloy. Thermal history and the fashion of thermal loading have been shown to affect considerably the structure response of the CuAu alloy on temperature changes. On thermal loading, intense plastic deformation occurs in certain temperature intervals due to the relaxation of internal stresses induced by phase transitions and structure anisotropy. The main mechanism is twinning taking place most probably in (110) planes. Dislocation glide and grain-boundary sliding have also been observed as minor mechanisms. A shape-restoration effect associated with the order-disorder transition is revealed. Thermal cycling with upper temperatures over 500 C may also result in structural damage.

  9. Pressure-induced phase transition and octahedral tilt system change of Ba2BiSbO6

    International Nuclear Information System (INIS)

    Lufaso, Michael W.; Macquart, Rene B.; Lee, Yongjae; Vogt, Thomas; Loye, Hans-Conrad zur

    2006-01-01

    High-resolution X-ray synchrotron powder diffraction studies under high-pressure conditions are reported for the ordered double perovskite Ba 2 BiSbO 6 . Near 4GPa, the oxide undergoes a pressure-induced phase transition. The symmetry of the material changes during the phase transition from space group R3-bar to space group I2/m, which is consistent with a change in the octahedral tilting distortion from an a - a - a - type to a 0 b - b - type using the Glazer notation. A fit of the volume-pressure data using the Birch-Murnagaham equation of state yielded a bulk modulus of 144(8)GPa for the rhombohedral phase

  10. Ultrafast optically induced ferromagnetic/anti-ferromagnetic phase transition in GdTiO3 from first principles

    Science.gov (United States)

    Khalsa, Guru; Benedek, Nicole A.

    2018-03-01

    Epitaxial strain and chemical substitution have been the workhorses of functional materials design. These static techniques have shown immense success in controlling properties in complex oxides through the tuning of subtle structural distortions. Recently, an approach based on the excitation of an infrared active phonon with intense midinfrared light has created an opportunity for dynamical control of structure through special nonlinear coupling to Raman phonons. We use first-principles techniques to show that this approach can dynamically induce a magnetic phase transition from the ferromagnetic ground state to a hidden antiferromagnetic phase in the rare earth titanate GdTiO3 for realistic experimental parameters. We show that a combination of a Jahn-Teller distortion, Gd displacement, and infrared phonon motion dominate this phase transition with little effect from the octahedral rotations, contrary to conventional wisdom.

  11. Strain-induced topological magnon phase transitions: applications to kagome-lattice ferromagnets

    Science.gov (United States)

    Owerre, S. A.

    2018-06-01

    A common feature of topological insulators is that they are characterized by topologically invariant quantity such as the Chern number and the index. This quantity distinguishes a nontrivial topological system from a trivial one. A topological phase transition may occur when there are two topologically distinct phases, and it is usually defined by a gap closing point where the topologically invariant quantity is ill-defined. In this paper, we show that the magnon bands in the strained (distorted) kagome-lattice ferromagnets realize an example of a topological magnon phase transition in the realistic parameter regime of the system. When spin–orbit coupling (SOC) is neglected (i.e. no Dzyaloshinskii–Moriya interaction), we show that all three magnon branches are dispersive with no flat band, and there exists a critical point where tilted Dirac and semi-Dirac point coexist in the magnon spectra. The critical point separates two gapless magnon phases as opposed to the usual phase transition. Upon the inclusion of SOC, we realize a topological magnon phase transition point at the critical strain , where D and J denote the perturbative SOC and the Heisenberg spin exchange interaction respectively. It separates two distinct topological magnon phases with different Chern numbers for and for . The associated anomalous thermal Hall conductivity develops an abrupt change at , due to the divergence of the Berry curvature in momentum space. The proposed topological magnon phase transition is experimentally feasible by applying external perturbations such as uniaxial strain or pressure.

  12. Temperature Induced Solubility Transitions of Various Poly(2-oxazolines in Ethanol-Water Solvent Mixtures

    Directory of Open Access Journals (Sweden)

    Hanneke M. L. Lambermont-Thijs

    2010-08-01

    Full Text Available The solution behavior of a series of poly(2-oxazolines with different side chains, namely methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, pentyl, hexyl, heptyl, octyl, nonyl, phenyl and benzyl, are reported in ethanol-water solvent mixtures based on turbidimetry investigations. The LCST transitions of poly(2-oxazolines with propyl side chains and the UCST transitions of the poly(2-oxazolines with more hydrophobic side chains are discussed in relation to the ethanol-water solvent composition and structure. The poly(2-alkyl-2-oxazolines with side chains longer than propyl only dissolved during the first heating run, which is discussed and correlated to the melting transition of the polymers.

  13. Radiation-Induced Fluidity and Glass-Liquid Transition in Irradiated Amorphous Materials

    International Nuclear Information System (INIS)

    Ojovan, M.I.

    2009-01-01

    This paper describes the fluidity behaviour of continuously irradiated glasses using the Congruent Bond Lattice model in which broken bonds 'configurons' facilitate the flow. Irradiation breaks the bonds creating configurons which at high concentrations provide the transition of material from the glassy to liquid state. An explicit equation of viscosity has been derived which gives results in agreement with experimental data. This equation provides correct viscosity data for non-irradiated materials and shows a significant increase of fluidity in radiation fields. It demonstrates a decrease of activation energy of flow for irradiated glasses. A simple equation for glass-transition temperature was also obtained which shows that irradiated glasses have lower glass transition temperatures and are readily transformed from glassy to liquid state e.g. fluidized in strong radiation fields. (authors)

  14. Prediction of pressure induced structural phase transitions and internal mode frequency changes in solid N2+

    International Nuclear Information System (INIS)

    Etters, R.D.; Kobashi, K.; Chandrasekharan, V.

    1983-01-01

    A rhombohedral distortion of the Pm3n structure is introduced which shows that a low temperature phase transition occurs from P4 2 /mnm into the R3c calcite structure at P approx. = 19.2 kbar with a volume change of 0.125 cm 3 /mole. This transition agrees with recent Raman scattering measurements. Another transition from R3c into R3m is predicted at P approx. = 67.5 kbar, with a volume change of 0.1 cm 3 /mole. The pressure dependence of the intramolecular mode frequencies for the R3c structure is in reasonably good agreement with the two main branches observed experimentally

  15. Thermally Induced Alpha-Helix to Beta-Sheet Transition in Regenerated Silk Fibers and Films

    Energy Technology Data Exchange (ETDEWEB)

    Drummy,L.; Phillips, D.; Stone, M.; Farmer, B.; Naik, R.

    2005-01-01

    The structure of thin films cast from regenerated solutions of Bombyx mori cocoon silk in hexafluoroisopropyl alcohol (HFIP) was studied by synchrotron X-ray diffraction during heating. A solid-state conformational transition from an alpha-helical structure to the well-known beta-sheet silk II structure occurred at a temperature of approximately 140 degrees C. The transition appeared to be homogeneous, as both phases do not coexist within the resolution of the current study. Modulated differential scanning calorimetry (DSC) of the films showed an endothermic melting peak followed by an exothermic crystallization peak, both occurring near 140 degrees C. Oriented fibers were also produced that displayed this helical molecular conformation. Subsequent heating above the structural transition temperature produced oriented beta-sheet fibers very similar in structure to B. mori cocoon fibers. Heat treatment of silk films at temperatures well below their degradation temperature offers a controllable route to materials with well-defined structures and mechanical behavior.

  16. First-Order Quantum Phase Transition for Dicke Model Induced by Atom-Atom Interaction

    International Nuclear Information System (INIS)

    Zhao Xiu-Qin; Liu Ni; Liang Jiu-Qing

    2017-01-01

    In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on the extended Dicke model’s ground state properties, the mean photon number, the scaled atomic population and the average ground energy are displayed. Using the self-consistent field theory to solve the atom-atom interaction, we discover the system undergoes a first-order quantum phase transition from the normal phase to the superradiant phase, but a famous Dicke-type second-order quantum phase transition without the atom-atom interaction. Meanwhile, the atom-atom interaction makes the phase transition point shift to the lower atom-photon collective coupling strength. (paper)

  17. Pressure induced structural phase transition of OsB 2: First-principles calculations

    Science.gov (United States)

    Ren, Fengzhu; Wang, Yuanxu; Lo, V. C.

    2010-04-01

    Orthorhombic OsB 2 was synthesized at 1000 °C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2. An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3/ mmc structure (high-pressure phase) is stable for OsB 2. We expect the phase transition can be further confirmed by the experimental work.

  18. Uniaxial pressure-induced half-metallic ferromagnetic phase transition in LaMnO3

    Science.gov (United States)

    Rivero, Pablo; Meunier, Vincent; Shelton, William

    2016-03-01

    We use first-principles theory to predict that the application of uniaxial compressive strain leads to a transition from an antiferromagnetic insulator to a ferromagnetic half-metal phase in LaMnO3. We identify the Q2 Jahn-Teller mode as the primary mechanism that drives the transition, indicating that this mode can be used to tune the lattice, charge, and spin coupling. Applying ≃6 GPa of uniaxial pressure along the [010] direction activates the transition to a half-metallic pseudocubic state. The half-metallicity opens the possibility of producing colossal magnetoresistance in the stoichiometric LaMnO3 compound at significantly lower pressure compared to recently observed investigations using hydrostatic pressure.

  19. Claudin-1 promotes TNF-α-induced epithelial-mesenchymal transition and migration in colorectal adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Ajaz A. [Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Ahmad, Rizwan; Uppada, SrijayaPrakash B. [Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68022 (United States); Singh, Amar B. [From the Department of Veterans Affairs, University of Nebraska Medical Center, Omaha, NE 68022 (United States); Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68022 (United States); Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68022 (United States); Dhawan, Punita, E-mail: punita.dhawan@unmc.edu [From the Department of Veterans Affairs, University of Nebraska Medical Center, Omaha, NE 68022 (United States); Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68022 (United States); Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68022 (United States)

    2016-11-15

    Epithelial-mesenchymal transition (EMT) is an important mechanism in cancer progression and malignancy including colorectal cancer (CRC). Importantly, inflammatory mediators are critical constituents of the local tumor environment and an intimate link between CRC progression and inflammation is now validated. We and others have reported key role of the deregulated claudin-1 expression in colon carcinogenesis including colitis-associated colon cancer (CAC). However, the causal association between claudin-1 expression and inflammation-induced colon cancer progression remains unclear. Here we demonstrate, TNF-α, a pro-inflammatory cytokine, regulates claudin-1 to modulate epithelial to mesenchymal transition (EMT) and migration in colon adenocarcinoma cells. Importantly, colon cancer cells cultured in the presence of TNF-α (10 ng/ml), demonstrated a sharp decrease in E-cadherin expression and an increase in vimentin expression (versus control cells). Interestingly, TNF-α treatment also upregulated (and delocalized) claudin-1 expression in a time-dependent manner accompanied by increase in proliferation and wound healing. Furthermore, similar to our previous observation that claudin-1 overexpression in CRC cells induces ERK1/2 and Src- activation, signaling associated with colon cancer cell survival and transformation, TNF-α-treatment induced upregulation of phospho-ERK1/2 and -Src expression. The shRNA-mediated inhibition of claudin-1 expression largely abrogated the TNF-α-induced changes in EMT, proliferation, migration, p-Erk and p-Src expression. Taken together, our data demonstrate TNF-α mediated regulation of claudin-1 and tumorigenic abilities of colon cancer cells and highlights a key role of deregulated claudin-1 expression in inflammation-induced colorectal cancer growth and progression, through the regulation of the ERK and Src-signaling.

  20. Claudin-1 promotes TNF-α-induced epithelial-mesenchymal transition and migration in colorectal adenocarcinoma cells

    International Nuclear Information System (INIS)

    Bhat, Ajaz A.; Ahmad, Rizwan; Uppada, SrijayaPrakash B.; Singh, Amar B.; Dhawan, Punita

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is an important mechanism in cancer progression and malignancy including colorectal cancer (CRC). Importantly, inflammatory mediators are critical constituents of the local tumor environment and an intimate link between CRC progression and inflammation is now validated. We and others have reported key role of the deregulated claudin-1 expression in colon carcinogenesis including colitis-associated colon cancer (CAC). However, the causal association between claudin-1 expression and inflammation-induced colon cancer progression remains unclear. Here we demonstrate, TNF-α, a pro-inflammatory cytokine, regulates claudin-1 to modulate epithelial to mesenchymal transition (EMT) and migration in colon adenocarcinoma cells. Importantly, colon cancer cells cultured in the presence of TNF-α (10 ng/ml), demonstrated a sharp decrease in E-cadherin expression and an increase in vimentin expression (versus control cells). Interestingly, TNF-α treatment also upregulated (and delocalized) claudin-1 expression in a time-dependent manner accompanied by increase in proliferation and wound healing. Furthermore, similar to our previous observation that claudin-1 overexpression in CRC cells induces ERK1/2 and Src- activation, signaling associated with colon cancer cell survival and transformation, TNF-α-treatment induced upregulation of phospho-ERK1/2 and -Src expression. The shRNA-mediated inhibition of claudin-1 expression largely abrogated the TNF-α-induced changes in EMT, proliferation, migration, p-Erk and p-Src expression. Taken together, our data demonstrate TNF-α mediated regulation of claudin-1 and tumorigenic abilities of colon cancer cells and highlights a key role of deregulated claudin-1 expression in inflammation-induced colorectal cancer growth and progression, through the regulation of the ERK and Src-signaling.

  1. Celastrol inhibits TGF-β1-induced epithelial–mesenchymal transition by inhibiting Snail and regulating E-cadherin expression

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyereen; Lee, Minjae [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Jang, Sung-Wuk, E-mail: swjang@amc.seoul.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of)

    2013-08-09

    Highlights: •We investigated the effects of celastrol on TGF-β1-induced EMT in epithelial cells. •Celastrol regulates TGF-β1-induced morphological changes and E-cadherin expression. •Celastrol inhibits TGF-β1-induced Snail expression. •Celastrol strongly suppresses TGF-β1-induced invasion in MDCK and A549 cells. -- Abstract: The epithelial–mesenchymal transition (EMT) is a pivotal event in the invasive and metastatic potentials of cancer progression. Celastrol inhibits the proliferation of a variety of tumor cells including leukemia, glioma, prostate, and breast cancer; however, the possible role of celastrol in the EMT is unclear. We investigated the effect of celastrol on the EMT. Transforming growth factor-beta 1 (TGF-β1) induced EMT-like morphologic changes and upregulation of Snail expression. The downregulation of E-cadherin expression and upregulation of Snail in Madin–Darby Canine Kidney (MDCK) and A549 cell lines show that TGF-β1-mediated the EMT in epithelial cells; however, celastrol markedly inhibited TGF-β1-induced morphologic changes, Snail upregulation, and E-cadherin expression. Migration and invasion assays revealed that celastrol completely inhibited TGF-β1-mediated cellular migration in both cell lines. These findings indicate that celastrol downregulates Snail expression, thereby inhibiting TGF-β1-induced EMT in MDCK and A549 cells. Thus, our findings provide new evidence that celastrol suppresses lung cancer invasion and migration by inhibiting TGF-β1-induced EMT.

  2. Constitutive model for a stress- and thermal-induced phase transition in a shape memory polymer

    International Nuclear Information System (INIS)

    Guo, Xiaogang; Liu, Liwu; Liu, Yanju; Zhou, Bo; Leng, Jinsong

    2014-01-01

    Recently, increasing applications of shape memory polymers have pushed forward the development of appropriate constitutive models for smart materials such as the shape memory polymer. During the heating process, the phase transition, which is a continuous time-dependent process, happens in the shape memory polymer, and various individual phases will form at different configuration temperatures. In addition, these phases can generally be divided into two parts: the frozen and active phase (Liu Y et al 2006 Int. J. Plast. 22 279–313). During the heating or cooling process, the strain will be stored or released with the occurring phase transition between these two parts. Therefore, a shape memory effect emerges. In this paper, a new type of model was developed to characterize the variation of the volume fraction in a shape memory polymer during the phase transition. In addition to the temperature variation, the applied stress was also taken as a significant influence factor on the phase transition. Based on the experimental results, an exponential equation was proposed to describe the relationship between the stress and phase transition temperature. For the sake of describing the mechanical behaviors of the shape memory polymer, a three-dimensional constitutive model was established. Also, the storage strain, which was the key factor of the shape memory effect, was also discussed in detail. Similar to previous works, we first explored the effect of applied stress on storage strain. Through comparisons with the DMA and the creep experimental results, the rationality and accuracy of the new phase transition and constitutive model were finally verified. (paper)

  3. Invasion-wave-induced first-order phase transition in systems of active particles.

    Science.gov (United States)

    Ihle, Thomas

    2013-10-01

    An instability near the transition to collective motion of self-propelled particles is studied numerically by Enskog-like kinetic theory. While hydrodynamics breaks down, the kinetic approach leads to steep solitonlike waves. These supersonic waves show hysteresis and lead to an abrupt jump of the global order parameter if the noise level is changed. Thus they provide a mean-field mechanism to change the second-order character of the phase transition to first order. The shape of the wave is shown to follow a scaling law and to quantitatively agree with agent-based simulations.

  4. Phase transition induced anelasticity in Fe–Ga alloys with 25 and 27%Ga

    Energy Technology Data Exchange (ETDEWEB)

    Golovin, I.S., E-mail: i.golovin@misis.ru [National University of Science and Technology “MISIS”, Leninsky ave. 4, 119049, Moscow (Russian Federation); Balagurov, A.M., E-mail: bala@nf.jinr.ru [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980, Dubna (Russian Federation); Bobrikov, I.A. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980, Dubna (Russian Federation); Palacheva, V.V. [National University of Science and Technology “MISIS”, Leninsky ave. 4, 119049, Moscow (Russian Federation); Cifre, J. [Universitat de les Illes Balears, Ctra. De Valldemossa, km.7.5, E-07122, Palma de Mallorca (Spain)

    2016-08-05

    Neutron diffraction and mechanical spectroscopy techniques were applied to study phase transitions in Fe–Ga alloys with 25 and 27 at.% Ga. The following sequences of phase transitions at continuous heating and subsequent cooling in the 20–900 °C temperature range were recorded: D0{sub 3} → L1{sub 2} (limited amount) → A2(B2) was recorded at heating and A2(B2) → D0{sub 3} at cooling for Fe-24.8Ga alloy, and the D0{sub 3} → L1{sub 2} → D0{sub 19} → A2(B2) was recorded at heating and A2(B2) → L1{sub 2} at cooling for Fe-27.4Ga alloy. Thus, the difference in 2.6 at.%Ga between two studied compositions with D0{sub 3} structure leads to their different structures after heating to 900 °C. These transition sequences determine different temperature dependencies of elastic and anelastic properties. The D0{sub 3} → A2(B2) transition (in Fe-25Ga) does not lead to a well-pronounced anelastic effect, in contrast the D0{sub 3} → L1{sub 2} transition (in Fe-27Ga) generates internal stresses due to a different rate of an increase in the lattice parameter with temperature and leads to a well-pronounced transient internal friction effect. - Highlights: • Neutron diffraction technique is used to study in situ phase transitions in Fe-25 and 27 at.% Ga. • D0{sub 3} → L1{sub 2} → D0{sub 19} → A2/B2 transitions were recorded at instant heating in Fe-27 at.% Ga. • D0{sub 3} → L1{sub 2} (limited amount) → A2(B2) was recorded at instant heating in Fe-25 at.% Ga • The D0{sub 3} → L1{sub 2} transition generates internal stresses and leads to elastic and anelastic response.

  5. A pressure-induced displacive phase transition in Tris(ethylenediamine) Nickel(II) nitrate

    OpenAIRE

    Cameron, C.A.; Allan, D.R.; Kamenev, K.V.; Moggach, S.A.; Murrie, M.; Parsons, S.

    2014-01-01

    [Ni(en)(3)] [NO3](2) undergoes a displacive phase transition from P6(3)22 at ambient pressure to a lower symmetry P6(1)22/P6(5)22 structure between 0.82 and 0.87 GPa, which is characterized by a tripling of the unit cell c-axis and the number of molecules per unit cell. The same transition has been previously observed at 108 K. The application of pressure leads to a general shortening of O H hydrogen bonding interactions in the structure, with the greatest contraction (24%) occurring diagonal...

  6. Structural response in FeCl2 (iron chloride) to pressure-induced electro-magnetic transitions

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R D [Los Alamos National Laboratory; Rozenberg, G Kh [TEL AVIV UNIV; Pasternak, M P [TEL AVIV UNIV; Gorodetsky, P [TEL AVIV UNIV; Xu, W M [TEL AVIV UNIV; Dubrovinsky, L S [UNIV OF BAYREUTH; Le Bihan, T L [FRANCE

    2009-01-01

    High pressure (HP) synchrotron x-ray diffraction studies were carried out in FeCl{sub 2} together with resistivity (R) studies, at various temperatures and pressures to 65 GPa using diamond anvil cells. This work follows a previous HP {sup 57}Fe Mossbauer study in which two pressure-induced (PI) electronic transitions were found interpreted as: (i) quenching of the orbital-term contribution to the hyperfine field concurring with a tilting of the magnetic moment by 55 degrees and (ii) collapse of the magnetism concurring with a sharp decrease of the isomer shift (IS). The R(P,T) studies affirm that the cause the collapse of the magnetism is a PI p-d correlation breakdown, leading to an insulator-metal transition at {approx}45 GPa and is not due to a spi-Ir,crossover (S=2 {yields} S=0). The structure response to the pressure evolution of the two electronic phase transitions starting at low pressures (LP), through an intermediate phase (IP) 30-57 GPa, and culminating in a high-pressure phase (HP), P >32 GPa, can clearly be quantified. The IP-HP phases coexist through the 32-57 GPa range in which the HP abundance increases monotonically at the expense of the IP phase. At the LP-IP interface no volume change is detected, yet the c-axis increases and the a-axis shrinks by 0.21 Angstroms and 0.13 Angstroms, respectively. The fit of the equation of state of the combined LP-IP phases yields a bulk modulus K{sub 0} = 35.3(1.8) GPa. The intralayer CI-CI distances increases, but no change is observed in Fe-CI bond-length nor are there substantial changes in the interlayer spacing. The pressure-induced electronic IP-HP transition leads to a first-order structural phase transition characterized by a decrease in Fe-CI bond length and an abrupt drop in V(P) by {approx}3.5% accompanying the correlation breakdown. In this transition no symmetry change is detected,and the XRD data could be satisfactorily fitted with the CdI{sub 2} structure. The bulk modulus of the HP phase is

  7. Photo-Induced Phase Transitions to Liquid Crystal Phases: Influence of the Chain Length from C8E4 to C14E4

    Directory of Open Access Journals (Sweden)

    Simone Techert

    2009-09-01

    Full Text Available Photo-induced phase transitions are characterized by the transformation from phase A to phase B through the absorption of photons. We have investigated the mechanism of the photo-induced phase transitions of four different ternary systems CiE4/alkane (i with n = 8, 10, 12, 14; cyclohexane/H2O. We were interested in understanding the effect of chain length increase on the dynamics of transformation from the microemulsion phase to the liquid crystal phase. Applying light pump (pulse/x-ray probe (pulse techniques, we could demonstrate that entropy and diffusion control are the driving forces for the kind of phase transition investigated.

  8. Ezrin/NF-kB activation regulates epithelial- mesenchymal transition induced by EGF and promotes metastasis of colorectal cancer.

    Science.gov (United States)

    Li, Yingru; Lin, Zhaoyu; Chen, Bin; Chen, Shuang; Jiang, Zhipeng; Zhou, Taicheng; Hou, Zehui; Wang, Youyuan

    2017-08-01

    There is growing evidence that epithelial mesenchymal-transition (EMT) plays significant roles in terms of tumor metastasis. There are a lot of cytokines inducing EMT of tumor cells, EGF is one of the important cytokines.Ezrin is a connexin between the cytoskeleton and the cell membrane, which is closely related to the morphological movement and metastasis of tumor cells.EGF can activate Ezrin and affects cell motility. In recent years, many studies have shown that NF-kB acts as an important transcription factor, involving in the process of EMT. However, does Ezrin participate in the regulation of EGF-induced EMT through the NF-kB pathway? This question needs us to discuss.In the present study, we found that EGF could induce colorectal cancer cells to develop EMT,enhance their ability to invade and migrate and promotes phosphorylation of Ezrin Tyr353.On the other hand, inhibition of Ezrin could reverse EGF-induced EMT and inhibit NF-kB P65 translocating into the nucleus. Finally, knockout of Ezrin inhibited EGF-induced lung metastasis of colorectal cancer xenografts and abnormal activation of Ezrin and NF-kB were related with colorectal cancer metastasis and poor prognosis. Our present results suggest that Ezrin/NF-kB pathway may provide experimental evidence for new targeted drugs for colorectal cancer metastasis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Emodin suppresses TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells through Notch signaling pathway

    International Nuclear Information System (INIS)

    Gao, Rundi; Chen, Ruilin; Cao, Yu; Wang, Yuan; Song, Kang; Zhang, Ya; Yang, Junchao

    2017-01-01

    Pulmonary fibrosis is characterized by the destruction of lung tissue architecture and the formation of fibrous foci, currently has no satisfactory treatment. Emodin is a component of Chinese herb that has been reported to be medicament on pancreatic fibrosis and liver fibrosis. However, its role in pulmonary fibrosis has not been established yet. In the present study, we investigated the hypothesis that Emodin plays an inhibitory role in TGF-β1 induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cell, and Emodin exerts its effect through the Notch signaling pathway. Emodin inhibits the proliferation of Rat alveolar type II epithelial cells RLE-6TN in a concentration-dependent manner; reduces the expression of Collagen I, α-SMA and Vimentin, promotes the expression of E-cadherin. Moreover, Emodin could regulate the expression patterns of the Notch signaling pathway-related factors and reduce the Notch-1 nucleus translocation. Knockdown of Notch-1 enhances the inhibitory effect of Emodin on TGF-β1-induced EMT in RLE-6TN cells. In conclusion, the data of the present study suggests that Emodin suppresses TGF-β1-induced EMT in alveolar epithelial cells through Notch signaling pathway and shows the potential to be effective in the treatment of pulmonary fibrosis. - Highlights: • Emodin inhibits TGF-β1-induced EMT in alveolar epithelial cells. • Emodin regulates the expression patterns of the Notch signaling pathway-related factors. • Emodin inhibits TGF-β1-induced Notch-1 nucleus translocation and activation.

  10. Spermine selectively inhibits high-conductance, but not low-conductance calcium-induced permeability transition pore.

    Science.gov (United States)

    Elustondo, Pia A; Negoda, Alexander; Kane, Constance L; Kane, Daniel A; Pavlov, Evgeny V

    2015-02-01

    The permeability transition pore (PTP) is a large channel of the mitochondrial inner membrane, the opening of which is the central event in many types of stress-induced cell death. PTP opening is induced by elevated concentrations of mitochondrial calcium. It has been demonstrated that spermine and other polyamines can delay calcium-induced swelling of isolated mitochondria, suggesting their role as inhibitors of the mitochondrial PTP. Here we further investigated the mechanism by which spermine inhibits the calcium-induced, cyclosporine A (CSA) -sensitive PTP by using three indicators: 1) calcium release from the mitochondria detected with calcium green, 2) mitochondrial membrane depolarization using TMRM, and 3) mitochondrial swelling by measuring light absorbance. We found that despite calcium release and membrane depolarization, indicative of PTP activation, mitochondria underwent only partial swelling in the presence of spermine. This was in striking contrast to the high-amplitude swelling detected in control mitochondria and in mitochondria treated with the PTP inhibitor CSA. We conclude that spermine selectively prevents opening of the high-conductance state, while allowing activation of the lower conductance state of the PTP. We propose that the existence of lower conductance, stress-induced PTP might play an important physiological role, as it is expected to allow the release of toxic levels of calcium, while keeping important molecules (e.g., NAD) within the mitochondrial matrix. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Emodin suppresses TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells through Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Rundi; Chen, Ruilin; Cao, Yu [Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medicine University, NO. 56, Youdian Road, Shangcheng District, Hangzhou, Zhejiang Province 310006 (China); Wang, Yuan [Department of Pulmonary Function, The First Affiliated Hospital of Zhejiang Chinese Medicine University, NO. 56, Youdian Road, Shangcheng District, Hangzhou, Zhejiang Province 310006 (China); Song, Kang [Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medicine University, NO. 56, Youdian Road, Shangcheng District, Hangzhou, Zhejiang Province 310006 (China); Zhang, Ya [Zhejiang Chinese Medicine University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang Province 310006 (China); Yang, Junchao, E-mail: yangjunchaozj@zcmu.edu.cn [Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medicine University, NO. 56, Youdian Road, Shangcheng District, Hangzhou, Zhejiang Province 310006 (China)

    2017-03-01

    Pulmonary fibrosis is characterized by the destruction of lung tissue architecture and the formation of fibrous foci, currently has no satisfactory treatment. Emodin is a component of Chinese herb that has been reported to be medicament on pancreatic fibrosis and liver fibrosis. However, its role in pulmonary fibrosis has not been established yet. In the present study, we investigated the hypothesis that Emodin plays an inhibitory role in TGF-β1 induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cell, and Emodin exerts its effect through the Notch signaling pathway. Emodin inhibits the proliferation of Rat alveolar type II epithelial cells RLE-6TN in a concentration-dependent manner; reduces the expression of Collagen I, α-SMA and Vimentin, promotes the expression of E-cadherin. Moreover, Emodin could regulate the expression patterns of the Notch signaling pathway-related factors and reduce the Notch-1 nucleus translocation. Knockdown of Notch-1 enhances the inhibitory effect of Emodin on TGF-β1-induced EMT in RLE-6TN cells. In conclusion, the data of the present study suggests that Emodin suppresses TGF-β1-induced EMT in alveolar epithelial cells through Notch signaling pathway and shows the potential to be effective in the treatment of pulmonary fibrosis. - Highlights: • Emodin inhibits TGF-β1-induced EMT in alveolar epithelial cells. • Emodin regulates the expression patterns of the Notch signaling pathway-related factors. • Emodin inhibits TGF-β1-induced Notch-1 nucleus translocation and activation.

  12. Collision-induced stimulated photon echo generated at transition 0-1 on broad spectral line conditions

    Science.gov (United States)

    Rubtsova, N. N.; Gol'dort, V. G.; Ishchenko, V. N.; Khvorostov, E. B.; Kochubei, S. A.; Borisov, G. M.; Ledovskikh, D. V.; Reshetov, V. A.

    2018-04-01

    For the first time, the collision induced stimulated photon echo generated at transition 1S0 → 3 P1 of 174Yb (type 0-1) in the mixture of gases Yb  +  Xe was investigated in the presence of weak longitudinal magnetic field, with experimental parameters corresponding to broad spectral line conditions. Comparison of the experimental echo amplitude versus magnetic field strength dependence with the theoretical curve shows a very good agreement, giving rise to an improved estimate for the difference between alignment and orientation decay rates.

  13. Phase control of squeezed state in double electromagnetically induced transparency system with a loop-transition structure

    Science.gov (United States)

    Li, Yuan; Zhou, Yusheng; Wang, Yong; Ling, Qiang; Chen, Bing; Dou, Yan; Zhang, Wei; Gao, Weiqing; Guo, Zhiqiang; Zhang, Junxiang

    2018-03-01

    We theoretically study the squeezed probe light passing through a double electromagnetically induced transparency (DEIT) system, in which a microwave field and two coupling lights drive a loop transition. It is shown that the output squeezing can be maintained in both two transparency windows of DEIT, and it can also be manipulated by the relative phase of the three driving fields. The influence of the intensity of applied fields and the optical depth of atoms on the squeezing is also investigated. This study offers possibilities to manipulate the squeezing propagation in atomic media by the phase of electromagnetic fields.

  14. Pressure-induced magnetic transition in Fe sub 4 N probed by Fe K-edge XMCD measurement

    CERN Document Server

    Ishimatsu, N; Maruyama, H; Kawamura, N; Suzuki, M; Ohishi, Y; Ito, M; Nasu, S; Kawakami, T

    2003-01-01

    X-ray magnetic circular dichroism (XMCD) of gamma'-iron nitride (Fe sub 4 N) was recorded at Fe K-edge under high pressure up to 27 GPa. The XMCD intensity decreased remarkably with pressure, and vanished at 24 GPa. Compressibility was measured by the X-ray diffraction method. These results indicate that Fe sub 4 N undergoes a second-order phase transition from the ferromagnetic state to a paramagnetic state without any structural change. The pressure-induced demagnetizing process is discussed in terms of the Fe magnetic states in the local environment.

  15. Pressure induced B3 → B1 phase transition in ZrN

    International Nuclear Information System (INIS)

    Srivastava, Anurag; Chauhan, Mamta

    2011-01-01

    Zirconium nitride belongs to a large community of high-melting transition d-metal nitrides, which possess an unusual combination of thermo mechanical properties like an increased mechanical strength and a high melting temperature with intriguing electromagnetic and thermal emission characteristics and are of great scientific and technological interest

  16. Soft x-ray induced femtosecond solid-to-solid phase transition

    Czech Academy of Sciences Publication Activity Database

    Tavella, F.; Höppner, H.; Tkachenko, V.; Medvedev, Nikita; Capotondi, F.; Golz, T.; Kai, Y.; Manfredda, M.; Pedersoli, E.; Prandolini, M.J.; Stojanovic, N.; Tanikawa, T.; Teubner, U.; Toleikis, S.; Ziaja, B.

    Roč. 24, Sep (2017), s. 22-27 ISSN 1574-1818 Institutional support: RVO:68378271 Keywords : soft x-ray * ultrashort x-ray pulses * grafitization of diamond * non-thermal phase transition Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 0.908, year: 2016

  17. Some Insights on Roughness Induced Transition and Control from DNS and Experiments

    Science.gov (United States)

    Suryanarayanan, Saikishan; Ibitayo, Ifeoluwa; Goldstein, David; Brown, Garry

    2016-11-01

    We study the receptivity and subsequent evolution of an initially laminar flat boundary layer on a flat plate to single and multiple discrete roughness elements (DRE) using a combination of immersed boundary DNS and water channel flow visualization experiments. We examine the transition caused by a single DRE and demonstrate the possibility of suppressing it by an appropriately designed second DRE in both DNS and experiments. The different phases of transition are identified and the roles of Reynolds numbers based on roughness height and boundary layer thickness are investigated. The underlying mechanisms in the observed transition and its control are understood by examining detailed vorticity flux balances. Connections are also made to recent developments in transient growth and streak instability. A unified picture is sought from a parametric study of different DRE dimensions and orientations. The potential applicability of the observations and understanding derived from this study to controlling transition caused by design and environmental roughness over aircraft wings is discussed. Supported by AFOSR # FA9550-15-1-0345.

  18. Pressure induced structural phase transition in SnS—An ab initio study

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The structural behaviour of SnS under pressure has been investigated by first principle density functional ... tural phase transition from orthorhombic type to monoclinic type structure around 17 GPa which is in good agreement with the ... is achieved by performing the electronic structure and total energy calculation ...

  19. Size-induced enhancement of bulk modulus and transition pressure of nanocrystalline Ge

    DEFF Research Database (Denmark)

    Wang, Hua; Liu, J.F.; He, Yongqi

    2007-01-01

    In situ energy dispersive X-ray diffraction measurements with synchrotron radiation source have been performed on nanocrystalline Ge with particle sizes 13, 49 and 100 nm by using diamond anvil cell. Whereas the percentage volume collapse at the transition is almost constant, the values of the bu...

  20. Boundary Induced Phase Transition in Cellular Automata Models of Pedestrian Flow

    Czech Academy of Sciences Publication Activity Database

    Bukáček, M.; Hrabák, Pavel

    2016-01-01

    Roč. 11, č. 4 (2016), s. 327-338 ISSN 1557-5969 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Adaptive time-span * Cellular automata model * Floor-field * Pedestrian flow * Phase transition * Principle of bonds Subject RIV: BD - Theory of Information Impact factor: 0.696, year: 2016

  1. Identification of salivary components that induce transition of hyphae to yeast in Candida albicans

    NARCIS (Netherlands)

    Leito, J.T.D.; Ligtenberg, A.J.M.; Nazmi, K.; Veerman, E.C.I.

    2009-01-01

    Candida albicans, the major human fungal pathogen, undergoes a reversible morphological transition from single yeast cells to pseudohyphae and hyphae filaments. The hyphae form is considered the most invasive form of the fungus. The purpose of this study is to investigate the effect of saliva on

  2. Impurity-induced anisotropic semiconductor-semimetal transition in monolayer biased black phosphorus

    Science.gov (United States)

    Bui, D. H.; Yarmohammadi, Mohsen

    2018-07-01

    Taking into account the electron-impurity interaction within the continuum approximation of tight-binding model, the Born approximation, and the Green's function method, the main features of anisotropic electronic phase transition are investigated in monolayer biased black phosphorus (BP). To this end, we concentrated on the disordered electronic density of states (DOS), which gives useful information for electro-optical devices. Increasing the impurity concentration in both unbiased and biased impurity-infected single-layer BP, in addition to the decrease of the band gap, independent of the direction, leads to the midgap states and an extra Van Hove singularity inside and outside of the band gap, respectively. Furthermore, strong impurity scattering potentials lead to a semiconductor-semimetal transition and one more Van Hove singularity in x-direction of unbiased BP and surprisingly, this transition does not occur in biased BP. We found that there is no phase transition in y-direction. Since real applications require structures with modulated band gaps, we have studied the influence of different bias voltages on the disordered DOS in both directions, resulting in the increase of the band gap.

  3. Charge exchange induced X-ray transitions of hollow ions in laser field ionized plasmas

    International Nuclear Information System (INIS)

    Rosmej, F.B.; Hoffmann, D.H.H.; Faenov, A. Ya.; Pikuz, T.A.; Magunov, A.I.; Skobelev, I.Yu.; Auguste, T.; D'Oliveira, P.; Hulin, S.; Monot, P.

    2000-01-01

    Double electron charge exchange is proposed for the formation of hollow He-like ions when laser field ionized nuclei penetrate into the residual gas. Using transitions from different configurations in hollow ions a method for the determination of the electron temperature in the long lasting recombination phase is developed

  4. Pressure-induced phase transitions in organic molecular crystals: a combination of x-ray single-crystal and powder diffraction, raman and IR-spectroscopy

    International Nuclear Information System (INIS)

    Boldyreva, E V; Goryainov, S V; Seryotkin, Y V; Kolesnik, E N; Shakhtshneider, T P; Ivashevskaya, S N; Drebushchak, T N; Sowa, H; Ahsbahs, H; Chernyshev, V V; Dmitriev, V P

    2008-01-01

    The contribution summarizes the results of recent studies of phase transitions induced by high pressure in a number of molecular organic crystals, such as polymorphs of paracetamol, chlorpropamide, polymorphs of glycine, L- and DL-serine, β-alanine. The main attention is paid to the following topics: (1) Reversible / irreversible transformations; (2) Different behavior of single crystals / powders; (3) The role of pressure-transmitting liquid; (4) The role of the kinetic factors: phase transitions on decompression, or after a long storage at a selected pressure; (5) Isosymmetric phase transitions; (6) The role of the changes in the hydrogen bond networks / intramolecular conformational changes in the phase transitions; (7) Superstructures / nanostructures formed as a result of pressure-induced phase transitions

  5. Pressure-induced phase transitions in organic molecular crystals: a combination of x-ray single-crystal and powder diffraction, raman and IR-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Boldyreva, E V; Goryainov, S V; Seryotkin, Y V; Kolesnik, E N; Shakhtshneider, T P; Ivashevskaya, S N; Drebushchak, T N [Research and Education Center ' Molecular Design and Ecologically Safe Technologies' , REC-008, Novosibirsk State University (Russian Federation); Sowa, H [Goettingen University (Germany); Ahsbahs, H; Chernyshev, V V [Marburg University (Germany); Dmitriev, V P [Swiss-Norwegian Beamline ESRF, Grenoble (France)], E-mail: boldyrev@nsu.ru

    2008-07-15

    The contribution summarizes the results of recent studies of phase transitions induced by high pressure in a number of molecular organic crystals, such as polymorphs of paracetamol, chlorpropamide, polymorphs of glycine, L- and DL-serine, {beta}-alanine. The main attention is paid to the following topics: (1) Reversible / irreversible transformations; (2) Different behavior of single crystals / powders; (3) The role of pressure-transmitting liquid; (4) The role of the kinetic factors: phase transitions on decompression, or after a long storage at a selected pressure; (5) Isosymmetric phase transitions; (6) The role of the changes in the hydrogen bond networks / intramolecular conformational changes in the phase transitions; (7) Superstructures / nanostructures formed as a result of pressure-induced phase transitions.

  6. Hypoxia Induces Epithelial-Mesenchymal Transition in Follicular Thyroid Cancer: Involvement of Regulation of Twist by Hypoxia Inducible Factor-1α.

    Science.gov (United States)

    Yang, Yeon Ju; Na, Hwi Jung; Suh, Michelle J; Ban, Myung Jin; Byeon, Hyung Kwon; Kim, Won Shik; Kim, Jae Wook; Choi, Eun Chang; Kwon, Hyeong Ju; Chang, Jae Won; Koh, Yoon Woo

    2015-11-01

    Although follicular thyroid cancer (FTC) has a relatively fair prognosis, distant metastasis sometimes results in poor prognosis and survival. There is little understanding of the mechanisms contributing to the aggressiveness potential of thyroid cancer. We showed that hypoxia inducible factor-1α (HIF-1α) induced aggressiveness in FTC cells and identified the underlying mechanism of the HIF-1α-induced invasive characteristics. Cells were cultured under controlled hypoxic environments (1% O₂) or normoxic conditions. The effect of hypoxia on HIF-1α, and epithelial-to-mesenchymal transition (EMT) related markers were evaluated by quantitative real-time PCR, Western blot analysis and immunocytochemistry. Invasion and wound healing assay were conducted to identify functional character of EMT. The involvement of HIF-1α and Twist in EMT were studied using gene overexpression or silencing. After orthotopic nude mouse model was established using the cells transfected with lentiviral shHIF-1α, tissue analysis was done. Hypoxia induces HIF-1α expression and EMT, including typical morphologic changes, cadherin shift, and increased vimentin expression. We showed that overexpression of HIF-1α via transfection resulted in the aforementioned changes without hypoxia, and repression of HIF-1α with RNA interference suppressed hypoxia-induced HIF-1α and EMT. Furthermore, we also observed that Twist expression was regulated by HIF-1α. These were confirmed in the orthotopic FTC model. Hypoxia induced HIF-1α, which in turn induced EMT, resulting in the increased capacity for invasion and migration of cells via regulation of the Twist signal pathway in FTC cells. These findings provide insight into a possible therapeutic strategy to prevent invasive and metastatic FTC.

  7. Shear-induced nano-macro structural transition in a polymeric bicontinuous microemulsion

    DEFF Research Database (Denmark)

    Krishnan, K.; Almdal, K.; Burghardt, W.R.

    2001-01-01

    structure. In situ neutron scattering shows flow-induced anisotropy in the nanometer-scale microemulsion structure at moderate shear rates, while higher rates induce bulk phase separation, with micron-size morphology, which is characterized with in situ light scattering and optical microscopy....

  8. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    International Nuclear Information System (INIS)

    Xiong, Shanshan; Pan, Xiujie; Xu, Long; Yang, Zhihua; Guo, Renfeng; Gu, Yongqing; Li, Ruoxi; Wang, Qianjun; Xiao, Fengjun; Du, Li; Zhou, Pingkun; Zhu, Maoxiang

    2015-01-01

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4 + CD25 + FoxP3 + regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated on days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis

  9. Protective Effects of Hydrogen-Rich Saline Against Lipopolysaccharide-Induced Alveolar Epithelial-to-Mesenchymal Transition and Pulmonary Fibrosis.

    Science.gov (United States)

    Dong, Wen-Wen; Zhang, Yun-Qian; Zhu, Xiao-Yan; Mao, Yan-Fei; Sun, Xue-Jun; Liu, Yu-Jian; Jiang, Lai

    2017-05-19

    BACKGROUND Fibrotic change is one of the important reasons for the poor prognosis of patients with acute respiratory distress syndrome (ARDS). The present study investigated the effects of hydrogen-rich saline, a selective hydroxyl radical scavenger, on lipopolysaccharide (LPS)-induced pulmonary fibrosis. MATERIAL AND METHODS Male ICR mice were divided randomly into 5 groups: Control, LPS-treated plus vehicle treatment, and LPS-treated plus hydrogen-rich saline (2.5, 5, or 10 ml/kg) treatment. Twenty-eight days later, fibrosis was assessed by determination of collagen deposition, hydroxyproline, and type I collagen levels. Development of epithelial-to-mesenchymal transition (EMT) was identified by examining protein expressions of E-cadherin and α-smooth muscle actin (α-SMA). Transforming growth factor (TGF)-β1 content, total antioxidant capacity (T-AOC), malondialdehyde (MDA) content, catalase (CAT), and superoxide dismutase (SOD) activity were determined. RESULTS Mice exhibited increases in collagen deposition, hydroxyproline, type I collagen contents, and TGF-β1 production in lung tissues after LPS treatment. LPS-induced lung fibrosis was associated with increased expression of α-SMA, as well as decreased expression of E-cadherin. In addition, LPS treatment increased MDA levels but decreased T-AOC, CAT, and SOD activities in lung tissues, indicating that LPS induced pulmonary oxidative stress. Hydrogen-rich saline treatment at doses of 2.5, 5, or 10 ml/kg significantly attenuated LPS-induced pulmonary fibrosis. LPS-induced loss of E-cadherin in lung tissues was largely reversed, whereas the acquisition of α-SMA was dramatically decreased by hydrogen-rich saline treatment. In addition, hydrogen-rich saline treatment significantly attenuated LPS-induced oxidative stress. CONCLUSIONS Hydrogen-rich saline may protect against LPS-induced EMT and pulmonary fibrosis through suppressing oxidative stress.

  10. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Shanshan; Pan, Xiujie; Xu, Long; Yang, Zhihua [Beijing Institute of Radiation Medicine, Beijing (China); Guo, Renfeng [Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan (United States); Gu, Yongqing; Li, Ruoxi; Wang, Qianjun; Xiao, Fengjun; Du, Li; Zhou, Pingkun [Beijing Institute of Radiation Medicine, Beijing (China); Zhu, Maoxiang, E-mail: zhumx@nic.bmi.ac.cn [Beijing Institute of Radiation Medicine, Beijing (China)

    2015-10-01

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4{sup +}CD25{sup +}FoxP3{sup +} regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated on days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis.

  11. Neuroglobin overexpression inhibits oxygen-glucose deprivation-induced mitochondrial permeability transition pore opening in primary cultured mouse cortical neurons.

    Science.gov (United States)

    Yu, Zhanyang; Liu, Ning; Li, Yadan; Xu, Jianfeng; Wang, Xiaoying

    2013-08-01

    Neuroglobin (Ngb) is an endogenous neuroprotective molecule against hypoxic/ischemic brain injury, but the underlying mechanisms remain largely undefined. Our recent study revealed that Ngb can bind to voltage-dependent anion channel (VDAC), a regulator of mitochondria permeability transition (MPT). In this study we examined the role of Ngb in MPT pore (mPTP) opening following oxygen-glucose deprivation (OGD) in primary cultured mouse cortical neurons. Co-immunoprecipitation (Co-IP) and immunocytochemistry showed that the binding between Ngb and VDAC was increased after OGD compared to normoxia, indicating the OGD-enhanced Ngb-VDAC interaction. Ngb overexpression protected primary mouse cortical neurons from OGD-induced neuronal death, to an extent comparable to mPTP opening inhibitor, cyclosporine A (CsA) pretreatment. We further measured the role of Ngb in OGD-induced mPTP opening using Ngb overexpression and knockdown approaches in primary cultured neurons, and recombinant Ngb exposure to isolated mitochondria. Same as CsA pretreatment, Ngb overexpression significantly reduced OGD-induced mPTP opening markers including mitochondria swelling, mitochondrial NAD(+) release, and cytochrome c (Cyt c) release in primary cultured neurons. Recombinant Ngb incubation significantly reduced OGD-induced NAD(+) release and Cyt c release from isolated mitochondria. In contrast, Ngb knockdown significantly increased OGD-induced neuron death, and increased OGD-induced mitochondrial NAD(+) release and Cyt c release as well, and these outcomes could be rescued by CsA pretreatment. In summary, our results demonstrated that Ngb overexpression can inhibit OGD-induced mPTP opening in primary cultured mouse cortical neurons, which may be one of the molecular mechanisms of Ngb's neuroprotection. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Steered molecular dynamics simulations of a type IV pilus probe initial stages of a force-induced conformational transition.

    Directory of Open Access Journals (Sweden)

    Joseph L Baker

    2013-04-01

    Full Text Available Type IV pili are long, protein filaments built from a repeating subunit that protrudes from the surface of a wide variety of infectious bacteria. They are implicated in a vast array of functions, ranging from bacterial motility to microcolony formation to infection. One of the most well-studied type IV filaments is the gonococcal type IV pilus (GC-T4P from Neisseria gonorrhoeae, the causative agent of gonorrhea. Cryo-electron microscopy has been used to construct a model of this filament, offering insights into the structure of type IV pili. In addition, experiments have demonstrated that GC-T4P can withstand very large tension forces, and transition to a force-induced conformation. However, the details of force-generation, and the atomic-level characteristics of the force-induced conformation, are unknown. Here, steered molecular dynamics (SMD simulation was used to exert a force in silico on an 18 subunit segment of GC-T4P to address questions regarding the nature of the interactions that lead to the extraordinary strength of bacterial pili. SMD simulations revealed that the buried pilin α1 domains maintain hydrophobic contacts with one another within the core of the filament, leading to GC-T4P's structural stability. At the filament surface, gaps between pilin globular head domains in both the native and pulled states provide water accessible routes between the external environment and the interior of the filament, allowing water to access the pilin α1 domains as reported for VC-T4P in deuterium exchange experiments. Results were also compared to the experimentally observed force-induced conformation. In particular, an exposed amino acid sequence in the experimentally stretched filament was also found to become exposed during the SMD simulations, suggesting that initial stages of the force induced transition are well captured. Furthermore, a second sequence was shown to be initially hidden in the native filament and became exposed upon

  13. Staphylococcus aureus-induced G2/M phase transition delay in host epithelial cells increases bacterial infective efficiency.

    Directory of Open Access Journals (Sweden)

    Ludmila Alekseeva

    Full Text Available Staphylococcus aureus is a highly versatile, opportunistic pathogen and the etiological agent of a wide range of infections in humans and warm-blooded animals. The epithelial surface is its principal site of colonization and infection. In this work, we investigated the cytopathic effect of S. aureus strains from human and animal origins and their ability to affect the host cell cycle in human HeLa and bovine MAC-T epithelial cell lines. S. aureus invasion slowed down cell proliferation and induced a cytopathic effect, resulting in the enlargement of host cells. A dramatic decrease in the number of mitotic cells was observed in the infected cultures. Flow cytometry analysis revealed an S. aureus-induced delay in the G2/M phase transition in synchronous HeLa cells. This delay required the presence of live S. aureus since the addition of the heat-killed bacteria did not alter the cell cycle. The results of Western blot experiments showed that the G2/M transition delay was associated with the accumulation of inactive cyclin-dependent kinase Cdk1, a key inducer of mitosis entry, and with the accumulation of unphosphorylated histone H3, which was correlated with a reduction of the mitotic cell number. Analysis of S. aureus proliferation in asynchronous, G1- and G2-phase-enriched HeLa cells showed that the G2 phase was preferential for bacterial infective efficiency, suggesting that the G2 phase delay may be used by S. aureus for propagation within the host. Taken together, our results divulge the potential of S. aureus in the subversion of key cellular processes such as cell cycle progression, and shed light on the biological significance of S. aureus-induced host cell cycle alteration.

  14. Steered molecular dynamics simulations of a type IV pilus probe initial stages of a force-induced conformational transition.

    Science.gov (United States)

    Baker, Joseph L; Biais, Nicolas; Tama, Florence

    2013-04-01

    Type IV pili are long, protein filaments built from a repeating subunit that protrudes from the surface of a wide variety of infectious bacteria. They are implicated in a vast array of functions, ranging from bacterial motility to microcolony formation to infection. One of the most well-studied type IV filaments is the gonococcal type IV pilus (GC-T4P) from Neisseria gonorrhoeae, the causative agent of gonorrhea. Cryo-electron microscopy has been used to construct a model of this filament, offering insights into the structure of type IV pili. In addition, experiments have demonstrated that GC-T4P can withstand very large tension forces, and transition to a force-induced conformation. However, the details of force-generation, and the atomic-level characteristics of the force-induced conformation, are unknown. Here, steered molecular dynamics (SMD) simulation was used to exert a force in silico on an 18 subunit segment of GC-T4P to address questions regarding the nature of the interactions that lead to the extraordinary strength of bacterial pili. SMD simulations revealed that the buried pilin α1 domains maintain hydrophobic contacts with one another within the core of the filament, leading to GC-T4P's structural stability. At the filament surface, gaps between pilin globular head domains in both the native and pulled states provide water accessible routes between the external environment and the interior of the filament, allowing water to access the pilin α1 domains as reported for VC-T4P in deuterium exchange experiments. Results were also compared to the experimentally observed force-induced conformation. In particular, an exposed amino acid sequence in the experimentally stretched filament was also found to become exposed during the SMD simulations, suggesting that initial stages of the force induced transition are well captured. Furthermore, a second sequence was shown to be initially hidden in the native filament and became exposed upon stretching.

  15. Pressure-induced magnetic collapse and metallization of TlF e1.6S e2

    Science.gov (United States)

    Naumov, P. G.; Filsinger, K.; Shylin, S. I.; Barkalov, O. I.; Ksenofontov, V.; Qi, Y.; Palasyuk, T.; Schnelle, W.; Medvedev, S. A.; Greenblatt, M.; Felser, C.

    2017-08-01

    The crystal structure, magnetic ordering, and electrical resistivity of TlF e1.6S e2 were studied at high pressures. Below ˜7 GPa , TlF e1.6S e2 is an antiferromagnetically ordered semiconductor with a ThC r2S i2 -type structure. The insulator-to-metal transformation observed at a pressure of ˜7 GPa is accompanied by a loss of magnetic ordering and an isostructural phase transition. In the pressure range ˜7.5 -11 GPa a remarkable downturn in resistivity, which resembles a superconducting transition, is observed below 15 K. We discuss this feature as the possible onset of superconductivity originating from a phase separation in a small fraction of the sample in the vicinity of the magnetic transition.

  16. High temperature-induced phase transitions in Sr2GdRuO6 complex perovskite

    International Nuclear Information System (INIS)

    Triana, C.A.; Corredor, L.T.; Landínez Téllez, D.A.; Roa-Rojas, J.

    2011-01-01

    Highlights: ► Crystal structure, thermal expansion and phase transitions at high-temperature of Sr 2 GdRuO 6 perovskite has been investigated. ► X-ray diffraction pattern at 298 K of Sr 2 GdRuO 6 corresponds to monoclinic perovskite-type structure with P2 1 /n space group. ► Evolution of X-ray diffraction patterns at high-temperature shows that the Sr 2 GdRuO 6 perovskite suffers two-phase transitions. ► At 573 K the X-ray diffraction pattern of Sr 2 GdRuO 6 corresponds to monoclinic perovskite-type structure with I2/m space group. ► At 1273 K the Sr 2 GdRuO 6 perovskite suffers a complete phase-transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87). -- Abstract: The crystal structure behavior of the Sr 2 GdRuO 6 complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K ≤ T ≤ 1273 K. Measurements of X-ray diffraction at room-temperature and Rietveld analysis of the experimental patterns show that this compound crystallizes in a monoclinic perovskite-like structure, which belongs to the P2 1 /n (no. 14) space group and 1:1 ordered arrangement of Ru 5+ and Gd 3+ cations over the six-coordinate M sites. Experimental lattice parameters were obtained to be a =5.8103(5) Å, b =5.8234(1) Å, c =8.2193(9) Å, V = 278.11(2) Å 3 and angle β = 90.310(5)°. The high-temperature analysis shows the occurrence of two-phase transitions on this material. First, at 573 K it adopts a monoclinic perovskite-type structure with I2/m (no. 12) space group with lattice parameters a = 5.8275(6) Å, b = 5.8326(3) Å, c = 8.2449(2) Å, V = 280.31(3) Å 3 and angle β = 90.251(3)°. Close to 1273 K it undergoes a complete phase-transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87), with lattice parameters a = 5.8726(1) Å, c = 8.3051(4) Å, V = 286.39(8) Å 3 and angle β = 90.0°. The high-temperature phase transition from monoclinic I2/m (no. 12) to tetragonal I4/m (no. 87) is characterized

  17. Turbulence production in an APG-boundary-layer transition induced by randomized perturbations

    Science.gov (United States)

    Borodulin, V. I.; Kachanov, Y. S.; Roschektayev, A. P.

    This paper is devoted to an experimental investigation of formation and development of coherent vortical structures at late stages of a laminar-turbulent transition initiated by a harmonic, almost two-dimensional Tollmien-Schlichting (TS) wave perturbed by weak (initially) broadband disturbances. The initial base flow represented a self-similar boundary layer with an adverse pressure gradient (APG) with Hartree parameter ßH = -0.115. Experiments were performed at controlled disturbance conditions with the help of the ‘deterministic noise’ method and a universal disturbance source of instability waves. The main measurements were carried out by means of a hot-wire anemometer in a broad spatial region of the flow starting with stages of quasi-sinusoidal small-amplitude instability wave and ending with final stages of transition characterized by formation of concentrated localized vortical structures. The excited perturbations were partly random (within 20 TS-wave fundamental periods) but periodical at very large time scales during which the flow passes the model several times. The detailed measurements and the experimental data processing gave us the possibility to obtain instantaneous velocity and vorticity fields in the (x, y, z, t)-space and to perform computer-aided ‘visualization’ of the instantaneous flow structure. Specific features of the turbulence production mechanism occurring at late stages of transition are studied and compared with previously reported data obtained at sinusoidal excitation. A qualitative similarity is found between essentially nonlinear stages of transition observed in the present (randomized) case and those studied previously in cases of transition initiated by a harmonic TS wave or by a TS wave packet. It is found that interaction of primary wave with a broadband ‘noise’ of 3D TS waves leads at late stages of transition to formation of ?-vortices, intensive ? -shaped high-shear (HS) layers, O -shaped vortices, ring

  18. Pressure-induced magneto-structural transition in iron via a modified solid-state nudged elastic band method

    Science.gov (United States)

    Zarkevich, Nikolai A.; Johnson, Duane D.

    2015-03-01

    Materials under pressure may exhibit critical electronic and structural transitions that affect equation of states, as known for superconductors and the magneto-structural transformations of iron with both geophysical and planetary implications. While experiments often use constant-pressure (diamond-anvil cell, DAC) measurements, many theoretical results address a constant-volume transitions, which avoid issues with magnetic collapse but cannot be directly compared to experiment. We establish a modified solid-state nudge elastic band (MSS-NEB) method to handle magnetic systems that may exhibit moment (and volume) collapse during transformation. We apply it to the pressure-induced transformation in iron between the low-pressure body-centered cubic (bcc) and the high-pressure hexagonal close-packed (hcp) phases, find the bcc-hcp equilibrium coexistence pressure and a transitional pathway, and compare to shock and DAC experiments. We use methods developed with support by the U.S. Department of Energy (DE-FG02-03ER46026 and DE-AC02-07CH11358). Ames Laboratory is operated for the DOE by Iowa State University under contract DE-AC02-07CH11358.

  19. Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor -1α in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Zhang, Lin; Feng, Xiaobin; Dong, Jiahong; Qian, Cheng; Huang, Gang; Li, Xiaowu; Zhang, Yujun; Jiang, Yan; Shen, Junjie; Liu, Jia; Wang, Qingliang; Zhu, Jin

    2013-01-01

    High invasion and metastasis are the primary factors causing poor prognosis of patients with hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying these biological behaviors have not been completely elucidated. In this study, we investigate the molecular mechanism by which hypoxia promotes HCC invasion and metastasis through inducing epithelial-mesenchymal transition (EMT). The expression of EMT markers was analyzed by immunohistochemistry. Effect of hypoxia on induction of EMT and ability of cell migration and invasion were performed. Luciferase reporter system was used for evaluation of Snail regulation by hypoxia-inducible factor -1α (HIF-1α). We found that overexpression of HIF-1α was observed in HCC liver tissues and was related to poor prognosis of HCC patients. HIF-1α expression profile was correlated with the expression levels of SNAI1, E-cadherin, N-cadherin and Vimentin. Hypoxia was able to induce EMT and enhance ability of invasion and migration in HCC cells. The same phenomena were also observed in CoCl2-treated cells. The shRNA-mediated HIF-1α suppression abrogated CoCl2-induced EMT and reduced ability of migration and invasion in HCC cells. Luciferase assay showed that HIF-1α transcriptional regulated the expression of SNAI1 based on two hypoxia response elements (HREs) in SNAI1 promoter. We demonstrated that hypoxia-stabilized HIF1α promoted EMT through increasing SNAI1 transcription in HCC cells. This data provided a potential therapeutic target for HCC treatment

  20. Shear-induced structural transitions in Newtonian non-Newtonian two-phase flow

    Science.gov (United States)

    Cristobal, G.; Rouch, J.; Colin, A.; Panizza, P.

    2000-09-01

    We show the existence under shear flow of steady states in a two-phase region of a brine-surfactant system in which lyotropic dilute lamellar (non-Newtonian) and sponge (Newtonian) phases are coexisting. At high shear rates and low sponge phase-volume fractions, we report on the existence of a dynamic transition corresponding to the formation of a colloidal crystal of multilamellar vesicles (or ``onions'') immersed in the sponge matrix. As the sponge phase-volume fraction increases, this transition exhibits a hysteresis loop leading to a structural bistability of the two-phase flow. Contrary to single phase lamellar systems where it is always 100%, the onion volume fraction can be monitored continuously from 0 to 100 %.

  1. Ion-streaming induced order transition in three-dimensional dust clusters

    International Nuclear Information System (INIS)

    Ludwig, Patrick; Kählert, Hanno; Bonitz, Michael

    2012-01-01

    Dust dynamics simulations utilizing a dynamical screening approach are performed to study the effect of ion-streaming on the self-organized structures in a three-dimensional spherically confined complex (dusty) plasma. Varying the Mach number M, the ratio of ion drift velocity to the sound velocity, the simulations reproduce the experimentally observed cluster configurations in the two limiting cases: at M = 0 strongly correlated crystalline structures consisting of nested spherical shells (Yukawa balls) and, for M ⩾ 1, flow-aligned dust chains, respectively. In addition, our simulations reveal a discontinuous transition between these two limits. It is found that already a moderate ion drift velocity (M ≈ 0.1 for the plasma conditions considered here) destabilizes the highly ordered Yukawa balls and initiates an abrupt melting transition. The critical value of M is found to be independent of the cluster size. (paper)

  2. Structural Transitions Induced by a Recombinant Methionine-Trigger in Silk Spidroin

    Science.gov (United States)

    Wilson, Donna; Winkler, Stefan; Valluzzi, Regina; Kaplan, David

    2000-03-01

    Control of beta sheet formation is an important factor in the understanding and prediction of structural transitions and protein folding. In genetically engineered silk proteins this control has been achieved using oxidative triggers. A genetically engineered variant of a spider silk protein, and a peptide analog, based on the consensus sequence of Nephila clavipes dragline silk, were modified to include methionines flanking the beta sheet forming polyalanine regions. These methionines could be selectively reduced and oxidized, altering the bulkiness and charge of the sulfhydryl group to control beta sheet formation by steric hindrance. Biophysical characterization and monitoring of structural transitions and intermediates were accomplished through attenuated total reflectance infrared spectroscopy (ATR-IR) for solution state structures in both oxidized and reduced forms. For solid state structural characterization, IR microscopy and reflectance IR experiments were performed. Electron diffraction data as well as circular dichroism studies provide structural corroboration for all experiments in which reproducible sample preparation was achieved.

  3. Addiction: from context-induced hedonia to appetite, based on transition of micro-behaviors in morphine abstinent tree shrews

    Directory of Open Access Journals (Sweden)

    Ying eDuan

    2016-06-01

    Full Text Available AbstractDrug addiction is viewed as a maladaptive memory induced by contextual cues even in the abstinent state. However, the variations of hedonia and appetite induced by the context during the abstinence have been neglected. To distinguish the representative behaviors between hedonia and appetite, micro-behaviors in abstinent animal such as psycho-activity and drug seeking behaviors were observed in morphine conditioned place preference (CPP. To confirm the different effects of reward between drug and natural reward, a palatable food CPP paradigm was compared in current work. After a 10-day training in CPP with morphine or food, the preference was tested on day 1, 14, 28, and the changes of micro-behaviors were analyzed further. Our data showed that tree shrews treated with morphine performed more jumps on day 1 and more visits to saline paired side on day 28, which indicated a featured behavioral transition from psycho-activity to seeking behavior during drug abstinence. Meanwhile, food-conditioned animals only displayed obvious seeking behaviors in the three tests. The results suggest that the variations of micro-behaviors could imply such a transition from hedonic response to appetitive behaviors during morphine abstinence, which provided a potential behavioral basis for further neural mechanism studies.

  4. Twinning induced by the rhombohedral to orthorhombic phase transition in lanthanum gallate (LaGaO3)

    Science.gov (United States)

    Wang, W. L.; Lu, H. Y.

    2006-10-01

    Phase-transformation-induced twins in pressureless-sintered lanthanum gallate (LaGaO3) ceramics have been analysed using the transmission electron microscopy (TEM). Twins are induced by solid state phase transformation upon cooling from the rhombohedral (r, Rbar{3}c) to orthorhombic ( o, Pnma) symmetry at ˜145°C. Three types of transformation twins {101} o , {121} o , and {123} o were found in grains containing multiple domains that represent orientation variants. Three orthorhombic orientation variants were distinguished from the transformation domains converged into a triple junction. These twins are the reflection type as confirmed by tilting experiment in the microscope. Although not related by group-subgroup relation, the transformation twins generated by phase transition from rhombohedral to orthorhombic are consistent with those derived from taking cubic Pm {bar {3}}m aristotype of the lowest common supergroup symmetry as an intermediate metastable structure. The r→ o phase transition of first order in nature may have occurred by a diffusionless, martensitic-type or discontinuous nucleation and growth mechanism.

  5. GSK3β attenuates TGF-β1 induced epithelial–mesenchymal transition and metabolic alterations in ARPE-19 cells

    International Nuclear Information System (INIS)

    Huang, Li; Zhang, Cheng; Su, Li; Song, Zhengyu

    2017-01-01

    While TGF-β1 is known to induce epithelial–mesenchymal transition (EMT), a major factor in the pathogenesis of proliferative vitreoretinopathy (PVR), in ARPE-19 cells. The molecular pathways involved in EMT formation have not yet to be fully characterized. In this study, we have found that TGF-β1-mediated induction of EMT in ARPE-19 cells varied in a dose- and time-dependent manner. Specifically, TGF-β1 inhibited GSK-3β by accelerating phosphorylation at ser9. GSK-3β inhibitor or knockdown of GSK-3β resulted in enhanced TGF-β1-mediated EMT, migration and collagen contraction in ARPE-19 cells, which were then abrogated by GSK-3β overexpression and PI3K/AKT inhibitor. Importantly, GSK-3β also mediated metabolic reprogramming in TGF-β1-treated cells. Our results indicate that GSK-3β plays a pivotal role in TGF-β1-mediated EMT in ARPE-19 cells. - Highlights: • GSK-3β mediates epithelial-mesenchymal transition in TGF-β1 treated ARPE-19 cells. • GSK-3β regulates cell migration and collagen contraction of ARPE-19 cells. • TGF-β1 induces extracellular metabolomic changes of ARPE-19 cells via a GSK-3β-dependent mechanism.

  6. Field induced phase transition in layered honeycomb spin system α-RuCl3 studied by thermal conductivity

    Science.gov (United States)

    Leahy, Ian; Bornstein, Alex; Choi, Kwang-Yong; Lee, Minhyea

    α -RuCl3, a quasi -two-dimensional honeycomb lattice is known to be a candidate material to realize the Heisenberg-Kitaev spin model of a highly anisotropic bond-dependent exchange interaction. We investigate in-plane thermal conductivity (κ) as a function of temperature (T) and in-plane applied field (H). At H = 0 , the onset of a strong increase in κ marks the spontaneous long range ordering temperature, Tc = 6 . 5 K , corresponding to ``zigzag'' antiferromagnetic ordering. A broad peak appearing below Tc in κ was found to be suppressed significantly as H increases up to ~ 7 T , implying the system undergoes a field-induced transition from ordered to a new spin-disordered state analogous to the transverse-field Ising model. Further increasing H above 7 . 1 T , the large field seems to begin polarizing spins thus increasing the phonon mean free path, resulting in a significant rise in κ. This tendency is clearly shown in the field dependence of κ below Tc, which has a pronounced minimum at Hmin = 7 . 1 T . We will discuss our scaling analysis to characterize this field-induced phase transition and compare to the transverse-field Ising spin system. Work at the University of Colorado was supported by the US DOE Basic Energy Sciences under Award No. DE-SC0006888.

  7. ATR-IR spectroscopy for the detection of induced-phase transition in Langmuir-Blodgett monolayer film

    International Nuclear Information System (INIS)

    Widayati, Suci

    1996-01-01

    The rate at which a solid substrate is transferred through the Air/Water interface in the Langmuir-Blodgett process of preparing monomolecular films influences the final structure of the transferred film. This phenomenon has been observed from the attenuated total reflectance infra-red (ATR-IR) spectra of fatty acid monolayer transferred onto germanium substrate. This transfer-induced effect is most evidence when the monolayer is transferred from an expanded region of the surface-pressure-molecular area isotherm, but has limited influence on the hydrocarbon chain conformation of film molecules transferred in the condensed phases at high surface pressure. Such a conformational ordering may due to a kinetically limited phase transition taking place in the meniscus formed between the solid substrate and aqueous sub phase. In addition, these results suggest that the structure of the amphiphilic molecules may modulate the extent and nature of the dipping-speed-induced structural changes taking place in the monomolecular L-B film. In order to use monomolecular L-B films to accurately characterize the structure, orientation and phase properties of monolayers at the Air/Water interface, the L-B transfer must be performed at transfer speeds that minimize this structural phase transition

  8. pH-Driven Ordering Transitions in Liquid Crystal Induced by Conformational Changes of Cardiolipin.

    Science.gov (United States)

    Sidiq, Sumyra; Verma, Indu; Pal, Santanu Kumar

    2015-04-28

    We report an investigation of interfacial phenomena occurring at aqueous-liquid crystal (LC) interfaces that triggers an orientational ordering transition of the LC in the presence of cardiolipin (CL) by varying pH, salt concentration and valence. In particular, the effects of three different conformational isomeric forms of the CL are observed to cause the response of the LC ordering to vary significantly from one to another at those interfaces. An ordering transition of the LC was observed when the CL is mostly in undissociated (at pH 2) and/or in bicyclic (at pH 4) conformation in which LC shows changes in the optical appearance from bright to dark. By contrast, no change in the optical appearance of the LC was observed when the pH of the system increases to 8 or higher in which the CL mostly exists in the open conformation. Fluorescence microscopy measurements further suggest that pH-dependent conformational forms of the CL have different ability to self-assemble (thus different packing efficiency) at aqueous-LC interfaces leading to dissimilar orientational behavior of the LC. Specifically, we found that change in headgroup-headgroup repulsion of the central phosphatidyl groups of the CL plays a key role in tuning the lipid packing efficiency and thus responses to interfacial phenomena. Orientational ordering transition of the LC was also observed as a function of increasing the ionic strength (buffer capacity) and strongly influenced in the presence of mono and divalent cations. Langmuir-Blodgett (LB) and polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) measurements provide further insight in modulation of the lipid packing efficiency and alkyl chain conformation of the CL at different pH and ionic conditions. Overall, the results presented in this paper establish that LCs offer a promising approach to differentiate different conformations (label free detection) of the CL through ordering transition of the LC at aqueous

  9. Conductance fluctuations and distribution at metal-insulator transition induced by electric field in disordered chain

    International Nuclear Information System (INIS)

    Senouci, Khaled

    2000-08-01

    A simple Kronig-Penney model for 1D mesoscopic systems with δ peak potentials is used to study numerically the influence of a constant electric field on the conductance fluctuations and distribution at the transition. We found that the conductance probability distribution has a system-size independent form with large fluctuations in good agreement with the previous works in 2D and 3D systems. (author)

  10. Doping Induced Transition from an Antiferro-Type Order to Phase Separation

    International Nuclear Information System (INIS)

    Lemanski, R.; Gajek, Z.

    2003-01-01

    A sequence of transitions from an antiferro-type order to a phase separate state under doping away from half filling is studied within the 1D Falicov-Kimball model. Using the method of restricted phase diagrams the system is analyzed exactly in the thermodynamic limit. Various kinds of ordering, including periodic n-molecular phases and their mixtures are found for a set of values of the interaction constant U. (author)

  11. Direct Observation of the Pressure-Induced Semiconductor-To-Metal Transition in Yb Monochalcogenides

    International Nuclear Information System (INIS)

    Matsunami, M.; Chen, L.; Nanba, T.; Ochiai, A.

    2003-01-01

    We have measured infrared absorption spectra under pressure and reflectivity spectra of YbS in the wide photon energy range from 7 meV to 30 eV. The absorption edge shifts linearly toward lower energy with pressure, and above 11 GPa it disappeared in the infrared energy region. The results are considered to correspond to the development of a f-d mixing above this pressure, which lead to an occurrence of the semiconductor-to- metal transition. (author)

  12. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2008-06-26

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

  13. Cascade-induced fluctuations and the transition from the stable to the critical cavity radius for swelling

    International Nuclear Information System (INIS)

    Hayns, M.R.; Mansur, L.K.

    1985-01-01

    Recently, a cascade diffusion theory was developed to understand cacade-induced fluctuations in point defect flux during irradiation. Application of the theory revealed that such fluctuations give rise to a mechanism of cascade-induced creep that is predicted to be of significant magnitude. Here we extend the investigation to the formation of cavities. Specifically, we explore the possible importance of cascade-induced cavity growth excursions in triggering a transition from the gas-content-dictated stable radius to the critical radius for bias-driven growth. Two methods of analysis are employed. The first uses the variance of fluctuations to assess the average effect of fluctuations. The second is based on the fact that in a large ensemble of cavities, a small fraction will experience larger than average excursions. This prospect is assessed by estimating upper limits to the processes. For the conditions considered, it is concluded that cascade-induced fluctuations are of minor importance in triggering the onset of swelling in a population of stable gas-containing cavities

  14. Pressure induced phase transition in Pb6Bi2S9

    DEFF Research Database (Denmark)

    Olsen, Lars Arnskov; Friese, Karen; Makovicky, Emil

    2011-01-01

    consists of two types of moduli with SnS/TlI archetype structure in which the Pb and Bi lone pairs are strongly expressed. The mechanism of the phase transition is described in detail and the results are compared to the closely related phase transition in Pb3Bi2S6 (lillianite).......The crystal structure of Pb6Bi2S9 is investigated at pressures between 0 and 5.6 GPa with X-ray diffraction on single-crystals. The pressure is applied using diamond anvil cells. Heyrovskyite (Bbmm, a = 13.719(4) Å, b = 31.393(9) Å, c = 4.1319(10) Å, Z = 4) is the stable phase of Pb6Bi2S9...... at ambient conditions and is built from distorted moduli of PbS-archetype structure with a low stereochemical activity of the Pb2+ and Bi3+ lone electron pairs. Heyrovskyite is stable until at least 3.9 GPa and a first-order phase transition occurs between 3.9 and 4.8 GPa. A single-crystal is retained after...

  15. Evidence for charge-trapping inducing polymorphic structural-phase transition in pentacene.

    Science.gov (United States)

    Ando, Masahiko; Kehoe, Tom B; Yoneya, Makoto; Ishii, Hiroyuki; Kawasaki, Masahiro; Duffy, Claudia M; Minakata, Takashi; Phillips, Richard T; Sirringhaus, Henning

    2015-01-07

    Trapped-charge-induced transformation of pentacene polymorphs is observed by using in situ Raman spectroscopy and molecular dynamics simulations reveal that the charge should be localized in pentacene molecules at the interface with static intermolecular disorder along the long axis. Quantum chemical calculations of the intermolecular transfer integrals suggest the disorder to be large enough to induce Anderson-type localization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Vimang (Mangifera indica L. extract) induces permeability transition in isolated mitochondria, closely reproducing the effect of mangiferin, Vimang's main component.

    Science.gov (United States)

    Pardo-Andreu, Gilberto L; Dorta, Daniel Junqueira; Delgado, René; Cavalheiro, Renata A; Santos, Antonio C; Vercesi, Anibal E; Curti, Carlos

    2006-02-01

    Mitochondrial permeability transition (MPT) is a Ca(2+)-dependent, cyclosporin A (CsA)-sensitive, non-selective inner membrane permeabilization process. It is often associated with apoptotic cell death, and is induced by a wide range of agents or conditions, usually involving reactive oxygen species (ROS). In this study, we demonstrated that Mangifera indica L. extract (Vimang), in the presence of 20 microM Ca(2+), induces MPT in isolated rat liver mitochondria, assessed as CsA-sensitive mitochondrial swelling, closely reproducing the same effect of mangiferin, the main component of the extract, as well as MPT-linked processes like oxidation of membrane protein thiols, mitochondrial membrane potential dissipation and Ca(2+) release from organelles. The flavonoid catechin, the second main component of Vimang, also induces MPT, although to a lesser extent; the minor, but still representative Vimang extract components, gallic and benzoic acids, show respectively, low and high MPT inducing abilities. Nevertheless, following exposure to H(2)O(2)/horseradish peroxidase, the visible spectra of these compounds does not present the same changes previously reported for mangiferin. It is concluded that Vimang-induced MPT closely reproduces mangiferin effects, and proposed that this xanthone is the main agent responsible for the extract's MPT inducing ability, by the action on mitochondrial membrane protein thiols of products arising as a consequence of the mangiferin's antioxidant activity. While this effect would oppose the beneficial effect of Vimang's antioxidant activity, it could nevertheless benefit cells exposed to over-production of ROS as occurring in cancer cells, in which triggering of MPT-mediated apoptosis may represent an important defense mechanism to their host.

  17. Role of Defects and Adsorbed Water Film in Influencing the Electrical, Optical and Catalytic Properties of Transition Metal Oxides

    Science.gov (United States)

    Wang, Qi

    obtain a mechanistic understanding of the charge transfer process. We have developed a spectroscopic technique for studying vacancy defects in TMOs using near-infrared photoluminescence (NIR-PL) spectroscopy and showed that this technique is uniquely suited for studying defect-adsorbate interactions. In this work, a series of studies were carried out to elucidate the underlying structure-defect-property correlations of TMOs and their role in catalyzing electrical and electrochemical properties. In the first study, we report a new type of electrical phase transition in p-type, non-stoichiometric nickel oxide involving a semiconductor-to-insulator-to-metal transition along with the complete change of conductivity from p- to n-type at room temperature induced by electrochemical Li+ intercalation. Direct observation of vacancy-ion interactions using in-situ NIR-PL show that the transition is a result of passivation of native nickel (cationic) vacancy defects and subsequent formation of oxygen (anionic) vacancy defects driven by Li+ insertion into the lattice. X-ray photoemission spectroscopy studies performed to examine the changes in the oxidation states of nickel due to defect interactions support the above conclusions. In the second study, main effects of oxygen vacancy defects on the electronic and optical properties of V2O5 nanowires were studied using in-situ Raman, photoluminescence, absorption, and photoemission spectroscopy. We show that both thermal reduction and electrochemical reduction via Li+ insertion results in the creation of oxygen vacancy defects in the crystal that leads to band filling and an increase in the optical band gap of V2O5 from 1.95 eV to 2.45 eV, an effect known as the Burstein-Moss effect. In the third study, we report a new type of semiconductor-adsorbed water interaction in metal oxides known as "electrochemical surface transfer doping," a phenomenon that has been previously been observed on hydrogen-terminated diamond, carbon nanotube

  18. Induced pluripotent stem cells inhibit bleomycin-induced pulmonary fibrosis in mice through suppressing TGF-β1/Smad-mediated epithelial to mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Yan Zhou

    2016-11-01

    Full Text Available Pulmonary fibrosis is a progressive and irreversible fibrotic lung disorder with high mortality and few treatment options. Recently, induced pluripotent stem (iPS cells have been considered as an ideal resource for stem cell-based therapy. Although an earlier study demonstrated the therapeutic effect of iPS cells on pulmonary fibrosis, the exact mechanisms remain obscure. The present study investigated the effects of iPS cells on inflammatory responses, transforming growth factor (TGF-β1 signaling pathway, and epithelial to mesenchymal transition (EMT during bleomycin (BLM-induced lung fibrosis. A single intratracheal instillation of BLM (5 mg/kg was performed to induce pulmonary fibrosis in C57BL/6 mice. Then, iPS cells (c-Myc-free were administrated intravenously at 24 h following BLM instillation. Three weeks after BLM administration, pulmonary fibrosis was evaluated. As expected, treatment with iPS cells significantly limited the pathological changes, edema, and collagen deposition in lung tissues of BLM-induced mice. Mechanically, treatment with iPS cells obviously repressed the expression ratios of matrix metalloproteinase-2 (MMP-2 to its tissue inhibitor -2 (TIMP-2 and MMP-9/TIMP-1 in BLM-induced pulmonary tissues. In addition, iPS cell administration remarkably suppressed BLM-induced up-regulation of pulmonary inflammatory mediators, including tumor necrosis factor-α, interleukin (IL-1β, IL-6, inducible nitric oxide synthase, nitric oxide, cyclooxygenase-2 and prostaglandin E2. We further demonstrated that transplantation of iPS cells markedly inhibited BLM-mediated activation of TGF-β1/Mothers against decapentaplegic homolog 2/3 (Smad2/3 and EMT in lung tissues through up-regulating epithelial marker E-cadherin and down-regulating mesenchymal markers including fibronectin, vimentin and α-smooth muscle actin. Moreover, in vitro, iPS cell-conditioned medium (iPSC-CM profoundly inhibited TGF-β1-induced EMT signaling pathway in mouse

  19. CXCL9 Regulates TGF-β1-Induced Epithelial to Mesenchymal Transition in Human Alveolar Epithelial Cells.

    Science.gov (United States)

    O'Beirne, Sarah L; Walsh, Sinead M; Fabre, Aurélie; Reviriego, Carlota; Worrell, Julie C; Counihan, Ian P; Lumsden, Robert V; Cramton-Barnes, Jennifer; Belperio, John A; Donnelly, Seamas C; Boylan, Denise; Marchal-Sommé, Joëlle; Kane, Rosemary; Keane, Michael P

    2015-09-15

    Epithelial to mesenchymal cell transition (EMT), whereby fully differentiated epithelial cells transition to a mesenchymal phenotype, has been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). CXCR3 and its ligands are recognized to play a protective role in pulmonary fibrosis. In this study, we investigated the presence and extent of EMT and CXCR3 expression in human IPF surgical lung biopsies and assessed whether CXCR3 and its ligand CXCL9 modulate EMT in alveolar epithelial cells. Coexpression of the epithelial marker thyroid transcription factor-1 and the mesenchymal marker α-smooth muscle actin and CXCR3 expression was examined by immunohistochemical staining of IPF surgical lung biopsies. Epithelial and mesenchymal marker expression was examined by quantitative real-time PCR, Western blotting, and immunofluorescence in human alveolar epithelial (A549) cells treated with TGF-β1 and CXCL9, with Smad2, Smad3, and Smad7 expression and cellular localization examined by Western blotting. We found that significantly more cells were undergoing EMT in fibrotic versus normal areas of lung in IPF surgical lung biopsy samples. CXCR3 was expressed by type II pneumocytes and fibroblasts in fibrotic areas in close proximity to cells undergoing EMT. In vitro, CXCL9 abrogated TGF-β1-induced EMT. A decrease in TGF-β1-induced phosphorylation of Smad2 and Smad3 occurred with CXCL9 treatment. This was associated with increased shuttling of Smad7 from the nucleus to the cytoplasm where it inhibits Smad phosphorylation. This suggests a role for EMT in the pathogenesis of IPF and provides a novel mechanism for the inhibitory effects of CXCL9 on TGF-β1-induced EMT. Copyright © 2015 by The American Association of Immunologists, Inc.

  20. Pressure induced magneto-structural phase transitions in layered RMn2X2 compounds (invited)

    International Nuclear Information System (INIS)

    Kennedy, Shane; Wang, Jianli; Campbell, Stewart; Hofmann, Michael; Dou, Shixue

    2014-01-01

    We have studied a range of pseudo-ternaries derived from the parent compound PrMn 2 Ge 2 , substituting for each constituent element with a smaller one to contract the lattice. This enables us to observe the magneto-elastic transitions that occur as the Mn-Mn nearest neighbour distance is reduced and to assess the role of Pr on the magnetism. Here, we report on the PrMn 2 Ge 2−x Si x , Pr 1−x Y x Mn 2 Ge 2 , and PrMn 2−x Fe x Ge 2 systems. The pressure produced by chemical substitution in these pseudo-ternaries is inherently non-uniform, with local pressure variations dependent on the local atomic distribution. We find that concentrated chemical substitution on the R or X site (e.g., in Pr 0.5 Y 0.5 Mn 2 Ge 2 and PrMn 2 Ge 0.8 Si 1.2 ) can produce a separation into two distinct magnetic phases, canted ferromagnetic and canted antiferromagnetic, with a commensurate phase gap in the crystalline lattice. This phase gap is a consequence of the combination of phase separation and spontaneous magnetostriction, which is positive on transition to the canted ferromagnetic phase and negative on transition to the canted antiferromagnetic phase. Our results show that co-existence of canted ferromagnetic and antiferromagnetic phases depends on chemical pressure from the rare earth and metalloid sites, on local lattice strain distributions and on applied magnetic field. We demonstrate that the effects of chemical pressure bear close resemblance to those of mechanical pressure on the parent compound

  1. Multiple-Quantum Transitions and Charge-Induced Decoherence of Donor Nuclear Spins in Silicon

    Science.gov (United States)

    Franke, David P.; Pflüger, Moritz P. D.; Itoh, Kohei M.; Brandt, Martin S.

    2017-06-01

    We study single- and multiquantum transitions of the nuclear spins of an ensemble of ionized arsenic donors in silicon and find quadrupolar effects on the coherence times, which we link to fluctuating electrical field gradients present after the application of light and bias voltage pulses. To determine the coherence times of superpositions of all orders in the 4-dimensional Hilbert space, we use a phase-cycling technique and find that, when electrical effects were allowed to decay, these times scale as expected for a fieldlike decoherence mechanism such as the interaction with surrounding Si 29 nuclear spins.

  2. Density induced phase transitions in the Schwinger model. A study with matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2017-02-15

    We numerically study the zero temperature phase structure of the multiflavor Schwinger model at nonzero chemical potential. Using matrix product states, we reproduce analytical results for the phase structure for two flavors in the massless case and extend the computation to the massive case, where no analytical predictions are available. Our calculations allow us to locate phase transitions in the mass-chemical potential plane with great precision and provide a concrete example of tensor networks overcoming the sign problem in a lattice gauge theory calculation.

  3. Vortex-induced morphology on a two-fluid interface and the transitions.

    Science.gov (United States)

    Tsai, J-C; Tao, C-Y; Sun, Y-C; Lai, C-Y; Huang, K-H; Juan, W-T; Huang, J-R

    2015-09-01

    We investigate experimentally the steady flows in a cylinder containing two immiscible liquids, with the primary fluid being driven by the upper boundary rotating at constant speeds. The system exhibits interesting interplays between the flow fields and the morphology of the interface, with evidence showing that the remarkable flattop structure is a consequence of the vortex breakdown discovered decades ago, and that the deformability of the interface also feedbacks positively to the development of the vortices. Monitoring the topological structure of the flow fields defines the base states and transitions behind the morphology, whereas our survey over different aspect ratios also reveals rich phenomena of surface instabilities accompanying these steady states.

  4. Strain-induced fundamental optical transition in (In,Ga)As/GaP quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Robert, C., E-mail: cedric.robert@insa-rennes.fr, E-mail: cedric.robert@tyndall.ie; Pedesseau, L.; Cornet, C.; Jancu, J.-M.; Even, J.; Durand, O. [Université Européenne de Bretagne, INSA Rennes, France and CNRS, UMR 6082 Foton, 20 Avenue des Buttes de Coësmes, 35708 Rennes (France); Nestoklon, M. O. [Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Pereira da Silva, K. [ICMAB-CSIC, Campus UAB, 08193 Bellaterra (Spain); Departamento de Física, Universidade Federal do Ceará, P.O. Box 6030, Fortaleza–CE, 60455-970 (Brazil); Alonso, M. I. [ICMAB-CSIC, Campus UAB, 08193 Bellaterra (Spain); Goñi, A. R. [ICMAB-CSIC, Campus UAB, 08193 Bellaterra (Spain); ICREA, Passeig Lluís Companys 23, 08010 Barcelona (Spain); Turban, P. [Equipe de Physique des Surfaces et Interfaces, Institut de Physique de Rennes UMR UR1-CNRS 6251, Université de Rennes 1, F-35042 Rennes Cedex (France)

    2014-01-06

    The nature of the ground optical transition in an (In,Ga)As/GaP quantum dot is thoroughly investigated through a million atoms supercell tight-binding simulation. Precise quantum dot morphology is deduced from previously reported scanning-tunneling-microscopy images. The strain field is calculated with the valence force field method and has a strong influence on the confinement potentials, principally, for the conduction band states. Indeed, the wavefunction of the ground electron state is spatially confined in the GaP matrix, close to the dot apex, in a large tensile strain region, having mainly Xz character. Photoluminescence experiments under hydrostatic pressure strongly support the theoretical conclusions.

  5. Pressure-induced quantum phase transition in the itinerant ferromagnet UCoGa

    Czech Academy of Sciences Publication Activity Database

    Míšek, Martin; Prokleška, J.; Opletal, P.; Proschek, P.; Kaštil, Jiří; Kamarád, Jiří; Sechovský, V.

    2017-01-01

    Roč. 7, č. 5 (2017), s. 1-4, č. článku 055712. ISSN 2158-3226 R&D Projects: GA ČR GA16-06422S Institutional support: RVO:68378271 Keywords : quantum phase transition * high pressure * itinerant ferromagnet * UCoGa Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.568, year: 2016 http://aip.scitation.org/doi/10.1063/1.4976300

  6. Temperature- and field-induced structural transitions in magnetic colloidal clusters

    Science.gov (United States)

    Hernández-Rojas, J.; Calvo, F.

    2018-02-01

    Magnetic colloidal clusters can form chain, ring, and more compact structures depending on their size. In the present investigation we examine the combined effects of temperature and external magnetic field on these configurations by means of extensive Monte Carlo simulations and a dedicated analysis based on inherent structures. Various thermodynamical, geometric, and magnetic properties are calculated and altogether provide evidence for possibly multiple structural transitions at low external magnetic field. Temperature effects are found to overcome the ordering effect of the external field, the melted stated being associated with low magnetization and a greater compactness. Tentative phase diagrams are proposed for selected sizes.

  7. Optical transitions driven by self-induced walk-off in nematic liquid crystals

    International Nuclear Information System (INIS)

    Brasselet, E.

    2004-01-01

    Optical field induced reorientation of a nematic liquid crystals film is investigated for finite cross-section of the excitation beam. An approach based on self-induced walk-off between extraordinary and ordinary waves is proposed, including the geometrical aspect ratio between the beam diameter and the cell thickness in a perturbative fashion. The bifurcation scenario when the intensity is taken as the control parameter is calculated in the case of a circularly polarized excitation beam at normal incidence. The sudden appearance of a new saddle-node bifurcation is predicted for a walk-off corresponding to realistic experimental conditions. Changes of the light angular momentum transfer induced by walk-off are singled out as a valid candidate to explain observed nonlinear dynamics whose origin is not yet well understood

  8. Temperature-induced transitions in disordered proteins probed by NMR spectroscopy

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin; Kragelund, Birthe Brandt

    2012-01-01

    Intrinsically disordered proteins are abundant in nature and perform many important physiological functions. Multidimensional NMR spectroscopy has been crucial for the understanding of the conformational properties of disordered proteins and is increasingly used to probe their conformational...... ensembles. Compared to folded proteins, disordered proteins are more malleable and more easily perturbed by environmental factors. Accordingly, the experimental conditions and especially the temperature modify the structural and functional properties of disordered proteins. NMR spectroscopy allows analysis...... of temperature-induced structural changes at residue resolution using secondary chemical shift analysis, paramagnetic relaxation enhancement, and residual dipolar couplings. This chapter discusses practical aspects of NMR studies of temperature-induced structural changes in disordered proteins....

  9. Inhibition of glycogen synthase kinase 3beta ameliorates triptolide-induced acute cardiac injury by desensitizing mitochondrial permeability transition

    International Nuclear Information System (INIS)

    Wang, Wenwen; Yang, Yanqin; Xiong, Zhewen; Kong, Jiamin; Fu, Xinlu; Shen, Feihai; Huang, Zhiying

    2016-01-01

    Triptolide (TP), a diterpene triepoxide, is a major active component of Tripterygium wilfordii extracts, which are prepared as tablets and has been used clinically for the treatment of inflammation and autoimmune disorders. However, TP's therapeutic potential is limited by severe adverse effects. In a previous study, we reported that TP induced mitochondria dependent apoptosis in cardiomyocytes. Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine kinase that plays important roles in the necrosis and apoptosis of cardiomyocytes. Our study aimed to investigate the role of GSK-3β in TP-induced cardiotoxicity. Inhibition of GSK-3β activity by SB 216763, a potent and selective GSK-3 inhibitor, prominently ameliorated the detrimental effects in C57BL/6J mice with TP administration, which was associated with a correction of GSK-3β overactivity. Consistently, in TP-treated H9c2 cells, SB 216763 treatment counteracted GSK-3β overactivity, improved cell viability, and prevented apoptosis by modulating the expression of Bcl-2 family proteins. Mechanistically, GSK-3β interacted with and phosphorylated cyclophilin F (Cyp-F), a key regulator of mitochondrial permeability transition pore (mPTP). GSK-3β inhibition prevented the phosphorylation and activation of Cyp-F, and desensitized mPTP. Our findings suggest that pharmacological targeting of GSK-3β could represent a promising therapeutic strategy for protecting against cardiotoxicity induced by TP. - Highlights: • GSK-3β inhibition ameliorates TP-induced cardiotoxicity in vitro and in vivo. • GSK-3β controls Cyp-F activation, and regulates mPTP and apoptosis in H9c2 cells. • The protective effect is attributed to GSK-3β activity rather than to protein level. • GSK-3β may be a promising target against TP-induced cardiotoxicity.

  10. The Disintegrin and Metalloprotease ADAM12 Is Associated with TGF-β-Induced Epithelial to Mesenchymal Transition.

    Directory of Open Access Journals (Sweden)

    Michaël Ruff

    Full Text Available The increased expression of the Disintegrin and Metalloprotease ADAM12 has been associated with human cancers, however its role remain unclear. We have previously reported that ADAM12 expression is induced by the transforming growth factor, TGF-β and promotes TGF-β-dependent signaling through interaction with the type II receptor of TGF-β. Here we explore the implication of ADAM12 in TGF-β-mediated epithelial to mesenchymal transition (EMT, a key process in cancer progression. We show that ADAM12 expression is correlated with EMT markers in human breast cancer cell lines and biopsies. Using a non-malignant breast epithelial cell line (MCF10A, we demonstrate that TGF-β-induced EMT increases expression of the membrane-anchored ADAM12L long form. Importantly, ADAM12L overexpression in MCF10A is sufficient to induce loss of cell-cell contact, reorganization of actin cytoskeleton, up-regulation of EMT markers and chemoresistance. These effects are independent of the proteolytic activity but require the cytoplasmic tail and are specific of ADAM12L since overexpression of ADAM12S failed to induce similar changes. We further demonstrate that ADAM12L-dependent EMT is associated with increased phosphorylation of Smad3, Akt and ERK proteins. Conversely, inhibition of TGF-β receptors or ERK activities reverses ADAM12L-induced mesenchymal phenotype. Together our data demonstrate that ADAM12L is associated with EMT and contributes to TGF-β-dependent EMT by favoring both Smad-dependent and Smad-independent pathways.

  11. Inhibition of glycogen synthase kinase 3beta ameliorates triptolide-induced acute cardiac injury by desensitizing mitochondrial permeability transition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenwen; Yang, Yanqin; Xiong, Zhewen; Kong, Jiamin [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Fu, Xinlu [Laboratory Animals Center, Sun Yat-sen University, Guangzhou 510006 (China); Shen, Feihai, E-mail: shenfh3@mail.sysu.edu.cn [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Huang, Zhiying, E-mail: hzhiying@mail.sysu.edu.cn [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China)

    2016-12-15

    Triptolide (TP), a diterpene triepoxide, is a major active component of Tripterygium wilfordii extracts, which are prepared as tablets and has been used clinically for the treatment of inflammation and autoimmune disorders. However, TP's therapeutic potential is limited by severe adverse effects. In a previous study, we reported that TP induced mitochondria dependent apoptosis in cardiomyocytes. Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine kinase that plays important roles in the necrosis and apoptosis of cardiomyocytes. Our study aimed to investigate the role of GSK-3β in TP-induced cardiotoxicity. Inhibition of GSK-3β activity by SB 216763, a potent and selective GSK-3 inhibitor, prominently ameliorated the detrimental effects in C57BL/6J mice with TP administration, which was associated with a correction of GSK-3β overactivity. Consistently, in TP-treated H9c2 cells, SB 216763 treatment counteracted GSK-3β overactivity, improved cell viability, and prevented apoptosis by modulating the expression of Bcl-2 family proteins. Mechanistically, GSK-3β interacted with and phosphorylated cyclophilin F (Cyp-F), a key regulator of mitochondrial permeability transition pore (mPTP). GSK-3β inhibition prevented the phosphorylation and activation of Cyp-F, and desensitized mPTP. Our findings suggest that pharmacological targeting of GSK-3β could represent a promising therapeutic strategy for protecting against cardiotoxicity induced by TP. - Highlights: • GSK-3β inhibition ameliorates TP-induced cardiotoxicity in vitro and in vivo. • GSK-3β controls Cyp-F activation, and regulates mPTP and apoptosis in H9c2 cells. • The protective effect is attributed to GSK-3β activity rather than to protein level. • GSK-3β may be a promising target against TP-induced cardiotoxicity.

  12. Theoretical studies of the pressure-induced phase transition and elastic properties of BeS

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Xu [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Yu, Yang, E-mail: yuyang@scu.edu.cn [Department of Logistics Management, Sichuan University, Chengdu 610065 (China); Ji, Junyi [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Long, Jianping [College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China); Chen, Jianjun; Liu, Daijun [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China)

    2015-02-25

    Highlights: • Transition pressure from B3 to B8 of BeS is 58.86 GPa. • Elastic properties of BeS under pressure are predicted for the first time. • Elastic moduli of BeS increase monotonically with increasing pressure. • Elastic anisotropy of BeS has been investigated. - Abstract: First-principles calculations were performed to investigate the structural, electronic and elastic properties of BeS in both B3 and B8 structures. The structural phase transition from B3 to B8 occurs at 58.86 GPa with a volume decrease of 10.74%. The results of the electronic band structure show that the energy gap is indirect for B3 and B8 phases. The pressure dependence of the direct and indirect band gaps for BeS has been investigated. Especially, the elastic constants of B8 BeS under high pressure have been studied for the first time. The mechanical stability of the two phases has been discussed based on the pressure dependence of the elastic constants. In addition, the pressure dependence of bulk modulus, shear modulus, Young’s modulus, elastic wave velocities and brittle–ductile behavior of BeS are all successfully obtained. Finally, the elastic anisotropy has been investigated by using two different methods.

  13. Iron Damage and Spalling Behavior below and above Shock Induced α ε Phase Transition

    International Nuclear Information System (INIS)

    Voltz, Christophe; Buy, Francois; Roy, Gilles

    2006-01-01

    The study of dynamic damage and fracture of iron has been undertaken below and above phase transition by series of time resolved experiments using both light gas launcher and powder gun. Shock wave tests were conducted by symmetrical impacts of high purity iron. To reveal the material behavior we have done shock experiments where the target is covered with a window in order to limit release amplitude and to avoid specimen fragmentation. Metallurgical analysis of soft recovered samples yields information about damage and fracture processes related to thermo-mechanical loading paths. Tests conducted without window allow studying effects of both phase change and release transition. Optical and SEM characterizations lead us to observe several modes of damage: brittle, ductile diffuse with void growth and heavily localized smooth one. These figures are related with: rarefaction shock waves or interfaces between transformed and not transformed iron. Simulations are performed with the 1D to compare experimental data with numerical results. We explain post-mortem observations by the complex shock wave structure interactions: P1 and P2 shock fronts associated with some corresponding shock release during unloading stages

  14. Mixotrophic transition induced lipid productivity in Chlorella pyrenoidosa under stress conditions for biodiesel production

    Directory of Open Access Journals (Sweden)

    Hari Prasad Ratnapuram

    2018-01-01

    Full Text Available Influence of mixotrophic mode and its transition to various trophic modes under stress conditions was assessed during two stage cultivation of Chlorella pyrenoidosa. Significant lipid productivity was triggered under low light intensity, glucose + bicarbonate supplementation and nitrogen starvation. The association between biomass and lipid productivity, fatty acid composition during mixotrophic transition was critically evaluated. Biomass in growth phase (GP and stress phase (SP was 6.14 g/l and 5.14 g/l, respectively, in mixotrophic mode. Higher lipid productivity of 284 g/kg and 154.3 g/kg of neutral lipids was achieved in SP in mixotrophic-mixotrophic (MM and mixotrophic-heterotrophic (MH modes, respectively. Stress conditions resulted in high unsaturated fatty acid methyl esters in MH mode. In addition, neutral lipid content was 58% in MH and 52% in MM, that can be attributed to carbon source that is supplemented even in stress phase. Exploring such novel strategies can generate sustainable avenues for biodiesel production.

  15. Dislocation Coupling-Induced Transition of Synchronization in Two-Layer Neuronal Networks

    International Nuclear Information System (INIS)

    Qin Hui-Xin; Ma Jun; Wang Chun-Ni; Jin Wu-Yin

    2014-01-01

    The mutual coupling between neurons in a realistic neuronal system is much complex, and a two-layer neuronal network is designed to investigate the transition of electric activities of neurons. The Hindmarsh—Rose neuron model is used to describe the local dynamics of each neuron, and neurons in the two-layer networks are coupled in dislocated type. The coupling intensity between two-layer networks, and the coupling ratio (Pro), which defines the percentage involved in the coupling in each layer, are changed to observe the synchronization transition of collective behaviors in the two-layer networks. It is found that the two-layer networks of neurons becomes synchronized with increasing the coupling intensity and coupling ratio (Pro) beyond certain thresholds. An ordered wave in the first layer is useful to wake up the rest state in the second layer, or suppress the spatiotemporal state in the second layer under coupling by generating target wave or spiral waves. And the scheme of dislocation coupling can be used to suppress spatiotemporal chaos and excite quiescent neurons. (interdisciplinary physics and related areas of science and technology)

  16. Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide

    Science.gov (United States)

    Lee, Boeun; Yoon, Chong Seung; Lee, Hae Ri; Chung, Kyung Yoon; Cho, Byung Won; Oh, Si Hyoung

    2014-08-01

    Zn-ion batteries are emerging energy storage systems eligible for large-scale applications, such as electric vehicles. These batteries consist of totally environmentally-benign electrode materials and potentially manufactured very economically. Although Zn/α-MnO2 systems produce high energy densities of 225 Wh kg-1, larger than those of conventional Mg-ion batteries, they show significant capacity fading during long-term cycling and suffer from poor performance at high current rates. To solve these problems, the concrete reaction mechanism between α-MnO2 and zinc ions that occur on the cathode must be elucidated. Here, we report the intercalation mechanism of zinc ions into α-MnO2 during discharge, which involves a reversible phase transition of MnO2 from tunneled to layered polymorphs by electrochemical reactions. This transition is initiated by the dissolution of manganese from α-MnO2 during discharge process to form layered Zn-birnessite. The original tunneled structure is recovered by the incorporation of manganese ions back into the layers of Zn-birnessite during charge process.

  17. Dilatancy induced ductile-brittle transition of shear band in metallic glasses

    Science.gov (United States)

    Zeng, F.; Jiang, M. Q.; Dai, L. H.

    2018-04-01

    Dilatancy-generated structural disordering, an inherent feature of metallic glasses (MGs), has been widely accepted as the physical mechanism for the primary origin and structural evolution of shear banding, as well as the resultant shear failure. However, it remains a great challenge to determine, to what degree of dilatation, a shear banding will evolve into a runaway shear failure. In this work, using in situ acoustic emission monitoring, we probe the dilatancy evolution at the different stages of individual shear band in MGs that underwent severely plastic deformation by the controlled cutting technology. A scaling law is revealed that the dilatancy in a shear band is linearly related to its evolution degree. A transition from ductile-to-brittle shear bands is observed, where the formers dominate stable serrated flow, and the latter lead to a runaway instability (catastrophe failure) of serrated flow. To uncover the underlying mechanics, we develop a theoretical model of shear-band evolution dynamics taking into account an atomic-scale deformation process. Our theoretical results agree with the experimental observations, and demonstrate that the atomic-scale volume expansion arises from an intrinsic shear-band evolution dynamics. Importantly, the onset of the ductile-brittle transition of shear banding is controlled by a critical dilatation.

  18. Traffic jams induce dynamical phase transition in spatial rock-paper-scissors game

    Science.gov (United States)

    Nagatani, Takashi; Ichinose, Genki; Tainaka, Kei-ichi

    2018-02-01

    Spatial and temporal behaviors of the rock-paper-scissors (RPS) game is key to understanding not only biodiversity but also a variety of cyclic systems. It has been demonstrated that, in the stochastic cellular automaton of RPS game, three species cannot survive on one-dimensional (1-d) lattice; only a single species survives. Previous studies have shown that three species are able to coexist if the migration of species is considered. However, their definitions of migration are the swapping of two species or the random walk of species, which rarely occurs in nature. Here, we investigate the effect of migration by using the 1-d lattice traffic model in which species can move rightward if the site ahead is empty. Computer simulations reveal that three species can survive at the same time within the wide range of parameter values. At low densities, all species can coexist. In contrast, the extinction of two species occurs if the density exceeds the critical limit of the jamming transition. This dynamical phase transition between the coexistence and single (non-coexistence) phase clearly separates due to the self-organized pattern: condensation and rarefaction in the stripe-pattern of three species.

  19. Surface-Induced Frustration in Solid State Polymorphic Transition of Native Cellulose Nanocrystals.

    Science.gov (United States)

    Salminen, Reeta; Baccile, Niki; Reza, Mehedi; Kontturi, Eero

    2017-06-12

    The presence of an interface generally influences crystallization of polymers from melt or from solution. Here, by contrast, we explore the effect of surface immobilization in a direct solid state polymorphic transition on individual cellulose nanocrystals (CNCs), extracted from a plant-based origin. The conversion from native cellulose I to cellulose III crystal occurred via a host-guest inclusion of ethylene diamine inside the crystal. A 60% reduction in CNC width (height) in atomic force microscopy images suggested that when immobilized on a flat modified silica surface, the stresses caused by the inclusion or the subsequent regeneration resulted in exfoliation, hypothetically, between the van der Waals bonded sheets within the crystal. Virtually no changes in dimensions were visible when the polymorphic transition was performed to nonimmobilized CNCs in bulk dispersion. With reservations and by acknowledging the obvious dissimilarities, the exfoliation of cellulose crystal sheets can be viewed as analogous to exfoliation of 2D structures like graphene from a van der Waals stacked solid. Here, the detachment is triggered by an inclusion of a guest molecule inside a host cellulose crystal and the stresses caused by the firm attachment of the CNC on a solid substrate, leading to detachment of molecular sheets or stacks of sheets.

  20. Thrombin induces epithelial-mesenchymal transition and collagen production by retinal pigment epithelial cells via autocrine PDGF-receptor signaling.

    Science.gov (United States)

    Bastiaans, Jeroen; van Meurs, Jan C; van Holten-Neelen, Conny; Nagtzaam, Nicole M A; van Hagen, P Martin; Chambers, Rachel C; Hooijkaas, Herbert; Dik, Willem A

    2013-12-19

    De-differentiation of RPE cells into mesenchymal cells (epithelial-mesenchymal transition; EMT) and associated collagen production contributes to development of proliferative vitreoretinopathy (PVR). In patients with PVR, intraocular coagulation cascade activation occurs and may play an important initiating role. Therefore, we examined the effect of the coagulation proteins factor Xa and thrombin on EMT and collagen production by RPE cells. Retinal pigment epithelial cells were stimulated with factor Xa or thrombin and the effect on zonula occludens (ZO)-1, α-smooth muscle actin (α-SMA), collagen, and platelet-derived growth factor (PDGF)-B were determined by real-time quantitative-polymerase chain reaction (RQ-PCR), immunofluorescence microscopy, and HPLC and ELISA for collagen and PDGF-BB in culture supernatants, respectively. PDGF-receptor activation was determined by phosphorylation analysis and inhibition studies using the PDGF-receptor tyrosine kinase inhibitor AG1296. Thrombin reduced ZO-1 gene expression (P production of α-SMA and collagen increased. In contrast to thrombin, factor Xa hardly stimulated EMT by RPE. Thrombin clearly induced PDGF-BB production and PDGF-Rβ chain phosphorylation in RPE. Moreover, AG1296 significantly blocked the effect of thrombin on EMT and collagen production. Our findings demonstrate that thrombin is a potent inducer of EMT by RPE via autocrine activation of PDGF-receptor signaling. Coagulation cascade-induced EMT of RPE may thus contribute to the formation of fibrotic retinal membranes in PVR and should be considered as treatment target in PVR.

  1. Protective effects of l-carnitine and piracetam against mitochondrial permeability transition and PC3 cell necrosis induced by simvastatin.

    Science.gov (United States)

    Costa, Rute A P; Fernandes, Mariana P; de Souza-Pinto, Nadja C; Vercesi, Aníbal E

    2013-02-15

    Mitochondrial oxidative stress followed by membrane permeability transition (MPT) has been considered as a possible mechanism for statins cytotoxicity. Statins use has been associated with reduced risk of cancer incidence, especially prostate cancer. Here we investigated the pathways leading to simvastatin-induced prostate cancer cell death as well as the mechanisms of cell death protection by l-carnitine or piracetam. These compounds are known to prevent and/or protect against cell death mediated by oxidative mitochondrial damage induced by a variety of conditions, either in vivo or in vitro. The results provide evidence that simvastatin induced MPT and cell necrosis were sensitive to either l-carnitine or piracetam in a dose-dependent fashion and mediated by additive mechanisms. When combined, l-carnitine and piracetam acted at concentrations significantly lower than they act individually. These results shed new light into both the cytotoxic mechanisms of statins and the mechanisms underlying the protection against MPT and cell death by the compounds l-carnitine and piracetam. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Effect of heat-induced pain stimuli on pulse transit time and pulse wave amplitude in healthy volunteers.

    Science.gov (United States)

    van Velzen, Marit H N; Loeve, Arjo J; Kortekaas, Minke C; Niehof, Sjoerd P; Mik, Egbert G; Stolker, Robert J

    2016-01-01

    Pain is commonly assessed subjectively by interpretations of patient behaviour and/or reports from patients. When this is impossible the availability of a quantitative objective pain assessment tool based on objective physiological parameters would greatly benefit clinical practice and research beside the standard self-report tests. Vasoconstriction is one of the physiological responses to pain. The aim of this study was to investigate whether pulse transit time (PTT) and pulse wave amplitude (PWA) decrease in response to this vasoconstriction when caused by heat-induced pain. The PTT and PWA were measured in healthy volunteers, on both index fingers using photoplethysmography and electrocardiography. Each subject received 3 heat-induced pain stimuli using a Temperature-Sensory Analyzer thermode block to apply a controlled, increasing temperature from 32.0 °C to 50.0 °C to the skin. After reaching 50.0 °C, the thermode was immediately cooled down to 32.0 °C. The study population was divided into 2 groups with a time-interval between the stimuli 20s or 60s. The results showed a significant (p  Heat-induced pain causes a decrease of PTT and PWA. Consequently, it is expected that, in the future, PTT and PWA may be applied as objective indicators of pain, either beside the standard self-report test, or when self-report testing is impossible.

  3. Stochastic resonance induced by the novel random transitions of two-dimensional weak damping bistable duffing oscillator and bifurcation of moment equation

    International Nuclear Information System (INIS)

    Zhang Guangjun; Xu Jianxue; Wang Jue; Yue Zhifeng; Zou Hailin

    2009-01-01

    In this paper stochastic resonance induced by the novel random transitions of two-dimensional weak damping bistable Duffing oscillator is analyzed by moment method. This kind of novel transition refers to the one among three potential well on two sides of bifurcation point of original system at the presence of internal noise. Several conclusions are drawn. First, the semi-analytical result of stochastic resonance induced by the novel random transitions of two-dimensional weak damping bistable Duffing oscillator can be obtained, and the semi-analytical result is qualitatively compatible with the one of Monte Carlo simulation. Second, a bifurcation of double-branch fixed point curves occurs in the moment equations with noise intensity as their bifurcation parameter. Third, the bifurcation of moment equations corresponds to stochastic resonance of original system. Finally, the mechanism of stochastic resonance is presented from another viewpoint through analyzing the energy transfer induced by the bifurcation of moment equation.

  4. Martensitic transition near room temperature and the temperature- and magnetic-field-induced multifunctional properties of Ni49CuMn34In16 alloy

    Science.gov (United States)

    Sharma, V. K.; Chattopadhyay, M. K.; Khandelwal, A.; Roy, S. B.

    2010-11-01

    A near room-temperature martensitic transition is observed in the ferromagnetic austenite state of Ni50Mn34In16 alloy with 2% Cu substitution at the Ni site. Application of magnetic field in the martensite state induces a reverse martensitic transition in this alloy. dc magnetization, magnetoresistance and strain measurements in this alloy reveal that associated with this martensitic transition there exist a large magnetocaloric effect, a large magnetoresitance and a magnetic-field temperature-induced strain. This NiMnIn alloy system thus is an example of an emerging class of magnetic materials whose physical properties can be tuned by suitable chemical substitutions, to achieve magnetic-field and temperature-induced multifunctional properties at and around room temperature

  5. 27-hydroxycholesterol induces the transition of MCF7 cells into a mesenchymal phenotype.

    Science.gov (United States)

    Torres, Cristian G; Ramírez, María E; Cruz, Pamela; Epuñan, María J; Valladares, Luis E; Sierralta, Walter D

    2011-08-01

    A decrease in the expression of E-cadherin and β-catenin, paralleling the loss of adherens junction complex, was observed in MCF7 cells exposed for longer than 48 h to 2 µM 27-hydroxycholesterol (27OHC), indicating an epithelial-mesenchymal transition (EMT). Upon removal of 27OHC from the culture medium, the cells released by the exposure of 72 h to the oxysterol grew as loosely packed cell groups. In these cells, accumulation of E-cadherin and β-catenin in the cytoplasm and the prolonged expression of epidermal growth factor receptor 2 (EGFR2/neu) in the plasma membrane were observed, suggesting that the acquired phenotype was related to the expression of this tyrosine kinase-growth factor receptor. The results presented here are discussed on the basis of the claimed relationship between 27OHC, hypercholesterolemia, macrophage infiltration and therapy-resistant ERα+ breast cancer incidence.

  6. Confinement-induced liquid crystalline transitions in amyloid fibril cholesteric tactoids

    Science.gov (United States)

    Nyström, Gustav; Arcari, Mario; Mezzenga, Raffaele

    2018-04-01

    Chirality is ubiquitous in nature and plays crucial roles in biology, medicine, physics and materials science. Understanding and controlling chirality is therefore an important research challenge with broad implications. Unlike other chiral colloids, such as nanocellulose or filamentous viruses, amyloid fibrils form nematic phases but appear to miss their twisted form, the cholesteric or chiral nematic phases, despite a well-defined chirality at the single fibril level. Here we report the discovery of cholesteric phases in amyloids, using β-lactoglobulin fibrils shortened by shear stresses. The physical behaviour of these new cholesteric materials exhibits unprecedented structural complexity, with confinement-driven ordering transitions between at least three types of nematic and cholesteric tactoids. We use energy functional theory to rationalize these results and observe a chirality inversion from the left-handed amyloids to right-handed cholesteric droplets. These findings deepen our understanding of cholesteric phases, advancing their use in soft nanotechnology, nanomaterial templating and self-assembly.

  7. Pressure-induced phase transition in C sub 6 O sub 2 I sub 4

    CERN Document Server

    Nakayama, A; Takemura, K; Aoki, K; Carlon, R P

    2002-01-01

    Powder x-ray diffraction measurements on iodanil (C sub 6 O sub 2 I sub 4) have been carried out at pressures up to 39 GPa at room temperature with a diamond-anvil cell under the best hydrostatic conditions using helium as the pressure-transmitting medium. The diffraction patterns up to 23.3 GPa were fitted with a space group P 2 sub 1 /c. New peaks appeared above 26.8 GPa and their intensities increased with increasing pressure while the original ones observed for the low-pressure phase were gradually depressed. This phase transition was accompanied with a mixed state of low- and high-pressure phases over the wide pressure range between 26.8 and at least 39 GPa.

  8. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    Energy Technology Data Exchange (ETDEWEB)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo; Yanagisawa, Susumu [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan)

    2015-09-14

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operates unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.

  9. Observation of double resonant laser induced transitions in the $v = n - l - 1 = 2$ metastable cascade of antiprotonic helium-4 atoms

    CERN Document Server

    Hayano, R S; Tamura, H; Torii, H A; Hori, Masaki; Maas, F E; Morita, N; Kumakura, M; Sugai, I; Hartmann, F J; Daniel, H; Von Egidy, T; Ketzer, B; Pohl, R; Horváth, D; Eades, John; Widmann, E; Yamazaki, T

    1997-01-01

    A new laser-induced resonant transition in the $v=n-l-1=2$ metastable cascade of antiprotonic $^4$He atoms has been found by using a double resonance technique. This was done by setting the first laser to the already known 470.724 nm resonance ($(n,l)=(37,34)\\rightarrow (36,33)$), while the $(38,35)\\rightarrow (37,34)$ transition was searched for with the second laser. The resonant transition was found at wavelength of 529.622$\\pm$0.003 nm, showing excellent agreement with a recent prediction of Korobov.

  10. Bleomycin-induced epithelial–mesenchymal transition in sclerotic skin of mice: Possible role of oxidative stress in the pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Cheng-Fan, E-mail: zhouchengfan@sohu.com [Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022 (China); Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032 (China); Zhou, Deng-Chuan [Department of Emergency Medicine and Critical Care Medicine, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022 (China); Zhang, Jia-Xiang; Wang, Feng; Cha, Wan-Sheng [Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032 (China); Wu, Chang-Hao [Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey (United Kingdom); Zhu, Qi-Xing, E-mail: zqxing@yeah.net [Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022 (China); Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032 (China)

    2014-06-15

    Epithelial–mesenchymal transition (EMT) derived myofibroblasts are partly responsible for the increased collagen synthesis and deposition that occur in tissue fibrosis; however EMT occurrence in skin fibrosis and its mechanism remain unknown. The aim of this study was to investigate whether epithelial cells undergo EMT and determine the role of oxidative stress in this process. BALB/c mice were subcutaneously injected with bleomycin (BLM) or phosphate buffer saline (PBS) into the shaved back daily for 2, 3, and 4 weeks. Skin collagen deposition was evaluated by histopathology and Western blotting. EMT characteristics in the skin were determined by histopathology and immunofluorescent staining for E-cadherin and vimentin, which were further evaluated by Western blotting and reverse transcriptase polymerase chain reaction (RT-PCR). To investigate the role of oxidative stress in EMT, the antioxidant N-acetylcysteine (NAC) was intraperitoneally (100 mg/kg body weight/day) injected daily for 3 weeks. The epithelial suprabasal cells were detached from the basement membrane zone (BMZ) in the sclerotic skin treated with BLM. Immunofluorescent staining indicated vimentin-positive epithelial cells frequently occurring in the thickened epidermis of BLM-treated mice. Western blotting and RT-PCR showed that the expression of E-cadherin was significantly decreased but that of vimentin significantly increased in the skin treated with BLM. NAC attenuated BLM induced oxidative damage, changes in E-cadherin and vimentin expressions and collagen deposition in the sclerotic skin of mice. This study provides the first evidence that BLM induces the EMT of the epithelial cells superficial to the basement membrane zone in the skin fibrosis. Oxidative stress may contribute, at least in part, to BLM induced EMT and skin fibrosis in mice. - Highlights: • We provided the first evidence that EMT occurred in BLM-induced skin fibrosis. • Epithelial cells superficial to the BMZ underwent

  11. Bleomycin-induced epithelial–mesenchymal transition in sclerotic skin of mice: Possible role of oxidative stress in the pathogenesis

    International Nuclear Information System (INIS)

    Zhou, Cheng-Fan; Zhou, Deng-Chuan; Zhang, Jia-Xiang; Wang, Feng; Cha, Wan-Sheng; Wu, Chang-Hao; Zhu, Qi-Xing

    2014-01-01

    Epithelial–mesenchymal transition (EMT) derived myofibroblasts are partly responsible for the increased collagen synthesis and deposition that occur in tissue fibrosis; however EMT occurrence in skin fibrosis and its mechanism remain unknown. The aim of this study was to investigate whether epithelial cells undergo EMT and determine the role of oxidative stress in this process. BALB/c mice were subcutaneously injected with bleomycin (BLM) or phosphate buffer saline (PBS) into the shaved back daily for 2, 3, and 4 weeks. Skin collagen deposition was evaluated by histopathology and Western blotting. EMT characteristics in the skin were determined by histopathology and immunofluorescent staining for E-cadherin and vimentin, which were further evaluated by Western blotting and reverse transcriptase polymerase chain reaction (RT-PCR). To investigate the role of oxidative stress in EMT, the antioxidant N-acetylcysteine (NAC) was intraperitoneally (100 mg/kg body weight/day) injected daily for 3 weeks. The epithelial suprabasal cells were detached from the basement membrane zone (BMZ) in the sclerotic skin treated with BLM. Immunofluorescent staining indicated vimentin-positive epithelial cells frequently occurring in the thickened epidermis of BLM-treated mice. Western blotting and RT-PCR showed that the expression of E-cadherin was significantly decreased but that of vimentin significantly increased in the skin treated with BLM. NAC attenuated BLM induced oxidative damage, changes in E-cadherin and vimentin expressions and collagen deposition in the sclerotic skin of mice. This study provides the first evidence that BLM induces the EMT of the epithelial cells superficial to the basement membrane zone in the skin fibrosis. Oxidative stress may contribute, at least in part, to BLM induced EMT and skin fibrosis in mice. - Highlights: • We provided the first evidence that EMT occurred in BLM-induced skin fibrosis. • Epithelial cells superficial to the BMZ underwent

  12. Dielectric constant of GaAs during a subpicosecond laser-induced phase transition

    Science.gov (United States)

    Siegal, Y.; Glezer, E. N.; Mazur, E.

    1994-06-01

    We measured the time evolution of the real and imaginary parts of the dielectric constant of GaAs following femtosecond laser pulse excitation. The data show a collapse of the average optical gap, or average bonding-antibonding energy-level separation. The rate of collapse increases with pump fluence. The decrease in the gap indicates that the pump beam induces a structural transformation from a covalent, tetrahedrally coordinated crystal to a phase with metallic cohesive properties.

  13. Noise-Induced Transition in a Voltage-Controlled Oscillator Neuron Model

    International Nuclear Information System (INIS)

    Xie Huizhang; Liu Xuemei; Li Zhibing; Ai Baoquan; Liu Lianggang

    2008-01-01

    In the presence of Gaussian white noise, we study the properties of voltage-controlled oscillator neuron model and discuss the effects of the additive and multiplicative noise. It is found that the additive noise can accelerate and counterwork the firing of neuron, which depends on the value of central frequency of neuron itself, while multiplicative noise can induce the continuous change or mutation of membrane potential

  14. Pressure induced Ag{sub 2}Te polymorphs in conjunction with topological non trivial to metal transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.; Zhang, S. J., E-mail: sjzhang@iphy.ac.cn, E-mail: jin@iphy.ac.cn; Yu, X. H.; Yu, R. C.; Jin, C. Q., E-mail: sjzhang@iphy.ac.cn, E-mail: jin@iphy.ac.cn; Dai, X.; Fang, Z. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Oganov, A. R. [Department of Geosciences, University of New York at Stony Brook (United States); Feng, W. X.; Yao, Y. G. [Department of Physics, Beijing Institute of Technology, Beijing (China); Zhu, J. L. [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 (United States); Zhao, Y. S. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); South University of Science and Technology of China, Shenzhen, Guangdong (China)

    2016-08-15

    Silver telluride (Ag{sub 2}Te) is well known as superionic conductor and topological insulator with polymorphs. Pressure induced three phase transitions in Ag{sub 2}Te have been reported in previous. Here, we experimentally identified high pressure phase above 13 GPa of Ag{sub 2}Te by using high pressure synchrotron x ray diffraction method in combination with evolutionary crystal structure prediction, showing it crystallizes into a monoclinic structure of space group C2/m with lattice parameters a = 6.081Å, b = 5.744Å, c = 6.797 Å, β = 105.53°. The electronic properties measurements of Ag{sub 2}Te reveal that the topologically non-trivial semiconducting phase I and semimetallic phase II previously predicated by theory transformed into bulk metals for high pressure phases in consistent with the first principles calculations.

  15. Ultrafast dynamics in CeTe{sub 3} near the pressure-induced charge-density-wave transition

    Energy Technology Data Exchange (ETDEWEB)

    Tauch, Jonas; Obergfell, Manuel [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Schaefer, Hanjo [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Institute of Physics, Ilmenau University of Technology (Germany); Demsar, Jure [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Institute of Physics, Ilmenau University of Technology (Germany); Institute of Physics, Johannes Gutenberg-University Mainz (Germany); Giraldo, Paula; Fisher, Ian R. [Geballe Laboratory for Advanced Materials and Department of Applied Physics, Stanford University (United States); Pashkin, Alexej [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2015-07-01

    Femtosecond pump-probe spectroscopy is an efficient tool for studying ultrafast dynamics in strongly correlated electronic systems, in particular, compounds with a charge-density-wave (CDW) order. Application of external pressure often leads to a suppression of a CDW state due to an impairment of the Fermi surface nesting. We combine time-resolved optical spectroscopy and diamond anvil cell technology to study electron and lattice dynamics in tri-telluride compound CeTe{sub 3}. Around pressures of 4 GPa we observe a gradual vanishing of the relaxation process related to the recombination of the photoexcited quasiparticles. The coherent oscillations of the phonon modes coupled to the CDW order parameter demonstrate even more dramatic suppression with increasing pressure. These observations clearly indicate a transition into the metallic state of CeTe{sub 3} induced by the external pressure.

  16. Multiplicity dependence of matrix-induced frequency shifts for atomic transitions of the group 12 metals in rare gas solids

    International Nuclear Information System (INIS)

    Laursen, S.L.; Cartland, H.E.

    1991-01-01

    Atomic resonances of the group 12 metal atoms, Hg, Cd, and Zn, undergo frequency shifts from the gas phase atomic line when trapped in rare gas matrices of Ar, Kr, and Xe at 12 K. As expected, the shifts are approximately linear in polarizability of the rare gas, but the slope of this line depends on whether the transition in question is 1 P 1 left-arrow 1 S 0 or 3 P 1 left-arrow 1 S 0 . Thus the matrix-induced frequency shift is dependent on the singlet or triplet nature of the excited state as well as on the matrix material. This dependence on multiplicity is discussed in terms of interactions between the excited-state atomic orbitals and the matrix. The results are compared to matrix studies of other metals and to related gas-phase work on diatomic van der Waals complexes of group 12 metals with rare gases

  17. Pressure-induced decoupling of the order-disorder and displacive contributions to the phase transition in diguanidinium tetrachlorostannate

    DEFF Research Database (Denmark)

    Szafranski, M.; Ståhl, Kenny

    2000-01-01

    The crystals of diguanidinium tetrachlorostannate [C(NH2)(3)](2)(+).SnCl4-2, were studied by single-crystal x-ray diffraction at various temperatures and by calorimetric and dielectric measurements at ambient and high hydrostatic pressures. At room temperature the crystal structure is orthorhombic......) cations. At ambient pressure the crystals undergo two first-order phase transitions at 354.8 and 395.4 K. The former, between two orthorhombic phases (Pbca --> Cmca), is characterized by antiphase displacement of the double sheets along the b direction of the low-temperature unit cell which is coupled...... to dynamical disordering of G(2) and transformation of its hydrogen bonding scheme. At elevated pressures the coupling between the displacive and order-disorder contributions is modified and its breaking near a triple point at 180 MPa and 270 K results in a pressure-induced phase observed between Pbca and Cmca...

  18. On the possibility of contact-induced spin polarization in interfaces of armchair nanotubes with transition metal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kuzubov, Alexander A. [Siberian Federal University, 79 Svobodny Prospect, 660041 Krasnoyarsk (Russian Federation); Kirensky Institute of Physics, 50 Akademgorodok, 660036 Krasnoyarsk (Russian Federation); Kovaleva, Evgenia A., E-mail: kovaleva.evgeniya1991@mail.ru [Siberian Federal University, 79 Svobodny Prospect, 660041 Krasnoyarsk (Russian Federation); Kirensky Institute of Physics, 50 Akademgorodok, 660036 Krasnoyarsk (Russian Federation); Tomilin, Felix N.; Mikhaleva, Natalya S.; Kuklin, Artem V. [Siberian Federal University, 79 Svobodny Prospect, 660041 Krasnoyarsk (Russian Federation); Kirensky Institute of Physics, 50 Akademgorodok, 660036 Krasnoyarsk (Russian Federation)

    2015-12-15

    The interaction between armchair carbon and boron nitride nanotubes (NT) with ferromagnetic transition metal (TM) surfaces, namely, Ni(111) and Co(0001), was studied by means of density functional theory. Different configurations of composite compartments mutual arrangement were considered. Partial densities of states and spin density spatial distribution of optimized structures were investigated. Influence of ferromagnetic substrate on nanotubes’ electronic properties was discussed. The values of spin polarization magnitude at the Fermi level are also presented and confirm the patterns of spin density spatial distribution. - Highlights: • Interaction of armchair nanotubes with ferromagnetic metal surfaces was investigated. • Different configurations of nanotube's location were considered. • For all nanotubes the energy difference between configurations is negligible. • Nanotubes were found to be more or less spin-polarized regarding to the configuration. • BN nanotubes demonstrate vanishing of the band gap and contact-induced conductivity.

  19. Efficient excitation of nonlinear phonons via chirped pulses: Induced structural phase transitions

    Science.gov (United States)

    Itin, A. P.; Katsnelson, M. I.

    2018-05-01

    Nonlinear phononics play important role in strong laser-solid interactions. We discuss a dynamical protocol for efficient phonon excitation, considering recent inspiring proposals: inducing ferroelectricity in paraelectric perovskites, and inducing structural deformations in cuprates [Subedi et al., Phys. Rev. B 89, 220301(R) (2014), 10.1103/PhysRevB.89.220301; Phys. Rev. B 95, 134113 (2017), 10.1103/PhysRevB.95.134113]. High-frequency phonon modes are driven by midinfrared pulses, and coupled to lower-frequency modes those indirect excitations cause structural deformations. We study in more detail the case of KTaO3 without strain, where it was not possible to excite the needed low-frequency phonon mode by resonant driving of the higher frequency one. Behavior of the system is explained using a reduced model of coupled driven nonlinear oscillators. We find a dynamical mechanism which prevents effective excitation at resonance driving. To induce ferroelectricity, we employ driving with sweeping frequency, realizing so-called capture into resonance. The method can be applied to many other related systems.

  20. Overexpression of cathepsin Z contributes to tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Jian Wang

    Full Text Available The aim of this study was to characterize the oncogenic function and mechanism of Cathepsin Z (CTSZ at 20q13.3, a frequently amplified region in hepatocellular carcinoma (HCC. Real-time PCR were used to compare CTSZ expression between paired HCC tumor and non-tumor specimens. CTSZ gene was stably transfected into HCC line QGY-7703 cells and its role in tumorigenicity and cell motility was characterized by soft agar, wound-healing, transwell invasion and cell adhesion assay, and tumor xenograft mouse model. Western blot analysis was used to study expression of proteins associated with epithelial-mesenchymal transition (EMT.Upregulation of CTSZ was detected in 59/137 (43% of primary HCCs, which was significantly associated with advanced clinical stage (P = 0.000. Functional study found that CTSZ could increase colony formation in soft agar and promote cell motility. Further study found that the metastatic effect of CTSZ was associated with its role in inducing epithelial-mesenchymal transition (EMT by upregulating mesenchymal markers (fibronectin and vimentin and downregulating epithelial markers (E-cadherin and α-catenin. In addition, CTSZ could also upregulate proteins associated with extracellular matrix remodeling such as MMP2, MMP3 and MMP9. Taken together, our data suggested that CTSZ was a candidate oncogene within the 20q13 amplicon and it played an important role in HCC metastasis.

  1. Strain-induced Weyl and Dirac states and direct-indirect gap transitions in group-V materials

    Science.gov (United States)

    Moynihan, Glenn; Sanvito, Stefano; O'Regan, David D.

    2017-12-01

    We perform comprehensive density-functional theory calculations on strained two-dimensional phosphorus (P), arsenic (As) and antimony (Sb) in the monolayer, bilayer, and bulk α-phase, from which we compute the key mechanical and electronic properties of these materials. Specifically, we compute their electronic band structures, band gaps, and charge-carrier effective masses, and identify the qualitative electronic and structural transitions that may occur. Moreover, we compute the elastic properties such as the Young’s modulus Y; shear modulus G; bulk modulus B ; and Poisson ratio ν and present their isotropic averages of as well as their dependence on the in-plane orientation, for which the relevant expressions are derived. We predict strain-induced Dirac states in the monolayers of As and Sb and the bilayers of P, As, and Sb, as well as the possible existence of Weyl states in the bulk phases of P and As. These phases are predicted to support charge velocities up to 106 m {{\\text{s}}-1} and, in some highly anisotropic cases, permit one-dimensional ballistic conductivity in the puckered direction. We also predict numerous band gap transitions for moderate in-plane stresses. Our results contribute to the mounting evidence for the utility of these materials, made possible by their broad range in tuneable properties, and facilitate the directed exploration of their potential application in next-generation electronics.

  2. The adsorption-desorption transition of double-stranded DNA interacting with an oppositely charged dendrimer induced by multivalent anions.

    Science.gov (United States)

    Jiang, Yangwei; Zhang, Dong; Zhang, Yaoyang; Deng, Zhenyu; Zhang, Linxi

    2014-05-28

    The adsorption-desorption transition of DNA in DNA-dendrimer solutions is observed when high-valence anions, such as hexavalent anions, are added to the DNA-dendrimer solutions. In the DNA-dendrimer solutions with low-valence anions, dendrimers bind tightly with the V-shaped double-stranded DNA. When high-valence anions, such as pentavalent or hexavalent anions, are added to the DNA-dendrimer solutions, the double-stranded DNA chains can be stretched straightly and the dendrimers are released from the double-stranded DNA chains. In fact, adding high-valence anions to the solutions can change the charge spatial distribution in the DNA-dendrimer solutions, and weaken the electrostatic interactions between the positively charged dendrimers and the oppositely charged DNA chains. Adsorption-desorption transition of DNA is induced by the overcharging of dendrimers. This investigation is capable of helping us understand how to control effectively the release of DNA in gene/drug delivery because an effective gene delivery for dendrimers includes non-covalent DNA-dendrimer binding and the effective release of DNA in gene therapy.

  3. Time Delay and Long-Range Connection Induced Synchronization Transitions in Newman-Watts Small-World Neuronal Networks

    Science.gov (United States)

    Qian, Yu

    2014-01-01

    The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay and long-range connection (LRC) probability have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs. PMID:24810595

  4. Cobalt surface modification during γ-Fe{sub 2}O{sub 3} nanoparticle synthesis by chemical-induced transition

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junming [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Li, Jian, E-mail: aizhong@swu.edu.cn [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Chen, Longlong; Lin, Yueqiang; Liu, Xiaodong; Gong, Xiaomin [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Li, Decai [School of Mechanical and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2015-02-01

    In the chemical-induced transition of FeCl{sub 2} solution, the FeOOH/Mg(OH){sub 2} precursor was transformed into spinel structured γ-Fe{sub 2}O{sub 3} crystallites, coated with a FeCl{sub 3}·6H{sub 2}O layer. CoCl{sub 2} surface modified γ-Fe{sub 2}O{sub 3} nanoparticles were prepared by adding Co(NO{sub 3}){sub 2} during the synthesis. CoFe{sub 2}O{sub 4} modified γ-Fe{sub 2}O{sub 3} nanoparticles were prepared by adding NaOH during the surface modification with Co(NO{sub 3}){sub 2}. The CoFe{sub 2}O{sub 4} layer grew epitaxially on the γ-Fe{sub 2}O{sub 3} crystallite to form a composite crystallite, which was coated by CoCl{sub 2}·6H{sub 2}O. The composite could not be distinguished using X-ray diffraction or transmission electron microscopy, since CoFe{sub 2}O{sub 4} and γ-Fe{sub 2}O{sub 3} possess similar spinel structures and lattice constants. X-ray photoelectron spectroscopy was used to distinguish them. The saturation magnetization and coercivity of the spinel structured γ-Fe{sub 2}O{sub 3}-based nanoparticles were related to the grain size. - Highlights: • γ-Fe{sub 2}O{sub 3} nanoparticles were synthesized by chemical induced transition. • CoCl{sub 2} modified nanoparticles were prepared by additional Co(NO{sub 3}){sub 2} during synthesization. • CoFe{sub 2}O{sub 4} modified nanoparticles were prepared by additional Co(NO{sub 3}){sub 2} and NaOH. • The magnetism of the nanoparticles is related to the grain size.

  5. Cobalt surface modification during γ-Fe2O3 nanoparticle synthesis by chemical-induced transition

    International Nuclear Information System (INIS)

    Li, Junming; Li, Jian; Chen, Longlong; Lin, Yueqiang; Liu, Xiaodong; Gong, Xiaomin; Li, Decai

    2015-01-01

    In the chemical-induced transition of FeCl 2 solution, the FeOOH/Mg(OH) 2 precursor was transformed into spinel structured γ-Fe 2 O 3 crystallites, coated with a FeCl 3 ·6H 2 O layer. CoCl 2 surface modified γ-Fe 2 O 3 nanoparticles were prepared by adding Co(NO 3 ) 2 during the synthesis. CoFe 2 O 4 modified γ-Fe 2 O 3 nanoparticles were prepared by adding NaOH during the surface modification with Co(NO 3 ) 2 . The CoFe 2 O 4 layer grew epitaxially on the γ-Fe 2 O 3 crystallite to form a composite crystallite, which was coated by CoCl 2 ·6H 2 O. The composite could not be distinguished using X-ray diffraction or transmission electron microscopy, since CoFe 2 O 4 and γ-Fe 2 O 3 possess similar spinel structures and lattice constants. X-ray photoelectron spectroscopy was used to distinguish them. The saturation magnetization and coercivity of the spinel structured γ-Fe 2 O 3 -based nanoparticles were related to the grain size. - Highlights: • γ-Fe 2 O 3 nanoparticles were synthesized by chemical induced transition. • CoCl 2 modified nanoparticles were prepared by additional Co(NO 3 ) 2 during synthesization. • CoFe 2 O 4 modified nanoparticles were prepared by additional Co(NO 3 ) 2 and NaOH. • The magnetism of the nanoparticles is related to the grain size

  6. Low-Intensity Pulsed Ultrasound Prevents the Oxidative Stress Induced Endothelial-Mesenchymal Transition in Human Aortic Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Jiamin Li

    2018-02-01

    Full Text Available Background/Aims: Endothelial-mesenchymal transition (EndMT has been shown to take part in the generation and progression of diverse diseases, involving a series of changes leading to a loss of their endothelial characteristics and an acquirement of properties typical of mesenchymal cells. Low-intensity pulsed ultrasound (LIPUS is a new therapeutic option that has been successfully used in fracture healing. However, whether LIPUS can inhibit oxidative stress-induced endothelial cell damages through inhibiting EndMT remained unknown. This study aimed to investigate the protective effects of LIPUS against oxidative stress-induced endothelial cell damages and the underlying mechanisms. Methods: EndMT was induced by H2O2 (100 µm for seven days. Human aortic endothelial cells (HAECs were exposed to H2O2 with or without LIPUS treatment for seven days. The expression of EndMT markers (CD31, VE-cadherin, FSP1 and α-SMA were analyzed. The levels of total and phosphorylated PI3K and AKT proteins were detected by Western Blot analysis. Cell chemotaxis was determined by wound healing and transwell assay. Results: LIPUS relieved EndMT by decreasing ROS accumulation and increasing activation of the PI3K signaling cascade. LIPUS alleviated the migration of EndMT-derived mesenchymal-like cells through reducing extracellular matrix (ECM deposition that is associated with matrix metallopeptidase (MMP proteolytic activity and collagen production. Conclusion: LIPUS produces cytoprotective effects against oxidative injuries to endothelial cells through suppressing the oxidative stress-induced EndMT, activating the PI3K/AKT pathway under oxidative stress, and limiting cell migration and excessive ECM deposition.

  7. The transcription factor LEF-1 induces an epithelial–mesenchymal transition in MDCK cells independent of β-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Wakako; Ozawa, Masayuki, E-mail: mozawa@m.kufm.kagoshima-u.ac.jp

    2013-12-06

    Highlights: •The transcription factor LEF-1 induces an EMT in MDCK cells. •A mutant LEF-1 that cannot interact with β-catenin retained the ability. •The nuclear function of β-catenin was not necessary for the LEF-1-induced EMT. •The mRNA levels of Slug, ZEB1, and ZEB2 increased significantly in these cells. -- Abstract: The epithelial–mesenchymal transition (EMT), a key process in the tumor metastatic cascade, is characterized by the loss of cell–cell junctions and cell polarity, as well as the acquisition of migratory and invasive properties. LEF-1 is a member of the lymphoid enhancer-binding factor/T-cell factor (LEF/TCF) family of DNA-binding transcription factors, which interact with nuclear β-catenin and act as central transcriptional mediators of Wnt signaling. To investigate the role of LEF-1 in EMT, we generated stable LEF-1 transfectants using MDCK cells. The transfectants had a spindle-shaped mesenchymal morphology, and enhanced migration and invasiveness relative to control cells. These EMT changes were accompanied by the downregulation of an epithelial marker protein, E-cadherin, and the upregulation of mesenchymal marker proteins, vimentin and N-cadherin. Consistent with these observations, the mRNA levels of Slug, ZEB1, and ZEB2—EMT-related transcription factors—increased significantly. Although the N-terminally deleted mutant LEF-1 cannot interact with β-catenin, it retained the ability to induce EMT. Consistent with these observations, neither the expression of a dominant negative β-catenin/engrailed chimera, nor the expression of a cytoplasmic domain of E-cadherin that sequesters β-catenin from binding to LEF/TCF, reversed LEF-1-induced EMT. Together, these data indicated that the nuclear function of β-catenin was not necessary for the induction of Slug, ZEB1, and ZEB2 expression leading to EMT.

  8. Mirror Buckling Transitions in Freestanding Graphene Membranes Induced through Scanning Tunneling Microscopy

    Science.gov (United States)

    Schoelz, James K.

    sign of its curvature. This event is discovered using STM measurements and supplemented by molecular dynamics simulations. Finally, I will show how to characterize this transition using the famed Ising model. The ripples are modeled as individual Ising spins, which at low temperature exhibit antiferromagnetic coupling. By heating the graphene membrane, the strain increases, changing the antiferromagnetic coupling to ferromagnetic coupling, which characterizes the irreversible transition from a soft, flexible state to a rigid configuration.

  9. Sheared-flow induced confinement transition in a linear magnetized plasma

    Science.gov (United States)

    Zhou, S.; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Friedman, B.; Schaffner, D.

    2012-01-01

    A magnetized plasma cylinder (12 cm in diameter) is induced by an annular shape obstacle at the Large Plasma Device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)]. Sheared azimuthal flow is driven at the edge of the plasma cylinder through edge biasing. Strong fluctuations of density and potential (δn /n~eδφ/kTe~0.5) are observed at the plasma edge, accompanied by a large density gradient (Ln=|∇lnn |-1~2cm) and shearing rate (γ ~300kHz). Edge turbulence and cross-field transport are modified by changing the bias voltage (Vbias) on the obstacle and the axial magnetic field (Bz) strength. In cases with low Vbias and large Bz, improved plasma confinement is observed, along with steeper edge density gradients. The radially sheared flow induced by E ×B drift dramatically changes the cross-phase between density and potential fluctuations, which causes the wave-induced particle flux to reverse its direction across the shear layer. In cases with higher bias voltage or smaller Bz, large radial transport and rapid depletion of the central plasma density are observed. Two-dimensional cross-correlation measurement shows that a mode with azimuthal mode number m =1 and large radial correlation length dominates the outward transport in these cases. Linear analysis based on a two-fluid Braginskii model suggests that the fluctuations are driven by both density gradient (drift wave like) and flow shear (Kelvin-Helmholtz like) at the plasma edge.

  10. Sheared-flow induced confinement transition in a linear magnetized plasma

    International Nuclear Information System (INIS)

    Zhou, S.; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Friedman, B.; Schaffner, D.

    2012-01-01

    A magnetized plasma cylinder (12 cm in diameter) is induced by an annular shape obstacle at the Large Plasma Device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)]. Sheared azimuthal flow is driven at the edge of the plasma cylinder through edge biasing. Strong fluctuations of density and potential (δn/n∼eδφ/kT e ∼0.5) are observed at the plasma edge, accompanied by a large density gradient (L n =∇lnn -1 ∼2cm) and shearing rate (γ∼300kHz). Edge turbulence and cross-field transport are modified by changing the bias voltage (V bias ) on the obstacle and the axial magnetic field (B z ) strength. In cases with low V bias and large B z , improved plasma confinement is observed, along with steeper edge density gradients. The radially sheared flow induced by ExB drift dramatically changes the cross-phase between density and potential fluctuations, which causes the wave-induced particle flux to reverse its direction across the shear layer. In cases with higher bias voltage or smaller B z , large radial transport and rapid depletion of the central plasma density are observed. Two-dimensional cross-correlation measurement shows that a mode with azimuthal mode number m=1 and large radial correlation length dominates the outward transport in these cases. Linear analysis based on a two-fluid Braginskii model suggests that the fluctuations are driven by both density gradient (drift wave like) and flow shear (Kelvin-Helmholtz like) at the plasma edge.

  11. A panorama of phase transition signals and influence of collision-induced correlations

    Energy Technology Data Exchange (ETDEWEB)

    Bougault, R. [LPC Caen IN2P3-CNRS/ENSICAEN et Univ., 14 - Caen (France)

    2003-07-01

    The presented results will show the richness of nuclear heavy-ion physics where data are accumulated as a succession of independent events. The different reaction mechanisms can provide for 39 A.MeV Ta+Au, 40 and 80 A.MeV Au+Au peripheral collisions a set of data almost free of entrance channel effects as well as a set of events where collision-induced correlations can be evidenced. The event selection method will be presented and it will be shown how the entrance channel dynamical effects affect determination of heat capacity through partial energy fluctuation measurements. (author)

  12. A panorama of phase transition signals and influence of collision-induced correlations

    International Nuclear Information System (INIS)

    Bougault, R.

    2003-01-01

    The presented results will show the richness of nuclear heavy-ion physics where data are accumulated as a succession of independent events. The different reaction mechanisms can provide for 39 A.MeV Ta+Au, 40 and 80 A.MeV Au+Au peripheral collisions a set of data almost free of entrance channel effects as well as a set of events where collision-induced correlations can be evidenced. The event selection method will be presented and it will be shown how the entrance channel dynamical effects affect determination of heat capacity through partial energy fluctuation measurements. (author)

  13. Radiation-induced tetramer-to-dimer transition of Escherichia coli lactose repressor

    International Nuclear Information System (INIS)

    Goffinont, S.; Davidkova, M.; Spotheim-Maurizot, M.

    2009-01-01

    The wild type lactose repressor of Escherichia coli is a tetrameric protein formed by two identical dimers. They are associated via a C-terminal 4-helix bundle (called tetramerization domain) whose stability is ensured by the interaction of leucine zipper motifs. Upon in vitro γ-irradiation the repressor losses its ability to bind the operator DNA sequence due to damage of its DNA-binding domains. Using an engineered dimeric repressor for comparison, we show here that irradiation induces also the change of repressor oligomerisation state from tetramer to dimer. The splitting of the tetramer into dimers can result from the oxidation of the leucine residues of the tetramerization domain.

  14. Triazole RGD antagonist reverts TGFβ1-induced endothelial-to-mesenchymal transition in endothelial precursor cells.

    Science.gov (United States)

    Bianchini, Francesca; Peppicelli, Silvia; Fabbrizzi, Pierangelo; Biagioni, Alessio; Mazzanti, Benedetta; Menchi, Gloria; Calorini, Lido; Pupi, Alberto; Trabocchi, Andrea

    2017-01-01

    Fibrosis is the dramatic consequence of a dysregulated reparative process in which activated fibroblasts (myofibroblasts) and Transforming Growth Factor β1 (TGFβ1) play a central role. When exposed to TGFβ1, fibroblast and epithelial cells differentiate in myofibroblasts; in addition, endothelial cells may undergo endothelial-to-mesenchymal transition (EndoMT) and actively participate to the progression of fibrosis. Recently, the role of αv integrins, which recognize the Arg-Gly-Asp (RGD) tripeptide, in the release and signal transduction activation of TGFβ1 became evident. In this study, we present a class of triazole-derived RGD antagonists that interact with αvβ3 integrin. Above different compounds, the RGD-2 specifically interferes with integrin-dependent TGFβ1 EndoMT in Endothelial Colony-Forming Cells (ECPCs) derived from circulating Endothelial Precursor Cells (ECPCs). The RGD-2 decreases the amount of membrane-associated TGFβ1, and reduces both ALK5/TGFβ1 type I receptor expression and Smad2 phosphorylation in ECPCs. We found that RGD-2 antagonist reverts EndoMT, reducing α-smooth muscle actin (α-SMA) and vimentin expression in differentiated ECPCs. Our results outline the critical role of integrin in fibrosis progression and account for the opportunity of using integrins as target for anti-fibrotic therapeutic treatment.

  15. CO2 Induced Foaming Behavior of Polystyrene near the Glass Transition

    Directory of Open Access Journals (Sweden)

    Salah Al-Enezi

    2017-01-01

    Full Text Available This paper examines the effect of high-pressure carbon dioxide on the foaming process in polystyrene near the glass transition temperature and the foaming was studied using cylindrical high-pressure view cell with two optical windows. This technique has potential applications in the shape foaming of polymers at lower temperatures, dye impregnation, and the foaming of polystyrene. Three sets of experiments were carried out at operating temperatures of 50, 70, and 100°C, each over a range of pressures from 24 to 120 bar. Foaming was not observed when the polymer was initially at conditions below Tg but was observed above Tg. The nucleation appeared to occur randomly leading to subsequent bubble growth from these sites, with maximum radius of 0.02–0.83 mm. Three models were applied on the foaming experimental data. Variable diffusivity and viscosity model (Model C was applied to assess the experimental data with the WLF equation. The model shows very good agreement by using realistic parameter values. The expansion occurs by diffusion of a dissolved gas from the supersaturated polymer envelope into the bubble.

  16. Disorder-induced transition from grain boundary to bulk dominated ionic diffusion in pyrochlores

    International Nuclear Information System (INIS)

    Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.

    2017-01-01

    In this paper, we use molecular dynamics simulations to investigate the role of grain boundaries (GBs) on ionic diffusion in pyrochlores, as a function of the GB type, chemistry of the compound, and level of cation disorder. We observe that the presence of GBs promotes oxygen transport in ordered and low-disordered systems, as the GBs are found to have a higher concentration of mobile carriers with higher mobilities than in the bulk. Thus, in ordered samples, the ionic diffusion is 2D, localized along the grain boundary. When cation disorder is introduced, bulk carriers begin to contribute to the overall diffusion, while the GB contribution is only slightly enhanced. In highly disordered samples, the diffusive behavior at the GBs is bulk-like, and the two contributions (bulk vs. GB) can no longer be distinguished. There is thus a transition from 2D/GB dominated oxygen diffusivity to 3D/bulk dominated diffusivity versus disorder in pyrochlores. Finally, these results provide new insights into the possibility of using internal interfaces to enhance ionic conductivity in nanostructured complex oxides.

  17. Digital to analog resistive switching transition induced by graphene buffer layer in strontium titanate based devices.

    Science.gov (United States)

    Wan, Tao; Qu, Bo; Du, Haiwei; Lin, Xi; Lin, Qianru; Wang, Da-Wei; Cazorla, Claudio; Li, Sean; Liu, Sidong; Chu, Dewei

    2018-02-15

    Resistive switching behaviour can be classified into digital and analog switching based on its abrupt and gradual resistance change characteristics. Realizing the transition from digital to analog switching in the same device is essential for understanding and controlling the performance of the devices with various switching mechanisms. Here, we investigate the resistive switching in a device made with strontium titanate (SrTiO 3 ) nanoparticles using X-ray diffractometry, scanning electron microscopy, Raman spectroscopy, and direct electrical measurements. It is found that the well-known rupture/formation of Ag filaments is responsible for the digital switching in the device with Ag as the top electrode. To modulate the switching performance, we insert a reduced graphene oxide layer between SrTiO 3 and the bottom FTO electrode owing to its good barrier property for the diffusion of Ag ions and high out-of-plane resistance. In this case, resistive switching is changed from digital to analog as determined by the modulation of interfacial resistance under applied voltage. Based on that controllable resistance, potentiation and depression behaviours are implemented as well. This study opens up new ways for the design of multifunctional devices which are promising for memory and neuromorphic computing applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. First Principles Based Simulation of Reaction-Induced Phase Transition in Hydrogen Storage and Other Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Qingfeng [Southern Illinois Univ., Carbondale, IL (United States)

    2014-08-31

    This major part of this proposal is simulating hydrogen interactions in the complex metal hydrides. Over the period of DOE BES support, key achievements include (i) Predicted TiAl3Hx as a precursor state for forming TiAl3 through analyzing the Ti-doped NaAlH4 and demonstrated its catalytic role for hydrogen release; (ii) Explored the possibility of forming similar complex structures with other 3d transition metals in NaAlH4 as well as the impact of such complex structures on hydrogen release/uptake; (iii) Demonstrated the role of TiAl3 in hydriding process; (iv) Predicted a new phase of NaAlH4 that links to Na3AlH6 using first-principles metadynamics; (v) Examined support effect on hydrogen release from supported/encapsulated NaAlH4; and (vi) Expanded research scope beyond hydrogen storage. The success of our research is documented by the peer-reviewed publications.

  19. A phase transition induces chaos in a predator-prey ecosystem with a dynamic fitness landscape.

    Science.gov (United States)

    Gilpin, William; Feldman, Marcus W

    2017-07-01

    In many ecosystems, natural selection can occur quickly enough to influence the population dynamics and thus future selection. This suggests the importance of extending classical population dynamics models to include such eco-evolutionary processes. Here, we describe a predator-prey model in which the prey population growth depends on a prey density-dependent fitness landscape. We show that this two-species ecosystem is capable of exhibiting chaos even in the absence of external environmental variation or noise, and that the onset of chaotic dynamics is the result of the fitness landscape reversibly alternating between epochs of stabilizing and disruptive selection. We draw an analogy between the fitness function and the free energy in statistical mechanics, allowing us to use the physical theory of first-order phase transitions to understand the onset of rapid cycling in the chaotic predator-prey dynamics. We use quantitative techniques to study the relevance of our model to observational studies of complex ecosystems, finding that the evolution-driven chaotic dynamics confer community stability at the "edge of chaos" while creating a wide distribution of opportunities for speciation during epochs of disruptive selection-a potential observable signature of chaotic eco-evolutionary dynamics in experimental studies.

  20. Internal phase transition induced by external forces in Finsler geometric model for membranes

    Science.gov (United States)

    Koibuchi, Hiroshi; Shobukhov, Andrey

    2016-10-01

    In this paper, we numerically study an anisotropic shape transformation of membranes under external forces for two-dimensional triangulated surfaces on the basis of Finsler geometry. The Finsler metric is defined by using a vector field, which is the tangential component of a three-dimensional unit vector σ corresponding to the tilt or some external macromolecules on the surface of disk topology. The sigma model Hamiltonian is assumed for the tangential component of σ with the interaction coefficient λ. For large (small) λ, the surface becomes oblong (collapsed) at relatively small bending rigidity. For the intermediate λ, the surface becomes planar. Conversely, fixing the surface with the boundary of area A or with the two-point boundaries of distance L, we find that the variable σ changes from random to aligned state with increasing of A or L for the intermediate region of λ. This implies that an internal phase transition for σ is triggered not only by the thermal fluctuations, but also by external mechanical forces. We also find that the frame (string) tension shows the expected scaling behavior with respect to A/N (L/N) at the intermediate region of A (L) where the σ configuration changes between the disordered and ordered phases. Moreover, we find that the string tension γ at sufficiently large λ is considerably smaller than that at small λ. This phenomenon resembles the so-called soft-elasticity in the liquid crystal elastomer, which is deformed by small external tensile forces.

  1. Lévy stable noise-induced transitions: stochastic resonance, resonant activation and dynamic hysteresis

    International Nuclear Information System (INIS)

    Dybiec, Bartłomiej; Gudowska-Nowak, Ewa

    2009-01-01

    A standard approach to analysis of noise-induced effects in stochastic dynamics assumes a Gaussian character of the noise term describing interaction of the analyzed system with its complex surroundings. An additional assumption about the existence of timescale separation between the dynamics of the measured observable and the typical timescale of the noise allows external fluctuations to be modeled as temporally uncorrelated and therefore white. However, in many natural phenomena the assumptions concerning the above mentioned properties of 'Gaussianity' and 'whiteness' of the noise can be violated. In this context, in contrast to the spatiotemporal coupling characterizing general forms of non-Markovian or semi-Markovian Lévy walks, so called Lévy flights correspond to the class of Markov processes which can still be interpreted as white, but distributed according to a more general, infinitely divisible, stable and non-Gaussian law. Lévy noise-driven non-equilibrium systems are known to manifest interesting physical properties and have been addressed in various scenarios of physical transport exhibiting a superdiffusive behavior. Here we present a brief overview of our recent investigations aimed at understanding features of stochastic dynamics under the influence of Lévy white noise perturbations. We find that the archetypal phenomena of noise-induced ordering are robust and can be detected also in systems driven by memoryless, non-Gaussian, heavy-tailed fluctuations with infinite variance

  2. Arctigenin represses TGF-β-induced epithelial mesenchymal transition in human lung cancer cells.

    Science.gov (United States)

    Xu, Yanrui; Lou, Zhiyuan; Lee, Seong-Ho

    2017-11-18

    Arctigenin (ARC) is a lignan that is abundant in Asteraceae plants, which show anti-inflammatory and anti-cancer activities. The current study investigated whether ARC affects cancer progression and metastasis, focusing on EMT using invasive human non-small cell lung cancer (NSCLC) cells. No toxicity was observed in the cells treated with different doses of ARC (12-100 μM). The treatment of ARC repressed TGF-β-stimulated changes of metastatic morphology and cell invasion and migration. ARC inhibited TGF-β-induced phosphorylation and transcriptional activity of smad2/3, and expression of snail. ARC also decreased expression of N-cadherin and increased expression of E-cadherin in dose-dependent and time-dependent manners. These changes were accompanied by decreased amount of phospho-smad2/3 in nucleus and nuclear translocation of smad2/3. Moreover, ARC repressed TGF-β-induced phosphorylation of ERK and transcriptional activity of β-catenin. Our data demonstrate anti-metastatic activity of ARC in lung cancer model. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Salt-induced epithelial-to-mesenchymal transition in Dahl salt-sensitive rats is dependent on elevated blood pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Mu, J.J.; Liu, F.Q.; Ren, K.Y.; Xiao, H.Y. [Xi' an Jiaotong University, Medical College, First Affiliated Hospital, Cardiovascular Department, Xi' an, China, Cardiovascular Department, First Affiliated Hospital, Medical College, Xi' an Jiaotong University, Xi' an (China); Ministry of Education, Key Laboratory of Environment and Genes Related to Diseases, Xi' an, China, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi' an (China); Yang, Z. [Xi' an Jiaotong University, Medical College, First Affiliated Hospital, Department of Pathology, Xi' an, China, Department of Pathology, First Affiliated Hospital, Medical College, Xi' an Jiaotong University, Xi' an (China); Yuan, Z.Y. [Xi' an Jiaotong University, Medical College, First Affiliated Hospital, Cardiovascular Department, Xi' an, China, Cardiovascular Department, First Affiliated Hospital, Medical College, Xi' an Jiaotong University, Xi' an (China); Ministry of Education, Key Laboratory of Environment and Genes Related to Diseases, Xi' an, China, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi' an (China)

    2014-03-03

    Dietary salt intake has been linked to hypertension and cardiovascular disease. Accumulating evidence has indicated that salt-sensitive individuals on high salt intake are more likely to develop renal fibrosis. Epithelial-to-mesenchymal transition (EMT) participates in the development and progression of renal fibrosis in humans and animals. The objective of this study was to investigate the impact of a high-salt diet on EMT in Dahl salt-sensitive (SS) rats. Twenty-four male SS and consomic SS-13{sup BN} rats were randomized to a normal diet or a high-salt diet. After 4 weeks, systolic blood pressure (SBP) and albuminuria were analyzed, and renal fibrosis was histopathologically evaluated. Tubular EMT was evaluated using immunohistochemistry and real-time PCR with E-cadherin and alpha smooth muscle actin (α-SMA). After 4 weeks, SBP and albuminuria were significantly increased in the SS high-salt group compared with the normal diet group. Dietary salt intake induced renal fibrosis and tubular EMT as identified by reduced expression of E-cadherin and enhanced expression of α-SMA in SS rats. Both blood pressure and renal interstitial fibrosis were negatively correlated with E-cadherin but positively correlated with α-SMA. Salt intake induced tubular EMT and renal injury in SS rats, and this relationship might depend on the increase in blood pressure.

  4. Strong Rashba-Edelstein Effect-Induced Spin–Orbit Torques in Monolayer Transition Metal Dichalcogenide/Ferromagnet Bilayers

    KAUST Repository

    Shao, Qiming

    2016-11-18

    The electronic and optoelectronic properties of two-dimensional materials have been extensively explored in graphene and layered transition metal dichalcogenides (TMDs). Spintronics in these two-dimensional materials could provide novel opportunities for future electronics, for example, efficient generation of spin current, which should enable the efficient manipulation of magnetic elements. So far, the quantitative determination of charge current-induced spin current and spin-orbit torques (SOTs) on the magnetic layer adjacent to two-dimensional materials is still lacking. Here, we report a large SOT generated by current-induced spin accumulation through the Rashba-Edelstein effect in the composites of monolayer TMD (MoS or WSe)/CoFeB bilayer. The effective spin conductivity corresponding to the SOT turns out to be almost temperature-independent. Our results suggest that the charge-spin conversion in the chemical vapor deposition-grown large-scale monolayer TMDs could potentially lead to high energy efficiency for magnetization reversal and convenient device integration for future spintronics based on two-dimensional materials.

  5. Notch4 Signaling Induces a Mesenchymal–Epithelial–like Transition in Melanoma Cells to Suppress Malignant Behaviors

    Science.gov (United States)

    Rad, Ehsan Bonyadi; Hammerlindl, Heinz; Wels, Christian; Popper, Ulrich; Menon, Dinoop Ravindran; Breiteneder, Heimo; Kitzwoegerer, Melitta; Hafner, Christine; Herlyn, Meenhard; Bergler, Helmut; Schaider, Helmut

    2016-01-01

    The effects of Notch signaling are context-dependent and both oncogenic and tumor-suppressive functions have been described. Notch signaling in melanoma is considered oncogenic, but clinical trials testing Notch inhibition in this malignancy have not proved successful. Here, we report that expression of the constitutively active intracellular domain of Notch4 (N4ICD) in melanoma cells triggered a switch from a mesenchymal-like parental phenotype to an epithelial-like phenotype. The epithelial-like morphology was accompanied by strongly reduced invasive, migratory, and proliferative properties concomitant with the downregulation of epithelial–mesenchymal transition markers Snail2 (SNAI2), Twist1, vimentin (VIM), and MMP2 and the reexpression of E-cadherin (CDH1). The N4ICD-induced phenotypic switch also resulted in significantly reduced tumor growth in vivo. Immunohistochemical analysis of primary human melanomas and cutaneous metastases revealed a significant correlation between Notch4 and E-cadherin expression. Mechanistically, we demonstrate that N4ICD induced the expression of the transcription factors Hey1 and Hey2, which bound directly to the promoter regions of Snail2 and Twist1 and repressed gene transcription, as determined by EMSA and luciferase assays. Taken together, our findings indicate a role for Notch4 as a tumor suppressor in melanoma, uncovering a potential explanation for the poor clinical efficacy of Notch inhibitors observed in this setting. PMID:26801977

  6. Identification of Epithelial-Mesenchymal Transition-related Target Genes Induced by the Mutation of Smad3 Linker Phosphorylation

    Science.gov (United States)

    Park, Sujin; Yang, Kyung-Min; Park, Yuna; Hong, Eunji; Hong, Chang Pyo; Park, Jinah; Pang, Kyoungwha; Lee, Jihee; Park, Bora; Lee, Siyoung; An, Haein; Kwak, Mi-Kyung; Kim, Junil; Kang, Jin Muk; Kim, Pyunggang; Xiao, Yang; Nie, Guangjun; Ooshima, Akira

    2018-01-01

    Background Smad3 linker phosphorylation plays essential roles in tumor progression and metastasis. We have previously reported that the mutation of Smad3 linker phosphorylation sites (Smad3-Erk/Pro-directed kinase site mutant constructs [EPSM]) markedly reduced the tumor progression while increasing the lung metastasis in breast cancer. Methods We performed high-throughput RNA-Sequencing of the human prostate cancer cell lines infected with adenoviral Smad3-EPSM to identify the genes regulated by Smad3-EPSM. Results In this study, we identified genes which are differentially regulated in the presence of Smad3-EPSM. We first confirmed that Smad3-EPSM strongly enhanced a capability of cell motility and invasiveness as well as the expression of epithelial-mesenchymal transition marker genes, CDH2, SNAI1, and ZEB1 in response to TGF-β1 in human pancreatic and prostate cancer cell lines. We identified GADD45B, CTGF, and JUNB genes in the expression profiles associated with cell motility and invasiveness induced by the Smad3-EPSM. Conclusions These results suggested that inhibition of Smad3 linker phosphorylation may enhance cell motility and invasiveness by inducing expression of GADD45B, CTGF, and JUNB genes in various cancers. PMID:29629343

  7. Knockdown of BAG3 induces epithelial–mesenchymal transition in thyroid cancer cells through ZEB1 activation

    Science.gov (United States)

    Meng, X; Kong, D-H; Li, N; Zong, Z-H; Liu, B-Q; Du, Z-X; Guan, Y; Cao, L; Wang, H-Q

    2014-01-01

    The process by which epithelial features are lost in favor of a mesenchymal phenotype is referred to as epithelial–mesenchymal transition (EMT). Most carcinomas use this mechanism to evade into neighboring tissues. Reduction or a loss of E-cadherin expression is a well-established hallmark of EMT. As a potent suppressor of E-cadherin, transcription factor ZEB1 is one of the key inducers of EMT, whose expression promotes tumorigenesis and metastasis of carcinomas. Bcl-2-associated athanogene 3 (BAG3) affects multifaceted cellular functions, including proliferation, apoptosis, cell adhesion and invasion, viral infection, and autophagy. Recently, we have reported a novel role of BAG3 implicated in EMT, while the mechanisms are poorly elucidated. The current study demonstrated that knockdown of BAG3 induced EMT, and increased cell migratory and invasiveness in thyroid cancer cells via transcriptional activation of ZEB1. We also found that BAG3 knockdown led to nuclear accumulation of β-catenin, which was responsible for the transcriptional activation of ZEB1. These results indicate BAG3 as a regulator of ZEB1 expression in EMT and as a regulator of metastasis in thyroid cancer cells, providing potential targets to prevent and/or treat thyroid cancer cell invasion and metastasis. PMID:24577090

  8. Knockdown of BAG3 induces epithelial-mesenchymal transition in thyroid cancer cells through ZEB1 activation.

    Science.gov (United States)

    Meng, X; Kong, D-H; Li, N; Zong, Z-H; Liu, B-Q; Du, Z-X; Guan, Y; Cao, L; Wang, H-Q

    2014-02-27

    The process by which epithelial features are lost in favor of a mesenchymal phenotype is referred to as epithelial-mesenchymal transition (EMT). Most carcinomas use this mechanism to evade into neighboring tissues. Reduction or a loss of E-cadherin expression is a well-established hallmark of EMT. As a potent suppressor of E-cadherin, transcription factor ZEB1 is one of the key inducers of EMT, whose expression promotes tumorigenesis and metastasis of carcinomas. Bcl-2-associated athanogene 3 (BAG3) affects multifaceted cellular functions, including proliferation, apoptosis, cell adhesion and invasion, viral infection, and autophagy. Recently, we have reported a novel role of BAG3 implicated in EMT, while the mechanisms are poorly elucidated. The current study demonstrated that knockdown of BAG3 induced EMT, and increased cell migratory and invasiveness in thyroid cancer cells via transcriptional activation of ZEB1. We also found that BAG3 knockdown led to nuclear accumulation of β-catenin, which was responsible for the transcriptional activation of ZEB1. These results indicate BAG3 as a regulator of ZEB1 expression in EMT and as a regulator of metastasis in thyroid cancer cells, providing potential targets to prevent and/or treat thyroid cancer cell invasion and metastasis.

  9. Salt-induced epithelial-to-mesenchymal transition in Dahl salt-sensitive rats is dependent on elevated blood pressure

    International Nuclear Information System (INIS)

    Wang, Y.; Mu, J.J.; Liu, F.Q.; Ren, K.Y.; Xiao, H.Y.; Yang, Z.; Yuan, Z.Y.

    2014-01-01

    Dietary salt intake has been linked to hypertension and cardiovascular disease. Accumulating evidence has indicated that salt-sensitive individuals on high salt intake are more likely to develop renal fibrosis. Epithelial-to-mesenchymal transition (EMT) participates in the development and progression of renal fibrosis in humans and animals. The objective of this study was to investigate the impact of a high-salt diet on EMT in Dahl salt-sensitive (SS) rats. Twenty-four male SS and consomic SS-13 BN rats were randomized to a normal diet or a high-salt diet. After 4 weeks, systolic blood pressure (SBP) and albuminuria were analyzed, and renal fibrosis was histopathologically evaluated. Tubular EMT was evaluated using immunohistochemistry and real-time PCR with E-cadherin and alpha smooth muscle actin (α-SMA). After 4 weeks, SBP and albuminuria were significantly increased in the SS high-salt group compared with the normal diet group. Dietary salt intake induced renal fibrosis and tubular EMT as identified by reduced expression of E-cadherin and enhanced expression of α-SMA in SS rats. Both blood pressure and renal interstitial fibrosis were negatively correlated with E-cadherin but positively correlated with α-SMA. Salt intake induced tubular EMT and renal injury in SS rats, and this relationship might depend on the increase in blood pressure

  10. Reliability of the one-crossing approximation in describing the Mott transition

    International Nuclear Information System (INIS)

    Vildosola, V; Roura-Bas, P; Pourovskii, L V; Manuel, L O

    2015-01-01

    We assess the reliability of the one-crossing approximation (OCA) approach in a quantitative description of the Mott transition in the framework of the dynamical mean field theory (DMFT). The OCA approach has been applied in conjunction with DMFT to a number of heavy-fermion, actinide, transition metal compounds and nanoscale systems. However, several recent studies in the framework of impurity models pointed out serious deficiencies of OCA and raised questions regarding its reliability. Here we consider a single band Hubbard model on the Bethe lattice at finite temperatures and compare the results of OCA to those of a numerically exact quantum Monte Carlo (QMC) method. The temperature-local repulsion U phase diagram for the particle-hole symmetric case obtained by OCA is in good agreement with that of QMC, with the metal–insulator transition captured very well. We find, however, that the insulator to metal transition is shifted to higher values of U and, simultaneously, correlations in the metallic phase are significantly overestimated. This counter-intuitive behaviour is due to simultaneous underestimations of the Kondo scale in the metallic phase and the size of the insulating gap. We trace the underestimation of the insulating gap to that of the second moment of the high-frequency expansion of the impurity spectral density. Calculations of the system away from the particle-hole symmetric case are also presented and discussed. (paper)

  11. Reliability of the one-crossing approximation in describing the Mott transition

    Science.gov (United States)

    Vildosola, V.; Pourovskii, L. V.; Manuel, L. O.; Roura-Bas, P.

    2015-12-01

    We assess the reliability of the one-crossing approximation (OCA) approach in a quantitative description of the Mott transition in the framework of the dynamical mean field theory (DMFT). The OCA approach has been applied in conjunction with DMFT to a number of heavy-fermion, actinide, transition metal compounds and nanoscale systems. However, several recent studies in the framework of impurity models pointed out serious deficiencies of OCA and raised questions regarding its reliability. Here we consider a single band Hubbard model on the Bethe lattice at finite temperatures and compare the results of OCA to those of a numerically exact quantum Monte Carlo (QMC) method. The temperature-local repulsion U phase diagram for the particle-hole symmetric case obtained by OCA is in good agreement with that of QMC, with the metal-insulator transition captured very well. We find, however, that the insulator to metal transition is shifted to higher values of U and, simultaneously, correlations in the metallic phase are significantly overestimated. This counter-intuitive behaviour is due to simultaneous underestimations of the Kondo scale in the metallic phase and the size of the insulating gap. We trace the underestimation of the insulating gap to that of the second moment of the high-frequency expansion of the impurity spectral density. Calculations of the system away from the particle-hole symmetric case are also presented and discussed.

  12. Metformin inhibits 17?-estradiol-induced epithelial-to-mesenchymal transition via ?Klotho-related ERK1/2 signaling and AMPK? signaling in endometrial adenocarcinoma cells

    OpenAIRE

    Liu, Zhao; Qi, Shasha; Zhao, Xingbo; Li, Mingjiang; Ding, Sentai; Lu, Jiaju; Zhang, Hui

    2016-01-01

    The potential role of metformin in treating endometrial cancer remains to be explored. The current study investigated the role of metformin in 17?-estradiol-induced epithelial-mesenchymal transition (EMT) in endometrial adenocarcinoma cells. We found that 17?-estradiol promoted proliferation and migration, attenuated apoptosis in both estrogen receptor (ER) positive and ER negative endometrial adenocarcinoma cells (Ishikawa and KLE cells, respectively). Metformin abolished 17?-estradiol-induc...

  13. Hypoxia induces a phase transition within a kinase signaling network in cancer cells.

    Science.gov (United States)

    Wei, Wei; Shi, Qihui; Remacle, Francoise; Qin, Lidong; Shackelford, David B; Shin, Young Shik; Mischel, Paul S; Levine, R D; Heath, James R

    2013-04-09

    Hypoxia is a near-universal feature of cancer, promoting glycolysis, cellular proliferation, and angiogenesis. The molecular mechanisms of hypoxic signaling have been intensively studied, but the impact of changes in oxygen partial pressure (pO2) on the state of signaling networks is less clear. In a glioblastoma multiforme (GBM) cancer cell model, we examined the response of signaling networks to targeted pathway inhibition between 21% and 1% pO2. We used a microchip technology that facilitates quantification of a panel of functional proteins from statistical numbers of single cells. We find that near 1.5% pO2, the signaling network associated with mammalian target of rapamycin (mTOR) complex 1 (mTORC1)--a critical component of hypoxic signaling and a compelling cancer drug target--is deregulated in a manner such that it will be unresponsive to mTOR kinase inhibitors near 1.5% pO2, but will respond at higher or lower pO2 values. These predictions were validated through experiments on bulk GBM cell line cultures and on neurosphere cultures of a human-origin GBM xenograft tumor. We attempt to understand this behavior through the use of a quantitative version of Le Chatelier's principle, as well as through a steady-state kinetic model of protein interactions, both of which indicate that hypoxia can influence mTORC1 signaling as a switch. The Le Chatelier approach also indicates that this switch may be thought of as a type of phase transition. Our analysis indicates that certain biologically complex cell behaviors may be understood using fundamental, thermodynamics-motivated principles.

  14. Hypoxia induces a phase transition within a kinase signaling network in cancer cells

    Science.gov (United States)

    Wei, Wei; Shi, Qihui; Remacle, Francoise; Qin, Lidong; Shackelford, David B.; Shin, Young Shik; Mischel, Paul S.; Levine, R. D.; Heath, James R.

    2013-01-01

    Hypoxia is a near-universal feature of cancer, promoting glycolysis, cellular proliferation, and angiogenesis. The molecular mechanisms of hypoxic signaling have been intensively studied, but the impact of changes in oxygen partial pressure (pO2) on the state of signaling networks is less clear. In a glioblastoma multiforme (GBM) cancer cell model, we examined the response of signaling networks to targeted pathway inhibition between 21% and 1% pO2. We used a microchip technology that facilitates quantification of a panel of functional proteins from statistical numbers of single cells. We find that near 1.5% pO2, the signaling network associated with mammalian target of rapamycin (mTOR) complex 1 (mTORC1)—a critical component of hypoxic signaling and a compelling cancer drug target—is deregulated in a manner such that it will be unresponsive to mTOR kinase inhibitors near 1.5% pO2, but will respond at higher or lower pO2 values. These predictions were validated through experiments on bulk GBM cell line cultures and on neurosphere cultures of a human-origin GBM xenograft tumor. We attempt to understand this behavior through the use of a quantitative version of Le Chatelier’s principle, as well as through a steady-state kinetic model of protein interactions, both of which indicate that hypoxia can influence mTORC1 signaling as a switch. The Le Chatelier approach also indicates that this switch may be thought of as a type of phase transition. Our analysis indicates that certain biologically complex cell behaviors may be understood using fundamental, thermodynamics-motivated principles. PMID:23530221

  15. MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition.

    Science.gov (United States)

    Roy, L D; Sahraei, M; Subramani, D B; Besmer, D; Nath, S; Tinder, T L; Bajaj, E; Shanmugam, K; Lee, Y Y; Hwang, S I L; Gendler, S J; Mukherjee, P

    2011-03-24

    Increased motility and invasiveness of pancreatic cancer cells are associated with epithelial to mesenchymal transition (EMT). Snai1 and Slug are zinc-finger transcription factors that trigger this process by repressing E-cadherin and enhancing vimentin and N-cadherin protein expression. However, the mechanisms that regulate this activation in pancreatic tumors remain elusive. MUC1, a transmembrane mucin glycoprotein, is associated with the most invasive forms of pancreatic ductal adenocarcinomas (PDA). In this study, we show that over expression of MUC1 in pancreatic cancer cells triggers the molecular process of EMT, which translates to increased invasiveness and metastasis. EMT was significantly reduced when MUC1 was genetically deleted in a mouse model of PDA or when all seven tyrosines in the cytoplasmic tail of MUC1 were mutated to phenylalanine (mutated MUC1 CT). Using proteomics, RT-PCR and western blotting, we revealed a significant increase in vimentin, Slug and Snail expression with repression of E-Cadherin in MUC1-expressing cells compared with cells expressing the mutated MUC1 CT. In the cells that carried the mutated MUC1 CT, MUC1 failed to co-immunoprecipitate with β-catenin and translocate to the nucleus, thereby blocking transcription of the genes associated with EMT and metastasis. Thus, functional tyrosines are critical in stimulating the interactions between MUC1 and β-catenin and their nuclear translocation to initiate the process of EMT. This study signifies the oncogenic role of MUC1 CT and is the first to identify a direct role of the MUC1 in initiating EMT during pancreatic cancer. The data may have implications in future design of MUC1-targeted therapies for pancreatic cancer.

  16. Acoustic receptivity and transition modeling of Tollmien-Schlichting disturbances induced by distributed surface roughness

    Science.gov (United States)

    Raposo, Henrique; Mughal, Shahid; Ashworth, Richard

    2018-04-01

    Acoustic receptivity to Tollmien-Schlichting waves in the presence of surface roughness is investigated for a flat plate boundary layer using the time-harmonic incompressible linearized Navier-Stokes equations. It is shown to be an accurate and efficient means of predicting receptivity amplitudes and, therefore, to be more suitable for parametric investigations than other approaches with direct-numerical-simulation-like accuracy. Comparison with the literature provides strong evidence of the correctness of the approach, including the ability to quantify non-parallel flow effects. These effects are found to be small for the efficiency function over a wide range of frequencies and local Reynolds numbers. In the presence of a two-dimensional wavy-wall, non-parallel flow effects are quite significant, producing both wavenumber detuning and an increase in maximum amplitude. However, a smaller influence is observed when considering an oblique Tollmien-Schlichting wave. This is explained by considering the non-parallel effects on receptivity and on linear growth which may, under certain conditions, cancel each other out. Ultimately, we undertake a Monte Carlo type uncertainty quantification analysis with two-dimensional distributed random roughness. Its power spectral density (PSD) is assumed to follow a power law with an associated uncertainty following a probabilistic Gaussian distribution. The effects of the acoustic frequency over the mean amplitude of the generated two-dimensional Tollmien-Schlichting waves are studied. A strong dependence on the mean PSD shape is observed and discussed according to the basic resonance mechanisms leading to receptivity. The growth of Tollmien-Schlichting waves is predicted with non-linear parabolized stability equations computations to assess the effects of stochasticity in transition location.

  17. Strain-induced gap transition and anisotropic Dirac-like cones in monolayer and bilayer phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Can; Xia, Qinglin, E-mail: qlxia@csu.edu.cn; Nie, Yaozhuang; Guo, Guanghua, E-mail: guogh@csu.edu.cn [School of Physics and Electronics, Central South University, Changsha 410083 (China)

    2015-03-28

    The electronic properties of two-dimensional monolayer and bilayer phosphorene subjected to uniaxial and biaxial strains have been investigated using first-principles calculations based on density functional theory. Strain engineering has obvious influence on the electronic properties of monolayer and bilayer phosphorene. By comparison, we find that biaxial strain is more effective in tuning the band gap than uniaxial strain. Interestingly, we observe the emergence of Dirac-like cones by the application of zigzag tensile strain in the monolayer and bilayer systems. For bilayer phosphorene, we induce the anisotropic Dirac-like dispersion by the application of appropriate armchair or biaxial compressive strain. Our results present very interesting possibilities for engineering the electronic properties of phosphorene and pave a way for tuning the band gap of future electronic and optoelectronic devices.

  18. Ultrafast dynamics during the photoinduced phase transition in VO2

    Science.gov (United States)

    Wegkamp, Daniel; Stähler, Julia

    2015-12-01

    The phase transition of VO2 from a monoclinic insulator to a rutile metal, which occurs thermally at TC = 340 K, can also be driven by strong photoexcitation. The ultrafast dynamics during this photoinduced phase transition (PIPT) have attracted great scientific attention for decades, as this approach promises to answer the question of whether the insulator-to-metal (IMT) transition is caused by electronic or crystallographic processes through disentanglement of the different contributions in the time domain. We review our recent results achieved by femtosecond time-resolved photoelectron, optical, and coherent phonon spectroscopy and discuss them within the framework of a selection of latest, complementary studies of the ultrafast PIPT in VO2. We show that the population change of electrons and holes caused by photoexcitation launches a highly non-equilibrium plasma phase characterized by enhanced screening due to quasi-free carriers and followed by two branches of non-equilibrium dynamics: (i) an instantaneous (within the time resolution) collapse of the insulating gap that precedes charge carrier relaxation and significant ionic motion and (ii) an instantaneous lattice potential symmetry change that represents the onset of the crystallographic phase transition through ionic motion on longer timescales. We discuss the interconnection between these two non-thermal pathways with particular focus on the meaning of the critical fluence of the PIPT in different types of experiments. Based on this, we conclude that the PIPT threshold identified in optical experiments is most probably determined by the excitation density required to drive the lattice potential change rather than the IMT. These considerations suggest that the IMT can be driven by weaker excitation, predicting a transiently metallic, monoclinic state of VO2 that is not stabilized by the non-thermal structural transition and, thus, decays on ultrafast timescales.

  19. Ketamine-induced bladder fibrosis involves epithelial-to-mesenchymal transition mediated by transforming growth factor-β1.

    Science.gov (United States)

    Wang, Junpeng; Chen, Yang; Gu, Di; Zhang, Guihao; Chen, Jiawei; Zhao, Jie; Wu, Peng

    2017-10-01

    Bladder wall fibrosis is a major complication of ketamine-induced cystitis (KC), but the underlying pathogenesis is poorly understood. The aim of the present study was to elucidate the mechanism of ketamine-induced fibrosis in association with epithelial-to-mesenchymal transition (EMT) mediated by transforming growth factor-β1 (TGF-β1). Sprague-Dawley rats were randomly distributed into four groups, which received saline, ketamine, ketamine combined with a TGF-β receptor inhibitor (SB-505124) for 16 wk, or 12 wk of ketamine and 4 wk of abstinence. In addition, the profibrotic effect of ketamine was confirmed in SV-40 immortalized human uroepithelial (SV-HUC-1) cells. The ketamine-treated rats displayed voiding dysfunction and decreased bladder compliance. Bladder fibrosis was accompanied by the appearance of a certain number of cells expressing both epithelial and mesenchymal markers, indicating that epithelial cells might undergo EMT upon ketamine administration. Meanwhile, the expression level of TGF-β1 was significantly upregulated in the urothelium of bladders in ketamine-treated rats. Treatment of SV-HUC-1 cells with ketamine increased the expression of TGF-β1 and EMT-inducing transcription factors, resulting in the downregulation of E-cadherin and upregulation of fibronectin and α-smooth muscle actin. Administration of SB-505124 inhibited EMT and fibrosis both in vitro and vivo. In addition, withdrawal from ketamine did not lead to recovery of bladder urinary function or decreased fibrosis. Taken together, our study shows for the first time that EMT might contribute to bladder fibrosis in KC. TGF-β1 may have an important role in bladder fibrogenesis via an EMT mechanism. Copyright © 2017 the American Physiological Society.

  20. Hibiscus sabdariffa polyphenols prevent palmitate-induced renal epithelial mesenchymal transition by alleviating dipeptidyl peptidase-4-mediated insulin resistance.

    Science.gov (United States)

    Huang, Chien-Ning; Wang, Chau-Jong; Yang, Yi-Sun; Lin, Chih-Li; Peng, Chiung-Huei

    2016-01-01

    Diabetic nephropathy has a significant socioeconomic impact, but its mechanism is unclear and needs to be examined. Hibiscus sabdariffa polyphenols (HPE) inhibited high glucose-induced angiotensin II receptor-1 (AT-1), thus attenuating renal epithelial mesenchymal transition (EMT). Recently, we reported HPE inhibited dipeptidyl-peptidase-4 (DPP-4, the enzyme degrades type 1 glucagon-like peptide (GLP-1)), which mediated insulin resistance signals leading to EMT. Since free fatty acids can realistically bring about insulin resistance, using the palmitate-stimulated cell model in contrast with type 2 diabetic rats, in this study we examined if insulin resistance causes renal EMT, and the preventive effect of HPE. Our findings reveal that palmitate hindered 30% of glucose uptake. Treatment with 1 mg mL(-1) of HPE and the DPP-4 inhibitor linagliptin completely recovered insulin sensitivity and palmitate-induced signal cascades. HPE inhibited DPP-4 activity without altering the levels of DPP-4 and the GLP-1 receptor (GLP-1R). HPE decreased palmitate-induced phosphorylation of Ser307 of insulin receptor substrate-1 (pIRS-1 (S307)), AT-1 and vimentin, while increasing phosphorylation of phosphatidylinositol 3-kinase (pPI3K). IRS-1 knockdown revealed its essential role in mediating downstream AT-1 and EMT. In type 2 diabetic rats, it suggests that HPE concomitantly decreased the protein levels of DPP-4, AT-1, vimentin, and fibronectin, but reversed the in vivo compensation of GLP-1R. In conclusion, HPE improves insulin sensitivity by attenuating DPP-4 and the downstream signals, thus decreasing AT-1-mediated tubular-interstitial EMT. HPE could be an adjuvant to prevent diabetic nephropathy.

  1. Osteo-/odontogenic differentiation of induced mesenchymal stem cells generated through epithelial-mesenchyme transition of cultured human keratinocytes.

    Science.gov (United States)

    Yi, Jin-Kyu; Mehrazarin, Shebli; Oh, Ju-Eun; Bhalla, Anu; Oo, Jenessa; Chen, Wei; Lee, Min; Kim, Reuben H; Shin, Ki-Hyuk; Park, No-Hee; Kang, Mo K

    2014-11-01

    Revascularization of necrotic pulp has been successful in the resolution of periradicular inflammation; yet, several case studies suggest the need for cell-based therapies using mesenchymal stem cells (MSCs) as an alternative for de novo pulp regeneration. Because the availability of MSCs may be limited, especially in an aged population, the current study reports an alternative approach in generating MSCs from epidermal keratinocytes through a process called epithelial-mesenchymal transition (EMT). We induced EMT in primary normal human epidermal keratinocytes (NHEKs) by transient transfection of small interfering RNA targeting the p63 gene. The resulting cells were assayed for their mesenchymal marker expression, proliferation capacities as a monolayer and in a 3-dimensional collagen scaffold, and differentiation capacities. Transient transfection of p63 small-interfering RNA successfully abolished the expression of endogenous p63 in NHEKs and induced the expression of mesenchymal markers (eg, vimentin and fibronectin), whereas epithelial markers (eg, E-cadherin and involucrin) were lost. The NHEKs exhibiting the EMT phenotype acquired extended replicative potential and an increased telomere length compared with the control cells. Similar to the established MSCs, the NHEKs with p63 knockdown showed attachment onto the 3-dimensional collagen scaffold and underwent progressive proliferation and differentiation. Upon differentiation, these EMT cells expressed alkaline phosphatase activity, osteocalcin, and osteonectin and readily formed mineralized nodules detected by alizarin S red staining, showing osteo-/odontogenic differentiation. The induction of EMT in primary NHEKs by means of transient p63 knockdown allows the generation of induced MSCs from autologous sources. These cells may be used for tissues engineering purposes, including that of dental pulp. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Role of epithelial-mesenchymal transition (EMT) and fibroblast function in cerium oxide nanoparticles-induced lung fibrosis

    International Nuclear Information System (INIS)

    Ma, Jane; Bishoff, Bridget; Mercer, R.R.; Barger, Mark; Schwegler-Berry, Diane; Castranova, Vincent

    2017-01-01

    The emission of cerium oxide nanoparticles (CeO 2 ) from diesel engines, using cerium compounds as a catalyst to lower the diesel exhaust particles, is a health concern. We have previously shown that CeO 2 induced pulmonary inflammation and lung fibrosis. The objective of the present study was to investigate the modification of fibroblast function and the role of epithelial-mesenchymal transition (EMT) in CeO 2 -induced fibrosis. Male Sprague-Dawley rats were exposed to CeO 2 (0.15 to 7 mg/kg) by a single intratracheal instillation and sacrificed at various times post-exposure. The results show that at 28 days after CeO 2 (3.5 mg/kg) exposure, lung fibrosis was evidenced by increased soluble collagen in bronchoalveolar lavage fluid, elevated hydroxyproline content in lung tissues, and enhanced sirius red staining for collagen in the lung tissue. Lung fibroblasts and alveolar type II (ATII) cells isolated from CeO 2 -exposed rats at 28 days post-exposure demonstrated decreasing proliferation rate when compare to the controls. CeO 2 exposure was cytotoxic and altered cell function as demonstrated by fibroblast apoptosis and aggregation, and ATII cell hypertrophy and hyperplasia with increased surfactant. The presence of stress fibers, expressed as α-smooth muscle actin (SMA), in CeO 2 -exposed fibroblasts and ATII cells was significantly increased compared to the control. Immunohistofluorescence analysis demonstrated co-localization of TGF-β or α-SMA with prosurfactant protein C (SPC)-stained ATII cells. These results demonstrate that CeO 2 exposure affects fibroblast function and induces EMT in ATII cells that play a role in lung fibrosis. These findings suggest potential adverse health effects in response to CeO 2 nanoparticle exposure. - Highlights: • CeO 2 exposure induced lung fibrosis. • CeO 2 were detected in lung tissue, alveolar type II (ATII) cells and fibroblasts. • CeO 2 caused ATII cell hypertrophy and hyperplasia and altered fibroblast function

  3. Doxorubicin induced myocardial injury is exacerbated following ischaemic stress via opening of the mitochondrial permeability transition pore

    Energy Technology Data Exchange (ETDEWEB)

    Gharanei, M.; Hussain, A. [Department of Biomolecular and Sport Sciences, Coventry University, Cox Street, Coventry, CV1 5FB (United Kingdom); Janneh, O. [Department of Biomolecular and Sport Sciences, Coventry University, Cox Street, Coventry, CV1 5FB (United Kingdom); Pharmacology Research Laboratories, 70, Pembroke Place, The University of Liverpool, Liverpool. L69 3GF (United Kingdom); Maddock, H.L., E-mail: h.maddock@coventry.ac.uk [Department of Biomolecular and Sport Sciences, Coventry University, Cox Street, Coventry, CV1 5FB (United Kingdom)

    2013-04-15

    Chemotherapeutic agents such as doxorubicin are known to cause or exacerbate cardiovascular cell death when an underlying heart condition is present. However, the mechanism of doxorubicin-induced cardiotoxicity is unclear. Here we assess the cardiotoxic effects of doxorubicin in conditions of myocardial ischaemia reperfusion and the mechanistic basis of protection, in particular the role of the mitochondrial permeability transition pore (mPTP) in such protection. The effects of doxorubicin (1 μM) ± cyclosporine A (CsA, 0.2 μM; inhibits mPTP) were investigated in isolated male Sprague–Dawley rats using Langendorff heart and papillary muscle contraction models subjected to simulated ischaemia and reperfusion injury. Isolated rat cardiac myocytes were used in an oxidative stress model to study the effects of drug treatment on mPTP by confocal microscopy. Western blot analysis evaluated the effects of drug treatment on p-Akt and p-Erk 1/2 levels. Langendorff and the isometric contraction models showed a detrimental effect of doxorubicin throughout reperfusion/reoxygenation as well as increased p-Akt and p-Erk levels. Interestingly, CsA not only reversed the detrimental effects of doxorubicin, but also reduced p-Akt and p-Erk levels. In the sustained oxidative stress assay to study mPTP opening, doxorubicin decreased the time taken to depolarization and hypercontracture, but these effects were delayed in the presence of CsA. Collectively, our data suggest for the first that doxorubicin exacerbates myocardial injury in an ischaemia reperfusion model. If the inhibition of mPTP ameliorates the cardiotoxic effects of doxorubicin, then more selective inhibitors of mPTP should be further investigated for their utility in patients receiving doxorubicin. - Highlights: ► Doxorubicin exacerbates myocardial ischaemia reperfusion injury. ► Co-treatment with CsA protects against doxorubicin induced myocardial injury. ► CsA delays doxorubicin induced mPTP opening in laser

  4. Role of epithelial-mesenchymal transition (EMT) and fibroblast function in cerium oxide nanoparticles-induced lung fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jane [Health Effects Laboratory Division, NIOSH, Morgantown, WV (United States); Bishoff, Bridget [Mylan Pharmaceuticals, Morganntown, WV (United States); Mercer, R.R.; Barger, Mark; Schwegler-Berry, Diane [Health Effects Laboratory Division, NIOSH, Morgantown, WV (United States); Castranova, Vincent, E-mail: vcastran@hsc.wvu.edu [School of Pharmacy, West Virginia University, Morgantown, WV (United States)

    2017-05-15

    The emission of cerium oxide nanoparticles (CeO{sub 2}) from diesel engines, using cerium compounds as a catalyst to lower the diesel exhaust particles, is a health concern. We have previously shown that CeO{sub 2} induced pulmonary inflammation and lung fibrosis. The objective of the present study was to investigate the modification of fibroblast function and the role of epithelial-mesenchymal transition (EMT) in CeO{sub 2}-induced fibrosis. Male Sprague-Dawley rats were exposed to CeO{sub 2} (0.15 to 7 mg/kg) by a single intratracheal instillation and sacrificed at various times post-exposure. The results show that at 28 days after CeO{sub 2} (3.5 mg/kg) exposure, lung fibrosis was evidenced by increased soluble collagen in bronchoalveolar lavage fluid, elevated hydroxyproline content in lung tissues, and enhanced sirius red staining for collagen in the lung tissue. Lung fibroblasts and alveolar type II (ATII) cells isolated from CeO{sub 2}-exposed rats at 28 days post-exposure demonstrated decreasing proliferation rate when compare to the controls. CeO{sub 2} exposure was cytotoxic and altered cell function as demonstrated by fibroblast apoptosis and aggregation, and ATII cell hypertrophy and hyperplasia with increased surfactant. The presence of stress fibers, expressed as α-smooth muscle actin (SMA), in CeO{sub 2}-exposed fibroblasts and ATII cells was significantly increased compared to the control. Immunohistofluorescence analysis demonstrated co-localization of TGF-β or α-SMA with prosurfactant protein C (SPC)-stained ATII cells. These results demonstrate that CeO{sub 2} exposure affects fibroblast function and induces EMT in ATII cells that play a role in lung fibrosis. These findings suggest potential adverse health effects in response to CeO{sub 2} nanoparticle exposure. - Highlights: • CeO{sub 2} exposure induced lung fibrosis. • CeO{sub 2} were detected in lung tissue, alveolar type II (ATII) cells and fibroblasts. • CeO{sub 2} caused ATII

  5. Doxorubicin induced myocardial injury is exacerbated following ischaemic stress via opening of the mitochondrial permeability transition pore

    International Nuclear Information System (INIS)

    Gharanei, M.; Hussain, A.; Janneh, O.; Maddock, H.L.

    2013-01-01

    Chemotherapeutic agents such as doxorubicin are known to cause or exacerbate cardiovascular cell death when an underlying heart condition is present. However, the mechanism of doxorubicin-induced cardiotoxicity is unclear. Here we assess the cardiotoxic effects of doxorubicin in conditions of myocardial ischaemia reperfusion and the mechanistic basis of protection, in particular the role of the mitochondrial permeability transition pore (mPTP) in such protection. The effects of doxorubicin (1 μM) ± cyclosporine A (CsA, 0.2 μM; inhibits mPTP) were investigated in isolated male Sprague–Dawley rats using Langendorff heart and papillary muscle contraction models subjected to simulated ischaemia and reperfusion injury. Isolated rat cardiac myocytes were used in an oxidative stress model to study the effects of drug treatment on mPTP by confocal microscopy. Western blot analysis evaluated the effects of drug treatment on p-Akt and p-Erk 1/2 levels. Langendorff and the isometric contraction models showed a detrimental effect of doxorubicin throughout reperfusion/reoxygenation as well as increased p-Akt and p-Erk levels. Interestingly, CsA not only reversed the detrimental effects of doxorubicin, but also reduced p-Akt and p-Erk levels. In the sustained oxidative stress assay to study mPTP opening, doxorubicin decreased the time taken to depolarization and hypercontracture, but these effects were delayed in the presence of CsA. Collectively, our data suggest for the first that doxorubicin exacerbates myocardial injury in an ischaemia reperfusion model. If the inhibition of mPTP ameliorates the cardiotoxic effects of doxorubicin, then more selective inhibitors of mPTP should be further investigated for their utility in patients receiving doxorubicin. - Highlights: ► Doxorubicin exacerbates myocardial ischaemia reperfusion injury. ► Co-treatment with CsA protects against doxorubicin induced myocardial injury. ► CsA delays doxorubicin induced mPTP opening in laser

  6. Thermal treatment induced transition from Zn3(OH)2(BDC)2 (MOF-69c) to Zn4O(BDC)3 (MOF-5)

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2013-01-01

    Full Text Available A simple thermal treatment induced transition from Zn3(OH)2(BDC)2 (MOF-69c) to Zn4O(BDC)3 (MOF-5) is reported. Phase crystallinity, pore characteristics and hydrogen storage capacities of the resulting crystals were investigated. It is shown...

  7. The coordinated roles of miR-26a and miR-30c in regulating TGFβ1-induced epithelial-to-mesenchymal transition in diabetic nephropathy

    DEFF Research Database (Denmark)

    Zheng, Zongji; Guan, Meiping; Jia, Yijie

    2016-01-01

    and miR-30c targeted connective tissue growth factor (CTGF); additionally, Snail family zinc finger 1 (Snail1), a potent epithelial-to-mesenchymal transition (EMT) inducer, was targeted by miR-30c. Overexpression of miR-26a and miR-30c coordinately decreased CTGF protein levels and subsequently...

  8. Serum-induced G0/G1 transition in chemically transformed 3T3 cells

    International Nuclear Information System (INIS)

    Gray, H.E.; Buchou, T.; Mester, J.

    1987-01-01

    Quiescent, chemically transformed (benzo-a-pyrene) BALB/c 3T3 cells (BP A31) enter the cell division cycle when exposed to complete medium containing 10% fetal calf serum (FCS); the number of cells recruited is a function of the duration of serum exposure. The recruitment of cells by short (<4 h) serum pulses is not inhibited by simultaneous exposure to cycloheximide (CH), and therefore the initial commitment does not require protein synthesis. The cells enter S phase with a constant delay following the removal of CH, even if CH exposure has been continued for as long as 20 h after the end of the serum pulse. The cell recruitment by serum pulses was inhibited by 5,6-dichloro-1-β-D-ribofuranosyl-benzimidazole (DRB), an inhibitor of cytoplasmic mRNA accumulation. These data suggest that serum exposure produces a stable memory that is necessary and sufficient for the eventual progression through G1 to S phase that occurs when protein synthesis is resumed after the removal of CH; this memory probably consists of mRNA species that are induced by serum and that are stable in the absence of protein synthesis. Unexpectedly, pretreatment of quiescent BP A31 cells with CH (8-24 h) dramatically increased the fraction of the total cell population that is recruited by a serum pulse of fixed duration

  9. A level set approach for shock-induced α-γ phase transition of RDX

    Science.gov (United States)

    Josyula, Kartik; Rahul; De, Suvranu

    2018-02-01

    We present a thermodynamically consistent level sets approach based on regularization energy functional which can be directly incorporated into a Galerkin finite element framework to model interface motion. The regularization energy leads to a diffusive form of flux that is embedded within the level sets evolution equation which maintains the signed distance property of the level set function. The scheme is shown to compare well with the velocity extension method in capturing the interface position. The proposed level sets approach is employed to study the α-γphase transformation in RDX single crystal shocked along the (100) plane. Example problems in one and three dimensions are presented. We observe smooth evolution of the phase interface along the shock direction in both models. There is no diffusion of the interface during the zero level set evolution in the three dimensional model. The level sets approach is shown to capture the characteristics of the shock-induced α-γ phase transformation such as stress relaxation behind the phase interface and the finite time required for the phase transformation to complete. The regularization energy based level sets approach is efficient, robust, and easy to implement.

  10. TGF-β1 induced epithelial to mesenchymal transition (EMT in human bronchial epithelial cells is enhanced by IL-1β but not abrogated by corticosteroids

    Directory of Open Access Journals (Sweden)

    Zuraw Bruce L

    2009-10-01

    Full Text Available Abstract Background Chronic persistent asthma is characterized by ongoing airway inflammation and airway remodeling. The processes leading to airway remodeling are poorly understood, and there is increasing evidence that even aggressive anti-inflammatory therapy does not completely prevent this process. We sought to investigate whether TGFβ1 stimulates bronchial epithelial cells to undergo transition to a mesenchymal phenotype, and whether this transition can be abrogated by corticosteroid treatment or enhanced by the pro-inflammatory cytokine IL-1β. Methods BEAS-2B and primary normal human bronchial epithelial cells were stimulated with TGFβ1 and expression of epithelial and mesenchymal markers assessed by quantitative real-time PCR, immunoblotting, immunofluorescence microscopy and zymography. In some cases the epithelial cells were also incubated with corticosteroids or IL-1β. Results were analyzed using non-parametric statistical tests. Results Treatment of BEAS-2B or primary human bronchial epithelial cells with TGFβ1 significantly reduced the expression level of the epithelial adherence junction protein E-cadherin. TGFβ1 then markedly induced mesenchymal marker proteins such as collagen I, tenascin C, fibronectin and α-smooth muscle actin mRNA in a dose dependant manner. The process of mesenchymal transition was accompanied by a morphological change towards a more spindle shaped fibroblast cell type with a more motile and invasive phenotype. Corticosteroid pre-treatment did not significantly alter the TGFβ1 induced transition but IL-1β enhanced the transition. Conclusion Our results indicate, that TGFβ1 can induce mesenchymal transition in the bronchial epithelial cell line and primary cells. Since asthma has been strongly associated with increased expression of TGFβ1 in the airway, epithelial to mesenchymal transition may contribute to the contractile and fibrotic remodeling process that accompanies chronic asthma.

  11. Anatomy of a pressure-induced, ferromagnetic-to-paramagnetic transition in pyrrhotite: Implications for the formation pressure of diamonds

    Science.gov (United States)

    Gilder, Stuart A.; Egli, Ramon; Hochleitner, Rupert; Roud, Sophie C.; Volk, Michael W. R.; Le Goff, Maxime; de Wit, Maarten

    2011-10-01

    Meteorites and diamonds encounter high pressures during their formation or subsequent evolution. These materials commonly contain magnetic inclusions of pyrrhotite. Because magnetic properties are sensitive to strain, pyrrhotite can potentially record the shock or formation pressures of its host. Moreover, pyrrhotite undergoes a pressure-induced phase transition between 1.6 and 6.2 GPa, but the magnetic signature of this transition is poorly known. Here we report room temperature magnetic measurements on multidomain and single-domain pyrrhotite under nonhydrostatic pressure. Magnetic remanence in single-domain pyrrhotite is largely insensitive to pressure until 2 GPa, whereas the remanence of multidomain pyrrhotite increases 50% over that of initial conditions by 2 GPa, and then decreases until only 33% of the original remanence remains by 4.5 GPa. In contrast, magnetic coercivity increases with increasing pressure to 4.5 GPa. Below ˜1.5 GPa, multidomain pyrrhotite obeys Néel theory with a positive correlation between coercivity and remanence; above ˜1.5 GPa, it behaves single domain-like yet distinctly different from uncompressed single-domain pyrrhotite. The ratio of magnetic coercivity and remanence follows a logarithmic law with respect to pressure, which can potentially be used as a geobarometer. Owing to the greater thermal expansion of pyrrhotite with respect to diamond, pyrrhotite inclusions in diamonds experience a confining pressure at Earth's surface. Applying our experimentally derived magnetic geobarometer to pyrrhotite-bearing diamonds from Botswana and the Central African Republic suggests the pressures of the pyrrhotite inclusions in the diamonds range from 1.3 to 2.1 GPa. These overpressures constrain the mantle source pressures from 5.4 to 9.5 GPa, depending on which bulk modulus and thermal expansion coefficients of the two phases are used.

  12. High-resolution electron microscopy study of electron-irradiation-induced crystalline-to-amorphous transition in α-SiC single crystals

    International Nuclear Information System (INIS)

    Inui, H.; Mori, H.; Sakata, T.

    1992-01-01

    An electron-irradiation-induced crystalline-to-amorphous (CA) transition in α-SiC has been studied by high-resolution electron microscopy (HREM). The irradiation-produced damage structure was examined as a function of dose of electrons by taking high-resolution maps extending from the unirradiated crystalline region to the completely amorphized region. In the intermediate region between those two regions, that is in the CA transition region, the damage structure was essentially a mixture of crystalline and amorphous phases. The volume fraction of the amorphous phase was found to increase with increasing dose of electrons and no discrete crystalline-amorphous interface was observed in the CA transition region. These facts indicate the heterogeneous and gradual nature of the CA transition. In the transition region close to the unirradiated crystalline region, a sort of fragmentation of the crystal lattice was observed to occur, crystallites with slightly different orientations with respect to the parent crystal were formed owing to the strain around the dispersed local amorphous regions. In the transition region close to the amorphized region, these crystallites were reduced in size and were embedded in an amorphous matrix. This damage structure is the result of the increased volume fraction of the amorphous phase. In the completely amorphized region, no lattice fringes were recognized in the HREM images. The atomistic process of the CA transition is discussed on the basis of the present results and those from previous studies. (Author)

  13. A Physically Based Correlation of Irradiation-Induced Transition Temperature Shifts for RPV Steels

    Energy Technology Data Exchange (ETDEWEB)

    Eason, Ernest D. [Modeling and Computing Services, LLC; Odette, George Robert [UCSB; Nanstad, Randy K [ORNL; Yamamoto, Takuya [ORNL

    2007-11-01

    The reactor pressure vessels (RPVs) of commercial nuclear power plants are subject to embrittlement due to exposure to high-energy neutrons from the core, which causes changes in material toughness properties that increase with radiation exposure and are affected by many variables. Irradiation embrittlement of RPV beltline materials is currently evaluated using Regulatory Guide 1.99 Revision 2 (RG1.99/2), which presents methods for estimating the shift in Charpy transition temperature at 30 ft-lb (TTS) and the drop in Charpy upper shelf energy (ΔUSE). The purpose of the work reported here is to improve on the TTS correlation model in RG1.99/2 using the broader database now available and current understanding of embrittlement mechanisms. The USE database and models have not been updated since the publication of NUREG/CR-6551 and, therefore, are not discussed in this report. The revised embrittlement shift model is calibrated and validated on a substantially larger, better-balanced database compared to prior models, including over five times the amount of data used to develop RG1.99/2. It also contains about 27% more data than the most recent update to the surveillance shift database, in 2000. The key areas expanded in the current database relative to the database available in 2000 are low-flux, low-copper, and long-time, high-fluence exposures, all areas that were previously relatively sparse. All old and new surveillance data were reviewed for completeness, duplicates, and discrepancies in cooperation with the American Society for Testing and Materials (ASTM) Subcommittee E10.02 on Radiation Effects in Structural Materials. In the present modeling effort, a 10% random sample of data was reserved from the fitting process, and most aspects of the model were validated with that sample as well as other data not used in calibration. The model is a hybrid, incorporating both physically motivated features and empirical calibration to the U.S. power reactor surveillance

  14. Trip-Induced Transition Measurements in a Hypersonic Boundary Layer Using Molecular Tagging Velocimetry

    Science.gov (United States)

    Bathel, Brett F.; Danehy, Paul M.; Jones, Stephen B.; Johansen, Craig T.; Goyne, Christopher P.

    2013-01-01

    Measurements of mean streamwise velocity, fluctuating streamwise velocity, and instantaneous streamwise velocity profiles in a hypersonic boundary layer were obtained over a 10-degree half-angle wedge model. A laser-induced fluorescence-based molecular tagging velocimetry technique was used to make the measurements. The nominal edge Mach number was 4.2. Velocity profiles were measured both in an untripped boundary layer and in the wake of a 4-mm diameter cylindrical tripping element centered 75.4 mm downstream of the sharp leading edge. Three different trip heights were investigated: k = 0.53 mm, k = 1.0 mm and k = 2.0 mm. The laminar boundary layer thickness at the position of the measurements was approximately 1 mm, though the exact thickness was dependent on Reynolds number and wall temperature. All of the measurements were made starting from a streamwise location approximately 18 mm downstream of the tripping element. This measurement region continued approximately 30 mm in the streamwise direction. Additionally, measurements were made at several spanwise locations. An analysis of flow features show how the magnitude, spatial location, and spatial growth of streamwise velocity instabilities are affected by parameters such as the ratio of trip height to boundary layer thickness and roughness Reynolds number. The fluctuating component of streamwise velocity measured along the centerline of the model increased from approximately 75 m/s with no trip to +/-225 m/s with a 0.53-mm trip, and to +/-240 m/s with a 1-mm trip, while holding the freestream Reynolds number constant. These measurements were performed in the 31-inch Mach 10 Air Tunnel at the NASA Langley Research Center.

  15. circHECTD1 promotes the silica-induced pulmonary endothelial-mesenchymal transition via HECTD1.

    Science.gov (United States)

    Fang, Shencun; Guo, Huifang; Cheng, Yusi; Zhou, Zewei; Zhang, Wei; Han, Bing; Luo, Wei; Wang, Jing; Xie, Weiping; Chao, Jie

    2018-03-14

    Excessive proliferation and migration of fibroblasts contribute to pulmonary fibrosis in silicosis, and both epithelial cells and endothelial cells participate in the accumulation of fibroblasts via the epithelial-mesenchymal transition (EMT) and the endothelial-mesenchymal transition (EndMT), respectively. A mouse endothelial cell line (MML1) was exposed to silicon dioxide (SiO 2 , 50 μg/cm 2 ), and immunofluorescence and western blot analyses were performed to evaluate levels of specific endothelial and mesenchymal markers and to elucidate the mechanisms by which SiO 2 induces the EndMT. Functional changes were evaluated by analyzing cell migration and proliferation. The mRNA and circular RNA (circRNA) levels were measured using qPCR and fluorescent in situ hybridization (FISH). Lung tissue samples from both Tie2-GFP mice exposed to SiO 2 and silicosis patients were applied to confirm the observations from in vitro experiments. Based on the results from the current study, SiO 2 increased the expression of mesenchymal markers (type I collagen (COL1A1), type III collagen (COL3A1) and alpha smooth muscle actin (α-SMA/Acta2)) and decreased the expression of endothelial markers (vascular endothelial cadherin (VE-Cad/Cdh 5) and platelet endothelial cell adhesion molecule-1 (PECAM1)), indicating the occurrence of the EndMT in response to SiO 2 exposure both in vivo and in vitro. SiO 2 concomitantly increased circHECTD1 expression, which, in turn, inhibited HECTD1 protein expression. SiO 2 -induced increases in cell proliferation, migration, and changes in marker levels were restored by either a small interfering RNA (siRNA) targeting circHECTD1 or overexpression of HECTD1 via the CRISPR/Cas9 system, confirming the involvement of the circHECTD1/HECTD1 pathway in the EndMT. Moreover, tissue samples from SiO 2 -exposed mice and silicosis patients confirmed the EndMT and change in HECTD1 expression. Our findings reveal a potentially new function for the circHECTD1/HECTD

  16. aPKC-ι/P-Sp1/Snail signaling induces epithelial-mesenchymal transition and immunosuppression in cholangiocarcinoma.

    Science.gov (United States)

    Qian, Yawei; Yao, Wei; Yang, Tao; Yang, Yan; Liu, Yan; Shen, Qi; Zhang, Jian; Qi, Weipeng; Wang, Jianming

    2017-10-01

    Cholangiocarcinoma (CCA) is a highly malignant bile duct cancer that tends to invade and metastasize early. The epithelial-mesenchymal transition (EMT) has been implicated in cancer cell invasion and metastasis, as well as in cancer cell evasion of host immunity. In this study, we investigated the interaction between atypical protein kinase C-iota (aPKC-ι) and Snail in the regulation of EMT and its relationship to CCA immunosuppression. Our results demonstrated that aPKC-ι, Snail, and infiltrated immunosuppressive cells were significantly up-regulated in CCA tumor tissues and linked to poor prognosis. aPKC-ι induced EMT and immunosuppression by regulating Snail in vitro and in vivo, although aPKC-ι did not directly interact with Snail in coimmunoprecipitation experiments. To further clarify the molecular interaction between aPKC-ι and Snail in relation to EMT, quantitative iTRAQ-based phosphoproteomic analysis and liquid chromatography-tandem mass spectrometry were conducted to identify the substrates of aPKC-ι-dependent phosphorylation. Combined with coimmunoprecipitation, we showed that specificity protein 1 (Sp1) was directly phosphorylated by aPKC-ι on Ser59 (P-Sp1). Both Sp1 and P-Sp1 were up-regulated in CCA tumor tissues and associated with clinicopathological features and poor prognosis in CCA patients. Moreover, using chromatin immunoprecipitation assays, we found that P-Sp1 regulated Snail expression by increasing Sp1 binding to the Snail promoter. P-Sp1 also regulated aPKC-ι/Snail-induced EMT-like changes and immunosuppression in CCA cells. Our findings further indicated that CCA cells with EMT-like features appear to generate immunosuppressive natural T regulatory-like cluster of differentiation 4-positive (CD4 + )CD25 - cells rather than to increase CD4 + CD25 + natural T regulatory cells, in part by mediating T regulatory-inducible cytokines such as transforming growth factor β1 and interleukin 2. These results demonstrate that a

  17. Sorafenib ameliorates renal fibrosis through inhibition of TGF-β-induced epithelial-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Lining Jia

    sorafenib may useful for the treatment of renal fibrosis through the suppression of TGF-β/Smad3-induced EMT signaling.

  18. Potential-induced structural transitions of DL-homocysteine monolayers on Au(111) electrode surfaces

    International Nuclear Information System (INIS)

    Zhang Jingdong; Demetriou, Anna; Welinder, Anne Christina; Albrecht, Tim; Nichols, Richard J.; Ulstrup, Jens

    2005-01-01

    Monolayers of homocysteine on Au(111)-surfaces have been investigated by voltammetry, in situ scanning tunnelling microscopy (STM) and subtractively normalised interfacial Fourier transform spectroscopy (SNIFTIRS). A pair of sharp voltammetric peaks build up in the potential range 0 to -0.1V (vs. SCE) in phosphate buffer pH 7.7. The peak half-widths are about 25mV at a scan rate of 10mVs -1 . This is much smaller than for a one-electron Faradaic process (90.6mV) under similar conditions. The coverage of homocysteine is 6.1 (+/-0.2)x10 -10 molcm -2 , or 5.9x10 -5 Ccm -2 , from Au-S reductive desorption at -0.8V (SCE) in 0.1M NaOH, while the charge is only about 8x10 -6 Ccm -2 (pH 7.7) for the 0 to -0.1V peak. This suggests a capacitive origin. The peak potential and shape depend on pH. At pH 7.7 both cathodic and anodic peak currents reach a maximum, but drop at both higher and lower pH. The midpoint potential shows biphasic behaviour, decreasing linearly with increasing pH until pH 10.4 towards a constant value at higher pH. The cathodic and anodic peak charges decay at pH both higher and lower than 7.7. The homocysteine monolayer was investigated by in situ STM at different potentials at pH 7.7. The molecules pack into highly ordered domains around the peak potential. High-resolution in situ STM reveals a (√3x5) R30 deg. lattice with three homocysteine molecules in each unit cell. The adlayer changes into disordered structures on either side of the peak potential. This process is reversible. We propose that the voltammetric peaks are capacitive. The ordered domains are formed only around the potential of zero charge (pzc) and dissipate at potentials on either side of the peak, inducing mirror charge flow in the metallic electrode as the charged -COO - and -NH 3 + groups approach the surface. No bands for carboxylate coordinated to the surface were observed in SNIFTIRS implying more subtle orientation changes of the charged groups on transcending the voltammetric

  19. Transcriptional Alterations of Virulence-Associated Genes in Extended Spectrum Beta-Lactamase (ESBL-Producing Uropathogenic Escherichia coli during Morphologic Transitions Induced by Ineffective Antibiotics

    Directory of Open Access Journals (Sweden)

    Isak Demirel

    2017-06-01

    Full Text Available It is known that an ineffective antibiotic treatment can induce morphological shifts in uropathogenic Escherichia coli (UPEC but the virulence properties during these shifts remain to be studied. The present study examines changes in global gene expression patterns and in virulence factor-associated genes in an extended spectrum beta-lactamase (ESBL-producing UPEC (ESBL019 during the morphologic transitions induced by an ineffective antibiotic and in the presence of human primary bladder epithelial cells. Microarray results showed that the different morphological states of ESBL019 had significant transcriptional alterations of a large number of genes (Transition; 7%, Filamentation; 32%, and Reverted 19% of the entities on the array. All three morphological states of ESBL019 were associated with a decreased energy metabolism, altered iron acquisition systems and altered adhesion expression. In addition, genes associated with LPS synthesis and bacterial motility was also altered in all the morphological states. Furthermore, the transition state induced a significantly higher release of TNF-α from bladder epithelial cells compared to all other morphologies, while the reverted state was unable to induce TNF-α release. Our findings show that the morphological shifts induced by ineffective antibiotics are associated with significant transcriptional virulence alterations in ESBL-producing UPEC, which may affect survival and persistence in the urinary tract.

  20. Shock-Assisted Superficial Hexagonal-to-Cubic Phase Transition in GaN/Sapphire Interface Induced by Using Ultra-violet Laser Lift-Of Techniques

    International Nuclear Information System (INIS)

    Wei-Hua, Chen; Xiao-Dong, Hu; Xiang-Ning, Kang; Xu-Rong, Zhou; Xiao-Min, Zhang; Tong-Jun, Yu; Zhi-Jian, Yang; Ke, Xu; Guo-Yi, Zhang; Xu-Dong, Shan; Li-Ping, You

    2009-01-01

    Ultra-violet (KrF excimer laser, λ = 248 nm) laser lift-of (LLO) techniques have been operated to the GaN/sapphire structure to separate GaN from the sapphire substrate. Hexagonal to cubic phase transformation induced by the ultra-violet laser lift-of (UV-LLO) has been characterized by micro-Raman spectroscopy, micro-photoluminescence, along with high-resolution transmission electron microscopy (HRTEM). HRTEM indicates that UV-LLO induced phase transition takes place above the LLO interface, without phase transition under the LLO interface. The formed cubic GaN often exists as nanocrystal grains attaching on the bulk hexagonal GaN. The half-loop-cluster-like UV-LLO interface indicates that the LLO-induced shock waves has generated and played an assistant role in the decomposition of the hexagonal GaN and in the formation of cubic GaN grains at the LLO surface

  1. Interleukin‑6 induces an epithelial‑mesenchymal transition phenotype in human adamantinomatous craniopharyngioma cells and promotes tumor cell migration.

    Science.gov (United States)

    Zhou, Jie; Zhang, Chao; Pan, Jun; Chen, Ligang; Qi, Song-Tao

    2017-06-01

    Total resection of adamantinomatous craniopharyngioma (ACP) is complex and often leads to postoperative recurrence. This is due to the tendency of the tumor to invade the surrounding brain tissue and the generation of a local inflammatory state between the tumor cells and parenchyma. While there is evidence to suggest that interleukin‑6 (IL‑6) induces craniopharyngioma (CP)‑associated inflammation, particularly in ACP, the role of IL‑6 in the progression of ACP remains unclear. The results of the present study demonstrated that CP inflammation was associated with pathological classification, extent of surgery, degree of calcification and postoperative hypothalamic status scale. Cytokine antibody arrays were conducted to measure the expression of IL‑6 and other inflammatory factors in tumor tissues in response to various levels of inflammatory exposure. IL‑6, IL‑6 receptor (IL‑6R) and glycoprotein 130 expression was detected by immunohistochemistry. In addition, an ELISA was performed to quantify the levels of soluble IL‑6R (sIL‑6R) in the cystic fluid and supernatants of ACP cells and tumor‑associated fibroblasts. These measurements demonstrated that ACP cells produce IL‑6 and its associated proteins. In addition, the results revealed that while the viability of ACP cells was not affected, the migration of ACP cells was promoted by IL‑6 treatment in a concentration‑dependent manner. Conversely, treatment with an IL‑6‑blocking monoclonal antibody significantly decreased the migration of ACP cells. In addition, IL‑6 treatment increased the expression of vimentin and decreased the expression of E‑cadherin in a dose‑dependent manner. The findings of the present study demonstrate that IL‑6 may promote migration in vitro via the classic‑ and trans‑signaling pathways by inducing epithelial‑mesenchymal transition in ACP cell cultures.

  2. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human adamantinomatous craniopharyngioma cells and promotes tumor cell migration

    Science.gov (United States)

    Zhou, Jie; Zhang, Chao; Pan, Jun; Chen, Ligang; Qi, Song-Tao

    2017-01-01

    Total resection of adamantinomatous craniopharyngioma (ACP) is complex and often leads to postoperative recurrence. This is due to the tendency of the tumor to invade the surrounding brain tissue and the generation of a local inflammatory state between the tumor cells and parenchyma. While there is evidence to suggest that interleukin-6 (IL-6) induces craniopharyngioma (CP)-associated inflammation, particularly in ACP, the role of IL-6 in the progression of ACP remains unclear. The results of the present study demonstrated that CP inflammation was associated with pathological classification, extent of surgery, degree of calcification and postoperative hypothalamic status scale. Cytokine antibody arrays were conducted to measure the expression of IL-6 and other inflammatory factors in tumor tissues in response to various levels of inflammatory exposure. IL-6, IL-6 receptor (IL-6R) and glycoprotein 130 expression was detected by immunohistochemistry. In addition, an ELISA was performed to quantify the levels of soluble IL-6R (sIL-6R) in the cystic fluid and supernatants of ACP cells and tumor-associated fibroblasts. These measurements demonstrated that ACP cells produce IL-6 and its associated proteins. In addition, the results revealed that while the viability of ACP cells was not affected, the migration of ACP cells was promoted by IL-6 treatment in a concentration-dependent manner. Conversely, treatment with an IL-6-blocking monoclonal antibody significantly decreased the migration of ACP cells. In addition, IL-6 treatment increased the expression of vimentin and decreased the expression of E-cadherin in a dose-dependent manner. The findings of the present study demonstrate that IL-6 may promote migration in vitro via the classic- and trans-signaling pathways by inducing epithelial-mesenchymal transition in ACP cell cultures. PMID:28487953

  3. Hyperuricemia Induces Wnt5a/Ror2 Gene Expression, Epithelial–Mesenchymal Transition, and Kidney Tubular Injury in Mice

    Directory of Open Access Journals (Sweden)

    Wiwit Ananda Wahyu Setyaningsih

    2018-03-01

    Full Text Available Background: Hyperuricemia contributes to kidney injury, characterized by tubular injury with epithelial–mesenchymal transition (EMT. Wnt5a/Ror2 signaling drives EMT in many kidney pathologies. This study sought to evaluate the involvement of Wnt5a/Ror2 in hyperuricemia-induced EMT in kidney tubular injury. Methods: A hyperuricemia model was performed in male Swiss background mice (3 months old, 30–40 g with daily intraperitoneal injections of 125 mg/kg body weight (BW of uric acid. The mice were terminated on day 7 (UA7, n=5 and on day 14 (UA14, n=5. Allopurinol groups (UAl7 and UAl14, each n=5 were added with oral 50 mg/kg BW of allopurinol treatment. The serum uric acid level was quantified, and tubular injury was assessed based on PAS staining. Reverse transcriptase-PCR was done to quantify Wnt5a, Ror2, E-cadherin, and vimentin expressions. IHC staining was done for E-cadherin and collagen I. We used the Shapiro–Wilk for normality testing and one-way ANOVA for variance analysis with a P<0.05 as significance level using SPSS 22 software. Results: The hyperuricemia groups had a higher uric acid level, which was associated with a higher tubular injury score. Meanwhile, the allopurinol groups had a significantly lower uric acid level and tubular injury than the uric acid groups. Reverse transcriptase-PCR revealed downregulation of the E-cadherin expression. While vimentin and collagen I expression are upregulated, which was associated with a higher Wnt5a expression. However, the allopurinol groups had reverse results. Immunostaining revealed a reduction in E-cadherin staining in the epithelial cells and collagen I positive staining in the epithelial cells and the interstitial areas. Conclusion: Hyperuricemia induced tubular injury, which might have been mediated by EMT through the activation of Wnt5a.

  4. Glass-like dynamics of the strain-induced coil/helix transition on a permanent polymer network.

    Science.gov (United States)

    Ronsin, O; Caroli, C; Baumberger, T

    2016-02-14

    We study the stress response to a step strain of covalently bonded gelatin gels in the temperature range where triple helix reversible crosslink formation is prohibited. We observe slow stress relaxation towards a T-dependent finite asymptotic level. We show that this is assignable to the strain-induced coil → helix transition, previously evidenced by Courty et al. [Proc. Natl. Acad. Sci. U. S. A. 102, 13457 (2005)], of a fraction of the polymer strands. Relaxation proceeds, in a first stage, according to a stretched exponential dynamics, then crosses over to a terminal simple exponential decay. The respective characteristic times τK and τf exhibit an Arrhenius-like T-dependence with an associated energy E incompatibly larger than the activation barrier height for the isomerisation process which sets the clock for an elementary coil → helix transformation event. We tentatively assign this glass-like slowing down of the dynamics to the long-range couplings due to the mechanical noise generated by the local elementary events in this random elastic medium.

  5. Transition from Autler–Townes splitting to electromagnetically induced transparency based on the dynamics of decaying dressed states

    International Nuclear Information System (INIS)

    Lu, Xiaogang; Miao, Xingxu; Bai, Jinhai; Wang, Meng; Gao, Yanlei; Wu, Ling-An; Fu, Panming; Wang, Ruquan; Zuo, Zhanchun; Pei, Liya

    2015-01-01

    The threshold for the transition between Autler–Townes splitting (ATS) and electromagnetically induced transparency (EIT) is studied through examining the dynamics of decaying dressed states, which are derived from the effective Hamiltonian. It is found that the threshold corresponds to the suppression of the Rabi oscillation of the populations by the relaxation as the coupling field becomes weak. Moreover, ATS and EIT belong to two different regimes, the former being in the non-perturbation regime, where there is coherent Rabi oscillation of the populations of the states coupled by the coupling field. By contrast, EIT is in the perturbation regime, and the transparency window in the EIT resonance can be explained as being due to the gain of the four-wave mixing process. Experiments are performed in cold rubidium atoms, where both the absorption and dispersion are measured, showing that EIT can be discriminated from ATS through Fourier transformation of the spectra. Compared to the statistical method proposed by Anisimov et al (2011 Phys. Rev. Lett. 107 163604), our method is more direct and is deterministic. (paper)

  6. Adiabatic, diabatic field-free and dressed molecular bases in a semiclassical treatment of laser induced transitions near pseudocrossings

    Energy Technology Data Exchange (ETDEWEB)

    Errea, L.F.; Mendez, L.; Riera, A.

    1986-07-15

    We study the characteristics of charge exchange processes in ion--atom collisions, induced by a strong laser field whose wavelength is resonant to the splitting at a pseudocrossing of two molecular adiabatic energies, where the transition dipole has a sharp maximum. To calculate the charge exchange cross section we use a semiclassical approach and a molecular expansion for the electronic wave function. Using the formalism of Macias and Riera, and of Ho, Chu, and Laughlin, the properties and practical advantages of field-free and dressed molecular wave functions in that expansion are studied in detail. In practice we have found the former basis to be more advantageous from the computational point of view. A limitation of the Floquet approach of Ho et al. is obtained. As an illustration, we treat O/sup 8 +/+H(1s) charge exchange collisions in presence of a laser field whose frequency is quasiresonant with the energy splitting at the pseudocrossing between the 7isigma and the 6hsigma energy curves. The importance of the (usually neglected) diagonal ac Stark terms is stressed.

  7. Metal-insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition

    International Nuclear Information System (INIS)

    Fernandez-Pacheco, A.; Ibarra, M. R.; De Teresa, J. M.; Cordoba, R.

    2009-01-01

    We present a study of the transport properties of Pt-C nanowires created by focused-ion-beam (FIB)-induced deposition. By means of the measurement of the resistance while the deposit is being performed, we observe a progressive decrease in the nanowire resistivity with thickness, changing from 10 8 μΩ cm for thickness ∼20 nm to a lowest saturated value of 700 μΩ cm for thickness >150 nm. Spectroscopy analysis indicates that this dependence on thickness is caused by a gradient in the metal-carbon ratio as the deposit is grown. We have fabricated nanowires in different ranges of resistivity and studied their conduction mechanism as a function of temperature. A metal-insulator transition as a function of the nanowire thickness is observed. The results will be discussed in terms of the Mott-Anderson theory for noncrystalline materials. An exponential decrease in the conductance with the electric field is found for the most resistive samples, a phenomenon understood by the theory of hopping in lightly doped semiconductors under strong electric fields. This work explains the important discrepancies found in the literature for Pt-C nanostructures grown by FIB and opens the possibility to tune the transport properties of this material by an appropriate selection of the growth parameters.

  8. Defects induced magnetic transition in Co doped ZnS thin films: Effects of swift heavy ion irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Shiv P., E-mail: shivpoojanbhola@gmail.com [Physics Department, University of Allahabad, Allahabad 211002 (India); Pivin, J.C. [CSNSM, IN2P3-CNRS, Batiment 108, F-91405 Orsay Campus (France); Patel, M.K; Won, Jonghan [Materials Science and Technology Division, MST-8, P.O.Box 1663, Mail Stop G755, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chandra, Ramesh [Nanoscience Laboratory, IIC, Indian Institute of Technology, Roorkee 247667 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Kumar, Lokendra [Physics Department, University of Allahabad, Allahabad 211002 (India)

    2012-07-15

    The effect of swift heavy ions (SHI) on magnetic ordering in ZnS thin films with Co ions substituted on Zn sites is investigated. The materials have been synthesized by pulsed laser deposition on substrates held at 600 Degree-Sign C for obtaining films with wurtzite crystal structure and it showed ferromagnetic ordering up to room temperature with a paramagnetic component. 120 MeV Ag ions have been used at different fluences of 1 Multiplication-Sign 10{sup 11} ions/cm{sup 2} and 1 Multiplication-Sign 10{sup 12} ions/cm{sup 2} for SHI induced modifications. The long range correlation between paramagnetic spins on Co ions was destroyed by irradiation and the material became purely paramagnetic. The effect is ascribed to the formation of cylindrical ion tracks due to the thermal spikes resulting from electron-phonon coupling. - Highlights: Black-Right-Pointing-Pointer Effect of swift heavy ions on magnetic ordering in Co doped ZnS thin films are presented. Black-Right-Pointing-Pointer Magnetization in the pristine films is composed of ferromagnetic and paramagnetic components. Black-Right-Pointing-Pointer The films become purely paramagnetic after swift heavy ions irradiation. Black-Right-Pointing-Pointer The magnetic transition is ascribed to the formation of ion track (or cylindrical defects) due to the thermal spikes.

  9. Laser induced fluorescence of TiD: analysis of the B4Γ-X4Φ transition

    International Nuclear Information System (INIS)

    Danielsson, M

    2007-01-01

    A titanium hollow cathode lamp in combination with a dye laser and a monochromator has been used to resolve the laser-induced fluorescence of the TiD molecule. This has enabled the extension of the earlier rotational analysis of the (0,0) band of the B 4 Γ-X 4 Φ transition. In addition, the (1,1) band and part of the (2,2) band have been observed and analyzed. All earlier works on the TiD and TiH molecules concern the (0,0) band. The present work is the first to report experimentally determined equilibrium constants for TiD. For the ground state X 4 Φ the principal parameters are (in cm -1 ) A e =33.075, B e =2.7804, D e =6.819x10 -5 and α e =0.0466. By using the isotope relationships the corresponding equilibrium parameters for the TiH molecule are given

  10. Adiabatic, diabatic field-free and dressed molecular bases in a semiclassical treatment of laser induced transitions near pseudocrossings

    International Nuclear Information System (INIS)

    Errea, L.F.; Mendez, L.; Riera, A.

    1986-01-01

    We study the characteristics of charge exchange processes in ion--atom collisions, induced by a strong laser field whose wavelength is resonant to the splitting at a pseudocrossing of two molecular adiabatic energies, where the transition dipole has a sharp maximum. To calculate the charge exchange cross section we use a semiclassical approach and a molecular expansion for the electronic wave function. Using the formalism of Macias and Riera, and of Ho, Chu, and Laughlin, the properties and practical advantages of field-free and dressed molecular wave functions in that expansion are studied in detail. In practice we have found the former basis to be more advantageous from the computational point of view. A limitation of the Floquet approach of Ho et al. is obtained. As an illustration, we treat O 8+ +H(1s) charge exchange collisions in presence of a laser field whose frequency is quasiresonant with the energy splitting at the pseudocrossing between the 7isigma and the 6hsigma energy curves. The importance of the (usually neglected) diagonal ac Stark terms is stressed

  11. Size-induced effect upon the Neel temperature of the antiferro/paramagnetic transition in gadolinium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mutelet, B.; Martini, M.; Perriat, P. [Universite de Lyon, MATEIS, UMR 5510 CNRS, Villeurbanne (France); Keller, N. [Universite de Versailles-St-Quentin, GEMAC, UMR 8635 CNRS, Versailles (France); Roux, S. [Universite de Franche-Comte, UTINAM, UMR 6213 CNRS, Besanon (France); Flores-Gonzales, M.A.; Lux, F.; Tillement, O.; Billotey, C.; Janier, M. [Universite de Lyon, Universite Claude Bernard, LPCML, Villeurbanne (France); Villiers, C. [Institut Albert Bonniot, INSERM U823, La Tronche (France); Novitchi, Ghenadie; Luneau, Dominique [Universite de Lyon, Universite Claude Bernard, Laboratoire des Multimateriaux et Interfaces, Villeurbanne (France)

    2011-10-15

    In this paper, we demonstrate that cubic gadolinium oxide is paramagnetic and follows the Curie-Weiss law from 20 K to room temperature for particles size comprised between 3.5 and 60 nm. The largest particles (60 nm) possess the macroscopic behaviour of Gd oxide with a Neel temperature, T{sub N}, close to 18 K (Gd oxide is antiferromagnetic below T{sub N}, paramagnetic above). Then size-induced effects can be encountered only for particles smaller than 60 nm. We find that the finite-size scaling model used for describing the size evolution of the antiferro/paramagnetic transition is valid for sizes comprised between 3.5 and 35 nm with parameters in excellent agreement with those usually found for antiferromagnetic materials. The correlation length (3.6 nm) is of the order of magnitude of a few lattice parameters and the critical exponent {lambda} is found equal to 1.3, a value very close to that predicted by the three dimensional Heisenberg model ({lambda}=1.4). (orig.)

  12. Nanosize effects on the magnetic field induced transitions in La0.67−xEuxCa0.33MnO3 perovskite manganite

    International Nuclear Information System (INIS)

    Raju, N.; Roja Sree, D.; Reddy, S. Shravan Kumar; Reddy, Ch. Gopal; Reddy, P. Yadagiri; Reddy, K. Rama; Reddy, V. Raghavendra; Reddy Turpu, Goverdhan

    2014-01-01

    The nanosize effects on magnetic field induced transitions in La 0.67−x Eu x Ca 0.33 MnO 3 (x=0.25 and 0.27) system are presented in this paper. The reduction in the particle size of the system shows drastic effects on the electrical transport properties leading to robustness of the charge ordering phenomenon. The metal–insulator transition found in bulk materials at low magnetic fields disappeared in nanoparticles of the same material and a high field induced metal–insulator transition emerged at lower temperatures. These results manifest a strong correlation between the chemical pressures induced by doping of various ions at A-site and nanosize related phenomenon. - Highlights: • Chemical pressure and nanosize effects on electrical transport studies of Eu doped LCMO system are reported. • Decrease in particle size resulted in drastic changes on electrical transport studies. • Metal–insulator transition found in bulk at low magnetic fields disappeared in nanoparticles

  13. Differences between pressure-induced densification of LiCl-H{sub 2}O glass and polyamorphic transition of H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshiharu; Mishima, Osamu [Polyamorphism Group, Advanced Nano Materials Laboratory, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki, 305-0044 (Japan)], E-mail: SUZUKI.Yoshiharu@nims.go.jp

    2009-04-15

    We perform volumetric measurements of LiCl aqueous solution up to 1.00 GPa in the 100-170 K range, examine the pressure-induced vitrification and densification, and draw the pressure-temperature-volume surface. The pressure-induced vitrification of the solution corresponds to the cooling-induced vitrification of the liquid. We found that the volumetric decrease of glassy solution during the densification is continuous and this behavior depends on the glassy state before the compression. Raman profiles of the glassy solutions before and after the densification are similar. In contrast, the polyamorphic transition from low-density amorphous ice (LDA) to high-density amorphous ice (HDA) is discontinuous and their Raman profile before and after the transition is distinct. These results suggest that the densification relates to the structural relaxation and differs intrinsically from the polyamorphic transition. Furthermore, the densification of HDA is observed under high pressure, suggesting that very high-density amorphous ice (VHDA) may be the densified HDA. In order to recognize a polyamorphic transition under a non-equilibrium condition correctly, evidence of not only large volume change but also some distinct structural changes in glassy state is necessary.

  14. Differences between pressure-induced densification of LiCl-H2O glass and polyamorphic transition of H2O

    International Nuclear Information System (INIS)

    Suzuki, Yoshiharu; Mishima, Osamu

    2009-01-01

    We perform volumetric measurements of LiCl aqueous solution up to 1.00 GPa in the 100-170 K range, examine the pressure-induced vitrification and densification, and draw the pressure-temperature-volume surface. The pressure-induced vitrification of the solution corresponds to the cooling-induced vitrification of the liquid. We found that the volumetric decrease of glassy solution during the densification is continuous and this behavior depends on the glassy state before the compression. Raman profiles of the glassy solutions before and after the densification are similar. In contrast, the polyamorphic transition from low-density amorphous ice (LDA) to high-density amorphous ice (HDA) is discontinuous and their Raman profile before and after the transition is distinct. These results suggest that the densification relates to the structural relaxation and differs intrinsically from the polyamorphic transition. Furthermore, the densification of HDA is observed under high pressure, suggesting that very high-density amorphous ice (VHDA) may be the densified HDA. In order to recognize a polyamorphic transition under a non-equilibrium condition correctly, evidence of not only large volume change but also some distinct structural changes in glassy state is necessary.

  15. Vildagliptin ameliorates pulmonary fibrosis in lipopolysaccharide-induced lung injury by inhibiting endothelial-to-mesenchymal transition.

    Science.gov (United States)

    Suzuki, Toshio; Tada, Yuji; Gladson, Santhi; Nishimura, Rintaro; Shimomura, Iwao; Karasawa, Satoshi; Tatsumi, Koichiro; West, James

    2017-10-16

    Pulmonary fibrosis is a late manifestation of acute respiratory distress syndrome (ARDS). Sepsis is a major cause of ARDS, and its pathogenesis includes endotoxin-induced vascular injury. Recently, endothelial-to-mesenchymal transition (EndMT) was shown to play an important role in pulmonary fibrosis. On the other hand, dipeptidyl peptidase (DPP)-4 was reported to improve vascular dysfunction in an experimental sepsis model, although whether DPP-4 affects EndMT and fibrosis initiation during lipopolysaccharide (LPS)-induced lung injury is unclear. The aim of this study was to investigate the anti-EndMT effects of the DPP-4 inhibitor vildagliptin in pulmonary fibrosis after systemic endotoxemic injury. A septic lung injury model was established by intraperitoneal injection of lipopolysaccharide (LPS) in eight-week-old male mice (5 mg/kg for five consecutive days). The mice were then treated with vehicle or vildagliptin (intraperitoneally, 10 mg/kg, once daily for 14 consecutive days from 1 day before the first administration of LPS.). Flow cytometry, immunohistochemical staining, and quantitative polymerase chain reaction (qPCR) analysis was used to assess cell dynamics and EndMT function in lung samples from the mice. Lung tissue samples from treated mice revealed obvious inflammatory reactions and typical interstitial fibrosis 2 days and 28 days after LPS challenge. Quantitative flow cytometric analysis showed that the number of pulmonary vascular endothelial cells (PVECs) expressing alpha-smooth muscle actin (α-SMA) or S100 calcium-binding protein A4 (S100A4) increased 28 days after LPS challenge. Similar increases in expression were also confirmed by qPCR of mRNA from isolated PVECs. EndMT cells had higher proliferative activity and migration activity than mesenchymal cells. All of these changes were alleviated by intraperitoneal injection of vildagliptin. Interestingly, vildagliptin and linagliptin significantly attenuated EndMT in the absence of immune

  16. Human CD40 ligand-expressing type 3 innate lymphoid cells induce IL-10-producing immature transitional regulatory B cells.

    Science.gov (United States)

    Komlósi, Zsolt I; Kovács, Nóra; van de Veen, Willem; Kirsch, Anna Isabella; Fahrner, Heinz Benedikt; Wawrzyniak, Marcin; Rebane, Ana; Stanic, Barbara; Palomares, Oscar; Rückert, Beate; Menz, Günter; Akdis, Mübeccel; Losonczy, György; Akdis, Cezmi A

    2017-09-20

    Type 3 innate lymphoid cells (ILC3s) are involved in maintenance of mucosal homeostasis; however, their role in immunoregulation has been unknown. Immature transitional regulatory B (itBreg) cells are innate-like B cells with immunosuppressive properties, and the in vivo mechanisms by which they are induced have not been fully clarified. We aimed to investigate the ILC3-B-cell interaction that probably takes place in human tonsils. ILC3s were isolated from peripheral blood and palatine tonsils, expanded, and cocultured with naive B cells. Tonsillar ILC3s and regulatory B cells were visualized with immunofluorescence histology. ILC3 frequencies were measured in tonsil tissue of allergic and nonallergic patients and in peripheral blood of allergic asthmatic patients and healthy control subjects. A mutually beneficial relationship was revealed between ILC3s and B cells: ILC3s induced IL-15 production in B cells through B cell-activating factor receptor, whereas IL-15, a potent growth factor for ILC3s, induced CD40 ligand (CD40L) expression on circulating and tonsillar ILC3s. IL-15-activated CD40L + ILC3s helped B-cell survival, proliferation, and differentiation of IL-10-secreting, PD-L1-expressing functional itBreg cells in a CD40L- and B cell-activating factor receptor-dependent manner. ILC3s and regulatory B cells were in close connection with each other in palatine tonsils. ILC3 frequency was reduced in tonsil tissue of allergic patients and in peripheral blood of allergic asthmatic patients. Human CD40L + ILC3s provide innate B-cell help and are involved in an innate immunoregulatory mechanism through induction of itBreg cell differentiation, which takes place in palatine tonsils in vivo. This mechanism, which can contribute to maintenance of immune tolerance, becomes insufficient in allergic diseases. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. Effects of PPARγ ligands on TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Dagher Hayat

    2010-02-01

    Full Text Available Abstract Background Transforming growth factor β1 (TGF-β1-mediated epithelial mesenchymal transition (EMT of alveolar epithelial cells (AEC may contribute to lung fibrosis. Since PPARγ ligands have been shown to inhibit fibroblast activation by TGF-β1, we assessed the ability of the thiazolidinediones rosiglitazone (RGZ and ciglitazone (CGZ to regulate TGF-β1-mediated EMT of A549 cells, assessing changes in cell morphology, and expression of cell adhesion molecules E-cadherin (epithelial cell marker and N-cadherin (mesenchymal cell marker, and collagen 1α1 (COL1A1, CTGF and MMP-2 mRNA. Methods Serum-deprived A549 cells (human AEC cell line were pre-incubated with RGZ and CGZ (1 - 30 μM in the absence or presence of the PPARγ antagonist GW9662 (10 μM before TGFβ-1 (0.075-7.5 ng/ml treatment for up to 72 hrs. Changes in E-cadherin, N-cadherin and phosphorylated Smad2 and Smad3 levels were analysed by Western blot, and changes in mRNA levels including COL1A1 assessed by RT-PCR. Results TGFβ-1 (2.5 ng/ml-induced reductions in E-cadherin expression were associated with a loss of epithelial morphology and cell-cell contact. Concomitant increases in N-cadherin, MMP-2, CTGF and COL1A1 were evident in predominantly elongated fibroblast-like cells. Neither RGZ nor CGZ prevented TGFβ1-induced changes in cell morphology, and PPARγ-dependent inhibitory effects of both ligands on changes in E-cadherin were only evident at submaximal TGF-β1 (0.25 ng/ml. However, both RGZ and CGZ inhibited the marked elevation of N-cadherin and COL1A1 induced by TGF-β1 (2.5 ng/ml, with effects on COL1A1 prevented by GW9662. Phosphorylation of Smad2 and Smad3 by TGF-β1 was not inhibited by RGZ or CGZ. Conclusions RGZ and CGZ inhibited profibrotic changes in TGF-β1-stimulated A549 cells independently of inhibition of Smad phosphorylation. Their inhibitory effects on changes in collagen I and E-cadherin, but not N-cadherin or CTGF, appeared to be PPAR

  18. Kβ satellite and forbidden transitions in elements with 12 ≤≤ Z ≤≤ 30 induced by electron impact

    International Nuclear Information System (INIS)

    Limandri, Silvina P.; Trincavelli, Jorge C.; Carreras, Alejo C.; Bonetto, Rita D.

    2010-01-01

    The emission of x rays in the Kβ region of Mg, Al, Si, Sc, Ti, Cr, Fe, Ni, and Zn induced by electron bombardment was studied by means of wavelength dispersive spectroscopy. The lines studied were: the Kβ III and Kβ IV spectator hole transitions, the 1s→3s quadrupole decay, the Kβ 2 and Kβ 5 diagram transitions, the structures related to radiative Auger processes, and the Kβ ' and Kβ '' lines. Relative energies and probabilities were determined through a careful spectral processing based on a parameter refinement method. The results obtained were compared with other experimental and theoretical determinations when available.

  19. Spin-Polarization-Induced Preedge Transitions in the Sulfur K-Edge XAS Spectra of Open-Shell Transition-Metal Sulfates: Spectroscopic Validation of σ-Bond Electron Transfer.

    Science.gov (United States)

    Frank, Patrick; Szilagyi, Robert K; Gramlich, Volker; Hsu, Hua-Fen; Hedman, Britt; Hodgson, Keith O

    2017-02-06

    Sulfur K-edge X-ray absorption spectroscopy (XAS) spectra of the monodentate sulfate complexes [M II (itao)(SO 4 )(H 2 O) 0,1 ] (M = Co, Ni, Cu) and [Cu(Me 6 tren)(SO 4 )] exhibit well-defined preedge transitions at 2479.4, 2479.9, 2478.4, and 2477.7 eV, respectively, despite having no direct metal-sulfur bond, while the XAS preedge of [Zn(itao)(SO 4 )] is featureless. The sulfur K-edge XAS of [Cu(itao)(SO 4 )] but not of [Cu(Me 6 tren)(SO 4 )] uniquely exhibits a weak transition at 2472.1 eV, an extraordinary 8.7 eV below the first inflection of the rising K-edge. Preedge transitions also appear in the sulfur K-edge XAS of crystalline [M II (SO 4 )(H 2 O)] (M = Fe, Co, Ni, and Cu, but not Zn) and in sulfates of higher-valent early transition metals. Ground-state density functional theory (DFT) and time-dependent DFT (TDDFT) calculations show that charge transfer from coordinated sulfate to paramagnetic late transition metals produces spin polarization that differentially mixes the spin-up (α) and spin-down (β) spin orbitals of the sulfate ligand, inducing negative spin density at the sulfate sulfur. Ground-state DFT calculations show that sulfur 3p character then mixes into metal 4s and 4p valence orbitals and various combinations of ligand antibonding orbitals, producing measurable sulfur XAS transitions. TDDFT calculations confirm the presence of XAS preedge features 0.5-2 eV below the rising sulfur K-edge energy. The 2472.1 eV feature arises when orbitals at lower energy than the frontier occupied orbitals with S 3p character mix with the copper(II) electron hole. Transmission of spin polarization and thus of radical character through several bonds between the sulfur and electron hole provides a new mechanism for the counterintuitive appearance of preedge transitions in the XAS spectra of transition-metal oxoanion ligands in the absence of any direct metal-absorber bond. The 2472.1 eV transition is evidence for further radicalization from copper(II), which

  20. Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Song-Ze, E-mail: dingsongze@hotmail.com [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Yang, Yu-Xiu; Li, Xiu-Ling [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Michelli-Rivera, Audrey [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Han, Shuang-Yin [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Wang, Lei; Pratheeshkumar, Poyil; Wang, Xin; Lu, Jian; Yin, Yuan-Qin; Budhraja, Amit; Hitron, Andrew J. [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2013-05-15

    Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial–mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology. Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention. - Graphical abstract: Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanisms in lung epithelial cells. - Highlights: • We study if Cr(VI) might induce EMT and invasion in epithelial cells. • Cr(VI) induces EMT by altering E-cadherin and vimentin expression. • It also increases cell invasion and promotes oncogenic transformation. • Catalase reduces Cr(VI)-induced EMT, invasion and

  1. Temperature-induced valence transition in EuNi2(Si0.20Ge0.80)2 studied by hard X-ray photoemission spectroscopy

    International Nuclear Information System (INIS)

    Yamamoto, Kazuya; Kamakura, Nozomu; Taguchi, Munetaka; Chainani, Ashish; Takata, Yasutaka; Horiba, Koji; Shin, Shik; Ikenaga, Eiji; Mimura, Kojiro; Shiga, Masayuki; Wada, Hirofumi; Namatame, Hirofumi; Taniguchi, Masaki; Awaji, Mitsuhiro; Takeuchi, Akihisa; Nishino, Yoshinori; Miwa, Daigo; Tamasaku, Kenji; Ishikawa, Tetsuya; Kobayashi, Keisuke

    2005-01-01

    The temperature-induced mixed valence transition in EuNi 2 (Si 0.20 Ge 0.80 ) 2 has been investigated by hard X-ray (5940 eV) photoemission spectroscopy (HX-PES) for fractured surfaces, with a probing depth larger than 5 nm. The Eu 3d core-level states are studied below and above the critical valence transition temperature, T v = 80 K. The HX-PES spectra at 40 and 120 K show the mixed valence transition, with clear changes in the divalent and trivalent Eu 3d chemically shifted features. The Eu 3d HX-PES spectra indicate a mean valence of 2.70 ± 0.03 at 40 K which changes to 2.40 ± 0.03 at 120 K, in good accordance with the results of bulk Eu III -edge X-ray absorption spectroscopy measurements

  2. Plasticity-induced characteristic changes of pattern dynamics and the related phase transitions in small-world neuronal networks

    International Nuclear Information System (INIS)

    Huang Xu-Hui; Hu Gang

    2014-01-01

    Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transitions between different activity states are closely related to corresponding functions in the brain. In particular, phase transitions to some rhythmic synchronous firing states play significant roles on diverse brain functions and disfunctions, such as encoding rhythmical external stimuli, epileptic seizure, etc. However, in previous studies, phase transitions in neuronal networks are almost driven by network parameters (e.g., external stimuli), and there has been no investigation about the transitions between typical activity states of neuronal networks in a self-organized way by applying plastic connection weights. In this paper, we discuss phase transitions in electrically coupled and lattice-based small-world neuronal networks (LBSW networks) under spike-timing-dependent plasticity (STDP). By applying STDP on all electrical synapses, various known and novel phase transitions could emerge in LBSW networks, particularly, the phenomenon of self-organized phase transitions (SOPTs): repeated transitions between synchronous and asynchronous firing states. We further explore the mechanics generating SOPTs on the basis of synaptic weight dynamics. (interdisciplinary physics and related areas of science and technology)

  3. Noise-induced transitions at a Hopf bifurcation in a first-order delay-differential equation

    International Nuclear Information System (INIS)

    Longtin, A.

    1991-01-01

    The influence of colored noise on the Hopf bifurcation in a first-order delay-differential equation (DDE), a model paradigm for nonlinear delayed feedback systems, is considered. First, it is shown, using a stability analysis, how the properties of the DDE depend on the ratio R of system delay to response time. When this ratio is small, the DDE behaves more like a low-dimensional system of ordinary differential equations (ODE's); when R is large, one obtains a singular perturbation limit in which the behavior of the DDE approaches that of a discrete time map. The relative magnitude of the additive and multiplicative noise-induced postponements of the Hopf bifurcation are numerically shown to depend on the ratio R. Although both types of postponements are minute in the large-R limit, they are almost equal due to an equivalence of additive and parametric noise for discrete time maps. When R is small, the multiplicative shift is larger than the additive one at large correlation times, but the shifts are equal for small correlation times. In fact, at constant noise power, the postponement is only slightly affected by the correlation time of the noise, except when the noise becomes white, in which case the postponement drastically decreases. This is a numerical study of the stochastic Hopf bifurcation, in ODE's or DDE's, that looks at the effect of noise correlation time at constant power. Further, it is found that the slope at the fixed point averaged over the stochastic-parameter motion acts, under certain conditions, as a quantitative indicator of oscillation onset in the presence of noise. The problem of how properties of the DDE carry over to ODE's and to maps is discussed, along with the proper theoretical framework in which to study nonequilibrium phase transitions in this class of functional differential equations

  4. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family.

    Science.gov (United States)

    Kaufman, I; Luchinsky, D G; Tindjong, R; McClintock, P V E; Eisenberg, R S

    2013-11-01

    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Q(f) at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Q(f)=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Q(f) for the sodium-calcium channels family. An increase of Q(f) leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Q(f)(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca(2+)/Na(+) valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.

  5. Correlation of irradiation-induced transition temperature increases from C sub v and K sub Jc /K sub Ic data

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, A.L. (Materials Engineering Associates, Inc., Lanham, MD (USA))

    1990-03-01

    Reactor pressure vessel (RPV) surveillance capsules contain Charpy-V (C{sub v}) specimens, but many do not contain fracture toughness specimens; accordingly, the radiation-induced shift (increase) in the brittle-to-ductile transition region ({Delta}T) is based upon the {Delta}T determined from notch ductility (C{sub v}) tests. Since the ASME K{sub Ic} and K{sub IR} reference fracture toughness curves are shifted by the {Delta}T from C{sub v}, assurance that this {Delta}T does not underestimate {Delta}T associated with the actual irradiated fracture toughness is required to provide confidence that safety margins do not fall below assumed levels. To assess this behavior, comparisons of {Delta}T's defined by elastic-plastic fracture toughness and C{sub v} tests have been made using data from RPV base and weld metals in which irradiations were made under test reactor conditions. Using as-measure'' fracture toughness values (K{sub Jc}), average comparisons between {Delta}T(C{sub v}) and {Delta}T(K{sub Jc}) are: (a) All data: {Delta}T(K{sub Jc} 100 MPa{radical}{bar m}) = {Delta}T(C{sub v} 41 J) +10{degree}C; (b) Plates only: {Delta}T(K{sub Jc} 100 MPa{radical}{bar m}) = {Delta}T(C{sub v} 41 J) +15{degree}C; and (c) Welds only: {Delta}T(K{sub Jc} 100 MPa{radical}{bar m}) = {Delta}T(C{sub v} 41 J) {minus}1{degree}C. Fluence rate is found to have no significant effect on the relationship between {Delta}T(C{sub v}) and {Delta}T(K{sub Jc}). 12 refs., 12 figs., 5 tabs.

  6. GSTA3 Attenuates Renal Interstitial Fibrosis by Inhibiting TGF-Beta-Induced Tubular Epithelial-Mesenchymal Transition and Fibronectin Expression.

    Directory of Open Access Journals (Sweden)

    Yun Xiao

    Full Text Available Tubular epithelial-mesenchymal transition (EMT has been widely accepted as the underlying mechanisms of renal interstitial fibrosis (RIF. The production of reactive oxygen species (ROS plays a vital role in tubular EMT process. The purpose of this study was to investigate the involved molecular mechanisms in TGF-beta-induced EMT and identify the potential role of glutathione S-transferase alpha 3 (GSTA3 in this process. The iTRAQ screening was performed to identify protein alterations of the rats underwent unilateral-ureteral obstruction (UUO. Protein expression of GSTA3 in patients with obstructive nephropathy and UUO rats was detected by immunohistochemistry. Protein and mRNA expression of GSTA3 in UUO rats and NRK-52E cells were determined by Western blot and RT-PCR. siRNA and overexpression plasmid were transfected specifically to assess the role of GSTA3 in RIF. The generation of ROS was measured by dichlorofluorescein fluorescence analysis. GSTA3 protein and mRNA expression was significantly reduced in UUO rats. Immunohistochemical analysis revealed that GSTA3 expression was reduced in renal cortex in UUO rats and patients with obstructive nephropathy. Treating with TGF-β1 down-regulated GSTA3 expression in NRK-52E cells, which have been found to be correlated with the decreased expression in E-cadherin and megalin and increased expression in α-smooth muscle actin. Furthermore, knocking down GSTA3 in NRK-52 cells led to increased production of ROS and tubular EMT, whereas overexpressing GSTA3 ameliorated ROS production and prevented the occurrence of tubular EMT. GSTA3 plays a protective role against tubular EMT in renal fibrosis, suggesting GSTA3 is a potential therapeutic target for RIF.

  7. Epithelial-mesenchymal transition in keloid tissues and TGF-β1-induced hair follicle outer root sheath keratinocytes.

    Science.gov (United States)

    Yan, Li; Cao, Rui; Wang, Lianzhao; Liu, Yuanbo; Pan, Bo; Yin, Yanhua; Lv, Xiaoyan; Zhuang, Qiang; Sun, Xuejian; Xiao, Ran

    2015-01-01

    Keloid is a skin fibrotic disease with the characteristics of recurrence and invasion, its pathogenesis still remains unrevealed. The epithelial-mesenchymal transition (EMT) is critical for wound healing, fibrosis, recurrence, and invasion of cancer. We sought to investigate the EMT in keloid and the mechanism through which the EMT regulates keloid formation. In keloid tissues, the expressions of EMT-associated markers and transforming growth factor (TGF)-β1/Smad3 signaling were examined by immunohistochemistry. In the keloid epidermis and dermal tissue, the expressions of genes related to the regulation of skin homeostasis, fibroblast growth factor receptor 2 (FGFR2) and p63, were analyzed using quantitative real-time polymerase chain reaction. The results showed that accompanying the loss of the epithelial marker E-cadherin and the gain of the mesenchymal markers fibroblast-specific protein 1 (FSP1) and vimentin in epithelial cells from epidermis and skin appendages, and in endothelial cells from dermal microvessels, enhanced TGF-β1 expression and Smad3 phosphorylation were noted in keloid tissues. Moreover, alternative splicing of the FGFR2 gene switched the predominantly expressed isoform from FGFR2-IIIb to -IIIc, concomitant with the decreased expression of ΔNp63 and TAp63, which changes might partially account for abnormal epidermis and appendages in keloids. In addition, we found that TGF-β1-induced hair follicle outer root sheath keratinocytes (ORSKs) and normal skin epithelial cells underwent EMT in vitro with ORSKs exhibiting more obvious EMT changes and more similar expression profiles for EMT-associated and skin homeostasis-related genes as in keloid tissues, suggesting that ORSKs might play crucial roles in the EMT in keloids. Our study provided insights into the molecular mechanisms mediating the EMT pathogenesis of keloids. © 2015 by the Wound Healing Society.

  8. Mesenchymal Stem Cells Induce Epithelial to Mesenchymal Transition in Colon Cancer Cells through Direct Cell-to-Cell Contact

    Directory of Open Access Journals (Sweden)

    Hidehiko Takigawa

    2017-05-01

    Full Text Available We previously reported that in an orthotopic nude mouse model of human colon cancer, bone marrow–derived mesenchymal stem cells (MSCs migrated to the tumor stroma and promoted tumor growth and metastasis. Here, we evaluated the proliferation and migration ability of cancer cells cocultured with MSCs to elucidate the mechanism of interaction between cancer cells and MSCs. Proliferation and migration of cancer cells increased following direct coculture with MSCs but not following indirect coculture. Thus, we hypothesized that direct contact between cancer cells and MSCs was important. We performed a microarray analysis of gene expression in KM12SM colon cancer cells directly cocultured with MSCs. Expression of epithelial-mesenchymal transition (EMT–related genes such as fibronectin (FN, SPARC, and galectin 1 was increased by direct coculture with MSCs. We also confirmed the upregulation of these genes with real-time polymerase chain reaction. Gene expression was not elevated in cancer cells indirectly cocultured with MSCs. Among the EMT-related genes upregulated by direct coculture with MSCs, we examined the immune localization of FN, a well-known EMT marker. In coculture assay in chamber slides, expression of FN was seen only at the edges of cancer clusters where cancer cells directly contacted MSCs. FN expression in cancer cells increased at the tumor periphery and invasive edge in orthotopic nude mouse tumors and human colon cancer tissues. These results suggest that MSCs induce EMT in colon cancer cells via direct cell-to-cell contact and may play an important role in colon cancer metastasis.

  9. Dynamic Test Method Based on Strong Electromagnetic Pulse for Electromagnetic Shielding Materials with Field-Induced Insulator-Conductor Phase Transition

    Science.gov (United States)

    Wang, Yun; Zhao, Min; Wang, Qingguo

    2018-01-01

    In order to measure the pulse shielding performance of materials with the characteristic of field-induced insulator-conductor phase transition when materials are used for electromagnetic shielding, a dynamic test method was proposed based on a coaxial fixture. Experiment system was built by square pulse source, coaxial cable, coaxial fixture, attenuator, and oscilloscope and insulating components. S11 parameter of the test system was obtained, which suggested that the working frequency ranges from 300 KHz to 7.36 GHz. Insulating performance is good enough to avoid discharge between conductors when material samples is exposed in the strong electromagnetic pulse field up to 831 kV/m. This method is suitable for materials with annular shape, certain thickness and the characteristic of field-induced insulator-conductor phase transition to get their shielding performances of strong electromagnetic pulse.

  10. NMR and DSC study of temperature-induced phase transition in aqueous solutions of poly(N-isopropylmethacrylamide-co-acrylamide) copolymers

    Czech Academy of Sciences Publication Activity Database

    Šťastná, J.; Hanyková, L.; Spěváček, Jiří

    2012-01-01

    Roč. 290, č. 17 (2012), s. 1811-1817 ISSN 0303-402X R&D Projects: GA ČR GA202/09/1281 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : temperature induced phase transition * thermosensitive copolymer * poly(N-isopropylmethacrylamide-co-acrylamide) Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.161, year: 2012

  11. Hyperfine structure of the metastable p-barHe+ atom revealed by a laser-induced (n,l) = (37,35) → (38,34) transition

    International Nuclear Information System (INIS)

    Widmann, E.; Eades, J.; Yamazaki, T.

    1996-11-01

    A precise scan of the previously discovered laser-induced transition (n,l) = (37,35) → (38,34) in p-barHe + revealed a doublet structure with a separation of Δν HF = 1.70 ± 0.05 GHz. This new type of 'hyperfine' splitting is ascribed to the interaction of the antiproton orbital angular momentum and the electron spin. (author)

  12. Electric field-induced phase transitions in Li-modified Na{sub 0.5}K{sub 0.5}NbO{sub 3} at the polymorphic phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Iamsasri, Thanakorn; Jones, Jacob L., E-mail: jacobjones@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Tutuncu, Goknur [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Uthaisar, Chunmanus; Pojprapai, Soodkhet [School of Ceramic Engineering, Institute of Engineering, Suranaree University of Technology, Nakorn Ratchasima 30000 (Thailand); Wongsaenmai, Supattra [Program in Materials Science, Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand)

    2015-01-14

    The electric field-induced phase transitions in Li-modified Na{sub 0.5}K{sub 0.5}NbO{sub 3} at the polymorphic phase boundary (PPB) were observed using in situ X-ray diffraction. The ratio of monoclinic to tetragonal phase fraction was used as an indicator of the extent and reversibility of the phase transitions. The reversibility of the phase transition was greater in compositions further from the PPB. These results demonstrate that the field-induced phase transition is one of the origins of high piezoelectric properties in lead-free ferroelectric materials.

  13. Hard x-ray photoemission study of the temperature-induced valence transition system EuNi2(Si1-xGex) 2

    Science.gov (United States)

    Ichiki, Katsuya; Mimura, Kojiro; Anzai, Hiroaki; Uozumi, Takayuki; Sato, Hitoshi; Utsumi, Yuki; Ueda, Shigenori; Mitsuda, Akihiro; Wada, Hirofumi; Taguchi, Yukihiro; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki

    2017-07-01

    We investigated the bulk-derived electronic structure of the temperature-induced valence transition system EuNi2(Si1 -xGex )2 (x =0.70 , 0.79, and 0.82) by means of hard x-ray photoemission spectroscopy (HAXPES). The HAXPES spectra clearly show distinct temperature dependencies in the spectral intensities of the Eu2 + and Eu3 +3 d components. For x =0.70 , the changes in the Eu2 + and Eu3 +3 d spectral components with temperature reflect a continuous valence transition, whereas the sudden changes for x =0.79 and 0.82 reflect first-order valence transitions. The Eu 3 d spectral shapes for all x and particularly the drastic changes in the Eu3 +3 d feature with temperature are validated by a theoretical calculation based on the single-impurity Anderson model (SIAM). SIAM analysis reveals that the valence transition for each x is controlled by the c -f hybridization strength and the charge-transfer energy. Furthermore, the c -f hybridization strength governs the valence transition of this system, which is either first order or continuous, consistent with Kondo volume collapse.

  14. Magnetic properties of Gd5(Si1.5Ge2.5) near the temperature and magnetic field induced first order phase transition

    International Nuclear Information System (INIS)

    Levin, E.M.; Gschneidner, K.A.; Pecharsky, V.K.

    2001-01-01

    The temperature (from 5 to 300 K) and DC magnetic field (from 0 to 90 kOe) dependencies of the DC magnetization and magnetic susceptibility, and the temperature (from 5 to 350 K) dependency of the AC magnetic susceptibility of Gd 5 (Si 1.5 Ge 2.5 ) have been studied. The temperature and/or magnetic field induced magnetic phase transition in Gd 5 (Si 1.5 Ge 2.5 ) is a first order ferromagnet-paramagnet transition. The temperature of the magnetic transition in low AC magnetic field is 206 and 217 K for cooling and heating, respectively. The DC magnetic field increases the transition temperature by ∼0.36 K/kOe indicating that the paramagnetic phase can be reversibly transformed into the ferromagnetic phase. When the magnetic field is removed, the ferromagnetic phase transforms into the paramagnetic phase showing a large remanence-free hysteresis. The magnetic phase diagram based on the isothermal magnetic field dependence of the DC magnetization at various temperatures for Gd 5 (Si 1.5 Ge 2.5 ) is proposed. The magnetic field dependence of the magnetization in the vicinity of the first order phase transition shows evidence for the formation of a magnetically heterogeneous system in the volume of Gd 5 (Si 1.5 Ge 2.5 ) specimen where the magnetically ordered (ferromagnetic) and disordered (paramagnetic) phases co-exist

  15. Hyperplasia of epithelium adjacent to transitional cell carcinoma can be induced by growth factors through paracrine pathways

    NARCIS (Netherlands)

    W.I. de Boer (Pim); J.M.J. Rebel (Annemarie); C.D.E.M. Thijssen (C. D E M); M. Vermey; Th.H. van der Kwast (Theo); A.J.M. van den Eijnden-van Raaij (Janny)

    1994-01-01

    textabstractHyperplasia of transitional cell epithelium adjacent to human transitional cell carcinomas (TCC) is a common finding in pathology. This hyperplasia may be a precancerous aberration. Alternatively, it has been suggested that the hyperplasia is due to paracrine action of tumour-derived

  16. Normal endometrial stromal cells regulate 17β-estradiol-induced epithelial-mesenchymal transition via slug and E-cadherin in endometrial adenocarcinoma cells in vitro.

    Science.gov (United States)

    Zhang, Hui; Li, Hongyan; Qi, Shasha; Liu, Zhao; Fu, Yibing; Li, Mingjiang; Zhao, Xingbo

    2017-01-01

    Stroma-tumor communication participates in the pathogenesis of endometrial carcinomas. In previous studies, we found that normal stromal cells inhibited the growth of endometrial carcinoma cells. Here, we investigated the role of normal stromal cells in the epithelial-mesenchymal transition (EMT) of endometrial carcinoma cells and explored the possible mechanism implied. We found that conditioned medium (CM) by normal endometrial stromal cells (NSC) reduced cell growth and induced cell apoptosis in Ishikawa cells. CM by NSC inhibited 17β-estradiol-induced cell growth and apoptosis decrease in Ishikawa cells. Moreover, CM by NSC inhibited the migration and invasion, and 17β-estradiol-induced migration and invasion in Ishikawa cells. Meanwhile, CM by NSC decreased Slug expression and 17β-estradiol-induced Slug expression, increased E-cadherin expression and abolished 17β-estradiol-induced E-cadherin reduction in Ishikawa cells. In conclusion, normal stromal factors can inhibit 17β-estradiol-induced cell proliferation and apoptosis inhibition, and abolished 17β-estradiol-induced EMT in endometrial cancer cell via regulating E-cadherin and Slug expression.

  17. Kinetics and mechanism of the pressure-induced lamellar order/disorder transition in phosphatidylethanolamine: a time-resolved X-ray diffraction study.

    Science.gov (United States)

    Mencke, A P; Caffrey, M

    1991-03-05

    By using synchrotron radiation, a movie was made of the X-ray scattering pattern from a biological liquid crystal undergoing a phase transition induced by a pressure jump. The system studied includes the fully hydrated phospholipid dihexadecylphosphatidylethanolamine in the lamellar gel (L beta') phase at a temperature of 68 degrees C and a pressure of 9.7 MPa (1400 psig). Following the rapid release of pressure to atmospheric the L beta' phase transforms slowly into the lamellar liquid crystal (L alpha) phase. The pressure perturbation is applied with the intention of producing a sudden phase disequilibrium followed by monitoring the system as it relaxes to its new equilibrium condition. Remarkably, the proportion of sample in the L alpha phase grows linearly with time, taking 37 s to totally consume the L beta' phase. The time dependencies of radius, peak intensity, and width of the powder diffraction ring of the low-angle (001) lamellar reflections were obtained from the movie by image processing. The concept of an "effective pressure" is introduced to account for the temperature variations that accompany the phase transition and to establish that the observed large transit time is indeed intrinsic to the sample and not due to heat exchange with the environment. The reverse transformation, L alpha to L beta', induced by a sudden jump from atmospheric pressure to 9.7 MPa, is complete in less than 13 s. These measurements represent a new approach for studying the kinetics of lipid phase transitions and for gaining insights into the mechanism of the lamellar order/disorder transition.

  18. Pressure-induced Td to 1T' structural phase transition in WTe2

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yonghui; Chen, Xuliang; Li, Nana; Zhang, Ranran; Wang, Xuefei; An, Chao; Zhou, Ying; Pan, Xingchen; Song, Fengqi; Wang, Baigeng; Yang, Wenge; Yang, Zhaorong; Zhang, Yuheng (CIW); (Chinese Aca. Sci.); (CHPSTAR- China); (Nanjing)

    2016-11-21

    WTe2 is provoking immense interest owing to its extraordinary properties, such as large positive magnetoresistance, pressure-driven superconductivity and possible type-II Weyl semimetal state. Here we report results of high-pressure synchrotron X-ray diffraction (XRD), Raman and electrical transport measurements on WTe2. Both the XRD and Raman results reveal a structural transition upon compression, starting at 6.0 GPa and completing above 15.5 GPa. We have determined that the high-pressure lattice symmetry is monoclinic 1T' with space group of P21/m. This transition is related to a lateral sliding of adjacent Te-W-Te layers and results in a collapse of the unit cell volume by ~20.5%. The structural transition also casts a pressure range with the broadened superconducting transition, where the zero resistance disappears.

  19. Size-Induced Depression of First-Order Transition Lines and Entropy Jump in Extremely Layered Nanocrystalline Vortex Matter.

    Science.gov (United States)

    Dolz, M I; Fasano, Y; Cejas Bolecek, N R; Pastoriza, H; Mosser, V; Li, M; Konczykowski, M

    2015-09-25

    We detect the persistence of the solidification and order-disorder first-order transition lines in the phase diagram of nanocrystalline Bi_{2}Sr_{2}CaCu_{2}O_{8} vortex matter down to a system size of less than one hundred vortices. The temperature location of the vortex solidification transition line is not altered by decreasing the sample size although there is a depletion of the entropy jump at the transition with respect to macroscopic vortex matter. The solid order-disorder phase transition field moves upward on decreasing the system size due to the increase of the surface-to-volume ratio of vortices entailing a decrease on the average vortex binding energy.

  20. Resolving the chicken-and-egg problem in VO2: a new paradigm for the Mott transition

    Science.gov (United States)

    Najera, Oscar; Civelli, Marcello; Dobrosavljevi, Vladimir; Rozenberg, Marcelo

    We consider a minimal model to investigate the metal-insulator transition in VO2. We adopt a Hubbard model with two orbital per unit cell, which captures the competition between Mott and singlet-dimer localization. We solve the model within Dynamical Mean Field Theory, characterizing in detail the metal-insulator transition and finding new features in the electronic states. We compare our results with available experimental data obtaining good agreement in the relevant model parameter range. Crucially, we can account for puzzling optical conductivity data obtained within the hysteresis region, which we associate to a novel metallic state characterized by a split heavy quasiparticle band. Our results show that the thermal-driven insulator-to-metal transition in VO2 is entirely compatible with a Mott electronic mechanism, solving a long standing ''chicken-and-egg'' debate and calling for further research of ``Mottronics'' applications of this system. This work was partially supported by public Grants from the French National Research Agency (ANR), project LACUNES No ANR-13-BS04-0006-01, the NSF DMR-1005751 and DMR-1410132.