WorldWideScience

Sample records for insulated ion diode

  1. Self-magnetically insulated ion diode

    International Nuclear Information System (INIS)

    VanDevender, J.; Quintenz, J.; Leeper, R.; Johnson, D.; Crow, J.

    1981-01-01

    Light ion diodes for producing 1--100 TW ion beams are required for inertial confinement fusion. The theory, numerical simulations, and experiments on a self-magnetically insulated ion diode are presented. The treatment is from the point of view of a self-magnetically insulated transmission line with an ion loss current and differs from the usual treatment of the pinched electron beam diode. The simulations show that the ratio V/IZ 0 =0.25 in such a structure with voltage V, local total current I, and local vacuum wave impedance Z 0 . The ion current density is enhanced by a factor of approximately 2 over the simple space-charge limited value. The simulation results are verified in an experiment. An analytical theory is then presented for scaling the results to produce a focused beam of protons with a power of up to 10 13 W

  2. Production of intense negative ion beams in magnetically insulated diodes

    International Nuclear Information System (INIS)

    Lindenbaum, H.

    1988-01-01

    Production of intense negative ion beams in magnetically insulated diodes was studied in order to develop an understanding of this process by measuring the ion-beam parameters as a function of diode and cathode plasma conditions in different magnetically insulated diodes. A coral diode, a racetrack diode, and an annular diode were used. The UCI APEX pulse line, with a nominal output of 1MV, 140kA, was used under matched conditions with a pulse length of 50 nsec. Negative-ion intensity and divergence were measured with Faraday cups and CR-39 track detectors. Cathode plasma was produced by passive dielectric cathodes and later, by an independent plasma gun. Negative-ion currents had an intensity of a few A/cm 2 with a divergence ranging between a few tenths milliradians for an active TiH 2 plasma gun and 300 milliradians for a passive polyethelene cathode. Negative ions were usually emitted from a few hot spots on the cathode surface. These hot spots are believed to cause transverse electrical fields in the diode gap responsible for the beam divergence. Mass spectrometry measurements showed that the ion beam consists of mainly H - ions when using a polyethelene or a TiH 2 cathodes, and mainly of negative carbon ions when using a carbon cathode

  3. Coupling of an applied field magnetically insulated ion diode to a high power magnetically insulated transmission line system

    International Nuclear Information System (INIS)

    Maenchen, J.E.

    1983-01-01

    The coupling of energy from a high power pulsed accelerator through a long triplate magnetically insulated transmission line (MITL) in vacuum to an annular applied magnetic field insulated extraction ion diode is examined. The narrow power transport window and the wave front erosion of the MITL set stringent impedance history conditions on the diode load. A new ion diode design developed to satisfy these criteria with marginal electron insulation is presented. The LION accelerator is used to provide a positive polarity 1.5 MV, 350 kA, 40 ns FWHM pulse with a 30 kA/ns current rate from a triplate MITL source. A transition converts the triplate into a cylindrical cross section which flares into the ion diode load. Extensive current and voltage measurements performed along this structure and on the extracted ion beam provide conclusive evidence that the self insulation condition of the MITL is maintained in the transition by current loss alone. The ion diode utilizes a radial magnetic field between a grounded cathode annular emission tip and a disk anode. A 50 cm 2 dielectric/metal anode area serves as the ion plasma source subject to direct electron bombardment from the opposing cathode tip under marginal magnetic insulation conditions. The ions extracted cross the radial magnetic field and exit the diode volume as an annular cross section beam of peak current about 100 kA. The diode current gradually converts from the initial electron flow to nearly 100% ion current after 30 ns, coupling 60% of the diode energy into ions

  4. Laser diagnostics on magnetically insulated flashover pulsed ion diodes

    International Nuclear Information System (INIS)

    Horioka, K.; Tazima, N.; Fukui, T.; Kasuya, K.

    1989-01-01

    Our recent experimental results on the characteristics of a flashover-type applied-B magnetically insulated pulsed ion diode are described. The main issues are to investigate the cause of impurity of the extracted beam and to examine the effect of neutral particles on the diode characteristics. In the experiment, our main efforts were placed on laser diagnostics of the diode gap behavior. (author)

  5. Simulation study of magnetically insulated power coupling to the applied-B ion diode

    International Nuclear Information System (INIS)

    Rosenthal, S.E.

    1992-01-01

    Power coupling to the applied-B ion diode from magnetically insulated transmission lines is simply described in terms of the voltage-current characteristics of both the diode and the transmission line. The accelerator load line intersects the composite characteristic at the operating voltage and current. Using 2-D PIC simulation, the authors have investigated how modification of either the ion diode or the magnetically insulated transmission line characteristic influences power coupling. Plasma prefill can modify the ion diode characteristic; a partially opened POS in the transmission line upstream of the ion diode is a possible cause of modification of the magnetically insulated transmission line characteristic. It can be useful to consider these two aspects of power coupling separately, but they are actually not independent. A good parameter to characterize the situation is the flow impedance, given by V/(I a 2 I c 2 ) 1/2 . V is the line voltage; I a and I c are the conduction currents flowing through the anode and cathode, respectively. The flow impedance covers a range from one half the vacuum impedance, for saturated magnetically insulated flow, to just below the vacuum impedance, for highly unsaturated flow. As the term ''flow impedance'' implies, low flow impedance coincides with greater electron flow while high flow impedance coincides with less electron flow. The flow impedance is sensitive to both the transmission line and the diode impedance. They show how the two are related, using the flow impedance as a parameter

  6. Ion divergence in magnetically insulated diodes

    International Nuclear Information System (INIS)

    Slutz, S.A.; Lemke, R.W.; Pointon, T.D.; Desjarlais, M.P.; Johnson, D.J.; Mehlhorn, T.A.; Filuk, A.; Bailey, J.

    1995-01-01

    Magnetically insulated ion diodes are being developed to drive inertial confinement fusion. Ion beam microdivergence must be reduced to achieve the very high beam intensities required to achieve this goal. Three-dimensional particle-in-cell simulations indicate that instability induced fluctuations can produce significant ion divergence during acceleration. These simulations exhibit a fast growing mode early in time, which has been identified as the diocotron instability. The divergence generated by this mode is modest due to the relatively high frequency (>1GHz). Later, a low-frequency low-phase-velocity instability develops. This instability couples effectively to the ions, since the frequency is approximately the reciprocal of the ion transit time, and can generate unacceptably large ion divergences (>30 mrad). Linear stability theory reveals that this mode requires perturbations parallel to the applied magnetic field and is related to the modified two stream instability. Measurements of ion density fluctuations and energy-momentum correlations have confirmed that instabilities develop in ion diodes and contribute to the ion divergence. In addition, spectroscopic measurements indicate that the ions have a significant transverse temperature very close to the emission surface. Passive lithium fluoride (LiF) anodes have larger transverse beam temperatures than laser irradiated active sources. Calculations of source divergence expected from the roughness of LiF surfaces and the possible removal of this layer is presented

  7. Intense pulsed light-ion beam generated by planar type self-magnetically insulated diode

    International Nuclear Information System (INIS)

    Yoshikawa, T.; Masugata, K.; Ito, M.; Matsui, M.; Yatsui, K.

    1984-01-01

    New type of ion diode named ''Planar Type Self-Magnetically Insulated Diode'' (PSID) has been developed. By using a 1.5-mm-thick-polyethylene sheet as an anode surface, we have obtained Vsub(d) (diode voltage) -- 886 kV, Isub(d) (diode current) -- 180 kA, and Isub(i) (net ion current) -- 52 kA, yielding the diode efficiency of ion production to be -- 30 %. Multiple-shots operation (more than 40 shots) has been possible with good reproducibility in such a relatively high powers above. (author)

  8. Limitation of the electron emission in an ion diode with magnetic self-insulation

    International Nuclear Information System (INIS)

    Pushkarev, A. I.; Isakova, Yu. I.; Guselnikov, V. I.

    2011-01-01

    The results of a study of the generation of a pulsed ion beam of gigawatt power formed by a diode with an explosive-emission potential electrode in a mode of magnetic self-insulation are presented. The studies were conducted at the TEMP-4M ion accelerator set in double pulse formation mode: the first pulse was negative (300-500 ns and 100-150 kV) and the second, positive (150 ns and 250-300 kV). The ion current density was 20-40 A/cm 2 ; the beam composition was protons and carbon ions. It was shown that plasma is effectively formed over the entire working surface of the graphite potential electrode. During the ion beam generation, a condition of magnetic cutoff of electrons along the entire length of the diode (B/B cr ≥ 4) is fulfilled. Because of the high drift rate, the residence time of the electrons and protons in the anode-cathode gap is 3-5 ns, while for the C + carbon ions, it is more than 8 ns. This denotes low efficiency of magnetic self-insulation in a diode of such a design. At the same time, it has been experimentally observed that, during the generation of ion current (second pulse), the electronic component of the total current is suppressed by a factor of 1.5-2 for a strip diode with plane and focusing geometry. A new model of the effect of limiting the electron emission explaining the decrease in the electronic component of the total current in a diode with magnetic self-insulation is proposed.

  9. Spectroscopic observations of ion line-emission from a magnetically insulated ion diode

    International Nuclear Information System (INIS)

    Maron, Y.; Peng, H.S.; Rondeau, G.D.; Hammer, D.A.

    1984-01-01

    Excited ions, produced in the surface-flashover plasma in a magnetically insulated diode, spontaneously emit light from the anode plasma region as well as (if the life time of the excited level is at least a few ns) from the diode acceleration gap. The emission lines of the ions traversing the gap are shifted from their natural wavelength because of the Stark effect due to the diode electric field. If the light is viewed transverse to the acceleration direction, the line width will be mostly determined by Doppler broadening due to ion transverse velocities. The authors use the OMNI II diode (up to 500 kV, 25 kA, 80 ns) with an insulating B field of ≅12 kG and an A-K gap of ≅7mm. The light emission from the entire 6.5 x 12 cm area in front of the anode is viewed parallel to the applied B field. A spectral resolution of 0.5 A is obtained by dispersing the light using a spectrometer followed by 6 optical fibers attached to PM-tubes. Each channel output is calibrated in situ. The spatial resolution across the gap could be made as small as 0.3 mm and the temporal resolution was varied between a few to a few tens of ns. The line spectral profile is obtained at a single discharge for a given distance from the anode surface

  10. Complete mode-set stability analysis of magnetically insulated ion diode equilibria

    International Nuclear Information System (INIS)

    Slutz, S.A.; Lemke, R.W.

    1993-01-01

    We present the first analysis of the stability of magnetically insulated ion diodes that is fully relativistic and includes electromagnetic perturbations both parallel and perpendicular to the applied magnetic field. Applying this formalism to a simple diode equilibrium model that neglects velocity shear and density gradients, we find a fast growing mode that has all of the important attributes of the low frequency mode observed in numerical simulations of magnetically insulated ion diodes, which may be a major cause of ion divergence. We identify this mode as a modified two-stream instability. Previous stability analyses indicate a variety of unstable modes, but none of these exhibit the same behavior as the low frequency mode observed in the simulations. In addition, we analyze a realistic diode equilibrium model that includes velocity shear and an electron density profile consistent with that observed in the numerical simulations. We find that the diocotron instability is reduced, but not fully quenched by the extension of the electron sheath to the anode. However, the inclusion of perturbations parallel to the applied magnetic field with a wavelength smaller than the diode height does eliminate growth of this instability. This may explain why the diocotron mode has been observed experimentally with proton sources, but not with LiF, since the turn on of LiF is not uniform

  11. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. P. [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Z. C.; Lei, M. K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Pushkarev, A. I. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Laboratory of Beam and Plasma Technology, High Technologies Physics Institute, Tomsk Polytechnic University, 30, Lenin Ave, 634050 Tomsk (Russian Federation)

    2016-01-15

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  12. Experiments on high-power ion beam generation in self-insulated diodes

    International Nuclear Information System (INIS)

    Bystritskii, V.M.; Glyshko, Yu.A.; Sinerbrjukhov, A.A.; Kharlov, A.V.

    1991-01-01

    Experimental results are given on high-power ion beams (HPIB) generation in a vacuum spherical focusing diode with self-magnetic insulation, obtained from the nanosecond accelerator PARUS with 0.2-TW power and 60-ns pulse duration for a matched load. When the passive plasma source of the ions was used, the efficiency of the HPIB generation was measured to be as high as 20% for 700-kV diode voltage and 10-kA/cm 2 beam density in the focal plane. The application of a coaxial plasma opening switch (POS) prior to the diode resulted in a factor-of-1.8 increase in the diode power in comparison with a match operation in the absence of a POS. (author)

  13. Magnetically insulated ion diode with a gas-breakdown plasma anode

    International Nuclear Information System (INIS)

    Greenly, J.B.; Ueda, M.; Rondeau, G.D.; Hammer, D.A.

    1987-12-01

    An active anode plasma source has been developed for use in a magnetically insulated ion diode operated on a 10 sup(10)W pulsed power generator. This source uses an inductive voltage from a single turn coil to break down an annular gas puff produced by a supersonic nozzle. The resulting plasma is magnetically driven toward the radial insulating magnetic field in the diode accelerating gap and stagnates at a well-defined surface after about 300ns to form a plasma anode layer defined by magnetic flux surfaces. An ion beam is then extracted from this plasma layer by applying a 150kV, 1 μs pulse to the accelerating gap. Optimization of the timing of the gas puff, the plasma production discharge and the high voltage pulse has resulted in 1μs duration 75-150KeV ion beam pulses with >100A/cm sup(2) peak ion current density over an area of about 400cm sup(2). Up to 5J/cm sup(2) has been collected by a 4cm sup(2) calorimeter. The diode impedance history can be varied so that rising, flat, and falling voltage pulse waveforms can be produced. Streak photographs of beamlets impinging on a scintillator and time integrated targets both show beam divergence angles ≤3 sup(0). However, under certain operating conditions, large excursions (∼25 sup(0)) in mean aiming angle on time scales of 20-200ns are observed. (author)

  14. Simulation of electron and ion bipolar flow in high current diode with magnetic insulation

    International Nuclear Information System (INIS)

    Vrba, P.; Engelko, V.I.

    1990-08-01

    Numerical simulation of the formation of the collector ion flow in a magnetically insulated ion diode (MID) with a hollow cylindrical and cone-shaped cathode was studied. Such cathodes are often used for the production of tubular high current microsecond electron beams. The ions, emitted by the collector and born as a result of ionization of the residual gas by the electron beam, are focused into the cathode plasma region. This effect can adversely influence the diode operation

  15. Light ion source studies with a magnetically insulated extraction diode

    International Nuclear Information System (INIS)

    Struckman, C.K.

    1992-01-01

    Light ion sources are currently being studied to assess their ability to drive an inertial confinement fusion reactor. The author has produced a high purity, 1MV, 300A/cm 2 lithium beam using a 200cm 2 extraction geometry, magnetically insulated ion diode. The lithium source was an AC glow discharge cleaned, LiF/Al film active anode. The active anode plasma was formed after 50KA of current was shunted through the anode film for 20ns. The stoichiometry of the resulting ion beam was 65% Li + , 20% Al +2 , and 15% H + . Without the glow discharge cleaning, the ion beam was over 55% hydrogen and only 20% Li + . At the time of the diode's design, extraction diodes were producing poor ion beams: their current efficiency was only 60-70%, and their extracted ion current was radially nonuniform. This diode was the first high efficiency extraction diode, and produced over 200KA of ions with 80-90% ion current efficiency. In addition, by varying the tilt of the applied magnetic field, it was possible to show that the ion current density could be made independent of radius. Since the author was unable to make a Li + beam with a passive anode, he installed an active anode that used an external current to vaporize a thin metal film on the anode surface. Poor beam purity was the most serious problem with active anodes. In order to remove impurities, especially the hydrogen contamination, the author cleaned the anodes with a glow discharge. Al film anodes were cleaned with a 110mA, 33W DC glow discharge, and the LiF/Al film anodes were cleaned with an equivalent AC discharge. The results obtained and a model for the mechanism behind the cleaning process are throughly discussed

  16. Focusing experiments with light ion diodes

    International Nuclear Information System (INIS)

    Johnson, D.L.

    1978-01-01

    A review of recent experimental and theoretical work at Sandia Laboratories on magnetically insulated single stage ion diodes for inertial confinement fusion experiments is presented. The production, focusing, and numerical simulation of a 0.5 TW annular proton beam using the Proto I dual transmission line generator is described. The modular magnetically insulated ion diode for the Hydra generator is also described along with recent experimental results. A brief description of how an array of modular diodes similar to the Hydra magnetically insulated diode could be used on the EBFA I generator for breakeven fusion experiments is presented

  17. Shot-to-shot reproducibility of a self-magnetically insulated ion diode

    International Nuclear Information System (INIS)

    Pushkarev, A. I.; Isakova, Yu. I.; Khailov, I. P.

    2012-01-01

    In this paper we present the analysis of shot to shot reproducibility of the ion beam which is formed by a self-magnetically insulated ion diode with an explosive emission graphite cathode. The experiments were carried out with the TEMP-4M accelerator operating in double-pulse mode: the first pulse is of negative polarity (300–500 ns, 100–150 kV), and this is followed by a second pulse of positive polarity (150 ns, 250–300 kV). The ion current density was 10–70 A/cm 2 depending on the diode geometry. The beam was composed from carbon ions (80%–85%) and protons. It was found that shot to shot variation in the ion current density was about 35%–40%, whilst the diode voltage and current were comparatively stable with the variation limited to no more than 10%. It was shown that focusing of the ion beam can improve the stability of the ion current generation and reduces the variation to 18%–20%. In order to find out the reason for the shot-to-shot variation in ion current density we examined the statistical correlation between the current density of the accelerated beam and other measured characteristics of the diode, such as the accelerating voltage, total current, and first pulse duration. The correlation between the ion current density measured simultaneously at different positions within the cross-section of the beam was also investigated. It was shown that the shot-to-shot variation in ion current density is mainly attributed to the variation in the density of electrons diffusing from the drift region into the A-K gap.

  18. Magnetically insulated H- diodes

    International Nuclear Information System (INIS)

    Fisher, A.; Bystritskii, V.; Garate, E.; Prohaska, R.; Rostoker, N.

    1993-01-01

    At the Univ. of California, Irvine, the authors have been studying the production of intense H - beams using pulse power techniques for the past 7 years. Previously, current densities of H - ions for various diode designs at UCI have been a few A/cm 2 . Recently, they have developed diodes similar to the coaxial design of the Lebedev Physical Institute, Moscow, USSR, where current densities of up to 200 A/cm 2 were reported using nuclear activation of a carbon target. In experiments at UCI employing the coaxial diode, current densities of up to 35 A/cm 2 from a passive polyethylene cathode loaded with TiH 2 have been measured using a pinhole camera and CR-39 track recording plastic. The authors have also been working on a self-insulating, annular diode which can generate a directed beam of H - ions. In the annular diode experiments a plasma opening switch was used to provide a prepulse and a current path which self-insulated the diode. These experiments were done on the machine APEX, a 1 MV, 50 ns, 7 Ω pulseline with a unipolar negative prepulse of ∼ 100 kV and 400 ns duration. Currently, the authors are modifying the pulseline to include an external LC circuit which can generate a bipolar, 150 kV, 1 μs duration prepulse (similar prepulse characteristic as in the Lebedev Institute experiments cited above)

  19. Shorting time of magnetically insulated reflex-ion diodes from the neutral-atom charge-exchange mechanism

    International Nuclear Information System (INIS)

    Strobel, G.

    1981-10-01

    In a magnetically insulated diode, collision-free electrons return to the cathode and no electron current is present at the anode. Electron transport to the anode is studied in this paper. Steady-state space-charge-limited flow is assumed initially. Breakdown of ion flow occurs when static neutral atoms at the anode undergo charge exchange, which results in neutral atoms drifting across the diode. These are subsequently ionized by reflexing ions producing electrons trapped in Larmor orbits throughout the diode. These electrons drift to the anode via ionization and inelastic collisions with other neutral atoms. Model calculations compare the effects of foil and mesh cathodes. Steady-state space-charge-limited ion current densities are calculated. The neutral atom density at the cathode is determined as a function of time. The shorting time of the diode is scaled versus the electrode separation d, the diode potential V 0 , the magnetic field, and the initial concentration of static neutron atoms

  20. Self-magnetically-insulated 'plasma-focus diode' as a new source of an intence pulsed light-ion beam

    International Nuclear Information System (INIS)

    Takahashi, Akira; Aga, Keigo; Masugata, Katsumi; Ito, Michiaki; Yatsui, Kiyoshi

    1986-01-01

    A new and simple type of self-magnetically-insulated diode named ''Plasma-Focus Diode'' has been successfully developed, where anode and cathode are constituted by a pair of coaxial cylindrical electrodes similarly to a Mather-type plasma-focus device. Operating conditions are typically as follows: inductively-calibrated diode voltage ∼ 660 kV, diode current ∼ 142 kA, total ion current ∼ 32 kA, pulse width ∼ 90 ns and diode efficiency ∼ 22 %. Multiple-shots operation more than 50 shots has been possible without changing flashboard. Local divergence angle has been observed to be 0.9 deg ∼ 1.6 deg. Using such a simple ion diode, we have demonstrated a possibility of high concentration of beam-power density onto a target placed at the center. (author)

  1. Ion diode performance on a positive polarity inductive voltage adder with layered magnetically insulated transmission line flow

    International Nuclear Information System (INIS)

    Hinshelwood, D. D.; Schumer, J. W.; Allen, R. J.; Commisso, R. J.; Jackson, S. L.; Murphy, D. P.; Phipps, D.; Swanekamp, S. B.; Weber, B. V.; Ottinger, P. F.; Apruzese, J. P.; Cooperstein, G.; Young, F. C.

    2011-01-01

    A pinch-reflex ion diode is fielded on the pulsed-power machine Mercury (R. J. Allen, et al., 15th IEEE Intl. Pulsed Power Conf., Monterey, CA, 2005, p. 339), which has an inductive voltage adder (IVA) architecture and a magnetically insulated transmission line (MITL). Mercury is operated in positive polarity resulting in layered MITL flow as emitted electrons are born at a different potential in each of the adder cavities. The usual method for estimating the voltage by measuring the bound current in the cathode and anode of the MITL is not accurate with layered flow, and the interaction of the MITL flow with a pinched-beam ion diode load has not been studied previously. Other methods for determining the diode voltage are applied, ion diode performance is experimentally characterized and evaluated, and circuit and particle-in-cell (PIC) simulations are performed. Results indicate that the ion diode couples efficiently to the machine operating at a diode voltage of about 3.5 MV and a total current of about 325 kA, with an ion current of about 70 kA of which about 60 kA is proton current. It is also found that the layered flow impedance of the MITL is about half the vacuum impedance.

  2. XUV preionization effects in high power magnetically insulated diodes

    International Nuclear Information System (INIS)

    Maenchen, J.; Woodworth, J.R.; Foltz, B.W.

    1985-01-01

    Electrode surface desorption and photoionization by an intense XUV pulse has been shown to dramatically improve a vacuum diode impedance history. The 6-Terawatt Applied-B ion diode experiment on PBFA I is limited by a delay in both diode and ion current initiation. The insulation magnetic field impedes electron crossings which are believed to aid the ion source initiation. The diode is therefore initially a severe overmatch to the accelerator 40-nsec, 2.2-MV, 0.5-ohm pulse. The diode current increases during the pulse, leading to a rapidly falling impedance history. The application of an intense (30 to 50-kW/cm 2 ) XUV flux from an array of sixteen 60-kA spark sources is found to cause immediate diode current flow, resulting in both a greatly improved impedance history and the prompt initiation of an intense higher power ion beam

  3. Investigation of magnetically self-insulated effect in an ion diode with an explosive emission potential electrode

    International Nuclear Information System (INIS)

    Pushkarev, A. I.; Isakova, J. I.; Saltimakov, M. S.; Sazonov, R. V.

    2010-01-01

    The results of an experimental investigation of a magnetically self-insulated effect in an ion diode in bipolar-pulse mode are presented. The investigations were accomplished at the TEMP-4M accelerator by formation of a first negative pulse (100 ns, 150-200 kV) and a second positive pulse (80 ns, 200-300 kV) [G. E. Remnev et al., Surf. Coat. Technol. 114, 206 (1999)]. Plasma behavior in the anode-cathode gap was analyzed according to the current-voltage characteristics of the diode with a time resolution of 0.5 ns. It is shown that during the discrete emissive surface mode, the magnetic field influence on plasma dynamics is slight. During the space charge limitation mode, the current-voltage characteristics of the diode are well-described by the Child-Langmuir ratio. The drift speed of electrons in the diode exceeds 80 mm/ns and the effect of magnetic insulation is insignificant. It was discovered, when plasma formation at the potential electrode is complete and up until the second positive pulse that the plasma speed is constant and equals to 1.3±0.2 cm/μs. After the voltage polarity at the potential electrode changes (second pulse), plasma breakup at the anode-cathode gap takes place. The impedance of the diode begins to increase and, when the total current is more than 30 kA, the diode impedance exceeds the calculated values by more than three times. The energy efficiency and limiting characteristics of the magnetically self-insulated diode are determined.

  4. Diagnosis of high-intensity pulsed heavy ion beam generated by a novel magnetically insulated diode with gas puff plasma gun.

    Science.gov (United States)

    Ito, H; Miyake, H; Masugata, K

    2008-10-01

    Intense pulsed heavy ion beam is expected to be applied to materials processing including surface modification and ion implantation. For those applications, it is very important to generate high-purity ion beams with various ion species. For this purpose, we have developed a new type of a magnetically insulated ion diode with an active ion source of a gas puff plasma gun. When the ion diode was operated at a diode voltage of about 190 kV, a diode current of about 15 kA, and a pulse duration of about 100 ns, the ion beam with an ion current density of 54 A/cm(2) was obtained at 50 mm downstream from the anode. By evaluating the ion species and the energy spectrum of the ion beam via a Thomson parabola spectrometer, it was confirmed that the ion beam consists of nitrogen ions (N(+) and N(2+)) of energy of 100-400 keV and the proton impurities of energy of 90-200 keV. The purity of the beam was evaluated to be 94%. The high-purity pulsed nitrogen ion beam was successfully obtained by the developed ion diode system.

  5. Lifetime of anode polymer in magnetically insulated ion diodes for high-intensity pulsed ion beam generation

    International Nuclear Information System (INIS)

    Zhu, X. P.; Dong, Z. H.; Han, X. G.; Xin, J. P.; Lei, M. K.

    2007-01-01

    Generation of high-intensity pulsed ion beam (HIPIB) has been studied experimentally using polyethylene as the anode polymer in magnetically insulated ion diodes (MIDs) with an external magnetic field. The HIPIB is extracted from the anode plasma produced during the surface discharging process on polyethylene under the electrical and magnetic fields in MIDs, i.e., high-voltage surface breakdown (flashover) with bombardments by electrons. The surface morphology and the microstructure of the anode polymer are characterized using scanning electron microscopy and differential scanning calorimetry, respectively. The surface roughening of the anode polymer results from the explosive release of trapped gases or newly formed gases under the high-voltage discharging, leaving fractured surfaces with bubble formation. The polyethylene in the surface layer degrades into low-molecular-weight polymers such as polyethylene wax and paraffin under the discharging process. Both the surface roughness and the fraction of low molecular polymers apparently increase as the discharging times are prolonged for multipulse HIPIB generation. The changes in the surface morphology and the composition of anode polymer lead to a noticeable decrease in the output of ion beam intensity, i.e., ion current density and diode voltage, accompanied with an increase in instability of the parameters with the prolonged discharge times. The diode voltage (or surface breakdown voltage of polymer) mainly depends on the surface morphology (or roughness) of anode polymers, and the ion current density on the composition of anode polymers, which account for the two stages of anode polymer degradation observed experimentally, i.e., stage I which has a steady decrease of the two parameters and stage II which shows a slow decrease, but with an enhanced fluctuation of the two parameters with increasing pulses of HIPIB generation

  6. Experimental evidence of energetic neutrals production in an ion diode

    Energy Technology Data Exchange (ETDEWEB)

    Pushkarev, A.I., E-mail: aipush@mail.ru; Isakova, Y.I.; Khaylov, I.P.

    2015-01-15

    The paper presents several experimental proofs of the formation of energetic charge-exchange neutrals in a self-magnetically insulated ion diode with a graphite cathode. The energetic neutrals are thought to be produced as a result of charge exchange process between accelerated ions and stationary neutral molecules. The experiments have been carried out using both a diode with externally applied magnetic insulation (single-pulse mode: 100 ns, 250–300 kV) and a diode with self-magnetic insulation (double-pulse mode: 300–500 ns, 100–150 kV (negative pulse); 120 ns, 250–300 kV (positive pulse)). The motivation for looking at the neutral component of the ion beam came when we compared two independent methods to measure the energy density of the beam. A quantitative comparison of infrared measurements with signals from Faraday cups and diode voltage was made to assess the presence of neutral atoms in the ion beam. As another proof of charge-exchange effects in ion diode we present the results of statistical analysis of diode performance. It was found that the shot-to shot variation of the energy density in a set of 50–100 shots does not exceed 11%, whilst the same variation for ion current density was 20–30%; suggesting the presence of neutrals in the beam. Moreover, the pressure in the zone of ion beam energy dissipation exceeds the results stated in cited references. The difference between our experimental data and results stated by other authors we attribute to the presence of a low-energy charge-exchange neutral component in the ion beam.

  7. Production of ion beam by conical pinched electron beam diode

    International Nuclear Information System (INIS)

    Matsukawa, Y.; Nakagawa, Y.

    1982-01-01

    Some properties of the ion beam produced by pinched electron beam diode having conical shape electrodes and organic insulator anode was studied. Ion energy is about 200keV and the peak diode current is about 30 kA. At 11cm from the diode apex, not the geometrical focus point, concentrated ion beam was obtained. Its density is more than 500A/cm 2 . The mean ion current density within the radius of 1.6cm around the axis from conical diode is two or three times that from an usual pinched electron beam diode with flat parallel electrodes of same dimension and impedance under the same conditions. (author)

  8. Analytic model of Applied-B ion diode impedance behavior

    International Nuclear Information System (INIS)

    Miller, P.A.; Mendel, C.W. Jr.

    1987-01-01

    An empirical analysis of impedance data from Applied-B ion diodes used in seven inertial confinement fusion research experiments was published recently. The diodes all operated with impedance values well below the Child's-law value. The analysis uncovered an unusual unifying relationship among data from the different experiments. The analysis suggested that closure of the anode-cathode gap by electrode plasma was not a dominant factor in the experiments, but was not able to elaborate the underlying physics. Here we present a new analytic model of Applied-B ion diodes coupled to accelerators. A critical feature of the diode model is based on magnetic insulation theory. The model successfully describes impedance behavior of these diodes and supports stimulating new viewpoints of the physics of Applied-B ion diode operation

  9. Extraction magnetically insulated diode studies on Gamble II

    International Nuclear Information System (INIS)

    Neri, J.M.; Boller, J.R.; Ottinger, P.F.; Stephanakis, S.J.; Greenly, J.

    1993-01-01

    An extraction Magnetically Insulated Diode (MID) with anode and cathode magnetic field coils has been tested on the NRL Gamble II accelerator. The purpose of the experiments is to develop an annular, intense ion beam source for testing ion beam transport physics related to light ion inertial confinement fusion. Initial experiments have been performed with surface flashover ion sources. The experimental challenge has been to obtain a tuning of the 4 magnetic field coils that results in a minimum turn-on time of the ion source and acceptable coupling to the accelerator. Results from several different geometries of magnetic field will be presented. The principal diode diagnostics are the total diode current, net ion current, and corrected diode voltage. Calculations of the magnetic field strength and geometry are performed with the ATHETA code. An active anode ion source is also under development. The initial portion of the accelerator pulse is diverted with a plasma opening switch (POS) and passed through a thin foil that will become the ion source. The foil is swiftly heated by the current pulse and gas is desorbed or diffused from the foil into the anode-cathode gap. The gas is then broken down by the current pulse, forming a dense plasma source on the anode surface. Two different foils are being used. A thin aluminum foil will work with desorbed gases, and provide a beam that is predominately protons. A hydrogen loaded titanium foil, with a paladium overcoating, will use diffused hydrogen, and produce a high purity proton beam. The net result of the POS and active anode plasma source should be much faster ion turn-on time, and better coupling of the ion source to the accelerator. Preliminary results with the active anode sources will be presented

  10. Manufacture of axially insulated large-area diodes

    International Nuclear Information System (INIS)

    Ma Weiyi; Zhou Kungang; Wang Youtian; Zhang Dong; Shan Yusheng; Wang Naiyan

    1999-01-01

    The author describes the design and construction of the axially insulated large-area diodes used in the 'Heaven-1'. The four axially insulated large-area diodes are connected to the 10 ohm pulse transmission lines via the vacuum feed through tubes. The experimental results with the diodes are given. The diodes can steadily work at the voltage of 650 kV, and the diode current density is about 80 A per cm 2 with a pulse width of 220 ns. The electron beams with a total energy of 25 kJ are obtained

  11. Power ion beam production in a magnetic-insulated diode placed in a circuit with an inductive storage with a plasmoerosion circuit breaker

    International Nuclear Information System (INIS)

    Anan'in, P.S.; Karpov, V.B.; Krasik, Ya.E.; Paul', E.A.

    1991-01-01

    Consideration is given to results of experimental studies of modes of operation of plasma current breaker and magnetic insulated diode, placed parallel in a circuit with inductive storage and microsecond generator, as well as parameters of high-power ion beam, generated in gas-filled diode. Magnetic field of mirror configuration, which enabled to locate the gas-filled diode dose to breaking region was used for decrease of electrodynamic plasma transfer. It is shown that time delay (of the order of ten and more) of power maximum in gas-filled diode with respect to power maximum in plasma breaker is observed when using passive plasma source on anode

  12. Electron collector and ion species experiments on the LION extractor ion diode

    International Nuclear Information System (INIS)

    Rondeau, G.; Greenly, J.B.; Hammer, D.A.; Horioka, K.; Meyerhofer, D.D.

    1987-01-01

    Studies of the effects of an electron collector on the electron flow in an ion diode and on diode impedance history are being done with an extractor geometry ion diode (B/sub r/ magnetic insulation field) on the LION accelerator (1.5 MV, 4Ω, 40 ns). The collector is a flux-penetrable metal protrusion on the inner radius of the anode that collects electrons. This device increases the diode operating impedance particularly during the later part of the pulse when the diode impedance collapses without the collector. In the present set of experiments, several thin wires are inserted into the anode and allowed to protrude a few millimeters into the A-K gap. These wires are damaged by the electron flow during the pulse and by measuring the length of the remaining wire, the distance of the electron layer from the anode can be inferred. The ion current density is also measured in three radial locations across the diode, giving a measure, through the Child-Langmuir law, of the effective gap spacing between the anode and the electron sheath. A simple model is proposed to account for the scaling of ion current density with the diode voltage observed in the experiment

  13. Development of intense pulsed heavy ion beam diode using gas puff plasma gun as ion source

    International Nuclear Information System (INIS)

    Ito, H.; Higashiyama, M.; Takata, S.; Kitamura, I.; Masugata, K.

    2006-01-01

    A magnetically insulated ion diode with an active ion source of a gas puff plasma gun has been developed in order to generate a high-intensity pulsed heavy ion beam for the implantation process of semiconductors and the surface modification of materials. The nitrogen plasma produced by the plasma gun is injected into the acceleration gap of the diode with the external magnetic field system. The ion diode is operated at diode voltage approx. =200 kV, diode current approx. =2 kA and pulse duration approx. =150 ns. A new acceleration gap configuration for focusing ion beam has been designed in order to enhance the ion current density. The experimental results show that the ion current density is enhanced by a factor of 2 and the ion beam has the ion current density of 27 A/cm 2 . In addition, the coaxial type Marx generator with voltage 200 kV and current 15 kA has been developed and installed in the focus type ion diode. The ion beam of ion current density approx. =54 A/cm 2 is obtained. To produce metallic ion beams, an ion source by aluminum wire discharge has been developed and the aluminum plasma of ion current density ∼70 A/cm 2 is measured. (author)

  14. Operation of passive wax flashover and LiF ion sources on extraction applied-B ion diodes on SABRE

    International Nuclear Information System (INIS)

    Cuneo, M.E.; Hanson, D.L.; Smith, J.R.; Rosenthal, S.E.; Coats, R.S.; Bernard, M.A.

    1993-01-01

    The authors are fielding wax flashover and LiF anodes on an extraction ion diode on SABRE (Sandia Accelerator and Beam Research Experiment), a magnetically insulated linear induction voltage adder, presently providing a 6 MV, 300 kA output. These anodes are passive sources of principally hydrocarbon and lithium beams. In applied-B ion diodes, passive ion sources use the applied voltage to produce the required ions either through an electron assisted desorption and surface flashover process, and/or through field emission mechanisms. Passive sources therefore require power delivered to the diode before ions will be turned-on. Passive sources provide a simple way to generate ions to test accelerator performance, accelerator to diode coupling, diagnostics, and to study sources of divergence and divergence reduction techniques. The authors will discuss the effect of magnetic field geometry and the important role of cathode feed electrons in the formation and evolution of the A-K gap electron sheath in the diode. Experimental data on diode operation and beam production will be compared to the predictions of PIC code simulations

  15. Simulated electron affinity tuning in metal-insulator-metal (MIM) diodes

    Science.gov (United States)

    Mistry, Kissan; Yavuz, Mustafa; Musselman, Kevin P.

    2017-05-01

    Metal-insulator-metal diodes for rectification applications must exhibit high asymmetry, nonlinearity, and responsivity. Traditional methods of improving these figures of merit have consisted of increasing insulator thickness, adding multiple insulator layers, and utilizing a variety of metal contact combinations. However, these methods have come with the price of increasing the diode resistance and ultimately limiting the operating frequency to well below the terahertz regime. In this work, an Airy Function Transfer Matrix simulation method was used to observe the effect of tuning the electron affinity of the insulator as a technique to decrease the diode resistance. It was shown that a small increase in electron affinity can result in a resistance decrease in upwards of five orders of magnitude, corresponding to an increase in operating frequency on the same order. Electron affinity tuning has a minimal effect on the diode figures of merit, where asymmetry improves or remains unaffected and slight decreases in nonlinearity and responsivity are likely to be greatly outweighed by the improved operating frequency of the diode.

  16. Local electron flow to the anode in a magnetically insulated diode

    International Nuclear Information System (INIS)

    Maron, Y.

    1984-01-01

    Local electron flux to the anode of a magnetically insulated diode is monitored. Intense electron burst to the anode and slow variations in the electron flux are observed. Unlike the slow signals the bursts are accompanied by sharp increases in microwave emission and by increases in the ion current density. The electron bursts are not affected by the presence of the anode plasma. Indications suggest that the bursts are initiated by processes in the cathode plasma

  17. Space and time dependent properties of the virtual cathode in a reflex-type pulsed ion diode (virtual cathode in a reflex-type pulsed ion diode)

    International Nuclear Information System (INIS)

    Matsumoto, Yoshio; Yano, Syukuro

    1982-01-01

    Properties of a virtual cathode in a pulsed ion diode composed of an insulator-mesh anode and a metal-mesh cathode were studied experimentally at anode voltages below 360kV. Potential distribution in the virtual cathode side was measured with an insulated electrostatic potential probe, and ion beam currents in virtual and real cathode sides were measured with biased ion collectors. A loss parameter for the electron current at the virtual cathode was evaluated from the measured electron current values by using relations derived from the one-dimensional Child-Langmuir theory applied to the reflex triode. The ion beam accompanies a considerable amount of electron current, and this influences the stability of the virtual cathode; this perturbation results in variations of ion current with time. Space potentials in the emitted ion beam are given, suggesting an existence of high energy electrons of several keV accelerated by positive space potential of the ion beam. (author)

  18. Simulation studies of current transport in metal-insulator-semiconductor Schottky barrier diodes

    International Nuclear Information System (INIS)

    Chand, Subhash; Bala, Saroj

    2007-01-01

    The current-voltage characteristics of Schottky diodes with an interfacial insulator layer are analysed by numerical simulation. The current-voltage data of the metal-insulator-semiconductor Schottky diode are simulated using thermionic emission diffusion (TED) equation taking into account an interfacial layer parameter. The calculated current-voltage data are fitted into ideal TED equation to see the apparent effect of interfacial layer parameters on current transport. Results obtained from the simulation studies shows that with mere presence of an interfacial layer at the metal-semiconductor interface the Schottky contact behave as an ideal diode of apparently high barrier height (BH), but with same ideality factor and series resistance as considered for a pure Schottky contact without an interfacial layer. This apparent BH decreases linearly with decreasing temperature. The effects giving rise to high ideality factor in metal-insulator-semiconductor diode are analysed. Reasons for observed temperature dependence of ideality factor in experimentally fabricated metal-insulator-semiconductor diodes are analysed and possible mechanisms are discussed

  19. Contribution of the backstreaming ions to the Self-Magnetic pinch (SMP) diode current

    Energy Technology Data Exchange (ETDEWEB)

    Mazarakis, Michael G.; Cuneo, Michael E.; Fournier, Sean D.; Johnston, Mark D.; Kiefer, Mark L.; Leckbee, Joshua J.; Nielsen, Dan S.; Oliver, Bryan V.; Simpson, Sean; Renk, Timothy J.; Webb, Timothy J.; Ziska, Derek; Bennett, Nichelle; Droemer, Darryl W.; Cignac, Raymond E.; Obregon, Robert J.; Smith, Chase C.; Wilkins, Frank L.; Welch, Dale R.

    2016-08-08

    Summary form only given. The results presented here were obtained with an SMP diode mounted at the front high voltage end of the RITS accelerator. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulses of six 1.3 MV inductively insulated cavities. Our experiments had two objectives: first to measure the contribution of the back-streaming ion currents emitted from the anode target to the diode beam current, and second to try to evaluate the energy of those ions and hence the actual Anode-Cathode (A-K) gap actual voltage. In any very high voltage inductive voltage adder (IVA) utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the anode-cathode (A-K) gap is problematic. The accelerating voltage quoted in the literature is from estimates based on measurements of the anode and cathode currents of the MITL far upstream from the diode and utilizing the para-potential flow theories and inductive corrections. Thus it would be interesting to have another independent measurement to evaluate the A-K voltage. The diode's anode is made of a number of high Z metals in order to produce copious and energetic flash x-rays. The backstreaming currents are a strong fraction of the anode materials and their stage of cleanness and gas adsorption. We have measured the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip for various diode configurations and different techniques of target cleaning treatments, such as heating to very high temperatures with DC and pulsed current, with RF plasma cleaning and with both plasma cleaning and heating. Finally, we have also evaluated the A-K gap voltage by ion filtering techniques.

  20. Investigation of mechanism of anode plasma formation in ion diode with dielectric anode

    International Nuclear Information System (INIS)

    Pushkarev, A.

    2015-01-01

    The results of investigation of the anode plasma formation in a diode with a passive anode in magnetic insulation mode are presented. The experiments have been conducted using the BIPPAB-450 ion accelerator (350–400 kV, 6–8 kA, 80 ns) with a focusing conical diode with B r external magnetic field (a barrel diode). For analysis of plasma formation at the anode and the distribution of the ions beam energy density, infrared imaging diagnostics (spatial resolution of 1–2 mm) is used. For analysis of the ion beam composition, time-of-flight diagnostics (temporal resolution of 1 ns) were used. Our studies have shown that when the magnetic induction in the A-C gap is much larger than the critical value, the ion beam energy density is close to the one-dimensional Child-Langmuir limit on the entire working surface of the diode. Formation of anode plasma takes place only by the flashover of the dielectric anode surface. In this mode, the ion beam consists primarily of singly ionized carbon ions, and the delay of the start of formation of the anode plasma is 10–15 ns. By reducing the magnetic induction in the A-C gap to a value close to the critical one, the ion beam energy density is 3–6 times higher than that calculated by the one-dimensional Child-Langmuir limit, but the energy density of the ion beam is non-uniform in cross-section. In this mode, the anode plasma formation occurs due to ionization of the anode material with accelerated electrons. In this mode, also, the delay in the start of the formation of the anode plasma is much smaller and the degree of ionization of carbon ions is higher. In all modes occurred effective suppression of the electronic component of the total current, and the diode impedance was 20–30 times higher than the values calculated for the mode without magnetic insulation of the electrons. The divergence of the ion beam was 4.5°–6°

  1. Design and fabrication of metal-insulator-metal diode for high frequency applications

    Science.gov (United States)

    Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

    2017-02-01

    Metal-insulator-metal (MIM) diodes play significant role in high speed electronics where high frequency rectification is needed. Quantum based tunneling mechanism helps MIM diodes to rectify at high frequency signals. Rectenna, antenna coupled MIM diodes are becoming popular due to their potential use as IR detectors and energy harvesters. Because of small active area, MIM diodes could easily be incorporated into integrated circuits (IC's). The objective of the work is to design and develop MIM diodes for high frequency rectification. In this work, thin insulating layer of ZnO was fabricated using Langmuir-Blodgett (LB) technique which facilitates ultrathin thin, uniform and pinhole free fabrication of insulating layer. The ZnO layer was synthesized from organic precursor of zinc acetate layer. The optimization in the LB technique of fabrication process led to fabricate MIM diodes with high non-linearity and sensitivity. Moreover, the top and bottom electrodes as well as active area of the diodes were patterned using UV-tunneling conduction mechanism. The highest sensitivity of the diode was measured around 37 (A/W), and the rectification ratio was found around 36 under low applied bias at +/-100 mV.

  2. Contribution of the backstreaming ions to the self-magnetic pinch (SMP) diode current

    Science.gov (United States)

    Mazarakis, Michael G.; Bennett, Nichelle; Cuneo, Michael E.; Fournier, Sean D.; Johnston, Mark D.; Kiefer, Mark L.; Leckbee, Joshua J.; Nielsen, Dan S.; Oliver, Bryan V.; Sceiford, Matthew E.; Simpson, Sean C.; Renk, Timothy J.; Ruiz, Carlos L.; Webb, Timothy J.; Ziska, Derek; Droemer, Darryl W.; Gignac, Raymond E.; Obregon, Robert J.; Wilkins, Frank L.; Welch, Dale R.

    2018-04-01

    The results presented here were obtained with a self-magnetic pinch (SMP) diode mounted at the front high voltage end of the RITS accelerator. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulse of six 1.3 MV inductively insulated cavities. The RITS driver together with the SMP diode has produced x-ray spots of the order of 1 mm in diameter and doses adequate for the radiographic imaging of high area density objects. Although, through the years, a number of different types of radiographic electron diodes have been utilized with SABER, HERMES III and RITS accelerators, the SMP diode appears to be the most successful and simplest diode for the radiographic investigation of various objects. Our experiments had two objectives: first to measure the contribution of the back-streaming ion currents emitted from the anode target and second to try to evaluate the energy of those ions and hence the Anode-Cathode (A-K) gap actual voltage. In any very high voltage inductive voltage adder utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the A-K gap is problematic. This is even more difficult in an SMP diode where the A-K gap is very small (˜1 cm) and the diode region very hostile. The accelerating voltage quoted in the literature is from estimates based on the measurements of the anode and cathode currents of the MITL far upstream from the diode and utilizing the para-potential flow theories and inductive corrections. Thus, it would be interesting to have another independent measurement to evaluate the A-K voltage. The diode's anode is made of a number of high-Z metals in order to produce copious and energetic flash x-rays. It was established experimentally that the back-streaming ion currents are a strong function of the anode materials and their stage of cleanness. We have measured the back-streaming ion currents emitted from the anode and propagating

  3. Magnetic insulation regimes in high-current diodes and transmission lines of conical configuration

    International Nuclear Information System (INIS)

    Vasilenko, O.I.; Voronin, V.S.; Lebedev, A.N.

    1977-01-01

    Steady states of the electron current in a high-voltage diode and of the transmission line of conical configuration at emission current restriction by the space are considered on the basis of the self-consistant kinetic description in connection with the prospects of controlled thermonuclear synthesis. Proceeding from the magnetic self-insulation principle solved are the problems of controling the emission electron current in the double-electron geometry to prevent it from being present on the anode in the line regime and to achieve its maximum focusing in the diode regime. The motion of plasma boundaries as well as the probable contribution of the ion component of the current were not taken into consideration. It is shown that the beam focusing on the system axis takes place at sufficiently strong currents. It is connected with the fact that some part of the full diode current runs on the cathode surface. The results were compared with existing approximate diode models and with the experimetal data on focusien of strong-current beams

  4. Characteristics of a large vacuum wave precursor on the SABRE voltage adder MITL and extraction ion diode

    International Nuclear Information System (INIS)

    Cuneo, M.E.; Hanson, D.L.; Menge, P.R.; Poukey, J.W.; Savage, M.E.

    1994-01-01

    SABRE (Sandia Accelerator and Beam Research Experiment) is a ten-cavity linear induction magnetically insulated voltage adder (6 MV, 300 kA) operated in positive polarity to investigate issues relevant to ion beam production and propagation for inertial confinement fusion. The voltage adder section is coupled to an applied-B extraction ion diode via a long coaxial output transmission line. Observations indicate that the power propagates in a vacuum wave prior to electron emission. After the electron emission threshold is reached, power propagates in a magnetically insulated wave. The precursor is observed to have a dominant impact on he turn-on, impedance history, and beam characteristics of applied-B ion diodes since the precursor voltage is large enough to cause electron emission at the diode from both the cathode feed and cathode tips. The amplitude of the precursor at the load (3--4.5 MV) is a significant fraction of the maximum load voltage (5--6 MV) because (1) the transmission line gaps ( ∼ 9 cm at output) and therefore impedances are relatively large, and hence the electric field threshold for electron emission (200 to 300 kV/cm) is not reached until well into the power pulse rise time; and (2) the rapidly falling forward wave and diode impedance reduces the ratio of main pulse voltage to precursor voltage. Experimental voltage and current data from the transmission line and the ion diode will be presented and compared with TWOQUICK (2-D electromagnetic PIC code) simulations and analytic models

  5. Effects of insulating vanadium oxide composite in concomitant mixed phases via interface barrier modulations on the performance improvements in metal-insulator-metal diodes

    Directory of Open Access Journals (Sweden)

    Kaleem Abbas

    2018-03-01

    Full Text Available The performance of metal-insulator-metal diodes is investigated for insulating vanadium oxide (VOx composite composed of concomitant mixed phases using the Pt metal as the top and the bottom electrodes. Insulating VOx composite in the Pt/VOx/Pt diode exhibits a high asymmetry of 10 and a very high sensitivity of 2,135V−1 at 0.6 V. The VOx composite provides Schottky-like barriers at the interface, which controls the current flow and the trap-assisted conduction mechanism. Such dramatic enhancement in asymmetry and rectification performance at low applied bias may be ascribed to the dynamic control of the insulating and metallic phases in VOx composites. We find that the nanostructure details of the insulating VOx layer can be critical in enhancing the performance of MIM diodes.

  6. Research of long pulse high current diode radial insulation

    International Nuclear Information System (INIS)

    Tan Jie; Chang Anbi; Hu Kesong; Liu Qingxiang; Ma Qiaosheng; Liu Zhong

    2002-01-01

    A radial insulation structure which is used in long pulse high current diode is introduced. The theory of vacuum flashover and the idea of design are briefly introduced. In the research, cone-shaped insulator was used. The geometry structure parameters were optimized by simulating the static electrical field distribution. Experiment was done on a pulse power source with 200 ns pulse width. The maximum voltage 750 kV was obtained, and the average stand-off electrical field of insulator is about 50 kV/cm

  7. Particle beam dynamics in a magnetically insulated coaxial diode

    International Nuclear Information System (INIS)

    Korenev, V.G.; Magda, I.I.; Sinitsin, V.G.

    2015-01-01

    The dynamics of charged particle beams emitted from a cathode into a smooth coaxial diode with magnetic insulation is studied with the aid of 3-D PIC simulation. The processes controlling space charge formation and its evolution in the diode are modeled for geometries typical of high-voltage millimeter wave magnetrons that are characterized by very high values of emission currents, hence high space charge densities.

  8. A ceramic radial insulation structure for a relativistic electron beam vacuum diode.

    Science.gov (United States)

    Xun, Tao; Yang, Hanwu; Zhang, Jiande; Liu, Zhenxiang; Wang, Yong; Zhao, Yansong

    2008-06-01

    For one kind of a high current diode composed of a small disk-type alumina ceramic insulator water/vacuum interface, the insulation structure was designed and experimentally investigated. According to the theories of vacuum flashover and the rules for radial insulators, a "cone-column" anode outline and the cathode shielding rings were adopted. The electrostatic field along the insulator surface was obtained by finite element analysis simulating. By adjusting the outline of the anode and reshaping the shielding rings, the electric fields were well distributed and the field around the cathode triple junction was effectively controlled. Area weighted statistical method was applied to estimate the surface breakdown field. In addition, the operating process of an accelerator based on a spiral pulse forming line (PFL) was simulated through the PSPICE software to get the waveform of charging and diode voltage. The high voltage test was carried out on a water dielectric spiral PFL accelerator with long pulse duration, and results show that the diode can work stably in 420 kV, 200 ns conditions. The experimental results agree with the theoretical and simulated results.

  9. Ion current reduction in pinched electron beam diodes

    International Nuclear Information System (INIS)

    Quintenz, J.P.; Poukey, J.W.

    1977-01-01

    A new version of a particle-in-cell diode code has been written which permits the accurate treatment of higher-current diodes with greater physical dimensions. Using this code, we have studied ways to reduce the ion current in large-aspect-ratio pinched electron beam diodes. In particular, we find that allowing the ions to reflex in such diodes lowers the ion to electron current ratio considerably. In a 3-MV R/d=24 case this ratio was lowered by a factor of 6--8 compared with the corresponding nonreflexing-ion diode, while still producing a superpinched electron beam

  10. Countercurrent in high-current microsecond diodes with magnetic insulation

    International Nuclear Information System (INIS)

    Bugaev, S.P.; Kim, A.A.; Koshelev, V.I.

    1979-01-01

    In order to increase the efficiency of the generation of tube electron beams in diodes and the efficiency of the electron beam current pulse duration studied is the formation of the electron counter current in microsecond diodes with magnetic insulation in dependence on the various geometry of the cathode joint. The experiments have been carried out at the accelerator with the following parameters: diode voltage from 400 to 600 kV, the front and duration of the pulse 75 ns and 1-2 μs respectively, beam current from 4 to 17 kA, magnetic field of 18 kGs. The current in the drift tube and the total current of the electron gun have been measured. Distributing resistance current of vacuum insulator has been controlled. Conclusions have been made, that, in the case when the diameters of cathode and cathode holder are equal, the electron current is being produced from the reverse side of cathode plasma, which expands across the magnetic field with the rate of (4-5)x10 5 sm/cs. The counter current value has constituted 15% of the total current at the use of reflector with the geometry repeating the shape of the magnetic field force lines, corresponding to the cathode radius. The counter current has not been present at the use of the flat reflector

  11. Step tunneling enhanced asymmetry in metal-insulator-insulator-metal (MIIM) diodes for rectenna applications

    Science.gov (United States)

    Alimardani, N.; Conley, J. F.

    2013-09-01

    We combine nanolaminate bilayer insulator tunnel barriers (Al2O3/HfO2, HfO2/Al2O3, Al2O3/ZrO2) deposited via atomic layer deposition (ALD) with asymmetric work function metal electrodes to produce MIIM diodes with enhanced I-V asymmetry and non-linearity. We show that the improvements in MIIM devices are due to step tunneling rather than resonant tunneling. We also investigate conduction processes as a function of temperature in MIM devices with Nb2O5 and Ta2O5 high electron affinity insulators. For both Nb2O5 and Ta2O5 insulators, the dominant conduction process is established as Schottky emission at small biases and Frenkel-Poole emission at large biases. The energy depth of the traps that dominate Frenkel-Poole emission in each material are estimated.

  12. Experimental observations on long pulse intense ion diode operation

    International Nuclear Information System (INIS)

    Prono, D.S.; Clark, R.; Prestwich, K.

    1976-01-01

    An experiment in which a long pulse electron beam diode is converted to a reflex ion diode is reported. The results further substantiate the model of reflex ion diode behavior as well as extend the duration of ion mode operation to greater than 500 nsec

  13. Systematic study of metal-insulator-metal diodes with a native oxide

    KAUST Repository

    Donchev, E.; Gammon, P. M.; Pang, J. S.; Petrov, P. K.; Alford, N. McN.

    2014-01-01

    © 2014 SPIE. In this paper, a systematic analysis of native oxides within a Metal-Insulator-Metal (MIM) diode is carried out, with the goal of determining their practicality for incorporation into a nanoscale Rectenna (Rectifying Antenna

  14. Exploding metal film active anode source experiments on the LION extractor ion diode

    International Nuclear Information System (INIS)

    Rondeau, G.D.; Bordonaro, G.J.; Greenly, J.B.; Hammer, D.A.

    1989-01-01

    In this paper the authors report results using an extractor geometry magnetically insulated ion diode on the 0.5 TW LION accelerator. Experiments with an exploding metal film active anode plasma source (EMFAAPS) have shown that intense beams with significantly improved turn-on time compared to epoxy-filled-groove anodes can be produced. A new geometry, in which a plasma switch is used to provide the current path that explodes the thin film anode, has improved the ion efficiency (to typically 70%) compared with the previous scheme in which an electron collector on the anode provided this current. Leakage electron current is reduced when no collector is used

  15. Fabrication and characterization of NiO based metal-insulator-metal diode using Langmuir-Blodgett method for high frequency rectification

    Science.gov (United States)

    Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

    2018-04-01

    Thin film metal-insulator-metal (MIM) diodes have attracted significant attention for use in infrared energy harvesting and detection applications. As demonstrated over the past decades, MIM or metal-insulator-insulator-metal (MIIM) diodes can operate at the THz frequencies range by quantum tunneling of electrons. The aim of this work is to synthesize required ultra-thin insulating layers and fabricate MIM diodes using the Langmuir-Blodgett (LB) technique. The nickel stearate (NiSt) LB precursor film was deposited on glass, silicon (Si), ITO glass and gold coated silicon substrates. The photodesorption (UV exposure) and the thermodesorption (annealing at 100 °C and 350 °C) methods were used to remove organic components from the NiSt LB film and to achieve a uniform homogenous nickel oxide (NiO) film. These ultrathin NiO films were characterized by EDS, AFM, FTIR and cyclic voltammetry methods, respectively. The MIM diode was fabricated by depositing nickel (Ni) on the NiO film, all on a gold (Au) plated silicon (Si) substrate. The current (I)-voltage (V) characteristics of the fabricated diode were studied to understand the conduction mechanism assumed to be tunneling of electron through the ultra-thin insulating layer. The sensitivity of the diode was measured to be as high as 35 V-1. The diode resistance was ˜100 ohms (at a bias voltage of 0.60 V), and the rectification ratio was about 22 (for a signal voltage of ±200 mV). At the bias point, the diode response demonstrated significant non-linearity and high asymmetry, which are very desirable characteristics for applications in infrared detection and harvesting.

  16. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    Energy Technology Data Exchange (ETDEWEB)

    Renk, T. J., E-mail: tjrenk@sandia.gov; Harper-Slaboszewicz, V.; Mikkelson, K. A.; Ginn, W. C. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Ottinger, P. F. [ENGILITY, Chantilly, Virginia 20151 (United States); Schumer, J. W. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-12-15

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometry that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. A new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. In addition, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.

  17. Effect of surface states on electrical characteristic of metal - insulator - semiconductor (MIS) diodes

    International Nuclear Information System (INIS)

    Altindal, S.; Doekme, I.; Tataroglu, A.; Sahingoez, R.

    2002-01-01

    The current-voltage (I-V) characteristics of Metal-Insulator-Semiconductor (MIS) Schottky barrier diodes which is consider distribution of interface states in equilibrium with semiconductor were determined at two (low and high) temperature. The interface states were responsible for non-ideal behavior of the forward I-V characteristic of diodes. Both diodes (n and p type Si) showed non-ideal behavior with an ideality factor 1.6 and 1.85 respectively at room temperature. The higher values of n-type Si were attributed to an order of magnitude higher density of interface states in the both diodes. The effect of an interfacial insulator layer between the metal and semiconductor are also studied. The high density of interface states also caused a reduction in the barrier height of the MIS diode. It is shown that by using Norde function at low and high temperature, barrier height □ b , series resistance R s and ideality factor n can be determined even in the case 1 s obtained from Norde function strongly depend on temperature, and decrease with increasing temperature. In addition, the potential barrier height increases with increasing temperature. The mean density of interface states N ss decreases with increasing temperature. Particularly at low temperature the I-V characteristics are controlled by interface states density

  18. Silicon-on-Insulator Lateral-Insulated-Gate-Bipolar-Transistor with Built-in Self-anti-ESD Diode

    Directory of Open Access Journals (Sweden)

    Xiaojun Cheng

    2014-05-01

    Full Text Available Power SOI (Silicon-On-Insulator devices have an inherent sandwich structure of MOS (Metal-Oxide-Semiconductor gate which is very easy to suffer ESD (Electro-Static Discharge overstress. To solve this reliability problem, studies on design and modification of a built-in self-anti-ESD diode for a preliminarily optimized high voltage SOI LIGBT (Lateral-Insulated-Gate-Bipolar-Transistor were carried out on the Silvaco TCAD (Technology-Computer-Aided-Design platform. According to the constrains of the technological process, the new introduction of the N+ doped region into P-well region that form the built-in self-anti-ESD diode should be done together with the doping of source under the same mask. The modifications were done by adjusting the vertical impurity profile in P-well into retrograde distribution and designing a cathode plate with a proper length to cover the forward depletion terminal and make sure that the thickness of the cathode plate is the same as that of the gate plate. The simulation results indicate that the modified device structure is compatible with the original one in process and design, the breakdown voltage margin of the former was expanded properly, and both the transient cathode voltages are clamped low enough very quickly. Therefore, the design and optimization results of the modified device structure of the built-in self-anti-ESD diode for the given SOI LIGBT meet the given requirements.

  19. Explosive-Emission Plasma Dynamics in Ion Diode in Double-Pulse Mode

    International Nuclear Information System (INIS)

    Pushkarev, Alexander I.; Isakova, Yulia I.

    2011-01-01

    The results of an experimental investigation of explosive-emission plasma dynamics in an ion diode with self-magnetic insulation are presented. The investigations were accomplished at the TEMP-4M accelerator set in a mode of double pulse formation. Plasma behaviour in the anode-cathode gap was analyzed according to both the current-voltage characteristics of the diode (time resolution of 0.5 ns) and thermal imprints on a target (spatial resolution of 0.8 mm). It was shown that when plasma formation at the potential electrode was complete, and up until the second (positive) pulse, the explosive-emission plasma expanded across the anode-cathode gap with a speed of 1.3±0.2 cm/μs. After the voltage polarity at the potential electrode was reversed (second pulse), the plasma erosion in the anode-cathode gap (similar to the effect of a plasma opening switch) occurred. During the generation of an ion beam the size of the anode-cathode gap spacing was determined by the thickness of the plasma layer on the potential electrode and the layer thickness of the electrons drifting along the grounded electrode. (15th asian conference on electrical discharge)

  20. Generation and focusing of intense ion beams with an inverse pinch ion diode

    International Nuclear Information System (INIS)

    Hashimoto, Yoshiyuki; Sato, Morihiko; Yatsuzuka, Mitsuyasu; Nobuhara, Sadao

    1992-01-01

    Generation and focusing of ion beams using an inverse pinch ion diode with a flat anode has been studied. The ion beams generated with the inverse pinch ion diode were found to be focused at 120 mm from the anode by the electrostatic field in the diode. The energy and maximum current density of the ion beams were 180 keV and 420 A/cm 2 , respectively. The focusing angle of the ion beams was 4.3deg. The beam brightness was estimated to be 1.3 GW/cm 2 ·rad 2 . The focusing distance of the ion beams was found to be controllable by changing the diameters of the anode and cathode. (author)

  1. Ion diode diagnostics to resolve beam quality issues

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, H; Buth, L; Hoppe, P [Forschungszentrum Karlsruhe (Germany). Institut fuer Neutronenphysik und Reaktortechnik; and others

    1997-12-31

    Various diagnostic methods and instruments are under development at the Forschungszentrum Karlsruhe to measure important physical quantities in the accelerating gap of high power diodes on KALIF with a high spatial and temporal resolution. The methods include optical spectroscopy, refractive index measurements, dispersion interferometry, and high resolution energy analysis. The setup of these diagnostic tools and the first results obtained for applied and self-magnetically insulated diodes are presented. (author). 6 figs., 5 refs.

  2. Research progress in intense ion beam production for inertial confinement fusion at Cornell University

    International Nuclear Information System (INIS)

    Bluhm, H.; Greenly, J.B.; Hammer, D.A.

    1983-01-01

    Recent results obtained in the generation of intense pulsed light ion beams and their application to inertial confinement fusion are described. Studies of time-integrated and time-dependent beam divergence using a magnetically insulated ion diode with a ''flashboard'' anode at 11 W diode power show a directionality which is apparently due to electron dynamics in the diode. Nevertheless, ion beams having divergence angle as small as 0.5 0 have been produced at >10 8 W.cm - 2 . In another experiment with a similar diode, the anode plasma formation time varied with the detailed anode configuration, the diode voltage and the insulating magnetic field, with the longer times obtained at lower voltage and higher insulating magnetic field strength. The anode plasma density was determined to be in the 10 15 cm - 3 density range and to move away from the anode at approx.2 cm.μs - 1 in another similar experiment. Preliminary experiments performed on a 10 12 W accelerator show reasonable power coupling to a magnetically insulated ion diode, with >10 9 W.cm - 2 beams at approx.1.5 MV being generated. Computer simulations suggest that if such a beam can be focused into a plasma channel, most of its energy can be delivered to a pellet one to two metres away. In experiments on the applied Bsub(theta) diode, microwave radiation, ion production efficiency, and ion beam fluctuations all reach a maximum when the insulating magnetic field is about 1.4 times the critical field for magnetic insulation. Finally, relatively pure beams of heavy ions have been produced by making the anode with hydrocarbon-free dielectric material which contains the desired species together with other ions having substantially higher ionization potential. The sum of these results suggests that flashboard anodes operated at the few-MV level can be used to produce beams with properties suitable for inertial confinement fusion experiments on sufficiently powerful pulsed power generators. (author)

  3. Characterization techniques for ion bombarded insulators

    International Nuclear Information System (INIS)

    Borders, J.A.

    1987-01-01

    The chapter gives a comprehensive review of the experimental methods for the analysis of ion-bombarded insulators including optical and structural methods, resonance, energetic ion methods, and surface techniques. 48 refs.; 34 figs

  4. Conical pinched electron beam diode for intense ion beam source

    International Nuclear Information System (INIS)

    Matsukawa, Yoshinobu; Nakagawa, Yoshiro

    1982-01-01

    For the purpose of improvement of the pinched electron beam diode, the production of an ion beam by a diode with electrodes in a conical shape was studied at low voltage operation (--200 kV). The ion beam is emitted from a small region of the diode apex. The mean ion beam current density near the axis at 12 cm from the diode apex is two or three times that from an usual flat parallel diode with the same dimension and impedance. The brightness and the power brightness at the otigin are 450 MA/cm 2 sr and 0.12 TW/cm 2 sr respectively. (author)

  5. Space and time dependent properties of the virtual cathode in a reflex-type pulsed ion diode

    International Nuclear Information System (INIS)

    Matsumoto, Yoshio; Kitamura, Akira; Yano, Syukuro

    1981-01-01

    Properties of a virtual cathode in a pulsed ion diode composed of and insulator-mesh anode and a metal-mesh cathode were studied experimentally at anode voltages below 35o kV. Potential distribution in the virtual cathode side was measured with an insulated electrostatic potential probe, and ion beam currents in virtual and real cathode sides were measured with biased ion collectors. Experimental results are given for the space and time behaviors of the anode plasma and the virtual cathode which starts to grow first from a region near a periphery of the metal anode frame and extends over the central region near the anode surface. A loss parameter for the electron current accompanied with the ion beam at the virtual cathode was evaluated from the measured electron current values by using relations derived from the one-dimensional Child-Langmuir theory applied to the reflex triode. The ion beam accompanies a considerable amount of electron current, and this influences the stability of the virtual cathode; this perturbation results in variations of ion current with time. Experimental results for space potentials in the emitted ion beam and the total current flowing in the space of the virtual cathode side are also given, suggesting an existence of high energy electrons of several keV accelerated by positive space potential of the ion beam. (author)

  6. Intense ion beam research for inertial confinement fusion. Final technical report, 1 October 1981-31 October 1985

    International Nuclear Information System (INIS)

    Hammer, D.A.; Kusse, B.R.; Sudan, R.N.

    1986-01-01

    Theoretical and experimental research has been performed on the application of intense light ion beams to inertial confinement fusion. The following achievements are documented. A 1 TW accelerator (a module of the PBFA 1 device at Sandia National Laboratories, Albuquerque), has been installed at Cornell and it has been used to develop high power magnetically insulated ion diodes. Ion beams at 0.3 TW level have been produced. The use of spectroscopic techniques to diagnose conditions in detail with in magnetically insulated diodes was proposed, and preliminary experiments have been successfully performed. These have revealed the anode plasma density, transverse velocities of ions within the diode (from Doppler broadening of ion emission lines) and the electric field profile in the accelerating gap (from the Stark shifted line profile of especially selected emission lines). Theoretical studies on the effects of lack of symmetry in the electron drift direction on the leakage electron current in a magnetically insulated diode show that even very small perturbations can cause a substantial enhancement of the leakage current. Experiments involving electron flow in a magnetically insulated diode have shown cathode sheath losses to occur in local burst as well as in a smooth manner

  7. Simulative research on reverse current in magnetically insulated coaxial diode

    Directory of Open Access Journals (Sweden)

    Danni Zhu

    2017-10-01

    Full Text Available The reverse current tends to occur in the transition region of the guiding magnetic field in a magnetically insulated coaxial diode (MICD. Influence of the guiding magnetic field on characteristics of the MICD especially on the reverse current is studied by the particle-in-cell (PIC simulation in this paper. The reverse current is confirmed to be irrelevant with the guiding magnetic field strength. However, the reverse current is clarified quantitatively to depend on the electric and magnetic field distribution in the upstream of the cathode tip. As the MICD has been widely employed in microwave tubes, a simple approach to suppress the reverse current on the premise of little change of the original diode is valuable and thus proposed. The optimum matching point between the cathode and the magnetic field is selected in consideration of the entrance depth tolerance, the diode impedance discrepancy and the reverse current coefficient.

  8. Design concepts for PBFA-II's applied-B ion diode

    International Nuclear Information System (INIS)

    Rovang, D.C.

    1985-01-01

    The lithium ion diode to be used at the center of Particle Beam Fusion Accelerator-II (PBFA-II) at Sandia National Laboratories is an applied-B ion diode. The center section of the PBFA-II accelerator is where the electrical requirements of the accelerator, the design requirements of the diode, and the operational requirements must all be satisfied simultaneously for a successful experiment. From an operational standpoint, the ion diode is the experimental hub of the accelerator and needs to be easily and quickly installed and removed. Because of the physical size and geometry of the PBFA-II center section, achieving the operational requirements has presented an interesting design challenge. A discussion of the various design requirements and the proposed concepts for satisfying them is presented

  9. Two-dimensional ion effects in relativistic diodes

    International Nuclear Information System (INIS)

    Poukey, J.W.

    1975-01-01

    In relativistic diodes, ions are emitted from the anode plasma. The effects and properties of these ions are studied via a two-dimensional particle simulation code. The space charge of these ions enhances the electron emission, and this additional current (including that of the ions, themselves) aids in obtaining superpinched electron beams for use in pellet fusion studies. (U.S.)

  10. Ion channelling analysis of pre-amorphised silicon diodes using a nuclear microprobe

    International Nuclear Information System (INIS)

    Thornton, J.; Paus, K.C.

    1988-01-01

    Aligned and random ion channelling analysis was performed on p + n diode structures in silicon, with the Surrey nuclear microprobe. Three different types of diode were investigated, each pre-amorphised by a different ion (Si + , Ge + or Sn + ) before the p + region was formed by BF 2 + implantation. The ion channelling measurements are presented and compared with previously published electrical measurements on these diodes. Relatively large residual disorder and junction leakage currents were found for the Si + pre-amorphised diodes; however, all the diodes were leaky. The results are consistent with dislocation loops within the depletion regions of the diodes causing both the residual disorder and the large leakage currents. Cross-sectional transmission electron microscopy studies support this model. (author)

  11. Plasma-filled diode experiments on PBFA-II

    International Nuclear Information System (INIS)

    Renk, T.J.; Rochau, G.E.; McDaniel, D.H.; Moore, W.B.; Zuchowski, N.; Padilla, R.

    1987-01-01

    The PBFA-II accelerator is designed to use a Plasma Opening Switch (POS) for pulse shaping and voltage multiplication using inductive storage. The vacuum section of the machine consists of a set of short magnetically insulated transmission lines (MITLs) that both act as a voltage adder for series stacking of the pulses out of the 72 parallel plate water lines, and as a 100 nH (total) storage inductor upstream of a biconically shaped POS region. There are two POS plasma injection areas, located above and below an equatorial load, which has consisted of either a short circuit, a blade (electron beam) diode, or an Applied B magnetically insulated ion diode. The POS is designed to conduct up to 6 MA, and open into a 5 ohm diode load in 10 ns or less. Under these conditions, the voltage at the load is predicted to exceed 24 MV. Initial POS experiments using these loads have produced 1) opening times of typically 20 ns or longer, 2) poor current transfer efficiency (less than 50%) when load impedances averaged 2 ohms or more, and 3) differential switch opening in azimuthal segments of the power feed, thought to be caused by poor plasma uniformity across the flashboard plasma source. One possible explanation for 2) is that efficient transfer out of the POS requires that the current carried to the load be magnetically insulated, or else considerable energy will be deposited in the feed region between the POS and load. This had indeed been observed. The problem is further exacerbated by the longer current turn-on times that occur when an ion diode is used as the load

  12. Experimental research on time-resolved evolution of cathode plasma expansion velocity in a long pulsed magnetically insulated coaxial diode

    Science.gov (United States)

    Zhu, Danni; Zhang, Jun; Zhong, Huihuang; Ge, Xingjun; Gao, Jingming

    2018-02-01

    Unlike planar diodes, separate research of the axial and radial plasma expansion velocities is difficult for magnetically insulated coaxial diodes. Time-resolved electrical diagnostic which is based on the voltage-ampere characteristics has been employed to study the temporal evolution of the axial and radial cathode plasma expansion velocities in a long pulsed magnetically insulated coaxial diode. Different from a planar diode with a "U" shaped profile of temporal velocity evolution, the temporal evolution trend of the axial expansion velocity is proved to be a "V" shaped profile. Apart from the suppression on the radial expansion velocity, the strong magnetic field is also conducive to slowing down the axial expansion velocity. Compared with the ordinary graphite cathode, the carbon velvet and graphite composite cathode showed superior characteristics as judged by the low plasma expansion velocity and long-term electrical stability as a promising result for applications where long-pulsed and reliable operation at high power is required.

  13. Electron inertia effects for an electron fluid model by the applied-B ion diode

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, A V; Levchenko, S V [Kurchatov Institute, Moscow (Russian Federation). Nuclear Fusion Institute

    1997-12-31

    Numerical calculations within the framework of the one-dimensional vortex-like electron fluid model in applied-B ion diodes, taking account the electron inertia effects, are presented. The existence of the additional relation between the magnetic field and the electric potential offers an opportunity to reduce the ion diode problem to the system of the algebraic equations for the constants introduced. The ion current density in an ion diode is determined only by the magnetic flux cut out by the virtual cathode. As an illustration, the ion diode impedance for the KALIF device was calculated. (author). 2 figs., 6 refs.

  14. Light ion beam experiments with pinch reflex diodes on KfK's pulse generator KALIF

    International Nuclear Information System (INIS)

    Bluhm, H.; Buth, L.; Bohnel, K.; Harke, W.; Hoppe, P.; Karow, H.U.; Rusch, D.; Schulken, H.; Singer, J.

    1985-01-01

    The authors report on intense LI beam experiments currently performed with pinch reflex ion diodes on 2 ohms/1.4 TW-pulse generator KALIF (Karlsruhe Light Ion Facility). The goals of this work are the generation of highly focussed LI beams of well-defined ion composition, and the undertaking of beam-target experiments. The experimental studies with axial 6 cm phi-pinch reflex proton diodes have been aiming at the focussing characteristics of the diode, and at the ion species composition of the beam. Experiments have been performed using different diode geometries (anode/cathode/beam window foil shapes), and different anode return current paths, respectively. A variety of diagnostique techniques have been used in these studies: Electron pinch phenomena in the diode are observed by static and by gated X-ray cameras. Beam diagnostiques is based on measuring in the vacuum feed the electric parameters of the diode (electron and ion currents, diode voltage) on probing the ion composition and ion energy in the beam (by use of a Thomson Parabola spectrometer), and on the investigation of the beam focus (by use of different techniques: shadow box analysis, α-pin hole imaging, nuclear activation methods). Measurements of beam stopping power of ion beam-heated thin targets are underway using a streaked ion energy-spectrometer. The results obtained so far in these experimental efforts are presented

  15. Reduction of angular spread at nonadiabatic electron motion in magnetically insulated diode

    Energy Technology Data Exchange (ETDEWEB)

    Arzhannikov, A V; Sinitskij, S L [Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    1997-12-31

    The behavior of the electron pitch-angle was investigated by analytical and numerical methods for the case of a magnetically insulated diode with a ribbon geometry. It is shown that at the boundary of the adiabaticity of the electron motion the angle can be multiply reduced by choice of a special inhomogeneity of the magnetic field. Analytic expressions for the final pitch-angle of the beam electrons are given. (author). 2 figs., 3 refs.

  16. Spectroscopic techniques for measuring ion diode space-charge distributions and ion source properties

    Energy Technology Data Exchange (ETDEWEB)

    Filuk, A B; Bailey, J E; Adams, R G [Sandia Labs., Albuquerque, NM (United States); and others

    1997-12-31

    The authors are using time- and space-resolved visible spectroscopy to measure applied-B ion diode dynamics on the 20 TW Particle Beam Fusion Accelerator II. Doppler broadening of fast Li atoms, as viewed parallel to the anode, is used in a charge-exchange model to obtain the Li{sup +} ion divergence within 100 {mu}m of the anode surface. The characteristic Stark/Zeeman shifts in spectra of alkali neutrals or singly-ionized alkaline-earths are used to measure the strong electric (10{sup 9} V/m) an magnetic ({approx} 6 T) fields in the diode gap. Large Stark shifts within 0.5 mm of the anode indicate the LiF emits with a finite field threshold rather than with Child-Langmuir-type emission, and the small slope in the electric field indicates an unexpected build-up of electrons near the anode. In the diode gap, the authors aim to unfold fields to quantify the time-dependent ion and electron space-charge distributions that determine the ion beam properties. Observed electric field non-uniformities give local beam deflections that can be comparable to the total beam microdivergence. The authors are implementing active laser absorption and laser-induced fluorescence spectroscopy on low-density Na atoms injected into the diode gap prior to the power pulse. The small Doppler broadening in the Na spectra should allow simultaneous electric and magnetic field mapping with improved spatial resolution. (author). 4 figs., 13 refs.

  17. Metal-insulator-metal diodes with sub-nanometre surface roughness for energy-harvesting applications

    KAUST Repository

    Khan, A.A.; Jayaswal, Gaurav; Gahaffar, F.A.; Shamim, Atif

    2017-01-01

    For ambient radio-frequency (RF) energy harvesting, the available power levels are quite low, and it is highly desirable that the rectifying diodes do not consume any power at all. Contrary to semiconducting diodes, a tunnelling diode – also known as a metal-insulator-metal (MIM) diode – can provide zero-bias rectification, provided the two metals have different work functions. This could result in a complete passive rectenna system. Despite great potential, MIM diodes have not been investigated much in the GHz-frequency regime due to challenging nano-fabrication requirements. In this work, we investigate zero-bias MIM diodes for RF energy-harvesting applications. We studied the surface roughness issue for the bottom metal of the MIM diode for various deposition techniques such as sputtering, atomic layer deposition (ALD) and electron-beam (e-beam) evaporation for crystalline metals as well as for an amorphous alloy, namely ZrCuAlNi. A surface roughness of sub-1nm has been achieved for both the crystalline metals as well as the amorphous alloy, which is vital for the reliable operation of the MIM diode. An MIM diode comprising of a Ti-ZnO-Pt combination yields a zero-bias responsivity of 0.25V−1 and a dynamic resistance of 1200Ω. Complete RF characterisation has been performed by integrating the MIM diode with a coplanar waveguide transmission line. The input impedance varies from 100Ω to 50Ω in the frequency range of between 2GHz and 10GHz, which can be easily matched to typical antenna impedances in this frequency range. Finally, a rectified DC voltage of 4.7mV is obtained for an incoming RF power of 0.4W at zero bias. These preliminary results of zero-bias rectification indicate that complete, passive rectennas (a rectifier and antenna combination) are feasible with further optimisation of MIM devices.

  18. Metal-insulator-metal diodes with sub-nanometre surface roughness for energy-harvesting applications

    KAUST Repository

    Khan, A.A.

    2017-07-27

    For ambient radio-frequency (RF) energy harvesting, the available power levels are quite low, and it is highly desirable that the rectifying diodes do not consume any power at all. Contrary to semiconducting diodes, a tunnelling diode – also known as a metal-insulator-metal (MIM) diode – can provide zero-bias rectification, provided the two metals have different work functions. This could result in a complete passive rectenna system. Despite great potential, MIM diodes have not been investigated much in the GHz-frequency regime due to challenging nano-fabrication requirements. In this work, we investigate zero-bias MIM diodes for RF energy-harvesting applications. We studied the surface roughness issue for the bottom metal of the MIM diode for various deposition techniques such as sputtering, atomic layer deposition (ALD) and electron-beam (e-beam) evaporation for crystalline metals as well as for an amorphous alloy, namely ZrCuAlNi. A surface roughness of sub-1nm has been achieved for both the crystalline metals as well as the amorphous alloy, which is vital for the reliable operation of the MIM diode. An MIM diode comprising of a Ti-ZnO-Pt combination yields a zero-bias responsivity of 0.25V−1 and a dynamic resistance of 1200Ω. Complete RF characterisation has been performed by integrating the MIM diode with a coplanar waveguide transmission line. The input impedance varies from 100Ω to 50Ω in the frequency range of between 2GHz and 10GHz, which can be easily matched to typical antenna impedances in this frequency range. Finally, a rectified DC voltage of 4.7mV is obtained for an incoming RF power of 0.4W at zero bias. These preliminary results of zero-bias rectification indicate that complete, passive rectennas (a rectifier and antenna combination) are feasible with further optimisation of MIM devices.

  19. Experimental study of a diod with magnetic insulation at the pulse duration more or equal to 10-5 s

    International Nuclear Information System (INIS)

    Rojfe, I.M.; Burtsev, V.A.; Vasilevskij, M.A.; Ehngel'ko, V.I.

    1980-01-01

    Results of the experimental investigation of a heavy-current diod with magnetic insulation are presented. Diod characteristics dependence on magnetic field distribution and magnitude in the accelerating interval has been studied. It is noted that the magnetic insulation of the accelerating tube has permitted to obtain the pulse duration of > or approximately 10 sub(s)sup(-5) at the voltage of > or approximately 400 kV in the tube and electron beam current of 3-4 kA. Maximum insulating magnetic field is 2.5 kOe. It is shown that the pulse duration of electron current in diods with magnetic insulation is limitted by break-down development along the accelerating tube surface. When magnetic field on the cathode is approximately 5kOe thre is a time interval of 4-5μs when the impedance is constant. The difference of diod impedance behaviour in time in these two cases are defined by a distinct expansion of cathode plasma at low magnetic fields. Cathode lateral surface plays a significant role in the process of plasma expantion. When the interelectrode gap is 3-5 cm and the voltage amplitude - < or approximately 400 kV it is possible to obtain tubular electron beams with the pulse duration of 10-15 μs, beam energy of 5-6 kJat a relatively small (approximately equal to 5kOe) magnitudes of magnetic field on the cathode. A possibility is shown to use multipoint graphite cathodes with a large area for obtaining tubular beams. The tubular electron beam of approximately equal to 400 A with the pulse duration of 25 μs have been obtained in the first experiments with such cathode at the voltage amplitude of < or approximately 150 kV. The conclusion is made that the tube magnetic isolation permits to increase considerably the pulse duration

  20. Study of thin insulating films using secondary ion emission

    International Nuclear Information System (INIS)

    Hilleret, Noel

    1973-01-01

    Secondary ion emission from insulating films was investigated using a CASTAING-SLODZIAN ion analyzer. Various different aspects of the problem were studied: charge flow across a silica film; the mobilization of sodium during ion bombardment; consequences of the introduction of oxygen on the emission of secondary ions from some solids; determination of the various characteristics of secondary ion emission from silica, silicon nitride and silicon. An example of measurements made using this type of operation is presented: profiles (concentration as a function of depth) of boron introduced by diffusion or implantation in thin films of silica on silicon or silicon nitride. Such measurements have applications in microelectronics. The same method of operation was extended to other types of insulating film, and in particular, to the metallurgical study of passivation films formed on the surface of stainless steels. (author) [fr

  1. Investigation of charge balance in ion accelerator TEMP–4M

    International Nuclear Information System (INIS)

    Khailov, I P; Pak, V G

    2014-01-01

    The paper presents the results of a study on the balance of charge in accelerator TEMP–4M operating in double-pulse mode with resistance load and ion diode. Crucially, it was found, that during the switching there is no losses of accumulated charge. It means, that all accumulated charge transferred to the load. However when the charge is transferred from the Marx generator to Blumlein line the half of accumulated charge is lost. Calibration of diagnostic equipment showed a good agreement between the calculated and experimental values of voltage and current. It means, that our diagnostic system is correct for registration parameters of the ion accelerator. A distinctive feature of the ion accelerators with self-magnetically insulated diode is that there is no need to use additional energy source for the creation of an external magnetic field. That's why the efficiency of ion diodes with an external magnetic field is not more than 10–15%. The efficiency of energy conversion in self-magnetically insulated diodes will be determined by not only the efficiency of the diode, but the energy losses in the units of the accelerator. The aim of the researches is the analysis of the balance of charge in units of the ion beams pulsed generator and definition of the most significant channels of energy loss

  2. Surface potential measurement of insulators in negative-ion implantation by secondary electron energy-peak shift

    International Nuclear Information System (INIS)

    Nagumo, Shoji; Toyota, Yoshitaka; Tsuji, Hiroshi; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kohji.

    1993-01-01

    Negative-ion implantation is expected to realize charge-up free implantation. In this article, about a way to specify surface potential of negative-ion implanted insulator by secondary-electron-energy distribution, its principle and preliminary experimental results are described. By a measuring system with retarding field type energy analyzer, energy distribution of secondary electron from insulator of Fused Quartz in negative-carbon-ion implantation was measured. As a result the peak-shift of its energy distribution resulted according with the surface potential of insulator. It was found that surface potential of insulator is negatively charged by only several volts. Thus, negative-ion implanted insulator reduced its surface charge-up potential (without any electron supply). Therefore negative-ion implantation is considered to be much more effective method than conventional positive-ion implantation. (author)

  3. Performance of the K+ ion diode in the 2 MV injector for heavy ion fusion

    Science.gov (United States)

    Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.

    2002-02-01

    Heavy ion beam inertial fusion driver concepts depend on the availability and performance of high-brightness high-current ion sources. Surface ionization sources have relatively low current density but high brightness because of the low temperature of the emitted ions. We have measured the beam profiles at the exit of the injector diode, and compared the measured profiles with EGUN and WARP-3D predictions. Spherical aberrations are significant in this large aspect ratio diode. We discuss the measured and calculated beam size and beam profiles, the effect of aberrations, quality of vacuum, and secondary electron distributions on the beam profile.

  4. Ion production and bipolar fluxes in a high-current plasma-filled diode

    International Nuclear Information System (INIS)

    Ivanenkov, G.V.

    1982-01-01

    The model and the evolution of behaviour of binary layers (BL) in expanding plasma of high current plasma-filled diode are described. The model estimates ion current and the laws of plasma expansion at the stage of BL intensive growth. The density range (10 12 -10 15 cm -3 ) is determined in which diode impedance growth takes place in connection with BL appearance. The density of ion current at the outlet of diode is 10 A/cm 2

  5. Electron sheath collapse in an applied-B ion diode

    International Nuclear Information System (INIS)

    Grechikha, A.V.

    1996-01-01

    The effect of the electron sheath collapse in an applied-B ion diode due to the presence of the resistive anode plasma layer was found. This effect is more damaging at higher diode voltages and may be responsible for the parasitic load effect observed in the experiments. (author). 4 figs., 2 refs

  6. Electron sheath collapse in an applied-B ion diode

    Energy Technology Data Exchange (ETDEWEB)

    Grechikha, A V [Forschungszentrum Karlsruhe (Germany). Institut fuer Neutronenphysik und Reaktortechnik

    1997-12-31

    The effect of the electron sheath collapse in an applied-B ion diode due to the presence of the resistive anode plasma layer was found. This effect is more damaging at higher diode voltages and may be responsible for the parasitic load effect observed in the experiments. (author). 4 figs., 2 refs.

  7. Analysis of interface states and series resistance for Al/PVA:n-CdS nanocomposite metal-semiconductor and metal-insulator-semiconductor diode structures

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mamta; Tripathi, S.K. [Panjab University, Centre of Advanced Study in Physics, Department of Physics, Chandigarh (India)

    2013-11-15

    This paper presents the fabrication and characterization of Al/PVA:n-CdS (MS) and Al/Al{sub 2}O{sub 3}/PVA:n-CdS (MIS) diode. The effects of interfacial insulator layer, interface states (N{sub ss}) and series resistance (R{sub s}) on the electrical characteristics of Al/PVA:n-CdS structures have been investigated using forward and reverse bias I-V, C-V, and G/w-V characteristics at room temperature. Al/PVA:n-CdS diode is fabricated with and without insulator Al{sub 2}O{sub 3} layer to explain the effect of insulator layer on main electrical parameters. The values of the ideality factor (n), series resistance (R{sub s}) and barrier height ({phi} {sub b}) are calculated from ln(I) vs. V plots, by the Cheung and Norde methods. The energy density distribution profile of the interface states is obtained from the forward bias I-V data by taking into account the bias dependence ideality factor (n(V)) and effective barrier height ({phi} {sub e}) for MS and MIS diode. The N{sub ss} values increase from mid-gap energy of CdS to the bottom of the conductance band edge for both MS and MIS diode. (orig.)

  8. Surface potential measurement of the insulator with secondary electron caused by negative ion implantation

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Toyota, Yoshitaka; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kohji.

    1994-01-01

    Ion implantation has the merit of the good controllability of implantation profile and low temperature process, and has been utilized for the impurity introduction in LSI production. However, positive ion implantation is carried out for insulator or insulated conductor substrates, their charged potential rises, which is a serious problem. As the requirement for them advanced, charge compensation method is not the effective means for resolving it. The negative ion implantation in which charging is little was proposed. When the experiment on the negative ion implantation into insulated conductors was carried out, it was verified that negative ion implantation is effective as the implantation process without charging. The method of determining the charged potential of insulators at the time of negative ion implantation by paying attention to the energy distribution of the secondary electrons emitted from substrates at the time was devised. The energy analyzer for measuring the energy distribution of secondary electrons was made, and the measurement of the charged potential of insulators was carried out. The principle of the measurement, the measuring system and the experimental results are reported. (K.I.)

  9. Effects of Ion Beam Irradiation on Nanoscale InOx Cooper-Pair Insulators

    Directory of Open Access Journals (Sweden)

    Srdjan Milosavljević

    2013-01-01

    Full Text Available This paper examines the effects of irradiating indium oxide films of nanoscale thickness by ion beams, when these films are in the Cooper-pair insulator state. Radiation effects are predicted on the basis of Monte Carlo simulations of ion transport. Results of numerical experiments are interpreted within the theoretical model of a Cooper-pair insulator. The study suggests that radiation-induced changes in InOx films exposed to ion beams could significantly alter their current-voltage characteristics and that a transition to a metallic state is possible, due to radiation-induced perturbation of the fine-tuned granular structure. Furthermore, incident and displaced ions can break up enough Cooper pairs in InOx films to cause dissolution of this specific insulating state.

  10. Negative-ion current density dependence of the surface potential of insulated electrode during negative-ion implantation

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Okayama, Yoshio; Toyota, Yoshitaka; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kouji.

    1994-01-01

    Positive ion implantation has been utilized as the method of impurity injection in ultra-LSI production, but the problem of substrate charging cannot be resolved by conventional charge compensation method. It was forecast that by negative ion implantation, this charging problem can be resolved. Recently the experiment on the negative ion implantation into insulated electrodes was carried out, and the effect of negative ion implantation to this problem was proved. However, the dependence of charged potential on the increase of negative ion current at the time of negative ion implantation is a serious problem in large current negative ion implantation hereafter. The charged potential of insulated conductor substrates was measured by the negative ion implantation using the current up to several mA/cm 2 . The experimental method is explained. Medium current density and high current density negative ion implantation and charged potential are reported. Accordingly in negative ion implantation, if current density is optimized, the negative ion implantation without charging can be realized. (K.I.)

  11. Study on the ion diode with a laser-plasma anode

    International Nuclear Information System (INIS)

    Bykovskij, Yu.A.; Kozyrev, Yu.P.; Kozlovskij, K.I.; Tsybin, A.S.; Shikanov, A.E.

    1981-01-01

    Results of investigation into a pulsed ion diode with magnetic electron isolation (DMI) using a laser ion source are stated. The investigations were carried on by measurement of current characteristics and neutron diode yield for different parameters of laser radiation, isolating magnetic field and DMI geometry. approximately equal to 150 A current of accelerated ions has been generated at a density of approximately equal to 10 A/cm 2 and approximately 1 μs pulse duration when using isolating magnetic field having inductance of up to 10 kGs and laser radiation energy of up to 1 J (power density > or approximately 10 9 W/cm 2 ). Current diode efficiency constituted approximately 50 %. Neutron yield amounted to approximately 10 7 neutr/pulse (D(d, n)He 3 reaction) at an optimal value of inductance of isolating magnetic field. Frequency regime of DMI operation with pulse repetition of up to 10 Hz has been realized [ru

  12. Ampfion-hybrid diode on the Cornell LION accelerator

    International Nuclear Information System (INIS)

    Rondeau, G.D.; Greenly, J.B.; Hammer, D.A.

    1984-01-01

    An ampfion hybrid diode, previously run on the HYDRAMITE accelerator at Sandia National Laboratories has recently been installed on the Cornell LION accelerator (1 TW, 1.8 MV, 40 ns pulse). The ampfion hybrid diode is magnetically insulated by means of a field coil in series with the cathode structure of the diode. An epoxy dielectric flashboard on the anode provides an anode plasma to supply the extracted ions. The diode has a geometric focal length of 20 cm. The experiment is equipped with plasma erosion opening switches on the anode stock to eliminate prepulse and improve the generator voltage risetime. Diagnostics include magnetic pickup loops to measure currents in the diode structure and non-neutral beam currents, biased charge collectors, and damage targets. An alpha particle pin hole camera utilizing the p,α reaction of fast (>500 kV) protons on boron or lithium is being developed to measure focus quality and proton current. Plastic track detector will be used to image the alpha particles coming from a boron or lithium target. A second pin hole camera uses a plastic scintillator and light detector to give time resolved focused ion intensity

  13. Pulsed diode source of polarized ions

    International Nuclear Information System (INIS)

    Katzenstein, J.; Rostoker, N.

    1983-01-01

    The advantages of polarized nuclei for fusion reactors have recently been described. We propose a pulsed source of polarized nuclei that consists of an ion diode with a polarized anode. With magnetic resonance techniques the nuclear spins of the protons of solid NH 3 can be made about 90 to 95% polarized. This material would be used for the anode. The diode would be pulsed with a voltage of 1-200K-volts for 1-2 μ sec. Flashover of the anode produces a surface plasma from which the polarized protons would be extracted to form a beam. Depolarization could be detected by comparing reaction cross sections and/or distribution of reaction products with similar results for unpolarized beams

  14. Fabrication and Measurement of Electroluminescence and Electrical Properties of Organic Light-Emitting Diodes Containing Mott Insulator Nanocrystals.

    Science.gov (United States)

    Nozoe, Soichiro; Kinoshita, Nobuaki; Matsuda, Masaki

    2016-04-01

    By using the short-time electrocrystallization technique, phthalocyanine (Pc)-based Mott insulator Co(Pc)(CN)2 . 2CHCl3 nanocrystals were fabricated and applied to organic light-emiting diodes (OLEDs). The fabricated device having the configuration ITO/Co(Pc)(CN)2 . 2CHCl3/Alq3/Al, in which ITO is indium-tin oxide and Alq3 is tris(8-hydroxyquinolinato)aluminum, showed clear emission from Alq3, suggesting the Mott insulator Co(Pc)(CN)2 . 2CHCl3 can work as useful hole-injection and transport material in OLEDs.

  15. Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.

    2017-01-01

    In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.

  16. Plasma immersion ion implantation into insulating materials

    International Nuclear Information System (INIS)

    Tian Xiubo; Yang Shiqin

    2006-01-01

    Plasma immersion ion implantation (PIII) is an effective surface modification tool. During PIII processes, the objects to be treated are immersed in plasmas and then biased to negative potential. Consequently the plasma sheath forms and ion implantation may be performed. The pre-requirement of plasma implantation is that the object is conductive. So it seems difficult to treat the insulating materials. The paper focuses on the possibilities of plasma implantation into insulting materials and presents some examples. (authors)

  17. Planar transistors and impatt diodes with ion implantation

    International Nuclear Information System (INIS)

    Dorendorf, H.; Glawischnig, H.; Grasser, L.; Hammerschmitt, J.

    1975-03-01

    Low frequency planar npn and pnp transistors have been developed in which the base and emitter have been fabricated using ion implantation of boron and phosphorus by a drive-in diffusion. Electrical parameters of the transistors are comparable with conventionally produced transistors; the noise figure was improved and production tolerances were significantly reduced. Silicon-impatt diodes for the microwave range were also fabricated with implanted pn junctions and tested for their high frequency characteristics. These diodes, made in an improved upside down technology, delivered output power up to 40 mW (burn out power) at 30 GHz. Reverse leakage current and current carrying capability of these diodes were comparable to diffused structures. (orig.) 891 ORU 892 MB [de

  18. Film sputtering with ion mixing in a pulse explosion-emission ion diode

    International Nuclear Information System (INIS)

    Korenev, S.A.; Balalykin, N.I.; Sikolenko, V.V.; Orelovich, O.L.; Shirokov, D.M.

    1995-01-01

    A possibility is confirmed of obtaining mixed composition films from mutually nonsoluble metals in conditions when a film is irradiated with an ion beam in the process of deposition and afterwards with an electron beam. In the experiments was used an explosion-emission ion diode. The experiments showed a possibility of obtaining a new structural material-aluminium with titanium film. 12 refs.; 7 figs.; 1 tab

  19. Characteristics of magnetically insulated diode in a multi-shot operation

    Energy Technology Data Exchange (ETDEWEB)

    Chishiro, E; Masugata, K; Yatsui, K [Nagaoka Univ. of Technology (Japan). Laboratory of Beam Technology

    1997-12-31

    The beam characteristics in a multi-shot operation were evaluated. The MID utilized in the experiment is a racetrack type diode, where flat anode and cathode electrodes are utilized. On the anode, a polyethylene sheet of 1 mm thickness is attached as an ion source. The MID is successively operated without breaking the vacuum. An ion current density (J{sub i}) of 350 A/cm{sup 2} is observed at the first shot when the diode gap is 5 mm. The value decreases with increasing number of shots and at the 7th shot, J{sub i} is less than 150 A/cm{sup 2}. After 7 shots, the anode surface is inspected and found to be covered with stuck matter of metallic materials such as Zn, Al, Fe, Cu. These materials seem to be produced by the ablation of the MID electrode. By eliminating the stuck matter from the surface, J{sub i} is recovered to the initial value. The decrease in J{sub i} is due to the fact that the anode is covered with the stuck matter, which prevents the growth of anode plasma. (author). 6 figs., 8 refs.

  20. SABRE (Sandia Accelerator and Beam Research Experiment): A test bed for the light ion fusion program

    International Nuclear Information System (INIS)

    Cuneo, M.E.; Hanson, D.L.; McKay, P.F.; Maenchen, J.E.; Tisone, G.C.; Adams, R.G.; Nash, T.; Bernard, M.; Boney, C.; Chavez, J.R.; Fowler, W.F.; Ruscetti, J.; Stearns, W.F.; Noack, D.; Wenger, D.F.

    1992-01-01

    Extraction applied-B ion diode experiments are underway on the recently completed SABRE positive polarity linear induction accelerator (6 MV, 220 kA). The authors are performing these experiments in direct support of the light ion fusion program on PBFAII at Sandia. SABRE provides a test bed with a higher shot rate and improved diagnostic access for ion source development and ion beam divergence control experiments. These experiments will also address the coupling of an ion diode to the turbulent, wide spectrum feed electrons which occur on these inductive adders in positive polarity. This work continues previous work on the HELIA accelerator. The diode is a uniformly magnetically insulated, extraction ion diode, with a 5-cm mean anode surface radius. The uniform insulation field profiles are generated by four individual 60 kJ capacitor banks. Field-exclusion profiles are also anticipated. They have developed a wide array of electrical, ion beam, and plasma diagnostics to accomplish their objectives. MITL (magnetically insulated transmission line) and diode voltages are being measured with a magnetic spectrometer, a range-filtered-scintillator (RFS) fiber optic/PMT system, and a range-filtered CR-39 nuclear track film based system. Beam energy can be determined by these diagnostics as well as a filtered Faraday cup array. MITL and ion currents are being measured with an array of Rogowski coils, common-mode rejection and single turn Bs, and resistive shunts. The ion source experiments will investigate thin-film lithium ion sources, particularly the active LEVIS (Laser EVaporation Ion Source) and the passive LiF source. LEVIS uses two pulsed lasers to evaporate and then ionize lithium from a lithium bearing thin-film on the anode. A ruby laser (20 ns, 12 J) for evaporation, and a dye laser for resonant lithium ionization have been developed. The performance of LEVIS with an array of active and passive surface cleaning techniques will be studied

  1. Systematic study of metal-insulator-metal diodes with a native oxide

    Science.gov (United States)

    Donchev, E.; Gammon, P. M.; Pang, J. S.; Petrov, P. K.; Alford, N. McN.

    2014-10-01

    In this paper, a systematic analysis of native oxides within a Metal-Insulator-Metal (MIM) diode is carried out, with the goal of determining their practicality for incorporation into a nanoscale Rectenna (Rectifying Antenna). The requirement of having a sub-10nm oxide scale is met by using the native oxide, which forms on most metals exposed to an oxygen containing environment. This, therefore, provides a simplified MIM fabrication process as the complex, controlled oxide deposition step is omitted. We shall present the results of an investigation into the current-voltage characteristics of various MIM combinations that incorporate a native oxide, in order to establish whether the native oxide is of sufficient quality for good diode operation. The thin native oxide layers are formed by room temperature oxidation of the first metal layer, deposited by magnetron sputtering. This is done in-situ, within the deposition chamber before depositing the second metal electrode. Using these structures, we study the established trend where the bigger the difference in metal workfunctions, the better the rectification properties of MIM structures, and hence the selection of the second metal is key to controlling the device's rectifying properties. We show how leakage current paths through the non-optimised native oxide control the net current-voltage response of the MIM devices. Furthermore, we will present the so-called diode figures of merit (asymmetry, non-linearity and responsivity) for each of the best performing structures.

  2. Systematic study of metal-insulator-metal diodes with a native oxide

    KAUST Repository

    Donchev, E.

    2014-10-07

    © 2014 SPIE. In this paper, a systematic analysis of native oxides within a Metal-Insulator-Metal (MIM) diode is carried out, with the goal of determining their practicality for incorporation into a nanoscale Rectenna (Rectifying Antenna). The requirement of having a sub-10nm oxide scale is met by using the native oxide, which forms on most metals exposed to an oxygen containing environment. This, therefore, provides a simplified MIM fabrication process as the complex, controlled oxide deposition step is omitted. We shall present the results of an investigation into the current-voltage characteristics of various MIM combinations that incorporate a native oxide, in order to establish whether the native oxide is of sufficient quality for good diode operation. The thin native oxide layers are formed by room temperature oxidation of the first metal layer, deposited by magnetron sputtering. This is done in-situ, within the deposition chamber before depositing the second metal electrode. Using these structures, we study the established trend where the bigger the difference in metal workfunctions, the better the rectification properties of MIM structures, and hence the selection of the second metal is key to controlling the device\\'s rectifying properties. We show how leakage current paths through the non-optimised native oxide control the net current-voltage response of the MIM devices. Furthermore, we will present the so-called diode figures of merit (asymmetry, non-linearity and responsivity) for each of the best performing structures.

  3. Impedance characteristics of the Bz diode on the LION accelerator

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Horioka, K.; Kusse, B.; Rondeau, G.; Struckman, C.

    1987-01-01

    The LION accelerator at Cornell University is being used to study the characteristics of the applied B/sub z/, or 'barrel' diode. This 0.8 TW, 4 ohm, ion accelerator has the ability to take several shots per day, and hence alloys systematic scans to be performed. An important result of a recent series of experiments is that the diode impedance remains relatively constant, decaying only slowly, during the 50 nsec pulse. When the diode is operated with a 4.5 mm gap and a 21 kG insulating magnetic field, the typical diode parameters, are a voltage of 1 MV and a total current of 250 kA, leading to a diode impedance of 4 ohms and power of 0.25 TW. The diode impedance decays with a 100 nsec time constant. The ion beams have peak currents of roughly 125 kA and typical impedances of Bohms, which decays with a time constant of 25 nsec. The Child-Langmuir gap was approximately 2 mm and closed with a velocity of roughly 2X10/sup 6/ cm/sec. Current experimental work is aimed at characterizing the impedance of the B/sub z/ diode as a function of the applied magnetic field, the A-K gap, the anode curvature, and the anode groove parameters. In addition, the effect of changing the voltage rise with a plasma opening switch and of adding an electron limiter is examined. The ion beam quality is examined at the focus of the barrel diode with a swept Thomson parabola and various Rutherford scattering diagnostics

  4. Ion guiding in macro-size insulating capillaries: straight, tapered, and curved shapes

    Science.gov (United States)

    Kojima, Takao M.

    2018-02-01

    When keV energy ions are injected into a tilted insulating capillary, a certain fraction of the injected ions are transported through the tilt angle of the capillary. This ion guiding phenomenon is considered to be caused by a self-organizing charge distribution, where the inner wall of the capillary becomes charged by initial incoming ions. The charge distribution, which is formed, can guide following ions toward the exit of the capillary. Since the initial discovery of this effect, studies of ion guiding by insulating capillaries have been extended to various materials, and different sizes and shapes of capillaries. In recent years, some investigations of the guiding effect of macro-size curved capillaries have also been reported. In this review, relevant studies in a history of ion guiding in curved capillaries are discussed and future directions in this field are considered.

  5. Intense pulsed heavy ion beam technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi; Ito, Hiroaki

    2010-01-01

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm 2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm 2 was obtained. The beam consists of aluminum ions (Al (1-3)+ ) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89%. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were successively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm 2 was observed in the cathode, which suggests the bipolar pulse acceleration. (author)

  6. Interaction of slow highly-charged ions with metals and insulators

    International Nuclear Information System (INIS)

    Yamazaki, Y.

    2007-01-01

    Interaction of slow highly charged ions with insulator as well as metallic surfaces is discussed. In addition to the usual flat surface targets, studies with thin foils having a multitude of straight holes of ∼100 nm in diameter (micro-capillary foil) are introduced, which provide various unique information on the above surface interaction. In the case of an insulator micro-capillary foil, a so-called guiding effect was observed, where slow highly charged ions can transmit through the capillary tunnel keeping their initial charge state even when the capillary axis is tilted against the incident beam. A similar guiding effect has recently been found for slow highly-charged ions transmitted through a single tapered glass capillary. In both cases, the guiding effects are expected to be governed by a self-organized charging and discharging of the inner-wall of the insulator capillary. One of the prominent features of this guiding effect with the tapered capillary is the formation of a nano-size beam, which can be applied in various fields of science including surface nano-modification/analysis, nano-surgery of living cells, etc

  7. Ionization by ion impact at grazing incidence on insulator surface

    CERN Document Server

    Martiarena, M L

    2003-01-01

    We have calculated the energy distribution of electrons produced by ionization of the ionic crystal electrons in grazing fast ion-insulator surface collision. The ionized electrons originate in the 2p F sup - orbital. We observe that the binary peak appears as a double change in the slope of the spectra, in the high energy region. The form of the peak is determined by the initial electron distribution and its position will be affected by the binding energy of the 2p F sup - electron in the crystal. This BEP in insulator surfaces will appear slightly shifted to the low energy side with respect the ion-atom one.

  8. Performance of a shallow-focus applied-magnetic-field diode for ion-beam-transport experiments

    Energy Technology Data Exchange (ETDEWEB)

    Young, F.C.; Neri, J.M.; Ottinger, P.F. [Naval Research Lab., Washington, DC (United States); Rose, D.V. [JAYCOR, Vienna (Vatican City State, Holy See); Jones, T.G.; Oliver, B.V.

    1997-12-31

    An applied-magnetic-field ion diode to study the transport of intense ion beams for light-ion inertial confinement fusion is being operated on the Gamble II generator at NRL. A Large-area (145-cm{sup 2}), shallow-focusing diode is used to provide the ion beam required for self-pinched transport (SPT) experiments. Experiments have demonstrated focusing at 70 cm for 1.2-MV, 40-kA protons. Beyond the focus, the beam hollows out consistent with 20--30 mrad microdivergence. The effect of the counter-pulse B-field on altering the ion-beam trajectories and improving the focus has been diagnosed with a multiple-pinhole-camera using radiachromic film. This diagnostic is also used to determine the radial and azimuthal uniformity of ion emission at the anode for different B-field conditions. Increasing the diode voltage to 1.5 MV and optimizing the ion current are planned before initiating SPT experiments. Experiments to measure the spatial beam profile at focus, i.e., the SPT channel entrance, are in progress. Results are presented.

  9. Impedance of an annular-cathode indented-anode electron diode terminating a coaxial magnetically insulated transmission line

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Poukey, J.W.; Wright, T.P.; Bailey, J.; Heath, C.E.; Mock, R.; Spence, P.W.; Fockler, J.; Kishi, H.

    1988-01-01

    The impedance of a diode having an annular cathode and indented anode that terminates a coaxial MITL (magnetically insulated transmission line) is measured and compared with a semiempirical model developed from calculations made using the magIc code. The measurements were made on the 16-Ω electron accelerator HELIA (high-energy linear induction accelerator) operating at 3 MV. The model agrees with the measurements within the 10% measuring error and shows that the diode operates in either a load- or line-dominated regime depending on AK (anode-cathode) gap spacing. In the load-dominated regime, which corresponds to small AK gaps, the diode impedance is controlled by an effective anode-cathode gap, and the flow is approximately axial. In the line-dominated regime, which corresponds to large AK gaps, the impedance is independent of the AK gap and corresponds to the impedance associated with the minimum current solution of the MITL, with the flow becoming more radial as the AK gap is increased

  10. Irradiation effects of swift heavy ions on gallium arsenide, silicon and silicon diodes

    International Nuclear Information System (INIS)

    Bhoraskar, V.N.

    2001-01-01

    The irradiation effects of high energy lithium, boron, oxygen and silicon ions on crystalline silicon, gallium arsenide, porous silicon and silicon diodes were investigated. The ion energy and fluence were varied over the ranges 30 to 100 MeV and 10 11 to 10 14 ions/cm 2 respectively. Semiconductor samples were characterized with the x-ray fluorescence, photoluminescence, thermally stimulated exo-electron emission and optical reflectivity techniques. The life-time of minority carriers in crystalline silicon was measured with a pulsed electron beam and the lithium depth distribution in GaAs was measured with the neutron depth profiling technique. The diodes were characterized through electrical measurements. The results of optical reflectivity, life-time of minority carriers and photoluminescence show that swift heavy ions induce defects in the surface region of crystalline silicon. In the ion-irradiated GaAs, migration of silicon, oxygen and lithium atoms from the buried region towards the surface was observed, with orders of magnitude enhancement in the diffusion coefficients. Enhancement in the photoluminescence intensity was observed in the GaAs and porous silicon samples that, were irradiated with silicon ions. The trade-off between the turn-off time and the voltage, drop in diodes irradiated with different swift heavy ions was also studied. (author)

  11. Influence of generator structure on pinch reflex diode operation for light ion production

    International Nuclear Information System (INIS)

    Bernard, A.; Bourgeois, C.; Camarcat, N.; Tournier, B.

    1983-01-01

    Light ion beams with characteristics 1 MV, 185 kA, 100 ns FWHM have been accelerated in a pinch-reflex diode driven by the SIDONIX II generator pulsed in positive polarity. The diode impedance of 2 ohms remains higher than the water line impedance of 1.3 ohms, and consequently, the ion efficiency is limited to 25%. This effect is attributed to the slow current rise time and fast anode plasma expansion since the machine does not have an intermediate store to reduce the 100 ns FWHM power pulse. Published data on Hydra, Reiden IV, Gamble II A support this hypothesis. Preliminary results of focusing experiments, when the beam is injected into a 1 Torr air cell downstream the cathode, indicate that 60 kA end up on a 3 cm diameter target. These results should be improved by adding an intermediate store to the generator, giving a 1.3 TW, 45 ns FWHM power pulse for 180 kJ of stored energy in the Marx. We expect that the increase in diode electrical power will lead to an increase in total ion current. For GAMBLE II A, 500 kA of light ion are extracted when the diode power reaches 1.4 TW, for equivalent Marx energies

  12. Effects of the TiO2 high-k insulator material on the electrical characteristics of GaAs based Schottky barrier diodes

    Science.gov (United States)

    Zellag, S.; Dehimi, L.; Asar, T.; Saadoune, A.; Fritah, A.; Özçelik, S.

    2018-01-01

    The effects of the TiO2 high-k insulator material on Au/n-GaAs/Ti/Au Schottky barrier diodes have been studied by means of the numerical simulation and experimental results at room temperature. The Atlas-Silvaco-TCAD numerical simulator has been used to explain the behavior of different physical phenomena of Schottky diode. The experimental values of ideality factor, barrier height, and series resistance have been determined by using the various techniques such as Cheung's method, forward bias ln I- V and reverse capacitance-voltage behaviors. The experimental ideality factor and barrier height values have been found to be 4.14 and 0.585 eV for Au/n-GaAs/Ti/Au Schottky barrier diode and 4.00 and 0.548 eV for that structure with 16 nm thick TiO2 film and 3.92, 0.556 eV with 100 nm thick TiO2 film. The diodes show a non-ideal current-voltage behavior that of the ideality factor so far from unity. The extraction of N ss interface distribution profile as a function of E c -E ss is made using forward-bias I- V measurement by considering the bias dependence of ideality factor, the effective barrier height, and series resistance for Schottky barrier diodes. The N ss calculated values with consideration of the series resistance are lower than the calculated ones without series resistance. The current-voltage results of diodes reveal an abnormal increase in leakage current with an increase in thickness of high-k interfacial insulator layer. However, the simulation agrees in general with the experimental results.

  13. Lifetime control of the minority carrier in PiN diodes by He+ ion implantation

    International Nuclear Information System (INIS)

    Tanaka, Y.; Kojima, K.; Takao, K.; Okamoto, M.; Kawasaki, M.; Takatsuka, A.; Yatsuo, T.; Arai, K.

    2005-01-01

    This paper reports the first demonstration of the lifetime control of the minority carrier in 4H-SiC PiN diodes by He + ion implantation. In this work, we fabricated 4H-SiC PiN diodes with the epitaxial junction and the blocking voltage of 2.6 kV, precisely corresponding to the theoretical blocking voltage calculated from the doping concentration (4.0 x 10 15 /cm 2 ) and the thickness of the drift layer (16.5 μm). He + ion implantation was performed with the energy and the dose of 400 kV and 1.0 x 10 13 -2.0 x 10 14 /cm 2 , respectively. We observed no different characteristics in the blocking voltage (2.6kV) and leakage current ( + ion implantation. However, we confirmed the improvement of the current recovery characteristics in the diodes with He + ion implantation. (orig.)

  14. Temperature dependent electrical characterisation of Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Arjun, E-mail: arjun@ece.iisc.ernet.in; Vinoy, K. J. [Electrical Communication Engineering, Indian Institute of Science, Bangalore, India 560012 (India); Roul, Basanta; Mukundan, Shruti; Mohan, Lokesh; Chandan, Greeshma; Krupanidhi, S. B. [Materials Research Centre, Indian Institute of Science, Bangalore, India 560012 (India)

    2015-09-15

    This paper reports an improvement in Pt/n-GaN metal-semiconductor (MS) Schottky diode characteristics by the introduction of a layer of HfO{sub 2} (5 nm) between the metal and semiconductor interface. The resulting Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diode showed an increase in rectification ratio from 35.9 to 98.9(@ 2V), increase in barrier height (0.52 eV to 0.63eV) and a reduction in ideality factor (2.1 to 1.3) as compared to the MS Schottky. Epitaxial n-type GaN films of thickness 300nm were grown using plasma assisted molecular beam epitaxy (PAMBE). The crystalline and optical qualities of the films were confirmed using high resolution X-ray diffraction and photoluminescence measurements. Metal-semiconductor (Pt/n-GaN) and metal-insulator-semiconductor (Pt/HfO{sub 2}/n-GaN) Schottky diodes were fabricated. To gain further understanding of the Pt/HfO{sub 2}/GaN interface, I-V characterisation was carried out on the MIS Schottky diode over a temperature range of 150 K to 370 K. The barrier height was found to increase (0.3 eV to 0.79 eV) and the ideality factor decreased (3.6 to 1.2) with increase in temperature from 150 K to 370 K. This temperature dependence was attributed to the inhomogeneous nature of the contact and the explanation was validated by fitting the experimental data into a Gaussian distribution of barrier heights.

  15. Measurements of the Backstreaming Proton IONS in the Self-Magnetic Pinch (SMP) Diode Utilizing Copper Activation Technique

    Science.gov (United States)

    Mazarakis, Michael; Cuneo, Michael; Fournier, Sean; Johnston, Mark; Kiefer, Mark; Leckbee, Joshua; Simpson, Sean; Renk, Timothy; Webb, Timothy; Bennett, Nichelle

    2016-10-01

    The results presented here were obtained with an SMP diode mounted at the front high voltage end of the 8-10-MV RITS Self-Magnetically Insulated Transmission Line (MITL) voltage adder. Our experiments had two objectives: first, to measure the contribution of the back-streaming proton currents emitted from the anode target, and second, to evaluate the energy of those ions and hence the actual Anode-Cathode (A-K) gap voltage. The accelerating voltage quoted in the literature is estimated utilizing para-potential flow theories. Thus, it is interesting to have another independent measurement of the A-K voltage. We have measured the back-streaming protons emitted from the anode and propagating through a hollow cathode tip for various diode configurations and different techniques of target cleaning treatment, namely, heating at very high temperatures with DC and pulsed current, with RF plasma cleaning, and with both plasma cleaning and heating. We have also evaluated the A-K gap voltage by energy filtering techniques. Sandia is operated by Sandia Corporation, a subsidiary of Lockheed Martin Company, for the US DOE NNSA under Contract No. DE-AC04-94AL85000.

  16. Intense, pulsed, ion-diode sources and their application to mirror machines

    International Nuclear Information System (INIS)

    Prono, D.S.; Shearer, J.W.; Briggs, R.J.

    1975-01-01

    Startup conditions for future mirror fusion experiments require a rapidly formed target plasma of approximately 0.5 coulomb of ions with energy of 50 to 100 keV. Theory suggests that very intense ion-flux emission satisfying these requirements can be extracted from a pulsed ion diode. Developing such sources would be an ideal CTR application of the high-power, single-shot capability of pulsed power technology. Recent experimental results are reviewed in which approximately 2 kA/cm 2 of D + at approximately 50 keV was extracted. In the experiment, an intense relativistic electron beam undergoes many transits through a solid but range-thin anode foil. With each transit the electrons lose energy, causing their trajectories to collapse toward the anode surface. In so doing, the increased space charge extracts an intense ion flux from the anode foil's plasma. Observations are reported on the importance of diode stability. The general agreement between theoretical scaling laws and experimental results are also presented

  17. Simulation of transmission of slow highly charged ions through insulating tapered macro-capillaries

    International Nuclear Information System (INIS)

    Schweigler, T.; Lemell, C.; Burgdoerfer, J.

    2011-01-01

    The field of charged-particle transmission through insulating nanocapillaries has expanded its scope within the last few years. Originally motivated by research on elementary ion-insulator interactions recent work has shifted the focus on the development of tools for ion-beam shaping and guiding. The design of tapered macrocapillaries has attracted growing interest and has found first applications in directing ions to targeted regions of biological cells for microsurgery. Due to the large dimensions of these capillaries, simulation of such systems faces considerable difficulties which we address in this paper. A first proof-of-principle simulation is presented.

  18. Effects of swift heavy ion irradiation on the electrical characteristics of Au/n-GaAs Schottky diodes

    International Nuclear Information System (INIS)

    Sharma, A. Tarun; Shahnawaz; Kumar, Sandeep; Katharria, Yashpal S.; Kanjilal, Dinakar

    2007-01-01

    Metal-semiconductor diode of Au/n-GaAs is studied under the irradiation of swift heavy ion (SHI) beam (80 MeV 16 O 6+ ), using in situ current-voltage characterization technique. The diode parameters like ideality factor, barrier height, and leakage current are observed to vary with irradiation fluence. Significantly, the diode performance improves at a high fluence of 2 x 10 13 ions cm -2 with a large decrease of reverse leakage current in comparison to the original as deposited sample. The Schottky barrier height (SBH) also increases with fluence. At a high irradiation fluence of 5 x 10 13 ions cm -2 the SBH (0.62 ± 0.01 eV) is much larger than that of the as deposited sample (0.55 ± 0.01 eV). The diode parameters remain stable over a large range of irradiation up to fluence of 8 x 10 13 ions cm -2 . A prominent annealing effect of the swift ion beam owing to moderate electronic excitation and high ratio of electronic energy loss to the nuclear loss is found to be responsible for the improvement in diode characteristics

  19. Progress in light ion beam fusion research on PBFA II

    International Nuclear Information System (INIS)

    Cook, D.L.; Allshouse, G.O.; Bailey, J.

    1986-01-01

    PBFA II is a 100 TW pulsed power accelerator constructed at Sandia National Laboratories for use in the Light Ion Fusion Program. The objective of PBFA II is to accelerate and focus upon an inertial confinement fusion (ICF) target a lithium beam with sufficient energy, power, and power density to perform ignition scaling experiments. The technologies used in PBFA II include: (1) primary energy storage and compression with 6 MV, low-inductance Marx generators, (2) pulse forming in water-insulated, water-dielectric lines with self-closing water switches, (4) voltage addition in vacuum using self-magnetically-insulated biconic transmission lines, (5) inductive energy storage and pulse compression using a fast-opening plasma erosion switch, (6) beam formation using a magnetically-insulated ion diode, and (7) space-charge and current-neutralized beam propagation to the target in a gas-filled cell. The first multimodule shot was on December 11, 1985. The plans for PBFA II include development and demonstration of the pulse-shaping techniques which are necessary for high-gain target compressions. Following a modification of the accelerator which will probably include an ''extraction'' ion diode, a 4- to 5-meter plasma channel for beam bunching during propagation, and a target chamber located beneath the accelerator, temporally-shaped ion beam pulses will be available for pulse-shaped target experiments. (author)

  20. Effect of swift heavy Kr ions on complex permittivity of silicon PIN diode

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yun [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Su, Ping, E-mail: pingsu@scu.edu.cn [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Yang, Zhimei; Ma, Yao [Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Gong, Min, E-mail: mgong@scu.edu.cn [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China)

    2016-12-01

    Highlights: • The complex permittivity has been studied on Si PIN irradiated by heavy Kr ions. • DLTS was used to investigate damages formed in PIN diode during irradiation. • The recombination of carriers has important influence on the complex permittivity. - Abstract: The complex permittivity has been researched on silicon PIN diodes irradiated by 2150 MeV heavy Kr ions in this article. The difference of complex permittivity spectra from 1 to 10^7 Hz between irradiated and unirradiated were observed and discussed. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were measured at room temperature (300 K) to study the change of electrical properties in diode after irradiation. Deep level transient spectroscopy (DLTS) was used to investigate damages caused by 2150 MeV heavy Kr ions in diode. Two extra electron traps were observed, which were located at E{sub C}-0.31 eV and E{sub C}-0.17 eV. It indicated that new defects have been formed in PIN diode during irradiation. A comparison of the results illustrated that not only the carrier density but also the recombination of electron-hole pair have important influences on the properties of complex permittivity. These results offer a further indication of the mechanism about the complex permittivity property of semiconductor device, which could help to make the applications for the semiconductor device controlled by electric signals come true in the fields of optoelectronic integrated circuits, plasma antenna and so on.

  1. Effect of swift heavy Kr ions on complex permittivity of silicon PIN diode

    International Nuclear Information System (INIS)

    Li, Yun; Su, Ping; Yang, Zhimei; Ma, Yao; Gong, Min

    2016-01-01

    Highlights: • The complex permittivity has been studied on Si PIN irradiated by heavy Kr ions. • DLTS was used to investigate damages formed in PIN diode during irradiation. • The recombination of carriers has important influence on the complex permittivity. - Abstract: The complex permittivity has been researched on silicon PIN diodes irradiated by 2150 MeV heavy Kr ions in this article. The difference of complex permittivity spectra from 1 to 10^7 Hz between irradiated and unirradiated were observed and discussed. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were measured at room temperature (300 K) to study the change of electrical properties in diode after irradiation. Deep level transient spectroscopy (DLTS) was used to investigate damages caused by 2150 MeV heavy Kr ions in diode. Two extra electron traps were observed, which were located at E C -0.31 eV and E C -0.17 eV. It indicated that new defects have been formed in PIN diode during irradiation. A comparison of the results illustrated that not only the carrier density but also the recombination of electron-hole pair have important influences on the properties of complex permittivity. These results offer a further indication of the mechanism about the complex permittivity property of semiconductor device, which could help to make the applications for the semiconductor device controlled by electric signals come true in the fields of optoelectronic integrated circuits, plasma antenna and so on.

  2. Terawatt power division and combination using self-magnetically insulated transmission lines

    International Nuclear Information System (INIS)

    Crow, J.T.; Peterson, G.D.

    1980-01-01

    Self-magnetically insulated transmission lines are necessary for the efficient transport of the terawatt pulses used in electron and ion accelerators. For some applications it is desirable to divide one transmission line into two, or to combine outputs of two or more lines into one, by means of self-magnetically insulated convolutes. Tests have been made on a coaxial-to-triaxial convolute in which connections between negative inner and outer lines are made by pins passing through holes in the intermediate positive conductor. Measurements in the 2 MV, 400 kA, 40 ns pulse Mite facility indicate virtually 100% current transport through the convolute and the ability to vary the division of current between the inner and outer lines of the triax by choice of inner line impedance. These measurements, and results obtained with this convolute connected to the ion diode for which it was designed, will be presented

  3. Generation of high brightness ion beam from insulated anode PED

    International Nuclear Information System (INIS)

    Matsukawa, Yoshinobu

    1988-01-01

    Generation and focusing of a high density ion beam with high brightness from a organic center part of anode of a PED was reported previously. Mass, charge and energy distribution of this beam were analyzed. Three kind of anode were tried. Many highly ionized medium mass ions (up to C 4+ , O 6+ ) accelarated to several times of voltage difference between anode and cathode were observed. In the case of all insulator anode the current carried by the medium mass ions is about half of that carried by protons. (author)

  4. Uniform current density and divergence control in high power extraction ion diodes

    International Nuclear Information System (INIS)

    Desjarlais, M.P.; Coats, R.S.; Lockner, T.R.; Pointon, T.D.; Johnson, D.J.; Slutz, S.A.; Lemke, R.W.; Cuneo, M.E.; Mehlhorn, T.A.

    1996-01-01

    A theory of radial beam uniformity in extraction ion diodes is presented. The theory is based on a locally one-dimensional analysis of the diamagnetic compression of magnetic streamlines and the self-consistent determination of the virtual cathode location. The radial dependence of the applied magnetic field is used to determine the critical parameters of this locally one-dimensional treatment. The theory has been incorporated into the ATHETA magnetic field code to allow the rapid evaluation of realistic magnetic field configurations. Comparisons between the theoretical results, simulations with the QUICKSILVER code, and experiments on the PBFA-X accelerator establish the usefulness of this tool for tuning magnetic fields to improve ion beam uniformity. The consequences of poor beam uniformity on the evolution of ion diode instabilities are discussed with supporting evidence from simulations, theory, and experiments. (author). 8 figs., 15 refs

  5. Uniform current density and divergence control in high power extraction ion diodes

    International Nuclear Information System (INIS)

    Desjarlais, M.P.; Coats, R.S.; Lockner, T.R.; Pointon, T.D.; Johnson, D.J.; Slutz, S.A.; Lemke, R.W.; Cuneo, M.E.; Melhorn, T.A.

    1996-01-01

    A theory of radial beam uniformity in extraction ion diodes is presented. The theory is based on a locally one dimensional analysis of the diamagnetic compression of magnetic streamlines and the self consistent determination of the virtual cathode location. The radial dependence of the applied magnetic field is used to determine the critical parameters of this locally one dimensional treatment. The theory has been incorporated into the ATHETA magnetic field code to allow the rapid evaluation of realistic magnetic field configurations. Comparisons between the theoretical results, simulations with the QUICKSILVER code, and experiments on the PBFA-X accelerator establish the usefulness of this tool for tuning magnetic fields to improve ion beam uniformity. The consequences of poor beam uniformity on the evolution of ion diode instabilities are discussed with supporting evidence from simulations, theory, and experiments

  6. Uniform current density and divergence control in high power extraction ion diodes

    Energy Technology Data Exchange (ETDEWEB)

    Desjarlais, M P; Coats, R S; Lockner, T R; Pointon, T D; Johnson, D J; Slutz, S A; Lemke, R W; Cuneo, M E; Mehlhorn, T A [Sandia Labs., Albuquerque, NM (United States)

    1997-12-31

    A theory of radial beam uniformity in extraction ion diodes is presented. The theory is based on a locally one-dimensional analysis of the diamagnetic compression of magnetic streamlines and the self-consistent determination of the virtual cathode location. The radial dependence of the applied magnetic field is used to determine the critical parameters of this locally one-dimensional treatment. The theory has been incorporated into the ATHETA magnetic field code to allow the rapid evaluation of realistic magnetic field configurations. Comparisons between the theoretical results, simulations with the QUICKSILVER code, and experiments on the PBFA-X accelerator establish the usefulness of this tool for tuning magnetic fields to improve ion beam uniformity. The consequences of poor beam uniformity on the evolution of ion diode instabilities are discussed with supporting evidence from simulations, theory, and experiments. (author). 8 figs., 15 refs.

  7. Recent TWOQUICK particle simulations of one- and two- stage transmission lines and diodes on PBFA and SABRE

    International Nuclear Information System (INIS)

    Poukey, J.W.; Cuneo, M.E.; Lockner, T.R.

    1993-01-01

    This paper presents recent particle simulation studies of the pulsed-power machines PBFA and SABRE. The code used is the 2-D electromagnetic TWOQUICK. For SABRE we emphasize the single-stage case and compare with experiment. Here the voltage adder, magnetically-insulated-transmission-line (MITL), and proton applied-B extraction diode are all included in the fully time-dependent simulations. Results include vacuum wave precursor effects vs. cathode turn-on threshold, and the sheath-retrapping benefits of diode undermatching. For PBFA we emphasize the 2-stage case and compare with experiments using lithium ions. Here we include the transmission lines and MITLs feeding the 2-stage barrel diode. Results show that good operation is critically dependent on careful B-field shaping in the feeds and diode

  8. Anode plasma dynamics in an extraction applied-B ion diode: effects on divergence, ion species and parasitic load

    International Nuclear Information System (INIS)

    Greenly, J.B.; Appartaim, R.K.; Olson, J.C.

    1996-01-01

    Analysis of data from the LION (1.2 MV, 300 kA, 40 ns) extraction applied-B diode allows a number of inferences regarding the effect of anode plasma dynamics on ion beam divergence, ion species composition, and diode impedance and power coupling. The two dominant features of anode plasma dynamics observed on LION are (1) plasma expansion away from the solid anode surface and into the accelerating gap during the beam pulse, and (2) evolution of the composition of the plasma during the pulse. The data presented in this paper characterize the plasma expansion, and suggest a possible picture of the mechanism of the plasma dynamics that could produce these basic features. (J.U.). 2 figs., 5 refs

  9. Anode plasma dynamics in an extraction applied-B ion diode: effects on divergence, ion species and parasitic load

    Energy Technology Data Exchange (ETDEWEB)

    Greenly, J B; Appartaim, R K; Olson, J C [Cornell Univ., Ithaca, NY (United States). Lab. of Plasma Studies

    1997-12-31

    Analysis of data from the LION (1.2 MV, 300 kA, 40 ns) extraction applied-B diode allows a number of inferences regarding the effect of anode plasma dynamics on ion beam divergence, ion species composition, and diode impedance and power coupling. The two dominant features of anode plasma dynamics observed on LION are (1) plasma expansion away from the solid anode surface and into the accelerating gap during the beam pulse, and (2) evolution of the composition of the plasma during the pulse. The data presented in this paper characterize the plasma expansion, and suggest a possible picture of the mechanism of the plasma dynamics that could produce these basic features. (J.U.). 2 figs., 5 refs.

  10. Leakage current of amorphous silicon p-i-n diodes made by ion shower doping

    International Nuclear Information System (INIS)

    Kim, Hee Joon; Cho, Gyuseong; Choi, Joonhoo; Jung, Kwan-Wook

    2002-01-01

    In this letter, we report the leakage current of amorphous silicon (a-Si:H) p-i-n photodiodes, of which the p layer is formed by ion shower doping. The ion shower doping technique has an advantage over plasma-enhanced chemical vapor deposition (PECVD) in the fabrication of a large-area amorphous silicon flat-panel detector. The leakage current of the ion shower diodes shows a better uniformity within a 30 cmx40 cm substrate than that of the PECVD diodes. However, it shows a higher leakage current of 2-3 pA/mm 2 at -5 V. This high current originates from the high injection current at the p-i junction

  11. Generation of intense ion beams and their application to controlled fusion research

    International Nuclear Information System (INIS)

    Dreike, P.; Ferch, R.L.; Friedman, A.

    1977-01-01

    Successful generation of pulsed multi-kA proton beams in the energy range 0.2 to 1.7 MeV using existing pulsed power technology has been achieved by three different techniques: reflex triodes, pinched electron-beam diodes and magnetically insulated diodes. Peak current densities in excess of 10 kAcm -2 have been observed on the NRL Gamble II machine and over 1.0 kAcm -2 on the Cornell Neptune machine. Peak total ion currents above 200 kA are produced by Gamble II. The potential applications of intense ion beams to magnetic confinement include (i) plasma heating and (ii) ion rings. A summary of continuous theoretical and experimental investigations on these applications is presented. (author)

  12. Helium ion beam induced electron emission from insulating silicon nitride films under charging conditions

    Science.gov (United States)

    Petrov, Yu. V.; Anikeva, A. E.; Vyvenko, O. F.

    2018-06-01

    Secondary electron emission from thin silicon nitride films of different thicknesses on silicon excited by helium ions with energies from 15 to 35 keV was investigated in the helium ion microscope. Secondary electron yield measured with Everhart-Thornley detector decreased with the irradiation time because of the charging of insulating films tending to zero or reaching a non-zero value for relatively thick or thin films, respectively. The finiteness of secondary electron yield value, which was found to be proportional to electronic energy losses of the helium ion in silicon substrate, can be explained by the electron emission excited from the substrate by the helium ions. The method of measurement of secondary electron energy distribution from insulators was suggested, and secondary electron energy distribution from silicon nitride was obtained.

  13. Development of high-current pulsed heavy-ion-beam technology for applications to materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroaki; Ochiai, Yasushi; Masugata, Katsumi [University of Toyama, Toyama (Japan)

    2011-12-15

    Development of intense pulsed heavy ion beam technology for applications to materials processing is described. We have developed a magnetically insulated ion diode for the generation of intense pulsed metallic ion beams in which a vacuum arc plasma gun is used as the ion source. When the ion diode was successfully operated at a diode voltage of 220 kV and a diode current of 10 kA, an ion beam with an ion current density of >200 A/cm{sup 2} and a pulse duration of 40 ns was obtained. The ion composition was evaluated by using a Thomson parabola spectrometer, and the ion beam consisted of aluminum ions (Al{sup (1-3)+}) with an energy of 140 - 740 keV and protons with an energy of 160 - 190 keV; the purity was estimated to be 89%, which was much higher than that of the pulsed ion beam produced in a conventional ion diode. The development of a bipolar pulse accelerator (BPA) was reported in order to improve the purity of intense pulsed ion beams. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. When a bipolar pulse with a voltage of {+-}90 kV and a pulse duration of about 65 ns was applied to the drift tube of the BPA, the ion beam with an ion current density of 2 A/cm{sup 2} and a pulse duration of 30 ns was observed 25 mm downstream from the cathode surface, which suggested bipolar pulse acceleration.

  14. Recent results from experimental and numerical investigations of the self-magnetically B{sub {Theta}}-insulated ion diode

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, W; Hoppe, P; Bachmann, H [Forschungszentrum Karlsruhe (Germany); and others

    1997-12-31

    Comparison of the observed and calculated data of foil acceleration experiments on KALIF showed discrepancies which called for a re-investigation of the beam characteristics produced by the Bo-Diode. It was shown that the peak power density achieved in the focus is only 0.15 TW/cm{sup 2} and not 0.25 TW/cm{sup 2} as reported earlier. In addition, a most likely time history of the proton power density with a FWHM pulse duration of 60 ns in the focus was derived. The experiments led to a new description of the operating principle of this diode, which was confirmed by particle-in-cell-simulations. As a result of these considerations, suggestions for a new design of the diode were developed and investigated by simulations. (author). 7 figs., 6 refs.

  15. LEVIS lithium ion source experiments on PBFA-II

    International Nuclear Information System (INIS)

    Renk, T.J.; Tisone, G.C.; Adams, R.G.; Lopez, M.; Clark, B.F.; Schroeder, J.; Bailey, J.E.; Filuk, A.B.; Carlson, A.L.

    1992-01-01

    PBFA-II is a pulsed power generator designed to apply up to a 25 MV, 20 ns pulse to a focusing 15 cm-radius Applied-B ion diode for inertial confinement fusion applications. Several different approaches have been pursued to produce a high-purity (> 90%), high-current density (5--10 kA/cm 2 ) singly ionized lithium ion source for acceleration in this diode. In addition to having high source purity, such a source should be active, i.e. the ions should be produced before the power pulse arrives, to provide better electrical coupling from the accelerator to the diode. In the LEVIS (Laser EVaporation Ion Source) process, energy from two lasers impinges on a thin (500 nm) lithium or lithium-bearing film on an insulating substrate. The authors will discuss a new series of LEVIS experiments, with a number of improvements: (1) the laser distribution cone was redesigned, resulting in a more uniform illumination of the 4 cm-tall Li-producing surface; (2) the anode surface is being slow-heated to 120--150 C to help drive off contaminants; and (3) they have expanded the number of source and beam diagnostics

  16. Hybrid simulation of electrode plasmas in high-power diodes

    International Nuclear Information System (INIS)

    Welch, Dale R.; Rose, David V.; Bruner, Nichelle; Clark, Robert E.; Oliver, Bryan V.; Hahn, Kelly D.; Johnston, Mark D.

    2009-01-01

    New numerical techniques for simulating the formation and evolution of cathode and anode plasmas have been successfully implemented in a hybrid code. The dynamics of expanding electrode plasmas has long been recognized as a limiting factor in the impedance lifetimes of high-power vacuum diodes and magnetically insulated transmission lines. Realistic modeling of such plasmas is being pursued to aid in understanding the operating characteristics of these devices as well as establishing scaling relations for reliable extrapolation to higher voltages. Here, in addition to kinetic and fluid modeling, a hybrid particle-in-cell technique is described that models high density, thermal plasmas as an inertial fluid which transitions to kinetic electron or ion macroparticles above a prescribed energy. The hybrid technique is computationally efficient and does not require resolution of the Debye length. These techniques are first tested on a simple planar diode then applied to the evolution of both cathode and anode plasmas in a high-power self-magnetic pinch diode. The impact of an intense electron flux on the anode surface leads to rapid heating of contaminant material and diode impedance loss.

  17. Manipulating Ion Migration for Highly Stable Light-Emitting Diodes with Single-Crystalline Organometal Halide Perovskite Microplatelets.

    Science.gov (United States)

    Chen, Mingming; Shan, Xin; Geske, Thomas; Li, Junqiang; Yu, Zhibin

    2017-06-27

    Ion migration has been commonly observed as a detrimental phenomenon in organometal halide perovskite semiconductors, causing the measurement hysteresis in solar cells and ultrashort operation lifetimes in light-emitting diodes. In this work, ion migration is utilized for the formation of a p-i-n junction at ambient temperature in single-crystalline organometal halide perovskites. The junction is subsequently stabilized by quenching the ionic movement at a low temperature. Such a strategy of manipulating the ion migration has led to efficient single-crystalline light-emitting diodes that emit 2.3 eV photons starting at 1.8 V and sustain a continuous operation for 54 h at ∼5000 cd m -2 without degradation of brightness. In addition, a whispering-gallery-mode cavity and exciton-exciton interaction in the perovskite microplatelets have both been observed that can be potentially useful for achieving electrically driven laser diodes based on single-crystalline organometal halide perovskite semiconductors.

  18. Modification and structuring of conducting polymer films on insulating substrates by ion beam treatment

    International Nuclear Information System (INIS)

    Asmus, T.; Wolf, Gerhard K.

    2000-01-01

    Besides the commonly used procedures of UV-, X-ray and electron beam lithography, surface structuring by ion beam processes represents an alternative route to receive patterns in the nanometre-micrometre scale. In this work we focused on changes of surface properties of the polymer materials induced by ion irradiation and on reproducing hexagonal and square patterns in the micrometre scale. To achieve a better understanding of modification and structuring of insulating and conducting polymers by ion beam treatment we investigated effects of 14 keV Ar + bombardment on thin films of doped conducting polyethoxithiophene (PEOT) and polyethylenedioxithiophene (PEDT) on polyethersulfone (PES) as insulating substrate within the fluence range from 10 14 to 10 17 ions/cm 2 . Changes of surface properties like wettability, solubility, topology and electrochemical behaviour have been studied by contact angle technique, AFM/LFM, cyclovoltammetry and electrochemical microelectrode. By irradiation through copper masks structured patterns were achieved. These patterns can be converted by galvanic or electroless copper deposition in structured metal layers

  19. Fabrication and current–voltage characteristics of NiOx/ZnO based MIIM tunnel diode

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Aparajita, E-mail: asing044@fiu.edu [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, United States of America (United States); Ratnadurai, Rudraskandan [Global Foundaries, Malta, New York 12020 (United States); Kumar, Rajesh [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174 (United States); Department of Physics, Panjab University, Chandigarh 160014 (India); Krishnan, Subramanian [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174 (United States); Emirov, Yusuf [Advanced Materials Engineering Research Institute, Florida International University, Miami, Florida 33174 (United States); Bhansali, Shekhar [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174 (United States)

    2015-04-15

    Highlights: • Fabrication of single and bilayer tunnel diodes by sputter deposition. • Current–voltage characteristics study. • Enhanced asymmetry and non-linearity. • Study of tunneling mechanism. - Abstract: Enhanced asymmetric and non-linear characteristics of Ni–NiOx based MIM diode has been reported by the addition of a second insulator layer ZnO to form MIIM configuration. These properties are required for applications like energy-harvesting devices, terahertz electronics, macro electronics, etc. In this work, single insulator layer Ni–NiOx–Cr and double insulator Ni–NiOx–ZnO–Cr tunnel diodes were fabricated and their I–V characteristics were studied. A significant increase by one order of magnitude in asymmetry has been observed in case of bilayer NiOx/ZnO dielectric configuration at low voltages. The sensitivity of the NiOx and NiOx/ZnO dielectric configuration in MIM stack was 11 V{sup −1} and 16 V{sup −1}. The improved performance of the bilayer insulator diode is due to the second insulator which enables resonant tunneling or step-tunneling. Resonant tunneling was found to be dominant through trap assisted tunneling in the NiOx/ZnO diode.

  20. Finite ion velocity effects on the stability of Pierce-like diodes

    International Nuclear Information System (INIS)

    Kolinsky, H.; Schamel, H.

    1994-01-01

    The stability of Pierce-like plasma diodes is investigated for arbitrary ion injection velocities. A recently developed integral formalism that accounts for ion dynamical effects is applied to derive a generalized dispersion relation for electrostatic perturbations. Its evaluation exhibits several new features, such as the appearance of growing oscillatory modes, which become Pierce--Buneman modes in the limit of initially resting ions, and of weakly damped oscillatory modes, which become undamped ion plasma oscillations in this limit. The stability of this bounded plasma system is shown to be controlled by the new control parameter at signga=α(1+at signgm) 1/2 , where α is the Pierce parameter and at signgm≡m ev 2 e0 /m iv 2 i0 the ratio of electron and ion kinetic energy at the emitter

  1. Focused ion beam (FIB) milling of electrically insulating specimens using simultaneous primary electron and ion beam irradiation

    International Nuclear Information System (INIS)

    Stokes, D J; Vystavel, T; Morrissey, F

    2007-01-01

    There is currently great interest in combining focused ion beam (FIB) and scanning electron microscopy technologies for advanced studies of polymeric materials and biological microstructures, as well as for sophisticated nanoscale fabrication and prototyping. Irradiation of electrically insulating materials with a positive ion beam in high vacuum can lead to the accumulation of charge, causing deflection of the ion beam. The resultant image drift has significant consequences upon the accuracy and quality of FIB milling, imaging and chemical vapour deposition. A method is described for suppressing ion beam drift using a defocused, low-energy primary electron beam, leading to the derivation of a mathematical expression to correlate the ion and electron beam energies and currents with other parameters required for electrically stabilizing these challenging materials

  2. Electron-beam-fusion progress report, 1975

    International Nuclear Information System (INIS)

    1976-06-01

    Summaries of research work are given on electron sources, insulation problems, and power supplies. Some theoretical work is reported on fusion target design, self-consistent deposition and hydrodynamic calculations, analysis of x-ray pinhole data, diode code calculations, magnetically insulated diodes and transmission lines, ion sheath motion in plasma-filled diodes, relativistic distribution functions, macroscopic properties, and kinetic theory, heavy ion pulsed fusion, and collective ion acceleration. Some experimental work on targets, diode physics, and diagnostic developments is given

  3. Numerical simulation of the ion beam generated in the diode with anode plasma column

    International Nuclear Information System (INIS)

    Vrba, P.; Sunka, P.

    1991-02-01

    The ion beam generation in a high current diode with anode plasma slab was studied. The ions were extracted from the anode plasma by the strong electric field of a deep potential well (virtual cathode), arising after the propagation of relativistic electrons through the anode plasma slab. The movement of this potential well with the front part of the ion beam leads to collective ion acceleration up to the 10 MeV energy range. (author). 7 figs., 5 refs

  4. Fabrication of high quality GaAs-on-insulator via ion-cut of epitaxial GaAs/Ge heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yongwei; Zhang, Miao [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Deng, Chuang; Men, Chuanling [School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Chen, Da [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Zhu, Lei; Yu, Wenjie; Wei, Xing [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Di, Zengfeng, E-mail: zfdi@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Wang, Xi [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-08-15

    Highlights: • GaAs-on-insulator has been achieved by integrating of epitaxy, ion-cut and selective chemical etching. • Superior to the direct ion-cut of bulk GaAs layer with the H implantation fluence 2.0 × 10{sup 17} cm{sup −2}, the fabrication of GaAs-on-insulator by the transfer of GaAs/Ge heterostructure only needs H implantation fluence as low as 0.8 × 10{sup 17} cm{sup −2}. • The crystalline quality of the top GaAs layer of the final GaAs-on-insulator wafer is not affected by the implantation process and comparable to the as-grown status. - Abstract: Due to the extraordinary electron mobility, III–V compounds are considered as the ideal candidate channel materials for future electronic devices. In this study, a novel approach for the fabrication of high-crystalline quality GaAs-on-insulator has been proposed by integrating of ion-cut and selective chemical etching. GaAs layer with good crystalline quality has been epitaxially grown on Ge by molecular beam epitaxy (MBE). With H implantation and wafer bonding process, the GaAs/Ge heterostructure is transferred onto silicon dioxide wafer after the proper thermal treatment. Superior to the direct ion-cut of GaAs layer, which requires the H implantation fluence as high as 2.0 × 10{sup 17} cm{sup −2}, the transfer of GaAs/Ge heterostructure in the present study only needs the implantation of 0.8 × 10{sup 17} cm{sup −2} H ions. GaAs-on-insulator structure was successfully achieved by the selective chemical etching of defective Ge layer using SF{sub 6} plasma. As the GaAs/Ge heterostructure can be easily epitaxy grown on silicon platform, the proposed approach for GaAs-on-insulator manufacturing is rather compatible with mature Si integrated circuits (ICs) technology and thus can be integrated to push the microelectronic technology to post-Si era.

  5. Fabrication of high quality GaAs-on-insulator via ion-cut of epitaxial GaAs/Ge heterostructure

    International Nuclear Information System (INIS)

    Chang, Yongwei; Zhang, Miao; Deng, Chuang; Men, Chuanling; Chen, Da; Zhu, Lei; Yu, Wenjie; Wei, Xing; Di, Zengfeng; Wang, Xi

    2015-01-01

    Highlights: • GaAs-on-insulator has been achieved by integrating of epitaxy, ion-cut and selective chemical etching. • Superior to the direct ion-cut of bulk GaAs layer with the H implantation fluence 2.0 × 10 17 cm −2 , the fabrication of GaAs-on-insulator by the transfer of GaAs/Ge heterostructure only needs H implantation fluence as low as 0.8 × 10 17 cm −2 . • The crystalline quality of the top GaAs layer of the final GaAs-on-insulator wafer is not affected by the implantation process and comparable to the as-grown status. - Abstract: Due to the extraordinary electron mobility, III–V compounds are considered as the ideal candidate channel materials for future electronic devices. In this study, a novel approach for the fabrication of high-crystalline quality GaAs-on-insulator has been proposed by integrating of ion-cut and selective chemical etching. GaAs layer with good crystalline quality has been epitaxially grown on Ge by molecular beam epitaxy (MBE). With H implantation and wafer bonding process, the GaAs/Ge heterostructure is transferred onto silicon dioxide wafer after the proper thermal treatment. Superior to the direct ion-cut of GaAs layer, which requires the H implantation fluence as high as 2.0 × 10 17 cm −2 , the transfer of GaAs/Ge heterostructure in the present study only needs the implantation of 0.8 × 10 17 cm −2 H ions. GaAs-on-insulator structure was successfully achieved by the selective chemical etching of defective Ge layer using SF 6 plasma. As the GaAs/Ge heterostructure can be easily epitaxy grown on silicon platform, the proposed approach for GaAs-on-insulator manufacturing is rather compatible with mature Si integrated circuits (ICs) technology and thus can be integrated to push the microelectronic technology to post-Si era

  6. Time-of-flight measurements of heavy ions using Si PIN diodes

    Energy Technology Data Exchange (ETDEWEB)

    Strekalovsky, A. O., E-mail: alex.strek@bk.ru; Kamanin, D. V. [Joint Institute for Nuclear Research (Russian Federation); Pyatkov, Yu. V. [National Nuclear Research University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Kondratyev, N. A.; Zhuchko, V. E. [Joint Institute for Nuclear Research (Russian Federation); Ilić, S. [University of Novi Sad (Serbia); Alexandrov, A. A.; Alexandrova, I. A. [Joint Institute for Nuclear Research (Russian Federation); Jacobs, N. [University of Stellenbosch, Faculty of Military Science, Military Academy (South Africa); Kuznetsova, E. A.; Mishinsky, G. V.; Strekalovsky, O. V. [Joint Institute for Nuclear Research (Russian Federation)

    2016-12-15

    A new off-line timing method for PIN diode signals is presented which allows the plasma delay effect to be suppressed. Velocities of heavy ions measured by the new method are in good agreement within a wide range of masses and energies with velocities measured by time stamp detectors based on microchannel plates.

  7. On the nano-hillock formation induced by slow highly charged ions on insulator surfaces

    Science.gov (United States)

    Lemell, C.; El-Said, A. S.; Meissl, W.; Gebeshuber, I. C.; Trautmann, C.; Toulemonde, M.; Burgdörfer, J.; Aumayr, F.

    2007-10-01

    We discuss the creation of nano-sized protrusions on insulating surfaces using slow highly charged ions. This method holds the promise of forming regular structures on surfaces without inducing defects in deeper lying crystal layers. We find that only projectiles with a potential energy above a critical value are able to create hillocks. Below this threshold no surface modification is observed. This is similar to the track and hillock formation induced by swift (˜GeV) heavy ions. We present a model for the conversion of potential energy stored in the projectiles into target-lattice excitations (heat) and discuss the possibility to create ordered structures using the guiding effect observed in insulating conical structures.

  8. Operation of an extraction, applied-B diode using an externally-driven, metallic foil anode plasma source

    International Nuclear Information System (INIS)

    Hinshelwood, D.D.; Fisher, R.C.; Greenly, J.B.; Neri, J.M.; Oliver, B.V.; Ottinger, P.F.; Rose, D.V.; Stephanakis, S.J.; Young, F.C.

    1995-01-01

    The authors are developing an extraction, applied-B ion diode, on the Gamble II generator at NRL, for ion-beam-transport research in support of the SNL light-ion ICF program. An ion beam with a voltage above 1 MV and a proton current of 150--200 kA is required for transport experiments. At present they are using hardware which allows a maximum anode area of ∼60 cm 2 . These parameters result in enhancement factors 2--3 times greater than those in similar experiments at Cornell, SNL, and KfK. In addition, the early, high-impedance phase of the diode must be minimized to prevent insulator flashover. Transport experiments with beam focusing also preclude ion beam angular momentum. A version of the EMFAP source, developed at Cornell and improved at KfK, is used to provide prompt turn-on of the ion current. To date the authors have obtained ion beams with rapid turn-on, high currents and current densities, high ion efficiencies (80%), relatively stable impedance behavior, and negligible angular momentum. Unfortunately, these have not all been obtained on the same shot. Electron loss current flowing through the anode foil is seen to play an important role in evolution of the anode plasma. Under the conditions of this experiment, the diode self-magnetic field is also important. Work at present centers on viewing the existing data in light of the refined field measurements, coupled with PIC modeling, to identify an operating regime that will provide the required electrical behavior without beam angular momentum

  9. Portable, universal, and visual ion sensing platform based on the light emitting diode-based self-referencing-ion selective field-effect transistor.

    Science.gov (United States)

    Zhang, Xiaowei; Han, Yanchao; Li, Jing; Zhang, Libing; Jia, Xiaofang; Wang, Erkang

    2014-02-04

    In this work, a novel and universal ion sensing platform was presented, which enables the visual detection of various ions with high sensitivity and selectivity. Coaxial potential signals (millivolt-scale) of the sample from the self-referencing (SR) ion selective chip can be transferred into the ad620-based amplifier with an output of volt-scale potentials. The amplified voltage is high enough to drive a light emitting diode (LED), which can be used as an amplifier and indicator to report the sample information. With this double amplification device (light emitting diode-based self-referencing-ion selective field-effect transistor, LED-SR-ISFET), a tiny change of the sample concentration can be observed with a distinguishable variation of LED brightness by visual inspection. This LED-based luminescent platform provided a facile, low-cost, and rapid sensing strategy without the need of additional expensive chemiluminescence reagent and instruments. Moreover, the SR mode also endows this device excellent stability and reliability. With this innovative design, sensitive determination of K(+), H(+), and Cl(-) by the naked eye was achieved. It should also be noticed that this sensing strategy can easily be extended to other ions (or molecules) by simply integrating the corresponding ion (or molecule) selective electrode.

  10. Design and optimization of the PBFA II vacuum interface and transmission lines for light ion fusion

    International Nuclear Information System (INIS)

    Mc Daniel, D.H.; Stinnett, R.W.; Gray, E.W.; Mattis, R.E.

    1985-01-01

    The PBFA II vacuum insulator was originally designed for optimum coupling to a proton ion diode with minimum inductance. In July 1983 it was decided that lithium ions at 30 MeV would be the baseline for PBFA II. This requires the use of Plasma Opening Switches (POS) and vacuum inductor to reach 30 MV. To achieve this, the vacuum magnetically insulated transmission lines had to be redesigned as an inductive energy store. To gain optimum coupling to this vacuum inductor, the output impedance of the water section was increased by the use of a water-dielectric transformer. The calculations leading to the final design are discussed

  11. The vortex-like self-consistent electron fluid model by the applied-B ion diode: equilibrium and instability

    International Nuclear Information System (INIS)

    Gordeev, A.V.

    1996-01-01

    The electron inertia effects in the one-dimensional model of the applied-B ion diode for the relativistic diode potential eU/m e c 2 ≥ 1 were investigated, where the magnetic Debye length r B is of the order of the collisionless electron skin depth c/ω pe . For this, an analytical relation between the magnetic field and the electric potential was developed, owing to which the second order eigenvalue problem can be reduced to a system of algebraic equations. Instabilities inside the vacuum gap and in the near-anode emitting plasma are considered. In the near-anode Hall plasma, the instability with two ion species was obtained; this can can contribute to the ion angle divergence. (author). 10 refs

  12. The vortex-like self-consistent electron fluid model by the applied-B ion diode: equilibrium and instability

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, A V [Kurchatov Institute, Moscow (Russian Federation). Nuclear Fusion Institute

    1997-12-31

    The electron inertia effects in the one-dimensional model of the applied-B ion diode for the relativistic diode potential eU/m{sub e}c{sup 2} {>=} 1 were investigated, where the magnetic Debye length r{sub B} is of the order of the collisionless electron skin depth c/{omega}{sub pe}. For this, an analytical relation between the magnetic field and the electric potential was developed, owing to which the second order eigenvalue problem can be reduced to a system of algebraic equations. Instabilities inside the vacuum gap and in the near-anode emitting plasma are considered. In the near-anode Hall plasma, the instability with two ion species was obtained; this can can contribute to the ion angle divergence. (author). 10 refs.

  13. High power vertical stacked and horizontal arrayed diode laser bar development based on insulation micro-channel cooling (IMCC) and hard solder bonding technology

    Science.gov (United States)

    Wang, Boxue; Jia, Yangtao; Zhang, Haoyu; Jia, Shiyin; Liu, Jindou; Wang, Weifeng; Liu, Xingsheng

    2018-02-01

    An insulation micro-channel cooling (IMCC) has been developed for packaging high power bar-based vertical stack and horizontal array diode lasers, which eliminates many issues caused in its congener packaged by commercial copper formed micro-channel cooler(MCC), such as coefficient of thermal expansion (CTE) mismatch between cooler and diode laser bar, high coolant quality requirement (DI water) and channel corrosion and electro-corrosion induced by DI water if the DI-water quality is not well maintained The IMCC cooler separates water flow route and electrical route, which allows tap-water as coolant without electro-corrosion and therefore prolongs cooler lifetime dramatically and escalated the reliability of these diode lasers. The thickness of ceramic and copper in an IMCC cooler is well designed to minimize the CTE mismatch between laser bar and cooler, consequently, a very low "SMILE" of the laser bar can be achieved for small fast axis divergence after collimation. In additional, gold-tin hard solder bonding technology was also developed to minimize the risk of solder electromigration at high current density and thermal fatigue under hard-pulse operation mode. Testing results of IMCC packaged diode lasers are presented in this report.

  14. Design considerations for the Cornell megavolt ion coil experiment (MICE)

    International Nuclear Information System (INIS)

    Jayakumar, R.; Podulka, B.; Keller, S.; Milks, J.; Fleischmann, H.H.

    1986-01-01

    Field reversing ion rings offer an attractive alternative plasma confinement scheme in which a Compact Torus is formed with axis-encircling ion currents. An experiment on forming MeV ion rings-MICE, is under construction in this group. This experiment will prepare the physics base for application of ion rings to the tilt stabilization and/or heating of the larger near-future CT plasma experiments, which will need ion rings with energies of 1-2 MeV. The MICE experiments will therefore extend other experiments to stronger rings with MeV ions. The MICE experiment will employ a Marx generator operating at about 1 MV, coupled to a magnetically insulated ion diode. The ion beam so generated will be passed through a magnetic cusp region, where the axial beam energy will be converted into rotational energy. Gas will be puffed in the trapping region for charge neutralization of the beam. Various methods, including resistive image currents, pulsed fields and phase focussing are being considered for ring trapping. In the present first stage of the experiment, investigation of ion diode behavior and ring formation will be emphasized. A schematic of the proposed experimental arrangement is shown and the major parameters of the experiment are given. The various subsystems follows are described

  15. Ion guiding and losses in insulator capillaries

    International Nuclear Information System (INIS)

    Juhasz, Z.; Sulik, B.; Vikor, Gy.; Biri, S.; Fekete, E.; Ivan, I.; Gall, F.; Toekesi, K.; Matefi-Tempfli, S.; Matefi-Tempfli, M.

    2007-01-01

    Complete text of publication follows. Not long ago it was discovered that insulating capillaries can guide slow ions, so that the ions avoid close contact with the capillary walls and preserve their initial charge state. This phenomenon did not only give a new puzzle for theoreticians but opened the way for new possible applications where ions are manipulated (deflected, focused and directed to different patterns on the irradiated media) with small capillary devices. The most important question for such applications is how large fraction of the ions can be guided to the desired direction. It is already known that the ion guiding is due to the charging up of the inner capillary walls by earlier ion impact events. In tilted capillaries one side of the capillary walls charges up. This deflects the later arriving ions, so that some of them pass through the capillaries nearly parallel with respect to their axes. The angle where the transmission drops to 1/e of the direct transmission at 0 deg is the guiding angle, which characterize the guiding ability. At 0 deg the ideal 100 percent transmission for the ions, which enter the capillaries, is reduced due to the mirror charge attraction and geometrical imperfections. These losses appear in the transmission for tilted capillaries with similar magnitude, since after the deflection region, which usually restricted to the close surroundings of the capillary openings, the guided ions pass through the rest of the capillaries as in non-tilted samples. In our experimental studies with Al 2 O 3 capillaries we found that around 90 percent of the incoming ions are lost. To understand these significant losses, the effects of the mirror charge attraction and geometrical imperfections have been calculated classically. The mirror charge potential was taken from.The model of the capillaries used in the calculations can be seen in Figure 1. The calculations have shown that the effects of mirror charge attraction and the angular

  16. Present status of the ion ring compressor approach to fusion

    International Nuclear Information System (INIS)

    Fleischmann, H.H.

    1975-01-01

    A short review is given of the present research status with regard to the Ion Ring Compressor. A consideration of the reactor characteristics of this fusion scheme indicates the potential for a number of technologically and economically interesting features, in particular with respect to the high-confinement characteristics expected for such minimum-B configurations. Experimental results from the RECE-program at Cornell indicate generally good gross stability of strong electron rings, including purely collisional decay, stability against field perturbations and others. Most-recent experiments have extended the ring lifetime to more than 2 x 10 5 electron orbits. Strong electron rings have been shifted over an axial distance of up to 30 cm. Experiments with magnetic-field insulated diodes indicate ion pulses of up to 300 nsec, and field insulation of up to 800 nsec when metallic electrodes are used

  17. Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate

    Science.gov (United States)

    Choi, J.-H.; Cho, C.-H.; Cha, H.-Y.

    2018-06-01

    Gallium oxide (Ga2O3) based vertical Schottky barrier diodes (SBDs) were designed for high voltage switching applications. Since p-type Ga2O3 epitaxy growth or p-type ion implantation technique has not been developed yet, a field plate structure was employed in this study to maximize the breakdown voltage by suppressing the electric field at the anode edge. TCAD simulation was used for the physical analysis of Ga2O3 SBDs from which it was found that careful attention must be paid to the insulator under the field plate. Due to the extremely high breakdown field property of Ga2O3, an insulator with both high permittivity and high breakdown field must be used for the field plate formation.

  18. Multicharged ion-induced emission from metal- and insulator surfaces related to magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Winter, H.P. [Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Physik

    1997-01-01

    The edge region of magnetically confined plasmas in thermonuclear fusion experiments couples the hot plasma core with the cold first wall. We consider the dependence of plasma-wall interaction processes on edge plasma properties, with particular emphasis on the role of slow multicharged ions (MCI). After a short survey on the physics of slow MCI-surface interaction we discuss recent extensive studies on MCI-induced electron emission from clean metal surfaces conducted at impact velocities << 1 a.u., from which generally reliable total electron yields can be obtained. We then demonstrate the essentially different role of the MCI charge for electron emission from metallic and insulator surfaces, respectively. Furthermore, we present recent results on slow MCI-induced `potential sputtering` of insulators which, in contrast to the well established kinetic sputtering, already occurs at very low ion impact energy and strongly increases with the MCI charge state. (J.P.N.). 55 refs.

  19. Analytic theory of the Rayleigh-Taylor instability in a uniform density plasma-filled ion diode

    International Nuclear Information System (INIS)

    Hussey, T.W.; Payne, S.S.

    1987-04-01

    The J-vector x B-vector forces associated with the surface current of a plasma-filled ion diode will accelerate this plasma fill toward the anode surface. It is well known that such a configuration with a high I is susceptible to the hydromagnetic Rayleigh-Taylor instability in certain geometries. A number of ion diode plasma sources have been proposed, most of which have a falling density going away from the wall. A somewhat more unstable case, however, is that of uniform density. In this report we attempt to establish an upper limit on this effect with a simple analytic model in which a uniform-density plasma is accelerated by the magnetic field anticipated in a PBFA-II diode. We estimate the number of linear e-foldings experienced by an unstable surface as well as the most damaging wavelength initial perturbation. This model, which accounts approximately for stabilization due to field diffusion, suggests that even with a uniform fill, densities in excess of a few 10 15 are probably not damaged by the instability. In addition, even lower densities might be tolerated if perturbations near the most damaging wavelength can be kept very small

  20. Heavy Ion Induced Degradation in SiC Schottky Diodes: Bias and Energy Deposition Dependence

    Science.gov (United States)

    Javanainen, Arto; Galloway, Kenneth F.; Nicklaw, Christopher; Bosser, Alexandre L.; Ferlet-Cavrois, Veronique; Lauenstein, Jean-Marie; Pintacuda, Francesco; Reed, Robert A.; Schrimpf, Ronald D.; Weller, Robert A.; hide

    2016-01-01

    Experimental results on ion-induced leakage current increase in 4H-SiC Schottky power diodes are presented. Monte Carlo and TCAD simulations show that degradation is due to the synergy between applied bias and ion energy deposition. This degradation is possibly related to thermal spot annealing at the metal semiconductor interface. This thermal annealing leads to an inhomogeneity of the Schottky barrier that could be responsible for the increase leakage current as a function of fluence.

  1. Surface potential measurement of negative-ion-implanted insulators by analysing secondary electron energy distribution

    International Nuclear Information System (INIS)

    Toyota, Yoshitaka; Tsuji, Hiroshi; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki.

    1994-01-01

    The negative ion implantation method we have proposed is a noble technique which can reduce surface charging of isolated electrodes by a large margin. In this paper, the way to specify the surface potential of negative-ion-implanted insulators by the secondary electron energy analysis is described. The secondary electron energy distribution is obtained by a retarding field type energy analyzer. The result shows that the surface potential of fused quartz by negative-ion implantation (C - with the energy of 10 keV to 40 keV) is negatively charged by only several volts. This surface potential is extremely low compared with that by positive-ion implantation. Therefore, the negative-ion implantation is a very effective method for charge-up free implantation without charge compensation. (author)

  2. CR-39 nuclear track detector application for the diagnostics of low energy high power ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Opekounov, M S; Pechenkin, S A; Remnev, G E [Nuclear Physics Institute, Tomsk (Russian Federation); Ivonin, I V [Siberian Physical-Technical Institute, Tomsk (Russian Federation)

    1997-12-31

    The results of investigation of the spectral composition of ion beams generated by the magneto-insulated ion diode of the MUK-M and TEMP accelerators. The energy and mass characteristics of the accelerated ion beam were determined by a Thomson spectrometer with a CR-39 plate detector (MOM - Atomki Nuclear Track Detector, Type MA-ND/p). The accelerated ion energy was from 40 to 240 keV. The ion current density range was from 1 to 10 A/cm{sup 2}. The mass composition contained hydrogen, nitrogen, carbon and aluminum ions. The individual track analysis showed the track form, depth and diameter in dependence on the ion mass and energy. (author). 2 figs., 5 refs.

  3. Charging of insulators by multiply-charged-ion impact probed by slowing down of fast binary-encounter electrons

    Science.gov (United States)

    de Filippo, E.; Lanzanó, G.; Amorini, F.; Cardella, G.; Geraci, E.; Grassi, L.; La Guidara, E.; Lombardo, I.; Politi, G.; Rizzo, F.; Russotto, P.; Volant, C.; Hagmann, S.; Rothard, H.

    2010-12-01

    The interaction of ion beams with insulators leads to charging-up phenomena, which at present are under investigation in connection with guiding phenomena in nanocapillaries with possible application in nanofocused beams. We studied the charging dynamics of insulating foil targets [Mylar, polypropylene (PP)] irradiated with swift ion beams (C, O, Ag, and Xe at 40, 23, 40, and 30 MeV/u, respectively) via the measurement of the slowing down of fast binary-encounter electrons. Also, sandwich targets (Mylar covered with a thin Au layer on both surfaces) and Mylar with Au on only one surface were used. Fast-electron spectra were measured by the time-of-flight method at the superconducting cyclotron of Laboratori Nazionali del Sud (LNS) Catania. The charge buildup leads to target-material-dependent potentials of the order of 6.0 kV for Mylar and 2.8 kV for PP. The sandwich targets, surprisingly, show the same behavior as the insulating targets, whereas a single Au layer on the electron and ion exit side strongly suppresses the charging phenomenon. The accumulated number of projectiles needed for charging up is inversely proportional to electronic energy loss. Thus, the charging up is directly related to emission of secondary electrons.

  4. Charging of insulators by multiply-charged-ion impact probed by slowing down of fast binary-encounter electrons

    International Nuclear Information System (INIS)

    De Filippo, E.; Lanzano, G.; Cardella, G.; Amorini, F.; Geraci, E.; Grassi, L.; Politi, G.; La Guidara, E.; Lombardo, I.; Rizzo, F.; Russotto, P.; Volant, C.; Hagmann, S.; Rothard, H.

    2010-01-01

    The interaction of ion beams with insulators leads to charging-up phenomena, which at present are under investigation in connection with guiding phenomena in nanocapillaries with possible application in nanofocused beams. We studied the charging dynamics of insulating foil targets [Mylar, polypropylene (PP)] irradiated with swift ion beams (C, O, Ag, and Xe at 40, 23, 40, and 30 MeV/u, respectively) via the measurement of the slowing down of fast binary-encounter electrons. Also, sandwich targets (Mylar covered with a thin Au layer on both surfaces) and Mylar with Au on only one surface were used. Fast-electron spectra were measured by the time-of-flight method at the superconducting cyclotron of Laboratori Nazionali del Sud (LNS) Catania. The charge buildup leads to target-material-dependent potentials of the order of 6.0 kV for Mylar and 2.8 kV for PP. The sandwich targets, surprisingly, show the same behavior as the insulating targets, whereas a single Au layer on the electron and ion exit side strongly suppresses the charging phenomenon. The accumulated number of projectiles needed for charging up is inversely proportional to electronic energy loss. Thus, the charging up is directly related to emission of secondary electrons.

  5. High energy (MeV) ion-irradiated π-conjugated polyaniline: Transition from insulating state to carbonized conducting state

    International Nuclear Information System (INIS)

    Park, S.K.; Lee, S.Y.; Lee, C.S.; Kim, H.M.; Joo, J.; Beag, Y.W.; Koh, S.K.

    2004-01-01

    High energy (MeV) C 2+ , F 2+ , and Cl 2+ ions were irradiated onto π-conjugated polyaniline emeraldine base (PAN-EB) samples. The energy of an ion beam was controlled to a range of 3-4.5 MeV, with the ion dosage varying from 1x10 12 to 1x10 16 ions/cm 2 . The highest dc conductivity (σ dc ) at room temperature was measured to be ∼60 S/cm for 4.5 MeV Cl 2+ ion-irradiated PAN-EB samples with a dose of 1x10 16 ions/cm 2 . We observed the transition of high energy ion-irradiated PAN-EB samples from insulating state to conducting state as a function of ion dosage based on σ dc and its temperature dependence. The characteristic peaks of the Raman spectrum of the PAN-EB samples were reduced, while the D-peak (disordered peak) and the G peak (graphitic peak) appeared as the ion dose increased. From the analysis of the D and G peaks of the Raman spectra of the systems compared to multiwalled carbon nanotubes, ion-irradiated graphites, and annealed carbon films, the number of the clusters of hexagon rings with conducting sp 2 -bonded carbons increased with ion dosage. We also observed the increase in the size of the nanocrystalline graphitic domain of the systems with increasing ion dosage. The intensity of normalized electron paramagnelic resonance signal also increased in correlation with ion dose. The results of this study demonstrate that π-conjugated pristine PAN-EB systems changed from insulating state to carbonized conducting state through high energy ion irradiation with high ion dosage

  6. Microclump effects in magnetically-immersed electron diodes

    International Nuclear Information System (INIS)

    Olson, C.L.

    1998-01-01

    Magnetically-immersed electron diodes are being developed to produce needle-like, high-current, electron beams for radiography applications. An immersed diode consists of a needle cathode and a planar anode/bremmstrahlung converter which are both immersed in a strong solenoidal magnetic field (12--50 T); nominal parameters are 10 MV, 40 kA, 0.5 mm radius cathode, and 5--35 cm anode-cathode gaps. A physical picture of normal and abnormal diode behavior is emerging. Normal diode behavior occurs for times 0 ≤ t ≤ τ, where the transition time τ is typically 30 ns; during this time, bipolar space-charge limited flow occurs, which scales well to desired radiography parameters of high dose and small spot size. Abnormal diode behavior occurs for t ≥ τ, which results in substantial increases in spot size and current (impedance reduction). This abnormal behavior appears to be caused by an increase in ion charge in the gap, which may result from poor vacuum, impurity ions undergoing ion-ion stripping collisions during transit, or microclumps undergoing stripping collisions during transit. The potential effects of microclumps on diode behavior are reported here

  7. Universal gate-set for trapped-ion qubits using a narrow linewidth diode laser

    International Nuclear Information System (INIS)

    Akerman, Nitzan; Navon, Nir; Kotler, Shlomi; Glickman, Yinnon; Ozeri, Roee

    2015-01-01

    We report on the implementation of a high fidelity universal gate-set on optical qubits based on trapped 88 Sr + ions for the purpose of quantum information processing. All coherent operations were performed using a narrow linewidth diode laser. We employed a master-slave configuration for the laser, where an ultra low expansion glass Fabry–Perot cavity is used as a stable reference as well as a spectral filter. We characterized the laser spectrum using the ions with a modified Ramsey sequence which eliminated the affect of the magnetic field noise. We demonstrated high fidelity single qubit gates with individual addressing, based on inhomogeneous micromotion, on a two-ion chain as well as the Mølmer–Sørensen two-qubit entangling gate. (paper)

  8. Comparison of the ion induced charge collection in Si epilayer and SOI devices

    International Nuclear Information System (INIS)

    Hirao, Toshio; Mori, Hidenobu; Laird, Jamie Stuart; Onoda, Shinobu; Itoh, Hisayoshi

    2003-01-01

    It is known that the single-event phenomena (SEP) are the malfunction of micro electronics devices caused by the impact of an energetic heavy ion. Improving the tolerance of devices to the SEP requires a better understanding of basic charge collection mechanisms on the timescales of the order of picoseconds. In order to better elucidate these mechanisms, we measure the fast transient current resulting from heavy ion strikes with a fast sampling data collection system and a heavy ion microbeam line at JAERI. In this paper we report on differences in both the transient current and charge collection from 15 MeV carbon ions on silicon-on-insulator, Si epilayer and bulk p + n junction diodes and charge transportation under MeV ion injection is discussed

  9. Deposition of carbon nitride films by vacuum ion diode with explosive emission

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S.A.; Perry, A.J. [New Jersey Inst. of Tech., Newark (United States); Elkind, A.; Kalmukov, A.

    1997-10-31

    Carbon nitride films were synthesized using a novel technique based on the pulsed high voltage ion/electron diode with explosive emission (pulsed voltage 200-700 kV pulsed current 100-500 Acm{sup -2} (ions) 150-2000 Acm{sup -2} (electrons)). The method and its novel features are discussed as well as its application to the formation of the crystalline {beta}-phase in C{sub 3}N{sub 4} films. Mixed elemental nitrogen and carbon films are formed by sequential deposition then subjected to ion and/or electron beam mixing to synthesize the C{sub 3}N{sub 4} structure. The experimental conditions used for this pulsed process are described and the efficiency of the method for nitrogen incorporation is demonstrated. The results presented indicate that {beta}-C{sub 3}N{sub 4} crystallites are formed in an amorphous matrix. (orig.) 20 refs.

  10. In-situ transport and microstructural evolution in GaN Schottky diodes and epilayers exposed to swift heavy ion irradiation

    Science.gov (United States)

    Kumar, Ashish; Singh, R.; Kumar, Parmod; Singh, Udai B.; Asokan, K.; Karaseov, Platon A.; Titov, Andrei I.; Kanjilal, D.

    2018-04-01

    A systematic investigation of radiation hardness of Schottky barrier diodes and GaN epitaxial layers is carried out by employing in-situ electrical resistivity and cross sectional transmission electron microscopy (XTEM) microstructure measurements. The change in the current transport mechanism of Au/n-GaN Schottky barrier diodes due to irradiation is reported. The role of irradiation temperature and ion type was also investigated. Creation of damage is studied in low and medium electron energy loss regimes by selecting different ions, Ag (200 MeV) and O (100 MeV) at various fluences at two irradiation temperatures (80 K and 300 K). GaN resistivity increases up to 6 orders of magnitude under heavy Ag ions. Light O ion irradiation has a much lower influence on sheet resistance. The presence of isolated defect clusters in irradiated GaN epilayers is evident in XTEM investigation which is explained on the basis of the thermal spike model.

  11. A concentration-independent micro/nanofluidic active diode using an asymmetric ion concentration polarization layer.

    Science.gov (United States)

    Lee, Hyekyung; Kim, Junsuk; Kim, Hyeonsoo; Kim, Ho-Young; Lee, Hyomin; Kim, Sung Jae

    2017-08-24

    Over the past decade, nanofluidic diodes that rectify ionic currents (i.e. greater current in one direction than in the opposite direction) have drawn significant attention in biomolecular sensing, switching and energy harvesting devices. To obtain current rectification, conventional nanofluidic diodes have utilized complex nanoscale asymmetry such as nanochannel geometry, surface charge density, and reservoir concentration. Avoiding the use of sophisticated nano-asymmetry, micro/nanofluidic diodes using microscale asymmetry have been recently introduced; however, their diodic performance is still impeded by (i) low (even absent) rectification effects at physiological concentrations over 100 mM and strong dependency on the bulk concentration, and (ii) the fact that they possess only passive predefined rectification factors. Here, we demonstrated a new class of micro/nanofluidic diode with an ideal perm-selective nanoporous membrane based on ion concentration polarization (ICP) phenomenon. Thin side-microchannels installed near a nanojunction served as mitigators of the amplified electrokinetic flows generated by ICP and induced convective salt transfer to the nanoporous membrane, leading to actively controlled micro-scale asymmetry. Using this device, current rectifications were successfully demonstrated in a wide range of electrolytic concentrations (10 -5 M to 3 M) as a function of the fluidic resistance of the side-microchannels. Noteworthily, it was confirmed that the rectification factors were independent from the bulk concentration due to the ideal perm-selectivity. Moreover, the rectification of the presenting diode was actively controlled by adjusting the external convective flows, while that of the previous diode was passively determined by invariant nanoscale asymmetry.

  12. Surface modification by metal ion implantation forming metallic nanoparticles in an insulating matrix

    International Nuclear Information System (INIS)

    Salvadori, M.C.; Teixeira, F.S.; Sgubin, L.G.; Cattani, M.; Brown, I.G.

    2014-01-01

    Highlights: • Metal nanoparticles can be produced through metallic ion implantation in insulating substrate, where the implanted metal self-assembles into nanoparticles. • The nanoparticles nucleate near the maximum of the implantation depth profile, that can be estimated by computer simulation using the TRIDYN. • Nanocomposites, obtained by this way, can be produced in different insulator materials. More specifically we have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. • The nanocomposites were characterized by measuring the resistivity of the composite layer as function of the dose implanted, reaching the percolation threshold. • Excellent agreement was found between the experimental results and the predictions of the theory. - Abstract: There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We have investigated nanocomposites produced by metal ion implantation into insulating substrates, where the implanted metal self-assembles into nanoparticles. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), which can be estimated by computer simulation using the TRIDYN code. TRIDYN is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study show that the nanoparticles form a bidimentional array buried a few nanometers below the substrate surface. We have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples show that metallic nanoparticles form in

  13. RADLAC II/SMILE performance with a magnetically insulated voltage adder

    International Nuclear Information System (INIS)

    Shope, S.L.; Mazarakis, M.G.; Frost, C.A.; Crist, C.E.; Poukey, J.W.; Prestwich, K.R.; Turman, B.N.; Struve, K.; Welch, D.

    1991-01-01

    A 12.5-m long Self Magnetically Insulate Transmission LinE (SMILE) that sums the voltages of 8, 2 -MV pulse forming lines was installed in the RADLAC-II linear induction accelerator. The magnetic insulation criteria was calculated using parapotential flow theory and found to agree with MAGIC simulations. High quality annular beams with β perpendicular ≤ 0.1 and a radius r b < 2 cm were measured for currents of 50-100-kA extracted from a magnetic immersed foilless diode. These parameters were achieved with 11 to 15-MV accelerating voltages and 6 to 16-kG diode magnetic field. The experimental results exceeded the design expectations and are in good agreement with code simulations

  14. Universal tunneling behavior in technologically relevant P/N junction diodes

    International Nuclear Information System (INIS)

    Solomon, Paul M.; Jopling, Jason; Frank, David J.; D'Emic, Chris; Dokumaci, O.; Ronsheim, P.; Haensch, W.E.

    2004-01-01

    Band-to-band tunneling was studied in ion-implanted P/N junction diodes with profiles representative of present and future silicon complementary metal-oxide-silicon (CMOS) field effect transistors. Measurements were done over a wide range of temperatures and implant parameters. Profile parameters were derived from analysis of capacitance versus voltage characteristics, and compared to secondary-ion mass spectroscopy analysis. When the tunneling current was plotted against the effective tunneling distance (tunneling distance corrected for band curvature) a quasi-universal exponential reduction of tunneling current versus, tunneling distance was found with an attenuation length of 0.38 nm, corresponding to a tunneling effective mass of 0.29 times the free electron mass (m 0 ), and an extrapolated tunneling current at zero tunnel distance of 5.3x10 7 A/cm 2 at 300 K. These results are directly applicable for predicting drain to substrate currents in CMOS transistors on bulk silicon, and body currents in CMOS transistors in silicon-on-insulator

  15. Diode-like single-ion track membrane prepared by electro-stopping

    International Nuclear Information System (INIS)

    Apel, P.Yu.; Korchev, Yu.E.; Siwy, Z.; Spohr, R.; Yoshida, M.

    2001-01-01

    The preparation of an asymmetric membrane in poly(ethylene terephthalate) (PET) is described, using a combination of chemical and electro-stopping. For this purpose, a single-ion-irradiated PET film is inserted into an electrolytic cell and etched from one side in 9 M sodium hydroxide while bathing the other side in a mixture of 2 M KCl and 2 M HCOOH (1:1 by volume), electrically retracting the OH - ions from the tip of the etch pit during pore break-through. When a preset current has been reached, the etch process is interrupted by replacing the etching solution with acidic 1 M potassium chloride solution. After etching, the current-voltage (I-V) characteristic is determined under symmetric bathing conditions, immersing both sides of the membrane in KCl solutions of identical concentration (0.01-1 M) and pH (3-8). The I-V characteristic is strongly non-linear, comparable to that of an electrical diode. If the polarity during etching is reversed, pushing the OH - ions into the tip of the etch pit, the resulting pores are larger and the degree of asymmetry smaller. The importance of electro-stopping is compared with chemical stopping

  16. Electromagnetic particle-in-cell simulations of Applied-B proton diodes

    International Nuclear Information System (INIS)

    Slutz, S.A.; Seidel, D.B.; Coats, R.S.

    1986-01-01

    Fully electromagnetic particle-in-cell simulations of Applied-B ion diodes have been performed using the magic code. These calculations indicate that Applied-B diodes can be nearly 100% efficient. Furthermore, the simulations exhibit an impedance relaxation phenomenon due to the buildup of electron space charge near the anode which causes a time-dependent enhancement of the ion emission above the Child--Langmuir value. This phenomenon may at least partially explain the rapidly decreasing impedance that has been observed in Applied-B ion diode experiments. The results of our numerical simulations will be compared to experimental data on Applied-B ion diodes and to analytic theories of their operation

  17. Simulations of multistage intense ion beam acceleration

    International Nuclear Information System (INIS)

    Slutz, S.A.; Poukey, J.W.

    1992-01-01

    An analytic theory for magnetically insulated, multistage acceleration of high intensity ion beams, where the diamagnetic effect due to electron flow is important, has been presented by Slutz and Desjarlais. The theory predicts the existence of two limiting voltages called V 1 (W) and V 2 (W), which are both functions of the injection energy qW of ions entering the accelerating gap. As the voltage approaches V 1 (W), unlimited beam-current density can penetrate the gap without the formation of a virtual anode because the dynamic gap goes to zero. Unlimited beam current density can penetrate an accelerating gap above V 2 (W), although a virtual anode is formed. It was found that the behavior of these limiting voltages is strongly dependent on the electron density profile. The authors have investigated the behavior of these limiting voltages numerically using the 2-D particle-in-cell (PIC) code MAGIC. Results of these simulations are consistent with the superinsulated analytic results. This is not surprising, since the ignored coordinate eliminates instabilities known to be important from studies of single stage magnetically insulated ion diodes. To investigate the effect of these instabilities the authors have simulated the problem with the 3-D PIC code QUICKSILVER, which indicates behavior that is consistent with the saturated model

  18. Magnetic insulation of secondary electrons in plasma source ion implantation

    International Nuclear Information System (INIS)

    Rej, D.J.; Wood, B.P.; Faehl, R.J.; Fleischmann, H.H.

    1993-01-01

    The uncontrolled loss of accelerated secondary electrons in plasma source ion implantation (PSII) can significantly reduce system efficiency and poses a potential x-ray hazard. This loss might be reduced by a magnetic field applied near the workpiece. The concept of magnetically-insulated PSII is proposed, in which secondary electrons are trapped to form a virtual cathode layer near the workpiece surface where the local electric field is essentially eliminated. Subsequent electrons that are emitted can then be reabsorbed by the workpiece. Estimates of anomalous electron transport from microinstabilities are made. Insight into the process is gained with multi-dimensional particle-in-cell simulations

  19. Fabrication and characterization of NiO based metal−insulator−metal diode using Langmuir-Blodgett method for high frequency rectification

    Directory of Open Access Journals (Sweden)

    Ibrahim Azad

    2018-04-01

    Full Text Available Thin film metal–insulator–metal (MIM diodes have attracted significant attention for use in infrared energy harvesting and detection applications. As demonstrated over the past decades, MIM or metal-insulator-insulator-metal (MIIM diodes can operate at the THz frequencies range by quantum tunneling of electrons. The aim of this work is to synthesize required ultra-thin insulating layers and fabricate MIM diodes using the Langmuir-Blodgett (LB technique. The nickel stearate (NiSt LB precursor film was deposited on glass, silicon (Si, ITO glass and gold coated silicon substrates. The photodesorption (UV exposure and the thermodesorption (annealing at 100 °C and 350 °C methods were used to remove organic components from the NiSt LB film and to achieve a uniform homogenous nickel oxide (NiO film. These ultrathin NiO films were characterized by EDS, AFM, FTIR and cyclic voltammetry methods, respectively. The MIM diode was fabricated by depositing nickel (Ni on the NiO film, all on a gold (Au plated silicon (Si substrate. The current (I-voltage (V characteristics of the fabricated diode were studied to understand the conduction mechanism assumed to be tunneling of electron through the ultra-thin insulating layer. The sensitivity of the diode was measured to be as high as 35 V-1. The diode resistance was ∼100 ohms (at a bias voltage of 0.60 V, and the rectification ratio was about 22 (for a signal voltage of ±200 mV. At the bias point, the diode response demonstrated significant non-linearity and high asymmetry, which are very desirable characteristics for applications in infrared detection and harvesting.

  20. Guiding of slow Ne7+ ions through nanocapillaries in insulating polyethylene terephthalate: Incident current dependence

    International Nuclear Information System (INIS)

    Stolterfoht, N.; Hellhammer, R.; Bundesmann, J.; Fink, D.; Kanai, Y.; Kambara, T.; Ikeda, T.; Hoshino, M.; Yamazaki, Y.

    2007-01-01

    The transmission of highly charged ions through nanocapillaries in insulating polyethylene terephthalate (PET) polymers was investigated. In experiments at laboratories in RIKEN (Japan) and HMI (Germany) different detection methods were applied to study the ion current dependence in a wide range covering two orders of magnitude. At HMI an electrostatic ion spectrometer was used and at RIKEN a two-dimensional position sensitive detector was implemented. New PET samples with parallel capillaries and low density were manufactured. For tilted capillaries, the ions are guided along the capillary axis, since the majority of ions are deflected in a charge patch created in the capillary entrance. The results provide insights into the mechanisms of capillary guiding. The fraction of transmitted ions was found to be nearly independent on the incident ion current indicating a sudden increase in the discharge current depleting the entrance charge patch. The experimental results were well-reproduced by model calculations based on a nonlinear (exponential) expression for the discharge current

  1. Magnetic insulation in triplate and coaxial vacuum transmission lines. Report PIFR-1009

    International Nuclear Information System (INIS)

    Di Capua, M.; Pellinen, D.G.

    1980-08-01

    An experimental investigation was made of magnetically insulated transmission lines for use in an electron beam fusion accelerator. The magnetically insulated vacuum transmission lines would transfer the power pulses from many modules to a single diode region or multiple diodes to generate currents on the order of 100 MA. This approach may allow present limits on power flow through dielectric vacuum interfaces to be overcome. We have investigated symmetric parallel plate (triplate) transmission lines with a wave impedance of 24 Ω and a spacing of 1.9 cm, and coaxial transmission lines (coax) with a wave impedance of 42 Ω and a spacing of 2.9 cm

  2. Progress toward fusion with particle beams

    International Nuclear Information System (INIS)

    Kuswa, G.W.; Bieg, K.W.; Burns, E.J.T.

    1979-01-01

    This report discusses ion beam diodes which use insulating magnetic fields produced by coil systems. The development of ion diodes to produce light ion beams for fusion pellet ignition is briefly reviewed. The major goals for the light ion effort, which include the development of an ion diode to provide several TW/cm 2 , are discussed. The necessity to design ion sources which provide a prompt and uniform plasma layer when the diode voltage uses, in order to minimize electron loss and anode damage, is noted. Results of a number of materials and configurations tested for ion sources are reported. Numerical calculations are performed to investigate diode behavior. Future work on diodes with extracted beams is mentioned

  3. Aqueous photochemical reactions of chloride, bromide, and iodide ions in a diode-array spectrophotometer. Autoinhibition in the photolysis of iodide ions.

    Science.gov (United States)

    Kalmár, József; Dóka, Éva; Lente, Gábor; Fábián, István

    2014-03-28

    The aqueous photoreactions of three halide ions (chloride, bromide and iodide) were studied using a diode array spectrophotometer to drive and detect the process at the same time. The concentration and pH dependences of the halogen formation rates were studied in detail. The experimental data were interpreted by improving earlier models where the cage complex of a halogen atom and an electron has a central role. The triiodide ion was shown to exert a strong inhibiting effect on the reaction sequence leading to its own formation. An assumed chemical reaction between the triiodide ion and the cage complex interpreted the strong autoinhibition effect. It is shown that there is a real danger of unwanted interference from the photoreactions of halide ions when halide salts are used as supporting electrolytes in spectrophotometric experiments using a relatively high intensity UV light source.

  4. Junctionless Diode Enabled by Self-Bias Effect of Ion Gel in Single-Layer MoS2 Device.

    Science.gov (United States)

    Khan, Muhammad Atif; Rathi, Servin; Park, Jinwoo; Lim, Dongsuk; Lee, Yoontae; Yun, Sun Jin; Youn, Doo-Hyeb; Kim, Gil-Ho

    2017-08-16

    The self-biasing effects of ion gel from source and drain electrodes on electrical characteristics of single layer and few layer molybdenum disulfide (MoS 2 ) field-effect transistor (FET) have been studied. The self-biasing effect of ion gel is tested for two different configurations, covered and open, where ion gel is in contact with either one or both, source and drain electrodes, respectively. In open configuration, the linear output characteristics of the pristine device becomes nonlinear and on-off ratio drops by 3 orders of magnitude due to the increase in "off" current for both single and few layer MoS 2 FETs. However, the covered configuration results in a highly asymmetric output characteristics with a rectification of around 10 3 and an ideality factor of 1.9. This diode like behavior has been attributed to the reduction of Schottky barrier width by the electric field of self-biased ion gel, which enables an efficient injection of electrons by tunneling at metal-MoS 2 interface. Finally, finite element method based simulations are carried out and the simulated results matches well in principle with the experimental analysis. These self-biased diodes can perform a crucial role in the development of high-frequency optoelectronic and valleytronic devices.

  5. DLTS spectra of silicon diodes with p+-n-junction irradiated with high energy krypton ions

    Directory of Open Access Journals (Sweden)

    Nikolai A. Poklonski

    2016-06-01

    Full Text Available p+-n-Diodes have been studied. The diodes were manufactured on wafers (thickness 460 μm, (111 plane of uniformly phosphorus doped float-zone-grown single-crystal silicon. The resistivity of silicon was 90 Ω cm and the phosphorus concentration was 5×1013 cm−3. The diodes were irradiated with 250 MeV krypton ions. The irradiation fluence was 108 cm−2. Deep-level transient spectroscopy (DLTS was used to examine the defects induced by high energy krypton ion implantation. The DLTS spectra were recorded at a frequency of 1 MHz in the 78–290 K temperature range. The capacity-voltage characteristics have been measured at a reverse bias voltage from 0 to −19 V at a frequency of 1 MHz. We show that the main irradiation-induced defects are A-centers and divacancies. The behavior of DLTS spectra in the 150–260 K temperature range depends essentially on the emission voltage Ue. The variation of Ue allows us to separate the contributions of different defects into the DLTS spectrum in the 150–260 K temperature range. We show that, in addition to A-centers and divacancies, irradiation produces multivacancy complexes with the energy level Et = Ec−(0.5±0.02 eV and an electron capture cross section of ~4×10–13 cm2.

  6. High-fluence implantation in insulators. 1

    International Nuclear Information System (INIS)

    Mazzoldi, P.

    1989-01-01

    The defects which can be formed by ion implantation depend upon the insulator structure and composition. Thus, for glasses and ceramics, different changes are expected in mechanical and tribological properties, network dilatation, induced optical absorption and luminescence, compositional changes and modifications in the chemical behaviour. The modifications induced by ion implantation in the composition of glasses, with particular reference to alkali silicate glasses, the mechanical and tribological properties of ion implanted insulators, in particular glasses and ceramics, and the optical properties are discussed. 56 refs.; 20 figs

  7. Effect of cathode and anode plasma motion on current characteristics of pinch diode

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Sun Jianfeng; Li Jingya; He Xiaoping; Tang Junping; Li Hongyu; Wang Haiyang; Huang Jianjun; Ren Shuqing; Yang Li; Zou Lili

    2005-01-01

    The preliminary research results for the effect of cathode and anode plasma motion on current characteristics of the pinch ion diode on FLASH II accelerator are reported. The structure and principle of pinch reflex ion beam diode are introduced. The time dependent evolution of electron and ion flow in large aspect-ratio relativistic diodes is studied by analytic models. The equation of Child-langmuir, weak focused-flow, strong focused-flow and parapotential flow are corrected to reduce the diode A-C gap caused by the motion of cathode and anode plasma. The diode current and ion current are calculated with these corrected equations, and the results are consistent with the experimental data. The methods of increasing ion current and efficiency are also presented. The high power ion beam peak current about 160 kA with a peak energy about 500 keV was produced using water-dielectric transmission-line generators with super-pinch reflex ion diodes on FLASH II accelerator at Northwest Institute of Nuclear Technology (NINT). (authors)

  8. Charge Transport in 2D DNA Tunnel Junction Diodes

    KAUST Repository

    Yoon, Minho

    2017-11-06

    Recently, deoxyribonucleic acid (DNA) is studied for electronics due to its intrinsic benefits such as its natural plenitude, biodegradability, biofunctionality, and low-cost. However, its applications are limited to passive components because of inherent insulating properties. In this report, a metal-insulator-metal tunnel diode with Au/DNA/NiOx junctions is presented. Through the self-aligning process of DNA molecules, a 2D DNA nanosheet is synthesized and used as a tunneling barrier, and semitransparent conducting oxide (NiOx ) is applied as a top electrode for resolving metal penetration issues. This molecular device successfully operates as a nonresonant tunneling diode, and temperature-variable current-voltage analysis proves that Fowler-Nordheim tunneling is a dominant conduction mechanism at the junctions. DNA-based tunneling devices appear to be promising prototypes for nanoelectronics using biomolecules.

  9. Charge Transport in 2D DNA Tunnel Junction Diodes

    KAUST Repository

    Yoon, Minho; Min, Sung-Wook; Dugasani, Sreekantha Reddy; Lee, Yong Uk; Oh, Min Suk; Anthopoulos, Thomas D.; Park, Sung Ha; Im, Seongil

    2017-01-01

    Recently, deoxyribonucleic acid (DNA) is studied for electronics due to its intrinsic benefits such as its natural plenitude, biodegradability, biofunctionality, and low-cost. However, its applications are limited to passive components because of inherent insulating properties. In this report, a metal-insulator-metal tunnel diode with Au/DNA/NiOx junctions is presented. Through the self-aligning process of DNA molecules, a 2D DNA nanosheet is synthesized and used as a tunneling barrier, and semitransparent conducting oxide (NiOx ) is applied as a top electrode for resolving metal penetration issues. This molecular device successfully operates as a nonresonant tunneling diode, and temperature-variable current-voltage analysis proves that Fowler-Nordheim tunneling is a dominant conduction mechanism at the junctions. DNA-based tunneling devices appear to be promising prototypes for nanoelectronics using biomolecules.

  10. High sensitivity thermal sensors on insulating diamond

    Energy Technology Data Exchange (ETDEWEB)

    Job, R. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices; Denisenko, A.V. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices; Zaitsev, A.M. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices; Melnikov, A.A. [Belarussian State Univ., Minsk (Belarus). HEII and FD; Werner, M. [VDI/VDE-IT, Teltow (Germany); Fahrner, W.R. [Fernuniversitaet Hagen (Gesamthochschule) (Germany). Electron. Devices

    1996-12-15

    Diamond is a promising material to develop sensors for applications in harsh environments. To increase the sensitivity of diamond temperature sensors the effect of thermionic hole emission (TE) over an energetic barrier formed in the interface between highly boron-doped p-type and intrinsic insulating diamond areas has been suggested. To study the TE of holes a p-i-p diode has been fabricated and analyzed by electrical measurements in the temperature range between 300 K and 700 K. The experimental results have been compared with numerical simulations of its electrical characteristics. Based on a model of the thermionic emission of carriers into an insulator it has been suggested that the temperature sensitivity of the p-i-p diode on diamond is strongly affected by the re-emission of holes from a group of donor-like traps located at a level of 0.7-1.0 eV above the valence band. The mechanism of thermal activation of the current includes a spatial redistribution of the potential, which results in the TE regime from a decrease of the immobilized charge of the ionized traps within the i-zone of the diode and the correspondent lowering of the forward biased barrier. The characteristics of the p-i-p diode were studied with regard to temperature sensor applications. The temperature coefficient of resistance (TCR=-0.05 K{sup -1}) for temperatures above 600 K is about four times larger than the maximal attainable TCR for conventional boron-doped diamond resistors. (orig.)

  11. Mechanical properties considerations for use of epoxy insulators and bonded joints in neutral beam ion sources

    International Nuclear Information System (INIS)

    Doll, D.W.; Trester, P.W.; Staley, H.G.

    1981-10-01

    In the Doublet III (D-III) neutral beam injectors, cast, rigid-epoxy insulators are joined to the AISI 304 stainless steel corona rings with semi-rigid epoxy adhesive. Selected mechanical properties of these materials were measured between 11 0 C and 65 0 C, well below the material temperature limits, to identify the trends and to confirm adequate mechanical strength for the insulators. Significant creep deformation was measured at 22 0 C. Empirical relationships were developed to predict long term strain over a range of stress and temperature of design interest. Delayed failure was observed in bonded specimens at stress levels well below the ultimate strength. In order to protect the D-III neutral beam ion source epoxy from elevated temperature effects, a chill was installed in the cooling water circuit. Outgassing measurements of the insulator epoxy were made and found to be low and primarily H 2 O

  12. On the physics of ion ring generation for the stabilization of FRX discharges. Final report

    International Nuclear Information System (INIS)

    Fleischmann, H.

    1995-01-01

    As envisioned in the respective proposals, the author's work over the final periods of this contract centered on experimental and related theoretical investigations of the physics of the generation of ion rings which might be used for a tilt stabilization of FRX rings, with experiments centering around the new MICE equipment constructed during the earlier parts of the work. In particular, the work mainly consisted of the following: (i) investigations concerning the operation of the ion beam driver constructed earlier, especially of the magnetically insulated ion diode and possible improvements of that diode; (ii) theoretical analyses on the propagation and neutralization of the ion beam during its injection into the confinement tank; and (iii) experimental investigations on the physics of ion beam injection and ring formation in the MICE device; in these latter experiments very significant discrepancies of various observed data and those predicted from single-particle orbit calculations were found. Unfortunately, the work could not be completed due to stop in funding, but a semiquantitative analysis of these discrepancies indicated insufficient space charge neutralization of the ion beam in the tank and/or charge-exchange effects in the diode are considered the most likely reasons. In contrast to claims by its authors, a similar discrepancy also was found in the published data of the earlier IREX experiment. The results of their investigations, which together with the design and construction of the equipment provided the basis for two PhD theses, will be briefly described in this report; the full details can be obtained from the two theses

  13. Maximizing ion current rectification in a bipolar conical nanopore fluidic diode using optimum junction location.

    Science.gov (United States)

    Singh, Kunwar Pal

    2016-10-12

    The ion current rectification has been obtained as a function of the location of a heterojunction in a bipolar conical nanopore fluidic diode for different parameters to determine the junction location for maximum ion current rectification using numerical simulations. Forward current peaks for a specific location of the junction and reverse current decreases with the junction location due to a change in ion enrichment/depletion in the pore. The optimum location of the heterojunction shifts towards the tip with base/tip diameter and surface charge density, and towards the base with the electrolyte concentration. The optimum location of the heterojunction has been approximated by an equation as a function of pore length, base/tip diameter, surface charge density and electrolyte concentration. The study is useful to design a rectifier with maximum ion current rectification for practical purposes.

  14. Concentration-elastic-stress instabilities in the distribution of ions and neutral particles in the insulator layer at the semiconductor surface

    International Nuclear Information System (INIS)

    Gol'dman, E. I.

    2006-01-01

    Mobile impurities in the form of ions and neutral associations are present in the insulator films that isolate the semiconductor from the metal electrode. If temperatures and the polarizing electric field are sufficiently high, impurities concentrate at the insulator-semiconductor interface where they exchange electrons with the semiconductor. It is shown that the pairwise interaction of particles via the field of elastic stresses caused by the concentration-related expansion of the insulator can give rise to an instability in the impurity distribution that is uniform over the contact. The stationary small-scale ordering of the particles over the contact of the insulator with the semiconductor arises in the solution of point defects, which is accompanied by annular flows of the particles

  15. A thermal spike model of the amorphization of insulators by high-energy heavy-ion irradiation

    International Nuclear Information System (INIS)

    Szenes, G.

    1995-01-01

    Recently, experimental data on magnetic insulators irradiated with swift heavy ions were analyzed by a new thermal spike model and good quantitative agreement was achieved. Analytical expressions were given for the evolution of latent tracks with the electronic stopping power S e of bombarding ions and a relation between the thermal properties of the target and the threshold value of S e was proposed and proved experimentally. In the present paper, after a brief review of the model, the temperature dependence of latent track formation is discussed and the predictions of the model are compared with the available experimental results

  16. Modification of diode characteristics by electron back-scatter from high-atomic-number anodes

    International Nuclear Information System (INIS)

    Mosher, D.; Cooperstein, G.; Rose, D.V.; Swanekamp, S.B.

    1996-01-01

    In high-power vacuum diodes with high-atomic-number anodes, back-scattered electrons alter the vacuum space charge and resulting electron and ion currents. Electron multiple back-scattering was studied through equilibrium solutions of the Poisson equation for 1-dimensional, bipolar diodes in order to predict their early-time behavior. Before ion turn-on, back-scattered electrons from high-Z anodes suppress the diode current by about 10%. After ion turn-on in the same diodes, electron back-scatter leads to substantial enhancements of both the electron and ion currents above the Child-Langmuir values. Current enhancements with ion flow from low-Z anodes are small. (author). 5 figs., 7 refs

  17. Modification of diode characteristics by electron back-scatter from high-atomic-number anodes

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, D; Cooperstein, G [Naval Research Laboratory, Washington, DC (United States); Rose, D V; Swanekamp, S B [JAYCOR, Vienna, VA (United States)

    1997-12-31

    In high-power vacuum diodes with high-atomic-number anodes, back-scattered electrons alter the vacuum space charge and resulting electron and ion currents. Electron multiple back-scattering was studied through equilibrium solutions of the Poisson equation for 1-dimensional, bipolar diodes in order to predict their early-time behavior. Before ion turn-on, back-scattered electrons from high-Z anodes suppress the diode current by about 10%. After ion turn-on in the same diodes, electron back-scatter leads to substantial enhancements of both the electron and ion currents above the Child-Langmuir values. Current enhancements with ion flow from low-Z anodes are small. (author). 5 figs., 7 refs.

  18. Neutron activation system for spectral measurements of pulsed ion diode neutron production

    International Nuclear Information System (INIS)

    Hanson, D.L.; Kruse, L.W.

    1980-02-01

    A neutron energy spectrometer has been developed to study intense ion beam-target interactions in the harsh radiation environment of a relativistic electron beam source. The main component is a neutron threshold activation system employing two multiplexed high efficiency Ge(Li) detectors, an annihilation gamma coincidence system, and a pneumatic sample transport. Additional constraints on the neutron spectrum are provided by total neutron yield and time-of-flight measurements. A practical lower limit on the total neutron yield into 4π required for a spectral measurement with this system is approx. 10 10 n where the neutron yield is predominantly below 4 MeV and approx. 10 8 n when a significant fraction of the yield is above 4 MeV. Applications of this system to pulsed ion diode neutron production experiments on Hermes II are described

  19. Conduction and rectification in NbO{sub x}- and NiO-based metal-insulator-metal diodes

    Energy Technology Data Exchange (ETDEWEB)

    Osgood, Richard M., E-mail: richard.m.osgood.civ@mail.mil; Giardini, Stephen; Carlson, Joel [US Army Natick Soldier Research Development and Engineering Center (NSRDEC), 15 General Greene Ave., Natick, Massachusetts 01760 (United States); Periasamy, Prakash; Guthrey, Harvey; O' Hayre, Ryan [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado 80401 (United States); Chin, Matthew; Nichols, Barbara; Dubey, Madan [RF and Electronics Division, US Army Research Laboratory, Adelphi, Maryland 20783 (United States); Fernandes, Gustavo; Kim, Jin Ho; Xu, Jimmy [Division of Engineering, Brown University, Box D, Providence, Rhode Island 02912 (United States); Parilla, Philip; Berry, Joseph; Ginley, David [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2016-09-15

    Conduction and rectification in nanoantenna-coupled NbO{sub x}- and NiO-based metal-insulator-metal (MIM) diodes (“nanorectennas”) are studied by comparing new theoretical predictions with the measured response of nanorectenna arrays. A new quantum mechanical model is reported and agrees with measurements of current–voltage (I–V) curves, over 10 orders of magnitude in current density, from [NbO{sub x}(native)-Nb{sub 2}O{sub 5}]- and NiO-based samples with oxide thicknesses in the range of 5–36 nm. The model, which introduces new physics and features, including temperature, electron effective mass, and image potential effects using the pseudobarrier technique, improves upon widely used earlier models, calculates the MIM diode's I–V curve, and predicts quantitatively the rectification responsivity of high frequency voltages generated in a coupled nanoantenna array by visible/near-infrared light. The model applies both at the higher frequencies, when high-energy photons are incident, and at lower frequencies, when the formula for classical rectification, involving derivatives of the I–V curve, may be used. The rectified low-frequency direct current is well-predicted in this work's model, but not by fitting the experimentally measured I–V curve with a polynomial or by using the older Simmons model (as shown herein). By fitting the measured I–V curves with our model, the barrier heights in Nb-(NbO{sub x}(native)-Nb{sub 2}O{sub 5})-Pt and Ni-NiO-Ti/Ag diodes are found to be 0.41/0.77 and 0.38/0.39 eV, respectively, similar to literature reports, but with effective mass much lower than the free space value. The NbO{sub x} (native)-Nb{sub 2}O{sub 5} dielectric properties improve, and the effective Pt-Nb{sub 2}O{sub 5} barrier height increases as the oxide thickness increases. An observation of direct current of ∼4 nA for normally incident, focused 514 nm continuous wave laser beams are reported, similar in magnitude to recent reports

  20. Comparison of silicon pin diode detector fabrication processes using ion implantation and thermal doping

    International Nuclear Information System (INIS)

    Zhou, C.Z.; Warburton, W.K.

    1996-01-01

    Two processes for the fabrication of silicon p-i-n diode radiation detectors are described and compared. Both processes are compatible with conventional integrated-circuit fabrication techniques and yield very low leakage currents. Devices made from the process using boron thermal doping have about a factor of 2 lower leakage current than those using boron ion implantation. However, the boron thermal doping process requires additional process steps to remove boron skins. (orig.)

  1. High performance MIIM diode based on cobalt oxide/titanium oxide

    Science.gov (United States)

    Herner, S. B.; Weerakkody, A. D.; Belkadi, A.; Moddel, G.

    2017-05-01

    Optical rectennas for infrared energy harvesting commonly incorporate metal/double-insulator/metal diodes. Required diode characteristics include high responsivity and low resistance near zero bias with a sub-micron area, which have not been obtainable simultaneously. Diodes based on a new material set, Co/Co3O4/TiO2/Ti and an area of 0.071 μm2, provide a median maximum responsivity of 4.1 A/W, a median zero-bias responsivity of 1.2 A/W, and a median resistance of 14 kΩ. The highest performing diode has a maximum responsivity of 4.4 A/W, a zero-bias responsivity of 2.2 A/W, and a resistance of 18 kΩ.

  2. Radiation induced ion currents in vacuum due to residual He and H, and their expected effect on insulating surfaces

    International Nuclear Information System (INIS)

    Hodgson, E.R.; Morono, A.; Gonzalez de Vicente, S.M.

    2006-01-01

    Ceramic insulators and windows in ITER will be subjected to bombardment by energetic hydrogen isotopes and helium as a consequence of ionization of the residual gas by gamma radiation and acceleration of the ions by the local electric fields. Most of the energy carried by these particles will be deposited at or very near the surface giving rise to possible electrical and optical degradation. Severe surface electrical degradation has recently been observed when oxide materials are implanted to low doses (10 15 ions/cm 2 ) with protons and alpha particles at temperatures between 50 and 450 o C. In order to estimate the relevance to fusion applications and hence the lifetime of ceramic insulators in ITER it is necessary to quantify possible ion currents generated in the residual gas by measuring radiation induced electrical conductivity for hydrogen isotopes and helium gases at low pressures and then perform experiments in which ceramic candidate materials are subjected to ion bombardment at representative currents and energies. To determine the magnitude of radiation generated ion currents, experiments have been carried out in a special gas chamber mounted in the beam line of a 2 MeV Van de Graaff electron accelerator, with the gases being irradiated through an 0.05 x 10 -3 m thick aluminium window with 1.8 MeV electrons. A guarded volume was defined between two parallel square copper plate electrodes separated by 1.5 x 10 -2 m. The experimental set-up permitted an electric field to be applied to the irradiated volume of gas, and the electric current flowing through the ionized gas to be measured. For these experiments the radiation beam was perpendicular to the electric field direction. In this way radiation induced conductivity for helium and hydrogen has been measured at pressures between about 1000 and 10 -3 mbar (10 -5 to 10 -1 Pa), radiation dose rates of 30 Gy/s and applied voltages up to 1500 volts. The radiation induced electrical currents for low pressure

  3. Plasma filled diodes and application to a PEOS

    International Nuclear Information System (INIS)

    Grossmann, J.M.; Ottinger, P.F.; Drobot, A.T.; Seftor, L.

    1985-01-01

    Pinched beam diodes generally begin operation at large impedances until the diode has had time to turn on (at which point strong electric fields turn on electric emission at the cathode). Current turn-on is accompanied by a sharp drop in impedance and is accomplished initially through space charge limited flow. As the current increases, the diode impedance will be determined by critical current flow when the electron beam pinches. Eventually the diode shorts out by gap closure as the high density electrode plasmas expand cross the AK gap. After turn-on, then, the diode acts as a low impedance load which is favorable for coupling to a PEOS by allowing for strong insulation of the electron flow from the PEOS to the load. It would be advantageous when using a PEOS to have the impedance of the diode low even at early times. This can be accomplished by introducing a low density plasma in the region between the cathode and the anode. The plasma initially presents the PEOS with a low impedance current path at the load as the switch opens - thereby reducing current losses upstream of the load. As the switch opens, the impedance of the diode can increase as the diode plasma erodes away, and the diode gap opens

  4. Comparison of Ion Beam opening switch and plasma opening switch performance

    International Nuclear Information System (INIS)

    Greenly, J.R.; Rondeau, G.D.; Sheldon, H.T.; Dreike, P.L.

    1986-01-01

    The Ion Beam opening switch (IBOS) experiment has shown that an intense charge-neutralized ion beam can carry current across a vacuum magnetically-insulated transmission line and then transfer that current to a downstream load quickly. In the IBOS experiment, a 10 cm wide parallel plate transmission line was fed up to 100 kA peak current by a 4Ω, 100 ns pulser. An ion beam of up to 100 A/cm/sup 2/, 100-300 keV protons or carbon was injected through the anode of the line in a 10 cm x 10 cm region. The line terminated in either a 15 nH short circuit or an electron diode with variable gap. The ion beam switch was able to carry up to 70 kA of line current before load current began to flow. This model is also quantitatively consistent with the observation that switch conduction current is not linear with either injected ion beam current or switch area

  5. On Developing Field-Effect-Tunable Nanofluidic Ion Diodes with Bipolar, Induced-Charge Electrokinetics

    Directory of Open Access Journals (Sweden)

    Ye Tao

    2018-04-01

    Full Text Available We introduce herein the induced-charge electrokinetic phenomenon to nanometer fluidic systems; the design of the nanofluidic ion diode for field-effect ionic current control of the nanometer dimension is developed by enhancing internal ion concentration polarization through electrochemical transport of inhomogeneous inducing-counterions resulting from double gate terminals mounted on top of a thin dielectric layer, which covers the nanochannel connected to microfluidic reservoirs on both sides. A mathematical model based on the fully-coupled Poisson-Nernst-Plank-Navier-Stokes equations is developed to study the feasibility of this structural configuration causing effective ionic current rectification. The effect of various physiochemical and geometrical parameters, such as the native surface charge density on the nanochannel sidewalls, the number of gate electrodes (GE, the gate voltage magnitude, and the solution conductivity, permittivity, and thickness of the dielectric coating, as well as the size and position of the GE pair of opposite gate polarity, on the resulted rectification performance of the presented nanoscale ionic device is numerically analyzed by using a commercial software package, COMSOL Multiphysics (version 5.2. Three types of electrohydrodynamic flow, including electroosmosis of 1st kind, induced-charge electroosmosis, and electroosmosis of 2nd kind that were originated by the Coulomb force within three distinct charge layers coexist in the micro/nanofluidic hybrid network and are shown to simultaneously influence the output current flux in a complex manner. The rectification factor of a contrast between the ‘on’ and ‘off’ working states can even exceed one thousand-fold in the case of choosing a suitable combination of several key parameters. Our demonstration of field-effect-tunable nanofluidic ion diodes of double external gate electrodes proves invaluable for the construction of a flexible electrokinetic platform

  6. Design, Fabrication and Characterization of MIM Diodes and Frequency Selective Thermal Emitters for Solar Energy Harvesting and Detection Devices

    Science.gov (United States)

    Sharma, Saumya

    could be achieved in this case. These long chain polymeric molecules exhibit a two-dimensional molecular assembly thereby reducing the tunneling distance between the metal electrodes on either side of the insulating layer. Rectification ratios as high as 450:1 at +/-200mV were obtained for an MIM diode configuration of Ni-LB films of Arachidic Acid films-(Au/Pd). The bandwidth of the incident radiation that can be used by this rectenna assembly is limited to 9.5% of 30THz or +/-1.5THz from the center frequency based on the antenna designs which were proposed for this research. This bandwidth constraint has led to research in the field of frequency selective emitters capable of providing a narrowband emission around 30THz. Several grating structures were fabricated in the form of Ni-Si periodic arrays, in a cleanroom environment using photolithography, sputtering and deep reactive ion etching. These frequency selective samples were characterized with the help of focusing optics, monochromators and HgCdTe detectors. The results obtained from the emission spectra were utilized to calibrate a simulation model with Computer Simulation Technology (CST) which uses numerous robust solving techniques, such as the finite element method, in order to obtain the optical parameters for the model. Thereafter, a thorough analysis of the different dimensional and material parameters was performed, to understand their dependence on the emissivity of the selective emitter. Further research on the frequency selectivity of the periodic nano-disk or nano-hole array led to the temperature dependence of the simulated spectra, because the material parameters, such as refractive index or drude model collision frequency, vary with temperature. Thus, the design of frequency selective absorbers/emitters was found to be significantly affected with temperature range of operation of these structures.

  7. A flexible Li-ion battery with design towards electrodes electrical insulation

    Science.gov (United States)

    Vieira, E. M. F.; Ribeiro, J. F.; Sousa, R.; Correia, J. H.; Goncalves, L. M.

    2016-08-01

    The application of micro electromechanical systems (MEMS) technology in several consumer electronics leads to the development of micro/nano power sources with high power and MEMS integration possibility. This work presents the fabrication of a flexible solid-state Li-ion battery (LIB) (~2.1 μm thick) with a design towards electrodes electrical insulation, using conventional, low cost and compatible MEMS fabrication processes. Kapton® substrate provides flexibility to the battery. E-beam deposited 300 nm thick Ge anode was coupled with LiCoO2/LiPON (cathode/solid-state electrolyte) in a battery system. LiCoO2 and LiPON films were deposited by RF-sputtering with a power source of 120 W and 100 W, respectively. LiCoO2 film was annealed at 400 °C after deposition. The new design includes Si3N4 and LiPO thin-films, providing electrode electrical insulation and a battery chemical stability safeguard, respectively. Microstructure and battery performance were investigated by scanning electron microscopy, electric resistivity and electrochemical measurements (open circuit potential, charge/discharge cycles and electrochemical impedance spectroscopy). A rechargeable thin-film and lightweight flexible LIB using MEMS processing compatible materials and techniques is reported.

  8. Secondary emission ion analyzer provided with an electron gun for insulating material analysis

    International Nuclear Information System (INIS)

    Blanchard, Bruno; Carrier, Patrick; Marguerite, J.-L.; Rocco, J.-C.

    1976-01-01

    This invention relates to a secondary emission ion analyser, fitted with an electron gun. It is used in the mass spectrometry analysis of electrically insulating bodies. It has already been suggested to bombard the target with an electron beam in conjunction with the beam of primary particles, in order to reduce the space charge near the target. The object of this invention is the application of this known process to appliances of the ion analyser type with a high electric field near the target. Its main characteristic is the use of an electron gun emitting an electron beam through the extraction lens placed opposite the target. The extraction electric field influences the path of the electrons but the electric and mechanical specifications of the electron gun in the invention are such that the target is correctly sprayed by the electron beam [fr

  9. Measurement and simulation of the effects of ion-induced defects on ion beam-induced charge (IBIC) measurements in Si schottky diodes

    International Nuclear Information System (INIS)

    Hearne, S.M.; Lay, M.D.H.; Jamieson, D.N.

    2004-01-01

    Full text: The Ion Beam Induced Charge (IBIC) technique is a very sensitive tool for investigating the electronic properties of semiconductor materials and devices. However, obtaining quantitative information from IBIC experiments requires an accurate model of the materials properties. The interaction of high energy ions with crystalline materials is known to create point defects within the crystal. A significant proportion of defects introduced by the interaction of the ion with the crystal are electrically active and are therefore an important consideration when undertaking an IBIC experiment. The goal of this work is to investigate the possibility of including the relevant defect parameters in computer simulations of the IBIC experiment implemented using Technology Computer Aided Design (TCAD) software. We will present the results from an IBIC study on Si Schottky diodes using 1 MeV alphas. A reduction of greater than 50% in the detected IBIC signal was observed for fluences greater than 5x10 10 He + /cm 2 . The trap parameters following ion irradiation were determined experimentally using DLTS. Comparisons between the experimental IBIC results and TCAD simulations will be discussed

  10. Conduction and rectification in NbO x - and NiO-based metal-insulator-metal diodes

    Energy Technology Data Exchange (ETDEWEB)

    Osgood, Richard M.; Giardini, Stephen; Carlson, Joel; Periasamy, Prakash; Guthrey, Harvey; O' Hayre, Ryan; Chin, Matthew; Nichols, Barbara; Dubey, Madan; Fernandes, Gustavo; Kim, Jin Ho; Xu, Jimmy; Parilla, Philip; Berry, Joseph; Ginley, David

    2016-09-01

    Conduction and rectification in nanoantenna-coupled NbOx- and NiO-based metal-insulator-metal (MIM) diodes ('nanorectennas') are studied by comparing new theoretical predictions with the measured response of nanorectenna arrays. A new quantum mechanical model is reported and agrees with measurements of current-voltage (I-V) curves, over 10 orders of magnitude in current density, from [NbOx(native)-Nb2O5]- and NiO-based samples with oxide thicknesses in the range of 5-36 nm. The model, which introduces new physics and features, including temperature, electron effective mass, and image potential effects using the pseudobarrier technique, improves upon widely used earlier models, calculates the MIM diode's I-V curve, and predicts quantitatively the rectification responsivity of high frequency voltages generated in a coupled nanoantenna array by visible/near-infrared light. The model applies both at the higher frequencies, when high-energy photons are incident, and at lower frequencies, when the formula for classical rectification, involving derivatives of the I-V curve, may be used. The rectified low-frequency direct current is well-predicted in this work's model, but not by fitting the experimentally measured I-V curve with a polynomial or by using the older Simmons model (as shown herein). By fitting the measured I-V curves with our model, the barrier heights in Nb-(NbOx(native)-Nb2O5)-Pt and Ni-NiO-Ti/Ag diodes are found to be 0.41/0.77 and 0.38/0.39 eV, respectively, similar to literature reports, but with effective mass much lower than the free space value. The NbOx (native)-Nb2O5 dielectric properties improve, and the effective Pt-Nb2O5 barrier height increases as the oxide thickness increases. An observation of direct current of ~4 nA for normally incident, focused 514 nm continuous wave laser beams are reported, similar in magnitude to recent reports. This measured direct current is compared to the prediction for rectified direct current

  11. Equivalence of displacement radiation damage in superluminescent diodes induced by protons and heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xingji, E-mail: lxj0218@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Liu, Chaoming [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Lan, Mujie; Xiao, Liyi [Center of Micro-electronics, Harbin Institute of Technology, Harbin 150001 (China); Liu, Jianchun; Ding, Dongfa [Beijing Aerospace Times Optical-electronic Technology Co.Ltd, Beijing 100854 (China); Yang, Dezhuang; He, Shiyu [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-07-11

    The degradation of optical power for superluminescent diodes is in situ measured under exposures of protons with various energies (170 keV, 3 MeV and 5 MeV), and 25 MeV carbon ions for several irradiation fluences. Experimental results show that the optical power of the SLDs decreases with increasing fluence. The protons with lower energies cause more degradation in the optical power of SLDs than those with higher energies at a given fluence. Compared to the proton irradiation with various energies, the 25 MeV carbon ions induce more severe degradation to the optical power. To characterize the radiation damage of the SLDs, the displacement doses as a function of chip depth in the SLDs are calculated by SRIM code for the protons and carbon ions. Based on the irradiation testing and calculation results, an approach is given to normalize the equivalence of displacement damage induced by various charged particles in SLDs.

  12. A comparison of atom and ion induced SSIMS - evidence for a charge induced damage effect in insulator materials

    International Nuclear Information System (INIS)

    Brown, A.; Berg, J.A. van den; Vickerman, J.C.

    1985-01-01

    A static secondary ion mass spectrometry (SSIMS) study of two very low conductivity materials, polystyrene and niobium pentoxide, using on the one hand a primary ion beam with electron neutralisation, and on the other, atom bombardment, shows that whilst the initial spectra obtained were quite similar, subsequent damage effects were much greater under ion impact conditions. For an equivalent flux density the half-life of the polystyrene surface structure was four times longer under atom bombardment. Significant reduction of the niobium surface was observed under ion bombardment whereas an equivalent atom flux had little apparent effect on the surface oxidation state. These data suggest that the requirement to dissipate the charge delivered to the sample by the primary ion beam contributes significantly to the damage mechanisms in electrically insulating materials. (author)

  13. Generation of a cold, intense relativistic electron beam using a magnetized foilless diode

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Montgomery, M.D.; Parker, J.V.; Riepe, K.B.; Singer, S.

    1982-01-01

    An annular electron beam with less than 30 mrad of angular velocity spread, a radius of 1 cm, and a current density exceeding 0.4 MA/cm 2 has been generated with a magnetized foilless diode. The diode current loss is limited to less than a few percent by careful design of the tapered transition region connecting a self-magnetically insulated vacuum transmission line to the externally magnetized foilless diode. Details of the transition section design and operating characteristics of the electron beam generator are given

  14. Super high voltage Schottky diode with low leakage current for x- and γ-ray detector application

    International Nuclear Information System (INIS)

    Kosyachenko, L. A.; Sklyarchuk, V. M.; Sklyarchuk, O. F.; Maslyanchuk, O. L.; Gnatyuk, V. A.; Aoki, T.

    2009-01-01

    A significant improvement in x-/γ-ray detector performance has been achieved by forming both rectifying and near-Ohmic contacts by the deposition of Ni on opposite surfaces of semi-insulating CdTe crystals pretreated by special chemical etching and Ar-ion bombardment with different parameters. The reduced injection of the minority carriers from the near-Ohmic contact in the neutral part of the diode provides low leakage current even at high bias ( 2 at 2000 V and 293 K). The electrical properties of the detectors are well described quantitatively by the generation-recombination Sah-Noyce-Shockley theory excepting the high reverse voltage range where some injection of minority carriers takes place

  15. Electron injection in diodes with field emission

    International Nuclear Information System (INIS)

    Denavit, J.; Strobel, G.L.

    1986-01-01

    This paper presents self-consistent steady-state solutions of the space charge, transmitted current, and return currents in diodes with electron injection from the cathode and unlimited field emission of electrons and ions from both electrodes. Time-dependent particle simulations of the diode operation confirm the analytical results and show how these steady states are reached. The results are applicable to thermionic diodes and to photodiodes

  16. "Ion" B-Dot and Faraday Cup Results Located Inside The Cathode Knob Of The Self Magnetic Pinch (Smp) Diode (A New Diagnostic For Diode Behavior?)

    Energy Technology Data Exchange (ETDEWEB)

    Mazarakis, Michael G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kiefer, Mark L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Leckbee, Joshua J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nielsen, Dan S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ziska, Derek [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    This paper describes our effort to measure the back-streaming ions emitted from the target x-ray convertor and thus estimate the ion contribution to the A-K gap bipolar current flow. Knowing the ion contribution is quite important in order to calculate the expected x-ray dose and compare it with the actual measurements. Our plans were first to measure the total ion current using B-dot monitors, Rogowski coils, and Faraday cups and then to utilize filtered Faraday cups and time of flight techniques to identify and measure the various ionic species. The kinetic energy (velocities) of the ions should help evaluate the actual voltage applied at the anode-cathode (A-K) gap. LSP simulations found that the most prominent ions are protons and carbon single plus (C+). For an 8-MV A-K voltage, the estimated proton current back-streaming through an 1 cm in diameter hollow cathode tip was on the average 3 kA and the carbon current 0.7 kA. Since only a small fraction of the ions will make it through the cylindrical aperture, the corresponding total currents were calculated to be respectively 25kA for proton and 7 kA for carbon ions, a quite substantial contribution to the total bipolar beam current. Hence, approximately only 10% of the total back-streaming ionic currents could make it through the hollow cathode tip aperture. Unfortunately the diagnostic cables connecting the Faraday cup and the B-dot monitors to the screen room scopes experienced a large amount of charge pick-up that obliterated our effort to directly measure those relatively small currents. However, we succeeded in measuring those currents indirectly with activation techniques [Contribution of the back-streaming ions to the self-magnetic pinch (SMP) diode Current., M. G. Mazarakis, M. G. Mazarakis, M. E. Cuneo, S. D. Fournier, M. D. Johnston, M. L. Kiefer, J. J. Leckbee, D. S. Nielsen, B.V.Oliver, M. E. Sceiford, S. C. Simpson, T. J. Renk, C. L. Ruiz, T. J. Webb, and D. Ziska. Subitted for publication.]. In

  17. Refractive index gradient diagnostics: analysis of different optical systems and application to COBRA ion diode

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, B A; Greenly, J B; Hammer, D A; Krastelev, E G [Cornell Univ., Ithaca, NY (United States). Laboratory of Plasma Studies; Cuneo, M E [Sandia National Laboratories, Albuquerque, NM (United States)

    1997-12-31

    Different optical system variations for refractive index gradient diagnostics with a laser beam probe have been analyzed. A `three-telescope` optical system which permits simultaneous measurement of both the laser beam centroid deflection by a bi-cell photodiode and the spatial Fourier spectrum of the deflected beam by a streak camera has been implemented on the COBRA ion diode. The dynamics of the anode plasma layer was studied with these techniques. (author). 3 figs., 8 refs.

  18. LEVIS active anode lithium ion source development on PBFA-II

    International Nuclear Information System (INIS)

    Renk, T.J.; Tisone, G.C.; Adams, R.G.; Clark, B.F.; Reyes, C.; Bailey, J.E.; Filuk, A.B.; Desjarlais, M.P.; Johnson, D.J.; Carlson, A.L.; Lake, P.

    1993-01-01

    Experiments are ongoing on the PBFA-II Accelerator (10 MV typical, 50 ns) to optimize an active lithium ion source in a 15-cm focusing Applied-B ion diode using the LEVIS (Laser Evaporation Ion Source) process. Two laser pulses impinge on a thin (500 nm) Li or Li-bearing alloy on an insulating substrate. A Nd:YAG laser beam (1 μm, 8 ns, 0.1--0.2 J/cm 2 ) creates a thin (∼1 mm) Li vapor, which is then ionized by a 30--60 mJ/cm 2 dye laser tuned to the first resonant transition of Li (670.8 nm). In order to achieve a high-purity Li beam on PBFA-II with LEVIS, it has proven necessary to clean the anode surface in some way. The principal technique has been DC-heating of the anode to temperatures of 150--200 C for typically 5 hours, and for as long as 13 hours, prior to machine firing. Use of a LiAg alloy and YAG energy densities of 200 mJ/cm 2 have yielded beams of Li purity greater than 90%. They authors also plan to test a diode configuration that deposits Li in-situ on the anode surface just prior to the machine shot, as an alternative to DC-heating

  19. Secondary ions mass spectroscopy measurements of dopant impurities in highly stressed InGaN laser diodes

    International Nuclear Information System (INIS)

    Marona, L.; Suski, T.; Perlin, P.; Czernecki, R.; Leszczynski, M.; Bockowski, M.; Jakiela, R.; Najda, S. P.

    2011-01-01

    We performed a systematic secondary ions mass spectroscopy (SIMS) study of dopant impurities in life-time stressed InGaN laser devices in order to investigate the main degradation mechanism that is observed in nitride laser diodes. A continuous wave (cw) current density of 3 kA/cm 2 was applied to InGaN laser diodes over an extended period of time and we observed the characteristic square root degradation of optical power. We compared the SIMS profiles of Mg, H, and Si impurities in the aged devices and observe that the impurities are remarkably stable over 10 000 h of cw operation. Nor is there any SIMS evidence of p-contact metals penetrating into the semiconductor material. Thus our SIMS results are contrary to what one would expect for impurity diffusion causing the observed square root degradation characteristic.

  20. Destructive Single-Event Effects in Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Campola, Michael J.; Wilcox, Edward P.; Phan, Anthony M.; Label, Kenneth A.

    2017-01-01

    In this work, we discuss the observed single-event effects in a variety of types of diodes. In addition, we conduct failure analysis on several Schottky diodes that were heavy-ion irradiated. High- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images are used to identify and describe the failure locations.

  1. Optical effects of ion implantation

    International Nuclear Information System (INIS)

    Townsend, P.D.

    1987-01-01

    The review concerns the effects of ion implantation that specifically relate to the optical properties of insulators. Topics which are reviewed include: ion implantation, ion range and damage distributions, colour centre production by ion implantation, high dose ion implantation, and applications for integrated optics. Numerous examples are presented of both diagnostic and industrial examples of ion implantation effects in insulators. (U.K.)

  2. Foil-less plasma-filled diode for HPM generator

    International Nuclear Information System (INIS)

    Eltchaninov, A A; Kovalchuk, B M; Kurkan, I K; Zherlitsyn, A A

    2014-01-01

    Plasma-filled diode regarded as perspective source of electron beam feeding HPM generator of GW power level, comparing to conventional explosive emission vacuum diode. Electron beam generation occurs in plasma double layer, where plasma boundary plays as an anode. It allows cancelling the usage of anode foils or grids in HPM generators with the virtual cathode, which could limit its life time to few shots. The presence of ions in the e-beam drift space could raise the limiting current for a drift space, but it could affect to microwave generation also. Sectioned plasma-filled diode with beam current of about 100 kA, electron beam energy of about 0.5 MV and beam current density of 1-10 kA/cm 2 was realized. Cylindrical transport channel with the diameter of 200 mm and the length of about 30 cm was attached to the diode. Beam current measurements in a drift space were performed. Computer simulations of electron beam transport with the presence of ions were carried out with the 2.5D axisymmetric version of PiC-code KARAT. Obtained results would help optimizing electrodynamic system of HPM generator subjected to the presence of ions

  3. PROTO-II: a short pulse water insulated accelerator

    International Nuclear Information System (INIS)

    Martin, T.H.; VanDevender, J.P.; Johnson, D.L.; McDaniel, D.H.; Aker, M.

    1975-01-01

    A new accelerator, designated Proto-II, is presently under construction at Sandia Laboratories. Proto-II will have a nominal output of 100 kJ into a two-sided diode at a voltage of 1.5 MV and a total current of over 6 MA for 24 ns. This accelerator will be utilized for electron beam fusion experiments and for pulsed power and developmental studies leading to a proposed further factor of five scale-up in power. The design of Proto-II is based upon recent water switching developments and represents a 10-fold extrapolation of those results. Initial testing of Proto-II is scheduled to begin in 1976. Proto-II power flow starts with eight Marx generators which charge 16 water-insulated storage capacitors. Eight triggered, 3 MV, SF 6 gas-insulated switches next transfer the energy through oil-water interfaces into the first stage of 16 parallel lines. Next, the 16 first stages transfer their energy into the pulse forming lines and fast switching sections.The energy is then delivered to two converging, back-to-back, disk-shaped transmission line. Two back-to-back diodes then form the electron beams which are focused onto a common anode

  4. Anode plasma dynamics in the self-magnetic-pinch diode

    Directory of Open Access Journals (Sweden)

    Nichelle Bruner

    2011-02-01

    Full Text Available The self-magnetic-pinch diode is being developed as an intense electron beam source for pulsed-power-driven x-ray radiography. In high-power operation, the beam electrons desorb contaminants from the anode surface from which positive ions are drawn to the cathode. The counterstreaming electrons and ions establish an equilibrium current. It has long been recognized, however, that expanding electrode plasmas can disrupt this equilibrium and cause rapid reduction of the diode impedance and the radiation pulse. Recently developed numerical techniques, which enable simultaneous modeling of particle currents with 10^{13}  cm^{-3} densities to plasmas of near solid density, are applied to a model of the self-magnetic-pinch diode which includes the formation and evolution of anode surface plasmas. Two mechanisms are shown to cause rapid impedance loss, anode plasma expansion into the anode-cathode (A-K gap, and increased ion space-charge near the cathode surface. The former mechanism dominates for shorter A-K gaps, while the latter dominates for longer gaps. Model results qualitatively reproduce the time-dependent impedances measured for this diode.

  5. Fabrication and electrical characteristics for MIS diode by utilizing TiO2 ceramics

    International Nuclear Information System (INIS)

    Bae, S.H.

    1981-01-01

    Metal insulator semiconductor diodes were made by utilizing TiO 2 ceramics. Tunnel field emission is here proposed as a model for rectification in TiO 2 diode. Measurements of junction depth show very satisfactory agreement with value obtained from the Richardson plot, thus serving as additional supporting evidence of field emission in TiO 2 ceramic. The measured junction area exceeds by a factor of 10 6 the value expected by assuming field emission. The Richardson plot shows a deviation from the emission theory at low voltage, which is probably due to leakage currents which are present in MIS rutile diode. (author)

  6. Focusing studies of an applied Br extraction diode on the LION accelerator

    International Nuclear Information System (INIS)

    Struckman, C.K.; Kusse, B.R.; Rondeau, G.

    1990-01-01

    The LION Accelerator, 1.5 MV, 4 Ω, is being used to study the characteristics of an applied B r extraction diode. The diode utilizes both an inner and outer cathode and has been observed to operate at high ion current efficiencies compared to previous extraction diodes. Typical efficiencies were measured to be ∼80% which compares very favorably with the efficiencies seen in applied B z diodes. In this paper, the authors report the results of a series of experiments examining the role of the inner cathode in electron loss and ion emission. In addition, operation with an argon gas cell is reported. The ion beam appears to be space-charge neutralized by the gas cell foil alone, and current neutralized when the gas cell pressure is above 100 mT

  7. Progress toward a microsecond duration, repetitive, intense-ion beam for active spectroscopic measurements on ITER

    International Nuclear Information System (INIS)

    Davis, H.A.; Bartsch, R.R.; Barnes, C.W.

    1996-01-01

    The authors describe the design of an intense, pulsed, repetitive, neutral beam based on magnetically insulated diode technology for injection into ITER for spectroscopic measurements of thermalizing alpha particle and thermal helium density profiles, ion temperature, plasma rotation, and low Z impurity concentrations in the confinement region. The beam is being developed to enhance low signal-to-noise ratios expected with conventional steady-state ion beams because of severe beam attenuation and intense bremstrahlung emission. A 5 GW (e.g., 100 keV, 50 kA) one-microsecond-duration beam would increase the signal by 10 3 compared to a conventional 5 MW beam with signal-to-noise ratios comparable to those from a chopped conventional beam in one second

  8. High performance vertical tunneling diodes using graphene/hexagonal boron nitride/graphene hetero-structure

    Energy Technology Data Exchange (ETDEWEB)

    Hwan Lee, Seung; Lee, Jia; Ho Ra, Chang; Liu, Xiaochi; Hwang, Euyheon [Samsung-SKKU Graphene Center (SSGC), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Sup Choi, Min [Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Hee Choi, Jun [Frontier Research Laboratory, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Yongin, Gyeonggi-do 446-711 (Korea, Republic of); Zhong, Jianqiang; Chen, Wei [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Jong Yoo, Won, E-mail: yoowj@skku.edu [Samsung-SKKU Graphene Center (SSGC), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2014-02-03

    A tunneling rectifier prepared from vertically stacked two-dimensional (2D) materials composed of chemically doped graphene electrodes and hexagonal boron nitride (h-BN) tunneling barrier was demonstrated. The asymmetric chemical doping to graphene with linear dispersion property induces rectifying behavior effectively, by facilitating Fowler-Nordheim tunneling at high forward biases. It results in excellent diode performances of a hetero-structured graphene/h-BN/graphene tunneling diode, with an asymmetric factor exceeding 1000, a nonlinearity of ∼40, and a peak sensitivity of ∼12 V{sup −1}, which are superior to contending metal-insulator-metal diodes, showing great potential for future flexible and transparent electronic devices.

  9. The light ion pulsed power induction accelerator for ETF

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Olson, R.E.; Olson, C.L.; Smith, D.L.; Bennett, L.F.

    1994-01-01

    Our Engineering Test Facility (ETF) driver concept is based on HERMES III and RHEPP technologies. Actually, it is a scaled-down version of the LMF design incorporating repetition rate capabilities of up to 10 Hz CW. The preconceptual design presented here provides 200-TW peak power to the ETF target during 10 ns, equal to 2-MJ total ion beam energy. Linear inductive voltage addition driving a self-magnetically insulated transmission line (MITL) is utilized to generate the 36-MV peak voltage needed for lithium ion beams. The ∼ 3-MA ion current is achieved by utilizing many accelerating modules in parallel. Since the current per module is relatively modest (∼300 kA), two-stage or one-stage extraction diodes can be utilized for the generation of singly charged lithium ions. The accelerating modules are arranged symmetrically around the fusion chamber in order to provide uniform irradiation onto the ETF target. In addition, the modules are fired in a programmed sequence in order to generate the optimum power pulse shape onto the target. This design utilizes RHEPP accelerator modules as the principal power source

  10. High repetition rate intense ion beam source

    International Nuclear Information System (INIS)

    Hammer, D.A.; Glidden, S.C.; Noonan, B.

    1992-01-01

    This final report describes a ≤ 150kV, 40kA, 100ns high repetition rate pulsed power system and intense ion beam source which is now in operation at Cornell University. Operation of the Magnetically-controlled Anode Plasma (MAP) ion diode at > 100Hz (burst mode for up to 10 pulse bursts) provides an initial look at repetition rate limitations of both the ion diode and beam diagnostics. The pulsed power systems are capable of ≥ 1kHz operation (up to 10 pulse bursts), but ion diode operation was limited to ∼100Hz because of diagnostic limitations. By varying MAP diode operating parameters, ion beams can be extracted at a few 10s of keV or at up to 150keV, the corresponding accelerating gap impedance ranging from about 1Ω to about 10Ω. The ability to make hundreds of test pulses per day at an average repetition rate of about 2 pulses per minute permits statistical analysis of diode operation as a function of various parameters. Most diode components have now survived more than 10 4 pulses, and the design and construction of the various pulsed power components of the MAP diode which have enabled us to reach this point are discussed. A high speed data acquisition system and companion analysis software capable of acquiring pulse data at 1ms intervals (in bursts of up to 10 pulses) and processing it in ≤ min is described

  11. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes

    Science.gov (United States)

    Zhang, Liuqi; Yang, Xiaolei; Jiang, Qi; Wang, Pengyang; Yin, Zhigang; Zhang, Xingwang; Tan, Hairen; Yang, Yang (Michael); Wei, Mingyang; Sutherland, Brandon R.; Sargent, Edward H.; You, Jingbi

    2017-06-01

    Inorganic perovskites such as CsPbX3 (X=Cl, Br, I) have attracted attention due to their excellent thermal stability and high photoluminescence quantum efficiency. However, the electroluminescence quantum efficiency of their light-emitting diodes was CsPbBr3 lattice and by depositing a hydrophilic and insulating polyvinyl pyrrolidine polymer atop the ZnO electron-injection layer to overcome these issues. As a result, we obtained light-emitting diodes exhibiting a high brightness of 91,000 cd m-2 and a high external quantum efficiency of 10.4% using a mixed-cation perovskite Cs0.87MA0.13PbBr3 as the emitting layer. To the best of our knowledge, this is the brightest and most-efficient green perovskite light-emitting diodes reported to date.

  12. Electronic and interface state density properties of Cu/n-Si MIS-type diode

    Energy Technology Data Exchange (ETDEWEB)

    Yakuphanoglu, Fahrettin [Physics Department, Firat University, Elazig 23169 (Turkey)]. E-mail: fyhanoglu@firat.edu.tr

    2007-05-01

    Electronic and interface-state density properties of the Cu/n-Si diode were investigated by current-voltage and capacitance-voltage (C-V) analyses. The electronic parameters such as barrier height, ideality factor and series resistance of the diode were determined by performing different plots. The barrier height, ideality factor and series resistance values of the diode were found to be 0.69 eV, 5.31 and 7.63 k{omega}, respectively. The obtained ideality factor confirms that the Cu/n-Si device has a metal-insulator-semiconductor (MIS) configuration. The conductance mechanism of the Cu/n-Si diode is in agreement with typical of hopping conduction in polycrystalline and amorphous materials. The interface state density of the diode was found to vary from 1.45x10{sup 13} (eV{sup -1} cm{sup 2}) at E {sub C}-0.45 eV to 0.88x10{sup 13} (eV{sup -1} cm{sup 2}) at E {sub C}-0.66 eV.

  13. AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with reduced leakage current and enhanced breakdown voltage using aluminum ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shichuang [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Fu, Kai, E-mail: kfu2009@sinano.ac.cn, E-mail: cqchen@mail.hust.edu.cn; Yu, Guohao; Zhang, Zhili; Song, Liang; Deng, Xuguang; Li, Shuiming; Sun, Qian; Cai, Yong; Zhang, Baoshun [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Qi, Zhiqiang; Dai, Jiangnan; Chen, Changqing, E-mail: kfu2009@sinano.ac.cn, E-mail: cqchen@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-01-04

    This letter has studied the performance of AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors on silicon substrate with GaN buffer treated by aluminum ion implantation for insulating followed by a channel regrown by metal–organic chemical vapor deposition. For samples with Al ion implantation of multiple energies of 140 keV (dose: 1.4 × 10{sup 14} cm{sup −2}) and 90 keV (dose: 1 × 10{sup 14} cm{sup −2}), the OFF-state leakage current is decreased by more than 3 orders and the breakdown voltage is enhanced by nearly 6 times compared to the samples without Al ion implantation. Besides, little degradation of electrical properties of the 2D electron gas channel is observed where the maximum drain current I{sub DSmax} at a gate voltage of 3 V was 701 mA/mm and the maximum transconductance g{sub mmax} was 83 mS/mm.

  14. Development of a Laser Induced Fluorescence (LIF) System with a Tunable Diode Laser

    International Nuclear Information System (INIS)

    Woo, Hyun Jong; Do, Jeong Jun; You, Hyun Jong; Choi, Geun Sik; Lee, Myoung Jae; Chung, Kyu Sun

    2005-01-01

    The Laser Induced Fluorescence (LIF) is known as one of the most powerful techniques for measurements of ion velocity distribution function (IVDF) and ion temperature by means of Doppler broadening and Doppler shift. The dye lasers are generally used for LIF system with 611.66 nm (in vac.) for Ar ion, the low power diode laser was also proposed by Severn et al with the wavelength of 664.55 nm and 668.61 nm (in vac.) for Ar ion. Although the diode laser has the disadvantages of low power and small tuning range, it can be used for LIF system at the low temperature plasmas. A tunable diode laser with 668.614 nm of center wavelength and 10 GHz mode hop free tuning region has been used for our LIF system and it can be measured the ion temperature is up to 1 eV. The ion temperature and velocity distribution function have been measured with LaB6 plasma source, which is about 0.23 eV with Ar gas and 2.2 mTorr working pressure

  15. Pulsed power ion accelerators for inertially confined fusion

    International Nuclear Information System (INIS)

    Olson, C.L.

    1976-01-01

    Current research is described on pulsed power ion accelerators for inertial fusion, i.e., ion diodes and collective accelerators. Particle beam energy and power requirements for fusion, and basic deposition characteristics of charged particle beams are discussed. Ion diodes and collective accelerators for fusion are compared with existing conventional accelerators

  16. Photolithography-free fabrication of organic light-emitting diodes for lighting applications

    International Nuclear Information System (INIS)

    Seo, I H; Shin, D C; Park, J W

    2013-01-01

    We investigate the photolithography-free fabrication of organic light-emitting diodes (OLEDs) for lighting applications with an attempt to embed the deposition and patterning process of an indium–tin–oxide (ITO) anode and insulating layer into an in-line-type organic evaporation system. This scheme inevitably brings in leakage current induced by the spike-like surface of ITO. To suppress it, we cover the ITO edges with three different insulation materials (i.e. sputter-deposited inorganic Al 2 O 3 thin film, monomer (polymer) thin film deposited by organic acrylate evaporation or thermally evaporated organic insulation layer (tris-(8-hydroxyquinoline) aluminum (Alq 3 ))). Although small-molecule organic insulation materials that can be thermally evaporated are the most suitable for such a cost-effective fabrication process, yet their insulation capability is low due to the carrier transporting property. In this paper, we demonstrate that it can be boosted to a great extent with an increase of their thickness. It is likely that pinholes existing on the Al 2 O 3 thin film act as leak channels, degrading the device performance. We also verify that the insulation capability of polymer fabricated by organic acrylate evaporation is just comparable with that of polyimide (PI) insulator patterned using a standard photolithography process. (paper)

  17. Evaluation of bipolar pulse generator for high-purity pulsed ion beam

    International Nuclear Information System (INIS)

    Ito, H.; Kitamura, I.; Masugata, K.

    2008-01-01

    A new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)' has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the experimental results of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PEL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time. At present the bipolar pulse generator is installed in the B y type magnetically insulated ion diode and we carry out the experiment on the production of an intense pulsed ion beam by the bipolar pulse accelerator. (author)

  18. Simulation of a two-dimensional sheath over a flat insulator-conductor interface on a radio-frequency biased electrode in a high-density plasma

    International Nuclear Information System (INIS)

    Kim, Doosik; Economou, Demetre J.

    2004-01-01

    A combined fluid/Monte Carlo (MC) simulation was developed to study the two-dimensional (2D) sheath over a flat insulator/conductor interface on a radio-frequency (rf) biased electrode in a high-density plasma. The insulator capacitance increased the local impedance between the plasma and the bias voltage source. Thus, for uniform ion density and electron temperature far away from the wall, the sheath potential over the insulator was only a fraction of that over the conductor, resulting in a thinner sheath over the insulator. The fluid model provided the spatiotemporal profiles of the 2D sheath electric field. These were used as input to the MC simulation to compute the ion energy distribution (IED) and ion angular distribution (IAD) at different locations on the surface. The ion flux, IED, and IAD changed drastically across the insulator/conductor interface due to the diverging rf electric field in the distorted sheath. The ion flux was larger on the conductor at the expense of that on the insulator. Both the ion impact angle and angular spread increased progressively as the material interface was approached. The ion impact energy and energy spread were smaller on the insulator as compared to the conductor. For given plasma parameters, as the insulator thickness was increased, the sheath potential and thickness over the insulator decreased, and sheath distortion became more pronounced

  19. A Low-Noise X-ray Astronomical Silicon-On-Insulator Pixel Detector Using a Pinned Depleted Diode Structure.

    Science.gov (United States)

    Kamehama, Hiroki; Kawahito, Shoji; Shrestha, Sumeet; Nakanishi, Syunta; Yasutomi, Keita; Takeda, Ayaki; Tsuru, Takeshi Go; Arai, Yasuo

    2017-12-23

    This paper presents a novel full-depletion Si X-ray detector based on silicon-on-insulator pixel (SOIPIX) technology using a pinned depleted diode structure, named the SOIPIX-PDD. The SOIPIX-PDD greatly reduces stray capacitance at the charge sensing node, the dark current of the detector, and capacitive coupling between the sensing node and SOI circuits. These features of the SOIPIX-PDD lead to low read noise, resulting high X-ray energy resolution and stable operation of the pixel. The back-gate surface pinning structure using neutralized p-well at the back-gate surface and depleted n-well underneath the p-well for all the pixel area other than the charge sensing node is also essential for preventing hole injection from the p-well by making the potential barrier to hole, reducing dark current from the Si-SiO₂ interface and creating lateral drift field to gather signal electrons in the pixel area into the small charge sensing node. A prototype chip using 0.2 μm SOI technology shows very low readout noise of 11.0 e - rms , low dark current density of 56 pA/cm² at -35 °C and the energy resolution of 200 eV(FWHM) at 5.9 keV and 280 eV (FWHM) at 13.95 keV.

  20. Positron Annihilation in Insulating Materials

    International Nuclear Information System (INIS)

    Asoka-Kumar, P; Sterne, PA

    2002-01-01

    We describe positron results from a wide range of insulating materials. We have completed positron experiments on a range of zeolite-y samples, KDP crystals, alkali halides and laser damaged SiO 2 . Present theoretical understanding of positron behavior in insulators is incomplete and our combined theoretical and experimental approach is aimed at developing a predictive understanding of positrons and positronium annihilation characteristics in insulators. Results from alkali halides and alkaline-earth halides show that positrons annihilate with only the halide ions, with no apparent contribution from the alkali or alkaline-earth cations. This contradicts the results of our existing theory for metals, which predicts roughly equal annihilation contributions from cation and anion. We also present result obtained using Munich positron microprobe on laser damaged SiO 2 samples

  1. Ion-solid interactions for materials modification and processing

    International Nuclear Information System (INIS)

    Poker, D.B.; Ila, D.; Cheng, Y.T.; Harriott, L.R.; Sigmon, T.W.

    1996-01-01

    Topics ranged from the very fundamental ion-solid interactions to the highly device-oriented semiconductor applications. Highlights of the symposium featured in this volume include: nanocrystals in insulators, plasma immersion ion implantation. Focused ion beams, molecular dynamics simulations of ion-surface interactions, ion-beam mixing of insulators, GeV ion irradiation, electro-optical materials, polymers, tribological materials, and semiconductor processing. Separate abstracts were prepared for most papers in this volume

  2. Quantum dot resonant tunneling diode single photon detector with aluminum oxide aperture defined tunneling area

    DEFF Research Database (Denmark)

    Li, H.W.; Kardynal, Beata; Ellis, D.J.P.

    2008-01-01

    Quantum dot resonant tunneling diode single photon detector with independently defined absorption and sensing areas is demonstrated. The device, in which the tunneling is constricted to an aperture in an insulating layer in the emitter, shows electrical characteristics typical of high quality res...

  3. Patient dosimetry quality assurance program with a commerical diode system

    International Nuclear Information System (INIS)

    Lee, P.C.; Sawicka, J.M.; Glasgow, G.P.

    1994-01-01

    The purpose was to evaluate a commercial silicone diode dosimeter for a patient dosimetry quality assurance program. The diode dosimeter was calibrated against an ion chamber, and percentage depth dose, linearity, anisotrophy, virtual source position, and field size factor studies were performed. Correction factors for lack of full scatter medium in the diode entrance and exit dose measurements were acquired. Dosimetry equations were proposed for calculation of dose delivered at isocenter. Diode dose accuracy and reproducibility were tested on phantom and on four patients. A patient dosimetry quality assurance program based on diode-measured dose was instituted and patient dose data were collected. Diode measured percentage depth dose and field factors agreed to within 3% with those measured with an ion chamber. The diode exhibited less than 1.7% angular dose anisotrophy and less than 0.5% nonlinearity up to 4 Gy. Diode dose measurements in phantom showed that the calculated doses differed from the prescribed dose by less than 1.%; the diode exhibited a daily dose reproducibility of better than 0.2%. On four selected patients, the measured dose reproducibility was 1.5%; the average calculated doses were all within ± 7% of the prescribed doses. For 33 of 40 patients treated with a 6 MW beam, measured doses were within ± 7% of the prescribed doses. For 11 out of 12 patients, a second repeat measurements yielded doses within ± 7% of the prescribed doses. The proposed diode-based patient dosimetry quality assurance program with dose tolerance at ± 7% is simple and feasible. It is capable of detecting certain serious treatment errors such as incorrect daily dose greater than 7%, incorrect wedge use, incorrect photon energy and patient setup errors involving some incorrect source-to-surface-distance vs. source-to-axis-distance treatments. 13 refs., 5 figs., 5 tabs

  4. Dynamics of modification of Ni/n-GaN Schottky barrier diodes irradiated at low temperature by 200 MeV Ag14+ ions

    International Nuclear Information System (INIS)

    Kumar, Ashish; Kumar, Tanuj; Kanjilal, D.; Hähnel, A.; Singh, R.

    2014-01-01

    Ni/GaN Schottky barrier diodes were irradiated with 200 MeV Ag ions up to fluence of 1 × 10 11 ions/cm 2 at the substrate temperature of 80 K. Post-irradiation current-voltage measurements showed that the ideality factor, n increased and the reverse leakage current, I R decreased with increase in fluence. But Schottky barrier height, ϕ b increased only marginally with increase in ion fluence. In situ resistivity measurements showed orders of magnitude increase in resistivity of GaN epitaxial film with irradiation fluence. Cross-sectional transmission electron microscopy images revealed the presence of defect clusters in bulk GaN after irradiation

  5. Magnetic discharge accelerating diode for the gas-filled pulsed neutron generators based on inertial confinement of ions

    International Nuclear Information System (INIS)

    Kozlovskij, K I; Shikanov, A E; Vovchenko, E D; Shatokhin, V L; Isaev, A A; Martynenko, A S

    2016-01-01

    The paper deals with magnetic discharge diode module with inertial electrostatic ions confinement for the gas-filled pulsed neutron generators. The basis of the design is geometry with the central hollow cathode surrounded by the outer cylindrical anode and electrodes made of permanent magnets. The induction magnitude about 0.1-0.4 T in the central region of the discharge volume ensures the confinement of electrons in the space of hollow (virtual) cathode and leads to space charge compensation of accelerated ions in the centre. The research results of different excitation modes in pulsed high-voltage discharge are presented. The stable form of the volume discharge preserveing the shape and amplitude of the pulse current in the pressure range of 10 -3 -10 -1 Torr and at the accelerating voltage up to 200 kV was observed. (paper)

  6. High temperature annealing effects on deep-level defects in a high purity semi-insulating 4H-SiC substrate

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Naoya, E-mail: naoya.iwamoto@smn.uio.no; Azarov, Alexander; Svensson, Bengt G. [Department of Physics, Center for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo (Norway); Ohshima, Takeshi [Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, 370-1292 Gunma (Japan); Moe, Anne Marie M. [Washington Mills AS, N-7300 Orkanger (Norway)

    2015-07-28

    Effects of high-temperature annealing on deep-level defects in a high-purity semi-insulating 4H silicon carbide substrate have been studied by employing current-voltage, capacitance-voltage, junction spectroscopy, and chemical impurity analysis measurements. Secondary ion mass spectrometry data reveal that the substrate contains boron with concentration in the mid 10{sup 15 }cm{sup −3} range, while other impurities including nitrogen, aluminum, titanium, vanadium and chromium are below their detection limits (typically ∼10{sup 14 }cm{sup −3}). Schottky barrier diodes fabricated on substrates annealed at 1400–1700 °C exhibit metal/p-type semiconductor behavior with a current rectification of up to 8 orders of magnitude at bias voltages of ±3 V. With increasing annealing temperature, the series resistance of the Schottky barrier diodes decreases, and the net acceptor concentration in the substrates increases approaching the chemical boron content. Admittance spectroscopy results unveil the presence of shallow boron acceptors and deep-level defects with levels in lower half of the bandgap. After the 1400 °C annealing, the boron acceptor still remains strongly compensated at room temperature by deep donor-like levels located close to mid-gap. However, the latter decrease in concentration with increasing annealing temperature and after 1700 °C, the boron acceptor is essentially uncompensated. Hence, the deep donors are decisive for the semi-insulating properties of the substrates, and their thermal evolution limits the thermal budget for device processing. The origin of the deep donors is not well-established, but substantial evidence supporting an assignment to carbon vacancies is presented.

  7. A charge inverter for III-nitride light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zi-Hui, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn; Zhang, Yonghui; Bi, Wengang, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn; Geng, Chong; Xu, Shu [Key Laboratory of Electronic Materials and Devices of Tianjin, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin 300401 (China); Demir, Hilmi Volkan, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electrical and Electronics, Department of Physics, and UNAM-Institute of Material Science and Nanotechnology, Bilkent University, TR-06800 Ankara (Turkey); Sun, Xiao Wei, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electrical and Electronic Engineering, College of Engineering, South University of Science and Technology, 1088 Xue-Yuan Road, Nanshan, Shenzhen, Guangdong 518055 (China)

    2016-03-28

    In this work, we propose a charge inverter that substantially increases the hole injection efficiency for InGaN/GaN light-emitting diodes (LEDs). The charge inverter consists of a metal/electrode, an insulator, and a semiconductor, making an Electrode-Insulator-Semiconductor (EIS) structure, which is formed by depositing an extremely thin SiO{sub 2} insulator layer on the p{sup +}-GaN surface of a LED structure before growing the p-electrode. When the LED is forward-biased, a weak inversion layer can be obtained at the interface between the p{sup +}-GaN and SiO{sub 2} insulator. The weak inversion region can shorten the carrier tunnel distance. Meanwhile, the smaller dielectric constant of the thin SiO{sub 2} layer increases the local electric field within the tunnel region, and this is effective in promoting the hole transport from the p-electrode into the p{sup +}-GaN layer. Due to the improved hole injection, the external quantum efficiency is increased by 20% at 20 mA for the 350 × 350 μm{sup 2} LED chip. Thus, the proposed EIS holds great promise for high efficiency LEDs.

  8. A charge inverter for III-nitride light-emitting diodes

    International Nuclear Information System (INIS)

    Zhang, Zi-Hui; Zhang, Yonghui; Bi, Wengang; Geng, Chong; Xu, Shu; Demir, Hilmi Volkan; Sun, Xiao Wei

    2016-01-01

    In this work, we propose a charge inverter that substantially increases the hole injection efficiency for InGaN/GaN light-emitting diodes (LEDs). The charge inverter consists of a metal/electrode, an insulator, and a semiconductor, making an Electrode-Insulator-Semiconductor (EIS) structure, which is formed by depositing an extremely thin SiO 2 insulator layer on the p + -GaN surface of a LED structure before growing the p-electrode. When the LED is forward-biased, a weak inversion layer can be obtained at the interface between the p + -GaN and SiO 2 insulator. The weak inversion region can shorten the carrier tunnel distance. Meanwhile, the smaller dielectric constant of the thin SiO 2 layer increases the local electric field within the tunnel region, and this is effective in promoting the hole transport from the p-electrode into the p + -GaN layer. Due to the improved hole injection, the external quantum efficiency is increased by 20% at 20 mA for the 350 × 350 μm 2 LED chip. Thus, the proposed EIS holds great promise for high efficiency LEDs.

  9. Development and testing of immersed-Bz diodes with cryogenic anodes

    International Nuclear Information System (INIS)

    Bruner, Nichelle Lee; Cordova, Steve Ray; Oliver, Bryan Velten; Portillo, Salvador; Cooper, Graham; Puetz, Elizabeth A.; Johnston, Mark D.; Hahn, Kelly Denise; McLean, John; Molina, Isidro; Droemer, Darryl W.; Welch, Dale R.; Rovang, Dean Curtis; Van De Valde, David M.; Gregerson, Darryl; Maenchen, John Eric; O'Malley, John

    2005-01-01

    Sandia National Laboratories is investigating and developing high-dose, high-brightness flash radiographic sources. The immersed-B z diode employs large-bore, high-field solenoid magnets to help guide and confine an intense electron beam from a needle-like cathode 'immersed' in the axial field of the magnet. The electron beam is focused onto a high-atomic-number target/anode to generate an intense source of bremsstrahlung X-rays. Historically, these diodes have been unable to achieve high dose (> 500 rad (at) m) from a small spot (< 3 mm diameter). It is believed that this limitation is due in part to undesirable effects associated with the interaction of the electron beam with plasmas formed at either the anode or the cathode. Previous research concentrated on characterizing the behavior of diodes, which used untreated, room temperature (RT) anodes. Research is now focused on improving the diode performance by modifying the diode behavior by using cryogenic anodes that are coated in-situ with frozen gases. The objective of these cryogenically treated anodes is to control and limit the ion species of the anode plasma formed and hence the species of the counter-streaming ions that can interact with the electron beam. Recent progress in the development, testing and fielding of the cryogenically cooled immersed diodes at Sandia is described.

  10. Solid Sampling with a Diode Laser for Portable Ambient Mass Spectrometry.

    Science.gov (United States)

    Yung, Yeni P; Wickramasinghe, Raveendra; Vaikkinen, Anu; Kauppila, Tiina J; Veryovkin, Igor V; Hanley, Luke

    2017-07-18

    A hand-held diode laser is implemented for solid sampling in portable ambient mass spectrometry (MS). Specifically, a pseudocontinuous wave battery-powered surgical laser diode is employed for portable laser diode thermal desorption (LDTD) at 940 nm and compared with nanosecond pulsed laser ablation at 2940 nm. Postionization is achieved in both cases using atmospheric pressure photoionization (APPI). The laser ablation atmospheric pressure photoionization (LAAPPI) and LDTD-APPI mass spectra of sage leaves (Salvia officinalis) using a field-deployable quadrupole ion trap MS display many similar ion peaks, as do the mass spectra of membrane grown biofilms of Pseudomonas aeruginosa. These results indicate that LDTD-APPI method should be useful for in-field sampling of plant and microbial communities, for example, by portable ambient MS. The feasibility of many portable MS applications is facilitated by the availability of relatively low cost, portable, battery-powered diode lasers. LDTD could also be coupled with plasma- or electrospray-based ionization for the analysis of a variety of solid samples.

  11. The mechanical development and construction of the insulating legs for the NSF tandem

    International Nuclear Information System (INIS)

    Leese, J.M.

    1978-06-01

    The Science Research Council is constructing at its Daresbury Laboratory a 30 MV tandem Van de Graaff accelerator which will be used as a research tool to accelerate ions of a wide range of elements. Ions are accelerated through an evacuated beam tube by maintaining a high electric field along it. The ion beam is steered and focussed by magnets situated at various positions along the tube, which, together with the beam handling elements, is supported by a vertical insulating stack. The stack consists of eight vertical columns tied together at regular intervals by stiff rings to obtain the necessary mechanical stability. Each column is made up of 'insulating legs' with tubular steel legs at the terminal and dead section positions. This report describes the manufacturing processes and their development for the insulating legs. (author)

  12. Insulated InP (100) semiconductor by nano nucleus generation in pure water

    Science.gov (United States)

    Ghorab, Farzaneh; Es'haghi, Zarrin

    2018-01-01

    Preparation of specified designs on optoelectronic devices such as Light-Emitting Diodes (LEDs) and Laser Diodes (LDs) by using insulated thin films is very important. InP as one of those semiconductors which is used as optoelectronic devices, have two different kinds of charge carriers as n-InP and p-InP in the microelectronic industry. The surface preparation of this kind of semiconductor can be accomplished with individually chemical, mechanical, chemo - mechanical and electrochemical methods. But electrochemical method can be suitably replaced instead of the other methods, like CMP (Chemical Mechanical Polishing), because of the simplicity. In this way, electrochemically formation of insulated thin films by nano nucleus generation on semiconductor (using constant current density of 0.07 mA /cm2) studied in this research. Insulated nano nucleus generation and their growth up to thin film formation on semiconductor single crystal (100), n-InP, inpure water (0.08 µs/cm,25°c) characterized by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Four-point probe and Styloprofilometer techniques. The SEM images show active and passive regions on the n-InP surface and not uniform area on p-InP surface by passing through the passive condition. So the passive regions were nonuniform, and only the active regions were uniform and clean. The various semiconducting behavior in electrochemical condition, studied and compared with structural specification of InP type group (III-V).

  13. Capacitance-voltage characterization of Al/Al2O3/PVA-PbSe MIS diode

    Science.gov (United States)

    Gawri, Isha; Sharma, Mamta; Jindal, Silky; Singh, Harpreet; Tripathi, S. K.

    2018-05-01

    The present paper reports the capacitance-voltage characterization of Al/Al2O3/PVA-PbSe MIS diode using chemical bath deposition method. Here anodic alumina layer prepared using electrolytic deposition method on Al substrate is used as insulating material. Using the capacitance-voltage variation at a fixed frequency, the different parameters such as Depletion layer width, Barrier height, Built-in voltage and Carrier concentration has been calculated at room temperature as well as at temperature range from 123 K to 323 K. With the increase in temperature the barrier height and depletion layer width follow a decreasing trend. Therefore, the capacitance-voltage characterization at different temperatures characterization provides strong evidence that the properties of MIS diode are primarily affected by diode parameters.

  14. Power flow studies of magnetically insulated lines

    International Nuclear Information System (INIS)

    McDaniel, D.H.; Poukey, J.W.; Bergeron, K.D.; VanDevender, J.P.; Johnson, D.L.

    1977-01-01

    The designs for relativistic electron beam accelerators with power levels of 20 to 100 TW are greatly restricted by the inductance of a single diode of reasonable size. This fact leads to modular designs of very large accelerators. One concept uses several small insulators at a large radius arranged around the accelerator center. The total effective inductance is then low, but the energy must then be transported by self-magnetic insulated vacuum lines to the target volume. A triplate vacuum line configuration eases many mechanical support problems and allows more A-K gaps or feeds to be packaged around a given radius. This type of vacuum transmission line was chosen for initial experiments at Sandia. The experiments were conducted on the MITE (Magnetically Insulated Transmission Experiment) accelerator. The water pulse forming lines are connected to a vacuum triplate line through a conventional stacked insulator. Diagnostics on the experiment consisted of: (1) input V; (2) input I; (3) I monitors at the input, middle, and output of both the center conductor and ground plane of the transmission line; (4) magnetic energy analyzer to view peak electron energy in the A-K gap; (5) calorimetry; and (6) Faraday cups to look at electron current flowing across the transmission line. The main goal of the experiment is to obtain input impedance of the transmission line as a function of voltage and to measure electron loss currents. These measurements are compared to theoretical models for the input impedance and energy losses

  15. A high-temperature silicon-on-insulator stress sensor

    International Nuclear Information System (INIS)

    Wang Zheyao; Tian Kuo; Zhou Youzheng; Pan Liyang; Liu Litian; Hu Chaohong

    2008-01-01

    A piezoresistive stress sensor is developed using silicon-on-insulator (SOI) wafers and calibrated for stress measurement for high-temperature applications. The stress sensor consists of 'silicon-island-like' piezoresistor rosettes that are etched on the SOI layer. This eliminates leakage current and enables excellent electrical insulation at high temperature. To compensate for the measurement errors caused by the misalignment of the piezoresistor rosettes with respect to the crystallographic axes, an anisotropic micromachining technique, tetramethylammonium hydroxide etching, is employed to alleviate the misalignment issue. To realize temperature-compensated stress measurement, a planar diode is fabricated as a temperature sensor to decouple the temperature information from the piezoresistors, which are sensitive to both stress and temperature. Design, fabrication and calibration of the piezoresistors are given. SOI-related characteristics such as piezoresistive coefficients and temperature coefficients as well as the influence of the buried oxide layer are discussed in detail

  16. Moderately converging ion and electron flows in two-dimensional diodes

    International Nuclear Information System (INIS)

    Cavenago, M.

    2012-01-01

    Flow of particles in diodes is solved selfconsistently assuming an approximated system of flow lines, that can be easily represented by an analytic transformation in a complex plane, with assumed uniformity in the third spatial direction. Beam current compression is tunable by an angle parameter α 0 ; transformed coordinate lines are circular arcs, exactly matching to the curved cathode usually considered by rectilinear converging flows. The curvature of flow lines allows to partly balance the transverse effect of space charge. A self-contained discussion of the whole theory is reported, ranging from analytical solution for selfconsistent potential to electrode drawing to precise numerical simulation, which serves as a verification and as an illustration of typical electrode shapes. Motion and Poisson equation are written in a curved flow line system and their approximate consistency is shown to imply an ordinary differential equation for the beam edge potential. Transformations of this equation and their series solutions are given and discussed, showing that beam edge potential has a maximum, so supporting both diode (with α 0 ≅π/3) and triode design. Numerical simulations confirm the consistency of these solution. Geometrical details of diode design are discussed: the condition of a zero divergence beam, with the necessary anode lens effect included, is written and solved, as a function of beam compression; accurate relations for diode parameters and perveance are given. Weakly relativistic effects including self-magnetic field are finally discussed as a refinement.

  17. Simulation of cylindrical Pierce diodes with radial flow

    International Nuclear Information System (INIS)

    Alves, M.V.; Gnavi, G.; Gratton, F.T.; Buenos Aires Univ.

    1996-01-01

    In this paper we study the electron instability and the non linear behaviour of cylindrical Pierce's diodes by particle simulation. We ignore here the ion contribution (ions are fixed at a 1/r density and given a very large mass) to give perspicuity to the electron dynamics, and to facilitate comparison with existing theory. (author). 8 refs., 10 figs

  18. Intense beams of light ions

    International Nuclear Information System (INIS)

    Camarcat, Noel

    1985-01-01

    Results of experiments performed in order to accelerate intense beams of light and heavier ions are presented. The accelerating diodes are driven by existing pulsed power generators. Optimization of the generator structure is described in chapter I. Nuclear diagnostics of the accelerated light ion beams are presented in chapter II. Chapter III deals with the physics of intense charged particle beams. The models developed are applied to the calculation of the performances of the ion diodes described in the previous chapters. Chapter IV reports preliminary results on a multiply ionized carbon source driven by a 0.1 TW pulsed power generator. (author) [fr

  19. Recrystallization effects of swift heavy {sup 209}Bi ions irradiation on electrical degradation in 4H-SiC Schottky barrier diode

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhimei; Ma, Yao; Gong, Min [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Li, Yun [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Huang, Mingmin [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Gao, Bo [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Zhao, Xin, E-mail: zhaoxin1234@scu.edu.cn [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2017-06-15

    In this paper, the phenomenon that the recrystallization effects of swift heavy {sup 209}Bi ions irradiation can partially recovery damage with more than 1 × 10{sup 10} ions/cm{sup 2} is investigated by the degradation of the electrical characteristics of 4H-SiC Schottky barrier diode (SBD) with swift heavy ion irradiation. Deep level transient spectroscopy (DLTS) and Current-Voltage (I-V) measurements clearly indicated that E{sub 0.62} defect induced by swift heavy ion irradiation, which was a recombination center, could result in the increase of reverse leakage current (I{sub R}) at fluence less than 1 × 10{sup 9} ions/cm{sup 2} and the recovery of I{sub R} at fluence more than 1 × 10{sup 10} ions/cm{sup 2} in 4H-SiC SBD. The variation tendency of I{sub R} is consisted with the change of E{sub 0.62} defect. Furthermore, it is reasonable explanation that the damage or defect formed at low fluence in SiC may be recovered by further swift heavy ion irradiation with high fluence, which is due to the melting with the ion tracks of the amorphous zones through a thermal spike and subsequent epitaxial recrystallization initiated from the neighboring crystalline regions.

  20. Magnetically insulated coaxial vacuum diode with partial space-charge-limited explosive emission from edge-type cathode

    Energy Technology Data Exchange (ETDEWEB)

    Belomyttsev, S. Ya.; Rostov, V. V.; Romanchenko, I. V. [Institute of High Current Electronics SB RAS, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation); Shunailov, S. A.; Sharypov, K. A.; Shpak, V. G.; Ulmaskulov, M. R. [Institute of Electrophysics UB RAS, 106 Amundsen Str., 620016 Ekaterinburg (Russian Federation); Kolomiets, M. D. [Ural Federal University, 19 Mira Str., 620002 Ekaterinburg (Russian Federation); Mesyats, G. A. [P. N. Lebedev Physical Institute, RAS, 53 Lenin Avenue, 119991 Moscow (Russian Federation); Yalandin, M. I. [Institute of Electrophysics UB RAS, 106 Amundsen Str., 620016 Ekaterinburg (Russian Federation); P. N. Lebedev Physical Institute, RAS, 53 Lenin Avenue, 119991 Moscow (Russian Federation)

    2016-01-14

    The vacuum current associated with any type of electron emission for arbitrary configuration of the diode depends on the combination of the applied electric field and vacuum space charge (VSC) field created by the current. Such fundamental statement should give very close links between the diode current and the normalized cathode field θ which has been introduced by Forbes in 2008 for planar diodes as a reduction in the cathode surface field: θ = field-with/field-without VSC. This article reports the universal approximation of the type of cos(πθ/2) that is the ratio of the actual current and the fully space-charge-limited current. Also, the theoretical treatment and the experimental method of determination of the dynamic emissive characteristics of the macroscopic explosive emission from edge-type cathodes in the coaxial diode are developed. The experimental results obtained with a picosecond time reference between the cathode voltage and the onset of the high-current electron beam exhibit a good coincidence with the theoretical predictions. The presented methods enable the analysis of a real-time-resolved dynamics associated with the dense, magnetized electron beam formation, acceleration and drift motion, including kinematic effects and the phase-stable excitation of high-power microwave oscillators.

  1. Dark Current And Voltage Measurements Of Metal-Organic-Semiconductor (M-Or-S) Diode

    International Nuclear Information System (INIS)

    Adianto

    1996-01-01

    . Some Metal-Organic-Semiconductor (M-Or-S) thin film diodes, constructed with an organic polymer (polymerized toluene) as an active component has been successfully fabricated. The thin film M-Or-S diodes were fabricated on an n-type silicon with resistivity of 250-500 Ocm and p type silicon with resistivity of 10-20 Ocm as a substrate with polymerized toluene used as insulator. When deposited on silicon wafers with electrode of evaporated Ni on the n-type silicon and evaporated Au as the electrode on the polymerized toluene film, the electronic devices of Metal-Organic- Semiconductor (M-Or-S) type can be produced with one of its characteristics is that their light sensitivity. A plasma ion deposition system was constructed and used to deposit organic monomeric substance (toluene) that functioned as an isolator between semiconductor and the evaporated metal electrodes. The current-voltage measurements for different configurations of M-Or-S devices were carried out to determine the current-voltage (1-V) characteristics for M-Or-S devices with different materials and thicknesses. In addition to the 1-V measurement mentioned before, 1-V measurements of the devices were also carried out by using a curve tracer oscilloscope, and the picture of the effective parameters of each of the device could be taken by using a polaroid camera. Since the devices are very sensitive to light, the devices were all tested in a black-box which was covered by a black cloth to make sure that there was no light coming through. The experimental results for p- and n-type silicon substrates showed that an M-Or-S diode with n-type gave a higher breakdown voltage than that p- type silicon. In addition, the reverse bias breakdown voltage increased as the thickness of the thin film increased in the range of 50 -2500 V/μm

  2. Influence of annealing temperature on erbium ion electroluminescence in Si : (Er,O) diodes with (111) substrate orientation

    CERN Document Server

    Sobolev, N A; Nikolaev, Y A

    2001-01-01

    A study has been made of the influence of temperature of the second annealing that promotes formation of optically and electrically active centers o the erbium ion electroluminescence at lambda approx = 1.54 mu m wavelength in (111) Si : (Er,O) diodes. Doping has been performed by implantation of erbium and oxygen ions at 2.0, 1.6 MeV and 0.28, 0.22 MeV energies and 3 x 10 sup 1 sup 4 cm sup - sup 2 and 3 x 10 sup 1 sup 5 cm sup - sup 2 doses, respectively. The room temperature electroluminescence intensity under the breakdown regime increases with increasing annealing temperature from 700 to 950 deg C. After annealing in the range of 975-1100 deg C, erbium electroluminescence under the breakdown regime is not observed due to appearance of microplasmas. The injection electroluminescence intensity at 80 K decreases with increasing temperature from 700 to 1100 deg C

  3. Extraction of high-intensity ion beams from a laser plasma by a pulsed spherical diode

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Oguri

    2005-06-01

    Full Text Available High-current Cu^{+} ion beams were extracted from a laser-produced plasma using a pulsed high-voltage multiaperture diode driven by an induction cavity. The amplitude and the duration of the extraction voltage were 130 kV and 450 ns, respectively. During the extraction, explosive beam divergence due to the strong space-charge force was suppressed by the focusing action of the gap between concentric hemispheres. Modulation of the extracted beam flux due to the plasma prefill in the gap has been eliminated by using a biased control grid put on the anode holes. By means of this extraction scheme we obtained a rectangular beam pulse with a rise time as short as ≈100  ns. The beam current behind the cathode was limited to ≈0.1   A, owing to space-charge effects, as well as to poor geometrical transmission through the cathode sphere. From the measurement of the extracted beam current density distribution along the beam axis and the beam profile measurement, we found a beam waist slightly downstream of the spherical center of the diode structure. The measured beam behavior was consistent with numerical results obtained via a 3D particle code. No serious degradation of the beam emittance was observed for the grid-controlled extraction scheme.

  4. Dynamic energy spectrum and energy deposition in solid target by intense pulsed ion beams

    Institute of Scientific and Technical Information of China (English)

    Xiao Yu; Xiao-Yun Le; Zheng Liu; Jie Shen; Yu I.Isakova; Hao-Wen Zhong; Jie Zhang; Sha Yan; Gao-Long Zhang; Xiao-Fu Zhang

    2017-01-01

    A method for analyzing the dynamic energy spectrum of intense pulsed ion beam (IPIB) was proposed.Its influence on beam energy deposition in metal target was studied with IPIB produced by two types of magnetically insulated diodes (MID).The emission of IPIB was described with space charge limitation model,and the dynamic energy spectrum was further analyzed with time-of-flight method.IPIBs generated by pulsed accelerators of BIPPAB-450 (active MID) and TEMP-4M (passive MID) were studied.The dynamic energy spectrum was used to deduce the power density distribution of IPIB in the target with Monte Carlo simulation and infrared imaging diagnostics.The effect on the distribution and evolution of thermal field induced by the characteristics of IPIB dynamic energy spectrum was discussed.

  5. Micro thermal diode with glass thermal insulation structure embedded in a vapor chamber

    Science.gov (United States)

    Tsukamoto, Takashiro; Hirayanagi, Takashi; Tanaka, Shuji

    2017-04-01

    This paper reports a micro thermal diode based on one-way working fluid circulation driven by surface tension force. In forward mode, working fluid evaporates and condenses at a heated and cooled area, respectively, and the condensed liquid returns to the evaporation area due to the wettability difference. By this vapor-liquid phase change mechanism, the overall heat transfer coefficient becomes high. On the other hand, in reverse mode, no continuous evaporation-condensation cycle exists. The conductive heat loss in reverse mode was minimized by an embedded glass thermal isolation structure, which makes overall heat transfer coefficient low. The test device was made by a standard MEMS process combined with glass reflow and gold bump sealing. The overall heat transfer coefficients of 13 300 \\text{W}~{{\\text{m}}-2}~\\text{K} for forward mode and 4790 \\text{W}~{{\\text{m}}-2}~\\text{K} for reverse mode were measured. The performance index of the micro thermal diode was about 2.8.

  6. Time-resolved measurements of the focused ion beams on PBFA II

    International Nuclear Information System (INIS)

    Mix, L.P.; Stygar, W.A.; Leeper, R.J.; Maenchen, J.E.; Wenger, D.F.

    1992-01-01

    A time-resolved camera has been developed to image the intense ion beam focus on PBFA II. Focused ions from a sector of the ion diode are Rutherford scattered from a thin gold foil on the diode axis and pinhole imaged onto an array of up to 49 PIN detectors to obtain the spatially and temporally resolved images. The signals from these detectors are combined to provide a movie of the beam focus with a time resolution of about 3 ns and a spatial resolution of 2 mm over a 12 mm field of view. Monte Carlo simulations of the camera response are used with the measured ion energy to account for the time-of-flight dispersion of the beam and to convert the recorded signals to an intensity. From measurements on an 81 degree sector of the diode, average intensities on a 6 mm sphere of about 5 TW/cm 2 and energies approaching 80 kJ/cm 2 are calculated for standard proton diodes. Corresponding numbers for a lithium diode are less than those measured with protons. The details of the analysis and image reconstruction will be presented along with scaled images from recent ion focusing experiments

  7. K+ ion source for the heavy ion Induction Linac System Experiment ILSE

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.; Chupp, W.W.; Yu, S.

    1993-05-01

    Low emittance singly charged potassium thermionic ion sources are being developed for the ILSE injector. The ILSE, now under study at LBL, will address the physics issues of particle beams in a heavy ion fusion driver scenario. The K + ion beam is emitted thermionically into a diode gap from alumina-silicate layers (zeolite) coated uniformly on a porous tungsten cup. The Injector diode design requires a large diameter (4in. to 7in.) source able to deliver high current (∼800 mA) low emittance (E n < .5 π mm-mr) beam. The SBTE (Single Beam Test Experiment) 120 keV gun was redesigned and modified with the aid of diode optics calculations using the EGUN code to enable the extraction of high currents of about 90 mA out of a one-inch diameter source. We report on the 1in. source fabrication technique and performance, including total current and current density profile measurements using Faraday cups, emittance and phase space profile measurements using the double slit scanning technique, and life time measurements. Furthermore, we shall report on the extension of the fabricating technique to large diameter sources (up to 7in.), measured ion emission performance, measured surface temperature uniform heating power considerations for large sources

  8. K+ ion source for the heavy ion induction linac system experiment ILSE

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.; Chupp, W.W.; Yu, S.

    1993-01-01

    Low emittance singly charged potassium thermionic ion sources are being developed for the ILSE injector. The ILSE, now under study at LBL, will address the physics issues of particle beams in a heavy ion fusion driver scenario. The K + ion beam is emitted thermionically into a diode gap from alumino-silicate layers (zeolite) coated uniformly on a porous tungsten cup. The Injector diode design requires a large diameter (4 inches to 7 inches) source able to deliver high current (∼ 800 mA) low emittance (E n < .5 π mm-mr) beam. The SBTE (Single Beam Test Experiment) 120 keV gun was redesigned and modified with the aid of diode optics calculations using the EGUN code to enable the extraction of high currents of about 90 mA out of a one-inch diameter source. The authors report on the 1 inch source fabrication technique and performance, including total current and current density profile measurements using Faraday cups, emittance and phase space profile measurements using the double slit scanning technique, and life time measurements. Furthermore, they shall report on the extension of the fabricating technique to large diameter sources (up to 7 inches), measured ion emission performance, measured surface temperature uniformity and heating power considerations for large sources

  9. Regimes of magnetic insulation in a high-current diodes and transmission lines of conical configuration

    International Nuclear Information System (INIS)

    Vasilenko, O.I.; Voronin, V.S.; Lebedev, A.N.

    1977-01-01

    A self-consistent kinematic model of a steady-state electron flow between two electrodes of a high-current diode has been considered with a tapered configuration. All the electrons have presumably been released from the cathode with a zero velocity and some portion of the total current flows along the cathode surface as the conduction current. A set of volt-ampere characteristics has been obtained for the tapered diode with a flat anode. At a preset cathode current the thickness and current of the electron layer increase as the voltage goes up. The considered kinematic model substantiates and specifies a model of the Brillouin parapotential flow

  10. PIC simulations of conical magnetically insulated transmission line with LTD generator: Transition from self-limited to load-limited flow

    Science.gov (United States)

    Liu, Laqun; Wang, Huihui; Guo, Fan; Zou, Wenkang; Liu, Dagang

    2017-04-01

    Based on the 3-dimensional Particle-In-Cell (PIC) code CHIPIC3D, with a new circuit boundary algorithm we developed, a conical magnetically insulated transmission line (MITL) with a 1.0-MV linear transformer driver (LTD) is explored numerically. The values of switch jitter time of LTD are critical parameters for the system, which are difficult to be measured experimentally. In this paper, these values are obtained by comparing the PIC results with experimental data of large diode-gap MITL. By decreasing the diode gap, we find that all PIC results agree well with experimental data only if MITL works on self-limited flow no matter how large the diode gap is. However, when the diode gap decreases to a threshold, the self-limited flow would transfer to a load-limited flow. In this situation, PIC results no longer agree with experimental data anymore due to the anode plasma expansion in the diode load. This disagreement is used to estimate the plasma expansion speed.

  11. Space-charge-limited ion flow through an ionizing neutral layer

    International Nuclear Information System (INIS)

    Duvall, R.E.; Litwin, C.; Maron, Y.

    1993-01-01

    Space-charge-limited ion flow through an ionizing layer of neutral atoms is studied. The ion flow is between two parallel conducting plates (anode and cathode) with an externally applied voltage between them. An expanding layer of neutral atoms is adjacent to the anode surface, extending a finite distance into the anode--cathode gap. All ions originate either from the anode surface or from the ionization of neutrals; electrons originate only from ionization. Electrons are strongly magnetized by an externally applied, time-independent direct current (dc) magnetic field directed across the ion flow. The ions are unmagnetized, all motion being perpendicular to the conducting plates. Two different models of the anode layer were used to analyze this problem: a multifluid steady-state model and a single fluid time-dependent model. From both models it was found that the anode surface becomes shielded after the ion flux from the ionizing layer becomes larger than the space-charge-limited flux of the reduced gap between the neutral layer and cathode. Comparison was made between the time-dependent model and results from magnetically insulated ion beam diode (MID) experiments. Using an initial areal density of neutral hydrogen and carbon equal to the final observed electron areal density, comparison was made between calculated plasma shielding times and upper bounds on the shielding time observed in experiments. It was found that a layer of neutral hydrogen must contain a minimum of 15% carbon (by number density) to explain the rapid electric field screening observed in experiments

  12. Development and fabrication of insulator seals for thermionic diodes

    Science.gov (United States)

    Poirier, V. L.

    1972-01-01

    Eight different types of cermet seals for thermionic diodes were investigated: (1) 1 micron Al2O3 with Nb spheres; (2) 200 A Al2O3 with Nb spheres; (3) 1 micron Al2O3 with Nb 1% Zr spheres; (4) 200 A Al2O3 with Nb 1% Zr spheres; (5) Pure Y2O3 with Nb 1% Zr spheres; (6) Y2O3 3% ZrO2 with Nb 1% Zr spheres; (7) Y2O3 10% ZrO2 with Nb 1% Zr spheres; and (8) ZrO2 12% Y2O3 with Nb 1% Zr spheres. Investigations were made to determine the most favorable fabrication techniques and the effect of the bonding cycle, (length of bonding time and shutdown sequences). The analysis of the seals included tensile test, vacuum test, electrical test and metallurgical examination. At the conclusion of the development phase, 36 seals were fabricated for delivery for evaluation.

  13. Equilibrium double layers in extended Pierce diodes

    International Nuclear Information System (INIS)

    Ciubotariu-Jassy, C.I.

    1992-01-01

    The extended Pierce diode is similar to the standard (or classical) Pierce diode, but has passive circuit elements in place of the short circuit between the electrodes. This device is important as an approximation to real bounded plasma systems. It consists of two parallel plane electrodes (an emitter located at x=0 and a collector located at x=l) and a collisionless cold electron beam travelling between them. The electrons are neutralized by a background of comoving massive ions. This situation is analysed in this paper and new equilibrium double layer (DL) plasma structures are obtained. (author) 6 refs., 3 figs

  14. Creation of nanoscale objects by swift heavy ion track manipulations

    International Nuclear Information System (INIS)

    Fink, D.; Petrov, A.; Stolterfoht, N.

    2003-01-01

    In this work we give an overview of the possibilities to create new objects with nanoscale dimensions with ion tracks, for future applications. This can be realized in two ways: by manipulation of latent swift heavy ion (SHI) tracks, or by embedding specific structures within etched SHI tracks. In the first case one can make use of irradiation effects such as phase transitions and chemical or structural changes along the tracks. In the latter case, one can fill etched SHI tracks with metals, semiconductors, insulating and conducting polymers, fullerite, or colloides. Wires and tubules with outer diameters, between about 50 nm and 5 μm and lengths of up to about 100 μm can be obtained. The most important production techniques are galvanic and chemical depositions. Ion Transmission Spectrometry has turned out to be an especially useful tool for the characterisation of the produced objects. Present studies aim at the construction of condensers, magnets, diodes, and sensors in etched tracks. An obstacle for the practical realization of smallest-size polymeric ion track devices is the statistical distribution of the ion tracks on the target areas, which yields some pixels without any track, and other pixels even with overlapping tracks on a given sample. In a first test experiment we demonstrate that one can, in principle, overcome that problem by taking self-ordered porous foils as masks for subsequent high-fluence SHI irradiation. (author)

  15. Investigation of the composition of an ion beam produced using a multi arc ion source

    Energy Technology Data Exchange (ETDEWEB)

    Engelko, V [Efremov Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation); Giese, H; Schalk, S [Forschungszentrum Karlsruhe (Germany). INR; Mishin, M; Tsibin, O Y [St. Petersburg State Technical Univ. (Russian Federation)

    1997-12-31

    Complementing the diode and beam transport optimization studies currently performed at FZK Karlsruhe on the proton-beam-facility PROFA, supplementary investigations were run at the St. Petersburg State University, focusing on ion beam divergence and composition measurements using the TOF techniques. To ensure direct transferability of the results to the PROFA facility, these measurements were made on a scaled-down replica of the PROFA diode, comprising an array of small polyethylene flash-over plasma sources and a grid extraction system. Only the results of the beam composition measurements are presented, and the following conclusions are made: (i) The ion beam contains H and C ions and heavier constituents that remain to be identified. (ii) The beam composition changes significantly with the total number of shots: While H{sup +} ions predominated in the starting phase of the experiments, heavier components outweighed them later on, presumably due to hydrogen depletion of the surface layer of the anode polyethylene units. (iii) Reconditioning of the polyethylene units may be possible by running the diode at higher currents (self-cleaning) or by cutting off a surface layer. (author). 7 figs., 3 refs.

  16. Measurement of magnetically insulated line voltage using a Thomson Parabola Charged Particle Analyser

    International Nuclear Information System (INIS)

    Stanley, T.D.; Stinnett, R.W.

    1981-01-01

    The absence of direct measurements of magnetically insulated line voltage necessitated reliance on inferred voltages based on theoretical calculation and current measurements. This paper presents some of the first direct measurements of magnetically insulated transmission line peak voltages. These measurements were made on the Sandia National Laboratories HydraMITE facility. The peak voltage is measured by observing the energy of negative ions produced at the line cathode and accelerated through the line voltage. The ion energy and the charge-to-mass ratio are measured using the Thomson Parabola mass spectrometry technique. This technique uses parallel E and B fields to deflect the ions. The deflected ions are detected using a microchannel plate coupled to a phosphor screen and photographic film. The Thomson Parabola results are compared to Faraday Cup measurements and to calculated voltages based on current measurements. In addition, the significance of observed positive ions is discussed

  17. Molecular diodes in optical rectennas

    Science.gov (United States)

    Duché, David; Palanchoke, Ujwol; Terracciano, Luigi; Dang, Florian-Xuan; Patrone, Lionel; Le Rouzo, Judikael; Balaban, Téodore Silviu; Alfonso, Claude; Charai, Ahmed; Margeat, Olivier; Ackermann, Jorg; Gourgon, Cécile; Simon, Jean-Jacques; Escoubas, Ludovic

    2016-09-01

    The photo conversion efficiencies of the 1st and 2nd generat ion photovoltaic solar cells are limited by the physical phenomena involved during the photo-conversion processes. An upper limit around 30% has been predicted for a monojunction silicon solar cell. In this work, we study 3rd generation solar cells named rectenna which could direct ly convert visible and infrared light into DC current. The rectenna technology is at odds with the actual photovoltaic technologies, since it is not based on the use of semi-conducting materials. We study a rectenna architecture consist ing of plasmonic nano-antennas associated with rectifying self assembled molecular diodes. We first opt imized the geometry of plasmonic nano-antennas using an FDTD method. The optimal antennas are then realized using a nano-imprint process and associated with self assembled molecular diodes in 11- ferrocenyl-undecanethiol. Finally, The I(V) characterist ics in darkness of the rectennas has been carried out using an STM. The molecular diodes exhibit averaged rect ification ratios of 5.

  18. Research on insulating material affecting the property of gas ionization chamber

    International Nuclear Information System (INIS)

    Wang Liqiang; Wang Zhentao; Zheng Jian

    2014-01-01

    The insulating material in ionization chamber affects the internal gas pressure and ionic pulse shape in the research process of the ion drift velocity in high pressure gas ionization chamber. It will affect the ion drift velocity measurement. It is required to isolate by insulating material between electrode to electrode and between electrodes to the shell of gas ionization chamber. Insulating material in gas ionization chamber is indispensable. Therefore it needs to carefully study the insulating material affecting the performance of gas ionization chamber. First of all, it is found that Teflon can slowly adsorb the working gas in ionization chamber, and the gas pressure in it is reduced when we measure the sensitivity of gas ionization chamber over time. It is verified by experiment that insulating materials absorbing and releasing gas is dynamically reversible process. Then the adsorbing gas property of 95% aluminium oxide ceramic and Teflon is studied through experimental comparision. Gas adsorption equilibrium time of ceramic material is faster, generally it is about a few hours, and the gas adsorption capacity is relatively less. Gas adsorption equilibrium time of Teflon is slower, it is about a few days, and the gas adsorption capacity is relatively more. It is found that Teflon will release part of the gas at higher temperature through experimental research on the influence of Teflon adsorbing gas. Finally it is studied that the distribution of insulation in ionization chamber affects the time response speed of ionization chamber by measuring the signal pulse shape of ionization chamber under the pulse X-ray. Through these experimental research, it is presented that it need to pay attention to select insulation material and to design the internal structure and arrangement of insulating material when we design gas ionization chamber. (authors)

  19. Influence of helium-ion bombardment on the optical properties of ZnO nanorods/p-GaN light-emitting diodes

    Science.gov (United States)

    Alvi, Naveed Ul Hassan; Hussain, Sajjad; Jensen, Jen; Nur, Omer; Willander, Magnus

    2011-12-01

    Light-emitting diodes (LEDs) based on zinc oxide (ZnO) nanorods grown by vapor-liquid-solid catalytic growth method were irradiated with 2-MeV helium (He+) ions. The fabricated LEDs were irradiated with fluencies of approximately 2 × 1013 ions/cm2 and approximately 4 × 1013 ions/cm2. Scanning electron microscopy images showed that the morphology of the irradiated samples is not changed. The as-grown and He+-irradiated LEDs showed rectifying behavior with the same I-V characteristics. Photoluminescence (PL) measurements showed that there is a blue shift of approximately 0.0347 and 0.082 eV in the near-band emission (free exciton) and green emission of the irradiated ZnO nanorods, respectively. It was also observed that the PL intensity of the near-band emission was decreased after irradiation of the samples. The electroluminescence (EL) measurements of the fabricated LEDs showed that there is a blue shift of 0.125 eV in the broad green emission after irradiation and the EL intensity of violet emission approximately centered at 398 nm nearly disappeared after irradiations. The color-rendering properties show a small decrease in the color-rendering indices of 3% after 2 MeV He+ ions irradiation.

  20. Development of large high-voltage pressure insulators for the Princeton TFTR [Tokamak Fusion Test Reactor] flexible transmission lines

    International Nuclear Information System (INIS)

    Scalise, D.T.; Fong, E.; Haughian, J.; Prechter, R.

    1986-10-01

    Specially formulated insulator materials with improved strength and high-voltage properties were developed and used for critical components of the flexible transmission lines to the TFTR neutral beam ion sources. These critical components are plates which support central conductors as they exit the high-voltage power supply and enter the ion source enclosure. Each plate acts both as a high-voltage insulator and as a pressure barrier to the SF 6 insulating gas. The original plate was made of commercial glass-epoxy laminate which limited the plate voltage capacity. The newly developed insulator is made of specially-formulated cycloalphatic Di-epoxide whose isotropic properties exhibit increased arc resistance. It is cast in one piece with skirts which greatly increase the breakdown voltage. This paper discusses the design, fabrication and testing of the new insulator

  1. Nanometer-size surface modification produced by single, low energy, highly charged ions

    International Nuclear Information System (INIS)

    Stockli, M.P.

    1994-01-01

    Atomically flat surfaces of insulators have been bombarded with low energy, highly charged ions to search for nanometer-size surface modifications. It is expected that the high electron deficiency of highly charged ions will capture and/or remove many of the insulator's localized electrons when impacting on an insulating surface. The resulting local electron deficiency is expected to locally disintegrate the insulator through a open-quotes Coulomb explosionclose quotes forming nanometer-size craters. Xe ions with charge states between 10+ and 45+ and kinetic energies between 0 and 10 keV/q were obtained from the KSU-CRYEBIS, a CRYogenic Electron Beam Ion Source and directed onto various insulating materials. Mica was favored as target material as atomically flat surfaces can be obtained reliably through cleaving. However, the authors observations with an atomic force microscope have shown that mica tends to defoliate locally rather than disintegrate, most likely due to the small binding forces between adjacent layers. So far the authors measurements indicate that each ion produces one blister if the charge state is sufficiently high. The blistering does not seem to depend very much on the kinetic energy of the ions

  2. Gas pressure of extractive system from the high power ion source and effect of compound materials on the optical characteristics of ion

    International Nuclear Information System (INIS)

    Pan Zudong; Chen Miaosun; Wang Shouhu; Chen Xingqin; Ge Yisan; Fu Peng

    1991-01-01

    The mechanism of extractive beam from the ion source and the ion optical condition of a minimal divergence angle were introduced briefly. Two problems in researching 15 cm Duo Penning Ion Source (extractive voltage-25 kV, current-20 A) are expounded: (1) The pulse admission way makes the extractive system keeping optimum vacuum; (2) The insulating rings are made of a compound material, therefore, insulating characteristic is improved. Both the described points (1) and (2) will make a contribution to the ion optics

  3. Extraction of pulsed ion beams from an anode covered with liquid material

    International Nuclear Information System (INIS)

    Kitamura, Akira; Yano, Syukuro

    1982-01-01

    In order to extend the life of anodes of pulsed ion diodes, a trial was made to extract ions from a plasma created by surface flashover on the oil-covered anode. The diode with this anode worked well as a so-called pinched electron beam diode. Production of proton beams of 10 kA with energies of about 400 keV was confirmed by measurements with biased ion collectors and those of prompt γ-rays from the reaction 19 F(p,γα) 16 O. Substantial reduction of damage and substantial extension of the life of the anode disc were realized. (author)

  4. Nano-SiC region formation in (100) Si-on-insulator substrate: Optimization of hot-C+-ion implantation process to improve photoluminescence intensity

    Science.gov (United States)

    Mizuno, Tomohisa; Omata, Yuhsuke; Kanazawa, Rikito; Iguchi, Yusuke; Nakada, Shinji; Aoki, Takashi; Sasaki, Tomokazu

    2018-04-01

    We experimentally studied the optimization of the hot-C+-ion implantation process for forming nano-SiC (silicon carbide) regions in a (100) Si-on-insulator substrate at various hot-C+-ion implantation temperatures and C+ ion doses to improve photoluminescence (PL) intensity for future Si-based photonic devices. We successfully optimized the process by hot-C+-ion implantation at a temperature of about 700 °C and a C+ ion dose of approximately 4 × 1016 cm-2 to realize a high intensity of PL emitted from an approximately 1.5-nm-thick C atom segregation layer near the surface-oxide/Si interface. Moreover, atom probe tomography showed that implanted C atoms cluster in the Si layer and near the oxide/Si interface; thus, the C content locally condenses even in the C atom segregation layer, which leads to SiC formation. Corrector-spherical aberration transmission electron microscopy also showed that both 4H-SiC and 3C-SiC nanoareas near both the surface-oxide/Si and buried-oxide/Si interfaces partially grow into the oxide layer, and the observed PL photons are mainly emitted from the surface SiC nano areas.

  5. Pulsed high current ion beam processing equipment

    International Nuclear Information System (INIS)

    Korenev, S.A.; Perry, A.

    1995-01-01

    A pulsed high voltage ion source is considered for use in ion beam processing for the surface modification of materials, and deposition of conducting films on different substrates. The source consists of an Arkad'ev-Marx high voltage generator, a vacuum ion diode based on explosive ion emission, and a vacuum chamber as substrate holder. The ion diode allows conducting films to be deposited from metal or allow sources, with ion beam mixing, onto substrates held at a pre-selected temperature. The main variables can be set in the ranges: voltage 100-700 kV, pulse length 0.3 μs, beam current 1-200 A depending on the ion chosen. The applications of this technology are discussed in semiconductor, superconductor and metallizing applications as well as the direction of future development and cost of these devices for commercial application. 14 refs., 6 figs

  6. A comparative study of the work involved in measuring profiles using ion chambers, a linear diode array and film

    International Nuclear Information System (INIS)

    Rykers, K.L.; RMIT University, Melbourne, VIC; Royal North Shore Hospital, St Leonards, NSW; Geso, M.; Brown, G.M.; Olilver, L.D.

    1996-01-01

    depth and -0.04 to 0.09 cm at 12.5 cm depth. Film profiles measured with the Scanditronix and Wellhoefer systems were essentially indistinguishable. Film profiles compared with ion chamber profiles agreed well in terms of field size, position, height of maximum and profile shape. Film profiles deviated most from ion chamber profiles in the post-penumbra regions. LDA measured profiles agreed well with the ion chamber profiles in the post-penumbra regions, field size and general profile shape but gave maximums with marginally greater amplitudes. Dynamic wedge profiles measured with film and the LDA exhibited the same trend in agreement as observed for physical wedge profiles. The method described for taking profile measurements with film held in solid water allows for the generation of data which is comparable with that measured with an ion chamber in real water. Film requires only one delivery of the wedged field to generate an infinite number of highly resolved profiles. The time needed to measure LDA profiles is significantly greater than that required when measuring with film. The 25 mm spacing of the diodes on the LDA requires it to be moved repeatedly with many measurements taken to give a single high resolution profile. The need to take multiple exposures to achieve high resolution profiles would also be a requirement of a multi channel ion chamber array

  7. Optimization of a rod pinch diode radiography source at 2.3 MV

    International Nuclear Information System (INIS)

    Menge, P.R.; Johnson, D.L.; Maenchen, J.E.; Rovang, D.C.; Oliver, B.V.; Rose, D.V.; Welch, D.R.

    2003-01-01

    Rod pinch diodes have shown considerable capability as high-brightness flash x-ray sources for penetrating dynamic radiography. The rod pinch diode uses a small diameter (0.4-2 mm) anode rod extended through a cathode aperture. When properly configured, the electron beam born off of the aperture edge can self-insulate and pinch onto the tip of the rod creating an intense, small x-ray source. Sandia's SABRE accelerator (2.3 MV, 40 Ω, 70 ns) has been utilized to optimize the source experimentally by maximizing the figure of merit (dose/spot diameter2) and minimizing the diode impedance droop. Many diode parameters have been examined including rod diameter, rod length, rod material, cathode aperture diameter, cathode thickness, power flow gap, vacuum quality, and severity of rod-cathode misalignment. The configuration producing the greatest figure of merit uses a 0.5 mm diameter gold rod, a 6 mm rod extension beyond the cathode aperture (diameter=8 mm), and a 10 cm power flow gap to produce up to 3.5 rad (filtered dose) at 1 m from a 0.85 mm x-ray on-axis spot (1.02 mm at 3 deg. off axis). The resultant survey of parameter space has elucidated several physics issues that are discussed

  8. Conductivity in insulators due to implantation of conducting species

    International Nuclear Information System (INIS)

    Prawer, S.; Kalish, R.

    1993-01-01

    Control of the surface conductivity of insulators can be accomplished by high dose ion implantation of conductive species. The use of C + as the implant species is particularly interesting because C can either form electrically insulating sp 3 bonds or electrically conducting sp 2 bonds. In the present work, fused quartz plates have been irradiated with 100 keV C + ions to doses up to 1 x 10 17 ions/cm 2 at room temperature and at 200 deg C. The ion beam induced conductivity was monitored in-situ and was found to increase by up to 8 orders to magnitude for the ion dose range studied. Xe implantations over a similar range did not induce any changes in the conductivity showing that the increase in conductivity is caused by the presence of the C in the fused quartz matrix and not by damage. The dependence of the conductivity on implantation temperature and on post implantation annealing sheds light on the clustering of the C implants. The temperature dependence of the conductivity for the highest doses employed (1 x 10 17 C + /cm 2 ) can be described very well by lnσ α T. This is considered to be a peculiar dependence which does not comply with any of the standard models for conduction. 9 refs., 1 tab., 6 figs

  9. X-ray photoelectron spectroscopy studies of aging effects on the surface of Au - a-Si:H - Sb-Cr Schottky diodes

    International Nuclear Information System (INIS)

    Paquin, L.; Wertheimer, M.R.; Sacher, E.; McIntyre, N.S.

    1989-01-01

    During investigations of Au - a-Si:H - Cr-Sb photovoltaic Schottky diodes, it was observed that photoconversion parameters (I sc ,, V oc , η), improved markedly with time for samples stored for several weeks in ambient air. This was always accompanied by apparent color changes in the area under the top (Au) electrode, from gold to deep purple, and by evolution of its surface conductivity σ from a highly conducting to an insulating state. Profilometry indicated that the colored area rose about 80 nm above the original surface during these changes. These diodes have been examined using depth-profiling surface analytical techniques, namely secondary-ion mass spectroscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy (XPS), but primarily the latter. The XPS studies of the entire layer thickness on the gold electrode were carried out using erosion by Ar + ion bombardment. The XPS line positions were used to infer electrical properties of silicon and gold constituents. The results show that Si atoms first diffuse through the gold electrode, where they react with atmospheric constituents to form a thick layer composed mainly of SiO 2 . this layer is responsible for the observed changes in color, σ, and I sc . The latter change, which leads to a maximum rise in η of about 60%, is felt to result from the fact that the SiO 2 layer acts as an antireflection coating. Gold from the electrode layer also diffuses outward, mixed intimately with the silicon oxide. Further aging results in a degradation of the electrical continuity of the Au electrode, which is believed to be responsible for the observed slow drop in σ. (author). 14 refs., 9 figs

  10. Influence of nonuniform external magnetic fields and anode--cathode shaping on magnetic insulation in coaxial transmission lines

    International Nuclear Information System (INIS)

    Mostrom, M.A.

    1979-01-01

    Coaxial transmission lines, used to transfer the high voltage pulse into the diode region of a relativistic electron beam generator, have been studied using the two-dimensional time-dependent fully relativistic and electromagnetic particle simulation code CCUBE. A simple theory of magnetic insulation that agrees well with simulation results for a straight cylindrical coax in a uniform external magnetic field is used to interpret the effects of anode--cathode shaping and nonuniform external magnetic fields. Loss of magnetic insulation appears to be minimized by satisfying two conditions: (1) the cathode surface should follow a flux surface of the external magnetic field; (2) the anode should then be shaped to insure that the magnetic insulation impedance, including transients, is always greater than the effective load impedance wherever there is an electron flow in the anode--cathode gap

  11. Development and Characterization of a Diamond-Insulated Graphitic Multi Electrode Array Realized with Ion Beam Lithography

    Directory of Open Access Journals (Sweden)

    Federico Picollo

    2014-12-01

    Full Text Available The detection of quantal exocytic events from neurons and neuroendocrine cells is a challenging task in neuroscience. One of the most promising platforms for the development of a new generation of biosensors is diamond, due to its biocompatibility, transparency and chemical inertness. Moreover, the electrical properties of diamond can be turned from a perfect insulator into a conductive material (resistivity ~mΩ·cm by exploiting the metastable nature of this allotropic form of carbon. A 16‑channels MEA (Multi Electrode Array suitable for cell culture growing has been fabricated by means of ion implantation. A focused 1.2 MeV He+ beam was scanned on a IIa single-crystal diamond sample (4.5 × 4.5 × 0.5 mm3 to cause highly damaged sub-superficial structures that were defined with micrometric spatial resolution. After implantation, the sample was annealed. This process provides the conversion of the sub-superficial highly damaged regions to a graphitic phase embedded in a highly insulating diamond matrix. Thanks to a three-dimensional masking technique, the endpoints of the sub-superficial channels emerge in contact with the sample surface, therefore being available as sensing electrodes. Cyclic voltammetry and amperometry measurements of solutions with increasing concentrations of adrenaline were performed to characterize the biosensor sensitivity. The reported results demonstrate that this new type of biosensor is suitable for in vitro detection of catecholamine release.

  12. Contributions to the study of positive ion kinetics in gases

    International Nuclear Information System (INIS)

    Popescu, A.

    1978-01-01

    Extensive studies on cesium ion kinetics in cesium and cesium-noble gas mixtures were performed. The obtained data are correlated with the measured parameters of the thermionic diodes. The mobility of atomic and molecular cesium ions at low electric fields, including zero electric field, in cesium and cesium krypton mixtures were measured using the time of flight method and a special thermionic ion detector. The atomic ion conversion into molecular ions is theoretically considered in the diffusion equation of the charged particles and the obtained analytical relation is in good agreement with the experimental cesium measured data. The reaction rate of the ion conversion in cesium is considered from these measurements. Measurements on the diffused plasma through the anode (provided with holes) of the cesium thermionic diode supply data on the anode sheath, the ratio of electronic and ionic current, electron temperature and the nature of the cesium ions (atomic or molecular) for various modes of the low voltage arc discharge. The obtained data have been used for the optimization of the thermionic diode parameters, as well as for the development of a new type of device for the detection of impurities in the air. (author)

  13. Processes governing pinch formation in diodes

    International Nuclear Information System (INIS)

    Blaugrund, A.E.; Cooperstein, G.; Goldstein, S.A.

    1975-01-01

    The process of pinch formation in large aspect ratio diodes has been studied by means of streak photography and time-resolved x-ray detectors. A tight pinch is formed at the anode center by a collapsing thin hollow electron beam. The collapse velocity depends, among other things, on the type of material in the top 1 μm layer of the anode. In a tentative model it is assumed that an anode plasma is at least partially created from gases released from the surface layer of the anode by the heating action of the beam. These gases are ionized by primary, backscattered, and secondary electrons. Ions emitted from this plasma modify the electron trajectories in the diode leading to a radial collapse of the hollow electron beam. The observed monotonic dependence of the collapse velocity on the atomic number of the anode material can be explained by the smooth dependence on Z of both the specific heat and the electron backscatter coefficient. In the case of high-Z anodes the ion expansion time appears to be the factor limiting the collapse velocity. Detailed experimental data are presented

  14. Characterization of Schottky barrier diodes fabricated from electrochemical oxidation of {alpha} phase brass

    Energy Technology Data Exchange (ETDEWEB)

    Bond, John W., E-mail: jwb13@le.ac.u [Forensic Research Centre, University of Leicester, Leicester LE1 7 EA (United Kingdom)

    2011-04-01

    By careful selection of chloride ion concentration in aqueous sodium chloride, electrochemical oxidation of {alpha} phase brass is shown to permit fabrication of either p-type copper (I) oxide/metal or n-type zinc oxide/metal Schottky barrier diodes. X-ray photoelectron and Auger electron spectroscopies provide evidence that barrier formation and rectifying qualities depend on the relative surface abundance of copper (I) oxide and zinc oxide. X-ray diffraction of the resulting diodes shows polycrystalline oxides embedded in amorphous oxidation products that have a lower relative abundance than the diode forming oxide. Conventional I/V characteristics of these diodes show good rectifying qualities. When neither of the oxides dominate, the semiconductor/metal junction displays an absence of rectification.

  15. A study of process-related electrical defects in SOI lateral bipolar transistors fabricated by ion implantation

    Science.gov (United States)

    Yau, J.-B.; Cai, J.; Hashemi, P.; Balakrishnan, K.; D'Emic, C.; Ning, T. H.

    2018-04-01

    We report a systematic study of process-related electrical defects in symmetric lateral NPN transistors on silicon-on-insulator (SOI) fabricated using ion implantation for all the doped regions. A primary objective of this study is to see if pipe defects (emitter-collector shorts caused by locally enhanced dopant diffusion) are a show stopper for such bipolar technology. Measurements of IC-VCE and Gummel currents in parallel-connected transistor chains as a function of post-fabrication rapid thermal anneal cycles allow several process-related electrical defects to be identified. They include defective emitter-base and collector-base diodes, pipe defects, and defects associated with a dopant-deficient region in an extrinsic base adjacent its intrinsic base. There is no evidence of pipe defects being a major concern in SOI lateral bipolar transistors.

  16. Ion implantation induced conducting nano-cluster formation in PPO

    International Nuclear Information System (INIS)

    Das, A.; Patnaik, A.; Ghosh, G.; Dhara, S.

    1997-01-01

    Conversion of polymers and non-polymeric organic molecules from insulating to semiconducting materials as an effect of energetic ion implantation is an established fact. Formation of nano-clusters enriched with carbonaceous materials are made responsible for the insulator-semiconductor transition. Conduction in these implanted materials is observed to follow variable range hopping (VRH) mechanism. Poly(2,6-dimethyl phenylene oxide) [PPO] compatible in various proportion with polystyrene is used as a high thermal resistant insulating polymer. PPO has been used for the first time in the ion implantation study

  17. Experimental studies of ions and atoms interaction with insulating surface

    International Nuclear Information System (INIS)

    Villette, J.

    2000-10-01

    Grazing collisions ( + , Ne + , Ne 0 , Na + on LiF (001) single crystal, an ionic insulator, are investigated by a time of flight technique. The incident beam is chopped and the scattered particles are collected on a position sensitive detector providing differential cross section while the time of flight gives the energy loss. Deflection plates allow the charge state analysis. Secondary electrons are detected in coincidence allowing direct measurements of electron emission yield, angular and energetic distribution through time of flight measurements. The target electronic structure characterized by a large band gap, governs the collisional processes: charge exchange, electronic excitations and electron emission. In particular, these studies show that the population of local target excitations surface excitons is the major contribution to the kinetic energy transfer (stopping power). Auger neutralization of Ne + and He + ions reveals the population of quasi-molecular excitons, an exciton bound on two holes. Referenced in the literature as trion. A direct energy balance determines the binding energy associated with these excited states of the surface. Besides these electronic energy loss processes, two nuclear energy loss mechanisms are characterized. These processes imply momentum transfer to individual target atoms during close binary collisions or, if the projectile is charged, to collective mode of optical phonons induced by the projectile coulomb field. The effect of the temperature on the scattering profile, the contribution of topological surface defects to the energy loss profile and to skipping motion on the surface are analyzed in view of classical trajectory simulations. (author)

  18. D.B.S. in disordered insulators

    International Nuclear Information System (INIS)

    Bunch, J.M.

    1976-01-01

    These studies were undertaken in order to determine insulator properties for the CTR program. Most of the d.b.s. studies so far have been with various forms of Al 2 O 3 . Some work using fission neutrons and 15-MeV protons along with some high-energy heavy ions is briefly described. Attempts to measure d.b.s. and other electrical properties are mentioned

  19. Pulse explosion ion beam source with one pulse regime supply for surface modification of materials

    International Nuclear Information System (INIS)

    Korenev, S.A.

    1989-01-01

    A variant of explosion ion beam source with one positive pulse supply for surface modification of materials is described. Ion source consists of vacuum diode and pulse generator Arcadiev-Marx type. Residual gas pressure was p∼5x10 -5 torr in the diode. The sort of ions was fixed by materials initiator anode plasma. The produce carbon ions a carbon-fibrous initiator is used for niobium and titanium-niobium-titanium cable with picking copper matrix. The ions density current regulation is realized by by change of diode gap in the correspondence with Child-Langmuir law. For carbon ions the current density is j∼6A/cm 2 for voltage U∼100kV and j∼32A/cm 2 for voltage U∼300 kV. 7 refs.; 1 fig

  20. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering

    KAUST Repository

    Pan, Jun; Quan, Li Na; Zhao, Yongbiao; Peng, Wei; Banavoth, Murali; Sarmah, Smritakshi P.; Yuan, Mingjian; Sinatra, Lutfan; AlYami, Noktan; Liu, Jiakai; Yassitepe, Emre; Yang, Zhenyu; Voznyy, Oleksandr; Comin, Riccardo; Hedhili, Mohamed N.; Mohammed, Omar F.; Lu, Zheng Hong; Kim, Dong Ha; Sargent, Edward H.; Bakr, Osman

    2016-01-01

    A two-step ligand-exchange strategy is developed, in which the long-carbon-chain ligands on all-inorganic perovskite (CsPbX3, X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-paircapped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.

  1. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering

    KAUST Repository

    Pan, Jun

    2016-08-16

    A two-step ligand-exchange strategy is developed, in which the long-carbon-chain ligands on all-inorganic perovskite (CsPbX3, X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-paircapped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.

  2. Evaluation of a silicon 5 MHz p–n diode actuator with a laterally vibrating extensional mode

    Science.gov (United States)

    Miyazaki, Fumito; Baba, Kazuki; Tanigawa, Hiroshi; Furutsuka, Takashi; Suzuki, Kenichiro

    2018-05-01

    In this paper, we describe p–n diode actuators that are laterally driven by the force induced in a depletion layer. The previously reported p–n diode actuators have been vertically driven. Because the resonant frequency depends on the thickness of the vibrating plate, the integration of resonators with different frequencies on a chip has been difficult. The resonators in this work are driven laterally by using length-extensional vibration. We have developed a compact model based on an analytical expression, in which p–n diode actuators are driven by the forces induced by the spread of the depletion layer. The deflection generated by the p–n diode actuators was proportional to the ratio of the depletion layer width to the resonator thickness as well as the position of the p–n junction. Good agreement of experimental results with the theory was confirmed by comparing the measured values for silicon p–n diode rectangular-plate actuators fabricated using a silicon-on-insulator (SOI) substrate. The displacement amplitude of the actuators was proportional to the DC bias, while the resonant frequency was independent of the DC bias. The latter characteristic is very different from that of widely used electrostatic actuators. Although the amplitude of the actuator measured in this work was very small, it is expected that the amplitude will increase greatly by increasing the doping of the p–n diode actuators.

  3. Intense ion beam generator

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Sudan, R.N.

    1977-01-01

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation

  4. Ninth international conference on ion beam modification of materials. Book of abstracts

    International Nuclear Information System (INIS)

    1995-01-01

    The conference focused on new developments and current status in the use of ion beams for modification of materials including: fundamental ion beam research and secondary effects of ion beams; materials modifications and techniques; biomedical and industrial applications; low energy processes; point defects and damage, nanocrystals in insulators, plasma immersion ion implantation, molecular dynamics simulations of ion-surface interactions, ion-beam mixing of insulators, GeV ion irradiation, electro-optical materials, polymers, tribological materials, and semiconductor processing. The handbook contains the workshop's program, abstracts and an author index. Separate abstracts were prepared for all papers in this volume

  5. Ninth international conference on ion beam modification of materials. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The conference focused on new developments and current status in the use of ion beams for modification of materials including: fundamental ion beam research and secondary effects of ion beams; materials modifications and techniques; biomedical and industrial applications; low energy processes; point defects and damage, nanocrystals in insulators, plasma immersion ion implantation, molecular dynamics simulations of ion-surface interactions, ion-beam mixing of insulators, GeV ion irradiation, electro-optical materials, polymers, tribological materials, and semiconductor processing. The handbook contains the workshop`s program, abstracts and an author index. Separate abstracts were prepared for all papers in this volume.

  6. Ion rings for magnetic fusion. Technical progress report, August 1, 1993--June 1, 1994

    International Nuclear Information System (INIS)

    Sudan, R.N.

    1994-01-01

    In Our Proposal ''Ion Rings for Magnetic Fusion'' of January 6, 1993, Stage I of our Proposed Program plan (the 12 months) consisted of the following tasks: Experiments on the existing ion ring experimental system IREX to test a new magnetically-controlled anode plasma source (MAP) for the ion beam diode injector; numerical simulations of ion ring formation to optimize design parameters for the field reversed ion ring experiment (FIREX) to be built and operated in Stage II; and designing the power supply for the FIREX injector and the magnetic field system using results for A and B. During the past 7 1/2 months our work has progressed according to the above plan. In addition to testing the MAP diode on IREX we have tested the EMFAPS (evaporating metal film anode plasma source) anode on the Sandia National Laboratories funded LION pulsed power generator. As a result of these experiments, described this paper, we have arrived at the conclusion that EMFAPS anode for the ion at present because the MAP diode beam diode injector is our preferred choice for is still in an early stage of development

  7. A simple photoionization scheme for characterizing electron and ion spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Wituschek, A.; Vangerow, J. von; Grzesiak, J.; Stienkemeier, F.; Mudrich, M., E-mail: mudrich@physik.uni-freiburg.de [Physikalisches Institut, Universität Freiburg, 79104 Freiburg (Germany)

    2016-08-15

    We present a simple diode laser-based photoionization scheme for generating electrons and ions with well-defined spatial and energetic (≲2 eV) structures. This scheme can easily be implemented in ion or electron imaging spectrometers for the purpose of off-line characterization and calibration. The low laser power ∼1 mW needed from a passively stabilized diode laser and the low flux of potassium atoms in an effusive beam make our scheme a versatile source of ions and electrons for applications in research and education.

  8. High Current Ionic Diode Using Homogeneously Charged Asymmetric Nanochannel Network Membrane.

    Science.gov (United States)

    Choi, Eunpyo; Wang, Cong; Chang, Gyu Tae; Park, Jungyul

    2016-04-13

    A high current ionic diode is achieved using an asymmetric nanochannel network membrane (NCNM) constructed by soft lithography and in situ self-assembly of nanoparticles with uniform surface charge. The asymmetric NCNM exhibits high rectified currents without losing a rectification ratio because of its ionic selectivity gradient and differentiated electrical conductance. Asymmetric ionic transport is analyzed with diode-like I-V curves and visualized via fluorescent dyes, which is closely correlated with ionic selectivity and ion distribution according to variation of NCNM geometries.

  9. Detection mechanisms in silicon diodes used as α-particle and thermal neutron detectors

    International Nuclear Information System (INIS)

    Cerofolini, G.F.; Ferla, G.; Foglio Para, A.

    1981-01-01

    Some common silicon devices (diodes, RAMs etc.) can be used as α and thermal neutron detectors. An α resolution of approx. equal to 3% can be obtained utilizing p + /n or n + /p diodes with no external bias. Thermal neutrons are detected by means of the reaction 10 B(n,α) 7 Li on the 10 B present in the devices. Neutron efficiency has been substantially improved by implantation of 10 B ions in the p + region of the diodes. Experimental results allow us to clarify the carrier collection mechanisms throughout the device. Some current opinions in the field are contradicted. (orig.)

  10. Photocurrent spectra of semi-insulating GaAs M-S-M diodes: role of the contacts

    Czech Academy of Sciences Publication Activity Database

    Dubecký, F.; Oswald, Jiří; Kindl, Dobroslav; Hubík, Pavel; Dubecký, M.; Gombia, E.; Šagátová, A.; Boháček, P.; Sekáčová, M.; Nečas, V.

    2016-01-01

    Roč. 118, Apr (2016), 30-35 ISSN 0038-1101 Institutional support: RVO:68378271 Keywords : photocurrent spectroscopy * semi-insulating GaAs * detectors * contacts Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.580, year: 2016

  11. Screening of Carotenoids in Tomato Fruits by Using Liquid Chromatography with Diode Array-Linear Ion Trap Mass Spectrometry Detection.

    Science.gov (United States)

    Gentili, Alessandra; Caretti, Fulvia; Ventura, Salvatore; Pérez-Fernández, Virginia; Venditti, Alessandro; Curini, Roberta

    2015-08-26

    This paper presents an analytical strategy for a large-scale screening of carotenoids in tomato fruits by exploiting the potentialities of the triple quadrupole-linear ion trap hybrid mass spectrometer (QqQLIT). The method involves separation on C30 reversed-phase column and identification by means of diode array detection (DAD) and atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). The authentic standards of six model compounds were used to optimize the separative conditions and to predict the chromatographic behavior of untargeted carotenoids. An information dependent acquisition (IDA) was performed with (i) enhanced-mass scan (EMS) as the survey scan, (ii) enhanced-resolution (ER) scan to obtain the exact mass of the precursor ions (16-35 ppm), and (iii) enhanced product ion (EPI) scan as dependent scan to obtain structural information. LC-DAD-multiple reaction monitoring (MRM) chromatograms were also acquired for the identification of targeted carotenoids occurring at low concentrations; for the first time, the relative abundance between the MRM transitions (ion ratio) was used as an extra tool for the MS distinction of structural isomers and the related families of geometrical isomers. The whole analytical strategy was high-throughput, because a great number of experimental data could be acquired with few analytical steps, and cost-effective, because only few standards were used; when applied to characterize some tomato varieties ('Tangerine', 'Pachino', 'Datterino', and 'Camone') and passata of 'San Marzano' tomatoes, our method succeeded in identifying up to 44 carotenoids in the 'Tangerine'" variety.

  12. Characteristics of MOSFETs fabricated in silicon-on-insulator material formed by high-dose oxygen ion implantation

    International Nuclear Information System (INIS)

    Lam, H.W.; Pinizzotto, R.F.; Yuan, H.T.; Bellavance, D.W.

    1981-01-01

    By implanting a dose of 6 x 10 17 cm -2 of 32 O 2 + at 300 keV into a silicon wafer, a buried oxide layer is formed. Crystallinity of the silicon layer above the buried oxide layer is maintained by applying a high (>200 0 C) substrate temperature during the ion implantation process. A two-step anneal cycle is found to be adequate to form the insulating buried oxide layer and to repair the implantation damage in the silicon layer on top of the buried oxide. A surface electron mobility as high as 710 cm 2 /Vs has been measured in n-channel MOSFETs fabricated in a 0.5 μm-thick epitaxial layer grown on the buried oxide wafer. A minimum subthreshold current of about 10 pA per micron of channel width at Vsub(DS)=2 V has been measured. (author)

  13. Status of light ion inertial fusion research at NRL

    International Nuclear Information System (INIS)

    Cooperstein, G.; Barker, R.J.; Colombant, D.G.; Goldstein, S.A.; Meger, R.A.; Mosher, D.; Neri, J.M.; Ottinger, P.F.

    1984-01-01

    This chapter reports on the use of high-brightness proton beams, extracted from axial pinch-reflex diodes mounted on the Naval Research Laboratory (NRL) Gamble II generator, to study light ion inertial fusion. Topics covered include the modular approach, ion beam brightness studies, light-ion beam transport, final focusing, the single diode approach, the inductive storage approach, an energy loss experiment, and future plans. Analysis of a modular inertial confinement fusion (ICF) system using axial pinch-reflex diodes shows that an operational window for transport of light-ion species exists. A proof-of-principle experiment for the required final focusing cell was conducted on Gamble II. Preliminary experiments using vacuum inductive storage and plasma opening switches have demonstrated factorof-three pulse compressions, with corresponding power and voltage multiplications for pulse durations of interest to PBFA II. The stopping power of deuterons in hot plasmas was measured in other experiments. It is demonstrated that about 40% enhancement in stopping power over that in cold targets when the deuteron beam is focused on the target to about .25 MA/cm 2 . Includes 6 diagrams

  14. A comparative study of Mg and Pt contacts on semi-insulating GaAs: Electrical and XPS characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dubecký, F., E-mail: elekfdub@savba.sk [Institute of Electrical Engineering, SAS, Dúbravská cesta 9, Bratislava, SK-84104 (Slovakia); Kindl, D.; Hubík, P. [Institute of Physics CAS, v.v.i., Cukrovarnická 10, CZ-16200 Prague (Czech Republic); Mičušík, M. [Polymer Institute, SAS, Dúbravská cesta 9, Bratislava, SK-84541 (Slovakia); Dubecký, M. [Department of Physics, Faculty of Science, University of Ostrava, 30. dubna 22, CZ-70103 Ostrava 1 (Czech Republic); Boháček, P.; Vanko, G. [Institute of Electrical Engineering, SAS, Dúbravská cesta 9, Bratislava, SK-84104 (Slovakia); Gombia, E. [IMEM-CNR, Parco area delle Scienze 37/A, Parma, I-43010 (Italy); Nečas, V. [Faculty of Electrical Engineering and Information Technology, SUT, Ilkovičova 3, Bratislava, SK-81219 (Slovakia); Mudroň, J. [Department of Electronics, Academy of Armed Forces, Demänová 393, Liptovský Mikuláš, SK-03106 (Slovakia)

    2017-02-15

    Highlights: • Explored were diodes with full-area low/high work function metal contacts on semi-insulating GaAs (S). • The Mg-S-Mg diode is promising for radiation detectors for its low high-field current. • The XPS analysis of Mg-S interface shows presence of MgO instead of Mg metal. - Abstract: We present a comparative study of the symmetric metal-SI GaAs-metal (M-S-M) diodes with full-area contacts on both device sides, in order to demonstrate the effect of contact metal work function in a straightforward way. We compare the conventional high work function Pt contact versus the less explored low work function Mg contact. The Pt-S-Pt, Mg-S-Mg and mixed Mg-S-Pt structures are characterized by the current-voltage measurements, and individual Pt-S and Mg-S contacts are investigated by the X-ray photoelectron spectroscopy (XPS). The transport measurements of Mg-S-Pt structure show a significant current decrease at low bias while the Mg-S-Mg structure shows saturation current at high voltages more than an order of magnitude lower with respect to the Pt-S-Pt reference. The phenomena observed in Mg-containing samples are explained by the presence of insulating MgO layer at the M-S interface, instead of the elementary Mg, as confirmed by the XPS analysis. Alternative explanations of the influence of MgO layer on the effective resistance of the structures are presented. The reported findings have potential applications in M-S-M sensors and radiation detectors based on SI GaAs.

  15. P-type doping of GaN(000\\bar{1}) by magnesium ion implantation

    Science.gov (United States)

    Narita, Tetsuo; Kachi, Tetsu; Kataoka, Keita; Uesugi, Tsutomu

    2017-01-01

    Magnesium ion implantation has been performed on a GaN(000\\bar{1}) substrate, whose surface has a high thermal stability, thus allowing postimplantation annealing without the use of a protective layer. The current-voltage characteristics of p-n diodes fabricated on GaN(000\\bar{1}) showed distinct rectification at a turn-on voltage of about 3 V, although the leakage current varied widely among the diodes. Coimplantation with magnesium and hydrogen ions effectively suppressed the leakage currents and device-to-device variations. In addition, an electroluminescence band was observed at wavelengths shorter than 450 nm for these diodes. These results provide strong evidence that implanted magnesium ions create acceptors in GaN(000\\bar{1}).

  16. Investigation of MIM Diodes for RF Applications

    KAUST Repository

    Khan, Adnan

    2015-05-01

    Metal Insulator Metal (MIM) diodes that work on fast mechanism of tunneling have been used in a number of very high frequency applications such as (Infra-Red) IR detectors and optical Rectennas for energy harvesting. Their ability to operate under zero bias condition as well as the possibility of realizing them through printing makes them attractive for (Radio Frequency) RF applications. However, MIM diodes have not been explored much for RF applications. One reason preventing their widespread RF use is the requirement of a very thin oxide layer essential for the tunneling operation that requires sophisticated nano-fabrication processes. Another issue is that the reliability and stable performance of MIM diodes is highly dependent on the surface roughness of the metallic electrodes. Finally, comprehensive RF characterization has not been performed for MIM diodes reported in the literature, particularly from the perspective of their integration with antennas as well as their rectification abilities. In this thesis, various metal deposition methods such as sputtering, electron beam evaporation, and Atomic Layer Deposition (ALD) are compared in pursuit of achieving low surface roughness. It is worth mentioning here that MIM diodes realized through ALD method have been presented for the first time in this thesis. Amorphous metal alloy have also been investigated in terms of their low surface roughness. Zinc-oxide has been investigated for its suitability as a thin dielectric layer for MIM diodes. Finally, comprehensive RF characterization of MIM diodes has been performed in two ways: 1) by standard S-parameter methods, and 2) by investigating their rectification ability under zero bias operation. It is concluded from the Atomic Force Microscopy (AFM) imaging that surface roughness as low as sub 1 nm can be achieved reliably from crystalline metals such as copper and platinum. This value is comparable to surface roughness achieved from amorphous alloys, which are non

  17. Plasma Deposited SiO2 for Planar Self-Aligned Gate Metal-Insulator-Semiconductor Field Effect Transistors on Semi-Insulating InP

    Science.gov (United States)

    Tabory, Charles N.; Young, Paul G.; Smith, Edwyn D.; Alterovitz, Samuel A.

    1994-01-01

    Metal-insulator-semiconductor (MIS) field effect transistors were fabricated on InP substrates using a planar self-aligned gate process. A 700-1000 A gate insulator of Si02 doped with phosphorus was deposited by a direct plasma enhanced chemical vapor deposition at 400 mTorr, 275 C, 5 W, and power density of 8.5 MW/sq cm. High frequency capacitance-voltage measurements were taken on MIS capacitors which have been subjected to a 700 C anneal and an interface state density of lxl0(exp 11)/eV/cq cm was found. Current-voltage measurements of the capacitors show a breakdown voltage of 107 V/cm and a insulator resistivity of 10(exp 14) omega cm. Transistors were fabricated on semi-insulating InP using a standard planar self-aligned gate process in which the gate insulator was subjected to an ion implantation activation anneal of 700 C. MIS field effect transistors gave a maximum extrinsic transconductance of 23 mS/mm for a gate length of 3 microns. The drain current drift saturated at 87.5% of the initial current, while reaching to within 1% of the saturated value after only 1x10(exp 3). This is the first reported viable planar InP self-aligned gate transistor process reported to date.

  18. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  19. Lithium-ion batteries having conformal solid electrolyte layers

    Science.gov (United States)

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  20. Intense ion beams for inertial confinement fusion

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.

    1997-01-01

    Intense beams of light of heavy ions are being studied as inertial confinement fusion (ICF) drivers for high yield and energy. Heavy and light ions have common interests in beam transport, targets, and alternative accelerators. Self-pinched transport is being jointly studied. This article reviews the development of intense ion beams for ICF. Light-ion drivers are highlighted because they are compact, modular, efficient and low cost. Issues facing light ions are: (1) decreasing beam divergence; (2) increasing beam brightness; and (3) demonstrating self-pinched transport. Applied-B ion diodes are favored because of efficiency, beam brightness, perceived scalability, achievable focal intensity, and multistage capability. A light-ion concept addressing these issues uses: (1) an injector divergence of ≤ 24 mrad at 9 MeV; (2) two-stage acceleration to reduce divergence to ≤ 12 mrad at 35 MeV; and (3) self-pinched transport accepting divergences up to 12 mrad. Substantial progress in ion-driven target physics and repetitive ion diode technology is also presented. Z-pinch drivers are being pursued as the shortest pulsed power path to target physics experiments and high-yield fusion. However, light ions remain the pulsed power ICF driver of choice for high-yield fusion energy applications that require driver standoff and repetitive operation. 100 refs

  1. 100 years of the physics of diodes

    Science.gov (United States)

    Zhang, Peng; Valfells, Ágúst; Ang, L. K.; Luginsland, J. W.; Lau, Y. Y.

    2017-03-01

    The Child-Langmuir Law (CL), discovered a century ago, gives the maximum current that can be transported across a planar diode in the steady state. As a quintessential example of the impact of space charge shielding near a charged surface, it is central to the studies of high current diodes, such as high power microwave sources, vacuum microelectronics, electron and ion sources, and high current drivers used in high energy density physics experiments. CL remains a touchstone of fundamental sheath physics, including contemporary studies of nanoscale quantum diodes and nano gap based plasmonic devices. Its solid state analog is the Mott-Gurney law, governing the maximum charge injection in solids, such as organic materials and other dielectrics, which is important to energy devices, such as solar cells and light emitting diodes. This paper reviews the important advances in the physics of diodes since the discovery of CL, including virtual cathode formation and extension of CL to multiple dimensions, to the quantum regime, and to ultrafast processes. We review the influence of magnetic fields, multiple species in bipolar flow, electromagnetic and time dependent effects in both short pulse and high frequency THz limits, and single electron regimes. Transitions from various emission mechanisms (thermionic-, field-, and photoemission) to the space charge limited state (CL) will be addressed, especially highlighting the important simulation and experimental developments in selected contemporary areas of study. We stress the fundamental physical links between the physics of beams to limiting currents in other areas, such as low temperature plasmas, laser plasmas, and space propulsion.

  2. Ion beam transport and focus for LMF using an achromatic solenoidal lens system

    International Nuclear Information System (INIS)

    Olson, C.L.

    1990-01-01

    The light ion LMF (Laboratory Microfusion Facility) requires an ion beam transport length for bunching and standoff to be about four meters from the diode to the target. The baseline LMF transport scheme uses an achromatic two lens system consisting of the diode (a self-field lens) and a solenoidal lens. Charge and current neutralization are provided by a background gas. A detailed analysis of this system is presented here. The effects of additional magnetic fields are examined, including those produced by non-zero net currents, applied B effects near the diode, and diamagnetic effects in the solenoidal lens. Instabilities are analyzed including the filamentation instability, the two-stream instability (beam ions, plasma electrons), the plasma two-stream instability (plasma electrons, plasma ions), and the ion acoustic instability. Scattering in the foil and gas are shown to be negligible. Gas breakdown processes are analyzed in detail, including ion impact ionization, electron avalanching, and ohmic heating. Special diode requirements are examined, including voltage accuracy, energy spread, and aiming tolerances. The neutral gas and gas pressure are chosen to satisfy several constraints, one being that the net current must be small, and another being that the filamentation instability should be avoided. With the present choice of 1 Torr He, it is concluded that the complete achromatic lens system appears to be viable, simple, and efficient transport and focusing system for LMF

  3. ECR ion source and some improvements

    International Nuclear Information System (INIS)

    Liu Zhanwen; Zhang Wen; Zhao Hongwei; Zhang Xuezhen; Yuan Ping; Guo Xiaohong; Zhou Sixin; Ye Feng; Wei Baowen; Efremov, A.

    1994-01-01

    The structure, the principle of a CAPRICE-type ECR ion source and the necessary condition of the source for providing high charged ions are presented. CAPRICE was tested first at the test bench with a newly shaped configuration of the magnetic mirror throat at the injection side. The ion currents of Ar and Ne ions were increased remarkably. Later, CAPRICE was coupled to the injector SFC of HIRFL, and other modifications were made to improve the magnetic field and decrease the electric power consumption in the solenoids of the source. Meanwhile a simple electron gun with cold cathode was tested preliminarily. The result was satisfactory. Last year, some successful changes in the construction of the insulation cover for the hexapole of CAPRICE were achieved also. The new cover is aimed to endure higher extraction voltage, and avoid the condensation of humid air on the exterior of the insulation covers

  4. High-current heavy-ion accelerator system and its application to material modification

    International Nuclear Information System (INIS)

    Kishimoto, Naoki; Takeda, Yoshihiko; Lee, C.G.; Umeda, Naoki; Okubo, Nariaki; Iwamoto, Eiji

    2001-01-01

    A high-current heavy-ion accelerator system has been developed to realize intense particle fluxes for material modification. The facility of a tandem accelerator attained 1 mA-class ion current both for negative low-energy ions and positive high-energy ions. The negative ion source of the key device is of the plasma-sputter type, equipped with mutli-cusp magnets and Cs supply. The intense negative ions are either directly used for material irradiation at 60 keV or further accelerated up to 6 MeV after charge transformation. Application of negative ions, which alleviates surface charging, enables us to conduct low-energy high-current irradiation on insulating substrates. Since positive ions above the MeV range are irrelevant for Coulomb repulsion, the facility as a whole meets the needs of high-current irradiation onto insulators over a wide energy range. Application of high flux ions provides technological merits not only for efficient implantation but also for essentially different material kinetics, which may become an important tool of material modification. Other advantages of the system are co-irradiation by intense laser and in-situ detection of kinetic processes. For examples of material modifications, we present nanoparticle fabrication in insulators, and synergistic phenomena by co-irradiation due to ions and photons. (author)

  5. Dynamics of a relativistic electron beam in a high-current diode with a knife-edge cathode

    International Nuclear Information System (INIS)

    Babykin, V.M.; Gordeev, A.V.; Golovin, G.T.; Korolev, V.D.; Kopchikov, A.V.; Tulupov, M.V.; Chernenko, A.S.; Shuvaev, V.Yu.

    1991-01-01

    For a number of practical applications, e.g., producing discharges in large volumes in order to pump gas lasers and for short x-ray pulses, it is necessary to generate electron beams in megamp range with electron energies from hundreds of kilovolts to several megavolts. It has been possible to obtain high currents (I ± 1 MA) by using diodes with knife-edge cathodes. Knife-edge diodes have an important advantage over the parapotential type because the ion current in them comprises a relatively small fraction of the total current. This is because the electron path in the accelerating gap of knife-edge diodes is quite short in comparison with that in high-current parapotential diodes. From the point of view of applying ribbon-shaped or narrow electron beams, the important problems are in measuring the current-voltage characteristics of the diodes and determining the dynamics of the energy spectrum and the angular spread of the electrons. The generation of an electron beam with a current ∼130 kA and pulse length ∼60 ns is studied. The current-voltage characteristics of knife-edge diodes with various geometries, the dynamics of the angular spread, and the beam structure are studied. As a result of the study of the REB dynamics it is found that the operation of the diode with these experiments can be approximated by a proposed formula which includes the finite thickness of the knife-edge cathode and the motion of the plasma and ions in the discharge gap. Breaking up of the beam into individual current-carrying channels is observed with the characteristic scale ∼1-2 mm. It is noted that for the diode geometry with a knife-edge cathode, when the magnetic field changes sign and passes through zero, an instability can exist which is analogous to the dissipative tearing instability

  6. Ion Mass Determination

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (100) is described for determining the mass of ions, the apparatus configured to hold a plasma (101 ) having a plasma potential. The apparatus (100) comprises an electrode (102) having a surface extending in a surface plane and an insulator (104) interfacing with the electrode (102......, and a processing unit (108) configured to interpret the detected impact locations in terms of the mass of the impacting ions....

  7. Magnetic insulation, power flow, and pulse power results on RITS-3

    International Nuclear Information System (INIS)

    Johnson, David L.; Smith, Ian; Corcoran, Patrick; Bailey, Vernon; Maenchen, John; Rovang, Dean; Molina, Isidro; Hahn, Kelly; Lucero, Robert; Kincy, Mark; Kitterman, David; Oliver, Bryan; Welch, Dale; Rose, David; Goldsack, Timothy J.; Phillips, Martin A.; Sinclair, Mark A.; Thomas, Kenneth J.

    2002-01-01

    RITS (Radiographic Integrated Test Stand) is an induction voltage adder designed by Sandia and PSD to provide 16-MV, 150-kA electron beams and other capabilities. Previous publications have reported on tests of a single pulse forming line and adder cell, including initial results of the effects of various degrees of non-uniform injection of current into the adder bore on magnetic insulation and power flow in the downstream MITL. Now RITS-3 has been constructed, consisting of three pfls driven by a common intermediate store; three induction cells, one driven by each pfl; a three-stage, 4-MV, 150-kA vacuum voltage adder; and an output MITL and diode. Here we report on (1) simulations of the three-stage adder using the MRC 3-D particle-in-cell code LSP that address the effects of injected current non-uniformities on magnetic insulation and power-flow both upstream and downstream in a multi-cell adder; (2) experimental results compared with simulations; and (3) initial performance of the RITS-3 pulse power

  8. The impact of plasma dynamics on the self-magnetic-pinch diode impedance

    International Nuclear Information System (INIS)

    Bennett, Nichelle; Crain, M. Dale; Droemer, Darryl W.; Gignac, Raymond E.; Molina, Isidro; Obregon, Robert; Smith, Chase C.; Wilkins, Frank L.; Welch, Dale R.; Webb, Timothy J.; Mazarakis, Michael G.; Kiefer, Mark L.; Johnston, Mark D.; Leckbee, Joshua J.; Nielsen, Dan; Romero, Tobias; Simpson, Sean; Ziska, Derek

    2015-01-01

    The self-magnetic-pinch diode is being developed as an intense electron beam source for pulsed-power-driven x-ray radiography. The basic operation of this diode has long been understood in the context of pinched diodes, including the dynamic effect that the diode impedance decreases during the pulse due to electrode plasma formation and expansion. Experiments being conducted at Sandia National Laboratories' RITS-6 accelerator are helping to characterize these plasmas using time-resolved and time-integrated camera systems in the x-ray and visible. These diagnostics are analyzed in conjunction with particle-in-cell simulations of anode plasma formation and evolution. The results confirm the long-standing theory of critical-current operation with the addition of a time-dependent anode-cathode gap length. The results may suggest that anomalous impedance collapse is driven by increased plasma radial drift, leading to larger-than-average ion v r × B θ acceleration into the gap

  9. Insulating Behavior in Graphene with Irradiation-induced Lattice Defects

    Science.gov (United States)

    Chen, Jian-Hao; Williams, Ellen; Fuhrer, Michael

    2010-03-01

    We irradiated cleaned graphene on silicon dioxide in ultra-high vacuum with low energy inert gas ions to produce lattice defects [1], and investigated in detail the transition from metallic to insulating temperature dependence of the conductivity as a function of defect density. We measured the low field magnetoresistance and temperature-dependent resistivity in situ and find that weak localization can only account for a small correction of the resistivity increase with decreasing temperature. We will discuss possible origins of the insulating temperature dependent resistivity in defected graphene in light of our recent experiments. [4pt] [1] Jian-Hao Chen, W. G. Cullen, C. Jang, M. S. Fuhrer, E. D. Williams, PRL 102, 236805 (2009)

  10. A transparent diode with high rectifying ratio using amorphous indium-gallium-zinc oxide/SiN{sub x} coupled junction

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myung-Jea; Kim, Myeong-Ho; Choi, Duck-Kyun, E-mail: duck@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-08-03

    We introduce a transparent diode that shows both high rectifying ratio and low leakage current at process temperature below 250 °C. This device is clearly distinguished from all previous transparent diodes in that the rectifying behavior results from the junction between a semiconductor (amorphous indium-gallium-zinc oxide (a-IGZO)) and insulator (SiN{sub x}). We systematically study the properties of each junction within the device structure and demonstrate that the a-IGZO/SiN{sub x} junction is the source of the outstanding rectification. The electrical characteristics of this transparent diode are: 2.8 A/cm{sup 2} on-current density measured at −7 V; lower than 7.3 × 10{sup −9} A/cm{sup 2} off-current density; 2.53 ideality factor; and high rectifying ratio of 10{sup 8}–10{sup 9}. Furthermore, the diode structure has a transmittance of over 80% across the visible light range. The operating principle of the indium-tin oxide (ITO)/a-IGZO/SiN{sub x}/ITO device was examined with an aid of the energy band diagram and we propose a preliminary model for the rectifying behavior. Finally, we suggest further directions for research on this transparent diode.

  11. Low-temperature current-voltage characteristics of MIS Cu/n-GaAs and inhomogeneous Cu/n-GaAs Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Biber, M

    2003-01-01

    The current-voltage (I-V) characteristics of metal-insulating layer-semiconductor Cu/n-GaAs and inhomogeneous Cu/n-GaAs Schottky barrier diodes were determined in the temperature range 80-300 K. The evaluation of the experimental I-V data reveals a nonlinear increase of the zero-bias barrier height (qPHI{sub 0}) for the inhomogeneous Cu/n-GaAs Schottky barrier diodes and a linear increase of the zero-bias barrier height (qPHI{sub 0}) for Cu/n-GaAs Schottky barrier diodes with an interfacial layer. The ideality factor n decreases with increasing temperature for all diodes. Furthermore, the changes in PHI{sub 0} and n become quite significant below 150 K and the plot of ln(I{sub 0}/T{sup 2}) versus 1/T exhibits a non-linearity below 180 K for the inhomogeneous barrier diodes. Such behavior is attributed to barrier inhomogeneities by assuming a Gaussian distribution of barrier heights at the interface. The value of the Richardson constant was found to be 5.033 A/cm{sup 2} K{sup 2}, which is close to the theoretical value of 8.16 A/cm{sup 2} K{sup 2} used for the determination of the zero-bias barrier height.

  12. A generalization of the child-langmuir relation for one-dimensional time-dependent diodes

    International Nuclear Information System (INIS)

    Kadish, A.; Jones, M.E.; Peter, W.

    1985-01-01

    The steady-state Child-Langmuir relation between current and applied voltage has been a basic principle upon which all modern diode physics has been based. With advances in pulsed power technology and diode design, new devices which operate in vastly different parameter regimes have recently become of interest. Many of these devices cannot be said to satisfy the strict requirements necessary for Child-Langmuir flow. For instance, in a recent pulsed electron device for use in high-current accelerators, the applied voltage is sinusoidal in time. In another case, development of sources for heavy ion fusion necessitates understanding of transient current oscillations when the voltage is applied abruptly. We derive the time-dependent relationship between the emitted current and time-dependent applied voltage in a nonrelativistic planar diode. The relationship is valid for arbitrary voltage shapes V(t) applied to the diode for times less than the beam-front transit time across the gap. Using this relationship, transient and time-dependent effects in the start-up phase of any nonrelativistic diode can be analyzed

  13. Inhibition of enamel demineralisation using "Nd-YAG and diode laser assisted fluoride therapy".

    Science.gov (United States)

    Chand, B R; Kulkarni, S; Mishra, P

    2016-02-01

    This in vitro study was to evaluate the irradiation efficacy of the Diode laser and the Nd-YAG laser either un-assisted or assisted by acidulated phosphate fluoride (APF) treatment on enamel's acid resistance. Seventy-two enamel samples, obtained from 12 extracted human molars, were randomly assigned to 6 groups as follows: (1) Control (C); (2) Exposed to APF gel (F); (3) Diode laser (DL); (4) Irradiated with Diode laser through APF gel (DL/F); (5) Nd-YAG laser (NL) and (6) Irradiated with Nd-YAG laser through APF gel (NL/F). The specimens were individually demineralised in an acidified hydroxyethylcellulose system, and the acid resistance was evaluated by determining the calcium ion dissolution using atomic absorption spectrometry. The average concentration of the calcium ion determined in groups 1 to 6 was 901, 757, 736, 592, 497 and 416 parts per million micrograms/gram, respectively. The results showed that demineralisation in the NL/F group was significantly less than the other groups and the control group was significantly greater than the other groups (P laser irradiation, used alone or in combination with APF, in decreasing the enamel demineralisation was greater than all the other groups.

  14. On a possibility of creation of positive space charge cloud in a system with magnetic insulation of electrons

    International Nuclear Information System (INIS)

    Goncharov, A.A.; Dobrovol'skii, A.M.; Dunets, S.P.; Evsyukov, A.N.; Protsenko, I.M.

    2009-01-01

    We describe a new approach for creation an effective, low-cost, low-maintenance axially symmetric plasma optical tools for focusing and manipulating high-current beams of negatively charged particles, electrons and negative ions. This approach is based on fundamental plasma optical concept of magnetic insulation of electrons and non-magnetized positive ions providing creation of controlled uncompensated cloud of the space charge. The axially symmetric electrostatic plasma optical lens is well-known and well developed tool where this concept is used successfully. This provides control and focusing high-current positive ion beams in wide range of parameters. Here for the first time we present optimistic experimental results describing the application of an idea of magnetic insulation of electrons for generation of the stable cloud of positive space charge by focusing onto axis the converging stream of heavy ions produced by circular accelerator with closed electron drift. The estimations of a maximal concentration of uncompensated cloud of positive ions are also made

  15. An optical MEMS accelerometer fabricated using double-sided deep reactive ion etching on silicon-on-insulator wafer

    Science.gov (United States)

    Teo, Adrian J. T.; Li, Holden; Tan, Say Hwa; Yoon, Yong-Jin

    2017-06-01

    Optical MEMS devices provide fast detection, electromagnetic resilience and high sensitivity. Using this technology, an optical gratings based accelerometer design concept was developed for seismic motion detection purposes that provides miniaturization, high manufacturability, low costs and high sensitivity. Detailed in-house fabrication procedures of a double-sided deep reactive ion etching (DRIE) on a silicon-on-insulator (SOI) wafer for a micro opto electro mechanical system (MOEMS) device are presented and discussed. Experimental results obtained show that the conceptual device successfully captured motion similar to a commercial accelerometer with an average sensitivity of 13.6 mV G-1, and a highest recorded sensitivity of 44.1 mV G-1. A noise level of 13.5 mV was detected due to experimental setup limitations. This is the first MOEMS accelerometer developed using double-sided DRIE on SOI wafer for the application of seismic motion detection, and is a breakthrough technology platform to open up options for lower cost MOEMS devices.

  16. An optical MEMS accelerometer fabricated using double-sided deep reactive ion etching on silicon-on-insulator wafer

    International Nuclear Information System (INIS)

    Teo, Adrian J T; Li, Holden; Yoon, Yong-Jin; Tan, Say Hwa

    2017-01-01

    Optical MEMS devices provide fast detection, electromagnetic resilience and high sensitivity. Using this technology, an optical gratings based accelerometer design concept was developed for seismic motion detection purposes that provides miniaturization, high manufacturability, low costs and high sensitivity. Detailed in-house fabrication procedures of a double-sided deep reactive ion etching (DRIE) on a silicon-on-insulator (SOI) wafer for a micro opto electro mechanical system (MOEMS) device are presented and discussed. Experimental results obtained show that the conceptual device successfully captured motion similar to a commercial accelerometer with an average sensitivity of 13.6 mV G −1 , and a highest recorded sensitivity of 44.1 mV G −1 . A noise level of 13.5 mV was detected due to experimental setup limitations. This is the first MOEMS accelerometer developed using double-sided DRIE on SOI wafer for the application of seismic motion detection, and is a breakthrough technology platform to open up options for lower cost MOEMS devices. (technical note)

  17. Microparticle-initiated losses in magnetically insulated transmission lines

    International Nuclear Information System (INIS)

    Gray, E.W.; Stinnett, R.W.

    1986-01-01

    The author's discuss the effects of high and hypervelocity microparticles in magnetically-insulated transmission lines (MITLs) and how they may be a possible source for ion production near the anode in early stages of the voltage pulse, and current carriers during and after the power pulse, resulting in power flow losses. Early losses in the voltage pulse, due to microparticles, are estimated to be approximately 0.3 mA/cm/sup 2/. Blistering of the electrode surface, thought to be due to H/sup -/ bombardment, was also observed and appears to be consistent with losses due to negative ions previously reported by one of the authors

  18. Spectroscopic measurements of anode plasma with cryogenic pulsed ion sources

    International Nuclear Information System (INIS)

    Yoneda, H.; Urata, T.; Ohbayashi, K.; Kim, Y.; Horioka, K.; Kasuya, K.

    1987-01-01

    In ion beam diodes, electromagnetic wave is coupled to ion beam. Ion is extracted from anode plasma, which is produced early in the power pulse. However, exact mechanism of anode plasma production, expansion and ion extraction process is unknown. In particularly, anode plasma expansion is seemed to be one of the reasons of rapid impedance collapse of the diode, which is serious problem in high power experiments. Some experimental results showed that anode plasma expansion velocity was about 5 times larger than that inferred from simple thermal velocity. Several explanations for these results were proposed; for example, electron collisionarity in anode plasma, fast neutral gas particle, diamagnetism. To solve this question, it is necessary to measure the characteristic of anode plasma with space and time resolution. The authors made spectroscopic measurements to investigate variety of electron temperature, electron density, expansion velocity of anode plasma with various ion sources

  19. Swift-heavy ion track electronics (SITE)

    International Nuclear Information System (INIS)

    Fink, D.; Chadderton, L.T.; Hoppe, K.; Fahrner, W.R.; Chandra, A.; Kiv, A.

    2007-01-01

    An overview about the state-of-art of the development of a new type of nanoelectronics based on swift-heavy ions is given. Polymeric as well as silicon-based substrates have been used, and both latent and etched ion tracks play a role. Nowadays the interest has shifted from simple scaling-down of capacitors, magnets, transformers, diodes, transistors, etc. towards new types of ion track-based structures hitherto unknown in electronics. These novel structures, denoted by the acronyms 'TEAMS' (tunable electrically anisotropic material on semiconductor) and 'TEMPOS' (tunable electronic material with pores in oxide on semiconductor), may exhibit properties of tunable resistors, capacitors, diodes, sensors and transistors. Their general current/voltage characteristics are outlined. As these structures are often influenced by ambient physical or chemical parameters they also act as sensors. A peculiarity of these structures is the occurrence of negative differential resistances (NDRs) which makes them feasible for applications in tunable flip-flops, amplifiers and oscillators

  20. Swift-heavy ion track electronics (SITE)

    Energy Technology Data Exchange (ETDEWEB)

    Fink, D. [Hahn-Meitner-Institute Berlin, Glienicker Str. 100, D-14109 Berlin (Germany)]. E-mail: fink@hmi.de; Chadderton, L.T. [Institute of Advanced Studies, ANU Canberra, G.P.O. Box 4, ACT (Australia); Hoppe, K. [South Westfalia University of Applied Sciences, Hagen (Germany); Fahrner, W.R. [Chair of Electronic Devices, Inst. of Electrotechnique, Fernuniversitaet, Hagen (Germany); Chandra, A. [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Kiv, A. [Ben Gurion University of the Negev, Israel, P.O. Box 653, Beer-Sheva, 84105 (Israel)

    2007-08-15

    An overview about the state-of-art of the development of a new type of nanoelectronics based on swift-heavy ions is given. Polymeric as well as silicon-based substrates have been used, and both latent and etched ion tracks play a role. Nowadays the interest has shifted from simple scaling-down of capacitors, magnets, transformers, diodes, transistors, etc. towards new types of ion track-based structures hitherto unknown in electronics. These novel structures, denoted by the acronyms 'TEAMS' (tunable electrically anisotropic material on semiconductor) and 'TEMPOS' (tunable electronic material with pores in oxide on semiconductor), may exhibit properties of tunable resistors, capacitors, diodes, sensors and transistors. Their general current/voltage characteristics are outlined. As these structures are often influenced by ambient physical or chemical parameters they also act as sensors. A peculiarity of these structures is the occurrence of negative differential resistances (NDRs) which makes them feasible for applications in tunable flip-flops, amplifiers and oscillators.

  1. Metal-insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition

    International Nuclear Information System (INIS)

    Fernandez-Pacheco, A.; Ibarra, M. R.; De Teresa, J. M.; Cordoba, R.

    2009-01-01

    We present a study of the transport properties of Pt-C nanowires created by focused-ion-beam (FIB)-induced deposition. By means of the measurement of the resistance while the deposit is being performed, we observe a progressive decrease in the nanowire resistivity with thickness, changing from 10 8 μΩ cm for thickness ∼20 nm to a lowest saturated value of 700 μΩ cm for thickness >150 nm. Spectroscopy analysis indicates that this dependence on thickness is caused by a gradient in the metal-carbon ratio as the deposit is grown. We have fabricated nanowires in different ranges of resistivity and studied their conduction mechanism as a function of temperature. A metal-insulator transition as a function of the nanowire thickness is observed. The results will be discussed in terms of the Mott-Anderson theory for noncrystalline materials. An exponential decrease in the conductance with the electric field is found for the most resistive samples, a phenomenon understood by the theory of hopping in lightly doped semiconductors under strong electric fields. This work explains the important discrepancies found in the literature for Pt-C nanostructures grown by FIB and opens the possibility to tune the transport properties of this material by an appropriate selection of the growth parameters.

  2. A Strategy for Architecture Design of Crystalline Perovskite Light-Emitting Diodes with High Performance.

    Science.gov (United States)

    Shi, Yifei; Wu, Wen; Dong, Hua; Li, Guangru; Xi, Kai; Divitini, Giorgio; Ran, Chenxin; Yuan, Fang; Zhang, Min; Jiao, Bo; Hou, Xun; Wu, Zhaoxin

    2018-06-01

    All present designs of perovskite light-emitting diodes (PeLEDs) stem from polymer light-emitting diodes (PLEDs) or perovskite solar cells. The optimal structure of PeLEDs can be predicted to differ from PLEDs due to the different fluorescence dynamics and crystallization between perovskite and polymer. Herein, a new design strategy and conception is introduced, "insulator-perovskite-insulator" (IPI) architecture tailored to PeLEDs. As examples of FAPbBr 3 and MAPbBr 3 , it is experimentally shown that the IPI structure effectively induces charge carriers into perovskite crystals, blocks leakage currents via pinholes in the perovskite film, and avoids exciton quenching simultaneously. Consequently, as for FAPbBr 3 , a 30-fold enhancement in the current efficiency of IPI-structured PeLEDs compared to a control device with poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) as hole-injection layer is achieved-from 0.64 to 20.3 cd A -1 -while the external quantum efficiency is increased from 0.174% to 5.53%. As the example of CsPbBr 3 , compared with the control device, both current efficiency and lifetime of IPI-structured PeLEDs are improved from 1.42 and 4 h to 9.86 cd A -1 and 96 h. This IPI architecture represents a novel strategy for the design of light-emitting didoes based on various perovskites with high efficiencies and stabilities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cellulose Insulation

    Science.gov (United States)

    1980-01-01

    Fire retardant cellulose insulation is produced by shredding old newspapers and treating them with a combination of chemicals. Insulating material is blown into walls and attics to form a fiber layer which blocks the flow of air. All-Weather Insulation's founders asked NASA/UK-TAP to help. They wanted to know what chemicals added to newspaper would produce an insulating material capable of meeting federal specifications. TAP researched the query and furnished extensive information. The information contributed to successful development of the product and helped launch a small business enterprise which is now growing rapidly.

  4. Demonstration of the self-magnetic-pinch diode as an X-ray source for flash core-punch radiography

    International Nuclear Information System (INIS)

    Cordova, Steve Ray; Rovang, Dean Curtis; Portillo, Salvador; Oliver, Bryan Velten; Bruner, Nichelle Lee; Ziska, Derek Raymond

    2007-01-01

    Minimization of the radiographic spot size and maximization of the radiation dose is a continuing long-range goal for development of electron beam driven X-ray radiography sources. In collaboration with members of the Atomic Weapons Establishment(AWE), Aldermaston UK, the Advanced Radiographic Technologies Dept. 1645 is conducting research on the development of X-ray sources for flash core-punch radiography. The Hydrodynamics Dept. at AWE has defined a near term radiographic source requirement for scaled core-punch experiments to be 250 rads(at)m with a 2.75 mm source spot-size. As part of this collaborative effort, Dept. 1645 is investigating the potential of the Self-Magnetic-Pinched (SMP) diode as a source for core-punch radiography. Recent experiments conducted on the RITS-6 accelerator [1,2] demonstrated the potential of the SMP diode by meeting and exceeding the near term radiographic requirements established by AWE. During the demonstration experiments, RITS-6 was configured with a low-impedance (40 (Omega)) Magnetically Insulated Transmission Line (MITL), which provided a 75-ns, 180-kA, 7.5-MeV forward going electrical pulse to the diode. The use of a low-impedance MITL enabled greater power coupling to the SMP diode and thus allowed for increased radiation output. In addition to reconfiguring the driver (accelerator), geometric changes to the diode were also performed which allowed for an increase in dose production without sacrificing the time integrated spot characteristics. The combination of changes to both the pulsed power driver and the diode significantly increased the source x-ray intensity

  5. Temporal evolution of ion energy in a plasma focus

    International Nuclear Information System (INIS)

    Rhee, M.J.; Weidman, D.J.

    1988-01-01

    For the first time, the temporal structure of ion energy in a plasma focus is revealed using a time-resolving Thomson spectrometer. The velocities and arrival times of ions are determined from the spectrogram. The resulting distribution of ions in velocity--time space at the source is found to be a line distribution, as if the ions were accelerated in a diode by a pulsed voltage

  6. Wide gap Chern Mott insulating phases achieved by design

    Science.gov (United States)

    Guo, Hongli; Gangopadhyay, Shruba; Köksal, Okan; Pentcheva, Rossitza; Pickett, Warren E.

    2017-12-01

    Quantum anomalous Hall insulators, which display robust boundary charge and spin currents categorized in terms of a bulk topological invariant known as the Chern number (Thouless et al Phys. Rev. Lett. 49, 405-408 (1982)), provide the quantum Hall anomalous effect without an applied magnetic field. Chern insulators are attracting interest both as a novel electronic phase and for their novel and potentially useful boundary charge and spin currents. Honeycomb lattice systems such as we discuss here, occupied by heavy transition-metal ions, have been proposed as Chern insulators, but finding a concrete example has been challenging due to an assortment of broken symmetry phases that thwart the topological character. Building on accumulated knowledge of the behavior of the 3d series, we tune spin-orbit and interaction strength together with strain to design two Chern insulator systems with bandgaps up to 130 meV and Chern numbers C = -1 and C = 2. We find, in this class, that a trade-off between larger spin-orbit coupling and strong interactions leads to a larger gap, whereas the stronger spin-orbit coupling correlates with the larger magnitude of the Hall conductivity. Symmetry lowering in the course of structural relaxation hampers obtaining quantum anomalous Hall character, as pointed out previously; there is only mild structural symmetry breaking of the bilayer in these robust Chern phases. Recent growth of insulating, magnetic phases in closely related materials with this orientation supports the likelihood that synthesis and exploitation will follow.

  7. Observation of reflected waves on the SABRE positive polarity inductive adder MITL

    International Nuclear Information System (INIS)

    Cuneo, M.E.; Poukey, J.W.; Mendel, C.W.; Rosenthal, S.E.; Hanson, D.L.; Smith, J.R.; Maenchen, J.E.; Wenger, D.F.; Bernard, M.A.

    1993-01-01

    We are studying the coupling of extraction applied-B ion diodes to Magnetically Insulated Transmission Line (MITLs) on the SABRE (Sandia Accelerator and Beam Research Experiment, 6 MV, 300 kA) positive polarity inductive voltage adder. Our goal is to determine conditions under which efficient coupling occurs. The best total power efficiency for an ideal ion diode load (i.e., without parasitic losses) is obtained by maximizing the product of cathode current and gap voltage. MITLs require that the load impedance be undermatched to the self-limited line operating impedance for efficient transfer of power to ion diodes, independent of transit time isolation, and even in the case of multiple cathode system with significant vacuum electron flow. We observe that this undermatched condition results in a reflected wave which decreases the line voltage and gap electron sheath current, and increases the anode and cathode current in a time-dependent way. The MITL diode coupling is determined by the flow impedance at the adder exit. We also show that the flow impedance increases along the extension MITL on SABRE. Experimental measurements of current and peak voltage are compared to analytical models and TWOQUICK 2.5-D PIC code simulations

  8. Diode pumped solid state laser by two diodes

    International Nuclear Information System (INIS)

    Li Mingzhong; Zhang Xiaomin; Liang Yue; Man Yongzai; Zhou Pizhang

    1995-01-01

    A Nd: YLF laser is pumped by home-made quantum well diode lasers. Datum of laser output energy 60 μJ and peak power 120 mw are observed at wavelength 1.047 μm. On the same pumping condition, the output power synchronously pumped by two diodes is higher than the total output power pumped by two diodes separately. The fluctuation is <3%. The results agree with theoretical analysis

  9. Sandia's recent results in particle beam research

    International Nuclear Information System (INIS)

    Yonas, G.

    1977-01-01

    Recent results in the Sandia particle beam fusion research program are briefly discussed. Ignition of pellet fusion targets by both electron and ion beams are under study. Power concentration, dielectric breakdown, diode optimization, and beam-target interaction experiments are briefly described. Magnetic insulation considerations are discussed. Efforts to utilize higher impedance diode sources and reduce minimum power pulse widths are described. Analyses indicate that particle beam ignition systems might yield pellet gains greater than 10 in hybrid and approximately 100 in pure fusion reactors. A bibliography of 23 references is included

  10. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL's). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL's which are appropriate for material processing applications, low and intermediate average power DPSSL's are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications

  11. Electrical characteristics of {sup 60}Co {gamma}-ray irradiated MIS Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tataroglu, A. [Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey)]. E-mail: ademt@gazi.edu.tr; Altindal, S. [Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey)

    2006-11-15

    In order to interpret the effect of {sup 60}Co {gamma}-ray irradiation dose on the electrical characteristics of MIS Schottky diodes, they were stressed with a zero bias at 1 MHz in dark and room temperature during {gamma}-ray irradiation and the total dose range was 0-450 kGy. The effect of {gamma}-ray exposure on the electrical characteristics of MIS Schottky diodes has been investigated using C-V and G/{omega}-V measurements at room temperature. Experimental results show that {gamma}-ray irradiation induces a decrease in the barrier height {phi} {sub B} and series resistance R {sub s}, decreasing with increasing dose rate. Also, the acceptor concentration N {sub A} increases with increasing radiation dose. The C-V characteristics prove that there is a reaction for extra recombination centers in case of MIS Schottky diodes exposed to {gamma}-ray radiation. Furthermore, the density of interface states N {sub ss} by Hill-Coleman method increases with increasing radiation dose. Experimental results indicate that the interface-trap formation at high irradiation dose is reduced due to positive charge build-up in the Si/SiO{sub 2} interface (due to the trapping of holes) that reduces the flow rate of subsequent holes and protons from the bulk of the insulator to the Si/SiO{sub 2} interface.

  12. Etched ion tracks in silicon oxide and silicon oxynitride as charge injection or extraction channels for novel electronic structures

    International Nuclear Information System (INIS)

    Fink, D.; Petrov, A.V.; Hoppe, K.; Fahrner, W.R.; Papaleo, R.M.; Berdinsky, A.S.; Chandra, A.; Chemseddine, A.; Zrineh, A.; Biswas, A.; Faupel, F.; Chadderton, L.T.

    2004-01-01

    The impact of swift heavy ions onto silicon oxide and silicon oxynitride on silicon creates etchable tracks in these insulators. After their etching and filling-up with highly resistive matter, these nanometric pores can be used as charge extraction or injection paths towards the conducting channel in the underlying silicon. In this way, a novel family of electronic structures has been realized. The basic characteristics of these 'TEMPOS' (=tunable electronic material with pores in oxide on silicon) structures are summarized. Their functionality is determined by the type of insulator, the etch track diameters and lengths, their areal densities, the type of conducting matter embedded therein, and of course by the underlying semiconductor and the contact geometry. Depending on the TEMPOS preparation recipe and working point, the structures may resemble gatable resistors, condensors, diodes, transistors, photocells, or sensors, and they are therefore rather universally applicable in electronics. TEMPOS structures are often sensitive to temperature, light, humidity and organic gases. Also light-emitting TEMPOS structures have been produced. About 37 TEMPOS-based circuits such as thermosensors, photosensors, humidity and alcohol sensors, amplifiers, frequency multipliers, amplitude modulators, oscillators, flip-flops and many others have already been designed and successfully tested. Sometimes TEMPOS-based circuits are more compact than conventional electronics

  13. Ion implantation methods for semiconductor substrates

    International Nuclear Information System (INIS)

    Matsushita, T.; Mamine, T.; Hayashi, H.; Nishiyama, K.

    1980-01-01

    A method of ion implantation for controlling the life time of minority carriers in a semiconductor substrate and hence to reduce the temperature dependency of the life time, comprises implanting iron ions into an N type semiconductor substrate with a dosage of 10 10 to 10 15 ions cm -2 , and then heat-treating the implanted substrate at 850 0 to 1250 0 C. The method is applicable to the production of diodes, transistors, Si controlled rectifiers and gate controlled switching devices. (author)

  14. Apparatus for neutralization of accelerated ions

    International Nuclear Information System (INIS)

    Fink, J.H.; Frank, A.M.

    1979-01-01

    Apparatus is described for neutralization of a beam of accelerated ions, such as hydrogen negative ions (H - ), using relatively efficient strip diode lasers which emit monochromatically at an appropriate wavelength (lambda = 8000 A for H - ions) to strip the excess electrons by photodetachment. A cavity, formed by two or more reflectors spaced apart, causes the laser beams to undergo multiple reflections within the cavity, thus increasing the efficiency and reducing the illumination required to obtain an acceptable percentage (approx. 85%) of neutralization

  15. Thermal insulation

    International Nuclear Information System (INIS)

    Aspden, G.J.; Howard, R.S.

    1988-01-01

    The patent concerns high temperature thermal insulation of large vessels, such as the primary vessel of a liquid metal cooled nuclear reactor. The thermal insulation consists of multilayered thermal insulation modules, and each module comprises a number of metal sheet layers sandwiched between a back and front plate. The layers are linked together by straps and clips to control the thickness of the module. (U.K.)

  16. Ion source

    International Nuclear Information System (INIS)

    1977-01-01

    The specifications of a set of point-shape electrodes of non-corrodable material that can hold a film of liquid material of equal thickness is described. Contained in a jacket, this set forms an ion source. The electrode is made of tungsten with a glassy carbon layer for insulation and an outer layer of aluminium-oxide ceramic material

  17. Tracks induced by swift heavy ions in semiconductors

    International Nuclear Information System (INIS)

    Szenes, G.; Horvath, Z.E.; Pecz, B.; Toth, L.; Paszti, F.

    2002-01-01

    InSb, GaSb, InP, InAs, and GaAs single crystals were irradiated with Pb ions in the range of 385-2170 MeV. The samples were studied by transmission and high-resolution electron microscopy and Rutherford backscattering in channeling geometry. The energetic ions induced isolated tracks in all crystals but GaAs. The thermal spike analysis revealed that the variation of the damage cross section with the ion energy is considerably weaker than in insulators. The widths of the thermal spike a(0) was estimated. The analysis was extended to recent C 60 experiments on Ge and Si. A quantitative relation was found between a(0) and the gap energy E g : a(0) is reduced with increasing E g , and its lowest value is close to that found in insulators

  18. High voltage high brightness electron accelerators with MITL voltage adder coupled to foilless diodes

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Poukey, J.W.; Frost, C.A.; Shope, S.L.; Halbleib, J.A.; Turman, B.N.

    1993-01-01

    During the last ten years the authors have extensively studied the physics and operation of magnetically-immersed electron foilless diodes. Most of these sources were utilized as injectors to high current, high energy linear induction accelerators such as those of the RADLAC family. Recently they have experimentally and theoretically demonstrated that foilless diodes can be successfully coupled to self-magnetically insulated transmission line voltage adders to produce very small high brightness, high definition (no halo) electron beams. The RADLAC/SMILE experience opened the path to a new approach in high brightness, high energy induction accelerators. There is no beam drifting through the device. The voltage addition occurs in a center conductor, and the beam is created at the high voltage end in an applied magnetic field diode. This work was motivated by the remarkable success of the HERMES-III accelerator and the need to produce small radius, high energy, high current electron beams for air propagation studies and flash x-ray radiography. In this paper they present experimental results compared with analytical and numerical simulations in addition to design examples of devices that can produce multikiloamp electron beams of as high as 100 MV energies and radii as small as 1 mm

  19. Anode plasma and focusing reb diodes

    International Nuclear Information System (INIS)

    Goldstein, S.A.; Swain, D.W.; Hadley, G.R.; Mix, L.P.

    1975-01-01

    The use of electrical, optical, x-ray, and particle diagnostics to characterize the production of anode plasma and to monitor its influence on beam generation and focusing is reviewed. Studies using the Nereus accelerator show that after cathode turn-on, deposition of several kJ/gm on the anode is necessary before ions from hydrocarbons, adsorbed gases, and heavier metallic species are detected. The actual time at which ions are liberated depends on several factors, one of which is the specific heat of the anode substrate. Once formed, anode ions cross the A-K gap (with an energy equal to the diode voltage) and interact with the cathode to produce an axially peaked beam profile, a ''pinch'' which does not follow the critical current criterion. Experiments with externally generated anode plasma show that this type of pinch can be attracted to localized areas on the anode. Preliminary observations on Hydra indicate the anode plasma composition is similar to that on Nereus. The effect of this plasma on pinch dynamics currently is under investigation

  20. Electron excitation relaxation in wide-gap single crystal insulators under swift heavy-ion irradiation

    International Nuclear Information System (INIS)

    Yavlinskii, Yu.N.

    2000-01-01

    A heavy, multicharged ion moving in a solid interacts with nuclei and electrons of the matter atoms. If the projectile velocity exceeds the typical orbital velocity of the target electrons, the main process is excitation of the electronic subsystem, i.e., excitation and ionization of bound electrons. Initially, relaxation of the electron excitations results from electronic processes alone, and energy transfer from electrons to lattice happens later. Since free charge carriers are absent in insulators before irradiation, the motion of the excited electrons is possible only together with holes. Due to inner pressure of the electron-hole plasma the expansion takes place. The velocity of the expansion is determined by the heat velocity of electron-hole pairs. As the excitation region expands, the density of the electron-hole pairs decreases, the average distance between pairs increases, and excitons are produced. The expansion can be terminated in the time t≅10 -13 s, when, due to the electron-phonon interaction, self-trapped holes (and excitons) are formed. The annihilation of the trapped excitons gives rise to Frenkel defects. The set of equations comprising the continuity equation, the Euler equation and energy conservation is considered. The analytic dependence on time of the electron temperature and the radius of the excitation region is derived. The observation of projectile traces in a target is discussed in the single projectile regime

  1. Coaxial foilless diode

    OpenAIRE

    Long Kong; QingXiang Liu; XiangQiang Li; ShaoMeng Wang

    2014-01-01

    A kind of coaxial foilless diode is proposed in this paper, with the structure model and operating principle of the diode are given. The current-voltage relation of the coaxial foilless diode and the effects of structure parameters on the relation are studied by simulation. By solving the electron motion equation, the beam deviation characteristic in the presence of external magnetic field in transmission process is analyzed, and the relationship between transverse misalignment with diode par...

  2. Dose rate and SDD dependence of commercially available diode detectors

    International Nuclear Information System (INIS)

    Saini, Amarjit S.; Zhu, Timothy C.

    2004-01-01

    The dose-rate dependence of commercially available diode detectors was measured under both high instantaneous dose-rate (pulsed) and low dose rate (continuous, Co-60) radiation. The dose-rate dependence was measured in an acrylic miniphantom at a 5-cm depth in a 10x10 cm 2 collimator setting, by varying source-to-detector distance (SDD) between at least 80 and 200 cm. The ratio of a normalized diode reading to a normalized ion chamber reading (both at SDD=100 cm) was used to determine diode sensitivity ratio for pulsed and continuous radiation at different SDD. The inverse of the diode sensitivity ratio is defined as the SDD correction factor (SDD CF). The diode sensitivity ratio increased with increasing instantaneous dose rate (or decreasing SDD). The ratio of diode sensitivity, normalized to 4000 cGy/s, varied between 0.988 (1490 cGy/s)-1.023 (38 900 cGy/s) for unirradiated n-type Isorad Gold, 0.981 (1460 cGy/s)-1.026 (39 060 cGy/s) for unirradiated QED Red (n type), 0.972 (1490 cGy/s)-1.068 (38 900 cGy/s) for preirradiated Isorad Red (n type), 0.985 (1490 cGy/s)-1.012 (38 990 cGy/s) for n-type Pt-doped Isorad-3 Gold, 0.995 (1450 cGy/s)-1.020 (21 870 cGy/s) for n-type Veridose Green, 0.978 (1450 cGy/s)-1.066 (21 870 cGy/s) for preirradiated Isorad-p Red, 0.994 (1540 cGy/s)-1.028 (17 870 cGy/s) for p-type preirradiated QED, 0.998 (1450 cGy/s)-1.003 (21 870 cGy/s) for the p-type preirradiated Scanditronix EDP20 3G , and 0.998 (1490 cGy/s)-1.015 (38 880 cGy/s) for Scanditronix EDP10 3G diodes. The p-type diodes do not always show less dose-rate dependence than the n-type diodes. Preirradiation does not always reduce diode dose-rate dependence. A comparison between the SDD dependence measured at the surface of a full scatter phantom and that in a miniphantom was made. Using a direct adjustment of radiation pulse height, we concluded that the SDD dependence of diode sensitivity can be explained by the instantaneous dose-rate dependence if sufficient buildup is

  3. Estimation of thermal insulation performance in multi-layer insulator for liquid helium pipe

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Kuriyama, Masaaki; Shibata, Takemasa

    1991-01-01

    For a multi-layer insulator around the liquid helium pipes for cryopumps of JT-60 NBI, a multi-layer insulator composed of 10 layers, which can be wound around the pipe at the same time and in which the respective layers are in concentric circles by shifting them in arrangement, has been developed and tested. As the result, it was shown that the newly developed multi-layer insulator has better thermal insulation performance than the existing one, i.e. the heat load of the newly developed insulator composed of 10 layers was reduced to 1/3 the heat load of the existing insulator, and the heat leak at the joint of the insulator in longitudinal direction of the pipe was negligible. In order to clarify thermal characteristics of the multi-layer insulator, the heat transfer through the insulator has been analyzed considering the radiation heat transfer by the netting spacer between the reflectors, and the temperature dependence on the emissivities and the heat transmission coefficients of these two components of the insulator. The analytical results were in good agreements with the experimental ones, so that the analytical method was shown to be valid. Concerning the influence of the number of layers and the layer density on the insulation performance of the insulator, analytical results showed that the multi-layer insulator with the number of layer about N = 20 and the layer density below 2.0 layer/mm was the most effective for the liquid helium pipe of a JT-60 cryopump. (author)

  4. The influence of anode/target ion species on the magnetically immersed

    International Nuclear Information System (INIS)

    Rovang, Dean Curtis; Welch, Dale Robert; Puetz, Elizabeth A.; Oliver, Bryan Velten; Rose, David Vincent; Bruner, Nichelle Lee

    2005-01-01

    The magnetically immersed (B z ) diode is being investigated as a source for pulsed-power driven flash radiography. Experiments fielding this diode have revealed a limit on its achievable current density on target. Either a small spot produces a low dose, or a high dose is achieved with a large spot. It has been proposed that this limit is due to non-protonic ions liberated from the anode surface and subsequently ionizing to higher states. The three-dimensional particle-in-cell code LSP is used to investigate this proposal. Data from the recent immersed diode experiments conducted on the RITS-3 accelerator are compared to LSP models of the experimental configuration, including the B z field map. We report on how the non-protonic and protonic ion models compare to data, and proposals for future investigation.

  5. Thermal insulating panel

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J.T.

    1985-09-11

    A panel of thermal insulation material has at least one main portion which comprises a dry particulate insulation material compressed within a porous envelope so that it is rigid or substantially rigid and at least one auxiliary portion which is secured to and extends along at least one of the edges of the main portions. The auxiliary portions comprise a substantially uncompressed dry particulate insulation material contained within an envelope. The insulation material of the auxiliary portion may be the same as or may be different from the insulation material of the main portion. The envelope of the auxiliary portion may be made of a porous or a non-porous material. (author).

  6. Electrical and structural R&D activities on high voltage dc solid insulator in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Pilan, N., E-mail: nicola.pilan@igi.cnr.it [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Marcuzzi, D.; Rizzolo, A.; Grando, L.; Gambetta, G. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Rosa, S. Dalla [Umicore – Italbras S.p.A., Strada del Balsego, n.6, 36100 Vicenza (Italy); Kraemer, V.; Quirmbach, T. [FRIATEC Ceramics Division, Steinzeugstrasse 50, 68229 Mannheim (Germany); Chitarin, G. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Gobbo, R.; Pesavento, G. [DII, Università di Padova, v. Gradenigo 6/A, I-35131 Padova (Italy); De Lorenzi, A.; Lotto, L.; Rizzieri, R.; Fincato, M.; Romanato, L.; Trevisan, L.; Cervaro, V.; Franchin, L. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2015-10-15

    Highlights: • A thorough R&D activity on the MITICA post insulator prototypes is being carried out. • The design has been numerically verified considering both mechanical and electrical aspects. • Experimental validation has been started, with positive results in both involved fields. • Alternative design solutions thickness have been proposed and successfully tested. - Abstract: This paper describes the R&D work performed in support of the design of the alumina insulators for the MITICA Neutral Beam Injector. The ceramic insulators are critical elements, both from the structural and electrical point of view, of the 1 MV electrostatic accelerator of the MITICA injector, as they are required to sustain both the mechanical loads due to the cantilevered weight of the ion source and the high electric field between the accelerator grids. This paper presents the results of numerical simulations and experimental tests on prototypes that have been carried out to validate the insulator design under realistic operating conditions.

  7. Electrical and structural R&D activities on high voltage dc solid insulator in vacuum

    International Nuclear Information System (INIS)

    Pilan, N.; Marcuzzi, D.; Rizzolo, A.; Grando, L.; Gambetta, G.; Rosa, S. Dalla; Kraemer, V.; Quirmbach, T.; Chitarin, G.; Gobbo, R.; Pesavento, G.; De Lorenzi, A.; Lotto, L.; Rizzieri, R.; Fincato, M.; Romanato, L.; Trevisan, L.; Cervaro, V.; Franchin, L.

    2015-01-01

    Highlights: • A thorough R&D activity on the MITICA post insulator prototypes is being carried out. • The design has been numerically verified considering both mechanical and electrical aspects. • Experimental validation has been started, with positive results in both involved fields. • Alternative design solutions thickness have been proposed and successfully tested. - Abstract: This paper describes the R&D work performed in support of the design of the alumina insulators for the MITICA Neutral Beam Injector. The ceramic insulators are critical elements, both from the structural and electrical point of view, of the 1 MV electrostatic accelerator of the MITICA injector, as they are required to sustain both the mechanical loads due to the cantilevered weight of the ion source and the high electric field between the accelerator grids. This paper presents the results of numerical simulations and experimental tests on prototypes that have been carried out to validate the insulator design under realistic operating conditions.

  8. Electrostatically driven plasma hydrodynamic instability. I. The failure of vacuum-insulated, long wavelength laser fusion pellets

    International Nuclear Information System (INIS)

    Levermore, C.D.; Caflisch, R.E.; Wood, L.L.

    1977-10-01

    Longer wavelength (e.g., lambda = 10.5 μm) laser radiation generates relatively large fluxes of superthermal electrons that penetrate and preheat the cores of such pellets at early times in their implosion history, precluding their efficient subsequent compression. It has been proposed to separate the outermost shell of such pellets (onto which the laser light is directed) from its inner regions by a vacuum layer, thereby ''insulating'' these inner portions from superthermal electron degradation. We consider this proposal analytically and computationally, and find it to be questionable, due to the rapid penetration of the vacuum insulation layer by plasma streamers from the laser heated shells, which are accelerated to velocities of the order of those of the superthermal electrons by an electrostatic analog of the Rayleigh-Taylor instability. Results of such considerations are presented. The results developed also apply to a variety of formally similar phenomena, ranging from the relativistic edge of supernova photospheres to diode breakdown in REB machines

  9. Wall insulation system

    Energy Technology Data Exchange (ETDEWEB)

    Kostek, P.T.

    1987-08-11

    In a channel specially designed to fasten semi-rigid mineral fibre insulation to masonry walls, it is known to be constructed from 20 gauge galvanized steel or other suitable material. The channel is designed to have pre-punched holes along its length for fastening of the channel to the drywall screw. The unique feature of the channel is the teeth running along its length which are pressed into the surface of the butted together sections of the insulation providing a strong grip between the two adjacent pieces of insulation. Of prime importance to the success of this system is the recent technological advancements of the mineral fibre itself which allow the teeth of the channel to engage the insulation fully and hold without mechanical support, rather than be repelled or pushed back by the inherent nature of the insulation material. After the insulation is secured to the masonry wall by concrete nail fastening systems, the drywall is screwed to the channel.

  10. Plasma etching to enhance the surface insulating stability of alumina for fusion applications

    Directory of Open Access Journals (Sweden)

    M. Malo

    2016-12-01

    Full Text Available A significant increase in the surface electrical conductivity of alumina, considered one of the most promising insulating materials for numerous applications in fusion devices, has been observed during ion bombardment in vacuum due to oxygen loss by preferential sputtering. Although this is expected to cause serious limitations to insulating components functionality, recent studies showed it is possible to restore the damaged lattice by oxygen reincorporation during thermal treatments in air. These studies also revealed a correlation between conductivity and ion beam induced luminescence, which is being used to monitor surface electrical conductivity degradation and help qualify the post irradiation recovery. Work now carried out for Wesgo alumina considers oxygen implantation and plasma etching as additional methods to improve recovered layer depth and quality. Both conductivity and luminescence results indicate the potential use of plasma etching not only for damage recovery, but also as a pre-treatment to enhance material stability during irradiation.

  11. Numerical simulation of heavy ion charge generation and collection dynamics

    International Nuclear Information System (INIS)

    Dussault, H.; Howard, J.W. Jr.; Block, R.C.; Stapor, W.J.; Knudson, A.R.

    1993-01-01

    This paper describes a complete simulation approach to investigating the physics of heavy-ion charge generation and collection during a single event transient in a PN diode. The simulations explore the effects of different ion track models, applied biases, background dopings, and LET on the transient responses of a PN diode. The simulation results show that ion track structure and charge collection via diffusion-dominated processes play important roles in determining device transient responses. The simulations show no evidence of rapid charge collection in excess of that deposited in the device depletion region in typical funneling time frames (i.e., by time to peak current or in less than 500 ps). Further, the simulations clearly show that the device transient responses are not simple functions of the ion's incident LET. The simulation results imply that future studies and experiments should consider the effects of ion track structure in addition to LET and extend transient charge collection times to insure that reported charge collection efficiencies include diffusion-dominated collection processes

  12. Interaction effects and quantum phase transitions in topological insulators

    International Nuclear Information System (INIS)

    Varney, Christopher N.; Sun Kai; Galitski, Victor; Rigol, Marcos

    2010-01-01

    We study strong correlation effects in topological insulators via the Lanczos algorithm, which we utilize to calculate the exact many-particle ground-state wave function and its topological properties. We analyze the simple, noninteracting Haldane model on a honeycomb lattice with known topological properties and demonstrate that these properties are already evident in small clusters. Next, we consider interacting fermions by introducing repulsive nearest-neighbor interactions. A first-order quantum phase transition was discovered at finite interaction strength between the topological band insulator and a topologically trivial Mott insulating phase by use of the fidelity metric and the charge-density-wave structure factor. We construct the phase diagram at T=0 as a function of the interaction strength and the complex phase for the next-nearest-neighbor hoppings. Finally, we consider the Haldane model with interacting hard-core bosons, where no evidence for a topological phase is observed. An important general conclusion of our work is that despite the intrinsic nonlocality of topological phases their key topological properties manifest themselves already in small systems and therefore can be studied numerically via exact diagonalization and observed experimentally, e.g., with trapped ions and cold atoms in optical lattices.

  13. Electrical transport measurements and degradation of graphene/n-Si Schottky junction diodes

    International Nuclear Information System (INIS)

    Park, No-Won; Lee, Won-Yong; Lee, Sang-Kwon; Koh, Jung-Hyuk; Kim, Dong-Joo; Kim, Gil-Sung; Hyung, Jung-Hwan; Hong, Chang-Hee; Kim, Keun-Soo

    2015-01-01

    We report on the electrical properties, such as the ideality factors and Schottky barrier heights, that were obtained by using current density - voltage (J - V ) and capacitance - voltage (C - V ) characteristics. To fabricate circularly- and locally-contacted Au/Gr/n-Si Schottky diode, we deposited graphene through the chemical vapor deposition (CVD) growth technique, and we employed reactive ion etching to reduce the leakage current of the Schottky diodes. The average values of the barrier heights and the ideality factors from the J .V characteristics were determined to be ∼0.79 ± 0.01 eV and ∼1.80 ± 0.01, respectively. The Schottky barrier height and the doping concentration from the C - V measurements were ∼0.85 eV and ∼1.76 x 10 15 cm -3 , respectively. From the J - V characteristics, we obtained a relatively low reverse leakage current of ∼2.56 x 10 -6 mA/cm -2 at -2 V, which implies a well-defined rectifying behavior. Finally, we found that the Gr/n-Si Schottky diodes that were exposed to ambient conditions for 7 days exhibited a ∼3.2-fold higher sheet resistance compared with the as-fabricated Gr/n-Si diodes, implying a considerable electrical degradation of the Gr/n-Si Schottky diodes.

  14. Reduction of heat insulation upon soaking of the insulation layer

    Science.gov (United States)

    Achtliger, J.

    1983-09-01

    Improved thermal protection of hollow masonry by introduction of a core insulation between the inner and outer shell is discussed. The thermal conductivity of insulation materials was determined in dry state and after soaking by water with different volume-related moisture contents. The interpolated thermal conductivity values from three measured values at 10 C average temperature are presented as a function of the pertinent moisture content. Fills of expanded polystyrene, perlite and granulated mineral fibers, insulating boards made of mineral fibers and in situ cellular plastics produced from urea-formaldehyde resin were investigated. Test results show a confirmation of thermal conductivity values for insulating materials in hollow masonry.

  15. The Dynamics of the Electric Field Distribution in the Surface of Insulating Film Irradiated by Air Ions

    Directory of Open Access Journals (Sweden)

    Julionas KALADE

    2016-05-01

    Full Text Available When deposited on a surface, electric charge usually accumulates near the tips of surface irregularities, from where it can be transferred to nearby objects due to ionization of ambient air. The amount of transferred charge, the rate of charge transfer, the size of the charged spot (e.g., on the surface of an insulator and its tendency to spread will depend on properties of air during electric discharge, on the magnitude of charge accumulated at the tip of an object, on possibilities for replenishing that charge, on the time spent for charge transfer from the tip onto the insulating layer, on properties of the insulating layer, etc. Those properties are discussed in this work by comparing the results of measurements and theoretical analysis.

  16. Advances in ion beam intensity at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.; Bailey, J.E.; Coats, R.S.

    1995-01-01

    In 1993 lithium beam intensities ≥1 TW/cm 2 were achieved and lithium-driven target experiments at the ∼1,400 TW/g level were performed on the Particle Beam Fusion Accelerator II (PBFA II) at Sandia National Laboratories. Hohlraum radiation temperatures of up to 60 eV were achieved using this lithium beam. The 1995 Light-Ion ICF Program milestone of achieving a 100 eV radiation temperature in an ion-driven hohlraum will require a lithium beam intensity of 5 ± 1 TW/cm 2 on a 4 mm diameter cylindrical target; this will require both an increase in coupled lithium power and a decrease in total lithium beam divergence. The lithium beam power has been limited to ∼5--6 TW by a so-called ''parasitic load.'' This parasitic current loss in the ion diodes has recently been identified as being carried by ions that are accelerated from plasmas that are formed when high voltage electrons are lost to anodes with many monolayers of hydrocarbon surface contamination. Control of anode and cathode plasmas on the SABRE accelerator using RF-discharge cleaning, anode heating, and cryogenic cooling of the cathode have increased the efficiency of the production of lithium current by a factor of 2--3. A new ion diode incorporating glow discharge cleaning and titanium gettering pumps has been installed in PBFA II and will be tested in December, 1994. Anode heaters should be available in January, 1995. Circuit model calculations indicate that one can more than double the coupled lithium ion power on PBFA II by eliminating the parasitic current. LiF source divergence presently dominates the total beam divergence. Progress in lithium beam focal intensity using diode cleaning techniques coupled with an active lithium source is reported

  17. Electrical properties and annealing kinetics study of laser-annealed ion-implanted silicon

    International Nuclear Information System (INIS)

    Wang, K.L.; Liu, Y.S.; Kirkpatrick, C.G.; Possin, G.E.

    1979-01-01

    This paper describes measurements of electrical properties and the regrowth behavior of ion-implanted silicon annealed with an 80-ns (FWHM) laser pulse at 1.06 μm. The experimental results include: (1) a determination of threshold energy density required for melting using a transient optical reflectivity technique, (2) measurements of dopant distribution using Rutherford backscattering spectroscopy, (3) characterization of electrical properties by measuring reverse leakage current densities of laser-annealed and thermal-annealed mesa diodes, (4) determination of annealed junction depth using an electron-beam-induced-current technique, and (5) a deep-level-transient spectroscopic study of residual defects. In particular, by measuring these properties of a diode annealed at a condition near the threshold energy density for liquid phase epitaxial regrowth, we have found certain correlations among these various annealing behaviors and electrical properties of laser-annealed ion-implanted silicon diodes

  18. Coaxial foilless diode

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Long; Liu, QingXiang; Li, XiangQiang; Wang, ShaoMeng [College of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China)

    2014-05-15

    A kind of coaxial foilless diode is proposed in this paper, with the structure model and operating principle of the diode are given. The current-voltage relation of the coaxial foilless diode and the effects of structure parameters on the relation are studied by simulation. By solving the electron motion equation, the beam deviation characteristic in the presence of external magnetic field in transmission process is analyzed, and the relationship between transverse misalignment with diode parameters is obtained. These results should be of interest to the area of generation and propagation of radial beam for application of generating high power microwaves.

  19. High fluence swift heavy ion structure modification of the SiO{sub 2}/Si interface and gate insulator in 65 nm MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yao [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Gao, Bo, E-mail: gaobo@scu.edu.cn [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Gong, Min [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Willis, Maureen [College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Yang, Zhimei [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); Guan, Mingyue [College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Li, Yun [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Key Lab of Microelectronics Sichuan Province, Sichuan University, Chengdu, Sichuan 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China)

    2017-04-01

    In this work, a study of the structure modification, induced by high fluence swift heavy ion radiation, of the SiO{sub 2}/Si structures and gate oxide interface in commercial 65 nm MOSFETs is performed. A key and novel point in this study is the specific use of the transmission electron microscopy (TEM) technique instead of the conventional atomic force microscope (AFM) or scanning electron microscope (SEM) techniques which are typically performed following the chemical etching of the sample to observe the changes in the structure. Using this method we show that after radiation, the appearance of a clearly visible thin layer between the SiO{sub 2} and Si is observed presenting as a variation in the TEM intensity at the interface of the two materials. Through measuring the EDX line scans we reveal that the Si:O ratio changed and that this change can be attributed to the migration of the Si towards interface after the Si-O bond is destroyed by the swift heavy ions. For the 65 nm MOSFET sample, the silicon substrate, the SiON insulator and the poly-silicon gate interfaces become blurred under the same irradiation conditions.

  20. Measuring size dependent electrical properties from nanoneedle structures: Pt/ZnO Schottky diodes

    International Nuclear Information System (INIS)

    Mao, Shimin; Anderson, Daniel D.; Shang, Tao; Park, Byoungnam; Dillon, Shen J.

    2014-01-01

    This work reports the fabrication and testing of nanoneedle devices with well-defined interfaces that are amenable to a variety of structural and electrical characterization, including transmission electron microscopy. Single Pt/ZnO nanoneedle Schottky diodes were fabricated by a top down method using a combination of electro-polishing, sputtering, and focused ion beam milling. The resulting structures contained nanoscale planar heterojunctions with low ideality factors, the dimensions of which were tuned to study size-dependent electrical properties. The diameter dependence of the Pt/ZnO diode barrier height is explained by a joule heating effect and/or electronic inhomogeneity in the Pt/ZnO contact area

  1. Factors affecting the energy resolution in alpha particle spectrometry with silicon diodes

    International Nuclear Information System (INIS)

    Camargo, Fabio de.

    2005-01-01

    In this work are presented the studies about the response of a multi-structure guard rings silicon diode for detection and spectrometry of alpha particles. This ion-implanted diode (Al/p + /n/n + /Al) was processed out of 300 μm thick, n type substrate with a resistivity of 3 kΩ·cm and an active area of 4 mm 2 . In order to use this diode as a detector, the bias voltage was applied on the n + side, the first guard ring was grounded and the electrical signals were readout from the p + side. These signals were directly sent to a tailor made preamplifier, based on the hybrid circuit A250 (Amptek), followed by a conventional nuclear electronic. The results obtained with this system for the direct detection of alpha particles from 241 Am showed an excellent response stability with a high detection efficiency (≅ 100 %). The performance of this diode for alpha particle spectrometry was studied and it was prioritized the influence of the polarization voltage, the electronic noise, the temperature and the source-diode distance on the energy resolution. The results showed that the major contribution for the deterioration of this parameter is due to the diode dead layer thickness (1 μm). However, even at room temperature, the energy resolution (FWHM = 18.8 keV) measured for the 5485.6 MeV alpha particles ( 241 Am) is comparable to those obtained with ordinary silicon barrier detectors frequently used for these particles spectrometry. (author)

  2. Recent experiments towards production and diagnostics of nitrogen ion beam for medium-mass ion beam ICF

    Energy Technology Data Exchange (ETDEWEB)

    Kasuya, K [Tokyo Inst. of Tech., Yokohama (Japan). Dept. of Energy Sciences; Yasuike, K; Miyamoto, S [Osaka Univ. (Japan). Inst. of Laser Engineering; and others

    1997-12-31

    Three research teams are collaborating in the title topics. The first group presented proposals and preliminary results on (1) re-operation of cryogenic diode for nitrogen beam, (2) laser plasma production to supply ion source, (3) application of CCD camera element to advanced particle detector, (4) application of cryogenic technique to advanced material production method, and (5) reform of UV laser for future diode cleaning or plasma production. The joint 2nd and 3rd groups present (6) most recent results of time- and space-dependent particle beam diagnostics by an advanced arrayed pin-hole camera. (orig.). 5 figs., 6 refs.

  3. Low Frequency Dispersion Mechanism of Dielectric Response for Oil-paper Insulation Diagnosis

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lijun; LI Xianlang; WU Guangning

    2013-01-01

    Both the real part and imaginary part of complex permittivity approximately have a log-linear frequency dependency at low frequencies,especially at ultra-low frequencies under conditions of different moisture concentrations and temperatures,which is recognized as the low frequency dispersion (LFD).In order to explain this dispersion,a new mechanism of dielectric response of LFD of oil-paper insulation is proposed.A simplified one-dimensional mathematical model of concentration polarization carrier caused by slow migration is developed and solved,which indicates that ion mobility is closely related to the size of gap and the adsorption capacity of cellulose molecular chains to ions.A stochastic statistical model of the carrier mobility induced LFD is also developed.Moreover,actual tests under 50 ℃and 2% moisture content were put forward,as well as simulations with according current waveforms.The simulation results agreed well with the experimental data in that concentration polarization of carriers caused by slow migration is the probable cause of low frequency dispersion ofdielectric response for oil-paper insulation diagnosis.

  4. Complex studies of mockups of electric insulators of cryoresistive coils of the T-15 device electromagnet system

    International Nuclear Information System (INIS)

    Aksenov, O.E.; Gringof, V.G.; Il'in, G.V.; Lapenas, A.A.; Stepanov, A.N.; Ulmanis, U.A.

    1982-01-01

    The test results are presented for multilayer electrical insulation of coils in the T-15 thermonuclear device electromagnet system. The insulation is made ion the base of polyimide tape with adhesive coating. In the 77-93 K range the tape insulating strength is 35 MV/m, the dielectric loss tangent is less than 10 -5 , dielectric permeability is 2.5, volume resistivity is more than 10 5 Ohmxcm. The insulation has been tested for radiation effects in the IRT-2000 nuclear reactor. Different batches of insulation mockups 0.7 mm thick have been irradiated up to the integral fast neutron flux within the 10 16 -5x10 18 neutr./cm 2 range (E >= 0.1 MeV), (J=10 11 -10 12 neutr./cm 2 xs) at the corresponding temperature between 390 and 420 K. The given data on insulating strength point to a high radiation resistance of the multilayer polyimide insulation. To make sure finally that the developed insulation system meets the requirements of the operating conditions for thermonuclear device electromagnet system coils the device has been tested for operational life. On the basis of the test results a conclusion can be made that at the present development stage the multilayer polyimide insulation based on the adhesive tape meets to the utmost degree the requirements corresponding to the complicated operating conditions of the T-15 thermonuclear devices

  5. Status of and plans for the PBFA II Facility

    International Nuclear Information System (INIS)

    Cook, D.L.

    1985-01-01

    PBFA II is a 100 TW pulsed power accelerator being constructed for use in the Light Ion Fusion Program. The objective of PBFA II is to accelerate and focus upon an ICF target a lithium beam with sufficicent energy, power, and power density to perform ignition scaling experiments. The technologies used in PBFA II include: (1) primary energy storage and compression with 6 MV, low-inductance Marx generators, (2) pulse forming in water-insulated, water-dielectric lines with self-closing water switches, (3) module synchronization using laser-triggerred, 6 MV multistage gas switches, (4) voltage addition in vacuum using self-magnetically-insulated biconic transmission lines, (5) inductive energy storage and pulse compression using a fast-opening plasma erosion switch, (6) beam formation using a magnetically-insulated ion diode, and (7) space charge and current neutralized beam propagation to the target in a gas-filled cell. Presently, accelerator construction is nearing completion, with the first multimodule shot expected by the end of January 1986

  6. Compton scattering of photons from electrons in magnetically insulated transmission lines

    International Nuclear Information System (INIS)

    Brower, K.L.; VanDevender, J.P.

    1979-01-01

    Self-magnetically insulated transmission lines are used for power transport between the vacuum insulator and the diode in high current particle accelerators. Since the efficiency of the power transport depends on the details of the initial line geometry, i.e., the injector, the dependence of the electron canonical momentum distribution on the injector geometry should reveal the loss mechanism. We propose to study that dependence experimentally through a Compton scattering diagnostic. The spectrum of scattered light reveals the electron velocity distribution perpendicular to the direction of flow. The design of the diagnostic is in progress. Our preliminary analysis is based on the conservation of energy and canonical momentum for a single electron in the anti E and anti B fields determined from 2-D calculations. For the Mite accelerator with power flow along Z, the normalized canonical momentum, μ, is in the range - 0.7 < μ less than or equal to 0. For anti k/sub i/ parallel to circumflex Y, and anti k/sub s/ circumflex X, our analysis indicates that the scattered photons have 1.1 eV less than or equal to h nu/sub s/ < 5.6 eV for ruby laser scattering and can be detected with PM tubes

  7. ITO films realized at room-temperature by ion beam sputtering for high-performance flexible organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, B.; Rammal, W.; Moliton, A. [Limoges Univ., Faculte des Sciences et Techniques, CNRS, UMR 6172, Institut de Recherche XLIM, Dept. MINACOM, 87 - Limoges (France)

    2006-06-15

    Indium-tin oxide (ITO) thin layers are obtained by an IBS (Ion Beam Sputtering) deposition process. We elaborated ITO films on flexible substrates of polyethylene terephthalate (PET), under soft conditions of low temperatures and fulfilling the requirements of fabrication processes of the organic optoelectronic components. With a non thermally activated (20 Celsius degrees) ITO deposition assisted by an oxygen flow (1 cm{sup 3}/min), we got an optical transmittance of 90% in the visible range, a resistivity around 10{sup -3} {omega}.cm and a surface roughness lower than 1.5 mm. Thus we realized flexible organic light-emitting diodes (FOLEDs) with good performances: a maximum luminance of 12000 cd/m{sup 2} at a voltage of 19 V and a maximum luminous power efficiency around 1 lm/W at a voltage of 10 V (or a maximum current efficiency of 4 cd/A at 14 V) for the (PET(50 {mu}m) / ITO(200 nm) / TPD(40 nm) / Alq3(60 nm) / Ca / Al) structure. (authors)

  8. Probing photo-carrier collection efficiencies of individual silicon nanowire diodes on a wafer substrate.

    Science.gov (United States)

    Schmitt, S W; Brönstrup, G; Shalev, G; Srivastava, S K; Bashouti, M Y; Döhler, G H; Christiansen, S H

    2014-07-21

    Vertically aligned silicon nanowire (SiNW) diodes are promising candidates for the integration into various opto-electronic device concepts for e.g. sensing or solar energy conversion. Individual SiNW p-n diodes have intensively been studied, but to date an assessment of their device performance once integrated on a silicon substrate has not been made. We show that using a scanning electron microscope (SEM) equipped with a nano-manipulator and an optical fiber feed-through for tunable (wavelength, power using a tunable laser source) sample illumination, the dark and illuminated current-voltage (I-V) curve of individual SiNW diodes on the substrate wafer can be measured. Surprisingly, the I-V-curve of the serially coupled system composed of SiNW/wafers is accurately described by an equivalent circuit model of a single diode and diode parameters like series and shunting resistivity, diode ideality factor and photocurrent can be retrieved from a fit. We show that the photo-carrier collection efficiency (PCE) of the integrated diode illuminated with variable wavelength and intensity light directly gives insight into the quality of the device design at the nanoscale. We find that the PCE decreases for high light intensities and photocurrent densities, due to the fact that considerable amounts of photo-excited carriers generated within the substrate lead to a decrease in shunting resistivity of the SiNW diode and deteriorate its rectification. The PCE decreases systematically for smaller wavelengths of visible light, showing the possibility of monitoring the effectiveness of the SiNW device surface passivation using the shown measurement technique. The integrated device was pre-characterized using secondary ion mass spectrometry (SIMS), TCAD simulations and electron beam induced current (EBIC) measurements to validate the properties of the characterized material at the single SiNW diode level.

  9. Propagation Characteristics of Multilayer Hybrid Insulator-Metal-Insulator and Metal-Insulator-Metal Plasmonic Waveguides

    Directory of Open Access Journals (Sweden)

    M. Talafi Noghani

    2014-02-01

    Full Text Available Propagation characteristics of symmetrical and asymmetrical multilayer hybrid insulator-metal-insulator (HIMI and metal-insulator-metal (HMIM plasmonic slab waveguides are investigated using the transfer matrix method. Propagation length (Lp and spatial length (Ls are used as two figures of merit to qualitate the plasmonic waveguides. Symmetrical structures are shown to be more performant (having higher Lp and lower Ls, nevertheless it is shown that usage of asymmetrical geometry could compensate for the performance degradation in practically realized HIMI waveguides with different substrate materials. It is found that HMIM slab waveguide could support almost long-range subdiffraction plasmonic modes at dimensions lower than the spatial length of the HIMI slab waveguide.

  10. Project of the borehole neutron generator for the direct determination of oxygen and carbon by activation method

    Science.gov (United States)

    Bogdanovich, B. Yu; Vovchenko, E. D.; Iliinskiy, A. V.; Isaev, A. A.; Kozlovskiy, K. I.; Nesterovich, A. V.; Senyukov, V. A.; Shikanov, A. E.

    2016-09-01

    The paper deals with application features of borehole neutron generator (BNG) based on the vacuum accelerating tube (AT) with laser-plasma ion source for determination of oxygen isotope 16O and carbon isotope 12C by direct activation. The project of pulsed BNG for realization of an activation method in the conditions of natural presence of productive hydrocarbons is offered. The diode system with radial acceleration, magnetic electron insulation and laser-plasma source of deuterons at the anode in a sealed-off vacuum accelerating tube is applied. The permanent NdFeB magnet with induction about 0.5 T for produce the insulating magnetic field in the diode gap is proposed. In the experiments on the model of BNG with the accelerating voltage source (≈350 kV), performed by the scheme of Arkadiev-Marx generator, the output of (d, d) neutrons was ∼107 pulse-1.

  11. Coaxial foilless diode

    Directory of Open Access Journals (Sweden)

    Long Kong

    2014-05-01

    Full Text Available A kind of coaxial foilless diode is proposed in this paper, with the structure model and operating principle of the diode are given. The current-voltage relation of the coaxial foilless diode and the effects of structure parameters on the relation are studied by simulation. By solving the electron motion equation, the beam deviation characteristic in the presence of external magnetic field in transmission process is analyzed, and the relationship between transverse misalignment with diode parameters is obtained. These results should be of interest to the area of generation and propagation of radial beam for application of generating high power microwaves.

  12. Passive Collecting of Solar Radiation Energy using Transparent Thermal Insulators, Energetic Efficiency of Transparent Thermal Insulators

    Directory of Open Access Journals (Sweden)

    Smajo Sulejmanovic

    2014-11-01

    Full Text Available This paper explains passive collection of solar radiation energy using transparent thermal insulators. Transparent thermal insulators are transparent for sunlight, at the same time those are very good thermal insulators. Transparent thermal insulators can be placed instead of standard conventional thermal insulators and additionally transparent insulators can capture solar radiation, transform it into heat and save heat just as standard insulators. Using transparent insulators would lead to reduce in usage of fossil fuels and would help protection of an environment and reduce effects of global warming, etc.

  13. Monolayer MoS{sub 2} self-switching diodes

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dirini, Feras, E-mail: alf@unimelb.edu.au; Hossain, Md Sharafat [Department of Electrical and Electronic Engineering, University of Melbourne, Victoria (Australia); Centre for Neural Engineering, University of Melbourne, Victoria (Australia); Victorian Research Laboratory, National ICT Australia, West Melbourne, Victoria (Australia); Hossain, Faruque M.; Skafidas, Efstratios [Department of Electrical and Electronic Engineering, University of Melbourne, Victoria (Australia); Centre for Neural Engineering, University of Melbourne, Victoria (Australia); Mohammed, Mahmood A. [Princess Sumaya University for Technology, Amman (Jordan); Nirmalathas, Ampalavanapillai [Department of Electrical and Electronic Engineering, University of Melbourne, Victoria (Australia); Melbourne Networked Society Institute (MNSI), University of Melbourne, Victoria (Australia)

    2016-01-28

    This paper presents a new molybdenum disulphide (MoS{sub 2}) nanodevice that acts as a two-terminal field-effect rectifier. The device is an atomically-thin two-dimensional self-switching diode (SSD) that can be realized within a single MoS{sub 2} monolayer with very minimal process steps. Quantum simulation results are presented confirming the device's operation as a diode and showing strong non-linear I-V characteristics. Interestingly, the device shows p-type behavior, in which conduction is dominated by holes as majority charge carriers and the flow of reverse current is enhanced, while the flow of forward current is suppressed, in contrast to monolayer graphene SSDs, which behave as n-type devices. The presence of a large bandgap in monolayer MoS{sub 2} results in strong control over the channel, showing complete channel pinch-off in forward conduction, which was confirmed with transmission pathways plots. The device exhibited large leakage tunnelling current through the insulating trenches, which may have been due to the lack of passivation; nevertheless, reverse current remained to be 6 times higher than forward current, showing strong rectification. The effect of p-type substitutional channel doping of sulphur with phosphorus was investigated and showed that it greatly enhances the performance of the device, increasing the reverse-to-forward current rectification ratio more than an order of magnitude, up to a value of 70.

  14. Growth and characterization of semi-insulating carbon-doped/undoped GaN multiple-layer buffer

    International Nuclear Information System (INIS)

    Kim, Dong-Seok; Won, Chul-Ho; Kang, Hee-Sung; Kim, Young-Jo; Kang, In Man; Lee, Jung-Hee; Kim, Yong Tae

    2015-01-01

    We have proposed a new semi-insulating GaN buffer layer, which consists of multiple carbon-doped and undoped GaN layer. The buffer layer showed sufficiently good semi-insulating characteristics, attributed to the depletion effect between the carbon-doped GaN and the undoped GaN layers, even though the thickness of the carbon-doped GaN layer in the periodic structure was designed to be very thin to minimize the total carbon incorporation into the buffer layer. The AlGaN/AlN/GaN heterostructure grown on the proposed buffer exhibited much better electrical and structural properties than that grown on the conventional thick carbon-doped semi-insulating GaN buffer layer, confirmed by Hall measurement, x-ray diffraction, and secondary ion mass spectrometry. The fabricated device also showed excellent buffer breakdown characteristics. (paper)

  15. Experimental research on Ku-band magnetically insulated transmission line oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao; Zhang, Jiande; He, Juntao; Li, Zhiqiang; Ling, Junpu [College of Optoelectric Science and Engineering, National University of Defense Technology, Hunan 410073 (China)

    2015-10-15

    An improved Ku-band magnetically insulated transmission line oscillator is proposed and investigated experimentally. In the particle-in-cell simulation, the Ku-band MILO generates the microwave with a power of 1.62 GW and a frequency of 13 GHz at the input voltage of 474 kV. The device is fabricated based on the simulation results, and an experiment system is designed. In the preliminary experiments, output microwave with frequency of 13.02 GHz, power of 150 MW, and pulse width of 17 ns is generated, under the diode voltage of 450 kV. Analysis on the experiment results shows that plasma produced due to the large current hitting to the outside of the collection tank is the essential cause for the low amplitude of the microwave power and short pulse width.

  16. Temperature dependence and effects of series resistance on current and admittance measurements of Al/SnO2/p-Si MIS diode

    International Nuclear Information System (INIS)

    Altindal, S.; Tekeli, Z.; Karadeniz, S.; Sahingoez, R.

    2002-01-01

    Temperature dependency and the series resistance effect on I-V, C-V and G-V characteristics of Al/SnO 2 /p-Si MIS diode were investigated in the temperature range 150-350 K. The current-voltage (I-V) analysis in this temperature range gives the saturation current (10''-''9 - 10''-''5 A), the ideality factor (6-1.8), the barrier height Φ B (I-V) (0.3-0.65 eV) the density of interface states D it (8x10''1''3 - 1x10''1''3 eV''-''1cm''-''2) and the series resistance R s (500-100 Ω). The decreases with increasing temperature of density of interface states is the result of molecular restructuring and reordering at the metal-semiconductor interface. The value of series resistance 520 Ω was calculated from the admittance measurement at room temperature and enough high frequency (500 khz) when the diode is biased in strong accumulation region. The admittance frequency (C-V and G-V) measurement confirmed that the measured capacitance (C m ) and conductance (G m ) varies with applied voltage and frequency due to the presence of density of interface states in the MIS diode, interfacial insulator layer and enough high series resistance. Similar results have been observed on MIS type Schottky diodes

  17. Ion beam generation and focusing

    International Nuclear Information System (INIS)

    Miller, P.A.; Mendel, C.W.; Swain, D.W.; Goldstein, S.A.

    1975-01-01

    Calculations have shown that efficiently generated and focused ion beams could have significant advantages over electron beams in achieving ignition of inertially-confined thermonuclear fuel. Efficient ion beam generation implies use of a good ion source and suppression of net electron current. Net electron flow can be reduced by allowing electrons to reflex through a highly transparent anode or by use of transverse magnetic fields (either beam self-fields or externally applied fields). Geometric focusing can be achieved if the beam is generated by appropriately shaped electrodes. Experimental results are presented which demonstrate ion beam generation in both reflexing and pinched-flow diodes. Spherically shaped electrodes are used to concentrate a proton beam, and target response to proton deposition is studied

  18. High brightness potassium ion gun for the HIF neutralized transport experiment (NTX)

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.; Roy, P.K.; Yu, S.S.

    2003-01-01

    The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. To focus a high intensity beam to a small spot requires a high brightness beam. In the NTX experiment, a potassium ion beam of up to 400 keV and 80 mA is generated in a Pierce type diode. At the diode exit, an aperture with variable size provides the capability to vary the beam perveance and to significantly reduce the beam emittance. We shall report on the gun characterization including current density profile, phase space distributions and the control of electrons generated by the beam scraping at the aperture. Comparison with particle simulations using the EGUN code will be presented

  19. 2D particle-in-cell simulation of the entire process of surface flashover on insulator in vacuum

    Science.gov (United States)

    Wang, Hongguang; Zhang, Jianwei; Li, Yongdong; Lin, Shu; Zhong, Pengfeng; Liu, Chunliang

    2018-04-01

    With the introduction of an external circuit model and a gas desorption model, the surface flashover on the plane insulator-vacuum interface perpendicular to parallel electrodes is simulated by a Particle-In-Cell method. It can be seen from simulations that when the secondary electron emission avalanche (SEEA) occurs, the current sharply increases because of the influence of the insulator surface charge on the cathode field emission. With the introduction of the gas desorption model, the current keeps on increasing after SEEA, and then the feedback of the external circuit causes the voltage between the two electrodes to decrease. The cathode emission current decreases, while the anode current keeps growing. With the definition that flashover occurs when the diode voltage drops by more than 20%, we obtained the simulated flashover voltage which agrees with the experimental value with the use of the field enhancement factor β = 145 and the gas molecule desorption coefficient γ=0.25 . From the simulation results, we can also see that the time delay of flashover decreases exponentially with voltage. In addition, from the gas desorption model, the gas density on the insulator surface is found to be proportional to the square of the gas desorption rate and linear with time.

  20. The influences of noble gas on the volt-ampere characteristics of a thermionic Cs diode

    International Nuclear Information System (INIS)

    Tschersich, K.G.

    1975-10-01

    The influence of the distance between electrodes and of the partial pressure of added xenon on the voltage drop in the electrode gap is investigated by measuring current density-voltage curves on plane parallel thermionic test diodes. With unchanged diode parameters, an addition of xenon reduces the voltage drop when the product of Cs vapour pressure and electrode gap is smaller than an optimum value of about 5 x 10 -2 cm.Torr. The xenon influences the mobility and thus the duration of the Cs ions. These procedures are explained and discussed using a relatively simple mathematical model. (GG/LH) [de

  1. Experimental studies of ions and atoms interaction with insulating surface; Etude experimentale de l'interaction rasante d'atomes et d'ions sur des surfaces isolantes

    Energy Technology Data Exchange (ETDEWEB)

    Villette, J

    2000-10-15

    Grazing collisions (<3 deg.) of keV ions and atoms: H{sup +}, Ne{sup +}, Ne{sup 0}, Na{sup +} on LiF (001) single crystal, an ionic insulator, are investigated by a time of flight technique. The incident beam is chopped and the scattered particles are collected on a position sensitive detector providing differential cross section while the time of flight gives the energy loss. Deflection plates allow the charge state analysis. Secondary electrons are detected in coincidence allowing direct measurements of electron emission yield, angular and energetic distribution through time of flight measurements. The target electronic structure characterized by a large band gap, governs the collisional processes: charge exchange, electronic excitations and electron emission. In particular, these studies show that the population of local target excitations surface excitons is the major contribution to the kinetic energy transfer (stopping power). Auger neutralization of Ne{sup +} and He{sup +} ions reveals the population of quasi-molecular excitons, an exciton bound on two holes. Referenced in the literature as trion. A direct energy balance determines the binding energy associated with these excited states of the surface. Besides these electronic energy loss processes, two nuclear energy loss mechanisms are characterized. These processes imply momentum transfer to individual target atoms during close binary collisions or, if the projectile is charged, to collective mode of optical phonons induced by the projectile coulomb field. The effect of the temperature on the scattering profile, the contribution of topological surface defects to the energy loss profile and to skipping motion on the surface are analyzed in view of classical trajectory simulations. (author)

  2. Ion beam modification of polymers

    International Nuclear Information System (INIS)

    Sofield, C.J.; Sugden, S.; Ing, J.; Bridwell, L.B.; Wang, Y.Q.

    1993-01-01

    The implantation of polymers has received considerable attention in recent years, primarily to examine doping of conducting polymers and to increase the surface conductivity (by many orders of magnitude) of highly insulating polymers. The interest in these studies was partly motivated by possible applications to microelectronic device fabrication. More recently it has been observed that ion implantation can under some conditions lead to the formation of a hard (e.g. as hard as steel, ca. 3 MPa) and conducting surface layer. This paper will review the ion beam modification of polymers resulting from ion implantation with reference to fundamental ion-solid interactions. This leads us to examine whether or not implantation of polymers is a contradiction in terms. (Author)

  3. Performance Test of the Microwave Ion Source with the Multi-layer DC Break

    International Nuclear Information System (INIS)

    Kim, Dae Il; Kwon, Hyeok Jung; Kim, Han Sung; Seol, Kyung Tae; Cho, Yong Sub

    2012-01-01

    A microwave proton source has been developed as a proton injector for the 100-MeV proton linac of the PEFP (Proton Engineering Frontier Project). On microwave ion source, the high voltage for the beam extraction is applied to the plasma chamber, also to the microwave components such as a 2.45GHz magnetron, a 3-stub tuner, waveguides. If microwave components can be installed on ground side, the microwave ion source can be operated and maintained easily. For the purpose, the multi-layer DC break has been developed. A multi-layer insulation has the arrangement of conductors and insulators as shown in the Fig. 1. For the purpose of stable operation as the multi-layer DC break, we checked the radiation of the insulator depending on materials and high voltage test of a fabricated multi-layer insulation. In this report, the details of performance test of the multi-layer DC break will be presented

  4. Self-Healing Wire Insulation

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2012-01-01

    A self-healing system for an insulation material initiates a self-repair process by rupturing a plurality of microcapsules disposed on the insulation material. When the plurality of microcapsules are ruptured, reactants within the plurality of microcapsules react to form a replacement polymer in a break of the insulation material. This self-healing system has the ability to repair multiple breaks in a length of insulation material without exhausting the repair properties of the material.

  5. Rod-pinch diode operation at 2 to 4 MV for high resolution pulsed radiography

    International Nuclear Information System (INIS)

    Young, F.C.; Commisso, R.J.; Allen, R.J.; Mosher, D.; Swanekamp, S.B.; Cooperstein, G.; Bayol, F.; Charre, P.; Garrigues, A.; Gonzales, C.; Pompier, F.; Vezinet, R.

    2002-01-01

    The rod-pinch diode is operated successfully at peak voltages of 2.4-4.4 MV for peak electrical currents of 55-135 kA delivered to the diode. At 4 MV, tungsten anode rods of 1 or 2 mm diam produce on-axis doses at 1 m of 16 rad(Si) or 20 rad(Si), respectively. The on-axis source diameter based on the full width at half-maximum (FWHM) of the line-spread function (LSF) is 0.9±0.1 mm for a 1 mm diam rod and 1.4±0.1 mm for a 2 mm diam rod, independent of voltage. The LANL source diameter, determined from the modulation transfer function of the LSF, is nearly twice the FWHM. The measured rod-pinch current is reproduced with a diode model that includes ions and accounts for anode and cathode plasma expansion

  6. Simple model for the description of a thermionic Cs diode in operation

    International Nuclear Information System (INIS)

    Tschersich, K.G.

    1975-01-01

    Because of the small voltage loss in the space between the electrodes, Cs is the most common work medium in thermionic diodes. With the model calculations of the processes in the space between the electrodes, the author aims to explain the formation of Cs ions and the current transport through the electrode gap at these low voltages. (RW/AK) [de

  7. ZnO Nanorods on a LaAlO 3 -SrTiO 3 Interface: Hybrid 1D-2D Diodes with Engineered Electronic Properties

    KAUST Repository

    Bera, Ashok

    2015-12-28

    Integrating nanomaterials with different dimensionalities and properties is a versatile approach toward realizing new functionalities in advanced devices. Here, a novel diode-type heterostructure is reported consisting of 1D semiconducting ZnO nanorods and 2D metallic LaAlO3-SrTiO3 interface. Tunable insulator-to-metal transitions, absent in the individual components, are observed as a result of the competing temperature-dependent conduction mechanisms. Detailed transport analysis reveals direct tunneling at low bias, Fowler-Nordheim tunneling at high forward bias, and Zener breakdown at high reverse bias. Our results highlight the rich electronic properties of such artificial diodes with hybrid dimensionalities, and the design principle may be generalized to other nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. ZnO Nanorods on a LaAlO 3 -SrTiO 3 Interface: Hybrid 1D-2D Diodes with Engineered Electronic Properties

    KAUST Repository

    Bera, Ashok; Lin, Weinan; Yao, Yingbang; Ding, Junfeng; Lourembam, James; Wu, Tao

    2015-01-01

    Integrating nanomaterials with different dimensionalities and properties is a versatile approach toward realizing new functionalities in advanced devices. Here, a novel diode-type heterostructure is reported consisting of 1D semiconducting ZnO nanorods and 2D metallic LaAlO3-SrTiO3 interface. Tunable insulator-to-metal transitions, absent in the individual components, are observed as a result of the competing temperature-dependent conduction mechanisms. Detailed transport analysis reveals direct tunneling at low bias, Fowler-Nordheim tunneling at high forward bias, and Zener breakdown at high reverse bias. Our results highlight the rich electronic properties of such artificial diodes with hybrid dimensionalities, and the design principle may be generalized to other nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electrical properties of GaN-based metal-insulator-semiconductor structures with Al2O3 deposited by atomic layer deposition using water and ozone as the oxygen precursors

    Science.gov (United States)

    Kubo, Toshiharu; Freedsman, Joseph J.; Iwata, Yasuhiro; Egawa, Takashi

    2014-04-01

    Al2O3 deposited by atomic layer deposition (ALD) was used as an insulator in metal-insulator-semiconductor (MIS) structures for GaN-based MIS-devices. As the oxygen precursors for the ALD process, water (H2O), ozone (O3), and both H2O and O3 were used. The chemical characteristics of the ALD-Al2O3 surfaces were investigated by x-ray photoelectron spectroscopy. After fabrication of MIS-diodes and MIS-high-electron-mobility transistors (MIS-HEMTs) with the ALD-Al2O3, their electrical properties were evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The threshold voltage of the C-V curves for MIS-diodes indicated that the fixed charge in the Al2O3 layer is decreased when using both H2O and O3 as the oxygen precursors. Furthermore, MIS-HEMTs with the H2O + O3-based Al2O3 showed good dc I-V characteristics without post-deposition annealing of the ALD-Al2O3, and the drain leakage current in the off-state region was suppressed by seven orders of magnitude.

  10. Tuning of optical and electrical properties of wide band gap Fe:SnO{sub 2}/Li:NiO p-n junctions using 80 MeV oxygen ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, Bhaumik V.; Joshi, U.S. [Gujarat University, Department of Physics, School of Sciences, Ahmedabad (India); Avasthi, D.K. [Inter University Accelerator Centre, New Delhi (India)

    2016-12-15

    Electrical and optical properties of pristine and swift heavy ion (SHI) irradiated p-n junction diode have been investigated for advanced electronics application. Fe:SnO{sub 2}/Li:NiO p-n junction was fabricated by using pulsed laser deposition on c-sapphire substrate. The optical band gaps of Fe:SnO{sub 2} and Li:NiO films were obtained to be 3.88 and 3.37 eV, respectively. The current-voltage characteristics of the oxide-based p-n junction showed a rectifying behaviour with turn-on voltage of 0.95 V. The oxide-based p-n junction diode was irradiated to 80 MeV O{sup +6} ions with 1 x 10{sup 12} ions/cm{sup 2} fluence. Decrease in grain size due to SHI irradiation is confirmed by the grazing angle X-ray diffraction and atomic force microscopy. In comparison with the pristine p-n junction diode, O{sup +6} ion irradiated p-n junction diode shows the increase of surface roughness and decrease of percentage transmittance in visible region. For irradiated p-n junction diode, current-voltage curve has still rectifying behaviour but exhibits lower turn-on voltage than that of virgin p-n junction diode. (orig.)

  11. Simulation and analysis of ion guiding through a nanocapillary in insulating polymers

    Science.gov (United States)

    Stolterfoht, N.

    2013-01-01

    The guiding of highly charged ions through a single cylindrical nanocapillary is simulated to compare with previous experiments using capillaries in polyethylene terephthalate (PET) and polycarbonate (PC) polymers. The ions move in the three-dimensional electric field produced by the charges that ions have deposited before. Guiding conditions are achieved, using a nonlinear conductivity law to transport the deposited charges along the capillary surface. Remarkably, it is found that the migration of the deposited charges perpendicular to the capillary axis has a bigger effect on maintaining the ion guiding than the transport parallel to it. The ion trajectories are found to be focused, enhancing the ion guiding. The mean angle of the transmitted ions exhibit pronounced oscillations, in agreement with previous measurements. Experimentally observed differences in the oscillatory frequency as well as partial blocking of the ion transmission are interpreted by the calculations using a larger conductivity for PC in comparison with PET. Emphasis is given to the understanding of the self-organized formation of the charge patches.

  12. The Pierce-diode approximation to the single-emitter plasma diode

    International Nuclear Information System (INIS)

    Ender, A. Ya.; Kuhn, S.; Kuznetsov, V. I.

    2006-01-01

    The possibility of modeling fast processes in the collisionless single-emitter plasma diode (Knudsen diode with surface ionization, KDSI) by means of the Pierce-diode is studied. The KDSI is of practical importance in that it is an almost exact model of thermionic energy converters (TICs) in the collisionless regime and can also be used to model low-density Q-machines. At high temperatures, the Knudsen TIC comes close to the efficiency of the Carnot cycle and hence is the most promising converter of thermal to electric energy. TICs can be applied as component parts in high-temperature electronics. It is shown that normalizations must be chosen appropriately in order to compare the plasma characteristics of the two models: the KDSI and the Pierce-diode. A linear eigenmode theory of the KDSI is developed. For both nonlinear time-independent states and linear eigenmodes without electron reflection, excellent agreement is found between the analytical potential distributions for the Pierce-diode and the corresponding numerical ones for the KDSI. For the states with electron reflection, the agreement is satisfactory in a qualitative sense. A full classification of states of both diodes for the regimes with and without electron reflection is presented. The effect of the thermal spread in electron velocities on the potential distributions and the (ε,η) diagrams is analyzed. Generally speaking, the methodology developed is usefully applicable to a variety of systems in which the electrons have beam-like distributions

  13. Swift Heavy Ion Induced Modification of Aliphatic Polymers

    OpenAIRE

    Hossain, Umme Habiba

    2015-01-01

    In this thesis, the high energy heavy ion induced modification of aliphatic polymers is studied. Two polymer groups, namely polyvinyl polymers (PVF, PVAc, PVA and PMMA) and fluoropolymers (PVDF, ETFE, PFA and FEP) were used in this work. Polyvinyl polymers were investigated since they will be used as insulating materials in the superconducting magnets of the new ion accelerators of the planned International Facility for Antiproton and Ion Research (FAIR) at the GSI Helmholtz-Centre of Heavy I...

  14. Topological Insulator Bi2Se3/Si-Nanowire-Based p-n Junction Diode for High-Performance Near-Infrared Photodetector.

    Science.gov (United States)

    Das, Biswajit; Das, Nirmalya S; Sarkar, Samrat; Chatterjee, Biplab K; Chattopadhyay, Kalyan K

    2017-07-12

    Chemically derived topological insulator Bi 2 Se 3 nanoflake/Si nanowire (SiNWs) heterojunctions were fabricated employing all eco-friendly cost-effective chemical route for the first time. X-ray diffraction studies confirmed proper phase formation of Bi 2 Se 3 nanoflakes. The morphological features of the individual components and time-evolved hybrid structures were studied using field emission scanning electron microscope. High resolution transmission electron microscopic studies were performed to investigate the actual nature of junction whereas elemental distributions at junction, along with overall stoichiometry of the samples were analyzed using energy dispersive X-ray studies. Temperature dependent current-voltage characteristics and variation of barrier height and ideality factor was studied between 50 and 300 K. An increase in barrier height and decrease in the ideality factor were observed with increasing temperature for the sample. The rectification ratio (I + /I - ) for SiNWs substrate over pristine Si substrate under dark and near-infrared (NIR) irradiation of 890 nm was found to be 3.63 and 10.44, respectively. Furthermore, opto-electrical characterizations were performed for different light power intensities and highest photo responsivity and detectivity were determined to be 934.1 A/W and 2.30 × 10 13 Jones, respectively. Those values are appreciably higher than previous reports for topological insulator based devices. Thus, this work establishes a hybrid system based on topological insulator Bi 2 Se 3 nanoflake and Si nanowire as the newest efficient candidate for advanced optoelectronic materials.

  15. Silicon Carbide Power Device Performance Under Heavy-Ion Irradiation

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan; Topper, Alyson; Wilcox, Edward; Phan, Anthony; Ikpe, Stanley; LaBel, Ken

    2015-01-01

    Heavy-ion induced degradation and catastrophic failure data for SiC power MOSFETs and Schottky diodes are examined to provide insight into the challenge of single-event effect hardening of SiC power devices.

  16. Heavy-Ion Injector for the High Current Experiment

    Science.gov (United States)

    Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.; Prost, L.; Seidl, P.

    2001-10-01

    We report on progress in development of the Heavy-Ion Injector at LBNL, which is being prepared for use as an injector for the High Current Experiment (HCX). It is composed of a 10-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with a typical operating current of 0.6 A of potassium ions at 1.8 MeV, and a beam pulse length of 4.5 microsecs. We have improved the Injector equipment and diagnostics, and have characterized the source emission and radial beam profiles at the diode and ESQ regions. We find improved agreement with EGUN predictions, and improved compatibility with the downstream matching section. Plans are to attach the matching section and the initial ESQ transport section of HCX. Results will be presented and compared with EGUN and WARP simulations.

  17. Ion extraction from positively biased laser-ablation plasma

    International Nuclear Information System (INIS)

    Isono, Fumika; Nakajima, Mitsuo; Hasegawa, Jun; Horioka, Kazuhiko

    2016-01-01

    Ions were extracted through a grounded grid from a positively biased laser-ablation plasma and the behaviors were investigated. Since the plasma was positively biased against the grounded wall, we could extract the ions without insulated gap. We confirmed formation of a virtual anode when we increased the distance between the grid and the ion collector. Results also indicated that when the ion flux from the ablation plasma exceeded a critical value, the current was strongly suppressed to the space charge limited level due to the formation of virtual anode.

  18. A transparent electrochromic metal-insulator switching device with three-terminal transistor geometry

    Science.gov (United States)

    Katase, Takayoshi; Onozato, Takaki; Hirono, Misako; Mizuno, Taku; Ohta, Hiromichi

    2016-05-01

    Proton and hydroxyl ion play an essential role for tuning functionality of oxides because their electronic state can be controlled by modifying oxygen off-stoichiometry and/or protonation. Tungsten trioxide (WO3), a well-known electrochromic (EC) material for smart window, is a wide bandgap insulator, whereas it becomes a metallic conductor HxWO3 by protonation. Although one can utilize electrochromism together with metal-insulator (MI) switching for one device, such EC-MI switching cannot be utilized in current EC devices because of their two-terminal structure with parallel-plate configuration. Here we demonstrate a transparent EC-MI switchable device with three-terminal TFT-type structure using amorphous (a-) WO3 channel layer, which was fabricated on glass substrate at room temperature. We used water-infiltrated nano-porous glass, CAN (calcium aluminate with nano-pores), as a liquid-leakage-free solid gate insulator. At virgin state, the device was fully transparent in the visible-light region. For positive gate voltage, the active channel became dark blue, and electrical resistivity of the a-WO3 layer drastically decreased with protonation. For negative gate voltage, deprotonation occurred and the active channel returned to transparent insulator. Good cycleability of the present transparent EC-MI switching device would have potential for the development of advanced smart windows.

  19. A heavy ion pre-injector for the ICT-ion implanter

    International Nuclear Information System (INIS)

    Bhattacharya, P.K.; Gaonkar, S.; Wagh, A.G.; Hattangadi, V.A.; Sarma, N.

    1976-01-01

    A cheap and versatile hollow cathode electron bombardment ion source system including its ion extraction-cum-focussing assembly for obtaining intense heavy ion beams of solids and gases is described. The extractor region is designed to include more than 15deg total beam angle of extracted beam for producing focused ion current densities upto 60mA/cm 2 to serve as a pre-injector for the ICT(insulated core transformer) type ion implanter. The extraction-cum-focussing lens is a low aberration strong Einzel lens system of all araldite and metal construction with optical elements of proper quality and location to suit low voltage injection and subsequent ion analysis. The injection can be selected anywhere between 2 to 10 keV for singly charged ions with typical extraction currents of 500/μ, using a ring anode and a source aperture of 20 mil. Einzel lens focussing assembly allows continuous adjustment of the beam convergence to about 5deg and the beam size to approximately 5mm in diameter with about 10 KV central electrode potential. Test results of source characteristics for both the accelerating and decelerating model of beam formation have been made. (author)

  20. Heat insulation support device

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki; Koda, Tomokazu; Motojima, Osamu; Yamamoto, Junya.

    1994-01-01

    The device of the present invention comprises a plurality of heat insulation legs disposed in a circumferential direction. Each of the heat insulative support legs has a hollow shape, and comprises an outer column and an inner column as support structures having a heat insulative property (heat insulative structure), and a thermal anchor which absorbs compulsory displacement by a thin flat plate (displacement absorber). The outer column, the thermal anchor and the inner column are connected by a support so as to offset the positional change of objects to be supported due to shrinkage when they are shrunk. In addition, the portion between the superconductive coils as the objects to be supported and the inner column is connected by the support. The superconductive thermonuclear device is entirely contained in a heat insulative vacuum vessel, and the heat insulative support legs are disposed on a lower lid of the heat insulative vacuum vessel. With such a constitution, they are strengthened against lateral load and buckling, thereby enabling to reduce the amount of heat intrusion while keeping the compulsory displacement easy to be absorbed. (I.N.)

  1. Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Vittone, E., E-mail: ettore.vittone@unito.it [Department of Physics, NIS Research Centre and CNISM, University of Torino, via P. Giuria 1, 10125 Torino (Italy); Pastuovic, Z. [Centre for Accelerator Science (ANSTO), Locked bag 2001, Kirrawee DC, NSW 2234 (Australia); Breese, M.B.H. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Garcia Lopez, J. [Centro Nacional de Aceleradores (CNA), Sevilla University, J. Andalucia, CSIC, Av. Thomas A. Edison 7, 41092 Sevilla (Spain); Jaksic, M. [Department for Experimental Physics, Ruder Boškovic Institute (RBI), P.O. Box 180, 10002 Zagreb (Croatia); Raisanen, J. [Department of Physics, University of Helsinki, Helsinki 00014 (Finland); Siegele, R. [Centre for Accelerator Science (ANSTO), Locked bag 2001, Kirrawee DC, NSW 2234 (Australia); Simon, A. [International Atomic Energy Agency (IAEA), Vienna International Centre, P.O. Box 100, 1400 Vienna (Austria); Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Vizkelethy, G. [Sandia National Laboratories (SNL), PO Box 5800, Albuquerque, NM (United States)

    2016-04-01

    Highlights: • We study the electronic degradation of semiconductors induced by ion irradiation. • The experimental protocol is based on MeV ion microbeam irradiation. • The radiation induced damage is measured by IBIC. • The general model fits the experimental data in the low level damage regime. • Key parameters relevant to the intrinsic radiation hardness are extracted. - Abstract: This paper investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and the charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.

  2. Economically optimal thermal insulation

    Energy Technology Data Exchange (ETDEWEB)

    Berber, J.

    1978-10-01

    Exemplary calculations to show that exact adherence to the demands of the thermal insulation ordinance does not lead to an optimal solution with regard to economics. This is independent of the mode of financing. Optimal thermal insulation exceeds the values given in the thermal insulation ordinance.

  3. Panels of microporous insulation

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, J.A.; Morgan, D.E.; Jackson, J.D.J.

    1990-08-07

    Microporous thermal insulation materials have a lattice structure in which the average interstitial dimension is less than the mean free path of the molecules of air or other gas in which the material is arranged. This results in a heat flow which is less than that attributable to the molecular heat diffusion of the gas. According to this invention, a method is provided for manufacturing panels of microporous thermal insulation, in particular such panels in which the insulation material is bonded to a substrate. The method comprises the steps of applying a film of polyvinyl acetate emulsion to a non-porous substrate, and compacting powdery microporous thermal insulation material against the film so as to cause the consolidated insulation material to bond to the substrate and form a panel. The polyvinyl acetate may be applied by brushing or spraying, and is preferably allowed to dry prior to compacting the insulation material. 1 fig.

  4. Study of transient current induced by heavy-ion microbeams in Si and GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Hirao, Toshio; Nashiyama, Isamu; Kamiya, Tomihiro; Suda, Tamotu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Heavy-ion microbeams were applied to the study of mechanism of single event upset (SEU). Transient current induced in p{sup +}n junction diodes by strike of heavy ion microbeam were measured by using a high-speed digitizing sampling system. (author)

  5. Total dose hardening of buried insulator in implanted silicon-on-insulator structures

    International Nuclear Information System (INIS)

    Mao, B.Y.; Chen, C.E.; Pollack, G.; Hughes, H.L.; Davis, G.E.

    1987-01-01

    Total dose characteristics of the buried insulator in implanted silicon-on-insulator (SOI) substrates have been studied using MOS transistors. The threshold voltage shift of the parasitic back channel transistor, which is controlled by charge trapping in the buried insulator, is reduced by lowering the oxygen dose as well as by an additional nitrogen implant, without degrading the front channel transistor characteristics. The improvements in the radiation characteristics of the buried insulator are attributed to the decrease in the buried oxide thickness or to the presence of the interfacial oxynitride layer formed by the oxygen and nitrogen implants

  6. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 microm.

    Science.gov (United States)

    Jackson, Stuart D

    2009-08-01

    A high-power diode-cladding-pumped Ho(3+), Pr(3+)-doped fluoride glass fiber laser is demonstrated. The laser produced a maximum output power of 2.5 W at a slope efficiency of 32% using diode lasers emitting at 1,150 nm. The long-emission wavelength of 2.94 microm measured at maximum pump power, which is particularly suited to medical applications, indicates that tailoring of the proportion of Pr(3+) ions can provide specific emission wavelengths while providing sufficient de-excitation of the lower laser level.

  7. Survey of thermal insulation systems

    International Nuclear Information System (INIS)

    Kinoshita, Izumi

    1983-01-01

    Better thermal insulations have been developed to meet the growing demands of industry, and studies on thermal insulation at both high temperature and low temperature have been widely performed. The purpose of this survey is to summarize data on the performances and characteristics of thermal insulation materials and thermal insulation structures (for instance, gas cooled reactors, space vehicles and LNG storage tanks), and to discuss ravious problems regarding the design of thermal insulation structures of pool-type LMFBRs. (author)

  8. Analytic theory of the spherical electron to ion convertor

    International Nuclear Information System (INIS)

    Verdeyen, J.T.; Miller, P.A.

    1980-01-01

    Calculations will be presented which indicate that one could, with high efficiency, convert the electron beam energy transported from many pinched diode to ions at a reasonably sized evacuated spherical shell - or a light bulb

  9. Ion implantation apparatus

    International Nuclear Information System (INIS)

    Forneris, J.L.; Hicks, W.W.; Keller, J.H.; McKenna, C.M.; Siermarco, J.A.; Mueller, W.F.

    1981-01-01

    The invention relates to ion bombardment or implantation apparatus. It comprises an apparatus for bombarding a target with a beam of ions, including an arrangement for measuring the ion beam current and controlling the surface potential of the target. This comprises a Faraday cage formed, at least in part, by the target and by walls adjacent to, and electrically insulated from, the target and surrounding the beam. There is at least one electron source for supplying electrons to the interior of the Faraday cage and means within the cage for blocking direct rectilinear radiation from the source to the target. The target current is measured and combined with the wall currents to provide a measurement of the ion beam current. The quantity of electrons supplied to the interior of the cage can be varied to control the target current and thereby the target surface potential. (U.K.)

  10. Detection of UV Pulse from Insulators and Application in Estimating the Conditions of Insulators

    Science.gov (United States)

    Wang, Jingang; Chong, Junlong; Yang, Jie

    2014-10-01

    Solar radiation in the band of 240-280 nm is absorbed by the ozone layer in the atmosphere, and corona discharges from high-voltage apparatus emit in air mainly in the 230-405 nm range of ultraviolet (UV), so the band of 240-280 nm is called UV Solar Blind Band. When the insulators in a string deteriorate or are contaminated, the voltage distribution along the string will change, which causes the electric fields in the vicinity of insulators change and corona discharge intensifies. An UV pulse detection method to check the conditions of insulators is presented based on detecting the UV pulse among the corona discharge, then it can be confirmed that whether there exist faulty insulators and whether the surface contamination of insulators is severe for the safe operation of power systems. An UV-I Insulator Detector has been developed, and both laboratory tests and field tests have been carried out which demonstrates the practical viability of UV-I Insulator Detector for online monitoring.

  11. Thermal insulation

    International Nuclear Information System (INIS)

    Pinsky, G.P.

    1977-01-01

    Thermal insulation for vessels and piping within the reactor containment area of nuclear power plants is disclosed. The thermal insulation of this invention can be readily removed and replaced from the vessels and piping for inservice inspection, can withstand repeated wettings and dryings, and can resist high temperatures for long periods of time. 4 claims, 3 figures

  12. Characterization of junctions produced by medium-energy ion implantation in silicon; Caracterisation de jonctions obtenues par implantation d'ions de moyenne energie dans le silicium

    Energy Technology Data Exchange (ETDEWEB)

    Monfret, A [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1970-07-01

    Characteristics of diodes made by implanting 20 keV boron and phosphorus ions into silicon are reviewed. Special features of theses diodes are presented, and correlation with technology is studied. This paper includes three parts: - in the first part, the theory of range distribution is considered for both amorphous and single-crystal targets, - In the second part, a brief description of the experimental conditions is given. - In the third part, the experimental results are presented. The results lead to a schematic model of the component. They also show the influence of cleaning and annealing treatments from which optimized process of fabrication can be determined. In this study, the influence of a two stage annealing process is shown. For phosphorus and boron implants, the first stage is performed at 150 deg. C while the second stage is 450 deg. C for phosphorus and 550 deg. C for boron implants. The implanted diodes are found to exhibit good electrical characteristics. Comparisons with standard diffused diodes are quite favourable. (author) [French] On examine les caracteristiques de diodes obtenues par implantation d'ions bore et phosphore de 20 keV dans le silicium. On met en evidence le comportement particulier de ces diodes et on presente certaines correlations avec la technologie. L'expose comprend trois parties: - la premiere partie est consacree au calcul du profil de dopage en mode canalise ou non. - Dans la deuxieme partie, on decrit l'appareillage et les conditions experimentales d'implantation. - Dans la troisieme partie, on presente les resultats experimentaux. On propose un modele schematique pour expliquer le comportement des tenues en tension des diodes. L'etude des courants de fuite en fonction de la preparation des echantillons et des traitements thermiques permet de determiner des conditions optimales d'elaboration. Au cours de cette etude on met en evidence l'influence de deux stades de recuit: le premier a 150 deg. C pour les implantations de

  13. Wrapped Multilayer Insulation

    Science.gov (United States)

    Dye, Scott A.

    2015-01-01

    New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/m2, or 27 percent of the heat leak of conventional MLI (26.7 W/m2). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.

  14. On the formation of hollow atoms in front of an insulating LiF surface

    NARCIS (Netherlands)

    Limburg, J; Hoekstra, R; Morgenstern, R; Kurz, H; Vana, M; Aumayr, F; Winter, HP

    KLL Auger spectra of hydrogenic (Is) N, O and Ne ions impinging on an insulating LiF(100) single crystal are presented. Beam energy and incident angle have been varied such that the lowest possible velocity towards the target is achieved, at the same time varying the velocity parallel to the target

  15. Axial grazing collisions with insulator surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gravielle, M.S. [Instituto de Astronomia y Fisica del Espacio (IAFE), Consejo Nacional de Investigaciones Cientificas y Tecnicas, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina) and Departamento de Fisica, FCEN, Universidad de Buenos Aires (Argentina)]. E-mail: msilvia@iafe.uba.ar; Miraglia, J.E. [Instituto de Astronomia y Fisica del Espacio (IAFE), Consejo Nacional de Investigaciones Cientificas y Tecnicas, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Fisica, FCEN, Universidad de Buenos Aires (Argentina)

    2007-05-15

    Electron capture and emission processes from insulator surfaces produced by grazing impact of fast ions are investigated under axial incidence conditions. For crystal surfaces we develop a model based on distorted wave methods, which allows us to express the coherent transition amplitude along the projectile path as a sum of atomic amplitudes, each one associated with a different lattice site. The method is applied to 100 keV protons colliding with LiF surfaces. For electron transitions from a given initial crystal state, the probabilities display strong interference effects as a function of the crystal orientation. But the interference patterns disappear when these partial probabilities are added to derive the total probability from the surface band.

  16. Axial grazing collisions with insulator surfaces

    International Nuclear Information System (INIS)

    Gravielle, M.S.; Miraglia, J.E.

    2007-01-01

    Electron capture and emission processes from insulator surfaces produced by grazing impact of fast ions are investigated under axial incidence conditions. For crystal surfaces we develop a model based on distorted wave methods, which allows us to express the coherent transition amplitude along the projectile path as a sum of atomic amplitudes, each one associated with a different lattice site. The method is applied to 100 keV protons colliding with LiF surfaces. For electron transitions from a given initial crystal state, the probabilities display strong interference effects as a function of the crystal orientation. But the interference patterns disappear when these partial probabilities are added to derive the total probability from the surface band

  17. Single ion hit detection set-up for the Zagreb ion microprobe

    Science.gov (United States)

    Smith, R. W.; Karlušić, M.; Jakšić, M.

    2012-04-01

    Irradiation of materials by heavy ions accelerated in MV tandem accelerators may lead to the production of latent ion tracks in many insulators and semiconductors. If irradiation is performed in a high resolution microprobe facility, ion tracks can be ordered by submicrometer positioning precision. However, full control of the ion track positioning can only be achieved by a reliable ion hit detection system that should provide a trigger signal irrespectively of the type and thickness of the material being irradiated. The most useful process that can be utilised for this purpose is emission of secondary electrons from the sample surface that follows the ion impact. The status report of the set-up presented here is based on the use of a channel electron multiplier (CEM) detector mounted on an interchangable sample holder that is inserted into the chamber in a close geometry along with the sample to be irradiated. The set-up has been tested at the Zagreb ion microprobe for different ions and energies, as well as different geometrical arrangements. For energies of heavy ions below 1 MeV/amu, results show that efficient (100%) control of ion impact can be achieved only for ions heavier than silicon. The successful use of the set-up is demonstrated by production of ordered single ion tracks in a polycarbonate film and by monitoring fluence during ion microbeam patterning of Foturan glass.

  18. Simulative research on the expansion of cathode plasma in high-current electron beam diode

    International Nuclear Information System (INIS)

    Xu Qifu; Liu Lie

    2012-01-01

    The expansion of cathode plasma has long been recognized as a limiting factor in the impedance lifetime of high-current electron beam diode. Realistic modeling of such plasma is of great necessity in order to discuss the dynamics of cathode plasma. Using the method of particle-in-cell, the expansion of cathode plasma is simulated in this paper by a scaled-down diode model. It is found that the formation of cathode plasma increases the current density in the diode. This consequently leads to the decrease of the potential at plasma front. Once the current density has been increased to a certain value, the potential at plasma front would then be equal to or lower than the plasma potential. Then the ions would move towards the anode, and the expansion of cathode plasma is thereby formed. Different factors affecting the plasma expansion velocity are discussed in this paper. It is shown that the decrease of proton genatation rate has the benefit of reducing the plasma expansion velocity.

  19. Transparency of Semi-Insulating, n-Type, and p-Type Ammonothermal GaN Substrates in the Near-Infrared, Mid-Infrared, and THz Spectral Range

    Directory of Open Access Journals (Sweden)

    Robert Kucharski

    2017-06-01

    Full Text Available GaN substrates grown by the ammonothermal method are analyzed by Fast Fourier Transformation Spectroscopy in order to study the impact of doping (both n- and p-type on their transparency in the near-infrared, mid-infrared, and terahertz spectral range. It is shown that the introduction of dopants causes a decrease in transparency of GaN substrates in a broad spectral range which is attributed to absorption on free carriers (n-type samples or dopant ionization (p-type samples. In the mid-infrared the transparency cut-off, which for a semi-insulating GaN is at ~7 µm due to an absorption on a second harmonic of optical phonons, shifts towards shorter wavelengths due to an absorption on free carriers up to ~1 µm at n ~ 1020 cm−3 doping level. Moreover, a semi-insulating GaN crystal shows good transparency in the 1–10 THz range, while for n-and p-type crystal, the transparency in this spectral region is significantly quenched below 1%. In addition, it is shown that in the visible spectral region n-type GaN substrates with a carrier concentration below 1018 cm−3 are highly transparent with the absorption coefficient below 3 cm−1 at 450 nm, a satisfactory condition for light emitting diodes and laser diodes operating in this spectral range.

  20. Long pulse diode experiments

    Science.gov (United States)

    McClenahan, Charles R.; Weber, Gerald J.; Omalley, Martin W.; Stewart, Joseph; Rinehart, Larry F.; Buttram, Malcolm T.

    1990-10-01

    A diode employing a thermionic cathode has produced 80 A beams at 200 kV for at least 6 microseconds. Moreover, the diode operates at rates as high as 1 Hz. EGUN simulations of the experimental geometry agree with the experiments. Finally, simulation of a proposed diode geometry predicts a 1 kA, 500 kV beam.

  1. ICAN: High power neutral beam generation

    International Nuclear Information System (INIS)

    Moustaizis, S.D.; Lalousis, P.; Perrakis, K.; Auvray, P.; Larour, J.; Ducret, J.E.; Balcou, P.

    2015-01-01

    During the last few years there is an increasing interest on the development of alternative high power new negative ion source for Tokamak applications. The proposed new neutral beam device presents a number of advantages with respect to: the density current, the acceleration voltage, the relative compact dimension of the negative ion source, and the coupling of a high power laser beam for photo-neutralization of the negative ion beam. Here we numerically investigate, using a multi- fluid 1-D code, the acceleration and the extraction of high power ion beam from a Magnetically Insulated Diode (MID). The diode configuration will be coupled to a high power device capable of extracting a current up to a few kA with an accelerating voltage up to MeV. An efficiency of up to 92% of the coupling of the laser beam, is required in order to obtain a high power, up to GW, neutral beam. The new high energy, high average power, high efficiency (up to 30%) ICAN fiber laser is proposed for both the plasma generation and the photo-neutralizer configuration. (authors)

  2. Magnetically self-insulated transformers

    International Nuclear Information System (INIS)

    Novac, B.M.; Smith, I.R.; Brown, J.

    2002-01-01

    Magnetic insulation is the only practicable form of insulation for much equipment used in ultrahigh pulsed-power work, including transmission lines and plasma opening switches. It has not however so far been successfully exploited in the transformers that are necessarily involved, and the first proposed design that appeared more than 30 years ago raised apparently insuperable problems. The two novel arrangements for a magnetically insulated transformer described in this paper overcome the problems faced by the earlier designs and also offer considerable scope for development in a number of important areas. Theoretical justification is given for their insulating properties, and this is confirmed by proof-of-principle results obtained from a small-scale experimental prototype in which magnetic insulation was demonstrated at up to 100 kV. (author)

  3. A long-pulse repetitive operation magnetically insulated transmission line oscillator

    International Nuclear Information System (INIS)

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-01-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO

  4. A long-pulse repetitive operation magnetically insulated transmission line oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang [College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-05-15

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  5. A long-pulse repetitive operation magnetically insulated transmission line oscillator.

    Science.gov (United States)

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  6. Requirements for self-magnetically insulated transmission lines

    Directory of Open Access Journals (Sweden)

    J. Pace VanDevender

    2015-03-01

    Full Text Available Self-magnetically insulated transmission lines (MITLs connect pulsed-power drivers with a load. Although the technology was originally developed in the 1970s and is widely used today in super power generators, failure of the technology is the principal limitation on the power that can be delivered to an experiment. We address issues that are often overlooked, rejected after inadequate simulations, or covered by overly conservative assumptions: (i electron retrapping in coupling MITLs to loads, (ii the applicability of collisionless versus collisional electron flow, (iii power transport efficiency as a function of the geometry at the beginning of the MITL, (iv gap closure and when gap closure can be neglected, and (v the role of negative ions in causing anode plasmas and enhancing current losses. We suggest a practical set of conservative design requirements for self-magnetically insulated electron flow based on the results discussed in this paper and on previously published results. The requirements are not necessarily severe constraints in all MITL applications; however, each of the 18 suggested requirements should be examined in the design of a MITL and in the investigation of excessive losses.

  7. Boundary conditions on the plasma emitter surface in the presence of a particle counter flow: I. Ion emitter

    Energy Technology Data Exchange (ETDEWEB)

    Astrelin, V. T., E-mail: V.T.Astrelin@inp.nsk.su; Kotelnikov, I. A. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2017-02-15

    Emission of positively charged ions from a plasma emitter irradiated by a counterpropagating electron beam is studied theoretically. A bipolar diode with a plasma emitter in which the ion temperature is lower than the electron temperature and the counter electron flow is extracted from the ion collector is calculated in the one-dimensional model. An analog of Bohm’s criterion for ion emission in the presence of a counterpropagating electron beam is derived. The limiting density of the counterpropagating beam in a bipolar diode operating in the space-charge-limited-emission regime is calculated. The full set of boundary conditions on the plasma emitter surface that are required for operation of the high-current optics module in numerical codes used to simulate charged particle sources is formulated.

  8. Laterally injected light-emitting diode and laser diode

    Science.gov (United States)

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  9. Use of radial self-field geometry for intense pulsed ion beam generation above 6 MeV on Hermes III.

    Energy Technology Data Exchange (ETDEWEB)

    Renk, Timothy Jerome [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harper-Slaboszewicz, Victor Jozef [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ginn, William Craig [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mikkelson, Kenneth A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schall, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cooper, Gary Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-12-01

    We investigate the generation and propagation of intense pulsed ion beams at the 6 MeV level and above using the Hermes III facility at Sandia National Laboratories. While high-power ion beams have previously been produced using Hermes III, we have conducted systematic studies of several ion diode geometries for the purpose of maximizing focused ion energy for a number of applications. A self-field axial-gap diode of the pinch reflex type and operated in positive polarity yielded beam power below predicted levels. This is ascribed both to power flow losses of unknown origin upstream of the diode load in Hermes positive polarity operation, and to anomalies in beam focusing in this configuration. A change to a radial self-field geometry and negative polarity operation resulted in greatly increased beam voltage (> 6 MeV) and estimated ion current. A comprehensive diagnostic set was developed to characterize beam performance, including both time-dependent and time-integrated measurements of local and total beam power. A substantial high-energy ion population was identified propagating in reverse direction, i.e. from the back side of the anode in the electron beam dump. While significant progress was made in increasing beam power, further improvements in assessing the beam focusing envelope will be required before ultimate ion generation efficiency with this geometry can be completely determined.

  10. Research on vacuum insulation for cryocables

    International Nuclear Information System (INIS)

    Graneau, P.

    1974-01-01

    Vacuum insulation, as compared with solid insulation, simplifies the construction of both resistive or superconducting cryogenic cables. The common vacuum space in the cable can furnish thermal insulation between the environment and the cryogenic coolant, provide electrical insulation between conductors, and establish thermal isolation between go- and return-coolant streams. The differences between solid and vacuum high voltage insulation are discussed, and research on the design, materials selection, and testing of vacuum insulated cryogenic cables is described

  11. Sound Insulation between Dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  12. Adsorption on insulator materials enhanced by D implantation

    International Nuclear Information System (INIS)

    Ibarra, A.; Climent-Font, A.; Munoz-Martin, A.

    2005-01-01

    Many insulator materials used in ITER are exposed to a gas phase composed of D, T and a plasma with hydrocarbons, Fe and other particles combined with the presence of an intense neutron and gamma radiation field. Some of these materials (Al 2 O 3 and SiO 2 ) are implanted at room temperature with low energy D and H ions in order to simulate some of the DT gas effects. The implantation is characterized using optical absorption and elastic recoil detection analysis (ERDA) techniques. It is observed that ion implantation as well as electron or gamma irradiation increases the surface scattering and the concentration of C and H adsorbed at the surface, suggesting that a radiation-induced surface degradation process is taking place and an increase of the surface adsorption capability. The effect is higher for higher dose implantation and for lower energy

  13. High brightness K+ ion source for heavy ion fusion linear induction accelerators

    International Nuclear Information System (INIS)

    Henestroza, E.; Eylon, S.; Chupp, W.; Rutkowski, H.

    1992-01-01

    Low emittance, high current, singly charged potassium thermionic ion sources are being developed for the Induction Linac System Experiment injector, ILSE. The ILSE, now in study at LBL, will address the physics issues of particle beams in a heavy ion fusion driver scenario. The K + ion beam considered is emitted thermionically into a diode gap from alumino-silicate layers (zeolite) coated on a porous tungsten cup. The Single Beam Transport Experiment (SBTE) 120keV cesium source was redesigned and modified with the aid of an ion optics and gun design program (EGUN) to enable the evaluation of the K + source performance at high extraction currents of about 80mA from a one inch diameter source. The authors report on the source fabrication technique and performance, including total current and current density profile measurements using Faraday cups, phase space distributions using the double slit scanning technique, and source emitting surface temperature dependence on heating power using a wire pyrometer

  14. Characterization of a n+3C/n−4H SiC heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Minamisawa, R. A.; Mihaila, A. [Department of Power Electronics, ABB Corporate Research Center, CH-5405 Baden-Dättwil (Switzerland); Farkas, I.; Hsu, C.-W.; Janzén, E. [Semiconductor Materials, IFM, Linköping University, SE-58183 Linköping (Sweden); Teodorescu, V. S. [National Institute of Material Physics, R-077125 Bucharest-Măgurele (Romania); Afanas' ev, V. V. [Semiconductor Physics Laboratory, KU Leuven, 3001 Leuven (Belgium); Rahimo, M. [ABB Semiconductors, Fabrikstrasse 3, CH-5600 Lenzburg (Switzerland)

    2016-04-04

    We report on the fabrication of n + 3C/n-4H SiC heterojunction diodes (HJDs) potentially promising the ultimate thermal stability of the junction. The diodes were systematically analyzed by TEM, X-ray diffraction, AFM, and secondary ion mass spectroscopy, indicating the formation of epitaxial 3C-SiC crystal on top of 4H-SiC substrate with continuous interface, low surface roughness, and up to ∼7 × 10{sup 17 }cm{sup −3} dopant impurity concentration. The conduction band off-set is about 1 V as extracted from CV measurements, while the valence bands of both SiC polytypes are aligned. The HJDs feature opening voltage of 1.65 V, consistent with the barrier height of about 1.5 eV extracted from CV measurement. We finally compare the electrical results of the n + 3C/n-4H SiC heterojunction diodes with those featuring Si and Ge doped anodes in order to evaluate current challenges involved in the fabrication of such devices.

  15. The inaccuracy of heat transfer characteristics for non-insulated and insulated spherical containers neglecting the influence of heat radiation

    International Nuclear Information System (INIS)

    Wong, King-Leung; Salazar, Jose Luis Leon; Prasad, Leo; Chen, Wen-Lih

    2011-01-01

    In this investigation, the differences of heat transfer characteristics for insulated and non-insulated spherical containers between considering and neglecting the influence of heat radiation are studied by the simulations in some practical situations. It is found that the heat radiation effect cannot be ignored in conditions of low ambient convection heat coefficients (such ambient air) and high surface emissivities, especially for the non-insulated and thin insulated cases. In most practical situations when ambient temperature is different from surroundings temperature and the emissivity of insulation surface is different from that of metal wall surface, neglecting heat radiation will result in inaccurate insulation effect and heat transfer errors even with very thick insulation. However, the insulation effect considering heat radiation will only increase a very small amount after some dimensionless insulated thickness (such insulation thickness/radius ≥0.2 in this study), thus such dimensionless insulated thickness can be used as the optimum thickness in practical applications. Meanwhile, wrapping a material with low surface emissivity (such as aluminum foil) around the oxidized metal wall or insulation layer (always with high surface emissivity) can achieve very good insulated effect for the non-insulated or thin insulated containers.

  16. Electrical insulating liquid: A review

    Directory of Open Access Journals (Sweden)

    Deba Kumar Mahanta

    2017-08-01

    Full Text Available Insulating liquid plays an important role for the life span of the transformer. Petroleum-based mineral oil has become dominant insulating liquid of transformer for more than a century for its excellent dielectric and cooling properties. However, the usage of petroleum-based mineral oil, derived from a nonrenewable energy source, has affected the environment for its nonbiodegradability property. Therefore, researchers direct their attention to renewable and biodegradable alternatives. Palm fatty acid ester, coconut oil, sunflower oil, etc. are considered as alternatives to replace mineral oil as transformer insulation liquid. This paper gives an extensive review of different liquid insulating materials used in a transformer. Characterization of different liquids as an insulating material has been discussed. An attempt has been made to classify different insulating liquids-based on different properties.

  17. Biodegradation performance of environmentally-friendly insulating oil

    Science.gov (United States)

    Yang, Jun; He, Yan; Cai, Shengwei; Chen, Cheng; Wen, Gang; Wang, Feipeng; Fan, Fan; Wan, Chunxiang; Wu, Liya; Liu, Ruitong

    2018-02-01

    In this paper, biodegradation performance of rapeseed insulating oil (RDB) and FR3 insulating oil (FR3) was studied by means of ready biodegradation method which was performed with Organization for Economic Co-operation and Development (OECD) 301B. For comparison, the biodegradation behaviour of 25# mineral insulating oil was also characterized with the same method. The testing results shown that the biodegradation degree of rapeseed insulating oil, FR3 insulating oil and 25# mineral insulating oil was 95.8%, 98.9% and 38.4% respectively. Following the “new chemical risk assessment guidelines” (HJ/T 154 - 2004), which illustrates the methods used to identify and assess the process safety hazards inherent. The guidelines can draw that the two vegetable insulating oils, i.e. rapeseed insulating oil and FR3 insulating oil are easily biodegradable. Therefore, the both can be classified as environmentally-friendly insulating oil. As expected, 25# mineral insulating oil is hardly biodegradable. The main reason is that 25# mineral insulating oil consists of isoalkanes, cyclanes and a few arenes, which has few unsaturated bonds. Biodegradation of rapeseed insulating oil and FR3 insulating oil also remain some difference. Biodegradation mechanism of vegetable insulating oil was revealed from the perspective of hydrolysis kinetics.

  18. Voltage-driven magnetization control in topological insulator/magnetic insulator heterostructures

    Directory of Open Access Journals (Sweden)

    Michael E. Flatté

    2017-05-01

    Full Text Available A major barrier to the development of spin-based electronics is the transition from current-driven spin torque, or magnetic-field-driven magnetization reversal, to a more scalable voltage-driven magnetization reversal. To achieve this, multiferroic materials appear attractive, however the effects in current materials occur at very large voltages or at low temperatures. Here the potential of a new class of hybrid multiferroic materials is described, consisting of a topological insulator adjacent to a magnetic insulator, for which an applied electric field reorients the magnetization. As these materials lack conducting states at the chemical potential in their bulk, no dissipative charge currents flow in the bulk. Surface states at the interface, if present, produce effects similar to surface recombination currents in bipolar devices, but can be passivated using magnetic doping. Even without conducting states at the chemical potential, for a topological insulator there is a finite spin Hall conductivity provided by filled bands below the chemical potential. Spin accumulation at the interface with the magnetic insulator provides a torque on the magnetization. Properly timed voltage pulses can thus reorient the magnetic moment with only the flow of charge current required in the leads to establish the voltage. If the topological insulator is sufficiently thick the resulting low capacitance requires little charge current.

  19. Gas insulated substations

    CERN Document Server

    2014-01-01

    This book provides an overview on the particular development steps of gas insulated high-voltage switchgear, and is based on the information given with the editor's tutorial. The theory is kept low only as much as it is needed to understand gas insulated technology, with the main focus of the book being on delivering practical application knowledge. It discusses some introductory and advanced aspects in the meaning of applications. The start of the book presents the theory of Gas Insulated Technology, and outlines reliability, design, safety, grounding and bonding, and factors for choosing GIS. The third chapter presents the technology, covering the following in detail: manufacturing, specification, instrument transformers, Gas Insulated Bus, and the assembly process. Next, the book goes into control and monitoring, which covers local control cabinet, bay controller, control schemes, and digital communication. Testing is explained in the middle of the book before installation and energization. Importantly, ...

  20. Investigating change of properties in gallium ion irradiation patterned single-layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quan, E-mail: wangq@mail.ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (China); Dong, Jinyao; Bai, Bing [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Xie, Guoxin [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2016-10-14

    Besides its excellent physical properties, graphene promises to play a significant role in electronics with superior properties, which requires patterning of graphene for device integration. Here, we presented the changes in properties of single-layer graphene before and after patterning using gallium ion beam. Combined with Raman spectra of graphene, the scanning capacitance microscopy (SCM) image confirmed that a metal–insulator transition occurred after large doses of gallium ion irradiation. The changes in work function and Raman spectra of graphene indicated that the defect density increased as increasing the dose and a structural transition occurred during gallium ion irradiation. The patterning width of graphene presented an increasing trend due to the scattering influence of the impurities and the substrate. - Highlights: • The scanning capacitance microscopy image confirmed a metal–insulator transition occurred after large doses of gallium ion irradiation. • The changes indicated the defect density increased as increasing the dose and a structural transition occurred during gallium ion irradiation. • The patterning width of graphene presented a increasing trend due to the scattering influence of the impurities and the substrate.

  1. Insulation structure of thermonuclear device

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Usami, Saburo; Tsukamoto, Hideo; Kikuchi, Mitsuru

    1998-01-01

    The present invention provides an insulating structure of a thermonuclear device, in which insulation materials between toroidal coils are not broken even if superconductive toroidal coils are used. Namely, a tokamak type thermonuclear device of an insulating structure type comprises superconductive toroidal coils for confining plasmas arranged in a circular shape directing the center each at a predetermined angle, and the toroidal coils are insulated from each other. The insulation materials are formed by using a biaxially oriented fiber reinforced plastics. The contact surface of the toroidal coils and the insulating materials are arranged so that they are contact at a woven surface of the fiber reinforced plastics. Either or both of the contact surfaces of the fiber reinforced plastics and the toroidal coils are coated with a high molecular compound having a low friction coefficient. With such a constitution, since the interlayer shearing strength of the biaxially oriented fiber reinforced plastics is about 1/10 of the compression strength, the shearing stress exerted on the insulation material is reduced. Since a static friction coefficient on the contact surface is reduced to provide a structure causing slipping, shearing stress does not exceeds a predetermined limit. As a result, breakage of the insulation materials between the toroidal coils can be prevented. (I.S.)

  2. Powering laser diode systems

    CERN Document Server

    Trestman, Grigoriy A

    2017-01-01

    This Tutorial Text discusses the competent design and skilled use of laser diode drivers (LDDs) and power supplies (PSs) for the electrical components of laser diode systems. It is intended to help power-electronic design engineers during the initial design stages: the choice of the best PS topology, the calculation of parameters and components of the PS circuit, and the computer simulation of the circuit. Readers who use laser diode systems for research, production, and other purposes will also benefit. The book will help readers avoid errors when creating laser systems from ready-made blocks, as well as understand the nature of the "mystical failures" of laser diodes (and possibly prevent them).

  3. Thermal insulation

    International Nuclear Information System (INIS)

    Durston, J.G.; Birch, W.; Facer, R.I.; Stuart, R.A.

    1977-01-01

    Reference is made to liquid metal cooled nuclear reactors. In the arrangement described the reactor vessel is clad with thermal insulation comprising a layer of insulating blocks spaced from the wall and from each other; each block is rigidly secured to the wall, and the interspaces are substantially closed against convectional flow of liquid by resilient closure members. A membrane covering is provided for the layer of blocks, with venting means to allow liquid from the reactor vessel to penetrate between the covering and the layer of blocks. The membrane covering may comprise a stainless steel sheet ribbed in orthogonal pattern to give flexibility for the accommodation of thermal strain. The insulating blocks may be comprised of stainless steel or cellular or porous material and may be hollow shells containing ceramic material or gas fillings. (U.K.)

  4. Steady states of a diode with counterstreaming electron and positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ender, A. Ya.; Kuznetsov, V. I., E-mail: victor.kuznetsov@mail.ioffe.ru; Gruzdev, A. A. [Russian Academy of Sciences, Ioffe Institute (Russian Federation)

    2016-10-15

    Steady states of a plasma layer with counterstreaming beams of oppositely charged particles moving without collisions in a self-consistent electric field are analyzed. The study is aimed at clarifying the mechanism of generation and reconstruction of pulsar radiation. Such a layer also models the processes occurring in Knudsen plasma diodes with counterstreaming electron and ion beams. The steady-state solutions are exhaustively classified. The existence of several solutions at the same external parameters is established.

  5. Insulation Reformulation Development

    Science.gov (United States)

    Chapman, Cynthia; Bray, Mark

    2015-01-01

    The current Space Launch System (SLS) internal solid rocket motor insulation, polybenzimidazole acrylonitrile butadiene rubber (PBI-NBR), is a new insulation that replaced asbestos-based insulations found in Space Shuttle heritage solid rocket boosters. PBI-NBR has some outstanding characteristics such as an excellent thermal erosion resistance, low thermal conductivity, and low density. PBI-NBR also has some significant challenges associated with its use: Air entrainment/entrapment during manufacture and lay-up/cure and low mechanical properties such as tensile strength, modulus, and fracture toughness. This technology development attempted to overcome these challenges by testing various reformulated versions of booster insulation. The results suggest the SLS program should continue to investigate material alternatives for potential block upgrades or use an entirely new, more advanced booster. The experimental design was composed of a logic path that performs iterative formulation and testing in order to maximize the effort. A lab mixing baseline was developed and documented for the Rubber Laboratory in Bldg. 4602/Room 1178.

  6. Performance of the cold powered diodes and diode leads in the main magnets of the LHC

    CERN Document Server

    Willering, G P; Bajko, M; Bednarek, M; Bottura, L; Charifoulline, Z; Dahlerup-Petersen, K; Dib, G; D'Angelo, G; Gharib, A; Grand-Clement, L; Izquierdo Bermudez, S; Prin, H; Roger, V; Rowan, S; Savary, F; Tock, J-Ph; Verweij, A

    2015-01-01

    During quench tests in 2011 variations in resistance of an order of magnitude were found in the diode by-pass circuit of the main LHC magnets. An investigation campaign was started to understand the source, the occurrence and the impact of the high resistances. Many tests were performed offline in the SM18 test facility with a focus on the contact resistance of the diode to heat sink contact and the diode wafer temperature. In 2014 the performance of the diodes and diode leads of the main dipole bypass systems in the LHC was assessed during a high current qualification test. In the test a current cycle similar to a magnet circuit discharge from 11 kA with a time constant of 100 s was performed. Resistances of up to 600 μΩ have been found in the diode leads at intermediate current, but in general the high resistances decrease at higher current levels and no sign of overheating of diodes has been seen and the bypass circuit passed the test. In this report the performance of the diodes and in particular the co...

  7. Disintegration of C60 by Xe ion irradiation

    International Nuclear Information System (INIS)

    Kalish, R.; Samoiloff, A.; Hoffman, A.; Uzan-Saguy, C.

    1993-01-01

    The Changes in resistivity of fullerene (C 60 ) films subject to 320 keV Xe ion irradiation are investigated as a function of ion dose. From a comparison of this dependence with similar data on other Xe irradiated C containing insulating materials and with data on C implanted fused quartz, it is concluded that upon ion impact C 60 clusters completely disintegrate. This disintegration releases about 60 C atoms which disperse amongst the remaining intact C 60 spheres giving rise to hopping conductivity between isolated C atoms. 16 refs., 3 figs

  8. Graphene geometric diodes for terahertz rectennas

    International Nuclear Information System (INIS)

    Zhu Zixu; Joshi, Saumil; Grover, Sachit; Moddel, Garret

    2013-01-01

    We demonstrate a new thin-film graphene diode called a geometric diode that relies on geometric asymmetry to provide rectification at 28 THz. The geometric diode is coupled to an optical antenna to form a rectenna that rectifies incoming radiation. This is the first reported graphene-based antenna-coupled diode working at 28 THz, and potentially at optical frequencies. The planar structure of the geometric diode provides a low RC time constant, on the order of 10 −15 s, required for operation at optical frequencies, and a low impedance for efficient power transfer from the antenna. Fabricated geometric diodes show asymmetric current–voltage characteristics consistent with Monte Carlo simulations for the devices. Rectennas employing the geometric diode coupled to metal and graphene antennas rectify 10.6 µm radiation, corresponding to an operating frequency of 28 THz. The graphene bowtie antenna is the first demonstrated functional antenna made using graphene. Its response indicates that graphene is a suitable terahertz resonator material. Applications for this terahertz diode include terahertz-wave and optical detection, ultra-high-speed electronics and optical power conversion. (paper)

  9. Light ion beam transport research at NRL

    International Nuclear Information System (INIS)

    Hinshelwood, D.D.; Boller, J.R.; Cooperstein, G.

    1996-01-01

    Transport of light ion beams through low-pressure background gas is under investigation at NRL in support of the light-ion ICF program at Sandia National Laboratories. Scaling experiments and the field solver/orbit code ATHETA have been used to design and construct a focusing, extraction applied-B diode for transport experiments. An active anode source has been developed to provide a high proton fraction in the ion beam and a fast ion turn-on time. A very sensitive Zeeman diagnostic is being developed to determine the net current distribution in the beam/transport system. Both analytical and numerical techniques using several codes are being applied to transport modeling, leading to the capability of full system studies. (author). 1 tab., 5 figs., 10 refs

  10. Light ion beam transport research at NRL

    Energy Technology Data Exchange (ETDEWEB)

    Hinshelwood, D D; Boller, J R; Cooperstein, G [Naval Research Lab., Washington, DC (United States). Plasma Physics Div.; and others

    1997-12-31

    Transport of light ion beams through low-pressure background gas is under investigation at NRL in support of the light-ion ICF program at Sandia National Laboratories. Scaling experiments and the field solver/orbit code ATHETA have been used to design and construct a focusing, extraction applied-B diode for transport experiments. An active anode source has been developed to provide a high proton fraction in the ion beam and a fast ion turn-on time. A very sensitive Zeeman diagnostic is being developed to determine the net current distribution in the beam/transport system. Both analytical and numerical techniques using several codes are being applied to transport modeling, leading to the capability of full system studies. (author). 1 tab., 5 figs., 10 refs.

  11. Analytical study on discrete model of virtual cathode in a high-current diode

    International Nuclear Information System (INIS)

    Privezentsev, A.P.

    1988-01-01

    Interest in investigation of virtual cathode dynamics related to the development of high-current accelerator equipment is caused by the possibility of its application for ion collective acceleration in direct high-current electron beams and generation of power electromagnetic radiation. The Hamiltonian form of a plane sheet model for a high-current flux in a plane diode is investigated. Variables used permit to carry out the investigation of dynamics of the virtual cathode flux by the method of coordinate point transformations in a phase space. The necessity of numerical integration of sheet motion equations is dropped out in this case. Analytical solution of the suggested iterative circuit for total flux passage is presented as an example. The solution obtained is equivalent to the known results of the plane diode theory, obtained in the hydrodynamic approximation

  12. Proposal for constructing the energetic particle injector

    International Nuclear Information System (INIS)

    Ueda, M.; Ferreira, A.C.A.; Aso, Y.

    1987-07-01

    The construction of an electrostatic accelerator to produce an intense ion beam is proposed. The high voltage pulse to be used in the acceleration of the ions (500 kV, 1 μs) will be provided by a Marx generator. Using this pulses, a high total current proton beam (>200 KA) will be extracted from a magnetically insulated diode with an anode plasma produced by an inductive breakdown of hydrogen gas. The beam will be injected into a magnetic confinement device, a tokamak to be called ETA (Experimento Toroidal Avancado), to study heating, refueling and noninductive current generation in toroidal plasmas. (author) [pt

  13. Practical reasons for investigating ion transport in high temperature insulating materials

    International Nuclear Information System (INIS)

    Sonder, E.

    1976-01-01

    Practical problems encountered in a number of advanced technology appliations, particularly those related to energy conversion, are discussed. Refractory ionic compounds which are abundant and of high melting point are listed, and technological problems are discussed in terms of specific materials problems. The argument is made that basic information concerning transport properties in refractory compounds is lacking to such an extent that it is difficult to design and assess advanced energy generation systems. Technology applications include: a) ceramic nuclear fuels for high temperature fission reactors, b) high temperature gas turbine blades, c) insulators in controlled thermonuclear reactors, and d) magnetohydrodynamic generators. Some of the difficulties inherent in making transport property measurements at high temperatures are also listed

  14. The use of laser diodes for control of uranium vaporization rates

    International Nuclear Information System (INIS)

    Hagans, K.; Galkowski, J.

    1993-09-01

    Within the Atomic Vapor Laser Isotope Separation (AVLIS) program we have successfully used the laser absorption spectroscopy technique (LAS) to diagnose process physics performance and control vaporization rate. In the LAS technique, a narrow line-width laser is tuned to an absorption line of the species to be measured. The laser light that is propagated through the sample is and, from this data, the density of the species can be calculated. These laser systems have exclusively consisted of expensive, cumbersome, and difficult to maintain argon-ion-pumped ring dye lasers. While the wavelength flexibility of dye lasers is very useful in a laboratory environment, these laser systems are not well suited for the industrial process control system under development for an AVLIS plant. Diode-lasers offer lower system costs, reduced man power requirements, reduced space requirements, higher system availability, and improved operator safety. We report the. successful deployment and test of a prototype laser diode based uranium vapor rate control system. Diode-laser generated LAS data was used to control the uranium vaporization rate in a hands-off mode for greater than 50 hours. With one minor adjustment the system successfully controlled the vaporization rate for greater than 147 hours. We report excellent agreement with ring dye laser diagnostics and uranium weigh-back measurements

  15. Progress in 41Ca ultratrace determination by diode-laser-based RIMS

    International Nuclear Information System (INIS)

    Mueller, P.; Blaum, K.; Diel, S.; Geppert, Ch.; Wendt, K.; Bushaw, B.A.; Trautmann, N.

    2001-01-01

    We report on progress in development and application of 41 Ca ultratrace determination by diode-laser-based RIMS. Applications include biomedical isotope-tracer studies of human calcium kinetics, cosmochemical investigations of meteorites, environmental dosimetry and radiodating. Depending on the application, 41 Ca needs to be determined at isotopic abundance in the range of 10 -9 to 10 -15 relative to the major stable isotope 40 Ca. We use either a double- or triple-resonance excitation scheme and subsequent non-resonant photoionization of calcium atoms in a collimated atomic beam. All resonant steps are excited with narrow bandwidth extended cavity diode lasers, non-resonant photo-ionization is attained with either an argon ion laser or a CO 2 laser. The resulting photo-ions are detected with a quadrupole mass spectrometer. With double-resonance excitation, the optical isotopic selectivity for 41 Ca against 40 Ca is 2x10 4 , while the triple-resonance scheme provides optical selectivity of more than 10 9 . By adding the third resonant step, overall detection efficiency increases from 1x10 -6 to 5x10 -5 and the detection limit for relative 41 Ca abundance improves from 5x10 -10 to 2x10 -13 . Both schemes have been applied to various sample types and accuracy and reproducibility of the resulting 41 Ca/ 40 Ca isotope ratios have been determined to be better than 5%

  16. TCAD simulation for alpha-particle spectroscopy using SIC Schottky diode.

    Science.gov (United States)

    Das, Achintya; Duttagupta, Siddhartha P

    2015-12-01

    There is a growing requirement of alpha spectroscopy in the fields context of environmental radioactive contamination, nuclear waste management, site decommissioning and decontamination. Although silicon-based alpha-particle detection technology is mature, high leakage current, low displacement threshold and radiation hardness limits the operation of the detector in harsh environments. Silicon carbide (SiC) is considered to be excellent material for radiation detection application due to its high band gap, high displacement threshold and high thermal conductivity. In this report, an alpha-particle-induced electron-hole pair generation model for a reverse-biased n-type SiC Schottky diode has been proposed and verified using technology computer aided design (TCAD) simulations. First, the forward-biased I-V characteristics were studied to determine the diode ideality factor and compared with published experimental data. The ideality factor was found to be in the range of 1.4-1.7 for a corresponding temperature range of 300-500 K. Next, the energy-dependent, alpha-particle-induced EHP generation model parameters were optimised using transport of ions in matter (TRIM) simulation. Finally, the transient pulses generated due to alpha-particle bombardment were analysed for (1) different diode temperatures (300-500 K), (2) different incident alpha-particle energies (1-5 MeV), (3) different reverse bias voltages of the 4H-SiC-based Schottky diode (-50 to -250 V) and (4) different angles of incidence of the alpha particle (0°-70°).The above model can be extended to other (wide band-gap semiconductor) device technologies useful for radiation-sensing application. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Status of light ion inertial fusion research at NRL

    International Nuclear Information System (INIS)

    Cooperstein, G.; Ottinger, P.F.; Goldstein, S.A.

    1983-01-01

    High-brightness proton beams have recently been extracted from axial pinch-reflex diodes mounted on the NRL Gamble II generator. The source power brightness that was measured exceeded 10 TW/cm 2 rad 2 . Analysis of a modular ICF system using such diodes shows that an operational window for transport of light-ion species exists. Multi-terawatt beams can be transported a few meters in channels a few centimeters in diameter. A proof-of-principle experiment for the required final focusing cell has been successfully carried out on Gamble II. A new barrel-shaped equatorial PRD that can be coupled to PBFA II as a single diode has also been operated on Gamble II and has demonstrated 50% ion efficiency with predominately azimuthally-symmetric charged-particle flow. Preliminary experiments using vacuum inductive storage and plasma opening switches have demonstrated factor-of-three pulse compressions, with corresponding power and voltage multiplications for pulse durations of interest to PBFA II. In other experiments the stopping power of deuterons in hot plasmas was measured. Results show about 40% enhancement in stopping power over that in cold targets when the deutron beam is focused on the target to about 0.25 MA/cm 2

  18. Preliminary research results for the generation and diagnostics of high power ion beams on FLASH II accelerator

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Sun Jianfeng; He Xiaoping; Tang Junping; Wang Haiyang; Li Jingya; Ren Shuqing; Ouyang Xiaoping; Zhang Guoguang; Li Hongyu

    2004-01-01

    The preliminary experimental results of the generation and diagnostics of high-power ion beams on FLASH II accelerator are reported. The high-power ion beams presently are being produced in a pinched diode. The method for enhancing the ratio of ion to electron current is to increase the electron residing time by pinching the electron flow. Furthermore, electron beam pinching can be combined with electron reflexing to achieve ion beams with even higher efficiency and intensity. The anode plasma is generated by anode foil bombarded with electron and anode foil surface flashover. In recent experiments on FLASH II accelerator, ion beams have been produced with a current of 160 kA and an energy of 500 keV corresponding to an ion beam peak power of about 80 GW. The ion number and current of high power ion beams were determined by monitoring delayed radioactivity from nuclear reactions induced in a 12 C target by the proton beams. The prompt γ-rays and diode Bremsstrahlung X-rays were measured with a PIN semi-conductor detector and a plastic scintillator detector. The current density distribution of ion beam was measured with a biased ion collector array. The ion beams were also recorded with a CR-39 detector. (authors)

  19. Leakage Current Degradation Due to Ion Drift and Diffusion in Tantalum and Niobium Oxide Capacitors

    Directory of Open Access Journals (Sweden)

    Kuparowitz Martin

    2017-06-01

    Full Text Available High temperature and high electric field applications in tantalum and niobium capacitors are limited by the mechanism of ion migration and field crystallization in a tantalum or niobium pentoxide insulating layer. The study of leakage current (DCL variation in time as a result of increasing temperature and electric field might provide information about the physical mechanism of degradation. The experiments were performed on tantalum and niobium oxide capacitors at temperatures of about 125°C and applied voltages ranging up to rated voltages of 35 V and 16 V for tantalum and niobium oxide capacitors, respectively. Homogeneous distribution of oxygen vacancies acting as positive ions within the pentoxide layer was assumed before the experiments. DCL vs. time characteristics at a fixed temperature have several phases. At the beginning of ageing the DCL increases exponentially with time. In this period ions in the insulating layer are being moved in the electric field by drift only. Due to that the concentration of ions near the cathode increases producing a positively charged region near the cathode. The electric field near the cathode increases and the potential barrier between the cathode and insulating layer decreases which results in increasing DCL. However, redistribution of positive ions in the insulator layer leads to creation of a ion concentration gradient which results in a gradual increase of the ion diffusion current in the direction opposite to the ion drift current component. The equilibrium between the two for a given temperature and electric field results in saturation of the leakage current value. DCL vs. time characteristics are described by the exponential stretched law. We found that during the initial part of ageing an exponent n = 1 applies. That corresponds to the ion drift motion only. After long-time application of the electric field at a high temperature the DCL vs. time characteristics are described by the exponential

  20. Characterization of the rod-pinch diode at 2 to 4 Mv as a high-resolution source for flash radiography

    International Nuclear Information System (INIS)

    Commisso, R.J.; Allen, R.J.; Cooperstein, G.; Mosher, D.; Young, F.C.; Boller, J.R.; Swanekamp, S.B.; Bayol, F.; Charre, P.; Garrigues, A.; Gonzales, C.; Pompier, F.; Vezinet, R.

    2002-01-01

    The ASTERIX generator is used to evaluatate the rod-pinch electron-beam diode as an intense source of x-rays for high-resolution, pulsed (30- to 40-ns FWHM) radiography at peak diode voltages of voltages of 2.4 to 4.4 MV and peak diode currents of 55 to 135 kA. At 4 MV, tungsten anode rods of 1-mm or 2-mm diameter produce on-axis doses at 1 meter of 16 rad(Si) or 20 rad(Si), respectively. The on-axis source diameter based on the full-width at half-maximum (FWHM) of the line-spread-function (LSF) is 0.9 ± 0.1 mm for a 1-mm diameter rod and 1.4 ± 0.1 mm for a 2-mm diam rod, independent of voltage. The LANL source diameter is nearly twice the FWHM. The measured rod-pinch current is reproduced with a diode model that includes ions and accounts for anode and cathode plasma expansion. A composite diode with a large diameter carbon-rod anode followed by a smaller-diameter tungsten-tip converter shows promise for applications where a small central source feature is desired

  1. Cooper Pairs in Insulators?

    International Nuclear Information System (INIS)

    Valles, James

    2008-01-01

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.

  2. Experimental study of collective acceleration of light and heavy ions from a localized gas cloud

    International Nuclear Information System (INIS)

    Floyd, L.E. IV.

    1984-01-01

    An experimental investigation into the collective acceleration of various gaseous atoms (H, D, He, N, Ne, Ar, Kr, Xe) is presented. A localized gas cloud is formed using a fast rise puff valve immediately downstream of an intense relativistic electron beam diode. The diode consists of a tungsten needle cathode and a stainless steel anode with a hole on axis. The diode is driven by an electron beam generator system consisting of a Marx generator, Blumlein line, and transmission line transformer. It produces a 1.5 MV, 35 kA, 30 ns FWHM electrical pulse measured at the diode. The resulting electron beam has nu/γ approx. 1 and is about six times the vacuum space charge limiting current in the downstream drift chamber. Ions are produced during the impact of the electron beam with the gas cloud and are accelerated to high energy by collective effects associated with the electron beam space charge. Ion energy diagnostics include fast neutron counting, nuclear activation of stacked foils, measurement of time of flight using direct intercept current collector probes, and range/energy analysis of nuclear track plates. The principal result of the experiments was that all ion species were accelerated to a maximum velocity of 0.1c, corresponding to an energy of 4.7 MeV/nucleon. Energy spectra obtained from stacked foil activation for accelerated hydrogen and deuterium were found to be approximately exponential in character

  3. Environmental safety providing during heat insulation works and using thermal insulation materials

    Directory of Open Access Journals (Sweden)

    Velichko Evgeny

    2017-01-01

    Full Text Available This article considers the negative effect of thermal insulating materials and products on human health and environment pollution, particularly in terms of the composition of environmentally hazardous construction products. The authors have analyzed the complex measures for providing ecological safety, sanitary and epidemiological requirements, rules and regulations both during thermal insulation works and throughout the following operation of buildings and premises. The article suggests the protective and preventive measures to reduce and eliminate the negative impact of the proceeding of thermal insulation works on the natural environment and on human health.

  4. 16 CFR 460.18 - Insulation ads.

    Science.gov (United States)

    2010-01-01

    ... Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES LABELING AND ADVERTISING OF HOME INSULATION § 460.18 Insulation ads. (a) If your ad gives an R-value, you must give the type of insulation and... your ad gives a price, you must give the type of insulation, the R-value at a specific thickness, the...

  5. Electrical insulators for the theta-pinch fusion reactor

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1976-01-01

    The five major applications for electrical insulators in the Reference Theta Pinch Reactor are as follows: (1) first-wall insulator, (2) blanket intersegment insulator, (3) graphite encapsulating insulator, (4) implosion coil insulator, and (5) compression coil insulator. Insulator design proposals and some preliminary test results are given for each application

  6. Hydrogen storage in insulated pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.; Garcia-Villazana, O. [Lawrence Livermore National Lab., CA (United States)

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

  7. Comparison of proton microbeam and gamma irradiation for the radiation hardness testing of silicon PIN diodes

    Science.gov (United States)

    Jakšić, M.; Grilj, V.; Skukan, N.; Majer, M.; Jung, H. K.; Kim, J. Y.; Lee, N. H.

    2013-09-01

    Simple and cost-effective solutions using Si PIN diodes as detectors are presently utilized in various radiation-related applications in which excessive exposure to radiation degrades their charge transport properties. One of the conventional methods for the radiation hardness testing of such devices is time-consuming irradiation with electron beam or gamma-ray irradiation facilities, high-energy proton accelerators, or with neutrons from research reactors. Recently, for the purpose of radiation hardness testing, a much faster nuclear microprobe based approach utilizing proton irradiation has been developed. To compare the two different irradiation techniques, silicon PIN diodes have been irradiated with a Co-60 gamma radiation source and with a 6 MeV proton microbeam. The signal degradation in the silicon PIN diodes for both irradiation conditions has been probed by the IBIC (ion beam induced charge) technique, which can precisely monitor changes in charge collection efficiency. The results presented are reviewed on the basis of displacement damage calculations and NIEL (non-ionizing energy loss) concept.

  8. Improvements on high voltage capacity and high temperature performances of Si-based Schottky potential barrier diode

    International Nuclear Information System (INIS)

    Wang Yongshun; Rui Li; Adnan Ghaffar; Wang Zaixing; Liu Chunjuan

    2015-01-01

    In order to improve the reverse voltage capacity and low junction temperature characteristics of the traditional silicon-based Schottky diode, a Schottky diode with high reverse voltage capacity and high junction temperature was fabricated using ion implantation, NiPt60 sputtering, silicide-forming and other major technologies on an N-type silicon epitaxial layer of 10.6–11.4 μm and (2.2–2.4) × 10 15 cm −3 doping concentration. The measurement results show that the junction temperature of the Schottky diode fabricated can reach 175 °C, that is 50 °C higher than that of the traditional one; the reverse voltage capacity V R can reach 112 V, that is 80 V higher than that of the traditional one; the leakage current is only 2 μA and the forward conduction voltage drop is V F = 0.71 V at forward current I F = 3 A. (semiconductor devices)

  9. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator.

    Science.gov (United States)

    Farajollahpour, T; Jafari, S A

    2018-01-10

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the 'ARPES-dark' state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  10. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator

    Science.gov (United States)

    Farajollahpour, T.; Jafari, S. A.

    2018-01-01

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the ‘ARPES-dark’ state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  11. Interacting Eigenmodes of a plasma diode with a density gradient

    International Nuclear Information System (INIS)

    Loefgren, T.; Gunell, H.

    1997-08-01

    The formation of narrow high frequency electric field spikes in plasma density gradients is investigated using one-dimensional particle in cell simulations. It is found that the shape of the plasma density gradient is very important for the spike formation. The spike appears also in simulations with immobile ions showing that a coupling to the ion motion, as for example in wave interactions, is not necessary for the formation of HF spikes. However, the HF spike influences the ion motion, and ion waves are seen in the simulations. It has been found, in experiments and simulations, that the electron velocity distribution function deviates from the Maxwellian distribution. Dispersion relations are calculated using realistic distribution functions. The spike can be seen as a coupled system of two Eigenmodes of a plasma diode fed by the beam-plasma interaction. Based on a simplified fluid description of such Eigenmodes, explanations for the localization of the spike, spatially and in frequency, are given. The density amplitude is comparable with the DC density level close to the cathode. Space charge limits of waves in this region seem to determine the amplitude of the spike through the Poisson's equation

  12. WE-D-BRA-07: Analysis of ArcCHECK Diode Array Performance for ViewRay Quality Assurance

    International Nuclear Information System (INIS)

    Ellefson, S; Culberson, W; Bednarz, B; DeWerd, L; Bayouth, J

    2015-01-01

    Purpose: Discrepancies in absolute dose values have been detected between the ViewRay treatment planning system and ArcCHECK readings when performing delivery quality assurance on the ViewRay system with the ArcCHECK-MR diode array (SunNuclear Corporation). In this work, we investigate whether these discrepancies are due to errors in the ViewRay planning and/or delivery system or due to errors in the ArcCHECK’s readings. Methods: Gamma analysis was performed on 19 ViewRay patient plans using the ArcCHECK. Frequency analysis on the dose differences was performed. To investigate whether discrepancies were due to measurement or delivery error, 10 diodes in low-gradient dose regions were chosen to compare with ion chamber measurements in a PMMA phantom with the same size and shape as the ArcCHECK, provided by SunNuclear. The diodes chosen all had significant discrepancies in absolute dose values compared to the ViewRay TPS. Absolute doses to PMMA were compared between the ViewRay TPS calculations, ArcCHECK measurements, and measurements in the PMMA phantom. Results: Three of the 19 patient plans had 3%/3mm gamma passing rates less than 95%, and ten of the 19 plans had 2%/2mm passing rates less than 95%. Frequency analysis implied a non-random error process. Out of the 10 diode locations measured, ion chamber measurements were all within 2.2% error relative to the TPS and had a mean error of 1.2%. ArcCHECK measurements ranged from 4.5% to over 15% error relative to the TPS and had a mean error of 8.0%. Conclusion: The ArcCHECK performs well for quality assurance on the ViewRay under most circumstances. However, under certain conditions the absolute dose readings are significantly higher compared to the planned doses. As the ion chamber measurements consistently agree with the TPS, it can be concluded that the discrepancies are due to ArcCHECK measurement error and not TPS or delivery system error. This work was funded by the Bhudatt Paliwal Professorship and the

  13. The Role of Interfaces in Polyethylene/Metal-Oxide Nanocomposites for Ultrahigh-Voltage Insulating Materials.

    Science.gov (United States)

    Pourrahimi, Amir Masoud; Olsson, Richard T; Hedenqvist, Mikael S

    2018-01-01

    Recent progress in the development of polyethylene/metal-oxide nanocomposites for extruded high-voltage direct-current (HVDC) cables with ultrahigh electric insulation properties is presented. This is a promising technology with the potential of raising the upper voltage limit in today's underground/submarine cables, based on pristine polyethylene, to levels where the loss of energy during electric power transmission becomes low enough to ensure intercontinental electric power transmission. The development of HVDC insulating materials together with the impact of the interface between the particles and the polymer on the nanocomposites electric properties are shown. Important parameters from the atomic to the microlevel, such as interfacial chemistry, interfacial area, and degree of particle dispersion/aggregation, are discussed. This work is placed in perspective with important work by others, and suggested mechanisms for improved insulation using nanoparticles, such as increased charge trap density, adsorption of impurities/ions, and induced particle dipole moments are considered. The effects of the nanoparticles and of their interfacial structures on the mechanical properties and the implications of cavitation on the electric properties are also discussed. Although the main interest in improving the properties of insulating polymers has been on the use of nanoparticles, leading to nanodielectrics, it is pointed out here that larger microscopic hierarchical metal-oxide particles with high surface porosity also impart good insulation properties. The impact of the type of particle and its inherent properties (purity and conductivity) on the nanocomposite dielectric and insulating properties are also discussed based on data obtained by a newly developed technique to directly observe the charge distribution on a nanometer scale in the nanocomposite. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Experimental studies of ions and atoms interaction with insulating surface; Etude experimentale de l'interaction rasante d'atomes et d'ions sur des surfaces isolantes

    Energy Technology Data Exchange (ETDEWEB)

    Villette, J

    2000-10-15

    Grazing collisions (<3 deg.) of keV ions and atoms: H{sup +}, Ne{sup +}, Ne{sup 0}, Na{sup +} on LiF (001) single crystal, an ionic insulator, are investigated by a time of flight technique. The incident beam is chopped and the scattered particles are collected on a position sensitive detector providing differential cross section while the time of flight gives the energy loss. Deflection plates allow the charge state analysis. Secondary electrons are detected in coincidence allowing direct measurements of electron emission yield, angular and energetic distribution through time of flight measurements. The target electronic structure characterized by a large band gap, governs the collisional processes: charge exchange, electronic excitations and electron emission. In particular, these studies show that the population of local target excitations surface excitons is the major contribution to the kinetic energy transfer (stopping power). Auger neutralization of Ne{sup +} and He{sup +} ions reveals the population of quasi-molecular excitons, an exciton bound on two holes. Referenced in the literature as trion. A direct energy balance determines the binding energy associated with these excited states of the surface. Besides these electronic energy loss processes, two nuclear energy loss mechanisms are characterized. These processes imply momentum transfer to individual target atoms during close binary collisions or, if the projectile is charged, to collective mode of optical phonons induced by the projectile coulomb field. The effect of the temperature on the scattering profile, the contribution of topological surface defects to the energy loss profile and to skipping motion on the surface are analyzed in view of classical trajectory simulations. (author)

  15. Generation of an intense ion beam by a pinched relativistic electron beam

    International Nuclear Information System (INIS)

    Gilad, P.; Zinamon, Z.

    1976-01-01

    The pinched electron beam of a pulsed electron accelerator is used to generate an intense beam of ions. A foil anode and vacuum drift tube are used. The space charge field of the pinched beam in the tube accelerates ions from the foil anode. Ion currents of 10 kA at a density of 5kA/cm 2 with pulse length of 50 ns are obtained using a 5 kJ, 450 kV, 3 Ω diode. (author)

  16. Tunable diode-pumped-LNA laser

    International Nuclear Information System (INIS)

    Cassimi, A.; Hardy, V.; Hamel, J.; Leduc, M.

    1987-01-01

    Diode-pumped crystals provided recently new compact laser devices. We report the first end pumping of a La x Nd 1-x MgAl 11 O 19 (LNA) crystal using a 200mW diode array (Spectra Diode Lab). We also report the first results obtained with a 1mW diode (SONY). This C.W. laser can be tuned from 1.048μm to 1.086μm. Without selective elements in the cavity, the laser emits around 1.054μm with a threshold of 24mW and a slope efficiency of 4.4% (output mirror of transmission T = 1%) when pumped by the diode array. With the selective elements, the threshold increases to 100mW and we obtain a power of 4mW for a pump power of 200mW

  17. Metal-insulator-semiconductor photodetectors.

    Science.gov (United States)

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  18. Metal-Insulator-Semiconductor Photodetectors

    Directory of Open Access Journals (Sweden)

    Chu-Hsuan Lin

    2010-09-01

    Full Text Available The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  19. Laser-diode pumped Nd:YAG lasers; Laser diode reiki Nd:YAG lasear

    Energy Technology Data Exchange (ETDEWEB)

    Yuasa, H.; Akiyama, Y.; Nakayama, M. [Toshiba Corp., Tokyo (Japan)

    2000-04-01

    Laser-diode pumped Nd:YAG lasers are expected to be applied to laser processing fields such as welding, cutting, drilling, and marking due to their potential for high efficiency and compactness. We are designing and developing laser-diode pumped Nd:YAG lasers using numerical analysis simulation techniques such as ray tracing and thermal analysis. We have succeeded in achieving a laser power of more than 3 kW with 20% efficiency, which is the best ever obtained. In addition, we have developed a laser-diode pumped green laser by second harmonic generation, for precision machining on silicon wafers. (author)

  20. Ion beam extraction from a matrix ECR plasma source by discrete ion-focusing effect

    DEFF Research Database (Denmark)

    Stamate, Eugen; Draghici, Mihai

    2010-01-01

    -ECR plasma source [3] with transversal magnetic filter for electron temperature control. 12 ECR plasma cells are placed 7.5 cm apart on the top of a cubic chamber 40x40x40 cm3. Each cell can be controlled independently by tuning the injected microwave power. The discharge is operated at pressures below 1 m......Positive or negative ion beams extracted from plasma are used in a large variety of surface functionalization techniques such as implantation, etching, surface activation, passivation or oxidation. Of particular importance is the surface treatment of materials sensitive to direct plasma exposure...... due to high heath fluxes, the controllability of the ion incidence angle, and charge accumulation when treating insulating materials. Despite of a large variety of plasma sources available for ion beam extraction, there is a clear need for new extraction mechanisms that can make available ion beams...