WorldWideScience

Sample records for instruments measure heat

  1. Specific Heat and Second Sound Measurements with the DYNAMIX Instrument

    Science.gov (United States)

    Nissen, Joel

    2003-01-01

    In addition to its primary role of studying non-linear heat transport effects near the lambda transition of He-4, the DYNAMX apparatus is suitable for measurements of the specific heat and the velocity of second sound. We plan to take advantage of available time on orbit to make measurements in these areas near to the lambda transition. The specific heat work would be similar to LPE, aimed at improving our knowledge of the singularity in the bulk heat capacity at the transition, but would provide more accurate results close to the transition. It would focus roughly equally on each side of the transition and would be synergistic with the CQ experiment, providing wider-range data at Q = 0. The second sound measurements are made possible by the fast time constant and high resolution of the DYNAMX thermometers, which allow accurate time-of-flight measurements of second sound pulses. It appears possible to measure the second sound velocity to about 1% at a reduced temperature of t = 5x10(exp -8) by averaging over a moderate number of pulses. The data would complement and extend earlier ground-based measurements, leading to improved tests of the theory of static critical phenomena at the lambda transition.

  2. An instrument to measure the convective heat transfer coefficient on large vessels.

    Science.gov (United States)

    Miguel, Alaor Faria; de O Nascimento, Francisco Assis; da Rocha, Adson Ferreira; dos Santos, Icaro

    2008-01-01

    Hepatocellular carcinoma is one of the most common malignancies worldwide. During radiofrequency hepatic ablation, the tumor is heated by means of radiofrequency energy. The heating causes necrosis of the malignant tumor. Thus, if the procedure is successful it can cure the patient. Studies have shown that recurrences occur after the treatment and these recurrences frequently take place next to the hepatic artery and portal vein. The recurrences occur due to the high convective loss on these vessels. This work proposed, developed and tested an instrument for the measurement of the convective heat transfer coefficient (h) in large vessels. Moreover, this work developed a mechanical simulator and validated an equation developed by Consiglieri et al, which analytically determines the value of h. The instrument was tested using a mechanical simulator that reproduces the flow conditions and the geometry of large vessels in the liver. A flow velocity of 0.2 m/s was simulated in order to mock the typical flow at the portal vein. The average value of h using the experimental apparatus was 2130+/-40 W.m(-2).K(-1) (mean+/-SD). The results showed that the error of the proposed method is approximately 22%. This work showed that the instrument can be used for measuring h in vitro and that the Consiglieri's equation can be used to determine the convective heat transfer coefficient on large vessels.

  3. Design, calibration and error analysis of instrumentation for heat transfer measurements in internal combustion engines

    Science.gov (United States)

    Ferguson, C. R.; Tree, D. R.; Dewitt, D. P.; Wahiduzzaman, S. A. H.

    1987-01-01

    The paper reports the methodology and uncertainty analyses of instrumentation for heat transfer measurements in internal combustion engines. Results are presented for determining the local wall heat flux in an internal combustion engine (using a surface thermocouple-type heat flux gage) and the apparent flame-temperature and soot volume fraction path length product in a diesel engine (using two-color pyrometry). It is shown that a surface thermocouple heat transfer gage suitably constructed and calibrated will have an accuracy of 5 to 10 percent. It is also shown that, when applying two-color pyrometry to measure the apparent flame temperature and soot volume fraction-path length, it is important to choose at least one of the two wavelengths to lie in the range of 1.3 to 2.3 micrometers. Carefully calibrated two-color pyrometer can ensure that random errors in the apparent flame temperature and in the soot volume fraction path length will remain small (within about 1 percent and 10-percent, respectively).

  4. Design, calibration and error analysis of instrumentation for heat transfer measurements in internal combustion engines

    Science.gov (United States)

    Ferguson, C. R.; Tree, D. R.; Dewitt, D. P.; Wahiduzzaman, S. A. H.

    1987-01-01

    The paper reports the methodology and uncertainty analyses of instrumentation for heat transfer measurements in internal combustion engines. Results are presented for determining the local wall heat flux in an internal combustion engine (using a surface thermocouple-type heat flux gage) and the apparent flame-temperature and soot volume fraction path length product in a diesel engine (using two-color pyrometry). It is shown that a surface thermocouple heat transfer gage suitably constructed and calibrated will have an accuracy of 5 to 10 percent. It is also shown that, when applying two-color pyrometry to measure the apparent flame temperature and soot volume fraction-path length, it is important to choose at least one of the two wavelengths to lie in the range of 1.3 to 2.3 micrometers. Carefully calibrated two-color pyrometer can ensure that random errors in the apparent flame temperature and in the soot volume fraction path length will remain small (within about 1 percent and 10-percent, respectively).

  5. A Tall-Tower Instrument for Mean and Fluctuating Velocity, Fluctuating Temperature and Sensible Heat Flux Measurements

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Thomson, D. W.

    1979-01-01

    For an ongoing elevated-source, urban-scale tracer experiment, an instrument system to measure the three-dimensional wind velocity and the turbulent sensible heat flux was developed. The wind velocity was measured with a combination of cup anemometer, propeller (vertical) and vane sensor. The tem......For an ongoing elevated-source, urban-scale tracer experiment, an instrument system to measure the three-dimensional wind velocity and the turbulent sensible heat flux was developed. The wind velocity was measured with a combination of cup anemometer, propeller (vertical) and vane sensor...

  6. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  7. Self-heating probe instrument and method for measuring high temperature melting volume change rate of material

    Science.gov (United States)

    Wang, Junwei; Wang, Zhiping; Lu, Yang; Cheng, Bo

    2013-03-01

    The castings defects are affected by the melting volume change rate of material. The change rate has an important effect on running safety of the high temperature thermal storage chamber, too. But the characteristics of existing measuring installations are complex structure, troublesome operation and low precision. In order to measure the melting volume change rate of material accurately and conveniently, a self-designed measuring instrument, self-heating probe instrument, and measuring method are described. Temperature in heating cavity is controlled by PID temperature controller; melting volume change rate υ and molten density are calculated based on the melt volume which is measured by the instrument. Positive and negative υ represent expansion and shrinkage of the sample volume after melting, respectively. Taking eutectic LiF+CaF2 for example, its melting volume change rate and melting density at 1 123 K are -20.6% and 2 651 kg·m-3 measured by this instrument, which is only 0.71% smaller than literature value. Density and melting volume change rate of industry pure aluminum at 973 K and analysis pure NaCl at 1 123 K are detected by the instrument too. The measure results are agreed with report values. Measuring error sources are analyzed and several improving measures are proposed. In theory, the measuring errors of the change rate and molten density which are measured by the self-designed instrument is nearly 1/20-1/50 of that measured by the refitted mandril thermal expansion instrument. The self-designed instrument and method have the advantages of simple structure, being easy to operate, extensive applicability for material, relatively high accuracy, and most importantly, temperature and sample vapor pressure have little effect on the measurement accuracy. The presented instrument and method solve the problems of complicated structure and procedures, and large measuring errors for the samples with high vapor pressure by existing installations.

  8. An instrument for local radiative heat transfer measurement around a horizontal tube immersed in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Alavizedeh, N.; Adams, R.L.; Welty, J.R.; Goshayeshi, A. (Oregon State Univ., Corvallis (United States))

    1990-05-01

    An instrument for the measurement of the radiative component of total heat transfer in a high-temperature gas fluidized bed is described. The main objective of this paper is to emphasize the design, instrumentation, and calibration of this device. The results are presented and discussed elsewhere (Alavizadeh, 1985; Alavizadeh et al., 1985). The design makes use of a silicon window to transmit the radiative heat flux to a thermopile-type heat flow detector located at the base of a cavity. The window material thermal conductivity is sufficiently large to prevent conduction errors due to the convective component of total heat transfer. Also, its transmission and mechanical hardness are well suited for the fluid bed environment. The device has been calibrated using a blackbody source both before and after exposure to a fluidized bed, indicating the effect of the abrasive bed environment on performance. The instrument has been used to measure local radiative heat transfer around a horizontal tube. Typical results for a particle size of 2.14 mm and a bed tempeature of 1,050 K are presented and discussed to illustrate instrument performance.

  9. James Webb Space Telescope Integrated Science Instrument Module Calibration and Verification of High-Accuracy Instrumentation to Measure Heat Flow in Cryogenic Testing

    Science.gov (United States)

    Comber, Brian; Glazer, Stuart

    2012-01-01

    The James Webb Space Telescope (JWST) is an upcoming flagship observatory mission scheduled to be launched in 2018. Three of the four science instruments are passively cooled to their operational temperature range of 36K to 40K, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. The requirement for multiple thermal zoned results in the instruments being thermally connected to five external radiators via individual high purity aluminum heat straps. Thermal-vacuum and thermal balance testing of the flight instruments at the Integrated Science Instrument Module (ISIM) element level will take place within a newly constructed shroud cooled by gaseous helium inside Goddard Space Flight Center's (GSFC) Space environment Simulator (SES). The flight external radiators are not available during ISIM-level thermal vacuum/thermal testing, so they will be replaced in test with stable and adjustable thermal boundaries with identical physical interfaces to the flight radiators. Those boundaries are provided by specially designed test hardware which also measures the heat flow within each of the five heat straps to an accuracy of less than 2 mW, which is less than 5% of the minimum predicted heat flow values. Measurement of the heat loads to this accuracy is essential to ISIM thermal model correlation, since thermal models are more accurately correlated when temperature data is supplemented by accurate knowledge of heat flows. It also provides direct verification by test of several high-level thermal requirements. Devices that measure heat flow in this manner have historically been referred to a "Q-meters". Perhaps the most important feature of the design of the JWST Q-meters is that it does not depend on the absolute accuracy of its temperature sensors, but rather on knowledge of precise heater power required to maintain a constant temperature difference between sensors on two stages, for which a table is empirically developed during a

  10. Spectroelectrochemical Instrument Measures TOC

    Science.gov (United States)

    Kounaves, Sam

    2011-01-01

    A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.

  11. ANALYSIS OF A HEAT-FLUX DIFFERENTIAL SCANNING CALORIMETRY INSTRUMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL; Porter, Wallace D [ORNL

    2007-01-01

    Differential Scanning Calorimetry (DSC) measurements are used to estimate the fractional latent heat release during phase changes. There are temperature lags inherent to the instruments due to the temperature measurement at a different location than that of the sample and reference materials. Recently, Dong and Hunt[1] showed that significant improvement in estimating the fractional latent heat can be obtained when detailed simulations of the heat transfer within the instrument are performed. The Netzsch DSC 404C instrument, with a high accuracy heat capacity sensor, is considered in this study. This instrument had a different configuration than that studied by Dong and Hunt[1]. The applicability of Dong and Hunt's approach to this instrument is investigated. It was found that the DSC instrument could be described by numerous parameters but that model parameters were difficult to estimate. Numerical simulation results are presented and compared with experimental results for the fractional latent heat of a commercial A356 aluminum alloy.

  12. Development of heat insulation device to protect pressure measuring instruments from high temperature under the severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Jaehyun; Shin, Sung Min; Kang, Hyun Gook [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    Micro Control Unit (MCU), communication module, and power supply system are also needed to be protected for the pressure transmitter. The harsh condition in containment which is created by the severe accident are composed of five elements: high temperature, high pressure, high humidity, high radiation, and physical threats by shrapnel generated during the process of the severe accident. Among these five elements, high temperature should be focused because other elements can be solved even with the thin shield. In this study, a detailed design of the heat insulation device which will be installed in the containment based on the Min Yoo's study and a verification test are done. Development of heat insulation device which enables operator to get in-containment data for the proper mitigation process under the severe accident was done in this study. With researches for severe accident management systems which proceeding actively since the Fukushima accident, researches for reliable instrumentations of in-containment data which is necessary to operate severe accident management systems properly in harsh condition during accident also should be progressed.

  13. Measurement, instrumentation, and sensors handbook

    CERN Document Server

    Eren, Halit

    2014-01-01

    The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized acco

  14. Heating of the quiet solar corona from measurements of the FET/TESIS instrument on-board the KORONAS-FOTON satellite

    Science.gov (United States)

    Rybák, J.; Gömöry, P.; Benz, A.; Bogachev, P.; Brajša, R.

    2010-12-01

    The paper presents the first results of the observations of time evolution of the quiet solar corona brightenings obtained due to very rapid photography of the corona with full-disk EUV telescopes of the FET/TESIS instrument onboard the KORONA FOTON satellite. The measurements were performed simultaneously in the emission of the Fe IX / X 17.1 and Fe VIII 13.1 spectral lines with 10 second temporal cadence and spatial scale of 1.7 arc seconds within one hour. This test observation, carried out on 15 July 2009, was analyzed in order to determine whether this type of observation can be used to identify individual microevents in the solar corona heating that are above the tresholds of spatial and temporal resolutions of the observations of non-active regions in the solar atmosphere. For this purpose, a simple method was used involving cross-correlation of the plasma emission time evolution at different temperatures, each time from observations of identical elements. The results obtained are confronted with the expected observable manifestations of the corona heating via nanoflares. TESIS is a set of instruments for the Sun photography developed in the Lebedev Physics Institute of the Russian Academy of Sciences that was launched into orbit in January 2009.

  15. Introduction to instrumentation and measurements

    CERN Document Server

    Northrop, Robert B

    2014-01-01

    Weighing in on the growth of innovative technologies, the adoption of new standards, and the lack of educational development as it relates to current and emerging applications, the third edition of Introduction to Instrumentation and Measurements uses the authors' 40 years of teaching experience to expound on the theory, science, and art of modern instrumentation and measurements (I&M). What's New in This Edition: This edition includes material on modern integrated circuit (IC) and photonic sensors, micro-electro-mechanical (MEM) and nano-electro-mechanical (NEM) sensors, chemical and radiation sensors, signal conditioning, noise, data interfaces, and basic digital signal processing (DSP), and upgrades every chapter with the latest advancements. It contains new material on the designs of micro-electro-mechanical (MEMS) sensors, adds two new chapters on wireless instrumentation and microsensors, and incorporates extensive biomedical examples and problems. Containing 13 chapters, this third edition: Describ...

  16. An Instrument to Measure Anomia.

    Science.gov (United States)

    Moore, Allen B.

    1980-01-01

    Four hundred and eighty-six disadvantaged adults from North Carolina were the subjects in a study that factor-analyzed three instruments designed to measure anomia, yielding a 12-item unidimensional scale. (The refined combination scale is presented as of potential usefulness for research on the effects of educational intervention on anomia.) (LRA)

  17. Probe Measures Fouling As In Heat Exchangers

    Science.gov (United States)

    Marner, Wilbur J.; Macdavid, Kenton S.

    1990-01-01

    Combustion deposits reduce transfer of heat. Instrument measures fouling like that on gas side of heat exchanger in direct-fired boiler or heat-recovery system. Heat-flux probe includes tube with embedded meter in outer shell. Combustion gases flow over probe, and fouling accumulates on it, just as fouling would on heat exchanger. Embedded heat-flow meter is sandwich structure in which thin Chromel layers and middle alloy form thermopile. Users determine when fouling approaches unacceptable levels so they schedule cleaning and avoid decreased transfer of heat and increased drop in pressure fouling causes. Avoids cost of premature, unnecessary maintenance.

  18. Measuring instruments of corporate reputation

    Directory of Open Access Journals (Sweden)

    Damir Grgić

    2008-12-01

    Full Text Available The subject of this paper is focused on the instruments for the measurement of corporate reputation. Recent research of the elements which influence the success of a company shows a growing interest in intangible values. Corporate reputation itself has been identified as one of the key intangible assets which create the company’s added value. Understanding of the importance of corporate reputation has been determined as a significant component of the company’s competitiveness, that is, of its competitive edge. Reputation is a normal part of our life and an integral part of our society. Our interest in the honesty and integrity of others is firmly established in all cultures and nowadays the focus of this interest is switching increasingly on companies. Corporate reputation can be acquired by means of strong, well-developed strategies, which are crucial for the opinion of stakeholders regarding future stability and competitive sustainability of the company. On the other hand, it should be emphasized that in order to manage it, corporate reputation has to be measured first. However, although the concept of corporate reputation is universally accepted and its significance has been recognized especially in the last two decades, the process of its measurement is still at an early stage and there is no universally accepted instrument for its measurement. Therefore, the author of this paper gives an overview of the instruments used for the measurement of corporate reputation which have gained a foothold through former practical usage.

  19. Measuring instruments of corporate reputation

    OpenAIRE

    Damir Grgić

    2008-01-01

    The subject of this paper is focused on the instruments for the measurement of corporate reputation. Recent research of the elements which influence the success of a company shows a growing interest in intangible values. Corporate reputation itself has been identified as one of the key intangible assets which create the company’s added value. Understanding of the importance of corporate reputation has been determined as a significant component of the company’s competitiveness, that is, of its...

  20. Instrument for thermal radiation flux measurement in high temperature gas flow (Cuernavaca instrument)

    Energy Technology Data Exchange (ETDEWEB)

    Afgan, N.H. [Universidade Tecnica, Lisbon (Portugal); Leontiev, A.I. [Moscow State Technical University (Russian Federation)

    1995-05-01

    A new instrument for hemispherical radiation heat flux measurement is proposed. It is based on the theory of blow of the boundary layer, taking into account that at the critical mass flow rate through the porous surface the thermal boundary layer is blown off and only radiation flux from high temperature gases reaches the porous surface. With the measurement of blow of gas flow and the temperature of the porous material, the respective heat flux is obtained. (author)

  1. Measuring of heat transfer coefficient

    DEFF Research Database (Denmark)

    Henningsen, Poul; Lindegren, Maria

    Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure...... the heat transfer coefficient for a wide range of interface conditions in hot and warm forging processes. Subtask 3.4.2 Measurement of heat transfer coefficient The objective of subtask 3.4.2 is to determine heat transfer values for different interface conditions reflecting those typically operating in hot...

  2. Measuring of heat transfer coefficient

    DEFF Research Database (Denmark)

    Henningsen, Poul; Lindegren, Maria

    Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure...... the heat transfer coefficient for a wide range of interface conditions in hot and warm forging processes. Subtask 3.4.2 Measurement of heat transfer coefficient The objective of subtask 3.4.2 is to determine heat transfer values for different interface conditions reflecting those typically operating in hot...

  3. Intelligent sensing, instrumentation and measurements

    CERN Document Server

    Mukhopadhyay, Subhas Chandra

    2013-01-01

      “Intelligent Sensing, Instrumentation and Measurements” addresses issues towards the development of sensor nodes for wireless Sensor Networks. The fundamentals of sensors, interfacing, power supplies, configuration of sensor node, and GUI development are covered. The book will be useful for engineers and researchers in the field ,especially for higher undergraduate and postgraduate students as well as practitioners working on the development of Wireless Sensor Networks or Smart Sensors.

  4. Field of Temperature Measurement by Virtual Instrumentation

    Directory of Open Access Journals (Sweden)

    Libor HARGAŠ

    2009-01-01

    Full Text Available This paper introduces about temperature determination for given dot of picture through image analysis. Heat transfer is the transition of thermal energy from a heated item to a cooler item. Main method of measurement of temperature in image is Pattern Matching, color scale detection and model detection. We can measure temperature dependency at time for selected point of thermo vision images. This measurement gives idea about the heat transfer at time dependences.

  5. 40 CFR 201.22 - Measurement instrumentation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Measurement instrumentation. 201.22 Section 201.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT... Criteria § 201.22 Measurement instrumentation. (a) A sound level meter or alternate sound level...

  6. Measuring the instrument function of radiometers

    Energy Technology Data Exchange (ETDEWEB)

    Winston, R. [Univ. of Chicago, IL (United States); Littlejohn, R.G. [Univ. of California, Berkeley, CA (United States)

    1997-12-31

    The instrument function is a function of position and angle, the knowledge of which allows one to compute the response of a radiometer to an incident wave field in any state of coherence. The instrument function of a given radiometer need not be calculated; instead, it may be measured by calibration with incident plane waves.

  7. Free Instrument for Movement Measure

    CERN Document Server

    Peña, Norberto; Corrêa, Lorena Peixoto Nogueira Rodriguez Martinez Salles; França, Lucas Gabriel Souza; Cunha, Marcelo do Vale; de Sousa, Marcos Cavalcanti; Vieira, João Paulo Bomfim Cruz; Miranda, José Garcia Vivas

    2013-01-01

    This paper presents the validation of a computational tool that serves to obtain continuous measurements of moving objects. The software uses techniques of computer vision, pattern recognition and optical flow, to enable tracking of objects in videos, generating data trajectory, velocity, acceleration and angular movement. The program was applied to track a ball around a simple pendulum. The methodology used to validate it, taking as a basis to compare the values measured by the program, as well as the theoretical values expected according to the model of a simple pendulum. The experiment is appropriate to the method because it was built within the limits of the linear harmonic oscillator and energy losses due to friction had been minimized, making it the most ideal possible. The results indicate that the tool is sensitive and accurate. Deviations of less than a millimeter to the extent of the trajectory, ensures the applicability of the software on physics, whether in research or in teaching topics.

  8. Fundamental Measurements and Instrumentation " CKM "

    Science.gov (United States)

    Morelos, A.; Engelfried, J.; Mata, J.; Torres, I.; Vazquez-Jauregui, E.

    2002-07-01

    The physics being pursued by CKM (E921) 1, an experiment recently approved at Fermilab, has as goal testing the description of CP Violation within the Standard model. Measuring the branching ratio of K+ [right arrow] pi+vv with 10% accuracy, we can extract the magnitude of Vtd with an overall precision (including theoretical uncertainties) of 10%. Within the collaboration, the experimental high energy physics group at IF-UASLP has the responsibility for designing, testing, and building two Ring Imaging Cherenkov detectors. The present status of the experiment is shown in this poster.

  9. Instrument development for safeguards measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zebarth, M.; Davidson, D.; Koskelo, M.; Gardner, G. [Canberra Nuclear Products Group, Meriden, CT (United States)

    1996-12-31

    New safeguards requirements, such as those resulting from industrial reprocessing activities, makes the faster and more accurate determination of the uranium enrichment and/or the isotopic composition of plutonium essential in measuring the fissile mass. In response to these needs, Canberra has developed several improved safeguards systems in the last few years. In this paper, we will present an overview of our newest safeguards systems and the improvements they contain. The portable systems include the U-Pu InSpector, the IMCA and the JSR-14 systems. All combine automatic control of acquisition electronics and rapid analysis with an integrated software package for ease of use. The U-Pu InSpector incorporates the MGA code used by the IAEA and Euratom for plutonium analysis. The IMCA complies with IAEA PMCN and PMCG procedures for uranium analysis. With the JSR-14, we are currently developing the procedures to provide compliance with the IAEA neutron counting procedures. In addition to portable safeguards systems, Canberra has designed and installed many installed systems such as the WDAS and PSMC systems at PNC Tokai in Japan, and the large unattended neutron/gamma systems at Cogema La Hague and the Melox reprocessing facility in France. (author)

  10. Statistical study of color-measurement instrumentation.

    Science.gov (United States)

    Marcus, R T; Billmeyer, F W

    1974-06-01

    In a statistical study of the variability of instrumental color-measurement data, two instruments (a Kollmorgen KCS-40 colorimeter-abridged spectrophotometer and a General Electric Recording Spectrophotometer equipped with a Davidson and Hemmendinger digital tristimulus integrator) provided three modes of measurement. Ten samples were measured 48 times in each mode. Frequency distributions were constructed for several colorimetric quantities, including tristimulus values, chromaticity coordinates, and color differences from the mean. To allow study of the error involved in the measurement of color-difference pairs, three such pairs were included in the ten samples. The beneficial effects of averaging were quantified.

  11. Comparative performance of color-measuring instruments.

    Science.gov (United States)

    Billmeyer, F W

    1969-04-01

    The comparative performance of fifteen different color-measuring instruments was studied for precision (short-term repeatability) and accuracy of color measurement and of color difference measurement. For estimates of accuracy, a GE spectrophotometer was considered the referee instrument. The instruments tested included two integrating sphere spectrophotometers, six integrating sphere colorimeters (four of which were individually calibrated for close conformance to CIE coordinates), and seven 45 degrees / normal calorimeters (four of which were individually calibrated for close conformance to CIE coordinates). Up to fifty-three samples were measured, most of them several times, on each instrument. Paint panels, plastics, porcelain enamels, and ceramic tiles were among the samples used. Overall, the well-established IDL D-1 Signature Color-Eye colorimeter-abridged spectrophotometer and the Hunter D25 Color and Color Difference Meter demonstrated the best and next best performance, respectively, in all categories. Several other instruments, both well established and new, were outstanding in one or more respects. All production instruments tested gave generally satisfactory results.

  12. Locating Tests and Measurement Instruments for Assessment

    Science.gov (United States)

    Mastel, Kristen; Morris-Knower, Jim; Marsalis, Scott

    2016-01-01

    Extension educators, staff, and specialists need to use surveys and other measurement instruments to assess their programming and conduct other research. Challenges in locating tests and measurement tools, however, include lack of time and lack of familiarity with techniques that can be used to find them. This article discusses library resources…

  13. Simulation of heat transfer in intricately-configured polymer composite structures of instrumented container type

    Directory of Open Access Journals (Sweden)

    Slitkov Mikhail N.

    2017-01-01

    Full Text Available Method of mathematical simulation of heat transfer processes in polymer composite (PC products with intricate configuration, being an alternative of using up-to-date commercial software complexes has been developed. On the example of PC container with instrumentation and fiberglass electric heaters located in it, a mathematical model describing unsteady temperature field (a system of nonlinear differential heat balance equations for each element has been formulated. Features of heat transfer between elements (heaters, instrumentation, enclosing structures were taken into account. The verification of the method was conducted by comparing of theoretical temperature distributions with results of measurements in experiments with simplified variant of the structure. The developed method is effective, in particular, for such PC products as containers, modules, bunkers and vessels. It allows us to specify optimum operation modes for heating elements, operational parameters for conditioners and funs, heat insulation characteristics for providing a given level of air temperature inside objects in winter and summer service periods.

  14. Measurement control program for NDA instruments

    Energy Technology Data Exchange (ETDEWEB)

    Hsue, S.T.; Marks, T.

    1983-01-01

    Measurement control checks for nondestructive assay instruments have been a constant and continuing concern at Los Alamos National Laboratory. This paper summarizes the evolution of the measurement control checks in the various high-resolution gamma systems we have developed. In-plant experiences with these systems and checks will be discussed. Based on these experiences, a set of measurement control checks is recommended for high-resolution gamma-ray systems.

  15. Assessment of wind turbine load measurement instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Morfiadakis, E.; Papadopoulos, K. [CRES (Greece); Borg, N. van der [ECN, Petten (Netherlands); Petersen, S.M. [Risoe, Roskilde (Denmark); Seifert, H. [DEWI, Wilhelmshaven (Germany)

    1999-03-01

    In the framework of Sub-Task3 `Wind turbine load measurement instrumentation` of EU-project `European Wind Turbine Testing Procedure Development`, the load measurement techniques have been assessed by laboratory, full scale and numerical tests. The existing methods have been reviewed with emphasis on the strain gage application techniques on composite materials and recommendations are provided for the optimisation of load measurement techniques. (au) EU. 14 refs.

  16. Towards an Enterprise Architecture Benefits Measurement Instrument

    NARCIS (Netherlands)

    Plessius, Henk; Steenbergen, van Marlies; Slot, Raymond

    2015-01-01

    Author supplied: Based on the Enterprise Architecture Value Framework (EAVF) - a generic framework to classify benefits of Enterprise Architecture (EA) - a measurement instrument for EA benefits has been developed and tested in a survey with 287 respondents. In this paper we present the results of

  17. Pulse energy measurement at the SXR instrument

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Stefan, E-mail: smoeller@slac.stanford.edu; Brown, Garth; Dakovski, Georgi; Hill, Bruce; Holmes, Michael; Loos, Jennifer; Maida, Ricardo; Paiser, Ernesto; Schlotter, William; Turner, Joshua J.; Wallace, Alex [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Jastrow, Ulf; Kreis, Svea [Deutsches Elektronen-Synchrotron, DESY, Notkestrasse 85, D-22603 Hamburg (Germany); Sorokin, Andrey A. [Deutsches Elektronen-Synchrotron, DESY, Notkestrasse 85, D-22603 Hamburg (Germany); Ioffe Physico-Technical Institute, Polytekhnicheskaya 26, 194021 St Petersburg (Russian Federation); Tiedtke, Kai [Deutsches Elektronen-Synchrotron, DESY, Notkestrasse 85, D-22603 Hamburg (Germany)

    2015-04-14

    A gas monitor detector was implemented and characterized at the Soft X-ray Research instrument (SXR) to measure the average, absolute and pulse-resolved photon flux of the LCLS beam in the energy range between 280 and 2000 eV. A gas monitor detector was implemented and characterized at the Soft X-ray Research (SXR) instrument to measure the average, absolute and pulse-resolved photon flux of the LCLS beam in the energy range between 280 and 2000 eV. The detector is placed after the monochromator and addresses the need to provide reliable absolute pulse energy as well as pulse-resolved measurements for the various experiments at this instrument. This detector provides a reliable non-invasive measurement for determining flux levels on the samples in the downstream experimental chamber and for optimizing signal levels of secondary detectors and for the essential need of data normalization. The design, integration into the instrument and operation are described, and examples of its performance are given.

  18. Instrument for measuring human biting force

    Science.gov (United States)

    Kopola, Harri K.; Mantyla, Olavi; Makiniemi, Matti; Mahonen, Kalevi; Virtanen, Kauko

    1995-02-01

    Alongside EMG activity, biting force is the primary parameter used for assessing the biting problems of dentulous patients and patients with dentures. In a highly conductive oral cavity, dielectric measurement methods are preferred, for safety reasons. The maximum biting force for patients with removable dentures is not more than 100 ... 300 N. We report here on an instrument developed for measuring human biting force which consists of three units: a mouthpiece, a signal processing and interface unit (SPI), and a PC. The mouthpiece comprises a sensor head of thickness 3.4 mm, width 20 mm and length 30 mm constructed of two stainless steel plates and with a fiber optic microbending sensor between them. This is connected to the SPI unit by a three-meter fiber optic cable, and the SPI unit to the PC by an RS connection. A computer program has been developed that includes measurement, display, zeroing, and calibration operations. The instrument measures biting force as a function of time and displays the time-dependent force profile and maximum force on a screen or plots it in hard copy. The dynamic measurement range of the mouthpiece is from 0 to 1000 N, and the resolution of the instrument is 10 N. The results of preliminary clinical measurements and repeatability tests are reported.

  19. Spectral Test Instrument for Color Vision Measurement

    Institute of Scientific and Technical Information of China (English)

    Balázs Vince Nagy; Gy(o)rgy (A)brahám

    2005-01-01

    Common displays such as CRT or LCD screens have limited capabilities in displaying most color spectra correctly. The main disadvantage of these devices is that they work with three primaries and the colors displayed are the mixture of these three colours. Consequently these devices can be confusing in testing human color identification, because the spectral distribution of the colors displayed is the combined spectrum of the three primaries. We have developed a new instrument for spectrally correct color vision measurement. This instrument uses light emitting diodes (LEDs) and is capable of producing all spectra of perceivable colors, thus with appropriate test methods this instrument can be a reliable and useful tool in testing human color vision and in verifying color vision correction.

  20. Instrument for measurement of low exposure rates

    Energy Technology Data Exchange (ETDEWEB)

    Baeckstroem, A.; Lindhe, J.C.

    1974-02-01

    An instrument for measurement of exposure rates between 0.1 and 20 R/h was fabricated. The instrument will be used in connection wtth radiation therapy of gynecologic cancer. A lithium-drifted silicon detector is used. The registered pulse information is treated in the instrument so that the exposure rate may be read directly in R/h. The instrument accumulates pulses during one second, and the repetition time is one second, The error is plus or minus 10% at 0.1 R/h, plus or minus 3% at 1 R/h and less than plus or minus 1% at 10 R/h. The repetition time may be altered to 10 sec. at calibration. This means that it is possible to measure 0.01 R/h with the accuracy 10% and 0.1 R/h with the accuracy 3%. The stability with time and temperature, linearity, energy dependence, direction dependence and lifetime was investigated. (SW

  1. CURRENT STATUS OF INSTRUMENTATION FOR A FLUORIDE SALT HEAT TRANSPORT DEMONSTRATION LOOP

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, Roger A [ORNL; Holcomb, David Eugene [ORNL

    2010-01-01

    A small forced convection liquid fluoride salt loop is under construction at Oak Ridge National Laboratory (ORNL) to examine the heat transfer behavior of FLiNaK in a heated pebble bed. Loop operation serves several purposes: (1) reestablishing the infrastructure necessary for fluoride salt loop testing, (2) demonstrating a wireless heating technique for simulating pebble type fuel, (3) demonstration of the integration of silicon carbide (SiC) and metallic components into a liquid salt loop, and (4) demonstration of the functionality of distinctive instrumentation required for liquid fluoride salts. Loop operation requires measurement of a broad set of process variables including temperature, flow, pressure, and level. Coolant chemistry measurements (as a corrosion indicator) and component health monitoring are also important for longer-term operation. Two dominating factors in sensor and instrument selection are the high operating temperature of the salt and its chemical environment.

  2. Ozone measurement systems: associated instrumentation and calibration

    Directory of Open Access Journals (Sweden)

    J. Bellido

    2006-01-01

    Full Text Available The harmful effects produced by ozone have lead to a vast regulation to define and establish the quality goals of ambient air, based on common methods and criteria. The surveillance nets of atmospheric pollution are worldwide extended systems and the applied technology for the ozone measurement is nowadays quite standardized. The aim of this paper is to give a general view of the most common systems used in the ozone measurement in ambient air from a practical point of view. The used instrumentation and the usual calibration methods will be described.

  3. JWST science instrument pupil alignment measurements

    Science.gov (United States)

    Kubalak, Dave; Sullivan, Joe; Ohl, Ray; Antonille, Scott; Beaton, Alexander; Coulter, Phillip; Hartig, George; Kelly, Doug; Lee, David; Maszkiewicz, Michael; Schweiger, Paul; Telfer, Randal; Te Plate, Maurice; Wells, Martyn

    2016-09-01

    NASA's James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy ( 40K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI), including a guider. OSIM is a full field, cryogenic, optical simulator of the JWST OTE. It is the "Master Tool" for verifying the cryogenic alignment and optical performance of ISIM by providing simulated point source/star images to each of the four Science Instruments in ISIM. Included in OSIM is a Pupil Imaging Module (PIM) - a large format CCD used for measuring pupil alignment. Located at a virtual stop location within OSIM, the PIM records superimposed shadow images of pupil alignment reference (PAR) targets located in the OSIM and SI pupils. The OSIM Pupil Imaging Module was described by Brent Bos, et al, at SPIE in 2011 prior to ISIM testing. We have recently completed the third and final ISIM cryogenic performance verification test before ISIM was integrated with the OTE. In this paper, we describe PIM implementation, performance, and measurement results.

  4. MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J; Vickie Williams, V

    2008-09-29

    One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were

  5. Development of a Compact, Deep-Penetrating Heat Flow Instrument for Lunar Landers: In-Situ Thermal Conductivity System

    Science.gov (United States)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.

  6. Measuring Lagrangian accelerations using an instrumented particle

    CERN Document Server

    Zimmermann, Robert; Gasteuil, Yoann; Volk, Romain; Pinton, Jean-François

    2012-01-01

    Accessing and characterizing a flow impose a number of constraints on the employed measurement techniques; in particular optical methods require transparent fluids and windows in the vessel. Whereas one can adapt apparatus, fluid and methods in the lab to these constraints, this is hardly possible for industrial mixers. We present in this article a novel measurement technique which is suitable for opaque or granular flows: an instrumented particle, which continuously transmits the force/acceleration acting on it as it is advected in a flow. Its density is adjustable for a wide range of fluids and because of its small size and its wireless data transmission, the system can be used both in industrial and scientific mixers allowing a better understanding of the flow within. We demonstrate the capabilities and precision of the particle by comparing its transmitted acceleration to alternative measurements, in particular in the case of a turbulent von K\\'arm\\'an flow. Our technique shows to be an efficient and fast...

  7. A NEW INSTRUMENT FOR MEASURING LOCAL MOISTURE CONTENTS IN MOIST POROUS MEDIA

    Institute of Scientific and Technical Information of China (English)

    HAN Ji-tian; WANG Ji-hao; GUI Ke-ting; SHI Ming-heng

    2005-01-01

    A new instrument was developed for measuring the local moisture content in moist porous media based on the needle-type capacitance sensor and single-chip microprocessor technique. The working principle, the structure and characteristics of the hardware and software of the instrument were presented. The dynamic response characteristics and reliability of the instrument were experimentally determined. As an example, the instrument was employed to measure the heat and mass transport properties of a moist porous material. The experimental results show that the instrument can be used for measuring the local moisture content in moist porous media and would be an effective tool for determining the heat and mass transport properties in moist porous media.

  8. Bending resistance and cyclic fatigue of a new heat-treated reciprocating instrument.

    Science.gov (United States)

    Silva, Emmanuel João Nogueira Leal; Rodrigues, Cristiane; Vieira, Victor Talarico Leal; Belladonna, Felipe Gonçalves; De-Deus, Gustavo; Lopes, Hélio Pereira

    2016-11-01

    The current study aimed to evaluate the bending resistance and the cyclic fatigue life of a new heat-treated reciprocating instrument (ProDesign R). Untreated ProDesign R, Reciproc R25, and WaveOne Primary instruments were used as reference instruments for comparison. The bending resistance was performed in ten instruments of each system by using a universal testing machine and a proper apparatus. The cyclic fatigue resistance was tested measuring the number of cycles to failure in an artificial stainless steel canal. Scanning electron microscopy analysis was performed to determine the mode of fracture and possible deformations at the helical shaft. Statistical analysis was performed by using parametric methods; one-way analysis of variance plus post hoc pair-wise Tukey test for multiple comparisons (p bending resistance than the other tested systems (p bending resistance (p > 0.05). Moreover, ProDesign R revealed a significantly longer cyclic fatigue life (p < 0.05). In contrast, Untreated ProDesign R and WaveOne instruments presented significantly lower cyclic fatigue life than Reciproc (p < 0.05). The new heat-treated reciprocating instrument ProDesign R have higher cyclic fatigue resistance than Untreated ProDesign R, Reciproc, and WaveOne instruments. ProDesign R and Reciproc were significantly more flexible than Untreated ProDesign R and WaveOne files. SCANNING 38:837-841, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  9. Development of the emergency physician job satisfaction measurement instrument.

    Science.gov (United States)

    Lloyd, S; Streiner, D; Hahn, E; Shannon, S

    1994-01-01

    The objective of this study was to develop a valid and reliable instrument to measure the job satisfaction of physicians practicing emergency medicine. A prospective survey involving four separate stages (an item evaluation and reduction stage, a factor analysis stage, a construct validity stage, and a reliability stage) was distributed in Canada to full-time emergency physicians. Three separate survey instruments were administered (an initial draft instrument with 228 items, a pilot instrument with 142 items, and the final instrument with 79 items). Construct validity of the final instrument was tested by evaluating the correlation between physician scores on the instrument, and scores on two instruments measuring the same construct, and three measuring different but related constructs. A draft instrument with 228 items and six hypothetical domains was tested on 61 physicians. Evaluation for frequency endorsement, redundancy, and homogeneity reduced the item pool to 157. The remaining 157 items were used as a pilot instrument and tested on 223 physicians. Factor analysis eliminated 66 items from the pilot instrument, creating a final instrument with 79 items, 11 factors, and six domains. Cronbach's coefficient alpha for the final instrument domains is 0.81, and all domain-total correlations are greater than 0.4. All correlations between the final instrument and the construct validity instruments were statistically significant (P job satisfaction, which is both internally consistent and stable.

  10. INTELLIGENT VIRTUAL CONTROL:MEASURING INSTRUMENT FROM WHOLE TO PART

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new concept called intelligent virtual control (IVC), which can be driven by measuring functions, is put forward. This small "intelligent measurement instrument unit (IMIU)", carrying with functions of instrument, consists of different types of intelligent virtual instrument (IVI) through individual components together as building blocks and can be displayed directly on the computer screen. This is a new concept of measuring instrument, and also an important breakthrough after virtual instrument (VI). Virtual control makes instrument resources obtain further exploitation. It brings about a fundamental change to the design and manufacturing mode. The instrument therefore, can not only be produced directly inside a PC, but the product is involved in the "green product" system. So far, all the present digital instruments will grow to be replaced by intelligent control with green characteristics.

  11. Chemical Microsensor Instrument for UAV Airborne Atmospheric Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) proposes to develop a miniaturized Airborne Chemical Microsensor Instrument (ACMI) suitable for real-time, airborne measurements of...

  12. Compact Instrument for Measurement of Atmospheric Carbon Monoxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposed the development of a rugged, compact, and automated instrument for the high sensitivity measurement of tropospheric carbon monoxide...

  13. Compact Instrument for Measurement of Atmospheric Carbon Monoxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to continue the development of a rugged, compact, and automated instrument for the high sensitivity measurement of tropospheric carbon...

  14. Measuring Specific Heats at High Temperatures

    Science.gov (United States)

    Vandersande, Jan W.; Zoltan, Andrew; Wood, Charles

    1987-01-01

    Flash apparatus for measuring thermal diffusivities at temperatures from 300 to 1,000 degrees C modified; measures specific heats of samples to accuracy of 4 to 5 percent. Specific heat and thermal diffusivity of sample measured. Xenon flash emits pulse of radiation, absorbed by sputtered graphite coating on sample. Sample temperature measured with thermocouple, and temperature rise due to pulse measured by InSb detector.

  15. Standardization of near infrared spectra measured on multi-instrument.

    Science.gov (United States)

    Liu, Yan; Cai, Wensheng; Shao, Xueguang

    2014-07-11

    Calibration model transfer is essential for practical applications of near infrared (NIR) spectroscopy because the measurements of the spectra may be performed on different instruments and the difference between the instruments must be corrected. An approach for calibration transfer based on alternating trilinear decomposition (ATLD) algorithm is proposed in this work. From the three-way spectral matrix measured on different instruments, the relative intensity of concentration, spectrum and instrument is obtained using trilinear decomposition. Because the relative intensity of instrument is a reflection of the spectral difference between instruments, the spectra measured on different instruments can be standardized by a correction of the coefficients in the relative intensity. Two NIR datasets of corn and tobacco leaf samples measured with three instruments are used to test the performance of the method. The results show that, for both the datasets, the spectra measured on one instrument can be correctly predicted using the partial least squares (PLS) models built with the spectra measured on the other instruments.

  16. Characterizing Self-Heating Dynamics Using Cyclostationary Measurements

    CERN Document Server

    Shin, SangHoon; Alam, Muhammad Ashraful

    2016-01-01

    Self-heating in surrounding gate transistors can degrade its on-current performance and reduce lifetime. If a transistor heats/cools with time-constants less than the inverse of the operating frequency, a predictable, frequency-independent performance is expected; if not, the signal pattern must be optimized for highest performance. Typically, time-constants are measured by expensive, ultra-fast instruments with high temporal resolution. Instead, here we demonstrate an alternate, inexpensive, cyclostationary measurement technique to characterize self-heating (and cooling) with sub-microsecond resolution. The results are independently confirmed by direct imaging of the transient heating/cooling of the channel temperature by the thermoreflectance (TR) method. A routine use of the proposed technique will help improve the surrounding gate transistor design and shorten the design cycle.

  17. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  18. Quantifying the information measured by neutron scattering instruments

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.W. [Rutherford Appleton Lab., Oxon (United Kingdom)

    1997-09-01

    The concept of the information content of a scientific measurement is introduced, and a theory is presented which enables the information that may be obtained by a neutron scattering instrument to be calculated. When combined with the time taken to perform the measurement the bandwidth of the instrument is obtained. This bandwidth is effectively a figure of merit which is of use in three respects: in the design of neutron instrumentation, the optimisation of measurements, and in the comparison of one instrument with another.

  19. Diamond color measurement instrument based on image processing

    Science.gov (United States)

    Takahashi, H.; Mandal, S.; Toosi, M.; Zeng, J.; Wang, W.

    2016-09-01

    Gemological Institute of America (GIA) has developed a diamond color measurement instrument that can provide accurate and reproducible color measurement results. The instrument uses uniform illumination by a daylight-approximating light source; observations from a high-resolution color-camera with nearly zero-distortion bi-telecentric lens, and image processing to calculate color parameters of diamonds. Experiments show the instrument can provide reproducible color measurement results and also identify subtle color differences in diamonds with high sensitivity. The experimental setup of the prototype instrument and the image processing method for calculating diamond color parameters are presented in this report.

  20. A review of instruments developed to measure food neophobia

    DEFF Research Database (Denmark)

    Damsbo-Svendsen, Marie; Frøst, Michael Bom; Olsen, Annemarie

    2017-01-01

    Food choices are influenced by an individual's attitude towards foods. Food neophobia may be associated with less variety of diets, inadequate nutrient intake and high product failure rate for new food products entering the market. To quantify the extent of these challenges, instruments to measure...... the food neophobia in different target groups are needed. Several such instruments with significantly different measurement outcomes and procedures have been developed. This review provides an overview and discusses strengths and weaknesses of these instruments...

  1. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  2. Optically Powered Temperature Measuring Instrument for Big Rotor①

    Institute of Scientific and Technical Information of China (English)

    ZHENGDezhong

    1997-01-01

    A micro-power consumption non-contact temperature measuring instrument for big rotos is introduced.As it solver very well the signal coupling under high speed rotation and power supply problem for probe,the instrument can realize persistent on-line temperature measurement for big rotor drived by the ordinary light transmitted by optical fiber under the room light.

  3. 40 CFR 1065.205 - Performance specifications for measurement instruments.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Performance specifications for... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments § 1065.205 Performance specifications for measurement instruments. Your test system as a whole must meet all the applicable...

  4. Microcomputer based instrument for measuring a novel pulmonary function test

    Science.gov (United States)

    Craine, Brian L.; Craine, Eric R.

    1996-08-01

    The design of a prototype instrument for measuring the end-tidal concentration of carbon monoxide during human respiration is presented. The instrument automatically samples the final sixty cubic centimeters of exhaled breath, from successive breathing cycles, by coordinating a pump and the breathing cycle with a set of vacuum and pressure sensors. The concentration of carbon monoxide is measured using a nondispersive infrared spectrophotometer. The amount of carbon monoxide present is measured relative to the source air concentration eliminating the need for calibrating the instrument. The testing protocol and measurements can be controlled by a microcomputer connected to the instrument through a standard RS-232 serial interface. When at equilibrium, the end-tidal concentration of CO can be measured in a simple and reproducible fashion. This simplified technology allows for the construction of a small, portable, easy to use instrument that will allow the application of this new pulmonary function test at the point of contact with patients.

  5. Calibration Base Lines for Electronic Distance Measuring Instruments (EDMI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A calibration base line (CBL) is a precisely measured, straight-line course of approximately 1,400 m used to calibrate Electronic Distance Measuring Instruments...

  6. Selection of Instruments for Measuring Process Parameters of a Sodium Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, In Koo; Park, Jae Chang; Kim, Tae Joon; Lee, Tae Ho; Lee, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Yang Mo [Chungnam National University, Daejeon (Korea, Republic of)

    2011-10-15

    KAERI (Korea Atomic Energy Research Institute) is constructing a sodium test facility called STELLA-1 (Sodium integrated effect TEst Loop for safety simuLation and Assessment) in which the major components for an SFR (Sodium-cooled Fast Reactor) such as heat exchangers are to be experimented. STELLA-1 includes pipes, heat exchangers, pumps, electrical heaters, tanks, and other supporting instruments and valves. These components should be in operation with the liquid sodium used as the heat transport fluid in the SFR. Based on a general review and preliminary considerations on some instrumentation methods and requirements for sodium facilities in the previous literatures, this paper describes the selected instruments, which were investigated, designed, and engineered for measuring the process variables of STELLA-1 in which the high temperature liquid sodium is flowing

  7. Comparative performance of color-measuring instruments; second report.

    Science.gov (United States)

    Billmeyer, F W; Campbell, E D; Marcus, R T

    1974-06-01

    The comparative performance of twelve different late-model color-measuring instruments was studied for precision (short-term repeatability) and conformance of color measurement and color-difference measurement.The instruments tested included four true and two abridged spectrophotometers and six colorimeters, all being integrating-sphere instruments except three 45 degrees /0 degrees colorimeters. All the colorimeters were individually calibrated for close conformance to CIE coordinates. Forty-four samples taken from the group studied in the previous paper were measured three times on each instrument, by three different well-trained operators. Again, a GE spectrophotometer was considered the reference instrument for conformance studies. Overall, the GE spectrophotometer, the Hunterlab D25D colorimeter, and the Kollmorgen KCS-18 and KCS-40 abridged spectrophotometers demonstrated the best performance. Statistical treatment of the data has been improved vastly since the earlier paper, and some recalculated results are included.

  8. A review of instruments developed to measure food neophobia.

    Science.gov (United States)

    Damsbo-Svendsen, Marie; Frøst, Michael Bom; Olsen, Annemarie

    2017-06-01

    Food choices are influenced by an individual's attitude towards foods. Food neophobia may be associated with less variety of diets, inadequate nutrient intake and high product failure rate for new food products entering the market. To quantify the extent of these challenges, instruments to measure the food neophobia in different target groups are needed. Several such instruments with significantly different measurement outcomes and procedures have been developed. This review provides an overview and discusses strengths and weaknesses of these instruments. We evaluate strengths and weaknesses of previously developed instruments to measure neophobia and willingness to try unfamiliar foods. Literature was searched through the databases Web of Science and Google Scholar. We identified 255 studies concerning neophobia and willingness to try unfamiliar foods. Of these, 13 studies encompassing 13 instruments to measure neophobia and willingness to try unfamiliar foods were included in the review. Results are summarized and evaluated with a narrative approach. In the 13 instruments to assess neophobia and willingness to try unfamiliar foods, 113 to 16.644 subjects aged 2-65 years were involved, scales with 3-7 response categories were used and behavioral validation tests were included in 6 studies. Several instruments to measure neophobia and willingness to try unfamiliar foods exist. We recommend selecting one or more among the 13 instruments reviewed in this paper to assess relevant aspects of neophobia. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. LEDA beam diagnostics instrumentation: Beam current measurement

    Science.gov (United States)

    Barr, D.; Day, L.; Gilpatrick, J. D.; Kasemir, K.-U.; Martinez, D.; Power, J. F.; Shurter, R.; Stettler, M.

    2000-11-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7 MeV and current of 100 mA operating in either a pulsed or cw mode. Two types of current measurements are used. The first is an AC or pulsed-current measurement which uses three LANL built toroids. They are placed in the beamline in such a way as to measure important transmission parameters and act as a differential current-loss machine protection system. The second system is a DC current measurement used to measure cw beam characteristics and uses toroids from Bergoz Inc. There are two of these systems, so they can also be used for transmission measurements. The AC system uses custom processing electronics whereas the DC system uses a modified Bergoz® electronics system. Both systems feature data acquisition via a series of custom TMS320C40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of these systems, the calibration technique, the differential current loss measurements and fast-protection processing, current droop characteristics for the AC system, and existing system noise levels. This paper will also cover the DSP system operations and their interaction with the main accelerator control system.

  10. Instrumentation, measurements, and experiments in fluids

    CERN Document Server

    Rathakrishnan, E

    2007-01-01

    NEED AND OBJECTIVE OF EXPERIMENTAL STUDY Some Fluid Mechanics MeasurementsMeasurement SystemsSome of the Important Quantities Associated with FluidFlow MeasurementsFUNDAMENTALS OF FLUID MECHANICSProperties of FluidsThermodynamic PropertiesSurface TensionAnalysis of Fluid FlowBasic and Subsidiary Laws for Continuous MediaKinematics of Fluid FlowStreamlinesPotential FlowViscous FlowsGas DynamicsWIND TUNNELSLow-Speed Wind TunnelsPower Losses in a Wind TunnelHigh-Speed Wind TunnelsHypersonic TunnelsInstrume

  11. Self-contained instrument for measuring subterranean tunnel wall deflection

    Science.gov (United States)

    Rasmussen, Donald Edgar; Hof, Jr., Peter John

    1978-01-01

    The deflection of a subterranean tunnel is measured with a rod-like, self-contained instrument that is adapted to be inserted into a radially extending bore of the tunnel adjacent an end of the tunnel where the tunnel is being dug. One end of the instrument is anchored at the end of the bore remote from the tunnel wall, while the other end of the intrument is anchored adjacent the end of the wall in proximity to the tunnel wall. The two ends of the instrument are linearly displaceable relative to each other; the displacement is measured by a transducer means mounted on the instrument. Included in the instrument is a data storage means including a paper tape recorder periodically responsive to a parallel binary signal indicative of the measured displacement.

  12. μDirac: an autonomous instrument for halocarbon measurements

    Directory of Open Access Journals (Sweden)

    B. Gostlow

    2009-09-01

    Full Text Available We describe a new instrument (μDirac capable of measuring halocarbons in the atmosphere. Portability, power efficiency and autonomy were critical requirements in the design, and the resulting instrument can be readily deployed unattended on a range of platforms: long duration balloon, aircraft, ship and ground based stations. The instrument is a temperature programmed gas chromatograph with electron capture detector (GC-ECD. The design requirements led to μDirac being built in-house with several novel features. It currently measures a range of halocarbons (CFCs and shorter-lived halocarbons having biogenic and anthropogenic sources with measurement precisions ranging from ∼1% sd (CCl4 to ∼9% sd (CH3I. Since the prototype instrument was first tested in 2005 the instrument has been proved in the field on technically challenging aircraft and ground based campaigns. Results from one aircraft and two ground-based deployments are described.

  13. μDirac: an autonomous instrument for halocarbon measurements

    Directory of Open Access Journals (Sweden)

    S. E. Yong

    2010-04-01

    Full Text Available We describe a new instrument (μDirac capable of measuring halocarbons in the atmosphere. Portability, power efficiency and autonomy were critical design requirements and the resulting instrument can be readily deployed unattended on a range of platforms: long duration balloon, aircraft, ship and ground-based stations. The instrument is a temperature programmed gas chromatograph with electron capture detector (GC-ECD. The design requirements led to μDirac being built in-house with several novel features. It currently measures a range of halocarbons (including short-lived tracers having biogenic and anthropogenic sources with measurement precision relative standard deviations ranging from ± 1% (CCl4 to ± 9% (CH3I. The prototype instrument was first tested in 2005 and the instrument has been proved in the field on technically challenging aircraft and ground-based campaigns. Results from an aircraft and a ground-based deployment are described.

  14. Advanced Measuring (Instrumentation Methods for Nuclear Installations: A Review

    Directory of Open Access Journals (Sweden)

    Wang Qiu-kuan

    2012-01-01

    Full Text Available The nuclear technology has been widely used in the world. The research of measurement in nuclear installations involves many aspects, such as nuclear reactors, nuclear fuel cycle, safety and security, nuclear accident, after action, analysis, and environmental applications. In last decades, many advanced measuring devices and techniques have been widely applied in nuclear installations. This paper mainly introduces the development of the measuring (instrumentation methods for nuclear installations and the applications of these instruments and methods.

  15. On policy instruments for support of micro combined heat and power

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, A.D. [Centre for Energy Policy and Technology, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Leach, M.A. [Centre for Environmental Strategy, Faculty of Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2008-08-15

    The performance of residential micro combined heat and power (micro-CHP) - a technology to provide heat and some electricity to individual dwellings - is generally dependent on the magnitude of household thermal energy demand. Dwellings with larger and more consistent thermal consumption perform well economically and achieve greater greenhouse gas emissions savings. Consequently, the performance of micro-CHP is dependent on the level of thermal insulation in a dwelling. Therefore, emerging policy approaches regarding energy use in the residential sector, which generally support both energy efficiency measures such as thermal insulation and adoption of micro-CHP, may inadvertently incentivise micro-CHP installation where CO{sub 2} reductions are meagre or not cost-effective. This article examines this issue in terms of the changes in economic and environmental performance that occur for three micro-CHP technologies under changing patterns of residential thermal insulation in the United Kingdom. The results of this analysis are used to comment on the structure of policy instruments that support micro-CHP. It is found that simultaneous support for energy efficiency measures and micro-CHP can be justified, but care must be taken to ensure that the heat-to-power ratio and capacity of the micro-CHP system are appropriate for the expected thermal demand of the target dwelling. (author)

  16. Requirements for a quality measurement instrument for semantic standards

    NARCIS (Netherlands)

    Folmer, E.J.A.; Krukkert, D.; Oude Luttighuis, P.; Hillegersberg van, J. van

    2010-01-01

    This study describes requirements for an instrument to measure the quality of semantic standards. A situational requirements engineering method was used, resulting in a goal-tree in which requirements are structured. This structure shows requirements related to the input of the instrument; stating

  17. A Secure System Architecture for Measuring Instruments in Legal Metrology

    Directory of Open Access Journals (Sweden)

    Daniel Peters

    2015-03-01

    Full Text Available Embedded systems show the tendency of becoming more and more connected. This fact combined with the trend towards the Internet of Things, from which measuring instruments are not immune (e.g., smart meters, lets one assume that security in measuring instruments will inevitably play an important role soon. Additionally, measuring instruments have adopted general-purpose operating systems to offer the user a broader functionality that is not necessarily restricted towards measurement alone. In this paper, a flexible software system architecture is presented that addresses these challenges within the framework of essential requirements laid down in the Measuring Instruments Directive of the European Union. This system architecture tries to eliminate the risks general-purpose operating systems have by wrapping them, together with dedicated applications, in secure sandboxes, while supervising the communication between the essential parts and the outside world.

  18. Closing the Gap on Measuring Heat Waves

    Science.gov (United States)

    Perkins, S. E.; Alexander, L.

    2012-12-01

    Since the 4th IPCC assessment report, the scientific literature has established that anthropogenic climate change encompasses adverse changes in both mean climate conditions and extreme events, such as heat waves. Indeed, the affects of heat waves are felt across many different sectors, and have high economic, human, and physical impacts over many global regions. The spatial and monetary scale of heat wave impacts emphasizes the necessity of measuring and studying such events in an informative manner, which gives justice to the geographical region affected, the communities impacted, and the climatic fields involved. However, due to such wide interest in heat waves, their definition remains broad in describing a period of consecutive days where conditions are excessively hotter than normal. This has allowed for the employment of a plethora of metrics, which are usually unique to a given sector, or do not appropriately describe some of the important features of heat wave events. As such, it is difficult to ascertain a clear message regarding changes in heat waves, both in the observed record and in projections of future climate. This study addresses this issue by developing a multi-index, multi-aspect framework in which to measure heat waves. The methodology was constructed by assessing a wide range of heat wave and heat wave-related indices, both proposed and employed in the scientific literature. The broad implications of the occurrences, frequency and duration of heat waves and respective changes were also highly considered. The resulting indices measure three or more consecutive days where 1) maximum temperature exceeds the 90th percentile (TX90pct); 2) minimum temperature exceeds the 90th percentile (TN90pct); and 3) daily average temperature has a positive excess heat factor (EHF). The 90th percentiles from which TX90pct and TN90pct are calculated are based on 15-day windows for each calendar day, whereas the EHF is based upon two pre-calculated indices that

  19. MODERN INSTRUMENTS FOR MEASURING ORGANIZATIONAL PERFORMANCE

    OpenAIRE

    RADU CATALINA; BADEA FLORICA; GRIGORE ANA-MARIA

    2010-01-01

    Any significant management action can be assessed both in terms of success of immediate goals and as effect of the organization ability to embrace change. Market competition intensifies with the development of Romanian society and its needs. Companies that offer different products and services need to impose certain advantages and to increase their performances. The paper will present modern tools for measuring and evaluating organizational performance, namely: Balanced Scorecard, Deming mode...

  20. Novel Instrumentation for In Situ Combustion Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase I is to develop, demonstrate and test a novel instrument based on laser absorption diagnostics for fast, in situ measurements of important...

  1. Astronomical Polarimetry : new concepts, new instruments, new measurements & observations

    NARCIS (Netherlands)

    Snik, F.

    2009-01-01

    All astronomical sources are polarized to some degree. Polarimetry is therefore a powerful astronomical technique. It furnishes unique diagnostics of e.g. magnetic fields and scattering media. This thesis presents new polarimetric concepts, instruments, and measurements targeting astronomical scienc

  2. Novel Instrumentation for In Situ Combustion Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase I is to develop, demonstrate and test a novel instrument based on laser absorption diagnostics for fast, in situ measurements of...

  3. MODERN INSTRUMENTS FOR MEASURING ORGANIZATIONAL PERFORMANCE

    Directory of Open Access Journals (Sweden)

    RADU CATALINA

    2010-12-01

    Full Text Available Any significant management action can be assessed both in terms of success of immediate goals and as effect of the organization ability to embrace change. Market competition intensifies with the development of Romanian society and its needs. Companies that offer different products and services need to impose certain advantages and to increase their performances. The paper will present modern tools for measuring and evaluating organizational performance, namely: Balanced Scorecard, Deming model and Baldrige model. We also present an example for Balance Scorecard, of an organizations belonging to the cosmetics industry.

  4. Measuring Perceived Anonymity: The Development of a Context Independent Instrument

    Directory of Open Access Journals (Sweden)

    Dwight M. Hite

    2014-09-01

    Full Text Available In order to assess relationships between perceptions of anonymity and behaviors, a context independent instrument is required for measuring the perceptions of anonymity held by individuals.  To date, no such measurement instrument exists that has been shown to be reliable and valid.  The authors employ a rigorous design methodology to develop, test, and substantiate a reliable and valid instrument for measuring perceptions of anonymity across different contexts. The PA measure presented is a five item Likert scale designed to measure perceptions of anonymity across multiple contexts. Results from two separate EFA pilot tests (n=61 and n=60, a test-retest, and a CFA final test (n=292 indicate that the PA measure has good internal consistency reliability (a=.82, test-retest reliability, factorial validity, and a single factor structure. DOI: 10.2458/azu_jmmss.v5i1.18305

  5. Radiometric instrumentation and measurements guide for photovoltaic performance testing

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D.

    1997-04-01

    The Photovoltaic Module and Systems Performance and Engineering Project at the National Renewable Energy Laboratory performs indoor and outdoor standardization, testing, and monitoring of the performance of a wide range of photovoltaic (PV) energy conversion devices and systems. The PV Radiometric Measurements and Evaluation Team (PVSRME) within that project is responsible for measurement and characterization of natural and artificial optical radiation which stimulates the PV effect. The PV manufacturing and research and development community often approaches project members for technical information and guidance. A great area of interest is radiometric instrumentation, measurement techniques, and data analysis applied to understanding and improving PV cell, module, and system performance. At the Photovoltaic Radiometric Measurements Workshop conducted by the PVSRME team in July 1995, the need to communicate knowledge of solar and optical radiometric measurements and instrumentation, gained as a result of NREL`s long-term experiences, was identified as an activity that would promote improved measurement processes and measurement quality in the PV research and manufacturing community. The purpose of this document is to address the practical and engineering need to understand optical and solar radiometric instrument performance, selection, calibration, installation, and maintenance applicable to indoor and outdoor radiometric measurements for PV calibration, performance, and testing applications. An introductory section addresses radiometric concepts and definitions. Next, concepts essential to spectral radiometric measurements are discussed. Broadband radiometric instrumentation and measurement concepts are then discussed. Each type of measurement serves as an important component of the PV cell, module, and system performance measurement and characterization process.

  6. Calculations of flexibility module in measurements instruments

    Science.gov (United States)

    Wróbel, A.; Płaczek, M.; Baier, A.

    2017-08-01

    Piezoelectricity has found a lot of applications since it were discovered in 1880 by Pierre and Jacques Curie. There are many applications of the direct piezoelectric effect - the production of an electric potential when stress is applied to the piezoelectric material, as well as the reverse piezoelectric effect - the production of strain when an electric field is applied. This work presents a mathematical model of a new model of vibration sensor. The principle of operation of currently used sensors is based on the idea: changes in thickness of the piezoelectric plates cause the vibration of the mechanical element, so-called “fork”. If the “forks” are not buried by the material deformation of the full tiles broadcasting is transmitted to receiver piezoelectric plate. As a result of vibration of receiver plates the cladding is formed on the potential difference proportional to the force. The value of this voltage is processed by an electronic circuit. In the case of backfilling “forks” the electric signal is lower. At the same time is not generated the potential for cladding tiles. Such construction have a lot of drawbacks, for example: need to use several piezoelectric plates, with the increase in number of components is increased failure of sensors, sensors have now produced two forks resonance, using these sensors in moist materials is often the case that the material remains between the forks and at the same time causes a measurement error. Mentioned disadvantages do not appear in the new proposed sensor design. The Galerkin method of the analysis of considered systems will be presented started from development of the mathematical model, to determine the graphs of flexibility and confirm two methods: exact and approximate. Analyzed beam is a part of the vibration level sensor and the results will be used to identify the electrical parameters of the generator. Designing of technical systems containing piezoelectric transducers is a complex process

  7. Temperature and heat flux measurement techniques for aeroengine fire test: a review

    Science.gov (United States)

    Mohammed, I.; Abu Talib, A. R.; Sultan, M. T. H.; Saadon, S.

    2016-10-01

    This review is made of studies whereby some types of fire test measuring instrument were compared based on their mode of operation, sensing ability, temperature resistance and their calibration mode used for aero-engine applications. The study discusses issues affecting temperature and heat flux measurement, methods of measurement, calibration and uncertainties that occur in the fire test. It is found that the temperature and heat flux measurements of the flame from the standard burner need to be corrected and taken into account for radiation heat loss. Methods for temperature and heat flux measurements, as well as uncertainties analysis, were also discussed.

  8. Apparatus for measuring high-flux heat transfer in radiatively heated compact exchangers

    Science.gov (United States)

    Olson, Douglas A.

    1989-01-01

    An apparatus is described which can deliver uniform heat flux densities of up to 80 W/sq cm over an area 7.8 cm x 15.2 cm for use in measuring the heat transfer and pressure drop in thin (6 mm or less), compact heat exchangers. Helium gas at flow rates of 0 to 40 kg/h and pressures to 6.9 MPa (1000 psi) is the working fluid. The instrumentation used in the apparatus and the methods for analyzing the data is described. The apparatus will be used initially to test the performance of prototype cooling jackets for the engine struts of the National Aerospace Plane (NASP).

  9. The Next Generation Heated Halo for Blackbody Emissivity Measurement

    Science.gov (United States)

    Gero, P.; Taylor, J. K.; Best, F. A.; Revercomb, H. E.; Knuteson, R. O.; Tobin, D. C.; Adler, D. P.; Ciganovich, N. N.; Dutcher, S. T.; Garcia, R. K.

    2011-12-01

    The accuracy of radiance measurements from space-based infrared spectrometers is contingent on the quality of the calibration subsystem, as well as knowledge of its uncertainty. Future climate benchmarking missions call for measurement uncertainties better than 0.1 K (k=3) in radiance temperature for the detection of spectral climate signatures. Blackbody cavities impart the most accurate calibration for spaceborne infrared sensors, provided that their temperature and emissivity is traceably determined on-orbit. The On-Orbit Absolute Radiance Standard (OARS) has been developed at the University of Wisconsin to meet the stringent requirements of the next generation of infrared remote sensing instruments. It provides on-orbit determination of both traceable temperature and emissivity for calibration blackbodies. The Heated Halo is the component of the OARS that provides a robust and compact method to measure the spectral emissivity of a blackbody in situ. A carefully baffled thermal source is placed in front of a blackbody in an infrared spectrometer system, and the combined radiance of the blackbody and Heated Halo reflection is observed. Knowledge of key temperatures and the viewing geometry allow the blackbody cavity spectral emissivity to be calculated. We present the results from the Heated Halo methodology implemented with a new Absolute Radiance Interferometer (ARI), which is a prototype space-based infrared spectrometer designed for climate benchmarking that was developed under the NASA Instrument Incubator Program (IIP). We compare our findings to models and other experimental methods of emissivity determination.

  10. Measurement of sexual functioning after spinal cord injury: preferred instruments

    DEFF Research Database (Denmark)

    Alexander, Marcalee Sipski; Brackett, Nancy L; Bodner, Donald;

    2009-01-01

    into male and female sexual function, male reproductive function, and female reproductive function. The instruments that have been used most frequently to measure these aspects of sexual function over the past 5 years were identified by expert consensus. Finally, these instruments were subjected...... and reproductive function after SCI. There were no measures identified to assess female reproductive function. CONCLUSIONS: For clinical trials aiming to improve sexual function after SCI, the FSFI or the IIEF is currently preferred. Although VPA is an appropriate means to assess female sexual responses......BACKGROUND/OBJECTIVE: To determine the utility of certain instruments to assess sexuality and fertility after SCI, an expert panel identified key areas to study and evaluated available instruments. These were rated according to certain predefined criteria. METHODS: The authors divided sexual issues...

  11. Holdup Measures on an SRNL Mossbauer Spectroscopy Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Dewberry, R.; Brown, T.; Salaymeh, S.

    2010-05-05

    Gamma-ray holdup measurements of a Mossbauer spectroscopy instrument are described and modeled. In the qualitative acquisitions obtained in a low background area of Savannah River National Laboratory, only Am-241 and Np-237 activity were observed. The Am-241 was known to be the instrumental activation source, while the Np-237 is clearly observed as a source of contamination internal to the instrument. The two sources of activity are modeled separately in two acquisition configurations using two separate modeling tools. The results agree well, demonstrating a content of (1980 {+-} 150) {mu}Ci Am-241 and (110 {+-} 50) {mu}Ci of Np-237.

  12. Standardization Procedure for Two Instruments for Color Measurement

    Science.gov (United States)

    1981-09-01

    contract and reported separately. In one of these contracts Billmeyer and Alessi addressed the general reliability of commercial color instruments...collection and the standardization test procedure. 1. F. W. Billmeyer , Jr. and P. J. Alessi (1979, "Assessment of Color- Measuring Instruments for Objective...U.S. Army Natick Research and De- velopment Command, Natick, HA 01760 (ADA094163) Billmeyer , F. W., Jr. and Alessi, P.J. (1979), "Assessment of

  13. Instruments for measuring mental health recovery: a systematic review.

    Science.gov (United States)

    Sklar, Marisa; Groessl, Erik J; O'Connell, Maria; Davidson, Larry; Aarons, Gregory A

    2013-12-01

    Persons in recovery, providers, and policymakers alike are advocating for recovery-oriented mental health care, with the promotion of recovery becoming a prominent feature of mental health policy in the United States and internationally. One step toward creating a recovery-oriented system of care is to use recovery-oriented outcome measures. Numerous instruments have been developed to assess progress towards mental health recovery. This review identifies instruments of mental health recovery and evaluates the appropriateness of their use including their psychometric properties, ease of administration, and service-user involvement in their development. A literature search using the Medline and Psych-INFO databases was conducted, identifying 21 instruments for potential inclusion in this review, of which thirteen met inclusion criteria. Results suggest only three instruments (25%) have had their psychometric properties assessed in three or more unique samples of participants. Ease of administration varied between instruments, and for the majority of instruments, development included service user involvement. This review updates and expands previous reviews of instruments to assess mental health recovery. As mental health care continues to transform to a recovery-oriented model of service delivery, this review may facilitate selection of appropriate assessments of mental health recovery for systems to use in evaluating and improving the care they provide.

  14. The measurement of instrumental ADL: content validity and construct validity

    DEFF Research Database (Denmark)

    Avlund, K; Schultz-Larsen, K; Kreiner, S

    1993-01-01

    A new measure of Instrumental Activities of Daily Living (IADL), which is able to discriminate among the large group of elderly who do not depend on help, was tested for content validity and construct validity. Most assessments of functional ability include Physical ADL (PADL) and Instrumental ADL....... The measure of Instrumental ADL included 30 activities in relation to tiredness and reduced speed. Construct validity was tested by the Rasch model for item analysis; internal validity was specifically addressed by assessing the homogeneity of items under different conditions. The Rasch item analysis of IADL...... showed that 14 items could be combined into two qualitatively different additive scales. The IADL-measure complies with demands for content validity, distinguishes between what the elderly actually do, and what they are capable of doing, and is a good discriminator among the group of elderly persons who...

  15. Comparison of nanoparticle measurement instruments for occupational health applications

    Energy Technology Data Exchange (ETDEWEB)

    Leskinen, J., E-mail: jani.leskinen@uef.fi [University of Eastern Finland, Fine Particle and Aerosol Technology Laboratory, Department of Environmental Science (Finland); Joutsensaari, J. [University of Eastern Finland, Department of Applied Physics (Finland); Lyyraenen, J. [VTT Technical Research Centre of Finland, Fine Particles (Finland); Koivisto, J. [Nanosafety Research Center, Finnish Institute of Occupational Health (Finland); Ruusunen, J. [University of Eastern Finland, Fine Particle and Aerosol Technology Laboratory, Department of Environmental Science (Finland); Jaervelae, M.; Tuomi, T. [Finnish Institute of Occupational Health (Finland); Haemeri, K. [University of Helsinki, Division of Atmospheric Sciences, Department of Physics (Finland); Auvinen, A. [VTT Technical Research Centre of Finland, Fine Particles (Finland); Jokiniemi, J. [University of Eastern Finland, Fine Particle and Aerosol Technology Laboratory, Department of Environmental Science (Finland)

    2012-02-15

    Nanoparticles are used in many applications because of their novel properties compared to bulk material. A growing number of employees are working with nanomaterials and their exposure to nanoparticles trough inhalation must be evaluated and monitored continuously. However, there is an ongoing debate in the scientific literature about what are the relevant parameters to measure to evaluate exposure to level. In this study, three types of nanoparticles (ammonium sulphate, synthesised TiO{sub 2} agglomerates and aerosolised TiO{sub 2} powder, modes in a range of 30-140 nm mobility size) were measured with commonly used aerosol measurement instruments: scanning and fast mobility particle sizers (SMPS, FMPS), electrical low pressure impactor (ELPI), condensation particle counter (CPC) together with nanoparticle surface area monitor (NSAM) to achieve information about the interrelations of the outputs of the instruments. In addition, the ease of use of these instruments was evaluated. Differences between the results of different instruments can mainly be attributed to the nature of test particles. For spherical ammonium sulphate nanoparticles, the data from the instruments were in good agreement while larger differences were observed for particles with more complex morphology, the TiO{sub 2} agglomerates and powder. For instance, the FMPS showed a smaller particle size, a higher number concentration and a narrower size distribution compared with the SMPS for TiO{sub 2} particles. Thus, the type of the nanoparticle was observed to influence the data obtained from these different instruments. Therefore, care and expertise are essential when interpreting results from aerosol measurement instruments to estimate nanoparticle concentrations and properties.

  16. Nonequilibrium invariant measure under heat flow.

    Science.gov (United States)

    Delfini, Luca; Lepri, Stefano; Livi, Roberto; Politi, Antonio

    2008-09-19

    We provide an explicit representation of the nonequilibrium invariant measure for a chain of harmonic oscillators with conservative noise in the presence of stationary heat flow. By first determining the covariance matrix, we are able to express the measure as the product of Gaussian distributions aligned along some collective modes that are spatially localized with power-law tails. Numerical studies show that such a representation applies also to a purely deterministic model, the quartic Fermi-Pasta-Ulam chain.

  17. Measurement of heat and moisture exchanger efficiency.

    Science.gov (United States)

    Chandler, M

    2013-09-01

    Deciding between a passive heat and moisture exchanger or active humidification depends upon the level of humidification that either will deliver. Published international standards dictate that active humidifiers should deliver a minimum humidity of 33 mg.l(-1); however, no such requirement exists, for heat and moisture exchangers. Anaesthetists instead have to rely on information provided by manufacturers, which may not allow comparison of different devices and their clinical effectiveness. I suggest that measurement of humidification efficiency, being the percentage moisture returned and determined by measuring the temperature of the respired gases, should be mandated, and report a modification of the standard method that will allow this to be easily measured. In this study, different types of heat and moisture exchangers for adults, children and patients with a tracheostomy were tested. Adult and paediatric models lost between 6.5 mg.l(-1) and 8.5 mg.l(-1) moisture (corresponding to an efficiency of around 80%); however, the models designed for patients with a tracheostomy lost between 16 mg.l(-1) and 18 mg.l(-1) (60% efficiency). I propose that all heat and moisture exchangers should be tested in this manner and percentage efficiency reported to allow an informed choice between different types and models.

  18. An Autonomous Ozone Instrument for Atmospheric Measurements from Ocean Buoys

    Science.gov (United States)

    Hintsa, E. J.; Rawlins, W. T.; Sholkovitz, E. R.; Hosom, D. S.; Allsup, G. P.; Purcell, M. J.; Scott, D. R.; Mulhall, P.

    2002-05-01

    Tropospheric ozone is an oxidant, a greenhouse gas, and a pollutant. Because of its adverse health effects, there are numerous monitoring stations on land but none over the oceans. We have built an ozone instrument for deployment anywhere at sea from ocean buoys, to study ozone chemistry over the oceans, intercontinental transport of pollution, diurnal and seasonal cycles of ozone, and to make baseline and long-term time series measurements of ozone in remote locations. The instrument uses direct (Beer's Law) absorption of UV radiation in a dual-path cell, with ambient and ozone-free air alternately switched between the two paths, to measure ozone. Ozone can be measured at a rate of 1 Hz, with a precision of about 1 ppb at sea level. The air inlet and outlet have valves which close automatically under high wind conditions or rain to protect the ozone sensor. The instrument has been packaged for deployment at sea, and tested on a 3-meter discus buoy with other instruments in coastal waters in fall 2001. It can operate autonomously or be controlled via line-of-sight modem or a satellite link. We will present the details of the instrument, and laboratory and buoy test data from its first deployment, including a comparison with a nearby ozone monitoring station on land. We will also present an evaluation of the instrument's performance and describe plans for improvements. In summer 2002, the ozone measurement system will be operated at the Martha's Vineyard Coastal Observatory; in the future we anticipate deploying on the Bermuda Testbed Mooring, followed by use on the open ocean to measure long-range transport of ozone.

  19. Health Status Measurement Instruments in Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Yves Lacasse

    1997-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is associated with primary respiratory impairment, disability and handicap, as well as with secondary impairments not necessarily confined to the respiratory system. Because the primary goals of managing patients with COPD include relief of dyspnea and the improvement of health-related quality of life (HRQL, a direct measurement of HRQL is important. Fourteen disease-specific and nine generic questionnaires (four health profiles and five utility measures most commonly used to measure health status in patients with COPD were reviewed. The measures were classified according to their domain of interest, and their measurement properties - specifications, validity, reliability, responsiveness and interpretability - were described. This review suggests several findings. Currently used health status instruments usually refer to the patients’ perception of performance in three major domains of HRQL - somatic sensation, physical and occupational function, and psychological state. The choice of a questionnaire must be related to its purpose, with a clear distinction being made between its evaluative and discriminative function. In their evaluative function, only a few instruments fulfilled the criteria of responsiveness, and the interpretability of most questionnaires is limited. Generic questionnaires should not be used alone in clinical trials as evaluative instruments because of their inability to detect change over time. Further validation and improved interpretability of existing instruments would be of greater benefit to clinicians and scientists than the development of new questionnaires.

  20. Heat Transmission Coefficient Measurements in Buildings Utilizing a Heat Loss Measuring Device

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    2013-01-01

    to optimize the energy performance. This paper presents a method for measuring the heat loss by utilizing a U-value meter. The U-value meter measures the heat transfer in the unit W/Km2 and has been used in several projects to upgrade the energy performance in temperate regions. The U-value meter was also...... and mechanical ventilation in the “warm countries” contribute to an enormous energy consumption and corresponding CO2 emission. In order to establish the best basis for upgrading the energy performance, it is important to make measurements of the heat losses at different places on a building facade, in order...

  1. Measurement of sexual functioning after spinal cord injury: preferred instruments

    DEFF Research Database (Denmark)

    Alexander, Marcalee Sipski; Brackett, Nancy L; Bodner, Donald

    2009-01-01

    into male and female sexual function, male reproductive function, and female reproductive function. The instruments that have been used most frequently to measure these aspects of sexual function over the past 5 years were identified by expert consensus. Finally, these instruments were subjected...... to a critical review. RESULTS: The Female Sexual Function Index (FSFI), measurement of vaginal pulse amplitude (VPA), the International Index of Erectile Function (IIEF), and the measurement of ejaculatory function and semen quality were considered appropriate measures to assess sexual responses...... and reproductive function after SCI. There were no measures identified to assess female reproductive function. CONCLUSIONS: For clinical trials aiming to improve sexual function after SCI, the FSFI or the IIEF is currently preferred. Although VPA is an appropriate means to assess female sexual responses...

  2. D-Catch instrument : development and psychometric testing of a measurement instrument for nursing documentation in hospitals

    NARCIS (Netherlands)

    Paans, Wolter; Sermeus, Walter; Nieweg, Roos M. B.; van der Schans, Cees P.

    2010-01-01

    P>Title. D-Catch instrument: development and psychometric testing of a measurement instrument for nursing documentation in hospitals. Aim. This paper is a report of the development and testing of the psychometric properties of an instrument to measure the accuracy of nursing documentation in general

  3. Measurement Properties of Instruments for Measuring of Lymphedema: Systematic Review

    NARCIS (Netherlands)

    Hidding, J.T.; Viehoff, P.B.; Beurskens, C.H.G.; Laarhoven, H.W. van; Sanden, M.W. van der; Wees, P.J. van der

    2016-01-01

    BACKGROUND: Lymphedema is a common complication of cancer treatment, resulting in swelling and subjective symptoms. Reliable and valid measurement of this side effect of medical treatment is important. PURPOSE: The purpose of this study was to provide best evidence regarding which measurement

  4. An instrument for measuring scintillators efficiently based on silicon photomultipliers.

    Science.gov (United States)

    Yang, M J; Zhang, Z M; Wang, Y J; Li, D W; Zhou, W; Tang, H H; Liu, Y T; Chai, P; Shuai, L; Huang, X C; Liu, S Q; Zhu, M L; Jiang, X P; Zhang, Y W; Li, T; Ma, B; Sun, S F; Sun, L Y; Wang, Q; Lu, Z R; Zhang, T; Wei, L

    2016-11-01

    An instrument used for measuring multiple scintillators' light output and energy resolution was developed. The instrument consisted of a light sensor array which was composed of 64 discrete SiPMs (Silicon Photomultipliers), a corresponding individual channel readout electronics system, and a data processing algorithm. A Teflon grid and a large interval between adjacent SiPMs were employed to eliminate the optical cross talk among scintillators. The scintillators' light output was obtained by comparing with a reference sample with known light output. Given the SiPM temperature dependency and the difference among each SiPM, a temperature offset correction algorithm and a non-uniformity correction algorithm were added to the instrument. A positioning algorithm, based on nine points, was designed to evaluate the performance of a scintillator array. Tests were performed to evaluate the instrument's performance. The uniformity of 64 channels for light output measurement was better than 98%, the stability was better than 98% when temperature varied from 15 °C to 40 °C, and the nonlinearity under 511 keV was better than 2%. This instrument was capable of selecting scintillators and evaluating the packaging technology of scintillator arrays with high efficiency and accuracy.

  5. An instrument for measuring scintillators efficiently based on silicon photomultipliers

    Science.gov (United States)

    Yang, M. J.; Zhang, Z. M.; Wang, Y. J.; Li, D. W.; Zhou, W.; Tang, H. H.; Liu, Y. T.; Chai, P.; Shuai, L.; Huang, X. C.; Liu, S. Q.; Zhu, M. L.; Jiang, X. P.; Zhang, Y. W.; Li, T.; Ma, B.; Sun, S. F.; Sun, L. Y.; Wang, Q.; Lu, Z. R.; Zhang, T.; Wei, L.

    2016-11-01

    An instrument used for measuring multiple scintillators' light output and energy resolution was developed. The instrument consisted of a light sensor array which was composed of 64 discrete SiPMs (Silicon Photomultipliers), a corresponding individual channel readout electronics system, and a data processing algorithm. A Teflon grid and a large interval between adjacent SiPMs were employed to eliminate the optical cross talk among scintillators. The scintillators' light output was obtained by comparing with a reference sample with known light output. Given the SiPM temperature dependency and the difference among each SiPM, a temperature offset correction algorithm and a non-uniformity correction algorithm were added to the instrument. A positioning algorithm, based on nine points, was designed to evaluate the performance of a scintillator array. Tests were performed to evaluate the instrument's performance. The uniformity of 64 channels for light output measurement was better than 98%, the stability was better than 98% when temperature varied from 15 °C to 40 °C, and the nonlinearity under 511 keV was better than 2%. This instrument was capable of selecting scintillators and evaluating the packaging technology of scintillator arrays with high efficiency and accuracy.

  6. Development of a nursing workload measurement instrument in burn care

    NARCIS (Netherlands)

    Jong, A.E.; Leeman, J.; Middelkoop, E.

    2009-01-01

    Existing workload measurement instruments fail to represent specific nursing activities in a setting where patients are characterized by a diversity of cause, location, extent and depth of burns, of age and of history. They also do not include educational levels and appropriate time standards. The a

  7. 27 CFR 24.36 - Instruments and measuring devices.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Instruments and measuring devices. 24.36 Section 24.36 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Administrative and Miscellaneous Provisions...

  8. Development of a nursing workload measurement instrument in burn care

    NARCIS (Netherlands)

    Jong, A.E.; Leeman, J.; Middelkoop, E.

    2009-01-01

    Existing workload measurement instruments fail to represent specific nursing activities in a setting where patients are characterized by a diversity of cause, location, extent and depth of burns, of age and of history. They also do not include educational levels and appropriate time standards. The

  9. An intelligent instrument for measuring exhaust temperature of marine engine

    Institute of Scientific and Technical Information of China (English)

    MA Nan-qi; SU Hua; LIU Jun

    2006-01-01

    Exhaust temperature of the marine engine is commonly measured through thermocouple.Measure deviation will occur after using the thermocouple for some time due to nonlinearity of thermocouple itself, high temperature and chemical corrosion of measure point. Frequent replacement of thermocouple will increase the operating cost. This paper designs a new intelligent instrument for solving the above-mentioned problems of the marine engine temperature measurement, which combines the conventional thermocouple temperature measurement technology and SCM(single chip microcomputer).The reading of the thermocouple is simple and precise and the calibration can be made automatically and manually..

  10. Geoscience Laser Altimeter System (GLAS) Instrument: Flight Loop Heat Pipe (LHP) Acceptance Thermal Vacuum Test

    Science.gov (United States)

    Baker, Charles; Butler, Dan; Ku, Jentung; Grob, Eric; Swanson, Ted; Nikitkin, Michael; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Two loop heat pipes (LHPs) are to be used for tight thermal control of the Geoscience Laser Altimeter System (GLAS) instrument, planned for flight in late 2001. The LHPs are charged with Propylene as a working fluid. One LHP will be used to transport 110 W from a laser to a radiator, the other will transport 160 W from electronic boxes to a separate radiator. The application includes a large amount of thermal mass in each LHP system and low initial startup powers. The initial design had some non-ideal flight design compromises, resulted in a less than ideal charge level for this design concept with a symmetrical secondary wick. This less than ideal charge was identified as the source of inadequate performance of the flight LHPs during the flight thermal vacuum test in October of 2000. We modified the compensation chamber design, re-built and charged the LHPs for a final LHP acceptance thermal vacuum test. This test performed March of 2001 was 100% successful. This is the last testing to be performed on the LHPs prior to instrument thermal vacuum test. This sensitivity to charge level was shown through varying the charge on a Development Model Loop Heat Pipe (DM LHP) and evaluating performance at various fill levels. At lower fills similar to the original charge in the flight units, the same poor performance was observed. When the flight units were re-designed and filled to the levels similar to the initial successful DM LHP test, the flight units also successfully fulfilled all requirements. This final flight Acceptance test assessed performance with respect to startup, low power operation, conductance, and control heater power, and steady state control. The results of the testing showed that both LHPs operated within specification. Startup on one of the LHPs was better than the other LHP because of the starter heater placement and a difference in evaporator design. These differences resulted in a variation in the achieved superheat prior to startup. The LHP with

  11. An inexpensive instrument for measuring wave exposure and water velocity

    Science.gov (United States)

    Figurski, J.D.; Malone, D.; Lacy, J.R.; Denny, M.

    2011-01-01

    Ocean waves drive a wide variety of nearshore physical processes, structuring entire ecosystems through their direct and indirect effects on the settlement, behavior, and survivorship of marine organisms. However, wave exposure remains difficult and expensive to measure. Here, we report on an inexpensive and easily constructed instrument for measuring wave-induced water velocities. The underwater relative swell kinetics instrument (URSKI) is a subsurface float tethered by a short (<1 m) line to the seafloor. Contained within the float is an accelerometer that records the tilt of the float in response to passing waves. During two field trials totaling 358 h, we confirmed the accuracy and precision of URSKI measurements through comparison to velocities measured by an in situ acoustic Doppler velocimeter and those predicted by a standard swell model, and we evaluated how the dimensions of the devices, its buoyancy, and sampling frequency can be modified for use in a variety of environments.

  12. Analysis of Competitiveness and Support Instruments for Heat and Electricity Production from Wood Biomass in Latvia

    Science.gov (United States)

    Klavs, G.; Kudrenickis, I.; Kundzina, A.

    2012-01-01

    Utilisation of renewable energy sources is one of the key factors in a search for efficient ways of reducing the emissions of greenhouse gases and improving the energy supply security. So far, the district heating supply in Latvia has been based on natural gas, with the wood fuel playing a minor role; the same is true for decentralised combined heat-power (CHP) production. The paper describes a method for evaluation of the economic feasibility of heat and electricity production from wood biomass under the competition between different fuel types and taking into account the electricity market. For the simulation, a cost estimation model is applied. The results demonstrate that wood biomass can successfully be utilised for competitive heat production by boiler houses, while for electricity production by CHP utilities it cannot compete on the market (even despite the low prices on wood biomass fuel) unless particular financial support instruments are applied. The authors evaluate the necessary support level and the impact of two main support instruments - the investment subsidies and the feed-in tariff - on the economic viability of wood-fuelled CHP plants, and show that the feed-in tariff could be considered as an instrument strongly affecting the competitiveness of such type CHP. Regarding the feed-in tariff determination, a compromise should be found between the economy-dictated requirement to develop CHP projects concerning capacities above 5 MWel - on the one hand, and the relatively small heat loads in many Latvian towns - on the other.

  13. Measurement of heat conduction through stacked screens.

    Science.gov (United States)

    Lewis, M A; Kuriyama, T; Kuriyama, F; Radebaugh, R

    1998-01-01

    This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.

  14. Comparative Analysis of Instruments Measuring Time Varying Harmonics

    Science.gov (United States)

    Belchior, Fernando Nunes; Ribeiro, Paulo Fernando; Carvalho, Frederico Marques

    2016-08-01

    This paper aims to evaluate the performance of commercial class A and class S power quality (PQ) instruments when measuring time-varying harmonics. By using a high precision programmable voltage and current source, two meters from different manufacturers are analyzed and compared. Three-phase voltage signals are applied to PQ instruments, considering 3 situations of time-varying harmonic distortions, whose harmonic distortion values are in accordance with typical values found in power systems. This work is relevant considering that international standardization documents do not pay much attention to this aspect of harmonic distortion.

  15. Antenna Characterization for the Wideband Instrument for Snow Measurements (WISM)

    Science.gov (United States)

    Lambert, Kevin M.; Miranda, Felix A.; Romanofsky, Robert R.; Durham, Timothy E.; Vanhille, Kenneth J.

    2015-01-01

    Experimental characterization of the antenna for the Wideband Instrument for Snow Measurement (WISM) under development for the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), is discussed. A current sheet antenna, consisting of a small, 6x6 element, dual-linear polarized array with integrated beamformer, feeds an offset parabolic reflector, enabling WISM operation over an 8 to 40 GHz frequency band. An overview of the test program implemented for both the feed and the reflector antenna is given along with select results for specific frequencies utilized by the radar and radiometric sensors of the WISM.

  16. Antenna Characterization for the Wideband Instrument for Snow Measurements

    Science.gov (United States)

    Lambert, Kevin M.; Miranda, Felix A.; Romanofsky, Robert R.; Durham, Timothy E.; Vanhille, Kenneth J.

    2015-01-01

    Experimental characterization of the antenna for the Wideband Instrument for Snow Measurements (WISM) under development for the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), is discussed. A current sheet antenna, consisting of a small, 6x6 element, dual-linear polarized array with integrated beamformer, feeds an offset parabolic reflector, enabling WISM operation over an 8 to 40 GHz frequency band. An overview of the test program implemented for both the feed and the reflector antenna is given along with select results for specific frequencies utilized by the radar and radiometric sensors of the WISM.

  17. Instrumentation for Measurement: a bilingual lab e-book

    OpenAIRE

    Maria Teresa Restivo; Fernando Gomes Almeida; Maria Fátima Chouzal; Joaquim Mendes; António Mendes Lopes

    2007-01-01

    Instrumentation for Measurement is a relevantsubject in any engineering curriculum. Based on seven years experience in teaching this topic to mechanical engineering students at Faculdade de Engenharia da Universidade do Porto, the authors have prepared an e-book that presents a set of thirteen experimental modules on physical measurements, calibration procedures and metrological concepts. A modular structure permits the most convenient selection according to any course objectives. For each mo...

  18. Comparing alternative instruments to measure service quality in higher education

    OpenAIRE

    2007-01-01

    The purpose of this work is to examine the performance of five alternative measures of service quality in the high education sector – SERVQUAL (Service Quality), Importance-weighted SERVQUAL, SERVPERF (Service Performance), Importance-weighted SERVPERF and HedPERF (Higher Education Performance). We aim at determining which instrument has the superior measurement capability. Data were collected by means of a structured questionnaire containing perception items enhanced from the SERVPERF and HE...

  19. Satisfaction measurement instruments for healthcare service users: a systematic review

    Directory of Open Access Journals (Sweden)

    Renato Santos de Almeida

    2015-01-01

    Full Text Available Patient satisfaction surveys can be an interesting way to improve quality and discuss the concept of patient-centered care. This study aimed to conduct a systematic review of the validated patient satisfaction measurement instruments applied in healthcare. The systematic review searched the MEDLINE/PubMed, LILACS, SciELO, Scopus and Web of Knowledge. The search strategy used the terms: "Patient Satisfaction" AND "Patient centered care" AND "Healthcare survey OR Satisfaction questionnaire" AND "Psychometric properties". 37 studies were included and almost all studies showed that satisfaction is a multidimensional construct. In these studies, 34 different instruments were used and most surveys contained the dimension patient-healthcare professional interactions, physical environment and management process. The COSMIN score for methodological quality showed that most of them scored a good or fair average. We can conclude that there is not a gold standard instrument for patient satisfaction assessment but some dimensions are essential for this construct.

  20. Compact optical integration instrument to measure intraocular straylight.

    Science.gov (United States)

    Ginis, Harilaos; Sahin, Onurcan; Pennos, Alexandros; Artal, Pablo

    2014-09-01

    Optical measurement of straylight in the human eye is a challenging task. Issues such as illumination geometry, detector sensitivity and dynamic range as well as various inherent artifacts must be addressed. We developed a novel instrument based on the principle of double-pass optical integration adapted for fast measurements in a clinical setting. The experimental setup was validated using four different diffusers introduced in front of the eyes of ten subjects. Measurement limitations and future implications of rapid optical measurement of straylight in ophthalmic diagnosis are discussed.

  1. Design of a compact, low-price, lifetime measuring instrument

    Science.gov (United States)

    Draxler, Sonja; Lippitsch, Max E.; Moeller, Reinhard; Tafeit, Erwin

    1994-08-01

    The technical requirements for a small, rugged, and moderately- priced device for measuring fluorescence lifetimes have been investigated. The suitability and performance of various lifetime measuring schemes were compared. Based on these investigations a compact time-domain instrument was developed allowing measurement of fluorescence decays with a time resolution well below 1 ns. A semiconductor laser (frequency-doubled, if necessary) is used as a light source. Detection is done with a miniaturized photomultiplier. In favorable cases measurement of a fluorescent decay curve is accomplished within less than one minute.

  2. Smartphone measurement engineering - Innovative challenges for science & education, instrumentation & training

    Science.gov (United States)

    Hofmann, D.; Dittrich, P.-G.; Duentsch, E.

    2010-07-01

    Smartphones have an enormous conceptual and structural influence on measurement science & education, instrumentation & training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  3. NEUTRON SCATTERING INSTRUMENTATION FOR MEASUREMENT OF MELT STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Richard Weber, Christopher Benmore

    2004-10-21

    This Phase II research project was focused on constructing and testing a facility for the measurement of the structure of hot solid and liquid materials under extreme conditions using neutron diffraction. The work resulted in measurements at temperatures of 3300 K, the highest ever performed in a neutron beam. Work was performed jointly by Containerless Research, Inc. and Argonne National Laboratory with significant interactions with engineers and scientists at the under construction-SNS facility in Oak Ridge, TN. The work comprised four main activities: Design and construct an advanced instrument for structural studies of liquids and hot solids using neutron scattering. Develop and test a software package for instrument control, data acquisition and analysis. Test and demonstrate the instrument in experiments at the GLAD beamline at IPNS. Evaluate requirements for performing experiments at the SNS. Develop interest from the potential user base and identify potential support for Phase III. The objectives of the research were met. A second-generation instrument was developed and constructed. The instrument design drew on the results of a formal design review which was held at Argonne National Laboratory during the Phase I research [1]. The review included discussion with potential instrument users, SNS scientists and engineers and various scientists involved with materials, glass, ceramics, and geological sciences. The instrument combines aerodynamic levitation with pulsed neutron diffraction in a controlled atmosphere. An important innovation was the use of pure vanadium levitation nozzles that effectively eliminated contributions from the sample environment to the measured data. The instrument employed a 250 Watt CO2 laser that was configured for Class I laser operation. The use of Class I laser configuration meant that operators could work with the equipment with minimal restrictions and so concentrate on the research activities. Instrument control and data

  4. Ares I Scale Model Acoustic Test Instrumentation for Acoustic and Pressure Measurements

    Science.gov (United States)

    Vargas, Magda B.; Counter, Douglas

    2011-01-01

    Ares I Scale Model Acoustic Test (ASMAT) is a 5% scale model test of the Ares I vehicle, launch pad and support structures conducted at MSFC to verify acoustic and ignition environments and evaluate water suppression systems Test design considerations 5% measurements must be scaled to full scale requiring high frequency measurements Users had different frequencies of interest Acoustics: 200 - 2,000 Hz full scale equals 4,000 - 40,000 Hz model scale Ignition Transient: 0 - 100 Hz full scale equals 0 - 2,000 Hz model scale Environment exposure Weather exposure: heat, humidity, thunderstorms, rain, cold and snow Test environments: Plume impingement heat and pressure, and water deluge impingement Several types of sensors were used to measure the environments Different instrument mounts were used according to the location and exposure to the environment This presentation addresses the observed effects of the selected sensors and mount design on the acoustic and pressure measurements

  5. Heat Transfer Measurements for a Film Cooled Turbine Vane Cascade

    Science.gov (United States)

    Poinsatte, Philip E.; Heidmann, James D.; Thurman, Douglas R.

    2008-01-01

    Experimental heat transfer and pressure measurements were obtained on a large scale film cooled turbine vane cascade. The objective was to investigate heat transfer on a commercial high pressure first stage turbine vane at near engine Mach and Reynolds number conditions. Additionally blowing ratios and coolant density were also matched. Numerical computations were made with the Glenn-HT code of the same geometry and compared with the experimental results. A transient thermochromic liquid crystal technique was used to obtain steady state heat transfer data on the mid-span geometry of an instrumented vane with 12 rows of circular and shaped film cooling holes. A mixture of SF6 and Argon gases was used for film coolant to match the coolant-to-gas density ratio of a real engine. The exit Mach number and Reynolds number were 0.725 and 2.7 million respectively. Trends from the experimental heat transfer data matched well with the computational prediction, particularly for the film cooled case.

  6. The Heated Halo for Space-Based Blackbody Emissivity Measurement

    Science.gov (United States)

    Gero, P.; Taylor, J. K.; Best, F. A.; Revercomb, H. E.; Garcia, R. K.; Adler, D. P.; Ciganovich, N. N.; Knuteson, R. O.; Tobin, D. C.

    2012-12-01

    The accuracy of radiance measurements with space-based infrared spectrometers is contingent on the quality of the calibration subsystem, as well as knowledge of its uncertainty. Upcoming climate benchmark missions call for measurement uncertainties better than 0.1 K (k=3) in radiance temperature for the detection of spectral climate signatures. Blackbody cavities impart the most accurate calibration for spaceborne infrared sensors, provided that their temperature and emissivity is traceably determined on-orbit. The On-Orbit Absolute Radiance Standard (OARS) has been developed at the University of Wisconsin and has undergone further refinement under the NASA Instrument Incubator Program (IIP) to meet the stringent requirements of the next generation of infrared remote sensing instruments. It provides on-orbit determination of both traceable temperature and emissivity for calibration blackbodies. The Heated Halo is the component of the OARS that provides a robust and compact method to measure the spectral emissivity of a blackbody in situ. A carefully baffled thermal source is placed in front of a blackbody in an infrared spectrometer system, and the combined radiance of the blackbody and Heated Halo reflection is observed. Knowledge of key temperatures and the viewing geometry allow the blackbody cavity spectral emissivity to be calculated. We present the results from the Heated Halo methodology implemented with a new Absolute Radiance Interferometer (ARI), which is a prototype space-based infrared spectrometer designed for climate benchmarking. We show the evolution of the technical readiness level of this technology and we compare our findings to models and other experimental methods of emissivity determination.

  7. Survey Instrument Validity Part II: Validation of a Survey Instrument Examining Athletic Trainers' Knowledge and Practice Beliefs Regarding Exertional Heat Stroke

    Science.gov (United States)

    Burton, Laura J.; Mazerolle, Stephanie M.

    2011-01-01

    Objective: The purpose of this article is to discuss the process of developing and validating an instrument to investigate an athletic trainer's attitudes and behaviors regarding the recognition and treatment of exertional heat stroke. Background: Following up from our initial paper, which discussed the process of survey instrument design and…

  8. Optical radiation measurements for photovoltaic applications: instrumentation uncertainty and performance

    Science.gov (United States)

    Myers, Daryl R.; Reda, Ibrahim; Wilcox, Stephen; Andreas, Afshin

    2004-11-01

    Evaluating the performance of photovoltaic (PV) devices in the laboratory and in the field requires accurate knowledge of the optical radiation stimulating the devices. We briefly describe the radiometric instrumentation used for characterizing broadband and spectral irradiance for PV applications. Spectral radiometric measurement systems are used to characterize solar simulators (continuous and pulsed, or flash sources) and natural sunlight. Broadband radiometers (pyranometers and pyrheliometers) are used to assess solar resources for renewable applications and develop and validate broadband solar radiation models for estimating system performance. We describe the sources and magnitudes of uncertainty associated with calibrations and measuremens using these instruments. The basic calibration and measurement uncertainty associated with this instrumentaion are based on the guidlines described in the International Standards Organization (ISO) and Bureau INternationale des Poids et Mesures (BIPM) Guide to Uncertainty in Measurement. The additional contributions to uncertainty arising from the uncertainty in characterization functions and correction schemes are discussed and ilustrated. Finally, empirical comparisons of several solar radiometer instrumentation sets illustrate that the best measurement accuracy for broadband radiation is on the order of 3%, and spectrally dependent uncertainty for spectroradiometer systems range from 4% in the visible to 8% to 10% in the ultraviolet and infrared.

  9. Virtual Instrument for Emissions Measurement of Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Armando Pérez

    2016-01-01

    Full Text Available The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM, and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user.

  10. Virtual Instrument for Emissions Measurement of Internal Combustion Engines

    Science.gov (United States)

    Pérez, Armando; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user. PMID:27034893

  11. Instrumentation

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Journal Scope:Instrumentation is a high quality open access peer reviewed research journal.Authors are solicited to contribute to these journals by submitting articles that illustrate most up-to-date research results,projects,surveying works and industrial experiences that describe significant advances in the instrumental science.The mission of the Instrumentation is

  12. Improvement of Heating Method for Measuring the Wetness of Flowing Wet Steam

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    In this paper,an improvement of heating method for measuring wetness of the flowing wet steam is developed,the basic principle of the heating method is presented and the mathematical model has been built for analyzing the thermodynamics problems during the process of heating,Moreover,an instrument for measuring wetness of wet steam flow was designed and made out.This instument has been used for measuring wetness of the wet steam flow at the outlet of the nozzle rig in Thermal Turbine Laboratory,Xi'an Jiaotong University,By analyzing the relative error of the result,it was found that this instrument has fairly high accuracy,it can be used as the prototype of practical instrument and has an important applicable value in engineering.

  13. The influence of thoron on instruments measuring radon activity concentration.

    Science.gov (United States)

    Michielsen, N; Bondiguel, S

    2015-11-01

    Thoron, the isotope 220 of radon, is a radionuclide whose concentration may influence the measurement of the activity concentration of (222)Rn in the air. If in the case of continuous and active sampling measuring instruments, using a pump for example, the influence of thoron on radon measurement is obvious and is taken into account in the apparatus, it is often assumed that in the case of a passive sampling, by diffusion through a filter for example, this thoron influence is negligible. This is due to the very short radioactive half-life of thoron, 55.6 s (3.82 d for (222)Rn), and the assumption that the diffusion time of thoron in the detection chamber is long enough beside that of the thoron half-life. The objective of this study is to check whether this assumption is true or not for different kinds of commercial electronic apparatus used to measure radon activity concentration from soil to dwellings. First of all, the devices were calibrated in activity concentration of radon, and then they were exposed to a controlled thoron atmosphere. The experiments concerning the thoron aimed to investigate the sensitivity to thoron in the radon measuring mode of the apparatus. Results of these experiments show that all devices have a very quick answer to thoron atmosphere, even though the sensitivities vary from one instrument to another. Results clearly show that this influence on radon measurement due to the thoron is observed also after the exposition because of the decay of (212)Pb and its progenies. In conclusion, the sensitivity to thoron in the radon measuring mode depends strongly on the type of instruments. The results of the present investigation show that for some apparatus, the influence of thoron cannot be disregarded especially when measuring radon in soil.

  14. Roughness measurements with an AFM-CMM instrument

    DEFF Research Database (Denmark)

    Marinello, Francesco; Bariani, Paolo; De Chiffre, Leonardo;

    2005-01-01

    In this paper, application of a Large Range AFM to roughness analyses is presented: measurements on different calibration standards covering a range of 4.8×0.1 mm2 were performed. Upon extraction of single profiles from the three-dimensional data set, roughness can be evaluated in compliance...... with ISO standards. Profiles from the Large range AFM were directly compared with those obtained by a traceable stylus instrument, resulting from probing the same surface region....

  15. Spectral measurements of PMCs from SBUV/2 instruments

    Science.gov (United States)

    Deland, Matthew T.; Shettle, Eric P.; Thomas, Gary E.; Olivero, John J.

    2006-01-01

    The SBUV/2 (Solar Backscattered Ultraviolet, model 2) instrument is designed to monitor ozone stratospheric profile and total column ozone using measurements of the Earth's backscattered ultraviolet albedo. We have previously demonstrated that the normal radiance measurements from SBUV/2 instruments, which sample 12 discrete wavelengths between 252 and 340 nm during each scan, can be used to identify polar mesospheric clouds (PMCs). Some SBUV/2 instruments also periodically view the earth in continuous scan mode, covering the wavelength range 160 400 nm with 0.15 nm sampling. Analysis of these data show PMC occurrence rates similar to the normal discrete scan results, although the observation technique reduces the number of daily measurements by a factor of six. PMC observed by SBUV/2 instruments show a monotonic variation in the residual spectral albedo over the wavelength range 250 300 nm, with maximum enhancements of 10 15% at 250 nm. This result is consistent with microphysical model predictions from Jensen [1989.A numerical model of polar mesospheric cloud formation and evolution, Ph. D. Thesis, University of Colorado]. We find no evidence for a systematic localized increase in PMC residual albedo for wavelengths near 260 nm, in contrast to the recently reported results from the MSX UVISI instrument [Carbary J.F., et al., 2004. Evidence for bimodal particle distribution from the spectra of polar mesospheric clouds. Geophysics Research. Letters 31, L13108]. This result is observed for three different SBUV/2 instruments in both Northern and Southern Hemisphere data over a 13-year span. Our Mie scattering calculations show that the location and magnitude of the 260 nm “hump” feature is dependent upon the specific scattering angles appropriate to the MSX measurements. Although it explains the MSX spectrum, the bimodal size distribution proposed by Carbary et al. (2004), cannot explain the lack of scattering angle dependence of the SBUV/2 spectral shapes. The

  16. Cryogenic instrumentation for fast current measurement in a silicon single electron transistor

    Science.gov (United States)

    Ferrus, T.; Hasko, D. G.; Morrissey, Q. R.; Burge, S. R.; Freeman, E. J.; French, M. J.; Lam, A.; Creswell, L.; Collier, R. J.; Williams, D. A.; Briggs, G. A. D.

    2009-08-01

    We present a realization of high bandwidth instrumentation at cryogenic temperatures and for dilution refrigerator operation that possesses advantages over methods using radio frequency single electron transistor or transimpedance amplifiers. The ability for the low temperature electronics to carry out faster measurements than with room temperature electronics is investigated by the use of a phosphorous-doped single electron transistor. A single shot technique is successfully implemented and used to observe the real-time decay of a quantum state. A discussion on various measurement strategies is presented and the consequences on electron heating and noise are analyzed.

  17. 30 CFR 75.1719-3 - Methods of measurement; light measuring instruments.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methods of measurement; light measuring... § 75.1719-3 Methods of measurement; light measuring instruments. (a) Compliance with § 75.1719-1(d... intensity measurements may be made at any time longwall or shortwall mining equipment is operated...

  18. Coherent Laser Instrument Would Measure Range and Velocity

    Science.gov (United States)

    Chang, Daniel; Cardell, Greg; San Martin, Alejandro; Spiers, Gary

    2005-01-01

    A proposed instrument would project a narrow laser beam that would be frequency-modulated with a pseudorandom noise (PN) code for simultaneous measurement of range and velocity along the beam. The instrument performs these functions in a low mass, power, and volume package using a novel combination of established techniques. Originally intended as a low resource- footprint guidance sensor for descent and landing of small spacecraft onto Mars or small bodies (e.g., asteroids), the basic instrument concept also lends itself well to a similar application guiding aircraft (especially, small unmanned aircraft), and to such other applications as ranging of topographical features and measuring velocities of airborne light-scattering particles as wind indicators. Several key features of the instrument s design contribute to its favorable performance and resource-consumption characteristics. A laser beam is intrinsically much narrower (for the same exit aperture telescope or antenna) than a radar beam, eliminating the need to correct for the effect of sloping terrain over the beam width, as is the case with radar. Furthermore, the use of continuous-wave (CW), erbium-doped fiber lasers with excellent spectral purity (narrow line width) permits greater velocity resolution, while reducing the laser s power requirement compared to a more typical pulsed solid-state laser. The use of CW also takes proper advantage of the increased sensitivity of coherent detection, necessary in the first place for direct measurement of velocity using the Doppler effect. However, measuring range with a CW beam requires modulation to "tag" portions of it for time-of-flight determination; typically, the modulation consists of a PN code. A novel element of the instrument s design is the use of frequency modulation (FM) to accomplish both the PN-modulation and the Doppler-bias frequency shift necessary for signed velocity measurements. This permits the use of a single low-power waveguide electrooptic

  19. Two phase capillary pumped heat transfer in the Instrument Thermal Test Bed

    Science.gov (United States)

    Didion, Jeffrey R.; Martins, Mario S.

    1992-01-01

    An experimental study of the thermal performance of two evaporators installed in the Instrument Thermal Test Bed (ITTB) was conducted. The ITTB was operated as a capillary pumped loop (CPL) with a transport length of approximately 12 meters. Empirical determinations of a general start up procedure, overall heat transfer coefficient, and minimum operating power were accomplished for each evaporator. Additionally, a detailed thermal model was developed for the High Power Spacecraft Thermal Management (HPSTM) evaporator and validated.

  20. Method of Measurement Isobaric Heat Capacity of the Organic Liquid

    Directory of Open Access Journals (Sweden)

    Yu.A. Neruchev

    2013-12-01

    Full Text Available A technique for measuring the heat capacity of liquids on modernized authors the installation of IT-Cp-400 is considered. The results of measurements the isobaric heat capacity of some bromosubstituted n-alkanes is presented.

  1. Instrumentation

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Journal Scope:Instrumentation is a high quality open access peer reviewed research journal.Authors are solicited to contribute to these journals by submitting articles that illustrate most up-to-date research results,projects,surveying works and industrial experiences that describe significant advances in the instrumental science.The mission of the Instrumentation is to provide a platform for the researchers,academicians,

  2. High resolution temperature measurement technique for measuring marine heat flow

    Institute of Scientific and Technical Information of China (English)

    QIN; YangYang; YANG; XiaoQiu; WU; BaoZhen; SUN; ZhaoHua; SHI; XiaoBin

    2013-01-01

    High resolution temperature measurement technique is one of the key techniques for measuring marine heat flow. Basing on Pt1000 platinum resistance which has the characteristics of high accuracy and good stability, we designed a bridge reversal excitation circuit for high resolution temperature measurement. And the deep ocean floor in-situ test results show that: (1) temperature deviation and peak-to-peak resolution of the first version circuit board (V1) are 1.960-1.990 mK and 0.980-0.995 m Kat 1.2-2.7°C, respectively; and temperature deviation and peak-to-peak resolution of the second circuit board (V2) are 2.260mK and 1.130 mK at 1.2-1.3°C, respectively; (2) During the 2012NSFC-IndOcean cruise, seafloor geothermal gradient at Ind2012HF03,-07 and-12 stations (water depth ranges from 3841 to 4541 m) were successfully measured, the values are 59.1,75.1 and 71.6°C/km, respectively. And the measurement errors of geothermal gradient at these three stations are less than 3.0% in terms of the peak-to-peak resolution. These indicate that the high resolution temperature measurement technique based on Pt1000 platinum resistance in this paper can be applied to marine heat flow measurement to obtain high precision geothermal parameters.

  3. Project Vanguard Magnetic-Field Instrumentation and Measurements

    Science.gov (United States)

    Heppner, J. P.; Storarik, J. D.; Shapiro, I. R.; Cain, J. C.

    1960-01-01

    The Vanguard III Satellite, 1959 Eta, placed in orbit on September 18, 1959, contained a proton precessional magnetometer for magnetic-field studies of exceptional accuracy. Throughout the 85 days of battery life, the instrumentation functioned according to plan. Measurements of the absolute total field were obtained in the meridian belts of Minitrack stations at altitudes 510 to 3750 kilometers and at latitudes +/- 33.4 degrees. Surface magnetic observatories were operated at eight of the Minitrack stations to furnish correlative information. This paper reviews briefly the instrumentation employed in these experiments, and the data collection and reduction procedures. Emphasis is given to results from a preliminary analysis. Specifically, this analysis bears on the accuracy of computed fields, the stability of the earth's field in space, the Capetown anomaly, and magnetic-storm effects.

  4. LHC Beam Instrumentation: Beam Profile Measurements (2/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  5. Measurement of heat transfer coefficient using termoanemometry methods

    Directory of Open Access Journals (Sweden)

    Dančová P.

    2014-03-01

    Full Text Available This work deals with a measurement of heat transfer from a heated flat plate on which a synthetic jet impacts perpendicularly. Measurement of a heat transfer coefficient (HTC is carried out using the hot wire anemometry method with glue film probe Dantec 55M47. The paper brings also results of velocity profiles measurements and turbulence intensity calculations.

  6. Measuring Heat Flow on the Moon and Mars- The Heat Flow and Physical Properties Package HP-cubed

    Science.gov (United States)

    Spohn, T.; Grott, M.; Ho, T.; van Zoest, T.; Kargl, G.; Smrekar, S. E.; Hudson, T. L.

    2010-12-01

    With only two successful heat flow measurements performed on the surface of the Moon to date, the thermal state of the Moon remains poorly constrained. Furthermore, measurements were taken close to the boundary of the Procellarum KREEP terraine, and the obtained values may not be representative for the bulk of the planet. For Mars, no heat flow measurement is yet available. Here we will present the Heat Flow and Physical Properties Package HP-cubed a self-penetrating, robotic heat flow probe. The instrument consists of electrical and temperature sensors that will be emplaced into the lunar subsurface by means of an electro-mechanical hammering mechanism. The instruement is foreseen to penetrate 3-5 m into the planet’s soil and will perform depth resolved measurements, from which the surface planetary heat flow can be directly deduced. The instrument has been pre-developed in two ESA funded precursor studies and has been further developed in the framework of ESA’s ExoMars mission. The current readiness level of the instrument is TRL 5.62 (ESA PDR Apr. 2009) which has been achieved with several Breadboards developed and tested between 2004 and 2009. As no drilling is required to achieve soil penetration, HP-cubed is a relatively lightweight heat flow probe, weighting less than 1800 g. It has been further studied as parts of the discovery proposals Lunette and GEMS and for the proposed Japanese lunar mission SELENE 2 The instrument consists of an electro-mechanic mole, a pay-load compartment, and a tether equipped with temperature sensors. The latter can be actively heated for thermal conductivity measurements. A tiltmeter and acceleraometer will help to track the path of the mole. The payload compartment has room for sensors such as a permittivity probe, a bore-hole camera, and/or a masspectrometer. Following deployment of the instrument, instrument operations will be split into two phases: During the penetration phase soil intrusion is achieved by means of the

  7. The COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN and how to select an outcome measurement instrument

    Directory of Open Access Journals (Sweden)

    Lidwine B. Mokkink

    2016-01-01

    Full Text Available Background: COSMIN (COnsensus-based Standards for the selection of health Measurement INstruments is an initiative of an international multidisciplinary team of researchers who aim to improve the selection of outcome measurement instruments both in research and in clinical practice by developing tools for selecting the most appropriate available instrument. Method: In this paper these tools are described, i.e. the COSMIN taxonomy and definition of measurement properties; the COSMIN checklist to evaluate the methodological quality of studies on measurement properties; a search filter for finding studies on measurement properties; a protocol for systematic reviews of outcome measurement instruments; a database of systematic reviews of outcome measurement instruments; and a guideline for selecting outcome measurement instruments for Core Outcome Sets in clinical trials. Currently, we are updating the COSMIN checklist, particularly the standards for content validity studies. Also new standards for studies using Item Response Theory methods will be developed. Additionally, in the future we want to develop standards for studies on the quality of non-patient reported outcome measures, such as clinician-reported outcomes and performance-based outcomes. Conclusions: In summary, we plea for more standardization in the use of outcome measurement instruments, for conducting high quality systematic reviews on measurement instruments in which the best available outcome measurement instrument is recommended, and for stopping the use of poor outcome measurement instruments.

  8. Measurement of Heat Flux at Metal-Mold Interface during Casting Solidification

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL

    2006-01-01

    All previous studies on interfacial heat transfer coefficient have been based on indirect methods for estimating the heat flux that employed either inverse heat transfer analysis procedures or instrumentation arrangements to measure temperatures and displacements near the metal-mold interface. In this paper, the heat transfer at the metal-mold interfaces is investigated using a sensor for the direct measurement of heat flux. The heat flux sensor (HFS) was rated for 700oC and had a time response of less than 10 ms. Casting experiments were conducted using graphite molds for aluminum alloy A356. Several casting experiments were performed using a graphite coating and a boron nitride coating. The measurement errors were estimated. The temperature of the mold surface was provided by the HFS while the temperature of the casting surface was measured using a thermocouple. Results for the heat transfer coefficients were obtained based on measured heat flux and temperatures. Four stages were clearly identified for the variation in time of the heat flux. Values of the heat transfer coefficient were in good agreement with data from previous studies.

  9. A new instrument to measure plot-scale runoff

    Directory of Open Access Journals (Sweden)

    R. D. Stewart

    2014-11-01

    Full Text Available Accurate measurement of the amount and timing of surface runoff at multiple scales is needed to understand fundamental hydrological processes. At the plot-scale (i.e., length scales on the order of 1 to 10 m current methods for direct measurement of runoff either store the water in a collection vessel, which is unconducive to long-term monitoring studies, or utilize expensive installations such as large-scale tipping buckets or flume/weir systems. We developed an alternative low-cost, robust and reliable instrument to measure runoff that we call the "Upwelling Bernoulli Tube" (UBeTube. The UBeTube instrument is a pipe with a slot machined in its side that is installed vertically at the base of a runoff collection system. The flow rate through the slot is inferred by measuring the water height within the pipe. The geometry of the slot can be modified to suit the range of flow rates expected for a given site; we demonstrate a slot geometry which is capable of measuring flow rates across more than three orders of magnitude (up to 300 L min−1 while requiring only 30 cm of hydraulic head. System accuracy is dependent on both the geometry of the slot and the accuracy of the water level measurements. With an off-the-shelf pressure transducer sensor, the mean theoretical error for the demonstrated slot geometry was ~17% (ranging from errors of more than 50% at low flow rates to less than 2% at high flow rates, while the observed error during validation was 1–25%. A simple correction factor reduced this mean error to −14%, and further reductions in error could be achieved through the use of taller, narrower slot dimensions (which requires greater head gradients to drive flow or through more accurate water level measurements. The UBeTube device has been successfully employed in a long-term rainfall-runoff study, demonstrating the ability of the instrument to measure surface runoff across a range of flows and conditions.

  10. Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2008-01-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  11. Field Measurements of Heating System Efficiency in Nine Electrically-Heated Manufactured Homes.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Bob; Siegel, J.; Palmiter, L.; Baylon, D.

    1996-07-01

    This report presents the results of field measurements of heating efficiency performed on nine manufactured homes sited in the Pacific Northwest. The testing procedure collects real-time data on heating system energy use and heating zone temperatures, allowing direct calculation of heating system efficiency.

  12. Instrument maintenance of ultrasonic influences parameters measurement in technological processes

    Directory of Open Access Journals (Sweden)

    Tomal V. S.

    2008-04-01

    Full Text Available The contact and non-contact vibration meters for intermittent and continuous control of the vibration amplitude in the ultrasonic technological equipment have been developed. And in order to estimate the cavitation intensity in liquids the authors have developed cavitation activity indicators and cavitation sensitivity meters, allowing to measure the magnitude of the signal level in the range of maximum spectral density of cavitation noise. The developed instruments allow to improve the quality of products, reduce the defect rate and power consumption of equipment by maintaining optimum conditions of the process.

  13. LEDA beam diagnostics instrumentation: Measurement comparisons and operational experience

    Science.gov (United States)

    Gilpatrick, J. D.; Barr, D.; Bruhn, D.; Day, L. A.; Kasemir, K. U.; Kamperschroer, J. H.; Ledford, J.; Lysenko, W.; Madsen, D. W.; Martinez, D. G.; O'Hara, J. F.; Pieck, M.; Power, J. F.; Sellyey, W.; Shurter, R. B.; Stettler, M. W.

    2000-11-01

    The Low Energy Demonstration Accelerator (LEDA) facility has been used to characterize the pulsed- and cw-beam performance of a 6.7 MeV, 100 mA radio frequency quadrupole (RFQ). Diagnostic instrumentation, primarily located in a short beam transport downstream of the RFQ, allow facility commissioners and operators to measure and monitor the RFQ's accelerated and total beam transmission, beam loss, bunched beam current, beam energy and output phase, and beam position. Transverse beam profile measurements are acquired under both low and high duty-factor pulsed beam conditions using a slow wire scanner and a camera that images beam-induced fluorescence. The wire scanner is also used to acquire transverse beam emittance information using a technique known as a "quad scan". This paper reviews the measurement performance and discusses the resulting data.

  14. Solar ultraviolet irradiance measurements, instrumentation, intercomparisons and interpretations

    Energy Technology Data Exchange (ETDEWEB)

    Thorseth, Trond Morten

    2000-07-01

    The thesis reports studies of stabile instruments that are capable of detecting small alterations in ultraviolet irradiation over a long period. A central theme in the work has been to improve the measuring systems for continuous research based monitoring of natural variations in the ultraviolet irradiation from the sun. Methods for controlling the stability and continually secure the quality of the collected data. The causes of measuring errors are mapped and methods for the correction of collected data are developed. The methods and measuring systems for collecting the data have been adapted to the Norwegian climate and geography. The work has lead to an increased understanding of the natural variation in the ultraviolet radiation from the sun and what factors in the atmosphere that influences the process. The collected data and the developed methods for the quality control have increased the understanding of the ultraviolet irradiation climate in Europe.

  15. Heat kernel measures on random surfaces

    CERN Document Server

    Klevtsov, Semyon

    2015-01-01

    The heat kernel on the symmetric space of positive definite Hermitian matrices is used to endow the spaces of Bergman metrics of degree k on a Riemann surface M with a family of probability measures depending on a choice of the background metric. Under a certain matrix-metric correspondence, each positive definite Hermitian matrix corresponds to a Kahler metric on M. The one and two point functions of the random metric are calculated in a variety of limits as k and t tend to infinity. In the limit when the time t goes to infinity the fluctuations of the random metric around the background metric are the same as the fluctuations of random zeros of holomorphic sections. This is due to the fact that the random zeros form the boundary of the space of Bergman metrics.

  16. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised.

  17. Quantifying soil CO2 respiration measurement error across instruments

    Science.gov (United States)

    Creelman, C. A.; Nickerson, N. R.; Risk, D. A.

    2010-12-01

    A variety of instrumental methodologies have been developed in an attempt to accurately measure the rate of soil CO2 respiration. Among the most commonly used are the static and dynamic chamber systems. The degree to which these methods misread or perturb the soil CO2 signal, however, is poorly understood. One source of error in particular is the introduction of lateral diffusion due to the disturbance of the steady-state CO2 concentrations. The addition of soil collars to the chamber system attempts to address this perturbation, but may induce additional errors from the increased physical disturbance. Using a numerical 3D soil-atmosphere diffusion model, we are undertaking a comprehensive comparative study of existing static and dynamic chambers, as well as a solid-state CTFD probe. Specifically, we are examining the 3D diffusion errors associated with each method and opportunities for correction. In this study, the impact of collar length, chamber geometry, chamber mixing and diffusion parameters on the magnitude of lateral diffusion around the instrument are quantified in order to provide insight into obtaining more accurate soil respiration estimates. Results suggest that while each method can approximate the true flux rate under idealized conditions, the associated errors can be of a high magnitude and may vary substantially in their sensitivity to these parameters. In some cases, factors such as the collar length and chamber exchange rate used are coupled in their effect on accuracy. Due to the widespread use of these instruments, it is critical that the nature of their biases and inaccuracies be understood in order to inform future development, ensure the accuracy of current measurements and to facilitate inter-comparison between existing datasets.

  18. Heat transfer measurements of the 1983 kilauea lava flow.

    Science.gov (United States)

    Hardee, H C

    1983-10-07

    Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.

  19. Instrumentation for the measurement of autofluorescence in human skin

    Science.gov (United States)

    Graaff, Reindert; Meerwaldt, Robbert; Lutgers, Helen L.; Baptist, Rene; de Jong, Ed D.; Zijp, Jaap R.; Links, Thera P.; Smit, Andries J.; Rakhorst, Gerhard

    2005-04-01

    A setup to measure skin autofluorescence was developed to assess accumulation of advanced glycation endproducts (AGE) in patients noninvasively. The method applies direct blacklight tube illumination of the skin of the lower arm, and spectrometry. The setup displays skin autofluorescence (AF) as a ratio of mean intensities detected from the skin between 420-600 nm and 300-420 nm, respectively. In an early clinical application in 46 and control subjects matched for age and gender, AF was significantly increased in the patients (p = 0.015), and highly correlated with skin AGE's that were determined from skin biopsies in both groups. A large follow-up study on type 2 diabetes mellitus, ongoing since 2001 with more than 1000 subjects, aims to assess the value of the instrument in predicting chronic complications of diabetes. At baseline, a relation with age, glycemic status and with complications present was found. In a study in patients with end stage renal disease on dialysis AF was a strong and independent predictor of total and cardiovascular mortality. A commercial version of this AGE-reader is now under development and becomes available early 2005 (DiagnOptics B.V., Groningen, The Netherlands). One of the remaining questions, that will be answered by measuring so-called Exciation-Emission Matrices (EEM's) of the skin tissue in vivo, is whether a more selective choice of wavelengths is more strongly related to clinical characteristics. An experimental instrument to measure these EEM's was, therefore, developed as well. Clinical measurements are underway of EEM's in patient groups with diabetes mellitus and in healthy volunteers.

  20. Quantifying and handling errors in instrumental measurements using the measurement error theory

    DEFF Research Database (Denmark)

    Andersen, Charlotte Møller; Bro, R.; Brockhoff, P.B.

    2003-01-01

    Measurement error modelling is used for investigating the influence of measurement/sampling error on univariate predictions of water content and water-holding capacity (reference measurement) from nuclear magnetic resonance (NMR) relaxations (instrumental) measured on two gadoid fish species....... This is a new way of using the measurement error theory. Reliability ratios illustrate that the models for the two fish species are influenced differently by the error. However, the error seems to influence the predictions of the two reference measures in the same way. The effect of using replicated x......-measurements is illustrated by simulated data and by NMR relaxations measured several times on each fish. The standard error of the Physical determination of the reference values is lower than the standard error of the NMR measurements. In this case, lower prediction error is obtained by replicating the instrumental...

  1. Does an instrumented treadmill correctly measure the ground reaction forces?

    Directory of Open Access Journals (Sweden)

    Patrick A. Willems

    2013-11-01

    Since the 1990s, treadmills have been equipped with multi-axis force transducers to measure the three components of the ground reaction forces during walking and running. These measurements are correctly performed if the whole treadmill (including the motor is mounted on the transducers. In this case, the acceleration of the treadmill centre of mass relative to the reference frame of the laboratory is nil. The external forces exerted on one side of the treadmill are thus equal in magnitude and opposite in direction to the external forces exerted on the other side. However, uncertainty exists about the accuracy of these measures: due to friction between the belt and the tread-surface, due to the motor pulling the belt, some believe that it is not possible to correctly measure the horizontal components of the forces exerted by the feet on the belt. Here, we propose a simple model of an instrumented treadmill and we demonstrate (1 that the forces exerted by the subject moving on the upper part of the treadmill are accurately transmitted to the transducers placed under it and (2 that all internal forces – including friction – between the parts of the treadmill are cancelling each other.

  2. Instrument for benzene and toluene emission measurements of glycol regenerators

    Science.gov (United States)

    Hanyecz, Veronika; Mohácsi, Árpád; Puskás, Sándor; Vágó, Árpád; Szabó, Gábor

    2013-11-01

    We introduce an in-field and in-explosive atmosphere useable instrument, which can measure the benzene and toluene concentration in two gas and two glycol samples produced by natural gas dehydration units. It is a two-phase, on-line gas chromatograph with a photoacoustic spectroscopy based detector. The time resolution is 10 min per cycle and the minimum detectable concentrations are 2 mg m-3 for benzene, 3 mg m-3 for toluene in natural gas, and 5 g m-3 for benzene and 6 g m-3 for toluene in glycol. Test measurements were carried out at a dehydration plant belonging to MOL Hungarian Oil and Gas Company. Benzene and toluene emissions of gas dehydration unit are calculated from the measured values based on mass balance of a glycol regenerator. The relationship between the outdoor temperature and the measured concentration was observed which is caused by temperature-dependent operation of the whole dehydration unit. Emission decreases with increase of outdoor temperature.

  3. Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Buehrer, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-12-31

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs.

  4. Instrumentation

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Journal Scope:Instrumentation is a high quality open access peer reviewed research journal,Authors are solicited to contribute to these journals by submitting articles that illustrate most up-to-date research results,projects,surveying works and industrial

  5. Temperatures stabilization of a field instrument for uranium enrichment measurements

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R.; Wawrowski, S.; Charland, M. [Canberra Industries, Inc., Meriden, CT (United States)] [and others

    1996-12-31

    Enrichment measurements with sodium iodide (NaI) detectors are hampered with a number of problems related to the temperature behavior of NaI crystals and the associated electronics. This problem is of particular concern in applications requiring the use of fixed regions of interest; such applications are used by the International Atomic Energy Agency (IAEA) in Vienna. The Canberra IMCA is a new portable instrument for such applications which can use either a NaI or a Ge detector. In developing the IMCA to meet the IAEA requirements for NaI detectors, Canberra has designed a system with a new temperature stabilization method capable of maintaining the detector stability at 0.5% over a temperature range of -10 to +50{degrees}C. This paper includes a detailed description of this IMCA temperature stabilization system, as well as test results for a range of temperatures using uranium standards.

  6. Set of instruments for measuring the characteristics of optical waveguides in a production environment

    Directory of Open Access Journals (Sweden)

    V. A. Svirid

    1986-04-01

    Full Text Available Developed a set of instruments, which includes instruments for measuring aperture characteristics of OB, OB dispersion characteristics and the loss agents. Considered applicable measurement methods, the design and specifications of the devices.

  7. The method of translation additive and multiplicative error in the instrumental component of the measurement uncertainty

    Science.gov (United States)

    Vasilevskyi, Olexander M.; Kucheruk, Volodymyr Y.; Bogachuk, Volodymyr V.; Gromaszek, Konrad; Wójcik, Waldemar; Smailova, Saule; Askarova, Nursanat

    2016-09-01

    The paper proposes a method of conversion additive and multiplicative errors, mathematical models are obtained by a Taylor expansion of the transformation equations used measuring instruments in the instrumental component of the measurement uncertainty.

  8. Validation of low-cost ozone measurement instruments suitable for use in an air-quality monitoring network

    Science.gov (United States)

    Williams, David E.; Henshaw, Geoff S.; Bart, Mark; Laing, Greer; Wagner, John; Naisbitt, Simon; Salmond, Jennifer A.

    2013-06-01

    This paper presents a novel low-cost instrument that uses a sensor based on conductivity changes of heated tungstic oxide, which is capable of accurately measuring ambient concentrations of ozone. A combination of temperature steps and air flow-rate steps is used to continually reset and re-zero the sensor. A two-stage calibration procedure is presented, in which a nonlinear transformation converts sensor resistance to a signal linear in ozone concentration, then a linear correlation is used to align the calibration with a reference instrument. The required calibration functions specific for the sensor, and control system for air flow rate and sensor temperature, are housed with the sensor in a compact, simple-to-exchange assembly. The instrument can be operated on solar power and uses cell phone technology to enable monitoring in remote locations. Data from field trials are presented here to demonstrate that both the accuracy and the stability of the instrument over periods of months are within a few parts-per-billion by volume. We show that common failure modes can be detected through measurement of signals available from the instrument. The combination of long-term stability, self-diagnosis, and simple, inexpensive repair means that the cost of operation and calibration of the instruments is significantly reduced in comparison with traditional reference instrumentation. These instruments enable the economical construction and operation of ozone monitoring networks of accuracy, time resolution and spatial density sufficient to resolve the local gradients that are characteristic of urban air pollution.

  9. The measurement of surface heat flux using the Peltier effect

    Energy Technology Data Exchange (ETDEWEB)

    Shewen, E.C. (Pavement Management Systems Ltd., Cambridge, Ontario (Canada)); Hollands, K.G.T., Raithby, G.D. (Univ. of Waterloo, Ontario (Canada))

    1989-08-01

    Calorimetric methods for measuring surface heat flux use Joulean heating to keep the surface isothermal. This limits them to measuring the heat flux of surfaces that are hotter than their surroundings. Presented in this paper is a method whereby reversible Peltier effect heat transfer is used to maintain this isothermality, making it suitable for surfaces that are either hotter or colder than the surroundings. The paper outlines the theory for the method and describes physical models that have been constructed, calibrated, and tested. The tested physical models were found capable of measuring heat fluxes with an absolute accuracy of 1 percent over a wide range of temperature (5-50C) and heat flux (15-500 W/m{sup 2}), while maintaining isothermality to within 0.03 K. A drawback of the method is that it appears to be suited only for measuring the heat flux from thick metallic plates.

  10. The IMCA: A field instrument for uranium enrichment measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, G.H.; Koskelo, M.; Moeslinger, M. [Canberra Industries, Meriden, CT (United States); Mayer, R.L. II; McGinnis, B.R. [Lockheed Martin Utility Services, Piketon, OH (United States). Portsmouth Gaseous Diffusion Plant; Wishard, B. [International Atomic Energy Agency, Vienna (Austria)

    1996-12-31

    The IMCA (Inspection Multi-Channel Analyzer) is a portable gamma-ray spectrometer designed to measure the enrichment of uranium either in a laboratory or in the field. The IMCA consists of a Canberra InSpector Multi-Channel Analyzer, sodium iodide or a planar germanium detector, and special application software. The system possesses a high degree of automation. The IMCA uses the uranium enrichment meter principle, and is designed to meet the International Atomic Energy Agency (IAEA) requirements for the verification of enriched uranium materials. The IMCA is available with MGA plutonium isotopic analysis software or MGAU uranium analysis software as well. In this paper, the authors present a detailed description of the hardware and software of the IMCA system, as well as results from preliminary measurements testing compliance of IMCA with IAEA requirements using uranium standards and UF6 cylinders. Measurements performed on UF6 cylinders in the field under variable environmental conditions (temperatures ranging from 0 to 35 C) have shown that good results can be achieved. The enrichment of UF6 contained in the cylinder is determined by using calibration constants generated from an instrument calibration, using traceable uranium oxide standards, performed in the laboratory under controlled environmental conditions. The IMCA software is designed to make the necessary matrix and container corrections to ensure that accurate results are achieved in the field.

  11. Dye sublimation as a measure of accumulated heat exposure.

    Science.gov (United States)

    Shi, Xiaoju; Ying, Xiaofang; Deng, Zongwu

    2013-10-21

    Heat history monitor: Combination of the sublimation and adsorption processes of specific dyes can be used as a measure of accumulated heat exposure. Mass transfer from the sublimation layer to the adsorption layer strongly depends on temperature and results in a gradual color change in the adsorption layer. The total color change reflects the accumulated heat exposure.

  12. Heat-capacity measurements on small samples: The hybrid method

    NARCIS (Netherlands)

    Klaasse, J.C.P.; Brück, E.H.

    2008-01-01

    A newly developed method is presented for measuring heat capacities on small samples, particularly where thermal isolation is not sufficient for the use of the traditional semiadiabatic heat-pulse technique. This "hybrid technique" is a modification of this heat-pulse method in case the temperature

  13. Heat-capacity measurements on small samples: The hybrid method

    NARCIS (Netherlands)

    Klaasse, J.C.P.; Brück, E.H.

    2008-01-01

    A newly developed method is presented for measuring heat capacities on small samples, particularly where thermal isolation is not sufficient for the use of the traditional semiadiabatic heat-pulse technique. This "hybrid technique" is a modification of this heat-pulse method in case the temperature

  14. Laser Measurement Of Convective-Heat-Transfer Coefficient

    Science.gov (United States)

    Porro, A. Robert; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.; Keith, Theo G., Jr.

    1994-01-01

    Coefficient of convective transfer of heat at spot on surface of wind-tunnel model computed from measurements acquired by developmental laser-induced-heat-flux technique. Enables non-intrusive measurements of convective-heat-transfer coefficients at many points across surfaces of models in complicated, three-dimensional, high-speed flows. Measurement spot scanned across surface of model. Apparatus includes argon-ion laser, attenuator/beam splitter electronic shutter infrared camera, and subsystem.

  15. Spectrometric methods used in the calibration of radiodiagnostic measuring instruments

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, W. [Rijksuniversiteit Utrecht (Netherlands)

    1995-12-01

    Recently a set of parameters for checking the quality of radiation for use in diagnostic radiology was established at the calibration facility of Nederlands Meetinstituut (NMI). The establishment of the radiation quality required re-evaluation of the correction factors for the primary air-kerma standards. Free-air ionisation chambers require several correction factors to measure air-kerma according to its definition. These correction factors were calculated for the NMi free-air chamber by Monte Carlo simulations for monoenergetic photons in the energy range from 10 keV to 320 keV. The actual correction factors follow from weighting these mono-energetic correction factors with the air-kerma spectrum of the photon beam. This paper describes the determination of the photon spectra of the X-ray qualities used for the calibration of dosimetric instruments used in radiodiagnostics. The detector used for these measurements is a planar HPGe-detector, placed in the direct beam of the X-ray machine. To convert the measured pulse height spectrum to the actual photon spectrum corrections must be made for fluorescent photon escape, single and multiple compton scattering inside the detector, and detector efficiency. From the calculated photon spectra a number of parameters of the X-ray beam can be calculated. The calculated first and second half value layer in aluminum and copper are compared with the measured values of these parameters to validate the method of spectrum reconstruction. Moreover the spectrum measurements offer the possibility to calibrate the X-ray generator in terms of maximum high voltage. The maximum photon energy in the spectrum is used as a standard for calibration of kVp-meters.

  16. Developing an instrument to measure effective factors on clinical learning

    Directory of Open Access Journals (Sweden)

    IDEH DADGARAN

    2016-07-01

    Full Text Available Introduction: Although nursing students spend a large part of their learning period in the clinical environment, clinical learning has not been perceived by its nature yet. To develop an instrument to measure effective factors on clinical learning in nursing students. Methods: This is a mixed methods study performed in 2 steps. First, the researchers defined “clinical learning” in nursing students through qualitative content analysis and designed items of the questionnaire based on semi-structured individual interviews with nursing students. Then, as the second step, psychometric properties of the questionnaire were evaluated using the face validity, content validity, construct validity, and internal consistency evaluated on 227 students from fourth or higher semesters. All the interviews were recorded and transcribed, and then, they were analyzed using Max Qualitative Data Analysis and all of qualitative data were analyzed using SPSS 14. Results: To do the study, we constructed the preliminary questionnaire containing 102 expressions. After determination of face and content validities by qualitative and quantitative approaches, the expressions of the questionnaire were reduced to 45. To determine the construct validity, exploratory factor analysis was applied. The results indicated that the maximum variance percentage (40.55% was defined by the first 3 factors while the rest of the total variance percentage (59.45% was determined by the other 42 factors. Results of exploratory factor analysis of this questionnaire indicated the presence of 3 instructor-staff, students, and educational related factors. Finally, 41 expressions were kept in 3 factor groups. The α-Cronbach coefficient (0.93 confirmed the high internal consistency of the questionnaire. Conclusion: Results indicated that the prepared questionnaire was an efficient instrument in the study of the effective factors on clinical learning as viewed by nursing students since it

  17. Ir Thermographic Measurements of Temperatures and Heat Fluxes in Hypersonic Plasma Flow

    Science.gov (United States)

    Cardone, G.; Tortora, G.; del Vecchio, A.

    2005-02-01

    The technological development achieved in instruments and methodology concerning both flights and ground hypersonic experiment (employed in space plane planning) goes towards an updating and a standardization of the heat flux technical measurements. In fact, the possibility to simulate high enthalpy flow relative to reentry condition by hypersonic arc-jet facility needs devoted methods to measure heat fluxes. Aim of this work is to develop an experimental numerical technique for the evaluation of heat fluxes over Thermal Protection System (TPS) by means of InfraRed (IR) thermographic temperature measurements and a new heat flux sensor (IR-HFS). We tackle the numerical validation of IR-HFS, apply the same one to the Hyflex nose cap model and compare the obtained results with others ones obtained by others methodology.

  18. Instrumental objective measurement of veal calves carcass colour at slaughterhouse

    Directory of Open Access Journals (Sweden)

    Stefano Vandoni

    2010-01-01

    Full Text Available A total of 6700 veal calves were used to compare the ability of chromameter CR300 in measuring the veal meat colour on-line at slaughterhouse and to develop a prediction equation of colour score based on relationship between instrumental and visual assessments. A total of 5000 carcasses were used to develop equation of prediction while 1700 were used to test it. The meat colour was assessed subjectively in 3 different slaughterhouses by the slaughterhouse’s judges 10h post mortem and objectively by chromameter CR300 45 post mortem on the Rectus abdominis. The prediction equation classified correctly 79% of carcasses and was characterized by an R2 of 78%. Furthermore it has to be underlined that the chroma contributes to the total R2 with a 0.21 partial R2. This data confirmed that chromameter CR300 can be used on-line to measure objectively veal meat colour at the end of the slaughter line.

  19. An Instrument to Measure Aircraft Sulfate Particle Emissions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerodyne is developing a sulfate detection instrument, based on the Tunable Infrared Laser Differential Absorption Spectrophotometer (TILDAS) technology and...

  20. Pupil Alignment Measuring Technique and Alignment Reference for Instruments or Optical Systems

    Science.gov (United States)

    Hagopian, John G.

    2010-01-01

    A technique was created to measure the pupil alignment of instruments in situ by measuring calibrated pupil alignment references (PARs) in instruments. The PAR can also be measured using an alignment telescope or an imaging system. PAR allows the verification of the science instrument (SI) pupil alignment at the integrated science instrument module (ISIM) level of assembly at ambient and cryogenic operating temperature. This will allow verification of the ISIM+SI alignment, and provide feedback to realign the SI if necessary.

  1. The measurement of collaboration within healthcare settings: a systematic review of measurement properties of instruments.

    Science.gov (United States)

    Walters, Stephen John; Stern, Cindy; Robertson-Malt, Suzanne

    2016-04-01

    There is a growing call by consumers and governments for healthcare to adopt systems and approaches to care to improve patient safety. Collaboration within healthcare settings is an important factor for improving systems of care. By using validated measurement instruments a standardized approach to assessing collaboration is possible, otherwise it is only an assumption that collaboration is occurring in any healthcare setting. The objective of this review was to evaluate and compare measurement properties of instruments that measure collaboration within healthcare settings, specifically those which have been psychometrically tested and validated. Participants could be healthcare professionals, the patient or any non-professional who contributes to a patient's care, for example, family members, chaplains or orderlies. The term participant type means the designation of any one participant; for example 'nurse', 'social worker' or 'administrator'. More than two participant types was mandatory. The focus of this review was the validity of tools used to measure collaboration within healthcare settings. The types of studies considered for inclusion were validation studies, but quantitative study designs such as randomized controlled trials, controlled trials and case studies were also eligible for inclusion. Studies that focused on Interprofessional Education, were published as an abstract only, contained patient self-reporting only or were not about care delivery were excluded. The outcome of interest was validation and interpretability of the instrument being assessed and included content validity, construct validity and reliability. Interpretability is characterized by statistics such as mean and standard deviation which can be translated to a qualitative meaning. The search strategy aimed to find both published and unpublished studies. A three-step search strategy was utilized in this review. The databases searched included PubMed, CINAHL, Embase, Cochrane Central

  2. Reactor Gamma Heat Measurements with Calorimeters and Thermoluminescence Dosimeters

    DEFF Research Database (Denmark)

    Haack, Karsten; Majborn, Benny

    1973-01-01

    Intercomparison measurements of reactor γ-ray heating were carried out with calorimeters and thermoluminescence dosimeters. Within the measurement uncertainties the two methods yield coincident results. In the actual measurement range thermoluminescence dosimeters are less accurate than calorimet...... calorimeters, but possess advantages such as a small probe size and the possibility of making simultaneous measurements at many different positions. Hence, thermoluminescence dosimeters may constitute a valuable supplement to calorimeters for reactor γ-ray heating measurements....

  3. Measurements of thermophysical properties by a stepwise heating method

    Science.gov (United States)

    Araki, N.

    1984-03-01

    An outline of the stepwise heating method for measuring thermal diffusivity and specific heat capacity of samples in both solid and liquid phases is described. The method is based on the measurement of temperature response at the surface of a solid sample when the other surface is heated in step-function. By making the best use of the characteristic points of this method, applications to samples in the liquid state, especially to high temperature melts such as molten salts, have been tried. As examples of measurement results, the thermal diffusivity, specific heat capacity, and thermal conductivity of zirconia brick and the thermal diffusivity of molten salts are shown in graphic form.

  4. Measuring Software Test Verification for Complex Workpieces based on Virtual Gear Measuring Instrument

    Directory of Open Access Journals (Sweden)

    Yin Peili

    2017-08-01

    Full Text Available Validity and correctness test verification of the measuring software has been a thorny issue hindering the development of Gear Measuring Instrument (GMI. The main reason is that the software itself is difficult to separate from the rest of the measurement system for independent evaluation. This paper presents a Virtual Gear Measuring Instrument (VGMI to independently validate the measuring software. The triangular patch model with accurately controlled precision was taken as the virtual workpiece and a universal collision detection model was established. The whole process simulation of workpiece measurement is implemented by VGMI replacing GMI and the measuring software is tested in the proposed virtual environment. Taking involute profile measurement procedure as an example, the validity of the software is evaluated based on the simulation results; meanwhile, experiments using the same measuring software are carried out on the involute master in a GMI. The experiment results indicate a consistency of tooth profile deviation and calibration results, thus verifying the accuracy of gear measuring system which includes the measurement procedures. It is shown that the VGMI presented can be applied in the validation of measuring software, providing a new ideal platform for testing of complex workpiece-measuring software without calibrated artifacts.

  5. Measuring Software Test Verification for Complex Workpieces based on Virtual Gear Measuring Instrument

    Science.gov (United States)

    Yin, Peili; Wang, Jianhua; Lu, Chunxia

    2017-08-01

    Validity and correctness test verification of the measuring software has been a thorny issue hindering the development of Gear Measuring Instrument (GMI). The main reason is that the software itself is difficult to separate from the rest of the measurement system for independent evaluation. This paper presents a Virtual Gear Measuring Instrument (VGMI) to independently validate the measuring software. The triangular patch model with accurately controlled precision was taken as the virtual workpiece and a universal collision detection model was established. The whole process simulation of workpiece measurement is implemented by VGMI replacing GMI and the measuring software is tested in the proposed virtual environment. Taking involute profile measurement procedure as an example, the validity of the software is evaluated based on the simulation results; meanwhile, experiments using the same measuring software are carried out on the involute master in a GMI. The experiment results indicate a consistency of tooth profile deviation and calibration results, thus verifying the accuracy of gear measuring system which includes the measurement procedures. It is shown that the VGMI presented can be applied in the validation of measuring software, providing a new ideal platform for testing of complex workpiece-measuring software without calibrated artifacts.

  6. Heat flux measurements on ceramics with thin film thermocouples

    Science.gov (United States)

    Holanda, Raymond; Anderson, Robert C.; Liebert, Curt H.

    1993-01-01

    Two methods were devised to measure heat flux through a thick ceramic using thin film thermocouples. The thermocouples were deposited on the front and back face of a flat ceramic substrate. The heat flux was applied to the front surface of the ceramic using an arc lamp Heat Flux Calibration Facility. Silicon nitride and mullite ceramics were used; two thicknesses of each material was tested, with ceramic temperatures to 1500 C. Heat flux ranged from 0.05-2.5 MW/m2(sup 2). One method for heat flux determination used an approximation technique to calculate instantaneous values of heat flux vs time; the other method used an extrapolation technique to determine the steady state heat flux from a record of transient data. Neither method measures heat flux in real time but the techniques may easily be adapted for quasi-real time measurement. In cases where a significant portion of the transient heat flux data is available, the calculated transient heat flux is seen to approach the extrapolated steady state heat flux value as expected.

  7. A new instrument for high statistics measurement of photomultiplier characteristics

    CERN Document Server

    Bozza, C; Costa, M; Di Capua, F; Kulikovskiy, V; Mele, R; Migliozzi, P; Mollo, C M; Pellegrino, C; Riccobene, G; Vivolo, D

    2016-01-01

    Since the early days of experimental particle physics photomultipliers (PMTs) have played an important role in the detector design. Thanks to their capability of fast photon counting, PMTs are extensively used in the new-generation of astroparticle physics experiments, such as air, ice and water Cherenkov detectors. The use of PMTs of 3-inches or smaller diameter was made possible thanks to the capability of building detectors with large photocathode area distributed in a sustainable number of channels. Small size PMTs ($\\leq$ 3-inches) show little sensitivity to the Earth magnetic field, small transit time, stable transit time spread; the price per photocathode area is less comparing to the one for the large area PMTs, typically used so far in such applications. In this paper we report on the design and performance of a new instrument for mass characterisation of PMTs (from 1-inch to 3-inch size), capable to calibrate hundreds of PMTs per day and provide measurements of dark counts, signal amplitude, late-, ...

  8. Verifax: Biometric instruments measuring neuromuscular disorders/performance impairments

    Science.gov (United States)

    Morgenthaler, George W.; Shrairman, Ruth; Landau, Alexander

    1998-01-01

    VeriFax, founded in 1990 by Dr. Ruth Shrairman and Mr. Alex Landau, began operations with the aim of developing a biometric tool for the verification of signatures from a distance. In the course of developing this VeriFax Autograph technology, two other related applications for the technologies under development at VeriFax became apparent. The first application was in the use of biometric measurements as clinical monitoring tools for physicians investigating neuromuscular diseases (embodied in VeriFax's Neuroskill technology). The second application was to evaluate persons with critical skills (e.g., airline pilots, bus drivers) for physical and mental performance impairments caused by stress, physiological disorders, alcohol, drug abuse, etc. (represented by VeriFax's Impairoscope prototype instrument). This last application raised the possibility of using a space-qualified Impairoscope variant to evaluate astronaut performance with respect to the impacts of stress, fatigue, excessive workload, build-up of toxic chemicals within the space habitat, etc. The three applications of VeriFax's patented technology are accomplished by application-specific modifications of the customized VeriFax software. Strong commercial market potentials exist for all three VeriFax technology applications, and market progress will be presented in more detail below.

  9. Precision Tiltmeter as a Reference for Slope MeasuringInstruments

    Energy Technology Data Exchange (ETDEWEB)

    Kirschman, Jonathan L.; Domning, Edward E.; Morrison, Gregory Y.; Smith, Brian V.; Yashchuk, Valeriy V.

    2007-08-01

    The next generation of synchrotrons and free electron lasers require extremely high-performance x-ray optical systems for proper focusing. The necessary optics cannot be fabricated without the use of precise optical metrology instrumentation. In particular, the Long Trace Profiler (LTP) based on the pencil-beam interferometer is a valuable tool for low-spatial-frequency slope measurement with x-ray optics. The limitations of such a device are set by the amount of systematic errors and noise. A significant improvement of LTP performance was the addition of an optical reference channel, which allowed to partially account for systematic errors associated with wiggling and wobbling of the LTP carriage. However, the optical reference is affected by changing optical path length, non-homogeneous optics, and air turbulence. In the present work, we experimentally investigate the questions related to the use of a precision tiltmeter as a reference channel. Dependence of the tiltmeter performance on horizontal acceleration, temperature drift, motion regime, and kinematical scheme of the translation stage has been investigated. It is shown that at an appropriate experimental arrangement, the tiltmeter provides a slope reference for the LTP system with accuracy on the level of 0.1 {micro}rad (rms).

  10. Fabrication and Testing of Viscosity Measuring Instrument (Viscometer

    Directory of Open Access Journals (Sweden)

    A. B. HASSAN

    2006-01-01

    Full Text Available This paper presents the fabrication and testing of a simple and portable viscometer for the measurement of bulk viscosity of different Newtonian fluids. It is aimed at making available the instrument in local markets and consequently reducing or eliminating the prohibitive cost of importation. The method employed is the use of a D.C motor to rotate a disc having holes for infra-red light to pass through and fall on a photo-diode thus undergoing amplification and this signal being translated on a moving-coil meter as a deflection. The motor speed is kept constant but varies with changes in viscosity of the fluid during stirring, which alter signals being read on the meter. The faster is revolution per minute of the disc, the less the deflection on the meter and vise-versa. From the results of tests conducted on various sample fluids using data on standard Newtonian fluids as reliable guide the efficiency of the viscometer was 76.5%.

  11. A new method and instrument for accurately measuring interval between ultrashort pulses

    Institute of Scientific and Technical Information of China (English)

    Zhonggang Ji; Yuxin Leng; Yunpei Deng; Bin Tang; Haihe Lu; Ruxin Li; Zhizhan Xu

    2005-01-01

    @@ Using second-order autocorrelation conception, a novel method and instrument for accurately measuring interval between two linearly polarized ultrashort pulses with real time were presented. The experiment demonstrated that the measuring method and instrument were simple and accurate (the measurement error < 5 fs). During measuring, there was no moving element resulting in dynamic measurement error.

  12. Measurement and Evaluation of Heating Performance of Heat Pump Systems Using Wasted Heat from Electric Devices for an Electric Bus

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-03-01

    Full Text Available The objective of this study is to investigate heating performance characteristics of a coolant source heat pump using the wasted heat from electric devices for an electric bus. The heat pump, using R-134a, is designed for heating a passengers’ compartment by using discharged energy from the coolant of electric devices, such as motors and inverters of the electric bus. The heating performance of the heat pump was tested by varying the operating parameters, such as outdoor temperature and volume flow rate of the coolant water of the electrical devices. Heating capacity, compressor work, and heating COP were measured; their behaviors with regard to the parameters were observed. Experimental results showed that heating COP increased with decrease of outdoor temperature, from 20.0 °C to 0 °C, and it observed to be 3.0 in the case of 0 °C outdoor temperature. The observed characteristics of the heating COP suggest that the heat pump is applicable as the cabin heater of an electric vehicle, which is limited by short driving range.

  13. The mechanical measuring method of welding heat source efficiency

    Institute of Scientific and Technical Information of China (English)

    Zhang Jianqiang; Zhang Guodong; He Jie; Wang Chengquan; Chen Bingquan

    2007-01-01

    Based on the principle of residual deformation induced by superposition of the welding residual stress and working stress, the welding heat source efficiency has been determined by measuring displacement changes of specimens under loading and unloading in tensile tests, and combining with calculating welding parameters. Meanwhile, the welding heat source efficiencies obtained are compared with those of the measuring-calculating method. The research results show that the welding heat source efficiencies are almost the same as those obtained by the measuring-calculating method. Therefore, the welding heat source efficiency can be determined accurately by this method, and a new determining method of the heat source efficiency for the welding heat process calculating has been provided.

  14. Measuring the Heat Load on the Flight ASTRO-H Soft Xray Spectrometer Dewar

    Science.gov (United States)

    DiPirro, M.; Shirron, P.; Yoshida, S.; Kanao, K.; Tsunematsu, S.; Fujimoto, R.; Sneiderman, G.; Kimball, M.; Ezoe, Y.; Ishikawa, K.; Takei, Y.; Mitsuda, K.; Kelley, R.

    2015-01-01

    The Soft Xray Spectrometer (SXS) instrument on-board the ASTRO-H X-ray mission is based on microcalorimeters operating at 50 mK. Low temperature is achieved by use of an adiabatic demagnetization refrigerator (ADR) cyclically operating up to a heat sink at either 1.2 K or 4.5 K. The 1.2 K heat sink is provided by a 40 liter superfluid helium dewar. The parasitic heat to the helium from supports, plumbing, wires, and radiation, and the cyclic heat dumped by the ADR operation determine the liquid helium lifetime. To measure this lifetime we have used various techniques to rapidly achieve thermal equilibrium and then measure the boil-off rate of the helium. We have measured a parasitic heat of 650 microwatts and a cyclic heat of 100 microwatts for a total of 750 microwatts. This closely matches the predicted heat load. Starting with a fill level at launch of more than 33 liters results in a lifetime of greater than 4 years for the liquid helium. The techniques and accuracy for this measurement will be explained in this paper.

  15. Non intrusive measurement of the convective heat transfer coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Rebay, M.; Mebarki, G.; Padet, J. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Arfaoui, A. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM; Maad, B.R. [Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM

    2010-07-01

    The efficiency of cooling methods in thermal systems such as radiators and heat exchangers must be improved in order to enhance performance. The evaluation of the heat transfer coefficients between a solid and a fluid is necessary for the control and the dimensioning of thermal systems. In this study, the pulsed photothermal method was used to measure the convective heat transfer coefficient on a solid-fluid interface, notably between an air flow and a heated slab mounted on a PVC flat plate. This configuration simulated the electronic air-cooling inside enclosures and racks. The influence of the deflector's inclination angle on the enhancement of heat transfer was investigated using 2 newly developed identification models. The first model was based on a constant heat transfer coefficient during the pulsed experiment, while the second, improved model was based on a variable heat transfer coefficient. The heat transfer coefficient was deduced from the evolution of the transient temperature induced by a sudden deposit of a luminous energy on the front face of the slab. Temperature evolutions were derived by infrared thermography, a camera for cartography and a detector for precise measurement in specific locations. The results show the improvement of measurement accuracies when using a model that considers the temporal evolution of the convective heat transfer coefficient. The deflection of air flow on the upper surface of the heated slab demonstrated better cooling of the slab by the deflection of air flow. 11 refs., 1 tab., 8 figs.

  16. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

  17. Diode laser based photoacoustic gas measuring instruments intended for medical research

    Science.gov (United States)

    Szabó, Anna; Mohácsi, Árpád; Novák, Péter; Aladzic, Daniela; Turzó, Kinga; Rakonczay, Zoltán; Erős, Gábor; Boros, Mihály; Nagy, Katalin; Szabó, Gábor

    2012-06-01

    Analysis of breath and gases emanated from skin can be used for early and non-invasive diagnosis of various kinds of diseases. Two portable, compact, photoacoustic spectroscopy based trace gas sensors were developed for the detection of methane emanated from skin and ammonia emanated from oral cavity. The light sources were distributed feedback diode lasers emitting at the absorption lines of ammonia and methane, at 1.53 μm and 1.65 μm, respectively. Photoacoustic method ensures high selectivity, therefore cross-sensitivity was negligible even with large amount of water vapor and carbon dioxide in the gas sample. In case of ammonia a preconcentration unit was used to achieve lower minimum detectable concentration. Gas sample from the oral cavity was drawn through a glass tube to the preconcentration unit that chemically bonded ammonia and released it when heated. The minimum detectable concentration of ammonia was 10 ppb for 15 s gas sampling time (gas sample of 250 cm3). For methane minimum detectable concentration of 0.25 ppm was found with 12 s integration time, and it was proved to be adequate for the detection of methane emanated from human skin and from mice. Instruments measuring methane and ammonia are currently installed at two medical research laboratories at University of Szeged and tested as instruments for non-invasive clinical trials. The aim of the measurements is to determine correlations between diseases or metabolic processes and emanated gases.

  18. Measurement of boiling heat transfer coefficient in liquid nitrogen bath by inverse heat conduction method

    Institute of Scientific and Technical Information of China (English)

    Tao JIN; Jian-ping HONG; Hao ZHENG; Ke TANG; Zhi-hua GAN

    2009-01-01

    Inverse heat conduction method (IHCM)is one of the most effective approaches to obtaining the boiling heat transfer coefficient from measured results.This paper focuses on its application in cryogenic boiling heat transfer.Experiments were conducted on the heattransfer of a stainless steel block in a liquid nitrogen bath.with the assumption of a ID conduction condition to realize fast acquisition of the temperature of the test points inside the block.With the inverse-heat conduction theory and the explicit finite difference model,a solving program was developed to calculate the heat flux and the boiling heat transfer coefficient of a stainless steel block in liquid nitrogen bath based on the temperature acquisition data.Considering the oscillating data and some unsmooth transition points in the inverse-heat-conduction calculation result of the heat-transfer coefficient,a two-step data-fitting procedure was proposed to obtain the expression for the boiling heat transfer coefficients.The coefficient was then verified for accuracy by a comparison between the simulation results using this expression and the verifying experimental results of a stainless steel block.The maximum error with a revised segment fitting iS around 6%.which verifies the feasibility of using IHCM to measure the boiling heat transfer coefficient in liquid nitrogen bath.

  19. A laser-induced heat flux technique for convective heat transfer measurements in high speed flows

    Science.gov (United States)

    Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high-speed flowfields.

  20. Airflow and heat transfer measurements near a facade with different heating configurations

    Energy Technology Data Exchange (ETDEWEB)

    Karava, P.; Tzempelikos, A.; Bessoudo, M.; Candanedo, L.; Athienitis, A. [Concordia Univ., Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering; Handfield, L. [Hydro-Quebec, Shawinigan, PQ (Canada). Research Inst.

    2007-07-01

    The experimental results of temperature and air velocity field measurements near a glazed facade at a research laboratory in Quebec were presented. The experiment examined the air movement and heat transfer near the windows both with and without shading, and with different perimeter heating configurations. The aim of the study was to develop design recommendations for high performance facades to reduce or eliminate perimeter heating in buildings. The chamber was equipped with 3 types of heating systems: (1) a baseboard heater; (2) electrically heated windows; and (3) a radiant ceiling panel. A particle image velocimetry (PIV) system was used to perform velocity field measurements on a vertical plane perpendicular to the window surface. A motorized traverse system was used to conduct measurements at various heights and distances from the facade. Thermal stratification was monitored using a grid of thermocouples. Results showed that maximum temperature variations in the space were observed for the case of baseboard heater and windows covered by roller shades. Without shading, the baseboard heater still had a significant impact on horizontal temperature variation. A comparison between a radiant ceiling panel and the heated window showed that heated windows resulted in more uniform temperature field without vertical stratification, while the ceiling panel heated the air around it at 1.5 degrees C higher than the lower levels. It was noted that further research is now being conducted to predict the air velocity and temperature fields near glazed facades with various perimeter heating configurations and shading attachments. 7 refs., 2 tabs., 16 figs.

  1. Consistency among integral measurements of aggregate decay heat power

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, H.; Sagisaka, M.; Oyamatsu, K.; Kukita, Y. [Nagoya Univ. (Japan)

    1998-03-01

    Persisting discrepancies between summation calculations and integral measurements force us to assume large uncertainties in the recommended decay heat power. In this paper, we develop a hybrid method to calculate the decay heat power of a fissioning system from those of different fissioning systems. Then, this method is applied to examine consistency among measured decay heat powers of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U and {sup 239}Pu at YAYOI. The consistency among the measured values are found to be satisfied for the {beta} component and fairly well for the {gamma} component, except for cooling times longer than 4000 s. (author)

  2. Measuring Instrument Constructs of Return Factors for Green Office Building Investments Variables Using Rasch Measurement Model

    Directory of Open Access Journals (Sweden)

    Isa Mona

    2016-01-01

    Full Text Available This paper is a preliminary study on rationalising green office building investments in Malaysia. The aim of this paper is attempt to introduce the application of Rasch measurement model analysis to determine the validity and reliability of each construct in the questionnaire. In achieving this objective, a questionnaire survey was developed consists of 6 sections and a total of 106 responses were received from various investors who own and lease office buildings in Kuala Lumpur. The Rasch Measurement analysis is used to measure the quality control of item constructs in the instrument by measuring the specific objectivity within the same dimension, to reduce ambiguous measures, and a realistic estimation of precision and implicit quality. The Rasch analysis consists of the summary statistics, item unidimensionality and item measures. A result shows the items and respondent (person reliability is at 0.91 and 0.95 respectively.

  3. Measuring Quality of Life: A New and Practical Survey Instrument.

    Science.gov (United States)

    Greenley, James R.; Greenberg, Jan Steven; Brown, Roger

    1997-01-01

    Presents a new, short, self-administered questionnaire that assesses the quality of life in seven areas. Evidence for the reliability and validity of the questionnaire was based on data gathered from 971 clients; results indicate instrument reliability. The questionnaire features low-cost administration and valid psychometric properties. (RJM)

  4. SHIM-Free Breadboard Instrument Design, Integration, and First Measurements

    Science.gov (United States)

    2005-11-23

    The concept is similar to a Michelson interferometer with the return mirrors replaced by fixed, tilted diffraction gratings. Figure 1 shows the basic...Cardon, R.R. Conway, C.M. Brown, J. Wimperis, "Robust monolithic ultraviolet interferometer for the SHIMMER instrument on STPSat-l," Applied Optics, 42

  5. Planetary heat flow from shallow subsurface measurements: Mars

    Science.gov (United States)

    Cornwall, Marc; Hagermann, Axel

    2016-10-01

    Planetary heat flow probes measure heat flow (depth-resolved temperature and thermal conductivity) to provide insight into the internal state of a planet. The probes have been utilized extensively on Earth, twice on the Moon, and once on the Surface of comet 67P-CG. Mars is an important target for heat flow measurement as heat flow is a critical parameter in Martian thermal history models. Earlier studies indicate that Martian planetary heat flow can be accessed at 5 m below the surface in dry regolith monitored over at least one Martian year. A one Martian year monitoring period is necessary because, in the shallow subsurface, heat flow from the interior is superposed with time varying heat flow contributions, primarily due to insolation. Given that a heat flow probe may not achieve its target depth or monitoring period, this study investigates how the depth (2-5 m), duration (0-1 Martian year) and quality of measurements influence the accuracy of planetary heat flow. An inverse model is used to show that, in the preceding scenarios, the accuracy of planetary heat flow directly estimated from depth-dependent thermal conductivity with 10-20% precision errors, temperatures with 50-100 mK precision errors and modelling uncertainties up to 500 mK, can, on average, be improved by a factor of 27 with optimization to 13%. Accuracies increase with sensor penetration depth and regolith monitoring period. Heat flow optimized from instantaneous measurements or those with the shortest regolith monitoring periods have increased accuracy where the frequency and amplitude of the temperature variation are lowest. The inverse model is based on the Function Specification Inversion method. This study demonstrates that a solution subspace can be identified within a space of uncertainties modelled for the temperature measurements and planetary heat flow: the subspace is defined by a constant log-ratio of their respective standard deviations. Optimized heat flow estimates display

  6. Development of a Self-Rating instrument to Measure Team Situation Awareness

    NARCIS (Netherlands)

    Schraagen, J.M.C.; Koning, L. de; Hof, T.; Dongen, K. van

    2010-01-01

    The goal of this paper is to describe the development of an instrument to measure team situation awareness (TSA). Individual team member SA may or may not be shared through communication processes with other team members. Most existing instruments do not measure these processes but measure TSA as a

  7. Measurement Procedure for Surface Emissivity of Heat-Shielding Materials

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2017-01-01

    Full Text Available A procedure is suggested for the measurement of the integral emissivity coefficient of heat-shielding materials in the temperature range close to the thermal destruction temperature.

  8. 3 omega method for specific heat and thermal conductivity measurements

    CERN Document Server

    Lü, L; Zhang, D L

    2001-01-01

    We present a 3 omega method for simultaneously measuring the specific heat and thermal conductivity of a rod- or filament-like specimen using a way similar to a four-probe resistance measurement. The specimen in this method needs to be electrically conductive and with a temperature-dependent resistance, for acting both as a heater to create a temperature fluctuation and as a sensor to measure its thermal response. With this method we have successfully measured the specific heat and thermal conductivity of platinum wire specimens at cryogenic temperatures, and measured those thermal quantities of tiny carbon nanotube bundles some of which are only 10^-9 g in mass.

  9. Measurement of Heat Propagation in a Laser Produced Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, G; Glenzer, S H; Knight, J; Niemann, C; Price, D; Froula, D H; Edwards, J; Town, R P J; Brantov, A; Bychenkov, V Y; Rozmus, W

    2003-08-22

    We present the observation of a nonlocal heat wave by measuring spatially and temporally resolved electron temperature profiles in a laser produced nitrogen plasma. Absolutely calibrated measurements have been performed by resolving the ion-acoustic wave spectra across the plasma volume with Thomson scattering. We find that the experimental electron temperature profiles disagree with flux-limited models, but are consistent with transport models that account for the nonlocal effects in heat conduction by fast electrons.

  10. Methodology of heat transfer and flow resistance measurement for matrices of rotating regenerative heat exchangers

    National Research Council Canada - National Science Library

    Dariusz Butrymowicz; Jarosław Karwacki; Roman Kwidziński; Kamil Śmierciew; Jerzy Gagan; Tomasz Przybyliński; Teodor Skiepko; Marek Łapin

    2016-01-01

    The theoretical basis for the indirect measurement approach of mean heat transfer coefficient for the packed bed based on the modified single blow technique was presented and discussed in the paper...

  11. Valid instrument for measuring quality of life in youth: VIHDA

    Directory of Open Access Journals (Sweden)

    José Joaquín Martínez Lozano

    2015-12-01

    Full Text Available The article presents the validity and reliability of VIDHAB instrument, its objective is to evaluate the quality of urban life of the youth of the municipality of Cucuta, Colombia. Follows a descriptive study design validation through multidimensional scaling factor analysis, construct validity, and face. The study population were people aged 18-28 in Cucuta, the sample comprised 1180 habitants. Results: a scale of 57 items was obtained. Factor analysis showed dimensions of life satisfaction, quality of public space, poverty rate, perception of public space; Internal consistency was adequate (Cronbach's alpha 0.81 to 0.89, overall intraclass correlation coefficient of 0.967 (95%, from 0.933 to 0.984, average sum of differences in items -1.3 (SD: 8.5 and Kappa indices above 0.86 shows high agreement among experts. Conclusion: VIDHAB is a valid and reliable for the context Cucuta, Colombia instrument.

  12. Measuring Pilot Proficiency on an Instrument Training Maneuver

    Science.gov (United States)

    1977-08-01

    featmr• of the Advanced Simulator for Pilot Training ( ASPT ) could be suc- cess tuj ly used to facilitate the development and validation of a recording...for the instrument training maneuver Vertical S-A in which the unique record/playback features of the Advanced Simulator for Pilot Training ( ASPT ) were...the ASPT revealed several format and observe--workload problems that needed correction. SFollowing revision, the booklet (Appendix A) was given a

  13. Heat contracting in the German housing sector. Instruments for reasonable regulation; Waermecontracting in der deutschen Wohnungswirtschaft. Instrumente fuer eine angemessene Regulierung

    Energy Technology Data Exchange (ETDEWEB)

    Ruhland, Johannes; Herud, Ralf [Lehrstuhl fuer Wirtschaftsinformatik, Jena Univ. (Germany)

    2009-07-01

    German residential leases and their associated fringe costs such as heating are subject to strict regulations. The Tenancy law regulates, for instance, which components of the total costs of heating tenants have to bear and to what degree lessors can amortise the costs for modernizing the heating system. Unfortunately these regulations provide only low incentives for modernization, so that many heating systems in operation are technically obsolescent. Contracting describes a service contract, in which a Contractor plans, builds up and also operates a new heating system. This service-form has been successfully established in many other economic sectors so far. Despite the great micro- and macroeconomic advantages that Contracting offers over self-administered modernizing, it does not yet prevail in the German housing market. Thus, deregulation seems to be indispensable in this sector. However, the analysis in this article on the basis of the New Institutional Economics shows that an unrestricted opening of the market is not reasonable. In fact a suitable level of regulation must be found. Therefore, this article identifies several effective instruments from an economic point of view. (orig.)

  14. Agri-environmental policy measures in Israel: the potential of using market-oriented instruments.

    Science.gov (United States)

    Amdur, Liron; Bertke, Elke; Freese, Jan; Marggraf, Rainer

    2011-05-01

    This paper examines the possibilities of developing agri-environmental policy measures in Israel, focusing on market-oriented instruments. A conceptual framework for developing agri-environmental policy measures is presented, first in very broad lines (mandatory regulations, economic instruments and advisory measures) and subsequently focusing on economic instruments, and specifically, on market-oriented ones. Two criteria of choice between the measures are suggested: their contribution to improving the effectiveness of the policy; and the feasibility of their implementation. This is the framework used for analyzing agri-environmental measures in Israel. Israel currently implements a mix of mandatory regulations, economic instruments and advisory measures to promote the agri-environment. The use of additional economic instruments may improve the effectiveness of the policy. When comparing the effectiveness of various economic measures, we found that the feasibility of implementation of market-oriented instruments is greater, due to the Israeli public's preference for strengthening market orientation in the agricultural sector. Four market-oriented instruments were practiced in a pilot project conducted in an Israeli rural area. We found that in this case study, the institutional feasibility and acceptance by stakeholders were the major parameters influencing the implementation of the market-oriented instruments, whereas the instruments' contribution to enhancing the ecological or economic effectiveness were hardly considered by the stakeholders as arguments in favor of their use.

  15. Mass concentrations of black carbon measured by four instruments in the middle of Central East China in June 2006

    Directory of Open Access Journals (Sweden)

    Y. Kanaya

    2008-08-01

    Full Text Available Mass concentrations of black carbon (BC were determined in June 2006 at the top of Mount Tai (36.26° N, 117.11° E, 1534 m a.s.l., located in the middle of Central East China, using four different instruments: a multi-angle absorption photometer (5012 MAAP, Thermo, a particle soot absorption photometer (PSAP, Radiance Research, an ECOC semi-continuous analyzer (Sunset Laboratory and an Aethalometer (AE-21, Magee Scientific. High correlation coefficients (R2>0.88 were obtained between the measurements of the BC mass concentrations by the different instruments. From the range of the slopes of the linear least-square fittings, we concluded that the BC concentrations regionally-representative of the area were measured in a range with a maximum-to-minimum ratio of 1.5 (an exception was that the BC (PM2.5 concentrations derived from MAAP were ~2 times higher than the optical measurements (PM2.5 derived from the ECOC analyzer. This range is significant, but is still sufficiently narrow to better constrain the large and highly uncertain emission rate of BC from China. In detail, two optical instruments (the MAAP instrument and the PSAP instrument equipped with a heated inlet (400°C tended to give higher concentrations than the thermal EC concentrations observed by the ECOC analyzer. The ratios of optical BC to thermal EC showed a positive correlation with the OC/EC ratio reported by the ECOC analyzer, suggesting two possibilities. One is that the optical instruments overestimated BC concentrations in spite of careful cancellation of the scattering effect in the MAAP instrument and the expected evaporation of volatile species by heating the inlet of the PSAP instrument. The other is that the determined split points between OC and EC were too late when a large amount of OC underwent charring during the analysis, resulting in an underestimation of EC by the ECOC analyzer. High ratios of optical BC to thermal EC

  16. Instrumental system for the quick relief of surface temperatures in fumaroles fields and steam heated soils

    Science.gov (United States)

    Diliberto, Iole; Cappuzzo, Santo; Inguaggiato, Salvatore; Cosenza, Paolo

    2014-05-01

    We present an instrumental system to measure and to map the space variation of the surface temperature in volcanic fields. The system is called Pirogips, its essential components are a Pyrometer and a Global Position System but also other devices useful to obtain a good performance of the operating system have been included. In the framework of investigation to define and interpret volcanic scenarios, the long-term monitoring of gas geochemistry can improve the resolution of the scientific approaches by other specific disciplines. Indeed the fluid phase is released on a continuous mode from any natural system which produces energy in excess respect to its geological boundaries. This is the case of seismic or magmatic active areas where the long-term geochemical monitoring is able to highlight, and to follow in real time, changes in the rate of energy release and/or in the feeding sources of fluids, thus contributing to define the actual behaviour of the investigated systems (e.g. Paonita el al., 2013; 2002; Taran, 2011; Zettwood and Tazieff, 1973). The demand of pirogips starts from the personal experience in long term monitoring of gas geochemistry (e.g. Diliberto I.S, 2013; 2011; et al., 2002; Inguaggiato et al.,2012a, 2012b). Both space and time variation of surface temperature highlight change of energy and mass release from the deep active system, they reveal the upraise of deep and hot fluid and can be easily detected. Moreover a detailed map of surface temperature can be very useful for establishing a network of sampling points or installing a new site for geochemical monitoring. Water is commonly the main component of magmatic or hydrothermal fluid release and it can reach the ground surface in the form of steam, as in the high and low temperature fumaroles fields, or it can even condense just below the ground surface. In this second case the water disperses in pores or circulates in the permeable layers while the un-condensable gases reach the surface (e

  17. Measurement of the specific heat capacity of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Picard, S.; Burns, D.T.; Roger, P

    2006-01-15

    With the objective of implementing graphite calorimetry at the BIPM to measure absorbed dose, an experimental assembly has recently been constructed to measure the specific heat capacity of graphite. A status description of the apparatus and results from the first measurements are given. The outcome is discussed and the experimental uncertainty is reviewed. (authors)

  18. Heat flux measurements for use in physiological and clothing research.

    Science.gov (United States)

    Niedermann, R; Psikuta, A; Rossi, R M

    2014-08-01

    Scientists use passive heat flow meters to measure body heat exchanges with the environment. In recent years, several such sensors have been developed and concerns about their proper calibration have been addressed. However, calibration methods have differed in the geometry of the heated device as well as in the heat transfer mechanism. Therefore, a comparison of calibration methods is needed in order to understand the obtained differences in calibration lines. We chose three commercially available heat flux sensors and placed them on four different heated devices: a hot plate, double hot plate, nude cylinder and a cylinder covered with a spacer material. We found differences between the calibration line of the manufacturer and our own measurements, especially when forced convection was involved as the main heat transfer mechanism. The results showed clearly that the calibration method should be chosen according to the intended purpose of use. In addition, we recommend use a thin, light heat flux sensor with good thermal conduction in human subject studies.

  19. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R. K. [Johnson Research LLC, Pueblo West, CO (United States)

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  20. The measurement of capsule heat transfer gaps using neutron radiography.

    Science.gov (United States)

    Thaler, L. A.

    1971-01-01

    The use of neutron radiographs to determine dimensional changes of heat transfer gaps in cylindrical nuclear fueled capsules is described. A method was developed which involves scanning a very fine grained neutron radiograph negative with a recording microdensitometer. The output of the densitometer is recorded on graph paper and the heat transfer gap is plotted as a well-defined optical density change. Calibration of the recording microdensitometer ratio arms permits measurements to be made of the heat transfer optical density change from the microdensitometer trace. Total heat transfer gaps, measured by this method, agree with the physical measurements within plus or minus 0.005 cm over a range of gaps from 0.061 to 0.178 cm.

  1. Heat Transfer Coefficient Measurement for Downward Facing Flow Boiling Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jun Yeong; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    To evaluate heat transfer capability of the ERVC, estimating heat transfer coefficient (HTC) is important. In this study, the HTCs were experimentally measured, and large break loss of coolant accident (LLOCA) was used as basic accident. At the lower head outer wall, heat transfer phenomenon was downward facing flow boiling heat transfer. Because, natural circulation occurred. Hence, to simulate the flow boiling, water loop was designed. The reactor vessel lower head was simulated as 2-D slice main heater. To simulate the heat transfer characteristics of material and geometry, the main heater was made of SA508 consisting the reactor vessel, and its radius curvature was 2.5 m. The main heater outer surface (facing to air) temperature was measured by infrared (IR) camera, and the inner surface (facing to working fluid) temperature was calculated by solving conduction equation of main heater. The main heater heat flux was under CHF value of previous research. The results of 60 .deg. and 90 .deg. were used as representative angular location data. LLOCA was used as basic accident. Through this experiment, the HTC data was produced for SA508 heat transfer surface material and 2.5 m of radius curvature. The HTCs result shown different trend at each angular location. The HTCs commonly increased with heat flux increment, but the trends were different for angular location.

  2. An Electronic Measurement Instrumentation of the Impedance of a Loaded Fuel Cell or Battery

    OpenAIRE

    2007-01-01

    In this paper we present an inexpensive electronic measurement instrumentation developed in our laboratory, to measure and plot the impedance of a loaded fuel cell or battery. Impedance measurements were taken by using the load modulation method. This instrumentation has been developed around a VXI system stand which controls electronic cards. Software under Hpvee® was developed for automatic measurements and the layout of the impedance of the fuel cell on load. The measurement environment, l...

  3. 1.9 K Heat Inleak and Resistive Heating Measurements on LHC Cryomagnets

    CERN Document Server

    Ferlin, G; Tavian, L; Wagner, U

    2010-01-01

    The superconducting magnets of the Large Hadron Collider (LHC) distributed over eight sectors of 3.3-km long are cooled at 1.9 K in pressurized superfluid helium. During the commissioning campaign of the sectors in 2008, cold standby periods at nominal operating temperature have allowed to measure the overall static heat inleaks reaching the magnet cold masses at 1.9 K by enthalpy balance in steady-state operation. In addition, during electrical powering of the different magnet circuits, helium II calorimetry based on precision thermometry has been implemented to assess with an accuracy of 100 mW/m the additional heat loads due to resistive heating and to detect possible abnormal heat dissipation during powering. This paper describes the method applied to perform these measurements, compares the results with the expected specified values and discusses the impact of the measured values on cryo-plant tuning and operational margins.

  4. Measurement of capsule heat transfer gaps using neutron radiography

    Science.gov (United States)

    Thaler, L. A.

    1974-01-01

    A technique is described for measuring heat transfer gaps from neutron radiographs. The method involves scanning the radiograph negative with a recording microdensitometer to obtain a trace of the optical density variation across the diameter of the capsule. The optical density change representing the gap is measured from the microdensitometer trace and related to the physical measurement. Heat transfer gaps from 0.061 to 0.178 cm have been determined by this technique and agree with preassembly physical measurements to plus or minus 0.005 cm.

  5. [Value of electronic measuring instruments for optimizing functional TMJ diagnosis].

    Science.gov (United States)

    Zimmer, B; Keese, E; Kubein-Meesenburg, D

    1989-09-01

    In order to get additional information about the significance of electronic axiographic recordings in TMJ-diagnosis, 34 patients, who showed 47 clicking TMJs, were examined by use of an electronic axiographic instrument (SAS-system). The frequency of the detected findings emphasize the value of electronic axiographic devices for differential diagnosis. In detail the following conclusions could be drawn: examination of different types of movement is recommended because clicking must not exist in all types, recording in more than one plane is necessary in order to detect the (prevailing) plane of dislocation, a magnification of tracings provides addition information concerning different types of clicking.

  6. Technology as an instrument to measure the school cohabitation

    Directory of Open Access Journals (Sweden)

    Nelsón Javier Correa Romero

    2010-01-01

    Full Text Available To face the enormous social changes that are underway, the assertive communication is of a great importance for the human coexistence, therefore, it is vital the search for novel ways to mediate among the forms of interactions generated from the services internet is offering. Through participant observations, interviews, analysis of documents and diverse strategies to innovate the coexistence, it is possible to establish “Technology as a mediate instrument for the school coexistence”, which uses the modern communication as a tool to face the school conflicts among equals, and as a way of active participation.

  7. Self-administered health literacy instruments for people with diabetes: systematic review of measurement properties.

    Science.gov (United States)

    Lee, Eun-Hyun; Kim, Chun-Ja; Lee, Jiyeon; Moon, Seung Hei

    2017-09-01

    The aims of this study were to identify all available self-administered instruments measuring health literacy in people with diabetes and to determine the current instrument that is the most appropriate for applying to this population in both practice and research. A systematic review of measurement properties. MEDLINE, EMBASE and CINAHL electronic databases from their inception up to 28 March 2016. The methodological quality of each included study was assessed using the COnsensus-based Standards for the selection of health Measurement INstruments checklist. The reported results for measurement properties in the studies were assessed according to Terwee's quality criteria. Thirteen self-administered instruments measuring health literacy in people with diabetes were identified, of which six (44%) were diabetes-specific instruments. The instruments that covered the broadest contents of health literacy were the Health Literacy Scale and Health Literacy Questionnaire. The (test-retest) reliability, measurement error and responsiveness were not evaluated for any instrument, while internal consistency and hypothesis testing validity were the most frequently assessed measurement properties. With the current evidence, the Health Literacy Scale may be the most appropriate instrument for patients with diabetes in practice and research. However, the structural validity of this scale needs to be further established, particularly in other language versions. It is also recommended to use the Diabetes Numeracy Test-15 along with the Health Literacy Scale to complement the lack of numeracy measures in the Health Literacy Scale. © 2017 John Wiley & Sons Ltd.

  8. The Development, Validity, and Reliability of a Psychometric Instrument Measuring Competencies in Student Affairs

    Science.gov (United States)

    Sriram, Rishi

    2014-01-01

    The study of competencies in student affairs began more than 4 decades ago, but no instrument currently exists to measure competencies broadly. This study builds upon previous research by developing an instrument to measure student affairs competencies. Results not only validate the competencies espoused by NASPA and ACPA, but also suggest adding…

  9. An Instrument to Measure the Cognitive Ability Evaluation of the Taxonomy.

    Science.gov (United States)

    Schaff, John F.

    Described is the development of an instrument designed to measure the cognitive ability of evaluation in high school chemistry students. The instrument was composed of several situations found in chemistry courses, each designed to measure a student's evaluation ability based on his knowledge of kinetic-molecular theory as it applied to gases,…

  10. Development of the instrument IMAQE-Food to measure effectiveness of quality management

    NARCIS (Netherlands)

    Spiegel, van der M.; Luning, P.A.; Ziggers, G.W.; Jongen, W.M.F.

    2005-01-01

    Purpose - Manufacturers use several quality assurance systems to assure quality. However, their effectiveness cannot be assessed because an instrument does not exist. This article is based on a study that was set up to identify performance measurement indicators of an instrument that measures

  11. Development of a Measurement Instrument to Assess Students' Electrolyte Conceptual Understanding

    Science.gov (United States)

    Lu, Shanshan; Bi, Hualin

    2016-01-01

    To assess students' conceptual understanding levels and diagnose alternative frameworks of the electrolyte concept, a measurement instrument was developed using the Rasch model. This paper reports the use of the measurement instrument to assess 559 students from grade 10 to grade 12 in two cities. The results provided both diagnostic and summative…

  12. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    Science.gov (United States)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  13. Gene Expression Measurement Module (GEMM) - A Fully Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    Science.gov (United States)

    Pohorille, Andrew; Peyvan, Kia; Karouia, Fathi; Ricco, Antonio

    2012-01-01

    The capability to measure gene expression on board spacecraft opens the door to a large number of high-value experiments on the influence of the space environment on biological systems. For example, measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, and determine the metabolic bases of microbial pathogenicity and drug resistance. These and other applications hold significant potential for discoveries in space biology, biotechnology, and medicine. Supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measurement of expression of several hundreds of microbial genes from multiple samples. The instrument will be capable of (1) lysing cell walls of bacteria sampled from cultures grown in space, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA on a microarray and (4) providing readout of the microarray signal, all in a single microfluidics cartridge. The device is suitable for deployment on nanosatellite platforms developed by NASA Ames' Small Spacecraft Division. To meet space and other technical constraints imposed by these platforms, a number of technical innovations are being implemented. The integration and end-to-end technological and biological validation of the instrument are carried out using as a model the photosynthetic bacterium Synechococcus elongatus, known for its remarkable metabolic diversity and resilience to adverse conditions. Each step in the measurement process-lysis, nucleic acid extraction, purification, and hybridization to an array-is assessed through comparison of the results obtained using the instrument with

  14. INSTRUMENTATION DEVELOPMENT, MEASUREMENT AND PERFORMANCE EVALUATION OF ENVIRONMENTAL TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-12-31

    Many DOE applications would significantly benefit from the availability of robust and convenient instrumentation for trace-level actinide monitoring and analysis. This project focuses on developing new instrumentation for on-line or at-line monitoring for actinides with isotopic analysis capability. In addition, analytical protocols for a novel concentration method for actinides are being investigated. These efforts focus on demonstrating these techniques using uranium. In addition to its value in the analytical laboratory, the combination of a simple concentration technique with a robust isotopic monitor could provide a powerful method for addressing a number of outstanding DOE needs. Potential applications include monitors for waste water and sewage treatment systems influent and effluent, and the ability to determine the isotopic content of transuranic species in low-activity waste fractions for waste classification and product acceptance. For example, the need for improved monitoring for uranium, plutonium, and americium in treatment plant influent is clearly identified in need RF-ER11. With some additional sample pretreatment, such technology could also impact materials characterization needs by providing on-site isotopic analyses in a system that is smaller and significantly less complex than inductively coupled plasma mass spectrometry (ICP-MS).

  15. Time and Space Resolved Heat Flux Measurements During Nucleate Boiling with Constant Heat Flux Boundary Conditions

    Science.gov (United States)

    Yerramilli, Vamsee K.; Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho

    2005-01-01

    The lack of temporally and spatially resolved measurements under nucleate bubbles has complicated efforts to fully explain pool-boiling phenomena. The objective of this current work was to acquire time and space resolved temperature distributions under nucleating bubbles on a constant heat flux surface using a microheater array with 100x 100 square microns resolution, then numerically determine the wall to liquid heat flux. This data was then correlated with high speed (greater than l000Hz) visual recordings of The bubble growth and departure from the heater surface acquired from below and from the side of the heater. The data indicate that microlayer evaporation and contact line heat transfer are not major heat transfer mechanisms for bubble growth. The dominant heat transfer mechanism appears to be transient conduction into the liquid as the liquid rewets the wall during the bubble departure process.

  16. Measuring the Thermal Conductivities of Low Heat Conducting Disk Samples by Monitoring the Heat Flow

    Directory of Open Access Journals (Sweden)

    José A. Ibáñez-Mengual

    2017-02-01

    Full Text Available This article aims to establish an experimental procedure to measure heat transmission coefficients in low heat conductive materials. The newly developed model takes as starting point the application of Fourier’s law to a disk sample when a temperature gradient is established between its faces. The power of a heating element is determined as the heat transfer coefficient of the problem disk. Initially, a glass vessel containing water is placed in direct contact with the heating element; then, a problem plastic disk is placed between this element and the glass vessel, treating the set as a composite wall. Prior to the above the water equivalent of a calorimetric set (vessel + water + accessories and the thermal conductivity of the vessel must be determined. The thermal conductivity of the problem plastic disk sample is obtained for temperatures ranging from 30 to 70° C. The results reveal the existence of some type of structural transition for the problem material.

  17. Partial radiogenic heat model for Earth revealed by geoneutrino measurements

    Science.gov (United States)

    Kamland Collaboration; Gando, A.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Morikawa, T.; Nagai, N.; Nakajima, K.; Nakamura, K.; Narita, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takahashi, H.; Takahashi, N.; Takemoto, Y.; Tamae, K.; Watanabe, H.; Xu, B. D.; Yabumoto, H.; Yoshida, H.; Yoshida, S.; Enomoto, S.; Kozlov, A.; Murayama, H.; Grant, C.; Keefer, G.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Kadel, R.; O'Donnell, T.; Steiner, H. M.; Dwyer, D. A.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Sakai, M.; Horton-Smith, G. A.; Downum, K. E.; Gratta, G.; Tolich, K.; Efremenko, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Decowski, M. P.

    2011-09-01

    The Earth has cooled since its formation, yet the decay of radiogenic isotopes, and in particular uranium, thorium and potassium, in the planet's interior provides a continuing heat source. The current total heat flux from the Earth to space is 44.2+/-1.0TW, but the relative contributions from residual primordial heat and radiogenic decay remain uncertain. However, radiogenic decay can be estimated from the flux of geoneutrinos, electrically neutral particles that are emitted during radioactive decay and can pass through the Earth virtually unaffected. Here we combine precise measurements of the geoneutrino flux from the Kamioka Liquid-Scintillator Antineutrino Detector, Japan, with existing measurements from the Borexino detector, Italy. We find that decay of uranium-238 and thorium-232 together contribute TW to Earth's heat flux. The neutrinos emitted from the decay of potassium-40 are below the limits of detection in our experiments, but are known to contribute 4TW. Taken together, our observations indicate that heat from radioactive decay contributes about half of Earth's total heat flux. We therefore conclude that Earth's primordial heat supply has not yet been exhausted.

  18. Heat flow measurements on the Lomonosov Ridge, Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    XIAO Wentao; ZHANG Tao; ZHENG Yulong; GAO Jinyao

    2013-01-01

    Heat flow was measured on the Lomonosov Ridge during the 5th Chinese National Arctic Expedition in 2012. To derive the time-temperature curve, resistivity data were transformed to temperature by the resistivity-temperature program. Direct reading and linear regression methods were used to calculate the equilibrium temperature, which were regressed against the depth of the probes in sediment to derive the geothermal gradient. Then, heat flow was calculated as the product of geothermal gradient and thermal conductivity of sediments. The heat flow values on the basis of the two methods were similar (i.e., 67.27 mW/m2 and 63.99 mW/m2, respectively). The results are consistent with the measurements carried out at adjacent sites. The age of the Lomonosov Ridge predicted by the heat flow-age model was 62 Ma, which is in accordance with the inference that the ridge was separated from Eurasia at about 60 Ma.

  19. On-line measurement of heat of combustion

    Science.gov (United States)

    Chaturvedi, S. K.; Chegini, H.

    1988-01-01

    An experimental method for an on-line measurement of heat of combustion of a gaseous hydrocarbon fuel mixture of unknown composition is developed. It involves combustion of a test gas with a known quantity of air to achieve a predetermined oxygen concentration level in the combustion products. This is accomplished by a feedback controller which maintains the gas volumetric flow rate at a level consistent with the desired oxygen concentration in the products. The heat of combustion is determined from a known correlation with the gas volumetric flow rate. An on-line microcomputer accesses the gas volumetric flow data, and displays the heat of combustion values at desired time intervals.

  20. The Problem of the Instrument Stabilization During Hydrographic Measurements

    Directory of Open Access Journals (Sweden)

    Felski Andrzej

    2016-06-01

    Full Text Available Performing any measurement on watercraft is connected with many additional difficulties caused by the sea-environment. The most important is the problem of spatial stabilization of measurement systems, which are usually fastened to craft body. As soon as usually these measurement are executed during the move of the craft additional question is the accuracy of execution the planed trajectory.

  1. The development of an integrated assessment instrument for measuring analytical thinking and science process skills

    Science.gov (United States)

    Irwanto, Rohaeti, Eli; LFX, Endang Widjajanti; Suyanta

    2017-05-01

    This research aims to develop instrument and determine the characteristics of an integrated assessment instrument. This research uses 4-D model, which includes define, design, develop, and disseminate. The primary product is validated by expert judgment, tested it's readability by students, and assessed it's feasibility by chemistry teachers. This research involved 246 students of grade XI of four senior high schools in Yogyakarta, Indonesia. Data collection techniques include interview, questionnaire, and test. Data collection instruments include interview guideline, item validation sheet, users' response questionnaire, instrument readability questionnaire, and essay test. The results show that the integrated assessment instrument has Aiken validity value of 0.95. Item reliability was 0.99 and person reliability was 0.69. Teachers' response to the integrated assessment instrument is very good. Therefore, the integrated assessment instrument is feasible to be applied to measure the students' analytical thinking and science process skills.

  2. Accurate Measurement of Heat Capacity by Differential Scanning Calorimetry

    Science.gov (United States)

    1984-01-01

    Experience with high quality heat capacity measurement by differential scanning calorimetry is summarized and illustrated, pointing out three major causes of error: (1) incompatible thermal histories of the sample, reference and blank runs; (2) unstable initial and final isotherms; (3) incompatible differences between initial and final isotherm amplitudes for sample, reference and blank runs. Considering these problems, it is shown for the case of polyoxymethylene that accuracies in heat capacity of 0.1 percent may be possible.

  3. Accurate Measurement of Heat Capacity by Differential Scanning Calorimetry

    Science.gov (United States)

    1984-01-01

    Experience with high quality heat capacity measurement by differential scanning calorimetry is summarized and illustrated, pointing out three major causes of error: (1) incompatible thermal histories of the sample, reference and blank runs; (2) unstable initial and final isotherms; (3) incompatible differences between initial and final isotherm amplitudes for sample, reference and blank runs. Considering these problems, it is shown for the case of polyoxymethylene that accuracies in heat capacity of 0.1 percent may be possible.

  4. Measurement of thermophysical properties by a pulse-heating technique

    Institute of Scientific and Technical Information of China (English)

    Peng Xiao; Jingmin Dai; Qingwei Wang

    2007-01-01

    A technique is described for the dynamic measurement of selected thermophysical properties of electrically conducting solids in the temperature range from 1100 K to the melting point. Based on rapid resistive self-heating of the specimen from room temperature to any desired high temperature in several seconds by the passage of an electical current pulse through it, this technique measures the pertinent quantities such as current, voltage, randiance temperature, with sub-millisecond time resolution. The pulse-heating technique is applied to strip specimens. The radiance temperature is measured by high-speed pyrometry,normal spectral emissivity of the strips is measured by integrating sphere reflectometry. The normal spectral emissivity results are used to compute the true temperature of the specimens. The heat capacity,electrical resistivity, total hemispherical emissivity are evaluated in the temperature range from 1100 K to the melting point.

  5. A review of instruments to measure interprofessional team-based primary care.

    Science.gov (United States)

    Shoemaker, Sarah J; Parchman, Michael L; Fuda, Kathleen Kerwin; Schaefer, Judith; Levin, Jessica; Hunt, Meaghan; Ricciardi, Richard

    2016-07-01

    Interprofessional team-based care is increasingly regarded as an important feature of delivery systems redesigned to provide more efficient and higher quality care, including primary care. Measurement of the functioning of such teams might enable improvement of team effectiveness and could facilitate research on team-based primary care. Our aims were to develop a conceptual framework of high-functioning primary care teams to identify and review instruments that measure the constructs identified in the framework, and to create a searchable, web-based atlas of such instruments (available at: http://primarycaremeasures.ahrq.gov/team-based-care/ ). Our conceptual framework was developed from existing frameworks, the teamwork literature, and expert input. The framework is based on an Input-Mediator-Output model and includes 12 constructs to which we mapped both instruments as a whole, and individual instrument items. Instruments were also reviewed for relevance to measuring team-based care, and characterized. Instruments were identified from peer-reviewed and grey literature, measure databases, and expert input. From nearly 200 instruments initially identified, we found 48 to be relevant to measuring team-based primary care. The majority of instruments were surveys (n = 44), and the remainder (n = 4) were observational checklists. Most instruments had been developed/tested in healthcare settings (n = 30) and addressed multiple constructs, most commonly communication (n = 42), heedful interrelating (n = 42), respectful interactions (n = 40), and shared explicit goals (n = 37). The majority of instruments had some reliability testing (n = 39) and over half included validity testing (n = 29). Currently available instruments offer promise to researchers and practitioners to assess teams' performance, but additional work is needed to adapt these instruments for primary care settings.

  6. Novel Instrument to Measure Aerosol Fluorescence, Absorption, and Scattering Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Picarro, Inc proposes to develop the first cavity ringdown spectroscopy (CRDS) system to measure fluorescence, absorption, and scattering properties of atmospheric...

  7. New Concepts in Instrumentation Development to Measure the Perry Scheme.

    Science.gov (United States)

    Taylor, Marcia

    The Perry scheme of intellectual and ethical development has become widely used in a range of academic disciplines and such areas as career training and faculty consultation. However, current measurement techniques for the scheme, whether interview format or paper and pencil measures, do not adequately address issues related to assessing cognitive…

  8. High impulse voltage and current measurement techniques fundamentals, measuring instruments, measuring methods

    CERN Document Server

    Schon, Klaus

    2013-01-01

    Equipment to be installed in electric power-transmission and distribution systems must pass acceptance tests with standardized high-voltage or high-current test impulses which simulate the stress on the insulation caused by external lightning discharges and switching operations in the grid. High impulse voltages and currents are also used in many other fields of science and engineering for various applications. Therefore, precise impulse-measurement techniques are necessary, either to prevent an over- or understressing of the insulation or to guarantee the effectiveness and quality of the application. The book deals with: principal generator circuits for generating high-voltage and high-current impulses measuring systems and their calibration according to IEC 60060 and IEC 62475 methods of estimating uncertainties of measurement mathematical and experimental basis for characterizing the transfer behavior of spatially extended systems used for measuring fast transients. This book is intended for engineers and ...

  9. Time and Space Resolved Heat Transfer Measurements Under Nucleate Bubbles with Constant Heat Flux Boundary Conditions

    Science.gov (United States)

    Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho

    2003-01-01

    Investigations into single bubble pool boiling phenomena are often complicated by the difficulties in obtaining time and space resolved information in the bubble region. This usually occurs because the heaters and diagnostics used to measure heat transfer data are often on the order of, or larger than, the bubble characteristic length or region of influence. This has contributed to the development of many different and sometimes contradictory models of pool boiling phenomena and dominant heat transfer mechanisms. Recent investigations by Yaddanapyddi and Kim and Demiray and Kim have obtained time and space resolved heat transfer information at the bubble/heater interface under constant temperature conditions using a novel micro-heater array (10x10 array, each heater 100 microns on a side) that is semi-transparent and doubles as a measurement sensor. By using active feedback to maintain a state of constant temperature at the heater surface, they showed that the area of influence of bubbles generated in FC-72 was much smaller than predicted by standard models and that micro-conduction/micro-convection due to re-wetting dominated heat transfer effects. This study seeks to expand on the previous work by making time and space resolved measurements under bubbles nucleating on a micro-heater array operated under constant heat flux conditions. In the planned investigation, wall temperature measurements made under a single bubble nucleation site will be synchronized with high-speed video to allow analysis of the bubble energy removal from the wall.

  10. Direct electronic measurement of Peltier cooling and heating in graphene

    Science.gov (United States)

    Vera-Marun, I. J.; van den Berg, J. J.; Dejene, F. K.; van Wees, B. J.

    2016-05-01

    Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy and can therefore be exploited as probes of distortions in the electronic structure at the nanoscale. Here we consider two-dimensional graphene as an excellent nanoscale carbon material for exploring the interaction between electronic and thermal transport phenomena, by presenting a direct and quantitative measurement of the Peltier component to electronic cooling and heating in graphene. Thanks to an architecture including nanoscale thermometers, we detected Peltier component modulation of up to 15 mK for currents of 20 μA at room temperature and observed a full reversal between Peltier cooling and heating for electron and hole regimes. This fundamental thermodynamic property is a complementary tool for the study of nanoscale thermoelectric transport in two-dimensional materials.

  11. Heat capacity measurements on high T sub c superconductors

    CERN Document Server

    Oezcan, S

    1998-01-01

    temperature interval. The phase transition jump increases with the increasing of oxygen amount in the CuO sub 2 layers. The hight of the jump is varying from 1.5% to 3.5% of the total specific heat which is the nature of the bulk superconductivity. The small coherence length increases fluctuation effects and also causes the dependence of superconducting properties on structural defects. The fluctuation effects on the heat capacity of YBCO is investigated on the sample that shows clear superconducting properties. In this work, a heat capacity measurement system which has high sensitivity and reproducibility designed and constructed. The investigation of the effect of oxygen stoichiometry on the superconducting properties of high T sub c superconductors was aimed. For this purpose electrical resistivity, magnetic susceptibility and heat capacity experiment were performed. The constructed system is a computerized adiabatic calorimeter which has temperature resolution of about 0.1 mk and operates in the temperatu...

  12. Time series analysis of the response of measurement instruments

    CERN Document Server

    Georgakaki, Dimitra; Polatoglou, Hariton

    2012-01-01

    In this work the significance of treating a set of measurements as a time series is being explored. Time Series Analysis (TSA) techniques, part of the Exploratory Data Analysis (EDA) approach, can provide much insight regarding the stochastic correlations that are induced on the outcome of an experiment by the measurement system and can provide criteria for the limited use of the classical variance in metrology. Specifically, techniques such as the Lag Plots, Autocorrelation Function, Power Spectral Density and Allan Variance are used to analyze series of sequential measurements, collected at equal time intervals from an electromechanical transducer. These techniques are used in conjunction with power law models of stochastic noise in order to characterize time or frequency regimes for which the usually assumed white noise model is adequate for the description of the measurement system response. However, through the detection of colored noise, usually referred to as flicker noise, which is expected to appear ...

  13. Absolute viscosity measured using instrumented parallel plate system

    Science.gov (United States)

    Broyles, H. H.

    1967-01-01

    An automatic system measures the true average shear viscosity of liquids and viscoelastic materials, using the parallel plate method and automatically displays the results on a graphic record. This eliminates apparatus setup and extensive calculations.

  14. A new automatic system for angular measurement and calibration in radiometric instruments.

    Science.gov (United States)

    Marquez, Jose Manuel Andujar; Bohórquez, Miguel Ángel Martínez; Garcia, Jonathan Medina; Nieto, Francisco Jose Aguilar

    2010-01-01

    This paper puts forward the design, construction and testing of a new automatic system for angular-response measurement and calibration in radiometric instruments. Its main characteristics include precision, speed, resolution, noise immunity, easy programming and operation. The developed system calculates the cosine error of the radiometer under test by means of a virtual instrument, from the measures it takes and through a mathematical procedure, thus allowing correcting the radiometer with the aim of preventing cosine error in its measurements.

  15. A New Automatic System for Angular Measurement and Calibration in Radiometric Instruments

    Directory of Open Access Journals (Sweden)

    Jose Manuel Andujar Marquez

    2010-04-01

    Full Text Available This paper puts forward the design, construction and testing of a new automatic system for angular-response measurement and calibration in radiometric instruments. Its main characteristics include precision, speed, resolution, noise immunity, easy programming and operation. The developed system calculates the cosine error of the radiometer under test by means of a virtual instrument, from the measures it takes and through a mathematical procedure, thus allowing correcting the radiometer with the aim of preventing cosine error in its measurements.

  16. POLARBEAR-2: an instrument for CMB polarization measurements

    CERN Document Server

    Inoue, Y; Akiba, Y; Aleman, C; Arnold, K; Baccigalupi, C; Barch, B; Barron, D; Bender, A; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Cukierman, A; de Haan, T; Dobbs, M A; Ducout, A; Dunner, R; Elleflot, T; Errard, J; Fabbian, G; Feeney, S; Feng, C; Fuller, G; Gilbert, A J; Goeckner-Wald, N; Groh, J; Hall, G; Halverson, N; Hamada, T; Hasegawa, M; Hattori, K; Hazumi, M; Hill, C; Holzapfel, W L; Hori, Y; Howe, L; Irie, F; Jaehnig, G; Jaffe, A; Jeongh, O; Katayama, N; Kaufman, J P; Kazemzadeh, K; Keating, B G; Kermish, Z; Keskital, R; Kisner, T; Kusaka, A; Jeune, M Le; Lee, A T; Leon, D; Linder, E V; Lowry, L; Matsuda, F; Matsumura, T; Miller, N; Mizukami, K; Montgomery, J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Poletti, D; Puglisi, G; Raum, C R; Rebeiz, G M; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K M; Segaw, Y; Sherwin, B D; Shirley, I; Siritanasak, P; Stebor, N; Suzuki, R Stompor A; Tajima, O; Takada, S; Takatori, S; Teply, G P; Tikhomirol, A; Tomaru, T; Whitehorn, N; Zahn, A; Zahn, O

    2016-01-01

    POLARBEAR-2 (PB-2) is a cosmic microwave background (CMB) polarization experiment that will be located in the Atacama highland in Chile at an altitude of 5200 m. Its science goals are to measure the CMB polarization signals originating from both primordial gravitational waves and weak lensing. PB-2 is designed to measure the tensor to scalar ratio, r, with precision {\\sigma}(r) < 0.01, and the sum of neutrino masses, {\\Sigma}m{\

  17. Mass concentrations of black carbon measured by four instruments in the middle of Central East China in June 2006

    Science.gov (United States)

    Kanaya, Y.; Komazaki, Y.; Pochanart, P.; Liu, Y.; Akimoto, H.; Gao, J.; Wang, T.; Wang, Z.

    2008-12-01

    Mass concentrations of black carbon (BC) were determined in June 2006 at the top of Mount Tai (36.26° N, 117.11° E, 1534 m a.s.l.), located in the middle of Central East China, using four different instruments: a multi-angle absorption photometer (5012 MAAP, Thermo), a particle soot absorption photometer (PSAP, Radiance Research), an ECOC semi-continuous analyzer (Sunset Laboratory) and an Aethalometer (AE-21, Magee Scientific). High correlation coefficients (R2>0.88) were obtained between the measurements of the BC mass concentrations made using the different instruments. From the range of the slopes of the linear least-square fittings, we concluded that BC concentrations regionally-representative of the area were measured in a range with a maximum-to-minimum ratio of 1.5 (an exception was that the BC (PM2.5) concentrations derived from MAAP were ~2 times higher than the optical measurements (PM2.5) derived from the ECOC analyzer). While this range is significant, it is still sufficiently narrow to better constrain the large and highly uncertain emission rate of BC from Central East China. In detail, two optical instruments (the MAAP and the PSAP equipped with a heated inlet 400°C) tended to give higher concentrations than the thermal EC concentrations observed by the ECOC analyzer. The ratios of optical BC to thermal EC showed a positive correlation with the OC/EC ratio reported by the ECOC analyzer, suggesting two explanations. One is that the optical instruments overestimated BC concentrations in spite of careful cancellation of the scattering effect in the MAAP instrument and the expected evaporation of volatile species by heating the inlet of the PSAP instrument. The other is that the determined split points between OC and EC were too late when a large amount of OC underwent charring during the analysis, resulting in an underestimation of EC by the ECOC analyzer. High ratios of optical BC to thermal EC were recorded when the NOx/NOy ratio was low, implying

  18. Mass concentrations of black carbon measured by four instruments in the middle of Central East China in June 2006

    Directory of Open Access Journals (Sweden)

    Y. Kanaya

    2008-12-01

    Full Text Available Mass concentrations of black carbon (BC were determined in June 2006 at the top of Mount Tai (36.26° N, 117.11° E, 1534 m a.s.l., located in the middle of Central East China, using four different instruments: a multi-angle absorption photometer (5012 MAAP, Thermo, a particle soot absorption photometer (PSAP, Radiance Research, an ECOC semi-continuous analyzer (Sunset Laboratory and an Aethalometer (AE-21, Magee Scientific. High correlation coefficients (R2>0.88 were obtained between the measurements of the BC mass concentrations made using the different instruments. From the range of the slopes of the linear least-square fittings, we concluded that BC concentrations regionally-representative of the area were measured in a range with a maximum-to-minimum ratio of 1.5 (an exception was that the BC (PM2.5 concentrations derived from MAAP were ~2 times higher than the optical measurements (PM2.5 derived from the ECOC analyzer. While this range is significant, it is still sufficiently narrow to better constrain the large and highly uncertain emission rate of BC from Central East China. In detail, two optical instruments (the MAAP and the PSAP equipped with a heated inlet 400°C tended to give higher concentrations than the thermal EC concentrations observed by the ECOC analyzer. The ratios of optical BC to thermal EC showed a positive correlation with the OC/EC ratio reported by the ECOC analyzer, suggesting two explanations. One is that the optical instruments overestimated BC concentrations in spite of careful cancellation of the scattering effect in the MAAP instrument and the expected evaporation of volatile species by heating the inlet of the PSAP instrument. The other is that the determined split points between OC and EC were too late when a large amount of OC underwent charring during the analysis, resulting in an underestimation of EC by the ECOC analyzer. High ratios of optical BC to thermal EC were

  19. The Belgian Risk Perception Barometer Risk Perception Measuring Instruments Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Aeken, Koen van; Carle, Benny; Hardeman, Frank [SCK-CEN, Mol (Belgium). PISA

    2006-09-15

    The recognition of the societal dimension of risk assessment has been at the cradle of the opinion research on risks. Since risk estimates are not fixed by experts anymore, but are considered to show variation across a diverse population, the people themselves must be asked how they experience the risks. Following the rise in popularity of risk assessment and the recognition of its 'human' dimension, the demand for public opinion surveys on risks has been increasing at a fast pace. Unfortunately, this high demand sees some negative consequences. First, surveys are frequently conducted by people lacking even a minimal knowledge of survey methodology. In this respect, we might think of a journal or a newspaper trying to impress their readers with the definitive public opinion poll about the latest issue in vogue. Second, time pressure causes experienced or trained researchers to lower themselves to 'quick and dirty' work. While methodologically flawed opinion research might not be something to worry about when appearing in the amusement press, concern is due if the results of a survey inspire policy development. Indeed, when public opinion research is conceived as an instrument to support rational, evidence based public policy, the strictest methodological standards should be applied, even if it is clear that scientific research will never substitute political reasoning. This contribution deals with the safeguarding and enhancing of the quality of large scale surveys focusing on risk perception and related issues. This attention is relevant, not only for the reason that methodological standards may be flawed due to the immense popularity of the opinion poll, but also because the results of opinion surveys may have far-reaching policy consequences.

  20. Physical Activity Measurement Instruments for Children with Cerebral Palsy: A Systematic Review

    Science.gov (United States)

    Capio, Catherine M.; Sit, Cindy H. P.; Abernethy, Bruce; Rotor, Esmerita R.

    2010-01-01

    Aim: This paper is a systematic review of physical activity measurement instruments for field-based studies involving children with cerebral palsy (CP). Method: Database searches using PubMed Central, MEDLINE, CINAHL Plus, PsycINFO, EMBASE, Cochrane Library, and PEDro located 12 research papers, identifying seven instruments that met the inclusion…

  1. Development of an Instrument to Measure Consumer Satisfaction in Vocational Rehabilitation

    Science.gov (United States)

    Capella, Michele E.; Turner, Ronna C.

    2004-01-01

    Although state agencies are required by law to assess their consumers' satisfaction with vocational rehabilitation (VR), each state uses its own instrument to measure satisfaction. This not only makes comparisons across states impossible but also means that the quality of these instruments varies widely from state to state. As with other…

  2. The PROactive instruments to measure physical activity in patients with chronic obstructive pulmonary disease

    NARCIS (Netherlands)

    Gimeno-Santos, Elena; Raste, Yogini; Demeyer, Heleen; Louvaris, Zafeiris; de Jong, Corina; Rabinovich, Roberto A.; Hopkinson, Nicholas S.; Polkey, Michael I.; Vogiatzis, Ioannis; Tabberer, Maggie; Dobbels, Fabienne; Ivanoff, Nathalie; de Boer, Willem I.; van der Molen, Thys; Kulich, Karoly; Serra, Ignasi; Basagana, Xavier; Troosters, Thierry; Puhan, Milo A.; Karlsson, Niklas; Garcia-Aymerich, Judith

    2015-01-01

    No current patient-centred instrument captures all dimensions of physical activity in chronic obstructive pulmonary disease (COPD). Our objective was item reduction and initial validation of two instruments to measure physical activity in COPD. Physical activity was assessed in a 6-week, randomised,

  3. The knee adduction moment measured with an instrumented force shoe in patients with knee osteoarthritis

    NARCIS (Netherlands)

    Noort, van den Josien C.; Esch, van der Martin; Steultjens, Martijn P.M.; Dekker, Joost; Schepers, H. Martin; Veltink, Peter H.; Harlaar, Jaap

    2012-01-01

    The external knee adduction moment (KAdM) during gait is an important parameter in patients with knee osteoarthritis (OA). KAdM measurement is currently restricted to instruments only available in gait laboratories. However, ambulatory movement analysis technology, including instrumented force shoes

  4. Reliability of the Measure of Acceptance of the Theory of Evolution (MATE) Instrument with University Students

    Science.gov (United States)

    Rutledge, Michael L.; Sadler, Kim C.

    2007-01-01

    The Measure of Acceptance of the Theory of Evolution (MATE) instrument was initially designed to assess high school biology teachers' acceptance of evolutionary theory. To determine if the MATE instrument is reliable with university students, it was administered to students in a non-majors biology course (n = 61) twice over a 3-week period.…

  5. Developing an instrument for measuring TQM implementation in a Chinese context

    NARCIS (Netherlands)

    Zhang, Z.

    1999-01-01

    From an extensive review of the literature of total quality management (TQM), eleven constructs of TQM implementation were identified. An instrument measuring these constructs was developed. The reliability and validity of the instrument were tested and validated using data from 212 Chinese manufact

  6. Developing an instrument for measuring TQM implementation in a Chinese context

    NARCIS (Netherlands)

    Zhang, Z.

    1999-01-01

    From an extensive review of the literature of total quality management (TQM), eleven constructs of TQM implementation were identified. An instrument measuring these constructs was developed. The reliability and validity of the instrument were tested and validated using data from 212 Chinese

  7. Validation of an Instrument to Measure Students' Motivation and Self-Regulation towards Technology Learning

    Science.gov (United States)

    Liou, Pey-Yan; Kuo, Pei-Jung

    2014-01-01

    Background: Few studies have examined students' attitudinal perceptions of technology. There is no appropriate instrument to measure senior high school students' motivation and self-regulation toward technology learning among the current existing instruments in the field of technology education. Purpose: The present study is to validate an…

  8. The PROactive instruments to measure physical activity in patients with chronic obstructive pulmonary disease

    NARCIS (Netherlands)

    Gimeno-Santos, Elena; Raste, Yogini; Demeyer, Heleen; Louvaris, Zafeiris; de Jong, Corina; Rabinovich, Roberto A.; Hopkinson, Nicholas S.; Polkey, Michael I.; Vogiatzis, Ioannis; Tabberer, Maggie; Dobbels, Fabienne; Ivanoff, Nathalie; de Boer, Willem I.; van der Molen, Thys; Kulich, Karoly; Serra, Ignasi; Basagana, Xavier; Troosters, Thierry; Puhan, Milo A.; Karlsson, Niklas; Garcia-Aymerich, Judith

    2015-01-01

    No current patient-centred instrument captures all dimensions of physical activity in chronic obstructive pulmonary disease (COPD). Our objective was item reduction and initial validation of two instruments to measure physical activity in COPD. Physical activity was assessed in a 6-week, randomised,

  9. Designing Chemistry Practice Exams for Enhanced Benefits: An Instrument for Comparing Performance and Mental Effort Measures

    Science.gov (United States)

    Knaus, Karen J.; Murphy, Kristen L.; Holme, Thomas A.

    2009-01-01

    The design and use of a chemistry practice exam instrument that includes a measure for student mental effort is described in this paper. Use of such an instrument can beneficial to chemistry students and chemistry educators as well as chemical education researchers from both a content and cognitive science perspective. The method for calculating…

  10. The Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI): Design, execution, and early results

    NARCIS (Netherlands)

    Piters, A.J.M.; Boersma, K.F.; Kroon, M.; Hains, J.C.; Roozendael, M. van; Wittrock, F.; Abuhassan, N.; Adams, C.; Akrami, M.; Allaart, M.A.F.; Apituley, A.; Beirle, S.; Bergwerff, J.B.; Berkhout, A.J.C.; Brunner, D.; Cede, A.; Chong, J.; Clémer, K.; Fayt, C.; Frieß, U.; Gast, L.F.L.; Gil-Ojeda, M.; Goutail, F.; Graves, R.; Griesfeller, A.; Großmann, K.; Hemerijckx, G.; Hendrick, F.; Henzing, B.; Herman, J.; Hermans, C.; Hoexum, M.; Hoff, G.R. van der; Irie, H.; Johnston, P.V.; Kanaya, Y.; Kim, Y.J.; Klein Baltink, H.; Kreher, K.; Leeuw, G. de; Leigh, R.; Merlaud, A.; Moerman, M.M.; Monks, P.S.; Mount, G.H.; Navarro-Comas, M.; Oetjen, H.; Pazmino, A.; Perez-Camacho, M.; Peters, E.; Du Piesanie, A.; Pinardi, G.; Puentedura, O.; Richter, A.; Roscoe, H.K.; Schönhardt, A.; Schwarzenbach, B.; Shaiganfar, R.; Sluis, W.; Spinei, E.; Stolk, A.P.; Strong, K.; Swart, D.P.J.; Takashima, H.; Vlemmix, T.; Vrekoussis, M.; Wagner, T.; Whyte, C.; Wilson, K.M.; Yela, M.; Yilmaz, S.; Zieger, P.; Zhou, Y.

    2012-01-01

    From June to July 2009 more than thirty different in-situ and remote sensing instruments from all over the world participated in the Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). The campaign took place at KNMI's Cabauw Experimental Site for Atmospheric Research

  11. The Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI): design, execution, and early results

    NARCIS (Netherlands)

    Henzing, J.S.; Leeuw, G. de; Piters, A.J.M.; Boersma, K.F.; Kroon, M.; Hains, J.C.; Roozendael, M. van; Wittrock, F.; Abuhassan, N.; Adams, C.; Akrami, M.; Allaart, M.A.F.; Apituley, A.; Bergwerff, J.B.; Berkhout, A.J.C.; Brunner, D.; Cede, A.; Chong, J.; Clémer, K.; Fayt, C.; Friess, U.; Gast, L.F.L.; Gil-Ojeda, M.; Goutail, F.; Graves, R.; Griesfeller, A.; Grossmann, K.; Hemerijckx, G.; Hendrick, F.; Herman, J.; Hermans, C.; Hoexum, M.; Hoff, G.R. van der; Irie, H.; Johnston, P.V.; Kanaya, Y.; Kim, Y.J.; Klein Baltink, H.; Kreher, K.; Leigh, R.; Merlaud, A.; Moerman, M.M.; Monks, P.S.; Mount, G.H.; Navarro-Comas, M.; Oetjen, H.; Pazmino, A.; Perez-Camacho, M.; Peters, E.; Piesanie, A. du; Pinardi, G.; Puentadura, O.; Richter, A.; Roscoe, H.K.; Schönhardt, A.; Schwarzenbach, B.; Shaiganfar, R.; Sluis, W.; Spinei, E.; Stolk, A.P.; Strong, K.; Swart, D.P.J.; Takashima, H.; Vlemmix, T.; Vrekoussis, M.; Wagner, T.; Whyte, C.; Wilson, K.M.; Yela, M.; Yilmaz, S.; Zieger, P.; Zhou, Y.

    2011-01-01

    From June to July 2009 more than thirty different in-situ and remote sensing instruments from all over the world participated in the Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). The campaign took place at KNMI’s 5 Cabauw Experimental Site for Atmospheric Resear

  12. Reflectances from a supercontinuum laser-based instrument: hyperspectral, polarimetric and angular measurements.

    Science.gov (United States)

    Ceolato, Romain; Riviere, Nicolas; Hespel, Laurent

    2012-12-31

    Recent developments of active hyperspectral systems require optical characterization of man-made materials for instrument calibration. This work presents an original supercontinuum laser-based instrument designed by Onera, The French Aerospace Lab, for fast hyperspectral polarimetric and angular reflectances measurements. The spectral range is from 480 nm to 1000 nm with a 1 nm spectral resolution. Different polarization configurations are made possible in whole spectrum. This paper reviews the design and the calibration of the instrument. Hyper-spectral polarimetric and angular reflectances are measured for reference and man-made materials such as paint coatings. Physical properties of reflectances as positivity, energy conservation and Helmholtz reciprocity are retrieved from measurements.

  13. Reliability of Instruments Measuring At-Risk and Problem Gambling Among Young Individuals

    DEFF Research Database (Denmark)

    Edgren, Robert; Castrén, Sari; Mäkelä, Marjukka

    2016-01-01

    Info covering the years 2009–2015. In total, 50 original research articles fulfilled the inclusion criteria: target age under 29 years, using an instrument designed for youth, and reporting a reliability estimate. Articles were evaluated with the revised Quality Assessment of Diagnostic Accuracy Studies tool...... instruments for youth have not been rigorously evaluated yet. Further research is needed especially concerning instruments designed for clinical use.......This review aims to clarify which instruments measuring at-risk and problem gambling (ARPG) among youth are reliable and valid in light of reported estimates of internal consistency, classification accuracy, and psychometric properties. A systematic search was conducted in PubMed, Medline, and Psyc...

  14. Measurement of heat pump processes induced by laser radiation

    Science.gov (United States)

    Garbuny, M.; Henningsen, T.

    1983-01-01

    A series of experiments was performed in which a suitably tuned CO2 laser, frequency doubled by a Tl3AsSe37 crystal, was brought into resonance with a P-line or two R-lines in the fundamental vibration spectrum of CO. Cooling or heating produced by absorption in CO was measured in a gas-thermometer arrangement. P-line cooling and R-line heating could be demonstrated, measured, and compared. The experiments were continued with CO mixed with N2 added in partial pressures from 9 to 200 Torr. It was found that an efficient collisional resonance energy transfer from CO to N2 existed which increased the cooling effects by one to two orders of magnitude over those in pure CO. Temperature reductions in the order of tens of degrees Kelvin were obtained by a single pulse in the core of the irradiated volume. These measurements followed predicted values rather closely, and it is expected that increase of pulse energies and durations will enhance the heat pump effects. The experiments confirm the feasibility of quasi-isentropic engines which convert laser power into work without the need for heat rejection. Of more immediate potential interest is the possibility of remotely powered heat pumps for cryogenic use, such applications are discussed to the extent possible at the present stage.

  15. The Problem of the Instrument Stabilization During Hydrographic Measurements

    Science.gov (United States)

    Felski, Andrzej; Naus, Krzysztof; Wąż, Mariusz

    2016-06-01

    Performing any measurement on watercraft is connected with many additional difficulties caused by the sea-environment. The most important is the problem of spatial stabilization of measurement systems, which are usually fastened to craft body. As soon as usually these measurement are executed during the move of the craft additional question is the accuracy of execution the planed trajectory. This is a problem for all investigators, especially when system use spatially configured beams of any antennas or other sensors, regardless is it receiving or transmitting one. Different aspects of these question are the subject of research activity of Institute of Navigation and Maritime Hydrography of Polish Naval Academy. In this paper the review of works executed in last years are presented.

  16. Measuring Certified Registered Nurse Anesthetist Organizational Climate: Instrument Adaptation.

    Science.gov (United States)

    Boyd, Donald; Poghosyan, Lusine

    2017-08-01

    No tool exists measuring certified registered nurse anesthetist (CRNA) organizational climate. The study's purpose is to adapt a validated tool to measure CRNA organizational climate. Content validity of the Certified Registered Nurse Anesthetist Organizational Climate Questionnaire (CRNA-OCQ) was established. Pilot testing was conducted to determine internal reliability consistency of the subscales. Experts rated the tool as content valid. The subscales had high internal consistency reliability (with respective Cronbach's alphas): CRNA-Anesthesiologist Relations (.753), CRNA-Physician Relations (.833), CRNA-Administration Relations (.895), Independent Practice (.830), Support for CRNA Practice (.683), and Professional Visibility (.772). Further refinement of the CRNA-OCQ is necessary. Measurement and assessment of CRNA organizational climate may produce evidence needed to improve provider and patient outcomes.

  17. INSTRUMENTATION FOR MEASURING AND TRANSMISSION THE SOLAR RADIATION THROUGH EARTH’S ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    Alexandru Dan Toma

    2013-07-01

    Full Text Available The Sun's energy is distributed over a broad range of the electromagnetic spectrum and Sun behaves approximately like a "blackbody" radiating at a temperature of about 5800 K with maximum output in the green-yellow part of the visible spectrum, around 500 nm. Not all solar radiation reaching the top of the atmosphere reaches Earth's surface due to a various optical phenomena in regard to solar radiation crossing the Earth’s atmosphere. In order to investigate them, there are two general categories of instruments used to measure the transmission of solar radiation through Earth's atmosphere: instruments that measure radiation from the entire sky and instruments that measure only direct solar radiation. Within each of these categories, instruments can be further subdivided into those that measure radiation over a broad range of wavelengths and those that measure only specific wavelengths.

  18. Practical resolution requirements of measurement instruments for precise characterization of autostereoscopic 3D displays

    Science.gov (United States)

    Boher, Pierre; Leroux, Thierry; Collomb-Patton, Véronique; Bignon, Thibault

    2014-03-01

    Different ways to evaluate the optical performances of auto-stereoscopic 3D displays are reviewed. Special attention is paid to the crosstalk measurements that can be performed by measuring, either the precise angular emission at one or few locations on the display surface, or the full display surface emission from very specific locations in front of the display. Using measurements made in the two ways with different instruments on different auto-stereoscopic displays, we show that measurement instruments need to match the resolution of the human eye to obtain reliable results in both cases. Practical requirements in terms of angular resolution for viewing angle measurement instruments and in terms of spatial resolution for imaging instruments are derived and verified on practical examples.

  19. An Instrument for the Measurement of Parental Authority Prototypes.

    Science.gov (United States)

    Buri, John R.

    Baumrind (1971) proposed three distinct patterns of parental authority (permissiveness, authoritarianism, and authoritativeness) and measured these parenting styles through interviews with parents and their children and through observations of parents interacting with their children. This study was undertaken to develop a readily-accessible,…

  20. Comparing Alternative Instruments to Measure Service Quality in Higher Education

    Science.gov (United States)

    Brochado, Ana

    2009-01-01

    Purpose: The purpose of this paper is to examine the performance of five alternative measures of service quality in the high education sector--service quality (SERVQUAL), importance-weighted SERVQUAL, service performance (SERVPERF), importance-weighted SERVPERF, and higher education performance (HEdPERF). Design/methodology/approach: Data were…

  1. Workplace Discrimination, Prejudice, and Diversity Measurement: A Review of Instrumentation.

    Science.gov (United States)

    Burkard, Alan W.; Boticki, Michael A.; Madson, Michael B.

    2002-01-01

    Critically reviews diversity measures in terms of item development, psychometric evidence, and utility for counseling and development: Workplace Prejudice/Discrimination Inventory, Attitudes toward Diversity Scale; Organizational Diversity Inventory, Workforce Diversity Questionnaire, Perceived Occupational Opportunity Scale-Form B, and Perceived…

  2. Comparing Alternative Instruments to Measure Service Quality in Higher Education

    Science.gov (United States)

    Brochado, Ana

    2009-01-01

    Purpose: The purpose of this paper is to examine the performance of five alternative measures of service quality in the high education sector--service quality (SERVQUAL), importance-weighted SERVQUAL, service performance (SERVPERF), importance-weighted SERVPERF, and higher education performance (HEdPERF). Design/methodology/approach: Data were…

  3. Assessing medical professionalism: A systematic review of instruments and their measurement properties.

    Science.gov (United States)

    Li, Honghe; Ding, Ning; Zhang, Yuanyuan; Liu, Yang; Wen, Deliang

    2017-01-01

    Over the last three decades, various instruments were developed and employed to assess medical professionalism, but their measurement properties have yet to be fully evaluated. This study aimed to systematically evaluate these instruments' measurement properties and the methodological quality of their related studies within a universally acceptable standardized framework and then provide corresponding recommendations. A systematic search of the electronic databases PubMed, Web of Science, and PsycINFO was conducted to collect studies published from 1990-2015. After screening titles, abstracts, and full texts for eligibility, the articles included in this study were classified according to their respective instrument's usage. A two-phase assessment was conducted: 1) methodological quality was assessed by following the COnsensus-based Standards for the selection of health status Measurement INstruments (COSMIN) checklist; and 2) the quality of measurement properties was assessed according to Terwee's criteria. Results were integrated using best-evidence synthesis to look for recommendable instruments. After screening 2,959 records, 74 instruments from 80 existing studies were included. The overall methodological quality of these studies was unsatisfactory, with reasons including but not limited to unknown missing data, inadequate sample sizes, and vague hypotheses. Content validity, cross-cultural validity, and criterion validity were either unreported or negative ratings in most studies. Based on best-evidence synthesis, three instruments were recommended: Hisar's instrument for nursing students, Nurse Practitioners' Roles and Competencies Scale, and Perceived Faculty Competency Inventory. Although instruments measuring medical professionalism are diverse, only a limited number of studies were methodologically sound. Future studies should give priority to systematically improving the performance of existing instruments and to longitudinal studies.

  4. E-MODULE DEVELOPMENT FOR THE SUBJECT OF MEASURING INSTRUMENTS AND MEASUREMENT IN ELECTRONICS ENGINEERING EDUCATION

    Directory of Open Access Journals (Sweden)

    Nuryake Fajaryati

    2016-09-01

    Full Text Available This study aims to develop an e-module as a medium of learning for the practice course of Measuring Instruments and Measurement in the Department of Electronics Engineering Education of Yogyakarta State University and to determine the feasibility of the e-module. This study employed a method of research and development. The development process was conducted through four phases by using the model of Lee and Owens which consisted of analysis phase, design phase, developing and implementation phase, as well as evaluation phase.The evaluation was conducted in several stages. Firstly, an alpha test for product validation was conducted by the experts on material and media. After that, a beta test was conducted by testing the product in small group users. The subjects of this study were the students of Electronics Engineering. The instruments used to collect the data were a validation sheet and questionnaires. The results of qualitative data were then modified into quantitative data with a range of 1 to 5, then they were converted with a rating scale to determine the feasibility of the medium. The results showed that based on the alpha test, the medium was in a very high quality. Meanwhile, in the beta test of the instructional aspect, in terms of material and evaluation and the multimedia aspect the e-module was respectively considered feasible and quite feasible. The four indicators namely text, image, animation and video were all generally considered feasible. In terms of usage aspect, the e-module was considered feasible where its two indicators, namely instructions and navigation, were generally regarded as very feasible by all respondents.

  5. A Critical Review of Instruments Measuring Breastfeeding Attitudes, Knowledge, and Social Support.

    Science.gov (United States)

    Casal, Corrine S; Lei, Ann; Young, Sera L; Tuthill, Emily L

    2017-02-01

    Breastfeeding provides beneficial health outcomes for infants and their mothers, and increasing its practice is a national priority in many countries. Despite increasing support to exclusively breastfeed, the prevalence at 6 months remains low. Breastfeeding behavior is influenced by a myriad of determinants, including breastfeeding attitudes, knowledge, and social support. Effective measurement of these determinants is critical to provide optimal support for women throughout the breastfeeding period. However, there are a multitude of available instruments measuring these constructs, which makes identification of an appropriate instrument challenging. Research aim: Our aim was to identify and critically examine the existing instruments measuring breastfeeding attitudes, knowledge, and social support. A total of 16 instruments was identified. Each instrument's purpose, theoretical underpinnings, and validity were analyzed. An overview, validation and adaptation for use in other settings was assessed for each instrument. Depth of reporting and validation testing differed greatly between instruments. Content, construct, and predictive validity were present for most but not all scales. When selecting and adapting instruments, attention should be paid to domains within the scale, number of items, and adaptation.

  6. New terrestrial heat flow measurements on the Nazca Plate

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.N. (Columbia Univ., Palisades, NY); Langseth, M.G.; Vacquier, V.; Francheteau, J.

    1976-03-01

    Sixty-seven new heat flow measurements on the Nazca Plate are reported, and the thermal regimes of three specific areas on the plate are examined. The Nazca Ridge is an aseismic ridge which may have been generated as an ''island trail'' from the Easter Island ''hot spot'' and/or may be a fossil transform fault. The Nazca Ridge has lower heat flow than the surrounding sea floor implying that the ridge might have low ''effective'' thermal conductivity causing heat to preferentially flow or refract to surrounding ocean crust which has higher conductivity, or, the low heat flow values may be caused by hydrothermal circulation on the ridge. The Carnegie Plateau is an elevated region south of the Carnegie Ridge on the northeastern Nazca Plate with high heat flow and shallow topography consistent with an age of less than 20 m.y. B.P. The central Nazca Plate is an area of highly variable heat flow which is possibly related to thin sediment and to rough regional topography.

  7. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Bohac, D. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Huelman, P. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2017-03-03

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  8. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, St. Paul, MN (United States)

    2017-03-01

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  9. AmeriFlux Measurement Component (AMC) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Reichl, Ken [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Biraud, Sebastien C [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-04-01

    An AMC system was installed at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility North Slope of Alaska (NSA) Barrow site, also known as NSA C1 at the ARM Data Archive, in August 2012. A second AMC system was installed at the third ARM Mobile Facility deployment at Oliktok Point, also known as NSA M1. This in situ system consists of 12 combination soil temperature and volumetric water content (VWC) reflectometers and one set of upwelling and downwelling photosynthetically active radiation (PAR) sensors, all deployed within the fetch of the Eddy Correlation Flux Measurement System. Soil temperature and VWC sensors placed at two depths (10 and 30 cm below the vegetation layer) at six locations (or microsites) allow soil property inhomogeneity to be monitored across a landscape.

  10. 仪表电伴热在炼油化工企业中的应用%Application of Alectric Heating Instrument in Reifnery and Petrochemical Enterprises

    Institute of Scientific and Technical Information of China (English)

    刘丹妮

    2016-01-01

    Heat tracing is regarded as a very effective instruments, piping heat insulation antifreezing measures in various types of chemical enterprises is widely in use for many years, its working principle is produce media heat transfer to the need to be heating instruments, piping, in order to make the instrument work correctly in a cold environment. Electric heat tracing has been fully replaced the steam heating, electric heating heating temperature gradient is small, high power, stable long-term action time and realize the digital, remote and automatic control, equipment easy to install, use the advantages of long service life, no discharge of pollutants, such as many steam heating can not be achieved, has been the key popularized. Electricity companion thermal technology after years of sedimentation and development has by initially constant power type electric with the development of thermal model of semiconductor based automatic temperature control type electric to heat tracing, the control accuracy is higher and higher, application more and more widely. This paper introduces the instrument electric heat tracing in refining and chemical enterprises in the application, hope of refining and chemical enterprises in electric meter with the construction of a thermal have reference value.%我国炼油化工企业目前大多沿用的是传统的蒸汽伴热系统,蒸汽伴热自动化控制程度低,热量转化率低,且与之相配套的配套设备庞大复杂,维修成本高,效率低下。电伴热已经全面代替了蒸汽伴热,电伴热发热温度梯度小,功率大,作用时间稳定长久,而且可以实现数字化、远程化、自动化控制,设备安装容易,使用寿命长,无污染物排放等众多蒸汽伴热无法实现的优点,已被我国重点推广。电伴热技术经过多年的沉淀与发展,已经由起初的恒功率型电伴热发展到新型的以半导体为主的自控温型电伴热,其控制精度越来

  11. Measurement Instruments and Software Used in Biotribology Research Laboratory

    Directory of Open Access Journals (Sweden)

    Tyurin Andrei

    2015-07-01

    Full Text Available Precision measurements of friction processes have a key role in a variety of industrial processes. The emergence of fine electronic circuit techniques greatly expands capabilities of control. There are some difficulties for their full implementation today, especially when it regards the accuracy and frequency of measurements. The motion-measuring method in real-time system is considered in this article, paying special attention to increased accuracy. This method is based on rapid analog digital converter (ADC, transmission program and digital signal processor (DSP algorithms. Description of laboratory devices is included: Tribal-T and universal friction machine (MTU-01 designed for “Pin on disc” tests. Great emphasis is placed on the usability of accelerometers. The present study examined the collected data via laboratory system for data acquisition and control, and processing it in the laboratory of Biotribology. Laboratory supervisory control and data acquisition (SCADA algorithms is described below. Task of regulation is not considered. This paper describes only methods of automatic control theory to analyze the frictional quality.

  12. Intelligent instruments for process measurement techniques (monitoring of sensors)

    Science.gov (United States)

    Bauer, B.; Hess, H. D.; Kalinski, J. R.; Leisenberg, W.; Marsch, D.

    1984-06-01

    Possibilities to extract redundant information of temperature sensors (resistance thermometers, thermocouples, semiconductor temperature sensors), and to find out which of the suggested redundancies are most suited for self controlled monitoring were investigated. Practical experience with equipment for process measurement techniques shows that sensor failures are five times more frequent than electronic malfunction. For resistance thermometers the measured values of the redundant information source (ac resistance) are too small (relative inductivity change 7 million). The information sources strain gage and propagation of ultrasonic waves are excluded because of physical properties in the sensor materials. Changes in the crystalline structure of thermocouples have the effect that there is no well defined relationship between thermoelectric voltage and the redundant information sources, resistance and coupled current impulses. A correlation of thermovoltage with these redundant values would yield a measurement uncertainty corresponding to more than + or - 50 K. Experiments with negative temperature coefficient sensors show that a failure is proceeded by a change in capacitance of the order of 0.1 pF.

  13. Using the refined ICF Linking Rules to compare the content of existing instruments and assessments: a systematic review and exemplary analysis of instruments measuring participation.

    Science.gov (United States)

    Ballert, Carolina S; Hopfe, Maren; Kus, Sandra; Mader, Luzius; Prodinger, Birgit

    2016-07-14

    Existing instruments measuring participation may vary with respect to various aspects. This study aimed to examine the comparability of existing instruments measuring participation based on the International Classification of Functioning, Disability and Health (ICF) by considering aspects of content, the perspective adopted and the categorization of response options. A systematic literature review was conducted to identify instruments that have been commonly used to measure participation. Concepts of identified instruments were then linked to the ICF following the refined ICF Linking Rules. Aspects of content, perspective adopted and categorization of response options were documented. Out of 315 instruments identified in the full-text screening, 41 instruments were included. Concepts of six instruments were linked entirely to the ICF component Activities and Participation; of 10 instruments still 80% of their concepts. A descriptive perspective was adopted in most items across instruments (75%), mostly in combination with an intensity rating. An appraisal perspective was found in 18% and questions from a need or dependency perspective were least frequent (7%). Accounting for aspects of content, perspective and categorization of responses in the linking of instruments to the ICF provides detailed information for the comparison of instruments and guidance on narrowing down the choices of suitable instruments from a content point of view. Implications for Rehabilitation For clinicians and researchers who need to identify a specific instrument for a given purpose, the findings of this review can serve as a screening tool for instruments measuring participation in terms of the following: • Their content covered based on the ICF. • The perspective adopted in the instrument (e.g., descriptive, need/dependency or appraisal). • The categorization of their response options (e.g., intensity or frequency).

  14. UAV Flight Instrumentation for the In-Situ Measurement of Aerosol Optical Properties Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research, Inc. (LGR) proposes to develop a flight ready instrument, capable of deployment on unmanned aerial vehicles (UAVs) to simultaneously measure in...

  15. Measuring Emotions Toward Wildlife: A Review of Generic Methods and Instruments

    NARCIS (Netherlands)

    Jacobs, M.H.; Fehres, P.; Campbell, M.

    2012-01-01

    Researchers are recognizing the importance of studying emotions for understanding human–wildlife interactions. This article reviews generic methods and instruments for assessing emotions, as developed within the affective sciences. Four broad categories of emotion measures can be distinguished: (a)

  16. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    Science.gov (United States)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  17. Measuring Empowerment Among People With Psychotic Disorders: A Comparison of Three Instruments

    NARCIS (Netherlands)

    Castelein, S.; Gaag, van der M.; Bruggeman, R.; Busschbach, J.T.; Wiersma, D.

    2008-01-01

    OBJECTIVE: This study compared three instruments that are used to measure empowerment of people with psychotic disorders. The study evaluated internal consistency, discriminant and convergent validity, sensitivity to symptom levels, and clinical usefulness. METHODS: Fifty patients in the Netherlands

  18. Measuring Empowerment Among People With Psychotic Disorders : A Comparison of Three Instruments

    NARCIS (Netherlands)

    Castelein, Stynke; van der Gaag, Mark; Bruggeman, Richard; van Busschbach, Jooske T.; Wiersma, Durk

    2008-01-01

    Objective: This study compared three instruments that are used to measure empowerment of people with psychotic disorders. The study evaluated internal consistency, discriminant and convergent validity, sensitivity to symptom levels, and clinical usefulness. Methods: Fifty patients in the Netherlands

  19. Validation of an Instrument to Measure Pharmacy and Medical Students’ Attitudes Toward Physician-Pharmacist Collaboration

    OpenAIRE

    Van Winkle, Lon J.; Fjortoft, Nancy; Hojat, Mohammadreza

    2011-01-01

    Objectives. To assess the validity and reliability of an instrument to measure pharmacy students’ attitudes toward physician-pharmacist collaboration, and compare those attitudes to the attitudes of medical students.

  20. UAV Flight Instrumentation for the In-Situ Measurement of Aerosol Optical Properties Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research, Inc. (LGR) proposes to develop a flight ready instrument, capable of deployment on unmanned aerial vehicles (UAVs) to simultaneously measure in...

  1. WISM - A Wideband Instrument for Snow Measurement: Past Accomplishments, Current Status, and Path Forward

    Science.gov (United States)

    Bonds, Quenton; Racette, Paul; Durham, Tim (Principal Investigator)

    2016-01-01

    Presented are the prior accomplishments, current status and path forward for GSFC's Wideband Instrument for Snow Measurement (WISM). This work is a high level overview of the project, presented via Webinar to the IEEE young professionals.

  2. Measurement of the Convective Heat-Transfer Coefficient

    Science.gov (United States)

    Conti, Rosaria; Gallitto, Aurelio Agliolo; Fiordilino, Emilio

    2014-01-01

    We propose an experiment for investigating how objects cool down toward the thermal equilibrium with their surroundings. We describe the time dependence of the temperature difference of the cooling objects and the environment with an exponential decay function. By measuring the thermal constant t, we determine the convective heat-transfer…

  3. Measurement of the convective heat-transfer coefficient

    CERN Document Server

    Conti, Rosaria; Fiordilino, Emilio

    2014-01-01

    We propose an experiment for investigating how objects cool down toward the thermal equilibrium with its surrounding through convection. We describe the time dependence of the temperature difference of the cooling object and the environment with an exponential decay function. By measuring the thermal constant tau, we determine the convective heat-transfer coefficient, which is a characteristic constant of the convection system.

  4. Heat transport measurements in turbulent rotating Rayleigh-Benard convection

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory; Liu, Yuanming [Los Alamos National Laboratory

    2008-01-01

    We present experimental heat transport measurements of turbulent Rayleigh-Benard convection with rotation about a vertical axis. The fluid, water with Prandtl number ({sigma}) about 6, was confined in a cell which had a square cross section of 7.3 cm x 7.3 cm and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2 x 10{sup 5} < Ra < 5 x 10{sup 8} and Taylor numbers 0 < Ta < 5 x 10{sup 9}. We show the variation of normalized heat transport, the Nusselt number, at fixed dimensional rotation rate {Omega}{sub D}, at fixed Ra varying Ta, at fixed Ta varying Ra, and at fixed Rossby number Ro. The scaling of heat transport in the range 10{sup 7} to about 10{sup 9} is roughly 0.29 with a Ro dependent coefficient or equivalently is also well fit by a combination of power laws of the form a Ra{sup 1/5} + b Ra{sup 1/3} . The range of Ra is not sufficient to differentiate single power law or combined power law scaling. The overall impact of rotation on heat transport in turbulent convection is assessed.

  5. Integrative Review of Instruments to Measure Team Performance During Neonatal Resuscitation Simulations in the Birthing Room.

    Science.gov (United States)

    Clary-Muronda, Valerie; Pope, Charlene

    2016-01-01

    To identify instruments appropriate to measure interprofessional team performance in neonatal resuscitation (NR), describe the validity and reliability of extant NR instruments, and determine instruments for use in interprofessional birthing room NR simulations. The Cumulative Index to Nursing and Allied Health Literature, Ovid MEDLINE, Proquest, ScienceDirect, PubMed, and Scopus databases were searched. We used inclusion and exclusion criteria and screened 641 abstracts from January 2000 through December 2014 for relevance to the research question. We reviewed 78 full-text primary research publications in English and excluded 37 publications not specific to pediatrics or neonatology. After in-depth review of the 41 studies that remained, we excluded additional studies if they did not have an interprofessional focus, include psychometric information, or include a measurement instrument. Ten publications met the inclusion criteria. Studies were reviewed, categorized, and scored to identify instruments to measure interprofessional team performance in simulations of birthing room NR. A social ecological model was used as a guide framework to identify multiple influencing factors at various levels that affect team performance. Ten instruments with documentation of validity and reliability for technical competence and team processes in interprofessional birthing room NR teams were identified. Extant instruments rarely address the multiple factors that may impede interprofessional team performance in birthing room NR. It is necessary for researchers to engage in rigorous psychometric testing of measurement instruments to ensure their validity and reliability for interprofessional NR teams and consider tests or updates (if necessary) of extant instruments rather than the development of new instruments. Copyright © 2016 AWHONN, the Association of Women’s Health, Obstetric and Neonatal Nurses. Published by Elsevier Inc. All rights reserved.

  6. Labor Relations and Social Dialogue: Measurement and Diagnosis Instruments

    Directory of Open Access Journals (Sweden)

    Viorel Lefter

    2007-02-01

    Full Text Available Social dialogue and tripartism play an important role in promoting and strengthening fundamental principles and rights at work, promoting job creation and expanding social protection. In the context of the severe challenges of globalization, a growing number of developing countries are recognizing the need to faster dialogue, partnership and participatory approaches to decision-making. Thus, social dialogue becomes a prerequisite for efficient corporate governance and means to attain national economic and social objectives and to contribute to poverty reduction policies. We shall propose a diagnosis and analysis system in order to measure and monitor the evolution of the industrial relations and social dialogue.

  7. Training of Specialists in Information and Measurement Instrumentation in the Competence Discourse

    OpenAIRE

    Kvesko Svetlana; Shinn Tatyana

    2016-01-01

    Refocusing the assessment of the results of educational process from “qualifications” to the concepts of “competence” and “competency” is important in the context for the theoretical and methodological analysis of training in the sphere of information and measurement instrumentation and technologies. The purpose of this paper is to study of the training of today’s experts in the field of Information and Measurement Technologies and Instrumentation in the competence discourse. Based on the app...

  8. Specifying and calibrating instrumentations for wideband electronic power measurements. [in switching circuits

    Science.gov (United States)

    Lesco, D. J.; Weikle, D. H.

    1980-01-01

    The wideband electric power measurement related topics of electronic wattmeter calibration and specification are discussed. Tested calibration techniques are described in detail. Analytical methods used to determine the bandwidth requirements of instrumentation for switching circuit waveforms are presented and illustrated with examples from electric vehicle type applications. Analog multiplier wattmeters, digital wattmeters and calculating digital oscilloscopes are compared. The instrumentation characteristics which are critical to accurate wideband power measurement are described.

  9. Heat tolerance testing: association between heat intolerance and anthropometric and fitness measurements.

    Science.gov (United States)

    Lisman, Peter; Kazman, Josh B; O'Connor, Francis G; Heled, Yuval; Deuster, Patricia A

    2014-11-01

    This study investigated associations between heat intolerance, as determined by performance on a heat tolerance test (HTT), and anthropometric measurements (body surface-to-mass ratio, percent body fat, body mass index, and waist circumference) and cardiorespiratory fitness (maximal oxygen uptake [VO2max]). Relationships between predictive variables and specific physiological measurements recorded during the HTT were examined. A total of 34 male and 12 female participants, recruited from the military community, underwent anthropometric measurements, a maximal aerobic exercise test, and a standardized HTT, which consisted of walking on a treadmill at 5 km/h at 2% grade for 120 minutes at 40°C and 40% relative humidity. VO2max negatively correlated with maximum core temperature (r = -0.30, p VO2max was the only independent attribute that significantly influenced both the maximum HR and core temperature attained during HTT. Logistic regression analyses indicated that VO2max was the only independent parameter (OR = 0.89, p = 0.026) that significantly contributed to overall HTT performance. Low cardiorespiratory fitness was associated with heat intolerance, as defined by HTT performance, and can be addressed as a preventative measure for exertional heat illness. This study provides further evidence that the HTT can be an effective tool for assessment of thermoregulatory patterns. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  10. Quantifying instrumentation background and measurement uncertainty through cross-domain coupling

    Science.gov (United States)

    Olson, D. K.; Larsen, B.; Weaver, B. P.

    2016-12-01

    Space physics measurement data are inherently riddled with background and noise signals that are difficult to separate from the desired true measurements. These issues become more vital to understand quantitatively as we make use of multiple instrumentation sets and satellite platforms. It is essential to develop a rigorous understanding of uncertainty in space measurements, particularly as spacecraft become more autonomous, in order to identify events of interest and predict the nominal behavior of space plasmas. We use data from the Van Allen Probes to demonstrate statistical techniques that can be applied to measurements of the HOPE and RPS instruments on the Van Allen Probes toward a solid and quantitative understanding of the true uncertainty of its measurements. This work provides a framework that predicts HOPE background measurements from the RPS foreground measurements and a definition of an event of interest from the HOPE instrumentation perspective.

  11. A novel wide-range precision instrument for measuring three-dimensional surface topography

    Institute of Scientific and Technical Information of China (English)

    YANG Xu-dong; CHEN Yu-rong; XIE Tie-bang

    2008-01-01

    We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacement sensor based on the Michelson interference principle, a 3D platform based on vertical scanning, a measuring and control circuit, and an industrial control computer. It was a closed loop control system, which changed the traditional moving stylus scanning style into a moving platform scanning style. When the workpiece was measured, the lever of the displacement sensor returned to the balanced position in every sample interval according to the zero offset of the displacement sensor. The non-linear error caused by the rotation of the lever was, therefore, very small even if the measuring range was wide. The instrument can measure the roughness and the profile size of a curved surface.

  12. Modelling and Measurement Uncertainty Estimation for Integrated AFM-CMM Instrument

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Bariani, Paolo; De Chiffre, Leonardo

    2005-01-01

    This paper describes modelling of an integrated AFM - CMM instrument, its calibration, and estimation of measurement uncertainty. Positioning errors were seen to limit the instrument performance. Software for off-line stitching of single AFM scans was developed and verified, which allows...... compensation of such errors. A geometrical model of the instrument was produced, describing the interaction between AFM and CMM systematic errors. The model parameters were quantified through calibration, and the model used for establishing an optimised measurement procedure for surface mapping. A maximum...... uncertainty of 0.8% was achieved for the case of surface mapping of 1.2*1.2 mm2 consisting of 49 single AFM scanned areas....

  13. Scanning measurement of Seebeck coefficient of a heated sample

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, G. Jeffrey; Iwanaga, Shiho

    2016-04-19

    A novel scanning Seebeck coefficient measurement technique is disclosed utilizing a cold scanning thermocouple probe tip on heated bulk and thin film samples. The system measures variations in the Seebeck coefficient within the samples. The apparatus may be used for two dimensional mapping of the Seebeck coefficient on the bulk and thin film samples. This technique can be utilized for detection of defective regions, as well as phase separations in the sub-mm range of various thermoelectric materials.

  14. Harmonic analysis with respect to heat kernel measure

    CERN Document Server

    Hall, B C

    2000-01-01

    I review certain results in harmonic analysis for systems whose configuration space is a compact Lie group. The results described involve a heat kernel measure, which plays the same role as a Gaussian measure on Euclidean space. The main constructions are group analogs of the Hermite expansion, the Segal-Bargmann transform, and the Taylor expansion. The results are related to geometric quantization, to stochastic analysis, and to the quantization of 1+1-dimensional Yang-Mills theory.

  15. Diffuse scattering measurements with synchrotron radiation: Instrumentation and techniques

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, E.; Georgopoulos, P.

    1985-12-01

    The analysis of diffuse scattering from single crystalline specimens in the reflection mode has generally been acknowledged as a very powerful means of obtaining structural information on local atomic arrangements in disordered alloys, intermetallics and ceramics. However, owing to the low intensities encountered and the large number of measurements required for such an analysis, experiments have been extremely time consuming and few have been attempted. Synchrotron radiation makes it possible to conduct such experiments in a matter of hours and much higher quality data can be obtained than in the laboratory. This paper describes the experimental procedures and methods applied to a study of Al-Cu age hardening alloys conducted at the Cornell Synchrotron Source (CHESS). (orig.).

  16. Heat capacity and latent heat measurements of CoMnSi using a microcalorimeter.

    Science.gov (United States)

    Miyoshi, Y; Morrison, K; Moore, J D; Caplin, A D; Cohen, L F

    2008-07-01

    A new method of utilizing a commercial silicon nitride membrane calorimeter to measure the latent heat at a first order phase transition is presented. The method is a direct measurement of the thermoelectric voltage jump induced by the latent heat, in a thermally isolated system ideally suited for single crystal and small microgram samples. We show that when combined with the ac calorimetry technique previously developed, the resultant thermal measurement capabilities are extremely powerful. We demonstrate the applicability of the combined method with measurements on a 100 microm size fragment of CoMnSi exhibiting a sizable magnetocaloric effect near room temperature, and obtain good agreement with previously reported values on bulk samples.

  17. Methodology of heat transfer and flow resistance measurement for matrices of rotating regenerative heat exchangers

    Directory of Open Access Journals (Sweden)

    Butrymowicz Dariusz

    2016-09-01

    Full Text Available The theoretical basis for the indirect measurement approach of mean heat transfer coefficient for the packed bed based on the modified single blow technique was presented and discussed in the paper. The methodology of this measurement approach dedicated to the matrix of the rotating regenerative gas heater was discussed in detail. The testing stand consisted of a dedicated experimental tunnel with auxiliary equipment and a measurement system are presented. Selected experimental results are presented and discussed for selected types of matrices of regenerative air preheaters for the wide range of Reynolds number of gas. The agreement between the theoretically predicted and measured temperature profiles was demonstrated. The exemplary dimensionless relationships between Colburn heat transfer factor, Darcy flow resistance factor and Reynolds number were presented for the investigated matrices of the regenerative gas heater.

  18. A Novel Portable Absolute Transient Hot-Wire Instrument for the Measurement of the Thermal Conductivity of Solids

    Science.gov (United States)

    Assael, Marc J.; Antoniadis, Konstantinos D.; Metaxa, Ifigeneia N.; Mylona, Sofia K.; Assael, John-Alexander M.; Wu, Jiangtao; Hu, Miaomiao

    2015-11-01

    A new portable absolute Transient Hot-Wire instrument for measuring the thermal conductivity of solids over a range of 0.2 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} to 4 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} is presented. The new instrument is characterized by three novelties: (a) an innovative two-wires sensor which provides robustness and portability, while at the same time employs a soft silicone layer to eliminate the effect of the contact resistance between the wires and the sample, (b) a newly designed compact portable printed electronic board employing an FPGA architecture CPU to the control output voltage and data processing—the new board replaces the traditional, large in size Wheatstone-type bridge system required to perform the experimental measurements, and (c) a cutting-edge software suite, developed for the mesh describing the structure of the sensor, and utilizing the Finite Elements Method to model the heat flow. The estimation of thermal conductivity is modeled as a minimization problem and is solved using Bayesian Optimization. Our revolutionizing proposed methodology exhibits radical speedups of up to × 120, compared to previous approaches, and considerably reduces the number of simulations performed, achieving convergence only in a few minutes. The new instrument was successfully employed to measure, at room temperature, the thermal conductivity of two thermal conductivity reference materials, Pyroceram 9606 and Pyrex 7740, and two possible candidate glassy solids, PMMA and BK7, with an absolute low uncertainty of 2 %.

  19. Development of an instrument to measure student attitudes toward science fairs

    Science.gov (United States)

    Huddleston, Claudia A.

    Science fairs are woven into the very fabric of science instruction in the United States and in other countries. Even though thousands of students participate in science fairs every year, no instrument to measure student attitudes toward partaking in this hands-on learning experience has been fully developed and available for school administrators and teachers to assess the perceived value that current students attribute to participation in science fairs. Therefore, the purpose of this study was to continue the development and refinement of an instrument that measured student attitudes towards science fairs based on an unpublished instrument created by Michael (2005). The instrument developed and tested using 110 students at two different middle schools in southwest Virginia. The instrument consisted of 45 questions. After applying a principal component factor analysis, the instrument was reduced to two domains, enjoyment and value. The internal consistency of the instrument was calculated using Cronbach's alpha and showed good internal consistency of .89 between the two domains. Further analysis was conducted using a Pearson product-moment test and showed a significant positive correlation between enjoyment and value (r = .78). Demographic information was explored concerning the domains using a series of statistical tests, and results revealed no significant differences among race and science fair category. However, a significant difference was found among gender and students who won awards and those who did not. The conclusion was that further development and refinement of the instrument should be conducted.

  20. Compressibility measurements of gases using externally heated pressure vessels.

    Science.gov (United States)

    Presnall, D. C.

    1971-01-01

    Most of the data collected under conditions of high temperature and pressure have been determined using a thick-walled bomb of carefully measured and fixed volume which is externally heated by an electric furnace or a thermostatically controlled bath. There are numerous variations on the basic method depending on the pressure-temperature range of interest, and the particular gas or gas mixture being studied. The construction and calibration of the apparatus is discussed, giving attention to the pressure vessel, the volume of the bomb, the measurement of pressure, the control and measurement of temperature, and the measurement of the amount and composition of gas in the bomb.

  1. INSTRUMENTAL MEASUREMENT OF KNEE LAXITY IN ANTERO-POSTERIOR DIRECTION

    Directory of Open Access Journals (Sweden)

    Miran Jeromel

    2004-11-01

    Full Text Available Background. A magnitude of clinical tests (like Lachman test are used to diagnose antero-posterior knee instability. They are easy to preform but they are very subjective. An experienced practitioner is often required. An alternative to standard clinical tests is the usage of arthrometer which requires a cooperative patient (maximal relaxation of thigh muscles.The aims of this study were to assess the antero-posterior laxity of both knees in the normal population (population without prior injury to the knee and to determine knee laxity in terms of total relaxation (usage of miorelaxant under general anaesthesia. We compared the difference between the left and right knee of the same individual and the influence of ageing and gender on knee laxity. We also studied the influences of diabetes and long-term corticosteroid therapy.We wanted to prove the following theories: complete relaxation of thigh muscles has an effect on measurement of knee laxity; the individual without prior knee injury has no statistically side to side difference; the laxity increases with age; women have grater ligamentous laxity than men; laxity increases as the result of diabetes and also as a result of longterm corticosteroid therapy.Methods. Arthrometer KT 1000/STM (Medmetric was used in our survey. We analysed 90 individuals (aged 18–81 who haven’t had knee injuries in the past.Among them were 45 (50% men and 45 (50% women. 8 (8.9% of them were diabetics and 4 (4.4% of them received long-term corticosteroid therapy.We assessed the antero-posterior laxity of both knees of an individual under the effect of general anaesthetic. Each measurement was repeated thrice. The same procedure was used to determinate antero-posterior laxity without the usage of anaesthetic.Results. We concluded that muscle relaxation affects the antero-posterior laxity of the knee (all the differences were statistically significant, p < 0.001. Side to side difference was minimal (statistically

  2. Eddy Covariance Method for CO2 Emission Measurements: CCS Applications, Principles, Instrumentation and Software

    Science.gov (United States)

    Burba, George; Madsen, Rod; Feese, Kristin

    2013-04-01

    The Eddy Covariance method is a micrometeorological technique for direct high-speed measurements of the transport of gases, heat, and momentum between the earth's surface and the atmosphere. Gas fluxes, emission and exchange rates are carefully characterized from single-point in-situ measurements using permanent or mobile towers, or moving platforms such as automobiles, helicopters, airplanes, etc. Since the early 1990s, this technique has been widely used by micrometeorologists across the globe for quantifying CO2 emission rates from various natural, urban and agricultural ecosystems [1,2], including areas of agricultural carbon sequestration. Presently, over 600 eddy covariance stations are in operation in over 120 countries. In the last 3-5 years, advancements in instrumentation and software have reached the point when they can be effectively used outside the area of micrometeorology, and can prove valuable for geological carbon capture and sequestration, landfill emission measurements, high-precision agriculture and other non-micrometeorological industrial and regulatory applications. In the field of geological carbon capture and sequestration, the magnitude of CO2 seepage fluxes depends on a variety of factors. Emerging projects utilize eddy covariance measurement to monitor large areas where CO2 may escape from the subsurface, to detect and quantify CO2 leakage, and to assure the efficiency of CO2 geological storage [3,4,5,6,7,8]. Although Eddy Covariance is one of the most direct and defensible ways to measure and calculate turbulent fluxes, the method is mathematically complex, and requires careful setup, execution and data processing tailor-fit to a specific site and a project. With this in mind, step-by-step instructions were created to introduce a novice to the conventional Eddy Covariance technique [9], and to assist in further understanding the method through more advanced references such as graduate-level textbooks, flux networks guidelines, journals

  3. Heat transfer in nuclear fuels: Measurements of gap conductance

    Science.gov (United States)

    Cho, Chun Hyung

    Heat transfer in the fuel-clad gap in a nuclear reactor impacts the overall temperature distribution, stored energy and the mechanical properties of a nuclear fuel rod. Therefore, an accurate estimation of the gap conductance between the fuel and the clad is critically important for reactor design and operations. To obtain the requisite accuracy in the gap conductance estimation, it is important to understand the effects of the convective heat transfer coefficient, the gas composition, pressure and temperature, and so forth. The objectives of this study are to build a bench-scale experimental apparatus for the measurement of thermal gap conductances and to develop a better understanding of the differences that have been previously observed between such measured values and those predicted theoretically. This is accomplished by employing improved analyses of the experiments and improved theoretical models. Using laser heating of slightly separated stainless-steel plates, the gap conductance was measured using a technique that compares the theoretical and experimental time dependent temperatures at the back surface of the second plate. To consider the effects of surface temperature and gas pressure, the theoretical temperatures were calculated using a convective heat transfer coefficient that was dependent upon both the temperature and the gas pressure.

  4. Instrumental measurement of beer taste attributes using an electronic tongue

    Energy Technology Data Exchange (ETDEWEB)

    Rudnitskaya, Alisa, E-mail: alisa.rudnitskaya@gmail.com [Chemistry Department, University of Aveiro, Aveiro (Portugal); Laboratory of Chemical Sensors, Chemistry Department, St. Petersburg University, St. Petersburg (Russian Federation); Polshin, Evgeny [Laboratory of Chemical Sensors, Chemistry Department, St. Petersburg University, St. Petersburg (Russian Federation); BIOSYST/MeBioS, Catholic University of Leuven, W. De Croylaan 42, B-3001 Leuven (Belgium); Kirsanov, Dmitry [Laboratory of Chemical Sensors, Chemistry Department, St. Petersburg University, St. Petersburg (Russian Federation); Lammertyn, Jeroen; Nicolai, Bart [BIOSYST/MeBioS, Catholic University of Leuven, W. De Croylaan 42, B-3001 Leuven (Belgium); Saison, Daan; Delvaux, Freddy R.; Delvaux, Filip [Centre for Malting and Brewing Sciences, Katholieke Universiteit Leuven, Heverelee (Belgium); Legin, Andrey [Laboratory of Chemical Sensors, Chemistry Department, St. Petersburg University, St. Petersburg (Russian Federation)

    2009-07-30

    The present study deals with the evaluation of the electronic tongue multisensor system as an analytical tool for the rapid assessment of taste and flavour of beer. Fifty samples of Belgian and Dutch beers of different types (lager beers, ales, wheat beers, etc.), which were characterized with respect to the sensory properties, were measured using the electronic tongue (ET) based on potentiometric chemical sensors developed in Laboratory of Chemical Sensors of St. Petersburg University. The analysis of the sensory data and the calculation of the compromise average scores was made using STATIS. The beer samples were discriminated using both sensory panel and ET data based on PCA, and both data sets were compared using Canonical Correlation Analysis. The ET data were related to the sensory beer attributes using Partial Least Square regression for each attribute separately. Validation was done based on a test set comprising one-third of all samples. The ET was capable of predicting with good precision 20 sensory attributes of beer including such as bitter, sweet, sour, fruity, caramel, artificial, burnt, intensity and body.

  5. The Experimental Measurement of Aerodynamic Heating About Complex Shapes at Supersonic Mach Numbers

    Science.gov (United States)

    Neumann, Richard D.; Freeman, Delma C.

    2011-01-01

    In 2008 a wind tunnel test program was implemented to update the experimental data available for predicting protuberance heating at supersonic Mach numbers. For this test the Langley Unitary Wind Tunnel was also used. The significant differences for this current test were the advances in the state-of-the-art in model design, fabrication techniques, instrumentation and data acquisition capabilities. This current paper provides a focused discussion of the results of an in depth analysis of unique measurements of recovery temperature obtained during the test.

  6. Taking laser Doppler vibrometry off the tripod: correction of measurements affected by instrument vibration

    Science.gov (United States)

    Halkon, Ben J.; Rothberg, Steve J.

    2017-04-01

    Laser Doppler vibrometers (LDVs) are now well-established as an effective non-contact alternative to traditional contacting transducers. Despite 30 years of successful applications, however, very little attention has been given to sensitivity to vibration of the instrument itself. In this paper, the sensitivity to instrument vibration is confirmed before development theoretically and experimentally of a practical scheme to enable correction of measurements for arbitrary instrument vibration. The scheme requires a pair of correction sensors with appropriate orientation and relative location, while using frequency domain processing to accommodate inter-channel time delay and signal integrations. Error reductions in excess of 30 dB are delivered in laboratory tests with simultaneous instrument and target vibration over a broad frequency range. Ultimately, application to measurement on a vehicle simulator experiencing high levels of vibration demonstrates the practical nature of the correction technique and its robustness in a challenging measurement environment.

  7. Measuring teamwork in health care settings: a review of survey instruments.

    Science.gov (United States)

    Valentine, Melissa A; Nembhard, Ingrid M; Edmondson, Amy C

    2015-04-01

    Teamwork in health care settings is widely recognized as an important factor in providing high-quality patient care. However, the behaviors that comprise effective teamwork, the organizational factors that support teamwork, and the relationship between teamwork and patient outcomes remain empirical questions in need of rigorous study. To identify and review survey instruments used to assess dimensions of teamwork so as to facilitate high-quality research on this topic. We conducted a systematic review of articles published before September 2012 to identify survey instruments used to measure teamwork and to assess their conceptual content, psychometric validity, and relationships to outcomes of interest. We searched the ISI Web of Knowledge database, and identified relevant articles using the search terms team, teamwork, or collaboration in combination with survey, scale, measure, or questionnaire. We found 39 surveys that measured teamwork. Surveys assessed different dimensions of teamwork. The most commonly assessed dimensions were communication, coordination, and respect. Of the 39 surveys, 10 met all of the criteria for psychometric validity, and 14 showed significant relationships to nonself-report outcomes. Evidence of psychometric validity is lacking for many teamwork survey instruments. However, several psychometrically valid instruments are available. Researchers aiming to advance research on teamwork in health care should consider using or adapting one of these instruments before creating a new one. Because instruments vary considerably in the behavioral processes and emergent states of teamwork that they capture, researchers must carefully evaluate the conceptual consistency between instrument, research question, and context.

  8. Measuring Financial Literacy: Developing and Testing a Measurement Instrument with a Selected Group of South African Military Officers

    Science.gov (United States)

    Schwella, E.; van Nieuwenhuyzen, Bernard J.

    2014-01-01

    Are South Africans financially literate, and how can this be measured? Until 2009 there was no South African financial literacy measure and, therefore, the aim was to develop a South African measurement instrument that is scientific, socially acceptable, valid and reliable. To achieve this aim a contextual and conceptual analysis of financial…

  9. Measuring Financial Literacy: Developing and Testing a Measurement Instrument with a Selected Group of South African Military Officers

    Science.gov (United States)

    Schwella, E.; van Nieuwenhuyzen, Bernard J.

    2014-01-01

    Are South Africans financially literate, and how can this be measured? Until 2009 there was no South African financial literacy measure and, therefore, the aim was to develop a South African measurement instrument that is scientific, socially acceptable, valid and reliable. To achieve this aim a contextual and conceptual analysis of financial…

  10. [Instrumentation for blood pressure measurements: historical aspects, concepts and sources of error].

    Science.gov (United States)

    de Araujo, T L; Arcuri, E A; Martins, E

    1998-04-01

    According to the International Council of Nurses the measurement of blood pressure is the procedure most performed by nurses in all the world. The aim of this study is to analyse the polemical aspects of instruments used in blood pressure measurement. Considering the analyses of the literature and the American Heart Association Recommendations, the main source of errors when measuring blood pressure are discussed.

  11. Quantification and handling of sampling errors in instrumental measurements: a case study

    DEFF Research Database (Denmark)

    Andersen, Charlotte Møller; Bro, R.

    2004-01-01

    Instrumental measurements are often used to represent a whole object even though only a small part of the object is actually measured. This can introduce an error due to the inhomogeneity of the product. Together with other errors resulting from the measuring process, such errors may have a serio...

  12. Exploring a conceptual measurement instrument to assess performance predictors of small tourism business in South Africa

    Directory of Open Access Journals (Sweden)

    H. J.C. Van Zyl

    2008-12-01

    Full Text Available Purpose: The present study was set out to develop a model of entrepreneurial leadership that can recognize success factors of the owners of small and micro tourism enterprises within the South African context. The study attempts to combine various reliable and valid measurement instruments together, in conceptualising a more comprehensive and unified model that could test the nature and extent of the interrelationships between entrepreneurial leadership, market orientation, relationship marketing orientation and small tourism performance identified in a previous study by Van Zyl and Mathur-Helm (2007. Hence, a complex measurement instrument was conceptually constructed by the present study. Problem investigated: The Van Zyl and Mathur-Helm's (2007 study found that entrepreneurial leadership could best be described through a combination of distinct components. Hence the following instruments, entrepreneurial proclivity, ethical orientation, revised self-leadership, market orientation and relationship marketing orientation, with wide ranging dimensions of entrepreneurship, tourism, marketing and leadership, were brought together in formulating a comprehensive and complex measurement instrument. Methodology: It is a descriptive and a theoretical article that conceptually describes the development of a complex measurement instrument and thus secondary data from previous studies are used as comparative analysis for discussions and examinations. Implications: The paper recommends implications for South Africa's small tourism businesses, the government and the training institutions, by suggesting a model of performance predictors that can measure entrepreneurial leadership and can distinguish between successful (performing and unsuccessful (non-performing owner-managers of such ventures. Moreover, the instrument is aimed at providing insights into the kind of skills that a particular entrepreneurial leader and / or an owner manager of a small tourism

  13. Testing elementary and secondary school students’ ability to perform historical perspective taking: the constructing of valid and reliable measure instruments

    NARCIS (Netherlands)

    Huijgen, Tim; van Boxtel, Carla; van de Grift, Wim; Holthuis, Paul

    2014-01-01

    Historical reasoning competencies play an important role in history education. However, valid and reliable large-scale measurement instruments to assess these competencies are scarce. This study considers two instruments for measuring students’ ability to perform historical perspective taking (HPT)

  14. Measurement of the Specific Heat Using a Gravity Cancellation Approach

    Science.gov (United States)

    Zhong, Fang

    2003-01-01

    The specific heat at constant volume C(sob V) of a simple fluid diverges near its liquid-vapor critical point. However, gravity-induced density stratification due to the divergence of isothermal susceptibility hinders the direct comparison of the experimental data with the predictions of renormalization group theory. In the past, a microgravity environment has been considered essential to eliminate the density stratification. We propose to perform specific heat measurements of He-3 on the ground using a method to cancel the density stratification. A He-3 fluid layer will be heated from below, using the thermal expansion of the fluid to cancel the hydrostatic compression. A 6% density stratification at a reduced temperature of 10(exp -5) can be cancelled to better than 0.1% with a steady 1.7 micro K temperature difference across a 0.05 cm thick fluid layer. A conventional AC calorimetry technique will be used to determine the heat capacity. The minimized bulk density stratification with a relaxation time 6500 sec at a reduced temperature of 10(exp -5) will stay unchanged during 1 Hz AC heating. The smear of the specific heat divergence due to the temperature difference across the cell is about 0.1% at a reduced temperature of 10(exp -6). The combination of using High Resolution Thermometry with a 0.5 n K temperature resolution in the AC technique and the cancellation of the density stratification will enable C(sub V) to be measured down to a reduced temperature of 10(exp -6) with less than a 1% systematic error.

  15. A systematic review of mobility instruments and their measurement properties for older acute medical patients

    Directory of Open Access Journals (Sweden)

    Berlowitz David J

    2008-06-01

    Full Text Available Abstract Background Independent mobility is a key factor in determining readiness for discharge for older patients following acute hospitalisation and has also been identified as a predictor of many important outcomes for this patient group. This review aimed to identify a physical performance instrument that is not disease specific that has the properties required to accurately measure and monitor the mobility of older medical patients in the acute hospital setting. Methods Databases initially searched were Medline, Cinahl, Embase, Cochrane Database of Systematic Reviews and the Cochrane Central Register of Controlled Trials without language restriction or limits on year of publication until July 2005. After analysis of this yield, a second step was the systematic search of Medline, Cinahl and Embase until August 2005 for evidence of the clinical utility of each potentially suitable instrument. Reports were included in this review if instruments described had face validity for measuring from bed bound to independent levels of ambulation, the items were suitable for application in an acute hospital setting and the instrument required observation (rather than self-report of physical performance. Evidence of the clinical utility of each potentially suitable instrument was considered if data on measurement properties were reported. Results Three instruments, the Elderly Mobility Scale (EMS, Hierarchical Assessment of Balance and Mobility (HABAM and the Physical Performance Mobility Examination (PPME were identified as potentially relevant. Clinimetric evaluation indicated that the HABAM has the most desirable properties of these three instruments. However, the HABAM has the limitation of a ceiling effect in an older acute medical patient population and reliability and minimally clinically important difference (MCID estimates have not been reported for the Rasch refined HABAM. These limitations support the proposal that a new mobility instrument is

  16. Proposed Measures to Protect Temporary Roofs from Unwanted Heat Gains

    Directory of Open Access Journals (Sweden)

    Omar S. Asfour

    2017-06-01

    Full Text Available This study focuses on the uncompleted multi-storey residential buildings located in hot climates. This construction pattern is common in the case of incremental housing, where additional floors are added to the building as housing needs grow. Top roofs in these buildings are usually left without thermal insulation until the rest of upper floors are erected. This causes higher thermal discomfort in the top flats compared to the lower ones. Thus, the aim of this study is to investigate thermal effect of some proposed temporary measures that are intended to protect these roofs from unwanted heat gains until the rest of storeys are constructed. This has been carried out using thermal modelling to find out the effect of these measures on the amount of heat transfer through the roof in both summer and winter times. The analysis showed that it is possible to achieve competent thermal protection of the top roof compared to the layered thermal insulation using simple, cost-effective, and reversible measures. Among the examined measures, covering the roof with white foldable sheets and the use of pergolas have been found to be the most effective measures. In both cases, a reduction of 38% in conductive heat transfer through the top roof in summer was observed compared to the unprotected modelling case.

  17. Design details of Intelligent Instruments for PLC-free Cryogenic measurements, control and data acquisition

    Science.gov (United States)

    Antony, Joby; Mathuria, D. S.; Chaudhary, Anup; Datta, T. S.; Maity, T.

    2017-02-01

    Cryogenic network for linear accelerator operations demand a large number of Cryogenic sensors, associated instruments and other control-instrumentation to measure, monitor and control different cryogenic parameters remotely. Here we describe an alternate approach of six types of newly designed integrated intelligent cryogenic instruments called device-servers which has the complete circuitry for various sensor-front-end analog instrumentation and the common digital back-end http-server built together, to make crateless PLC-free model of controls and data acquisition. These identified instruments each sensor-specific viz. LHe server, LN2 Server, Control output server, Pressure server, Vacuum server and Temperature server are completely deployed over LAN for the cryogenic operations of IUAC linac (Inter University Accelerator Centre linear Accelerator), New Delhi. This indigenous design gives certain salient features like global connectivity, low cost due to crateless model, easy signal processing due to integrated design, less cabling and device-interconnectivity etc.

  18. A systematic review of instruments that measure attitudes toward homosexual men.

    Science.gov (United States)

    Grey, Jeremy A; Robinson, Beatrice Bean E; Coleman, Eli; Bockting, Walter O

    2013-01-01

    Scientific interest in the measurement of homophobia and internalized homophobia has grown over the past 30 years, and new instruments and terms have emerged. To help researchers with the challenging task of identifying appropriate measures for studies in sexual-minority health, we reviewed measures of homophobia published in the academic literature from 1970 to 2012. Instruments that measured attitudes toward male homosexuals/homosexuality or measured homosexuals' internalized attitudes toward homosexuality were identified using measurement manuals and a systematic review. A total of 23 instruments met criteria for inclusion, and their features were summarized and compared. All 23 instruments met minimal criteria for adequate scale construction, including scale development, sampling, reliability, and evidence of validity. Validity evidence was diverse and was categorized as interaction with gay men, HIV/AIDS variables, mental health, and conservative religious or political beliefs. Homophobia was additionally correlated with authoritarianism and bias, gender ideology, gender differences, and reactions to homosexual stimuli. Internalized homophobia was validated by examining relationships with disclosing one's homosexuality and level of homosexual identity development. We hope this review will make the process of instrument selection more efficient by allowing researchers to easily locate, evaluate, and choose the proper measure based on their research question and population of interest.

  19. High temperature thermographic measurements of laser heated silica

    Energy Technology Data Exchange (ETDEWEB)

    Elhadj, S; Yang, S T; Matthews, M J; Cooke, D J; Bude, J D; Johnson, M; Feit, M; Draggoo, V; Bisson, S E

    2009-11-02

    In situ spatial and temporal surface temperature profiles of CO{sub 2} laser-heated silica were obtained using a long wave infrared (LWIR) HgCdTe camera. Solutions to the linear diffusion equation with volumetric and surface heating are shown to describe the temperature evolution for a range of beam powers, over which the peak surface temperature scales linearly with power. These solutions were used with on-axis steady state and transient experimental temperatures to extract thermal diffusivity and conductivity for a variety of materials, including silica, spinel, sapphire, and lithium fluoride. Experimentally-derived thermal properties agreed well with reported values and, for silica, thermal conductivity and diffusivity are shown to be approximately independent of temperature between 300 and 2800K. While for silica our analysis based on a temperature independent thermal conductivity is shown to be accurate, for other materials studied this treatment yields effective thermal properties that represent reasonable approximations for laser heating. Implementation of a single-wavelength radiation measurement in the semi-transparent regime is generally discussed, and estimates of the apparent temperature deviation from the actual outer surface temperature are also presented. The experimental approach and the simple analysis presented yield surface temperature measurements that can be used to validate more complex physical models, help discriminate dominant heat transport mechanisms, and to predict temperature distribution and evolution during laser-based material processing.

  20. High temperature thermographic measurements of laser heated silica

    Science.gov (United States)

    Elhadj, Selim; Yang, Steven T.; Matthews, Manyalibo J.; Cooke, Diane J.; Bude, Jeffrey D.; Johnson, Michael; Feit, Michael; Draggoo, Vaughn; Bisson, Scott E.

    2009-10-01

    In situ spatial and temporal surface temperature profiles of CO2 laser-heated silica were obtained using a long wave infrared (LWIR) HgCdTe camera. Solutions to the linear diffusion equation with volumetric and surface heating are shown to describe the temperature evolution for a range of beam powers, over which the peak surface temperature scales linearly with power. These solutions were used with on-axis steady state and transient experimental temperatures to extract thermal diffusivity and conductivity for a variety of materials, including silica, spinel, sapphire, and lithium fluoride. Experimentally-derived thermal properties agreed well with reported values and, for silica, thermal conductivity and diffusivity are shown to be approximately independent of temperature between 300 and 2800K. While for silica our analysis based on a temperature independent thermal conductivity is shown to be accurate, for other materials studied this treatment yields effective thermal properties that represent reasonable approximations for laser heating. Implementation of a single-wavelength radiation measurement in the semi-transparent regime is generally discussed, and estimates of the apparent temperature deviation from the actual outer surface temperature are also presented. The experimental approach and the simple analysis presented yield surface temperature measurements that can be used to validate more complex physical models, help discriminate dominant heat transport mechanisms, and to predict temperature distribution and evolution during laser-based material processing.

  1. Nuclear heating measurements by in-pile calorimetry: prospective works for a microsensor design

    Energy Technology Data Exchange (ETDEWEB)

    Reynard-Carette, C.; Carette, M.; Aguir, K.; Bendahan, M.; Fiorido, T. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Lyoussi, A.; Fourmentel, D.; Villard, J.F. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 (France); Barthes, M.; Lanzetta, F.; Layes, G.; Vives, S. [FEMTO-ST, UMR 6174, Departement ENERGIE, Universite de Franche-Comte, 90000, Belfort (France)

    2015-07-01

    Since 2009 works have been performed in the framework of joint research programs between CEA and Aix-Marseille University. The main aim of these programs is to design and develop in-pile instrumentations, advanced calibration procedure and accurate measurement methods in particular for the new Material Testing Reactor (MTR) under construction in the South of France: Jules Horowitz Reactor (JHR). One major sensor is a specific radiometric calorimeter, which was studied out-of-pile from a thermal point of view and in-pile during irradiation campaigns. This sensor type is dedicated to measurements of nuclear heating (energy deposition rate per mass unit induced by interactions between nuclear rays and matter) inside experimental channels of MTRs. This kind of in-pile calorimeter corresponds to heat flux calorimeter exchanging with the external cooling fluid. This thermal running mode allows the establishment of steady thermal conditions inside the sensor to carry out online continuous measurements inside the reactor (core or reflector). Two main types of calorimeters exist. The first type consists of a single cell calorimeter. It is divided into a sample of material to be tested and a jacket instrumented with two thermocouples or a single thermocouple (Gamma Thermometer). The second, called a differential calorimeter, is composed of two superposed twin cells (a measurement cell containing a sample of material, and a reference cell to remove the heating of the cell body) instrumented with four thermocouples and two electrical heaters. Contrary to a single-cell calorimeter, a differential calorimeter allows the compensation of the parasite nuclear heating of the sensor body or jacket. Moreover, it possesses interesting advantages: thanks to the heaters embedded in the cells, three different measurement methods can be applied during irradiations to quantify nuclear heating. The first one is based on the use of out-of-pile calibration curves obtained by generating a heat

  2. Local heat transfer measurements on a rotating flat blade model with a single film hole

    Institute of Scientific and Technical Information of China (English)

    Guoqiang Xu; Bin Yang; Zhi Tao; Zhenming Zhao; Hongwei Wu

    2009-01-01

    An experimental study was performed to measure the heat transfer coefficient distributions on a flat blade model under rotating oper-ating conditions.A steady-state thermochromic liquid crystal technique was employed to measure the surface temperature,and all the signals from the rotating reference frame were collected by the telemetering instrument via a wireless connection.Both air and CO2 were used as coolant. Results show that the rotational effect has a significant influence on the heat transfer coefficient distributions.The pro-files of hg/ho,which is the ratio of heat transfer coefficient with film cooling to that without film cooling,deflect towards the high-radius locations on both the pressure surface and suction surface as the rotation number(Rt)increases,and the deflective tendency is more evident on the suction surface.The variations in mainstream Reynolds number(ReD)and blowing ratio(M)present different distribu-tions of hg/ho on the pressure and suction surfaces,respectively.Furthermore,the coolant used for CO2 injection is prone to result in lower heat transfer coefficients.

  3. Rocket-borne measurements of electron temperature and density with the Electron Retarding Potential Analyzer instrument

    Science.gov (United States)

    Cohen, I. J.; Widholm, M.; Lessard, M. R.; Riley, P.; Heavisides, J.; Moen, J. I.; Clausen, L. B. N.; Bekkeng, T. A.

    2016-07-01

    Determining electron temperature in the ionosphere is a fundamentally important measurement for space science. Obtaining measurements of electron temperatures at high altitudes (>700 km) is difficult because of limitations on ground-based radar and classic spacecraft instrumentation. In light of these limitations, the rocket-borne Electron Retarding Potential Analyzer (ERPA) was developed to allow for accurate in situ measurement of ionospheric electron temperature with a simple and low-resource instrument. The compact ERPA, a traditional retarding potential analyzer with multiple baffle collimators, allows for a straightforward calculation of electron temperature. Since its first mission in 2004, it has amassed significant flight heritage and obtained data used in multiple studies investigating a myriad of phenomena related to magnetosphere-ionosphere coupling. In addition to highlighting the scientific contributions of the ERPA instrument, this paper outlines its theory and operation, the methodology used to obtain electron temperature measurements, and a comparative study suggesting that the ERPA can also provide electron density measurements.

  4. Measuring fluid flow and heat output in seafloor hydrothermal environments

    Science.gov (United States)

    Germanovich, Leonid N.; Hurt, Robert S.; Smith, Joshua E.; Genc, Gence; Lowell, Robert P.

    2015-12-01

    We review techniques for measuring fluid flow and advective heat output from seafloor hydrothermal systems and describe new anemometer and turbine flowmeter devices we have designed, built, calibrated, and tested. These devices allow measuring fluid velocity at high- and low-temperature focused and diffuse discharge sites at oceanic spreading centers. The devices perform at ocean floor depths and black smoker temperatures and can be used to measure flow rates ranging over 2 orders of magnitude. Flow velocity is determined from the rotation rate of the rotor blades or paddle assembly. These devices have an open bearing design that eliminates clogging by particles or chemical precipitates as the fluid passes by the rotors. The devices are compact and lightweight enough for deployment from either an occupied or remotely operated submersible. The measured flow rates can be used in conjunction with vent temperature or geochemical measurements to obtain heat outputs or geochemical fluxes from both vent chimneys and diffuse flow regions. The devices have been tested on 30 Alvin dives on the Juan de Fuca Ridge and 3 Jason dives on the East Pacific Rise (EPR). We measured an anomalously low entrainment coefficient (0.064) and report 104 new measurements over a wide range of discharge temperatures (5°-363°C), velocities (2-199 cm/s), and depths (1517-2511 m). These include the first advective heat output measurements at the High Rise vent field and the first direct fluid flow measurement at Middle Valley. Our data suggest that black smoker heat output at the Main Endeavour vent field may have declined since 1994 and that after the 2005-2006 eruption, the high-temperature advective flow at the EPR 9°50'N field may have become more channelized, predominately discharging through the Bio 9 structure. We also report 16 measurements on 10 Alvin dives and 2 Jason dives with flow meters that predate devices described in this work and were used in the process of their development

  5. Development and Validation of an Instrument to Measure University Students' Biotechnology Attitude

    Science.gov (United States)

    Erdogan, Mehmet; Özel, Murat; Uşak, Muhammet; Prokop, Pavol

    2009-06-01

    The impact of biotechnologies on peoples' everyday lives continuously increases. Measuring young peoples' attitudes toward biotechnologies is therefore very important and its results are useful not only for science curriculum developers and policy makers, but also for producers and distributors of genetically modified products. Despite of substantial number of instruments which focused on measuring student attitudes toward biotechnology, a majority of them were not rigorously validated. This study deals with the development and validation of an attitude questionnaire toward biotechnology. Detailed information on development and validation process of the instrument is provided. Data gathered from 326 university students provided evidence for the validity and reliability of the new instrument which consists of 28 attitude items on a five point likert type scale. It is believed that the instrument will serve as a valuable tool for both instructors and researchers in science education to assess students' biotechnology attitudes.

  6. Breadboard model of the SIDRA instrument designed for the measurement of charged particle fluxes in space

    Science.gov (United States)

    Prieto, M.; Dudnik, O. V.; Sanchez, S.; Kurbatov, E. V.; Timakova, T. G.; Tejedor, J. I. G.; Titov, K. G.

    2013-04-01

    This report delves into the concept of the SIDRA instrument designed for the measurement of energetic fluxes of charged particles in space. It also presents the preliminary laboratory tests results of the breadboard model electronic units. The SIDRA instrument consists of a detector head made of high purity silicon and high performance scintillation detectors, analog and digital signal processing units, and it also includes a secondary power supply module. Preliminary results of Monte Carlo instrument simulation using the CERN GEANT4 tool are presented and the measured key specifications of charge-to-voltage converters, shapers and peak detectors are discussed. Finally, the performance of the digital processing unit with its software and the parameters of the instrument breadboard model, in particular mass, dimensions and power consumption are also presented.

  7. Evaluation of instruments developed to measure the clinical learning environment: an integrative review.

    Science.gov (United States)

    Hooven, Katie

    2014-01-01

    The nature of the clinical learning environment has a huge impact on student learning. This article reviews current methods available for evaluating the clinical learning environment. Five instruments were identified that measure the clinical learning environment. All of these instruments focus solely on the student perspective of the clinical learning environment. Although gaining student input is important, there are other perspectives that offer valuable insights on the nature of the clinical learning environment. The findings from this integrative review indicate the need for future development and testing of an instrument to evaluate the clinical learning environment from the staff nurse and nurse faculty perspective.

  8. Combined NMR moisture, temperature and pressure measurements during heating

    Directory of Open Access Journals (Sweden)

    Pel L.

    2013-09-01

    Full Text Available For model validation, quantitative measurements of the evolution of moisture, temperature, and pressure distributions in time are needed. For this purpose, we have developed an NMR setup to measure the moisture transport in heated building materials. The measured combined moisture content and temperature profiles give a unique insight in the moisture transport and dehydration kinetics inside concrete during fire. These measurements give the first quantitative proof for the build-up of a moisture peak due to the vapor pressure build-up. In this study we have also combined for the first time the measurement of the moisture and temperature profiles with the measurement of the pressure at one position, which show that the pressure build up is directly related to the moisture profiles.

  9. GPS Radiation Measurements: Instrument Modeling and Simulation (Project w14_gpsradiation)

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, John P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-29

    The following topics are covered: electron response simulations and typical calculated response. Monte Carlo calculations of the response of future charged particle instruments (dosimeters) intended to measure the flux of charged particles in space were performed. The electron channels are called E1- E11 – each of which is intended to detect a different range of electron energies. These instruments are on current and future GPS satellites.

  10. DEVELOPMENT OF ON-LINE INSTRUMENTATION AND TECHNIQUES TO DETECT AND MEASURE PARTICULATES

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Wu; Steve Palm; Yongchun Tang; William A. Goddard III

    2004-07-31

    In this quarter, we have constructed the first field deployable PM measurement system. This system is retrofit from the system that we designed and tested in the lab, and by adding light blocking covers and rugged electronic boxes, we are now ready to test the instrument in our industrial collaborator's site with real engines. We have also collected tons of data on standard PM particles with our lab instrument.

  11. Electronic instrumentation for the nuclear radiation measurement; Instrumentacion electronica para la medicion de la radiacion nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J

    2005-07-01

    This work presents the obtained results in the research, development and construction of the electronic instrumentation required for the measurement of the essential characteristics of the nuclear radiation: The quantity of radiation and its energy components. With this information, many practical instruments can be developed and applied in different fields of science and technology. In this work, some instruments were developed for their application in the areas of medicine, industry, and particle physics research. Several measurement systems based on PIN type diodes are proposed for: a) the measurement of the operational characteristics of the X-ray machines and the X-rays emitted in medical radio-diagnostic, b) X-ray spectroscopy and c) radiation spectroscopy of charged particles. The contribution of this work is, precisely, the development of new instruments that use the PIN diode as the sensorial element. In this way, existing problems in nuclear instrumentation are overcame, specially in the fields of medical physics and particle physics. Likewise, different types of charge and current preamplifiers, with a high signal-to-noise ratio, were developed for these instruments. (Author)

  12. Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM)

    Science.gov (United States)

    Durham, Timothy E.; Vanhille, Kenneth J.; Trent, Christopher; Lambert, Kevin M.; Miranda, Felix A.

    2015-01-01

    Measurement of land surface snow remains a significant challenge in the remote sensing arena. Developing the tools needed to remotely measure Snow Water Equivalent (SWE) is an important priority. The Wideband Instrument for Snow Measurements (WISM) is being developed to address this need. WISM is an airborne instrument comprised of a dual-frequency (X- and Ku-bands) Synthetic Aperture Radar (SAR) and dual-frequency (K- and Ka-bands) radiometer. A unique feature of this instrument is that all measurement bands share a common antenna aperture consisting of an array feed reflector that covers the entire bandwidth. This paper covers the design and fabrication of the wideband array feed which is based on tightly coupled dipole arrays. Implementation using a relatively new multi-layer microfabrication process results in a small, 6x6 element, dual-linear polarized array with beamformer that operates from 8 to 40 gigahertz.

  13. Development of source range measurement instrument in Xi'an pulsed reactor

    CERN Document Server

    Wang Li

    2002-01-01

    Source range measurement instrument in Xi'an pulsed reactor is key equipment of low-side measuring in source range. At the same time, it is also weighty component of out-of-pile neutron-flux level observation system. The authors have done some researching and renovating based on the similar type devices used in nuclear reactor to improve the meter sensitivity, measuring range, noise proof features, reliability in running and maintainability which belong to the main performance index of the instrument. The design ideas, configurations, working principle, performance indexes, technique features and effect in utilizing are introduced briefly

  14. Prototype of a Dsp-Based Instrument for In-Service Wireless Transmitter Power Measurement

    Directory of Open Access Journals (Sweden)

    Angrisani Leopoldo

    2014-12-01

    Full Text Available A prototype of a DSP-based instrument for in-service transmitter power measurements is presented. The instrument implements a signal-selective algorithm for power measurements that is suitable for use in wireless environments, where possible uncontrolled interfering sources are present in the radio channel and are overlapped to the signal emitted by the transmitter under test, possibly in both time and frequency domain. The measurement method exploits the principles of cyclic spectral analysis, which are briefly recalled in the paper. Potentialities, as well as limitations of the prototype use are discussed, and the results of experiments with both modulated and unmodulated interfering sources are presented.

  15. Energy Spectra of Geomagnetically Trapped Light Isotopes Measured by NINA-2 Instrument

    Science.gov (United States)

    Mikhailov, V. V.; Bakaldin, A.; Galper, A.; Koldashov, S.; Korotkov, M.; Leonov, A.; Voronov, S.; Bidoli, V.; Caoslino, M.; De Pascale, M.; Furano, G.; Iannucci, A.; Morselli, A.; Picozza, P.; Sparvoli, R.; Boezio, M.; Bonvincini, V.; Vacchi, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Adriani, O.; Papini, P.; Spillantini, P.; Straulino, S.; Vannuccini, E.; Ricci, M.; Castellini, G.

    2003-07-01

    This paper reports about the energy spectrum of geomagnetically trapped protons, deuterons, tritons and He isotop es measured by the instrument NINA2 at the low boundary of the South Atlantic Anomaly. NINA-2 on board the satellite MITA has been in orbit from 15 July 2000 to 10 August 2001, flying with circular polar orbit (87° inclination), at an altitude between 300-440 km. Differential energy spectra were measured at L-shell ˜ 1.2 and local magnetic field b< 0.22 G. Data from NINA-2 are compared with measurements made onboard Resurs-01 N4 satellite with NINA instrument. Possible solar modulation effects are discussed.

  16. Development and test of a Microwave Ice Accretion Measurement Instrument (MIAMI)

    Science.gov (United States)

    Magenheim, B.; Rocks, J. K.

    1982-01-01

    The development of an ice accretion measurement instrument that is a highly sensitive, accurate, rugged and reliable microprocessor controlled device using low level microwave energy for non-instrusive real time measurement and recording of ice growth history, including ice thickness and accretion rate is discussed. Data is displayed and recorded digitally. New experimental data is presented, obtained with the instrument, which demonstrates its ability to measure ice growth on a two-dimensional airfoil. The device is suitable for aircraft icing protection. It may be mounted flush, non-intrusively, on any part of an aircraft skin including rotor blades and engine inlets.

  17. EDITORIAL: The 9th International Symposium on Measurement Science and Intelligent Instruments (ISMTII-2009) The 9th International Symposium on Measurement Science and Intelligent Instruments (ISMTII-2009)

    Science.gov (United States)

    Chugui, Yuri

    2010-05-01

    The papers for this special feature have been selected for publication after the successful measurement forum that took place in Saint Petersburg, Russia, in 2009. ISMTII-2009 presented state-of-the-art approaches and solutions in the most challenging areas and focused on microscale and nanoscale measurements and metrology; novel measurements and diagnostic technologies, including nondestructive and dimensional inspection; measurements for geometrical and mechanical quantities, terahertz technologies for science, industry and biomedicine; intelligent measuring instruments and systems for industry and transport; optical and x-ray tomography and interferometry, metrology and characterization of materials, measurements and metrology for the humanitarian fields; and education in measurement science. We believe that scientists and specialists around the world found there the newest information on measurement technology and intelligent instruments, and this will stimulate work in these areas which is an essential part of progress in measurement. The ISMTII Symposia have been held successfully every two years from 1989 in the People's Republic of China, Hungary, Egypt, Hong Kong, UK and Japan under the direction of ICMI. In 2009 the ISMTII measuring forum took place in Russia, and it is a great honour for our country, as well as for the Russian Academy of Sciences and its Siberian Branch—Novosibirsk Scientific Center. This Symposium was located in historic Saint Petersburg, which from its foundation has been a unique bridge of communication between countries on all continents, and participation provided an excellent opportunity for the exchange of experience, information and knowledge between specialists from different countries and fields. On behalf of the Organizers, Steering Committee and International Program Committee I would like to thank all the participants for their valuable contributions without which this special feature would not have become reality, as well

  18. A New Instrument for the Measurement of the Waveform in X-Ray Units

    Science.gov (United States)

    Ramírez-Jiménez, Francisco J.; Martínez-Hernández, Marco A.

    2004-09-01

    The experience gained in the quality control in X-ray units used in Radiology has demonstrated that the measurement of the waveform of the X-ray beam, measured as the response of a radiation detector is very helpful to decide if the unit fulfills the quality control requirements and also has been useful to define some kind of faults in the unit. Several instruments are available on the market to make this measurement but they need in general a storage or digital oscilloscope to see the waveform. In this work a stand alone new instrument is proposed in which the waveform is seen in a Liquid Crystal Display (LCD). The instrument is based in the X-ray response of a photo diode. The analog response depending on time is converted to digital numbers that are stored sequentially in a memory. The stored information is recovered with a microcontroller and reconstructed in the screen of the LCD. The instrument is able to measure in the mammographic range from 22 kV to 35 kV and in the conventional range from 40 kV to 120 kV in the different settings of current encountered on practical applications, the time range for the measurement of the X-ray shot is from 100 ms to 3 s. The instrument can be useful in quality control practices and in the verification and maintenance of X-ray units.

  19. Development and validation of a survey instrument to measure children's advertising literacy

    NARCIS (Netherlands)

    Rozendaal, E.; Opree, S.J.; Buijzen, M.A.

    2016-01-01

    The aim of this study was to develop and validate a survey measurement instrument for children's advertising literacy. Based on the multidimensional conceptualization of advertising literacy by 0056"> Rozendaal, Lapierre, Van Reijmersdal, and Buijzen (2011), 39 items were created to measure two d

  20. Measuring the Youth Bullying Experience: A Systematic Review of the Psychometric Properties of Available Instruments

    Science.gov (United States)

    Vessey, Judith; Strout, Tania D.; DiFazio, Rachel L.; Walker, Allison

    2014-01-01

    Background: Bullying is a significant problem in schools and measuring this concept remains problematic. The purposes of this study were to (1) identify the published self-report measures developed to assess youth bullying; (2) evaluate their psychometric properties and instrument characteristics; and (3) evaluate the quality of identified…

  1. Development and validation of a survey instrument to measure children's advertising literacy

    NARCIS (Netherlands)

    Rozendaal, E.; Opree, S.J.; Buijzen, M.A.

    2016-01-01

    The aim of this study was to develop and validate a survey measurement instrument for children's advertising literacy. Based on the multidimensional conceptualization of advertising literacy by 0056"> Rozendaal, Lapierre, Van Reijmersdal, and Buijzen (2011), 39 items were created to measure two

  2. Voice-Related Patient-Reported Outcome Measures: A Systematic Review of Instrument Development and Validation

    Science.gov (United States)

    Francis, David O.; Daniero, James J.; Hovis, Kristen L.; Sathe, Nila; Jacobson, Barbara; Penson, David F.; Feurer, Irene D.; McPheeters, Melissa L.

    2017-01-01

    Purpose: The purpose of this study was to perform a comprehensive systematic review of the literature on voice-related patient-reported outcome (PRO) measures in adults and to evaluate each instrument for the presence of important measurement properties. Method: MEDLINE, the Cumulative Index of Nursing and Allied Health Literature, and the Health…

  3. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Science.gov (United States)

    2010-07-01

    ... calibration, particulate measurement. 92.117 Section 92.117 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement... orifice, a bellmouth nozzle, or a laminar flow element or an NIST traceable flow calibration device...

  4. Measurement and Evaluation of Heating Performance of Heat Pump Systems Using Wasted Heat from Electric Devices for an Electric Bus

    OpenAIRE

    Moo-Yeon Lee; Jong-Phil Won; Chung-Won Cho; Ho-Seong Lee

    2012-01-01

    The objective of this study is to investigate heating performance characteristics of a coolant source heat pump using the wasted heat from electric devices for an electric bus. The heat pump, using R-134a, is designed for heating a passengers’ compartment by using discharged energy from the coolant of electric devices, such as motors and inverters of the electric bus. The heating performance of the heat pump was tested by varying the operating parameters, such as outdoor temperature and volum...

  5. Measuring disability in patients with chronic low back pain: the usefulness of different instruments

    OpenAIRE

    Kuijer, Wietske

    2006-01-01

    Measuring disability is an important topic in rehabilitation research in patients with chronic low back pain (CLBP). Due to the major impact of CLBP on functioning in both daily living and work, measuring disability in patients with CLBP is best described in terms of limitations in activities and restrictions in participation in daily living and work. A frequently used measurement instrument in rehabilitation medicine to measure self-reported limitations in activities of daily living (ADL) in...

  6. Wearable and modular functional near-infrared spectroscopy instrument with multidistance measurements at four wavelengths.

    Science.gov (United States)

    Wyser, Dominik; Lambercy, Olivier; Scholkmann, Felix; Wolf, Martin; Gassert, Roger

    2017-10-01

    With the aim of transitioning functional near-infrared spectroscopy (fNIRS) technology from the laboratory environment to everyday applications, the field has seen a recent push toward the development of wearable/miniaturized, multiwavelength, multidistance, and modular instruments. However, it is challenging to unite all these requirements in a precision instrument with low noise, low drift, and fast sampling characteristics. We present the concept and development of a wearable fNIRS instrument that combines all these key features with the goal of reliably and accurately capturing brain hemodynamics. The proposed instrument consists of a modular network of miniaturized optode modules that include a four-wavelength light source and a highly sensitive silicon photomultiplier detector. Simultaneous measurements with short-separation (7.5 mm; containing predominantly extracerebral signals) and long-separation (20 mm or more; containing both extracerebral and cerebral information) channels are used with short-channel regression filtering methods to increase robustness of fNIRS measurements. Performance of the instrument was characterized with phantom measurements and further validated in human in vivo measurements, demonstrating the good raw signal quality (signal-to-noise ratio of 64 dB for short channels; robust measurements up to 50 mm; dynamic optical range larger than 160 dB), the valid estimation of concentration changes (oxy- and deoxyhemoglobin, and cytochrome-c-oxidase) in muscle and brain, and the detection of task-evoked brain activity. The results of our preliminary tests suggest that the presented fNIRS instrument outperforms existing instruments in many aspects and bears high potential for real-time single-trial fNIRS applications as required for wearable brain-computer interfaces.

  7. Measuring health literacy regarding infectious respiratory diseases: a new skills-based instrument.

    Directory of Open Access Journals (Sweden)

    Xinying Sun

    Full Text Available BACKGROUND: There is no special instrument to measure skills-based health literacy where it concerns infectious respiratory diseases. This study aimed to explore and evaluate a new skills-based instrument on health literacy regarding respiratory infectious diseases. METHODS: This instrument was designed to measure not only an individual's reading and numeracy ability, but also their oral communication ability and their ability to use the internet to seek information. Sixteen stimuli materials were selected to enable measurement of the skills, which were sourced from the WHO, China CDC, and Chinese Center of Health Education. The information involved the distribution of epidemics, immunization programs, early symptoms, means of disease prevention, individual's preventative behavior, use of medications and thermometers, treatment plans and the location of hospitals. Multi-stage stratified cluster sampling was employed to collect participants. Psychometric properties were used to evaluate the reliability and validity of the instrument. RESULTS: The overall degree of difficulty and discrimination of the instrument were 0.693 and 0.482 respectively. The instrument demonstrated good internal consistency reliability with a Cronbach's alpha of 0.864. As for validity, six factors were extracted from 30 items, which together explained 47.3% of the instrument's variance. And based on confirmatory factor analysis, the items were grouped into five subscales representing prose, document, quantitative, oral and internet based information seeking skills (χ(2 = 9.200, P>0.05, GFI = 0.998, TLI = 0.988, AGFI = 0.992, RMSEA = 0.028. CONCLUSION: The new instrument has good reliability and validity, and it could be used to assess the health literacy regarding respiratory infectious disease status of different groups.

  8. Validation of an instrument to measure students' motivation and self-regulation towards technology learning

    Science.gov (United States)

    Liou, Pey-Yan; Kuo, Pei-Jung

    2014-05-01

    Background:Few studies have examined students' attitudinal perceptions of technology. There is no appropriate instrument to measure senior high school students' motivation and self-regulation toward technology learning among the current existing instruments in the field of technology education. Purpose:The present study is to validate an instrument for assessing senior high school students' motivation and self-regulation towards technology learning. Sample:A total of 1822 Taiwanese senior high school students (1020 males and 802 females) responded to the newly developed instrument. Design and method:The Motivation and Self-regulation towards Technology Learning (MSRTL) instrument was developed based on the previous instruments measuring students' motivation and self-regulation towards science learning. Exploratory and confirmatory factor analyses were utilized to investigate the structure of the items. Cronbach's alpha was applied for measuring the internal consistency of each scale. Furthermore, multivariate analysis of variance was used to examine gender differences. Results:Seven scales, including 'Technology learning self-efficacy,' 'Technology learning value,' 'Technology active learning strategies,' 'Technology learning environment stimulation,' 'Technology learning goal-orientation,' 'Technology learning self-regulation-triggering,' and 'Technology learning self-regulation-implementing' were confirmed for the MSRTL instrument. Moreover, the results also showed that male and female students did not present the same degree of preference in all of the scales. Conclusions:The MSRTL instrument composed of seven scales corresponding to 39 items was shown to be valid based on validity and reliability analyses. While male students tended to express more positive and active performance in the motivation scales, no gender differences were found in the self-regulation scales.

  9. Heat Load Measurements on a Large Superconducting Magnet An Application of a Void Fraction Meter

    CERN Document Server

    Pengo, R; Junker, S; Passardi, Giorgio; ten Kate, H H J

    2004-01-01

    ATLAS is one of the two major experiments of the LHC project at CERN using cryogenics. The superconducting magnet system of ATLAS is composed of the Barrel Toroid (BT), two End Caps Toroids and the Central Solenoid. The BT is formed of 8 race-track superconducting dipoles, each one 25 m long and 5 m wide. A reduced scale prototype (named B0) of one of the 8 dipoles, about one third of the length, has been constructed and tested in a dedicated cryogenic facility at CERN. To simulate the final thermal and hydraulic operating conditions, the B0 was cooled by a forced flow of 4.5 K saturated liquid helium provided by a centrifugal pump of 80 g/s nominal capacity. Both static and dynamic heat loads, generated by the induced currents on the B0 casing during a slow dump or a ramp up, have been measured to verify the expected thermal budget of the entire BT. The instrument used for the heat load measurements was a Void Fraction Meter (VFM) installed on the magnet return line. The instrument constructed at CERN was ca...

  10. Protocol of the COSMIN study: COnsensus-based Standards for the selection of health Measurement INstruments

    Directory of Open Access Journals (Sweden)

    Patrick DL

    2006-01-01

    Full Text Available Abstract Background Choosing an adequate measurement instrument depends on the proposed use of the instrument, the concept to be measured, the measurement properties (e.g. internal consistency, reproducibility, content and construct validity, responsiveness, and interpretability, the requirements, the burden for subjects, and costs of the available instruments. As far as measurement properties are concerned, there are no sufficiently specific standards for the evaluation of measurement properties of instruments to measure health status, and also no explicit criteria for what constitutes good measurement properties. In this paper we describe the protocol for the COSMIN study, the objective of which is to develop a checklist that contains COnsensus-based Standards for the selection of health Measurement INstruments, including explicit criteria for satisfying these standards. We will focus on evaluative health related patient-reported outcomes (HR-PROs, i.e. patient-reported health measurement instruments used in a longitudinal design as an outcome measure, excluding health care related PROs, such as satisfaction with care or adherence. The COSMIN standards will be made available in the form of an easily applicable checklist. Method An international Delphi study will be performed to reach consensus on which and how measurement properties should be assessed, and on criteria for good measurement properties. Two sources of input will be used for the Delphi study: (1 a systematic review of properties, standards and criteria of measurement properties found in systematic reviews of measurement instruments, and (2 an additional literature search of methodological articles presenting a comprehensive checklist of standards and criteria. The Delphi study will consist of four (written Delphi rounds, with approximately 30 expert panel members with different backgrounds in clinical medicine, biostatistics, psychology, and epidemiology. The final checklist will

  11. In vivo measurement of swine endocardial convective heat transfer coefficient.

    Science.gov (United States)

    Tangwongsan, Chanchana; Will, James A; Webster, John G; Meredith, Kenneth L; Mahvi, David M

    2004-08-01

    We measured the endocardial convective heat transfer coefficient h at 22 locations in the cardiac chambers of 15 pigs in vivo. A thin-film Pt catheter tip sensor in a Wheatstone-bridge circuit, similar to a hot wire/film anemometer, measured h. Using fluoroscopy, we could precisely locate the steerable catheter sensor tip and sensor orientation in pigs' cardiac chambers. With flows, h varies from 2500 to 9500 W/m2 x K. With zero flow, h is approximately 2400 W/m2 x K. These values of h can be used for the finite element method modeling of radiofrequency cardiac catheter ablation.

  12. Absorption Measurement of Radiatively-Heated Low-z Mixture

    Institute of Scientific and Technical Information of China (English)

    YANG Jia-Min; DING Yao-Nan; ZHANG Bao-Han; YANG Guo-Hong; ZHENG Zhi-Jian; ZHANG Wen-Hai; WANG Yao-Mei; YAN Jun; LI Jia-Ming

    2001-01-01

    High-resolution transmission spectra of radiatively-heated low-z C10H16O6 plasma have been measured on 'Xing-guang Ⅱ' laser facility by using a flat field grating spectrometer. Absorption lines of oxygen and carbon ions in the region of 1.6-5.0nm have been observed clearly and identified. Using the unresolved transition array model,we also calculated the transmission spectra of C10H16O6 plasma. The measured transmission spectrum has beencompared with the calculated one.

  13. The use of patient-specific measurement instruments in the process of goal-setting: a systematic review of available instruments and their feasibility

    NARCIS (Netherlands)

    Stevens, A.; Beurskens, A.; Koke, A.; Weijden, T.T. van der

    2013-01-01

    OBJECTIVE: The aim of this study was to identify the currently available patient-specific measurement instruments used in the process of goal-setting and to assess their feasibility. METHODS: After a systematic search in PubMed, EMBASE, CINAHL, PsychINFO and REHABDATA, patient-specific instruments w

  14. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas

    Energy Technology Data Exchange (ETDEWEB)

    West, Michael D.; Charles, Christine; Boswell, Rod W. [Space Plasma, Power and Propulsion Group, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2009-05-15

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 {mu}N. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  15. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas

    Science.gov (United States)

    West, Michael D.; Charles, Christine; Boswell, Rod W.

    2009-05-01

    A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5mN with a resolution of 15μN. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.

  16. Tundish Cover Flux Thickness Measurement Method and Instrumentation Based on Computer Vision in Continuous Casting Tundish

    Directory of Open Access Journals (Sweden)

    Meng Lu

    2013-01-01

    Full Text Available Thickness of tundish cover flux (TCF plays an important role in continuous casting (CC steelmaking process. Traditional measurement method of TCF thickness is single/double wire methods, which have several problems such as personal security, easily affected by operators, and poor repeatability. To solve all these problems, in this paper, we specifically designed and built an instrumentation and presented a novel method to measure the TCF thickness. The instrumentation was composed of a measurement bar, a mechanical device, a high-definition industrial camera, a Siemens S7-200 programmable logic controller (PLC, and a computer. Our measurement method was based on the computer vision algorithms, including image denoising method, monocular range measurement method, scale invariant feature transform (SIFT, and image gray gradient detection method. Using the present instrumentation and method, images in the CC tundish can be collected by camera and transferred to computer to do imaging processing. Experiments showed that our instrumentation and method worked well at scene of steel plants, can accurately measure the thickness of TCF, and overcome the disadvantages of traditional measurement methods, or even replace the traditional ones.

  17. Validating an instrument for measuring brand equity of CSR driven organizations in Malaysia

    Directory of Open Access Journals (Sweden)

    Singh Dara Singh Karpal

    2017-06-01

    Full Text Available The objective of this study is to develop and propose a valid and reliable instrument to measure brand equity of CSR driven organizations in Malaysia. An instrument to measure brand equity was constructed with adaptations from two key sources, namely Yew Leh and Lee (2011 and Yoo and Donthu (2001. As such the study only focuses on the development and validation of an instrument to measure brand equity of CSR driven organizations. The usable sample population included 909 respondents from 12 states of West Malaysia which were selected using a quota sampling plan. Confirmatory factor analysis (CFA and reliability analysis were carried out to test and validate the proposed brand equity instrument containing four components (brand awareness, brand association, perceived quality and brand loyalty with a total of 13 items. Results from the CFA and reliability analysis indicated that all the items representing the four components were valid and can be used to measure the brand equity of organizations that are practicing CSR. The study tried to set an empirical basis for brand equity and CSR related research which could be used by future researchers in different industries and geographical locations. The study also implies the need for organizations to assess the success of their CSR efforts through the use of the proposed instrument in order to gauge whether all their CSR efforts translate to improved brand equity.

  18. Measurement techniques and instruments suitable for life-prediction testing of photovoltaic arrays. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Noel, G.T.; Sliemers, F.A.; Deringer, G.C.; Wood, V.E.; Wilkes, K.E.; Gaines, G.B.; Carmichael, D.C.

    1978-01-15

    The validation of a service life of 20 years for low-cost photovoltaic arrays must be accomplished through accelerated life-prediction tests. A methodology for such tests has been developed in a preceding study. The results discussed consist of the initial identification and assessment of all known measurement techniques and instruments that might be used in these life-prediction tests. Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Candidate techniques and instruments are identified on the basis of extensive reviews of published and unpublished information. These methods are organized in six measurement categories--chemical, electrical, optical, thermal, mechanical, and ''other physicals''. Using specified evaluation criteria, the most promising techniques and instruments for use in life-prediction tests of arrays are then selected. These recommended techniques and their characteristics are described. Recommendations are made regarding establishment of the adequacy, particularly with respect to precision, of the more fully developed techniques for this application, and regarding the experimental evaluation of promising developmental techniques. Measurement needs not satisfied by presently available techniques/instruments are also identified.

  19. Factor analyses of an Adult Epilepsy Self-Management Measurement Instrument (AESMMI).

    Science.gov (United States)

    Escoffery, Cam; Bamps, Yvan; LaFrance, W Curt; Stoll, Shelley; Shegog, Ross; Buelow, Janice; Shafer, Patricia; Thompson, Nancy J; McGee, Robin E; Hatfield, Katherine

    2015-09-01

    The purpose of this study was to test the psychometric properties of an enhanced Adult Epilepsy Self-Management Measurement Instrument (AESMMI). An instrument of 113 items, covering 10 a priori self-management domains, was generated through a multiphase process, based on a review of the literature, validated epilepsy and other chronic condition self-management scales and expert input. Reliability and exploratory factor analyses were conducted on data collected from 422 adults with epilepsy. The instrument was reduced to 65 items, converging on 11 factors: Health-care Communication, Coping, Treatment Management, Seizure Tracking, Social Support, Seizure Response, Wellness, Medication Adherence, Safety, Stress Management, and Proactivity. Exploratory factors supported the construct validity for 6 a priori domains, albeit with significant changes in the retained items or in their scope and 3 new factors. One a priori domain was split in 2 subscales pertaining to treatment. The configuration of the 11 factors provides additional insight into epilepsy self-management behaviors. Internal consistency reliability of the 65-item instrument was high (α=.935). Correlations with independent measures of health status, quality of life, depression, seizure severity, and life impact of epilepsy further validated the instrument. This instrument shows potential for use in research and clinical settings and for assessing intervention outcomes and self-management behaviors in adults with epilepsy.

  20. Double-theodolite measurement system used in the image calibration of space photographic instrument

    Institute of Scientific and Technical Information of China (English)

    LI Yan; QIAO Yan-feng; SU Wan-xin; LIU Ze-xun

    2005-01-01

    The purpose of characterizing the image of space photographic instrument is to gain the space included angles from three coordinate axes in the three-dimensional coordinate of the image and the directionality of the three axes of coordinate in the frame of axes of the instrument. The two reference frames will keep in the same direction finally by adjusting according to space angles. This problem was solved by a new high-precision measurement system composed of a double-theodolite and a set of communication system. In the survey system, two TDA5005 total stations from Leica Company will be selected as the double-theodolite and the interdependence of both coordinate systems can be achieved by moving the stations only at one time. Therefore, this measurement system provides a highly efficient and high-precision surveying method to the image calibration of the space photographic instrument. According to the experiment, its measuring accuracy can reach arc-second level.

  1. A Practitioner's Instrument for Measuring Secondary Mathematics Teachers' Beliefs Surrounding Learner-Centered Classroom Practice.

    Science.gov (United States)

    Lischka, Alyson E; Garner, Mary

    2016-01-01

    In this paper we present the development and validation of a Mathematics Teaching Pedagogical and Discourse Beliefs Instrument (MTPDBI), a 20 item partial-credit survey designed and analyzed using Rasch measurement theory. Items on the MTPDBI address beliefs about the nature of mathematics, teaching and learning mathematics, and classroom discourse practices. A Rasch partial credit model (Masters, 1982) was estimated from the pilot study data. Results show that item separation reliability is .96 and person separation reliability is .71. Other analyses indicate the instrument is a viable measure of secondary teachers' beliefs about reform-oriented mathematics teaching and learning. This instrument is proposed as a useful measure of teacher beliefs for those working with pre-service and in-service teacher development.

  2. Application of Roll-Isolated Inertial Measurement Units to the Instrumentation of Spinning Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    BEADER,MARK E.

    2000-12-01

    Roll-isolated inertial measurement units are developed at Sandia for use in the instrumentation, guidance, and control of rapidly spinning vehicles. Roll-isolation is accomplished by supporting the inertial instrument cluster (gyros and accelerometers) on a single gimbal, the axis of which is parallel to the vehicle's spin axis. A rotary motor on the gimbal is driven by a servo loop to null the roll gyro output, thus inertially stabilizing the gimbal and instrument cluster while the vehicle spins around it. Roll-isolation prevents saturation of the roll gyro by the high vehicle spin rate, and vastly reduces measurement errors arising from gyro scale factor and alignment uncertainties. Nine versions of Sandia-developed roll-isolated inertial measurement units have been flown on a total of 27 flight tests since 1972.

  3. Construction and Validation of an Instrument to Measure Taiwanese Elementary Students' Attitudes toward Their Science Class

    Science.gov (United States)

    Wang, Tzu-Ling; Berlin, Donna

    2010-12-01

    The main purpose of this study is to develop a valid and reliable instrument for measuring the attitudes toward science class of fourth- and fifth-grade students in an Asian school culture. Specifically, the development focused on three science attitude constructs-science enjoyment, science confidence, and importance of science as related to science class experiences. A total of 265 elementary school students in Taiwan responded to the instrument developed. Data analysis indicated that the instrument exhibited satisfactory validity and reliability with the Taiwan population used. The Cronbach's alpha coefficient was 0.93 for the entire instrument indicating a satisfactory level of internal consistency. However, both principal component analysis and parallel analysis showed that the three attitude scales were not unique and should be combined and used as a general "attitudes toward science class" scale. The analysis also showed that there were no gender or grade-level differences in students' overall attitudes toward science class.

  4. Non-coincident inter-instrument comparisons of ozone measurements using quasi-conservative coordinates

    Directory of Open Access Journals (Sweden)

    L. R. Lait

    2004-08-01

    Full Text Available Ozone measurements from ozonesondes, AROTAL, DIAL, and POAM III instruments during the SOLVE-2/VINTERSOL period are composited in a time-varying, flow-following quasi-conservative (PV-θ coordinate space; the resulting composites from each instrument are mapped onto the other instruments' locations and times. The mapped data are then used to intercompare data from the different instruments. Overall, the four ozone data sets are found to be in good agreement. AROTAL shows somewhat lower values below 16 km, and DIAL has a positive bias at the upper limits of its altitude range. These intercomparisons are consistent with those obtained from more conventional near-coincident profiles, where available. Although the PV-θ mapping technique entails larger uncertainties of individual profile differences compared to direct near-coincident comparisons, the ability to include much larger numbers of comparisons can make this technique advantageous.

  5. Measurement of the polarization effects of an instrument using partially polarized light

    Science.gov (United States)

    Howell, B. J.

    1979-01-01

    Accuracy of a radiometer is adversely affected by scene polarization if the receiving optical system is sensitive to polarization. It is therefore necessary to specify and measure the sensitivity of the system to polarized light. The Mueller-Stokes matrix of an instrument may be determined experimentally and used to predict the effects of the instrument on any beam. The specification of a maximum polarization sensitivity stated in terms of the degree of polarization produced in an unpolarized beam can be experimentally verified even though an unpolarized beam is not available in the laboratory for direct measurement.

  6. Measuring team factors thought to influence the success of quality improvement in primary care: a systematic review of instruments

    Science.gov (United States)

    2013-01-01

    Background Measuring team factors in evaluations of Continuous Quality Improvement (CQI) may provide important information for enhancing CQI processes and outcomes; however, the large number of potentially relevant factors and associated measurement instruments makes inclusion of such measures challenging. This review aims to provide guidance on the selection of instruments for measuring team-level factors by systematically collating, categorizing, and reviewing quantitative self-report instruments. Methods Data sources: We searched MEDLINE, PsycINFO, and Health and Psychosocial Instruments; reference lists of systematic reviews; and citations and references of the main report of instruments. Study selection: To determine the scope of the review, we developed and used a conceptual framework designed to capture factors relevant to evaluating CQI in primary care (the InQuIRe framework). We included papers reporting development or use of an instrument measuring factors relevant to teamwork. Data extracted included instrument purpose; theoretical basis, constructs measured and definitions; development methods and assessment of measurement properties. Analysis and synthesis: We used qualitative analysis of instrument content and our initial framework to develop a taxonomy for summarizing and comparing instruments. Instrument content was categorized using the taxonomy, illustrating coverage of the InQuIRe framework. Methods of development and evidence of measurement properties were reviewed for instruments with potential for use in primary care. Results We identified 192 potentially relevant instruments, 170 of which were analyzed to develop the taxonomy. Eighty-one instruments measured constructs relevant to CQI teams in primary care, with content covering teamwork context (45 instruments measured enabling conditions or attitudes to teamwork), team process (57 instruments measured teamwork behaviors), and team outcomes (59 instruments measured perceptions of the team or

  7. Variability in measuring (instrumental) activities of daily living functioning and functional decline in hospitalized older medical patients: a systematic review.

    NARCIS (Netherlands)

    Buurman, B.M.; Munster, B.C. van; Korevaar, J.C.; Haan, R.J. de; Rooij, S.E. de

    2011-01-01

    OBJECTIVE: To study instruments used and definitions applied in order to measure (instrumental) activities of daily living (I [ADL]) functioning and functional decline in hospitalized older medical patients. STUDY DESIGN: We systematically searched Medline, Embase, and the Cochrane Database of

  8. Liquid Crystal Thermography Measurement Uncertainty Analysis and Its Application to Turbulent Heat Transfer Measurements

    Directory of Open Access Journals (Sweden)

    Yu Rao

    2012-01-01

    Full Text Available Liquid crystal thermography is an advanced nonintrusive measurement technique, which is capable of providing a high-accuracy continuous temperature field measurement, especially for a complex structured heat transfer surface. The first part of the paper presents a comprehensive introduction to the thermochromic liquid crystal material and the related liquid crystal thermography technique. Then, based on the aythors' experiences in using the liquid crystal thermography for the heat transfer measurement, the parameters affecting the measurement uncertainty of the liquid crystal thermography have been discussed in detail through an experimental study. The final part of the paper describes the applications of the steady and transient liquid crystal thermography technique in the study of the turbulent flow heat transfer related to the aeroengine turbine blade cooling.

  9. Standard practice for evaluating performance characteristics of ultrasonic Pulse-Echo testing instruments and systems without the use of electronic measurement instruments

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice describes procedures for evaluating the following performance characteristics of ultrasonic pulse-echo examination instruments and systems: Horizontal Limit and Linearity; Vertical Limit and Linearity; Resolution - Entry Surface and Far Surface; Sensitivity and Noise; Accuracy of Calibrated Gain Controls. Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this practice are expressed in terms that relate to their potential usefulness for ultrasonic testing. Instrument characteristics expressed in purely electronic terms may be measured as described in E1324. 1.2 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be ev...

  10. An advanced thin foil sensor concept for heat flux and heat transfer measurements in fully turbulent flows

    Science.gov (United States)

    Mocikat, H.; Herwig, H.

    2007-02-01

    A double layer hot film with two 10 μm nickel foils, separated by a 25 μm polyimide foil is used as a multi-purpose sensor. Each foil can be operated as a (calibrated) temperature sensor in its passive mode by imposing an electric current small enough to avoid heating by dissipation of electrical energy. Alternatively, however, each foil can also serve as a heater in an active mode with electric currents high enough to cause Joule heating. This double foil sensor can be used as a conventional heat flux sensor in its passive mode when mounted on an externally heated surface. Together with the wall and free stream temperature this measured heat flux will provide the local heat transfer coefficient h = dot{q}w/left(Tw - T_{infty}right). In fully turbulent flows it alternatively can be operated in an active mode on a cold, i.e. not externally heated surface. Then, by heating the upper foil, a local heat transfer is initiated from which the local heat transfer coefficient h can be determined, once the lower foil is heated to the same temperature as the upper one, thus acting as a counter-heater. The overall concept behind this mode of measurement is based on the local character of heat transfer in fully turbulent flows which turns out to be almost independent of the upstream thermal events.

  11. NIST traceable measurements of radiance and luminance levels of night-vision-goggle test-instruments

    Science.gov (United States)

    Eppeldauer, G. P.; Podobedov, V. B.

    2014-05-01

    In order to perform radiance and luminance level measurements of night-vision-goggle (NVG) test instruments, NIST developed new-generation transfer-standard radiometers (TR). The new TRs can perform low-level radiance and luminance measurements with SI traceability and low uncertainty. The TRs were calibrated against NIST detector/radiometer standards holding the NIST photometric and radiometric scales. An 815 nm diode laser was used at NIST for the radiance responsivity calibrations. A spectrally flat (constant) filter correction was made for the TRs to correct the spectral responsivity change of the built-in Si photodiode for LEDs peaking at different wavelengths in the different test sets. The radiance responsivity transfer to the test instruments (test-sets) is discussed. The radiance values of the test instruments were measured with the TRs. The TRs propagate the traceablity to the NIST detector-based reference scales. The radiance uncertainty obtained from three TR measurements was 4.6 % (𝑘=2) at a luminance of 3.43 x 10-4 cd/m2. The output radiance of the previously used IR sphere source and the radiance responsivity of a previously used secondary standard detector unit, which was originally calibrated against an IR sphere source, were also measured with the TRs. The performances of the NVG test instruments were evaluated and the manufacturer produced radiance and luminance levels were calibrated with SI/NIST traceability.

  12. Designing an Instrument to Measure the QoS of a Spanish Virtual Store

    Science.gov (United States)

    de Abajo, Beatriz Sainz; de La Torre Díez, Isabel; Salcines, Enrique García; Fernández, Javier Burón; Pernas, Francisco Díaz; Coronado, Miguel López; de Castro Lozano, Carlos

    This article describes the development of an instrument, in the form of a survey, which is distributed to users of a B2C website selling electronic books in order to ascertain their satisfaction. The opinions compiled from a pilot sample and the exploratory factor analysis carried out point to factors that best summarise the quality of the application analysed here. Analysis of the initial survey, with a total of 40 items, shaped the final instrument, encompassing 18 items divided into 6 dimensions, which measure the perceptions of users of the application in order to improve the contents of the website. Subsequently, a confirmatory factorial analysis is performed, ensuring the reliability of the study and which confirms that the structure of the instrument developed truly measures service quality in accordance with the requirements of the website in terms of offering a space that fulfils consumer expectations in the Information Society.

  13. Substrate heating measurements in pulsed ion beam film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Olson, J.C.; Davis, H.A.; Rej, D.J.; Waganaar, W.J. [Los Alamos National Lab., NM (United States); Tallant, D.R. [Cornell Univ., Ithaca, NY (United States). Materials Science and Engineering Dept.; Thompson, M.O. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01

    Diamond-like Carbon (DLC) films have been deposited at Los Alamos National Laboratory by pulsed ion beam ablation of graphite targets. The targets were illuminated by an intense beam of hydrogen, carbon, and oxygen ions at a fluence of 15-45 J/cm{sup 2}. Ion energies were on the order of 350 keV, with beam current rising to 35 kA over a 400 ns ion current pulse. Raman spectra of the deposited films indicate an increasing ratio of sp{sup 3} to sp{sup 2} bonding as the substrate is moved further away from the target and further off the target normal. Using a thin film platinum resistor at varying positions, we have measured the heating of the substrate surface due to the kinetic energy and heat of condensation of the ablated material. This information is used to determine if substrate heating is responsible for the lack of DLC in positions close to the target and near the target normal. Latest data and analysis will be presented.

  14. Recent Applications of Heat Capacity Measurement in Physicochemical Investigations

    Science.gov (United States)

    Lakshmikumar, S. T.; Gopal, E. S. R.

    This review discusses the recent experimental heat capacity measurements which have been very useful in physicochemical investigations. Areas reviewed include critical point phenomena in systems such as fluids, magnetic systems, liquid crystals, co-operative Jahn-Teller transitions, etc. The uses of Cp measurements in the study of discrete energy levels in solids, in glasses at very low temperatures, in thin films and at high pressures are discussed. Calorimetric investigations in A-15 and other superconducting materials and applications of Cp measurements for evaluation of thermodynamic parameters in several new classes of materials are then briefly described. Finally, examples of applications of calorimetry in areas of biophysics, biological sciences and clinical medicine are cited. Two hundred and seventy references are cited and 25 figures are used for illustration.

  15. Quantifying Human Response: Linking metrological and psychometric characterisations of Man as a Measurement Instrument

    Science.gov (United States)

    Pendrill, L. R.; Fisher, William P., Jr.

    2013-09-01

    A better understanding of how to characterise human response is essential to improved person-centred care and other situations where human factors are crucial. Challenges to introducing classical metrological concepts such as measurement uncertainty and traceability when characterising Man as a Measurement Instrument include the failure of many statistical tools when applied to ordinal measurement scales and a lack of metrological references in, for instance, healthcare. The present work attempts to link metrological and psychometric (Rasch) characterisation of Man as a Measurement Instrument in a study of elementary tasks, such as counting dots, where one knows independently the expected value because the measurement object (collection of dots) is prepared in advance. The analysis is compared and contrasted with recent approaches to this problem by others, for instance using signal error fidelity.

  16. PC Based Instrument for the Measurement of Dielectric Constant of Liquids

    Directory of Open Access Journals (Sweden)

    V. V. Ramana C. H.

    2010-01-01

    Full Text Available A PC based instrument for the measurement of dielectric constant in liquids has been developed. It is based on the technique that utilizes frequency measurement for determination of capacitance using the personal computer as a tool. The change in frequency of XR–2206 function generator, when the liquid forms the dielectric medium of the dielectric cell, is measured with a personal computer. The programmable interval timer 8254 available in the DIOT card is used to measure the frequency, which in turn determines the capacitance of the cell and dielectric constant. The necessary software is developed in C language. The instrument system covers a wide range of dielectric constant for various liquids. The system is reasonably successful in measuring dielectric constant with an accuracy of ± 0.5 %. The paper deals with the hardware and software details.

  17. Assessment of the measurement properties of the post stroke motor function instruments available in Brazil: a systematic review

    Science.gov (United States)

    Lima, Elaine; Teixeira-Salmela, Luci F.; Simões, Luan; Guerra, Ana C. C.; Lemos, Andrea

    2016-01-01

    Background While there are several instruments in Brazil that measure motor function in patients after stroke, it is unknown whether the measurement properties of these instruments are appropriate. Objective To identify the motor function instruments available in Brazil for patients after stroke. To assess the methodological quality of the studies and the results related to the measurement properties of these instruments. Method Two independent reviewers conducted searches on PubMed, LILACS, CINAHL, Web of Science, and Scopus. Studies that aimed to cross-culturally adapt an existing instrument or create a Brazilian instrument and test at least one measurement property related to motor function in patients after stroke were included. The methodological quality of these studies was checked by the COSMIN checklist with 4-point rating scale and the results of the measurement properties were analyzed by the criteria developed by Terwee et al. Results A total of 11 instruments were considered eligible, none of which were created in Brazil. The process of cross-cultural adaptation was inadequate in 10 out of 11 instruments due to the lack of back-translation or due to inappropriate target population. All of the instruments presented flaws in the measurement properties, especially reliability, internal consistency, and construct validity. Conclusion The flaws observed in both cross-cultural adaptation process and testing measurement properties make the results inconclusive on the validity of the available instruments. Adequate procedures of cross-cultural adaptation and measurement properties of these instruments are strongly needed. PMID:26982452

  18. An anatomically realistic temperature phantom for radiofrequency heating measurements.

    Science.gov (United States)

    Graedel, Nadine N; Polimeni, Jonathan R; Guerin, Bastien; Gagoski, Borjan; Wald, Lawrence L

    2015-01-01

    An anthropomorphic phantom with realistic electrical properties allows for a more accurate reproduction of tissue current patterns during excitation. A temperature map can then probe the worst-case heating expected in the unperfused case. We describe an anatomically realistic human head phantom that allows rapid three-dimensional (3D) temperature mapping at 7T. The phantom was based on hand-labeled anatomical imaging data and consists of four compartments matching the corresponding human tissues in geometry and electrical properties. The increases in temperature resulting from radiofrequency excitation were measured with MR thermometry using a temperature-sensitive contrast agent (TmDOTMA(-)) validated by direct fiber optic temperature measurements. Acquisition of 3D temperature maps of the full phantom with a temperature accuracy better than 0.1°C was achieved with an isotropic resolution of 5 mm and acquisition times of 2-4 minutes. Our results demonstrate the feasibility of constructing anatomically realistic phantoms with complex geometries incorporating the ability to measure accurate temperature maps in the phantom. The anthropomorphic temperature phantom is expected to provide a useful tool for the evaluation of the heating effects of both conventional and parallel transmit pulses and help validate electromagnetic and temperature simulations. © 2014 Wiley Periodicals, Inc.

  19. Development and psychometric testing of an instrument to measure safety climate perceptions in community pharmacy.

    Science.gov (United States)

    Newham, Rosemary; Bennie, Marion; Maxwell, David; Watson, Anne; de Wet, Carl; Bowie, Paul

    2014-12-01

    A positive and strong safety culture underpins effective learning from patient safety incidents in health care, including the community pharmacy (CP) setting. To build this culture, perceptions of safety climate must be measured with context-specific and reliable instruments. No pre-existing instruments were specifically designed or suitable for CP within Scotland. We therefore aimed to develop a psychometrically sound instrument to measure perceptions of safety climate within Scottish CPs. The first stage, development of a preliminary instrument, comprised three steps: (i) a literature review; (ii) focus group feedback; and (iii) content validation. The second stage, psychometric testing, consisted of three further steps: (iv) a pilot survey; (v) a survey of all CP staff within a single health board in NHS Scotland; and (vi) application of statistical methods, including principal components analysis and calculation of Cronbach's reliability coefficients, to derive the final instrument. The preliminary questionnaire was developed through a process of literature review and feedback. This questionnaire was completed by staff in 50 CPs from the 131 (38%) sampled. 250 completed questionnaires were suitable for analysis. Psychometric evaluation resulted in a 30-item instrument with five positively correlated safety climate factors: leadership, teamwork, safety systems, communication and working conditions. Reliability coefficients were satisfactory for the safety climate factors (α > 0.7) and overall (α = 0.93). The robust nature of the technical design and testing process has resulted in the development of an instrument with sufficient psychometric properties, which can be implemented in the community pharmacy setting in NHS Scotland. © 2014 John Wiley & Sons, Ltd.

  20. Instruments measuring perceived racism/racial discrimination: review and critique of factor analytic techniques.

    Science.gov (United States)

    Atkins, Rahshida

    2014-01-01

    Several compendiums of instruments that measure perceived racism and/or discrimination are present in the literature. Other works have reviewed the psychometric properties of these instruments in terms of validity and reliability and have indicated if the instrument was factor analyzed. However, little attention has been given to the quality of the factor analysis performed. The aim of this study was to evaluate the exploratory factor analyses done on instruments measuring perceived racism/racial discrimination using guidelines from experts in psychometric theory. The techniques used for factor analysis were reviewed and critiqued and the adequacy of reporting was evaluated. Internet search engines and four electronic abstract databases were used to identify 16 relevant instruments that met the inclusion/exclusion criteria. Principal component analysis was the most frequent method of extraction (81%). Sample sizes were adequate for factor analysis in 81 percent of studies. The majority of studies reported appropriate criteria for the acceptance of un-rotated factors (81%) and justified the rotation method (75%). Exactly 94 percent of studies reported partially acceptable criteria for the acceptance of rotated factors. The majority of articles (69%) reported adequate coefficient alphas for the resultant subscales. In 81 percent of the studies, the conceptualized dimensions were supported by factor analysis.

  1. Extended Measurement Capabilities of the Electron Proton Helium INstrument aboard SOHO - Understanding single detector count rates

    Science.gov (United States)

    Kühl, P.; Banjac, S.; Heber, B.; Labrenz, J.; Müller-Mellin, R.; Terasa, C.

    Forbush (1937) was the first to observe intensity decreases lasting for a few days utilizing ionization chambers. A number of studies on Forbush decreases (FDs) have been performed since then utilizing neutron monitors and space instrumentation. The amplitude of these variations can be as low as a few permil. Therefore intensity measurements need to be of high statistical accuracy. Richardson et al. (1996) suggested therefore to utilize the single counter measurements of the guard counters of the IMP 8 and Helios E6 instruments. Like the above mentioned instruments the Electron Proton Helium INstrument (EPHIN) provides single counting rates. During the extended solar minimum in 2009 its guard detector counted about 25000~counts/minute, allowing to determine intensity variations of less than 2 permil using 30 minute averages. We performed a GEANT 4 simulation of the instrument in order to determine the energy response of all single detectors. It is shown here that their energy thresholds are much lower than the ones of neutron monitors and therefore we developed a criterion that allows to investigate FDs during quiet time periods.

  2. Using Rasch Measurement to Validate an Instrument for Measuring the Quality of Classroom Teaching in Secondary Chemistry Lessons

    Science.gov (United States)

    He, Peng; Liu, Xiufeng; Zheng, Changlong; Jia, Mengying

    2016-01-01

    This study intends to develop a standardized instrument for measuring classroom teaching and learning in secondary chemistry lessons. Based on previous studies and interviews with expert teachers, the progression of five quality levels was constructed hypothetically to represent the quality of chemistry lessons in Chinese secondary schools. The…

  3. Readiness and expectations questionnaire : a cross-cultural measurement instrument for first-year university students

    NARCIS (Netherlands)

    Jansen, Ellen; Andre, Stefanie; Suhre, Cor

    2013-01-01

    The readiness and expectations questionnaire (REQ) assesses first-year students' expectations and preparedness for their first year in university. This measurement instrument is useful for educational policy and curriculum development; it can also be used to predict the outcomes of the first year of

  4. A reference model of an instrument for quality measurement of semantic IS standards

    NARCIS (Netherlands)

    Folmer, E.J.A.; Oude Luttighuis, P.; Hillegersberg, J. van

    2011-01-01

    This study describes the design of a reference model for an instrument to measure quality of semantic Information System (IS) standards. This design satisfies requirements gathered among potential users, in a previous study. The reference model features three layers: concerned with quality, semantic

  5. Quality of care and patient satisfaction: a review of measuring instruments.

    NARCIS (Netherlands)

    Campen, C. van; Sixma, H.; Friele, R.D.; Kerssens, J.J.; Peters, L.

    1995-01-01

    Surveying the literature on the assessment of quality of care from the patient's perspective, the concept has often been operationalized as patient satisfaction. Patient satisfaction has been a widely investigated subject in health care research, and dozens of measuring instruments were developed du

  6. Measurement of diffusion of fluorescent compounds and autofluorescence in skin in vivo using a confocal instrument

    Science.gov (United States)

    Buttenschoen, K. K.; Sutton, E. E.; Daly, D.; Girkin, J. M.

    2016-02-01

    Using compact and affordable instrumentation based upon fluorescent confocal imaging we have tracked the movement of autofluorescent compounds through skin in near real time with high temporal and spatial resolution and sensitivity. The ability to measure the diffusion of compounds through skin with such resolution plays an important role for applications such as monitoring the penetration of pharmaceuticals applied to skin and assessing the integrity of the skin barrier. Several measurement methods exist, but they suffer from a number of problems such as being slow, expensive, non-portable and lacking sensitivity. To address these issues, we adapted a technique that we previously developed for tracking fluorescent compounds in the eye to measure the autofluorescence and the diffusion of externally applied fluorescent compounds in skin in vivo. Results are presented that show the change in autofluorescence of the volar forearm over the course of a week. We furthermore demonstrate the ability of the instrument to measure the diffusion speed and depth of externally applied fluorescent compounds both in healthy skin and after the skin barrier function has been perturbed. The instrument is currently being developed further for increased sensitivity and multi-wavelength excitation. We believe that the presented instrument is suitable for a large number of applications in fields such as assessment of damage to the skin barrier, development of topical and systemic medication and tracking the diffusion of fluorescent compounds through skin constructs as well as monitoring effects of skin products and general consumer products which may come into contact with the skin.

  7. Initial Validation of an Instrument Measuring Psychology-Specific Epistemological Beliefs

    Science.gov (United States)

    Renken, Maggie D.; McMahan, Ethan A.; Nitkova, Martina

    2015-01-01

    Psychology-specific epistemological beliefs (EBs) are believed to influence students' approach to and performance in psychology courses. However, empirical research on this topic is limited due in part to a lack of well-validated instruments measuring this construct. The primary objective of this research was to develop and validate the…

  8. Readiness and expectations questionnaire : a cross-cultural measurement instrument for first-year university students

    NARCIS (Netherlands)

    Jansen, Ellen; Andre, Stefanie; Suhre, Cor

    The readiness and expectations questionnaire (REQ) assesses first-year students' expectations and preparedness for their first year in university. This measurement instrument is useful for educational policy and curriculum development; it can also be used to predict the outcomes of the first year of

  9. Initial Validation of an Instrument Measuring Psychology-Specific Epistemological Beliefs

    Science.gov (United States)

    Renken, Maggie D.; McMahan, Ethan A.; Nitkova, Martina

    2015-01-01

    Psychology-specific epistemological beliefs (EBs) are believed to influence students' approach to and performance in psychology courses. However, empirical research on this topic is limited due in part to a lack of well-validated instruments measuring this construct. The primary objective of this research was to develop and validate the…

  10. Readiness and expectations questionnaire : a cross-cultural measurement instrument for first-year university students

    NARCIS (Netherlands)

    Jansen, Ellen; Andre, Stefanie; Suhre, Cor

    2013-01-01

    The readiness and expectations questionnaire (REQ) assesses first-year students' expectations and preparedness for their first year in university. This measurement instrument is useful for educational policy and curriculum development; it can also be used to predict the outcomes of the first year of

  11. Quality of local authority occupational therapy services: developing an instrument to measure the user's perspective.

    NARCIS (Netherlands)

    Calnan, S.; Sixma, H.J.; Calnan, M.W.; Groenewegen, P.P.

    2000-01-01

    The aims of this paper are threefold: (1) to describe the development of an instrument measuring quality of care from the specific perspective of the users of local authority occupational therapy services; (2) to present the results from a survey of users' views about the quality of services offered

  12. Beyond Instrumentation: Redesigning Measures and Methods for Evaluating the Graduate College Experience

    Science.gov (United States)

    Hardré, Patricia L.; Hackett, Shannon

    2015-01-01

    This manuscript chronicles the process and products of a redesign for evaluation of the graduate college experience (GCE) which was initiated by a university graduate college, based on its observed need to reconsider and update its measures and methods for assessing graduate students' experiences. We examined the existing instrumentation and…

  13. Development an Instrument to Measure University Students' Attitude towards E-Learning

    Science.gov (United States)

    Mehra, Vandana; Omidian, Faranak

    2012-01-01

    The study of student's attitude towards e-learning can in many ways help managers better prepare in light of e-learning for the future. This article describes the process of the development of an instrument to measure university students' attitude towards e-learning. The scale was administered to 200 University students from two countries (India…

  14. Quality of local authority occupational therapy services: developing an instrument to measure the user's perspective.

    NARCIS (Netherlands)

    Calnan, S.; Sixma, H.J.; Calnan, M.W.; Groenewegen, P.P.

    2000-01-01

    The aims of this paper are threefold: (1) to describe the development of an instrument measuring quality of care from the specific perspective of the users of local authority occupational therapy services; (2) to present the results from a survey of users' views about the quality of services offered

  15. The Development of a Valid and Reliable Instrument for Measuring Instructional Coaching Skills

    Science.gov (United States)

    Howley, Aimee Anton; Dudek, Marged Howley; Rittenberg, Rebekah; Larson, William

    2014-01-01

    This research used data from educators and teacher candidates in Ohio (a state in the Midwestern United States) to produce a valid and reliable instrument for measuring instructional coaching skills. The research involved three pilot tests with large samples of respondents. Initial items came from the extant literature on instructional coaching,…

  16. Thermal infrared spectrometer for earth science remote sensing applications : instrument modifications and measurement procedures

    NARCIS (Netherlands)

    Hecker, C.; Hook, S.; Meijde, M. van der; Bakker, W.H.; Werff, H.M.A. van der; Wilbrink, H.J.; Ruitenbeek, F.J.A. van; Smeth, J.B. de; Meer, F.D. van der

    2011-01-01

    In this article we describe a new instrumental setup at the University of Twente Faculty ITC with an optimized processing chain to measure absolute directional-hemispherical reflectance values of typical earth science samples in the 2.5 to 16 μm range. A Bruker Vertex 70 FTIR spectrometer was chosen

  17. Virtual Instrument Systems in Reality (VISIR) for Remote Wiring and Measurement of Electronic Circuits on Breadboard

    Science.gov (United States)

    Tawfik, M.; Sancristobal, E.; Martin, S.; Gil, R.; Diaz, G.; Colmenar, A.; Peire, J.; Castro, M.; Nilsson, K.; Zackrisson, J.; Hakansson, L.; Gustavsson, I.

    2013-01-01

    This paper reports on a state-of-the-art remote laboratory project called Virtual Instrument Systems in Reality (VISIR). VISIR allows wiring and measuring of electronic circuits remotely on a virtual workbench that replicates physical circuit breadboards. The wiring mechanism is developed by means of a relay switching matrix connected to a PCI…

  18. Measuring Transactional Distance in Web-Based Learning Environments: An Initial Instrument Development

    Science.gov (United States)

    Huang, Xiaoxia; Chandra, Aruna; DePaolo, Concetta; Cribbs, Jennifer; Simmons, Lakisha

    2015-01-01

    This study was an initial attempt to operationalise Moore's transactional distance theory by developing and validating an instrument measuring the related constructs: dialogue, structure, learner autonomy and transactional distance. Data were collected from 227 online students and analysed through an exploratory factor analysis. Results suggest…

  19. Construction of an Instrument to Measure Social Valuation in an Emerging Market Context

    Science.gov (United States)

    Katono, Isaac Wasswa

    2011-01-01

    Purpose: This study aims to construct a parsimonious instrument to measure social valuation in a collective setting using Uganda as an example. Design/methodology/approach: A triangulation technique was used in this study. Conversations with students, parents, teaching and non-teaching staff at Uganda Christian University (UCU) main campus were…

  20. Construction and Validation of an Instrument to Measure Taiwanese Elementary Students' Attitudes toward Their Science Class

    Science.gov (United States)

    Wang, Tzu-Ling; Berlin, Donna

    2010-01-01

    The main purpose of this study is to develop a valid and reliable instrument for measuring the "attitudes toward science class" of fourth- and fifth-grade students in an Asian school culture. Specifically, the development focused on three science attitude constructs--science enjoyment, science confidence, and importance of science as…

  1. Comparison of three different instruments measuring central corneal thickness of keratoconus

    Directory of Open Access Journals (Sweden)

    Xu Pang

    2013-10-01

    Full Text Available AIM: To compare the difference in measurements of central corneal thickness(CCTusing A-scan,corneal specular microscopy and Pentacam in keratoconus. METHODS: Between July 2012 and October 2012, the CCT of 31 patients(55 eyeswere measured by A-scan, corneal specular microscopy and Pentacam. The results were analyzed by F-test and Pearson correlation. RESULTS: The values of CCT measured by A-scan(55 eyes, corneal specular microscopy(45 eyesand Pentacam(52 eyeswere 469.87±57.56, 479.00±42.39, and 487.02±44.64μm, respectively; F-test results showed there were no statistical significant differences between CCT measured by three different instruments(P>0.05. The correlation between the measurements was evaluated using Pearson correlation coefficients. The CCT values by these three instruments were positively related by linear correlation analysis, A-scan and Pentacam measurements(r1=0.758, Pr2=0.949, Pr3=0.685, PCONCLUSION: There is a high correlation between these three instruments. A-scan and Pentacam are more precise than corneal specular microscopy. Pentacam system can measure the CCT easily, accurately and without any invasion. It is more suitable for people with keratoconus to monitor the every point of cornea and for people to do more deep research.

  2. Temperature measurement methods during direct heat arterial tissue fusion.

    Science.gov (United States)

    Cezo, James D; Kramer, Eric; Taylor, Kenneth D; Ferguson, Virginia; Rentschler, Mark E

    2013-09-01

    Fusion of biological tissues through direct and indirect heating is a growing area of medical research, yet there are still major gaps in understanding this procedure. Several companies have developed devices which fuse blood vessels, but little is known about the tissue's response to the stimuli. The need for accurate measurements of tissue behavior during tissue fusion is essential for the continued development and improvement of energy delivery devices. An experimental study was performed to measure the temperatures experienced during tissue fusion and the resulting burst pressure of the fused arteries. An array of thermocouples was placed in the lumen of a porcine splenic artery segment and sealed using a ConMed Altrus thermal fusion device. The temperatures within the tissue, in the device, and at the tissue-device interface were recorded. These measurements were then analyzed to calculate the temperature profile in the lumen of the artery. The temperature in the artery at the site of tissue fusion was measured to range from 142 to 163 °C using the ConMed Altrus. The corresponding burst pressure for arteries fused at this temperature was measured as 416 ± 79 mmHg. This study represents the first known experimental measurement of temperature at the site of vessel sealing found in the literature.

  3. Calibration standards and field instruments for the precision measurement of insolation

    Science.gov (United States)

    Reid, M. S.; Berdahl, C. M.

    1978-01-01

    The paper describes the development of an absolute calibration standard for irradiance measurements. This field instrument, designated the Kendall Radiometer System Mark 3, is identical to the PACRAD (Primary Absolute Cavity Radiometer) except for a modification to ensure all weather operation. Two Mark 3 radiometers have been in operation at the JPL's Goldstone Deep Space Communications Complex for over two years and are continuing to provide data which are within plus or minus 1% of the absolute value. A calibration stability analysis is presented for the two instruments.

  4. Thermal conductivity measurements of proton-heated warm dense matter

    Science.gov (United States)

    McKelvey, A.; Fernandez-Panella, A.; Hua, R.; Kim, J.; King, J.; Sio, H.; McGuffey, C.; Kemp, G. E.; Freeman, R. R.; Beg, F. N.; Shepherd, R.; Ping, Y.

    2015-06-01

    Accurate knowledge of conductivity characteristics in the strongly coupled plasma regime is extremely important for ICF processes such as the onset of hydrodynamic instabilities, thermonuclear burn propagation waves, shell mixing, and efficient x-ray conversion of indirect drive schemes. Recently, an experiment was performed on the Titan laser platform at the Jupiter Laser Facility to measure the thermal conductivity of proton-heated warm dense matter. In the experiment, proton beams generated via target normal sheath acceleration were used to heat bi-layer targets with high-Z front layers and lower-Z back layers. The stopping power of a material is approximately proportional to Z2 so a sharp temperature gradient is established between the two materials. The subsequent thermal conduction from the higher-Z material to the lower-Z was measured with time resolved streaked optical pyrometry (SOP) and Fourier domain interferometry (FDI) of the rear surface. Results will be used to compare predictions from the thermal conduction equation and the Wiedemann-Franz Law in the warm dense matter regime. Data from the time resolved diagnostics for Au/Al and Au/C Targets of 20-200 nm thickness will be presented.

  5. Imaging Thomson scattering measurements of radiatively heated Xe

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, B; Meinecke, J; Kuschel, S; Ross, J S; Divol, L; Glenzer, S H; Tynan, G R

    2012-05-01

    Uniform density and temperature Xe plasmas have been produced over >4 mm scale-lengths using x-rays generated in a cylindrical Pb cavity. The cavity is 750 {micro}m in depth and diameter, and is heated by a 300 J, 2 ns square, 1054 nm laser pulse focused to a spot size of 200 {micro}m at the cavity entrance. The plasma is characterized by simultaneous imaging Thomson scattering measurements from both the electron and ion scattering features. The electron feature measurement determines the spatial electron density and temperature profile, and using these parameters as constraints in the ion feature analysis allows an accurate determination of the charge state of the Xe ions. The Thomson scattering probe beam is 40 J, 200 ps, and 527 nm, and is focused to a 100 {micro}m spot size at the entrance of the Pb cavity. Each system has a spatial resolution of 25 {micro}m, a temporal resolution of 200 ps (as determined by the probe duration), and a spectral resolution of 2 nm for the electron feature system and 0.025 nm for the ion feature system. The experiment is performed in a Xe filled target chamber at a neutral pressure of 3-10 Torr, and the x-rays produced in the Pb ionize and heat the Xe to a charge state of 20 {+-} 4 at up to 200 eV electron temperatures.

  6. A gas chromatographic instrument for measurement of hydrogen cyanide in the lower atmosphere

    Directory of Open Access Journals (Sweden)

    J. L. Ambrose

    2012-06-01

    Full Text Available A gas-chromatographic (GC instrument was developed for measuring hydrogen cyanide (HCN in the lower atmosphere. The main features of the instrument are (1 a cryogen-free cooler for sample dehumidification and enrichment, (2 a porous polymer PLOT column for analyte separation, (3 a flame thermionic detector (FTD for sensitive and selective detection, and (4 a dynamic dilution system for calibration. We deployed the instrument for a ∼4 month period from January–June, 2010 at the AIRMAP atmospheric monitoring station Thompson Farm 2 (THF2 in rural Durham, NH. A subset of measurements made during 3–31 March is presented here with a detailed description of the instrument features and performance characteristics. The temporal resolution of the measurements was ~20 min, with a 75 s sample capture time. The 1σ measurement precision was <10% and the instrument response linearity was excellent on a calibration scale of 0.10–0.75 ppbv (±5%. The estimated method detection limit (MDL and accuracy were 0.021 ppbv and 15%, respectively. From 3–31 March 2010, ambient HCN mixing ratios ranged from 0.15–1.0 ppbv (±15%, with a mean value of 0.36 ± 0.16 ppbv (1σ. The approximate mean background HCN mixing ratio of 0.20 ± 0.04 ppbv appeared to agree well with tropospheric column measurements reported previously. The GC-FTD HCN measurements were strongly correlated with acetonitrile (CH3CN measured concurrently with a proton transfer-reaction mass spectrometer (PTR-MS, as anticipated given our understanding that the nitriles share a common primary biomass burning source to the global atmosphere. The nitriles were overall only weakly correlated with carbon monoxide (CO, which is reasonable considering the greater diversity of sources for CO. However, strong correlations with CO were observed on several nights under stable atmospheric conditions and suggest regional combustion-based sources for the nitriles. These results demonstrate that

  7. Time Resolution and Linearity Measurements for a Scintillating Fiber Detector Instrumented with VLPC's

    CERN Document Server

    Bross, A D; Costa, J; Johnson, M; Moreira, L; Thompson, J; Bross, Alan; Chaves, Ana Lucia; Costa, Jesse; Johnson, Marvin; Moreira, Lourival; Thompson, Joey

    1997-01-01

    The time resolution for a charged particle detection is reported for a typical scintillating fiber detector instrumented with Rockwell HISTE-IV Visible Light Photon Counters. The resolution measurements are shown to agree with a simple Monte Carlo model, and the model is used to make recomendations for improved performance. In addition, the gain linearity of a sample of VLPC devices was measured. The gain is shown to be linear for incident light intensities which produce up to approximately 600 photoelectrons per event.

  8. The construction of a normative instrument for the measurement of moral reasoning

    OpenAIRE

    2001-01-01

    The main aim of this study was to construct a normative instrument for the measurement of different levels of moral reasoning. The sample comprised 426 undergraduate students in Industrial Psychology and Personnel Management from two Afrikaans speaking universities. A questionnaire was developed to measure different levels of moral reasoning on a normative scale. A factor analysis on 90 items yielded two factors. These factors were interpreted as principled moral reasoning and prescriptive mo...

  9. [content Validity In The Development And Adaptation Processes Of Measurement Instruments].

    OpenAIRE

    2015-01-01

    This study sought to conduct a review of content validity, which is an important phase of processes of construction and adaptation of measurement instruments. Research of comprehensive literature was conducted by means of a review of national and international databases. Initially, a description of the conceptual basis and the measurement methods used in content validity was made, with emphasis on its application in the healthcare area. It was seen that controversy exists in the literature on...

  10. Instrumented Footwear Inserts: A New Tool for Measuring Forces and Biomechanical State Changes During Dynamic Movements

    Science.gov (United States)

    2017-03-03

    1 Instrumented Footwear Inserts: A New Tool For Measuring Forces and Biomechanical State Changes During Dynamic Movements Joe Lacirignola1...bones and joints are repeatedly subjected to aggressive movements and high forces. The ability to measure these elements during training would be a...critical enabler for prevention of injury and development of more quantitative training procedures that focus on ambulatory mobility and agility. It

  11. An Electronic Measurement Instrumentation of the Impedance of a Loaded Fuel Cell or Battery

    Science.gov (United States)

    Aglzim, El-Hassane; Rouane, Amar; El-Moznine, Reddad

    2007-01-01

    In this paper we present an inexpensive electronic measurement instrumentation developed in our laboratory, to measure and plot the impedance of a loaded fuel cell or battery. Impedance measurements were taken by using the load modulation method. This instrumentation has been developed around a VXI system stand which controls electronic cards. Software under Hpvee® was developed for automatic measurements and the layout of the impedance of the fuel cell on load. The measurement environment, like the ambient temperature, the fuel cell temperature, the level of the hydrogen, etc…, were taken with several sensors that enable us to control the measurement. To filter the noise and the influence of the 50Hz, we have implemented a synchronous detection which filters in a very narrow way around the useful signal. The theoretical result obtained by a simulation under Pspice® of the method used consolidates the choice of this method and the possibility of obtaining correct and exploitable results. The experimental results are preliminary results on a 12V vehicle battery, having an inrush current of 330A and a capacity of 40Ah (impedance measurements on a fuel cell are in progress, and will be the subject of a forthcoming paper). The results were plotted at various nominal voltages of the battery (12.7V, 10V, 8V and 5V) and with two imposed currents (0.6A and 4A). The Nyquist diagram resulting from the experimental data enable us to show an influence of the load of the battery on its internal impedance. The similitude in the graph form and in order of magnitude of the values obtained (both theoretical and practical) enables us to validate our electronic measurement instrumentation. One of the future uses for this instrumentation is to integrate it with several control sensors, on a vehicle as an embedded system to monitor the degradation of fuel cell membranes.

  12. The effect of instrument attachment on the surface temperature of juvenile grey seals ( Halichoerus grypus) as measured by infrared thermography

    Science.gov (United States)

    McCafferty, Dominic J.; Currie, John; Sparling, Carol E.

    2007-02-01

    Previous research has highlighted the importance of minimising hydrodynamic drag from biologging instruments fitted to marine mammals. However, there is a need to investigate other possible impacts of instruments on animals. The aim of this study was to examine the effect of deploying instruments on the surface temperature distribution of grey seals ( Halichoerus grypus). Infrared (IR) thermography was used to record the surface temperature of two juveniles that had been fitted with heart rate recorders and mounting straps for the attachment of a time depth recorder. When animals were fully wet and inactive, the surface temperature pattern was unaffected by instruments. However, as animals dried out regions of high temperature were recorded around the edges of attachment sites compared to surrounding fur. This appeared to be due to heat leakage around the sides of instruments and mounting straps that provided an additional layer of insulation. There were no obvious changes in the surface temperature distribution around instruments associated with duration of deployment. This work shows that attachment of relatively small biologging instruments will produce localised effects on heat transfer in air but will not significantly change the total heat exchange of grey seals on land or at sea. IR thermography was also shown to be a useful method of detecting surface temperature patterns associated with epidural anaesthesia and blubber biopsy.

  13. Rapid automated materials synthesis instrument: exploring the composition and heat-treatment of nanoprecursors toward low temperature red phosphors.

    Science.gov (United States)

    Lin, Tian; Kellici, Suela; Gong, Kenan; Thompson, Kathryn; Evans, Julian R G; Wang, Xue; Darr, Jawwad A

    2010-05-10

    We report on the commissioning experimental run of the rapid automated materials synthesis instrument (RAMSI), a combinatorial robot designed to manufacture, clean, and print libraries of nanocrystal precursor solid compositions. The first stage of RAMSI, parallel synthesis, uses a fully automated high throughput continuous hydrothermal (HiTCH) flow reactor for automatic metal salt precursor mixing, hydrothermal flow reaction, and sample slurry collection. The second stage of RAMSI provides integrated automated cleanup, and the third section is a ceramic printing function. Nanocrystal precursor solid ceramics were synthesized from precursor solutions and collected into 50 mL centrifuge tubes where they were cleaned by multiple centrifugation and redispersion cycles (monitored by intelligent scanning turbidimetry) and printed with an automated pipette. Eight unique compositions of a model phosphor library comprising pure nano-Y(OH)(3) and Eu(3+) doped-yttrium hydroxide, Y(OH)(3):Eu(3+) nanocrystal precursor solid were synthesized (with 2 centrifuge tubes' worth collected per composition), processed, and printed in duplicate as 75, 100, and 125 microL dots in a 21.6 ks (6 h) experiment (note: the actual time for synthesis of each sample tube was only 12 min so up to 60 compositions could easily be synthesized in 12 h if one centrifuge tube per composition was collected instead). The Y(OH)(3):Eu(3+) samples were manually placed in a furnace and heat-treated in air for 14.4 ks (4 h) in the temperature range 200-1200 at 100 degrees C intervals (giving a total of 84 samples plus one as-prepared pure Y(OH)(3) sample). The as-prepared and heat-treated ceramic samples were affixed to 4 mm wide hemispherical wells in a custom-made aluminum well-plate and analyzed using a fluorescence spectrometer. When the library was illuminated with a 254 nm light source (and digitally imaged and analyzed), the 3 mol % Eu(3+) sample heat-treated at 1200 degrees C gave the most intense

  14. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  15. Meteorological Instrumentation and Measurements Open Resource Training Modules for Undergraduate and Graduate Education

    Science.gov (United States)

    Rockwell, A.; Clark, R. D.; Stevermer, A.

    2016-12-01

    The study of observational science crosses all other subject areas and requires a new innovative paradigm: a collaboration of experts to create high quality, content-rich learning modules that will elevate the scientific literacy and technical competency of undergraduate and graduate students. This collaborative project will design, develop, and openly distribute a series of interactive, multimedia, online modules that can be effectively integrated into meteorology courses on instrumentation, measurement science, and observing systems to supplement traditional pedagogies and enhance blended instruction. The modules will address topics such as principles of instrumentation and measurement to the theory and practice of measuring a host of meteorological variables. The impact will have a profound effect on the atmospheric observational sciences community by fulfilling a need for contemporary, interactive, multimedia guided education and training modules integrating the latest instructional design and assessment tools in observational science. Thousands of undergraduate and graduate students will benefit, while course instructors will value a set of high quality modules to use as supplements to their courses. The modules can serve as an alternative to observational research training and fill the void between field projects or assist those schools that lack the resources to stage a field- or laboratory-based instrumentation experience. This project brings together the intellectual capital of the scientists and engineers of National Center for Atmospheric Research Earth Observing Laboratory as subject matter experts, the artistic talents and instructional design acumen of the COMET program, and the project leadership, vision, teaching expertise in instruments and observational science at Millersville University.

  16. Measuring pediatric hematology-oncology fellows' skills in humanism and professionalism: A novel assessment instrument.

    Science.gov (United States)

    Kesselheim, Jennifer C; Agrawal, Anurag K; Bhatia, Nita; Cronin, Angel; Jubran, Rima; Kent, Paul; Kersun, Leslie; Rao, Amulya Nageswara; Rose, Melissa; Savelli, Stephanie; Sharma, Mukta; Shereck, Evan; Twist, Clare J; Wang, Michael

    2017-05-01

    Educators in pediatric hematology-oncology lack rigorously developed instruments to assess fellows' skills in humanism and professionalism. We developed a novel 15-item self-assessment instrument to address this gap in fellowship training. Fellows (N = 122) were asked to assess their skills in five domains: balancing competing demands of fellowship, caring for the dying patient, confronting depression and burnout, responding to challenging relationships with patients, and practicing humanistic medicine. An expert focus group predefined threshold scores on the instrument that could be used as a cutoff to identify fellows who need support. Reliability and feasibility were assessed and concurrent validity was measured using three established instruments: Maslach Burnout Inventory (MBI), Flourishing Scale (FS), and Jefferson Scale of Physician Empathy (JSPE). For 90 participating fellows (74%), the self-assessment proved feasible to administer and had high internal consistency reliability (Cronbach's α = 0.81). It was moderately correlated with the FS and MBI (Pearson's r = 0.41 and 0.4, respectively) and weakly correlated with the JSPE (Pearson's r = 0.15). Twenty-eight fellows (31%) were identified as needing support. The self-assessment had a sensitivity of 50% (95% confidence interval [CI]: 31-69) and a specificity of 77% (95% CI: 65-87) for identifying fellows who scored poorly on at least one of the three established scales. We developed a novel assessment instrument for use in pediatric fellowship training. The new scale proved feasible and demonstrated internal consistency reliability. Its moderate correlation with other established instruments shows that the novel assessment instrument provides unique, nonredundant information as compared to existing scales. © 2016 Wiley Periodicals, Inc.

  17. Measuring leprosy-related stigma - a pilot study to validate a toolkit of instruments.

    Science.gov (United States)

    Rensen, Carin; Bandyopadhyay, Sudhakar; Gopal, Pala K; Van Brakel, Wim H

    2011-01-01

    Stigma negatively affects the quality of life of leprosy-affected people. Instruments are needed to assess levels of stigma and to monitor and evaluate stigma reduction interventions. We conducted a validation study of such instruments in Tamil Nadu and West Bengal, India. Four instruments were tested in a 'Community Based Rehabilitation' (CBR) setting, the Participation Scale, Internalised Scale of Mental Illness (ISMI) adapted for leprosy-affected persons, Explanatory Model Interview Catalogue (EMIC) for leprosy-affected and non-affected persons and the General Self-Efficacy (GSE) Scale. We evaluated the following components of validity, construct validity, internal consistency, test-retest reproducibility and reliability to distinguish between groups. Construct validity was tested by correlating instrument scores and by triangulating quantitative and qualitative findings. Reliability was evaluated by comparing levels of stigma among people affected by leprosy and community controls, and among affected people living in CBR project areas and those in non-CBR areas. For the Participation, ISMI and EMIC scores significant differences were observed between those affected by leprosy and those not affected (p = 0.0001), and between affected persons in the CBR and Control group (p < 0.05). The internal consistency of the instruments measured with Cronbach's α ranged from 0.83 to 0.96 and was very good for all instruments. Test-retest reproducibility coefficients were 0.80 for the Participation score, 0.70 for the EMIC score, 0.62 for the ISMI score and 0.50 for the GSE score. The construct validity of all instruments was confirmed. The Participation and EMIC Scales met all validity criteria, but test-retest reproducibility of the ISMI and GSE Scales needs further evaluation with a shorter test-retest interval and longer training and additional adaptations for the latter.

  18. Energy spectrum of secondary protons above the atmosphere measured by the instruments NINA and NINA-2

    Science.gov (United States)

    Bidoli, V.; Casolino, M.; de Pascale, M.; Furano, G.; Iannucci, A.; Morselli, A.; Picozza, P.; Sparvoli, R.; Bakaldin, A.; Galper, A.; Koldashov, S.; Korotkov, M.; Leonov, A.; Mikhailov, V.; Voronov, S.; Boezio, M.; Bonvicini, V.; Vacchi, A.; Zampa, G.; Zampa, N.; Ambriola, M.; Cafagna, F.; Circella, M.; de Marzo, C.; Adriani, O.; Papini, P.; Spillantini, P.; Straulino, S.; Vannuccini, E.; Ricci, M.; Castellini, G.

    2002-10-01

    In this paper we report on the energy spectrum of protons of albedo origin measured by the instruments NINA and NINA-2 at different geomagnetic locations, and the behaviour of the proton flux as a function of altitude out of the South Atlantic Anomaly. The instrument NINA was used on board the satellite Resurs-01-N4 between 1998 and 1999, at an altitude of about 830 km. The NINA-2 apparatus, on board the satellite MITA, was put into orbit in July 2000, at an altitude of about 450 km. A detailed understanding of the fluxes of charged particles in near Earth orbit is important to reach an accurate theoretical description of the Earth’s magnetic field, but also as input for the calculation of the back-ground for scientific instruments aboard satellites, like the future AGILE and GLAST g

  19. Jules Horowitz Reactor Project- Fuel irradiation device, innovative instrumentation proposal for experimental phenomena real time measurement

    Energy Technology Data Exchange (ETDEWEB)

    Gaillot, Stephane; Cheymol, Guy [CEA, Paris (France)

    2013-07-01

    The fuel irradiation devices used for the tests or rods allow reproducing at small scales the conditions of the studied nuclear reactors (as LWR type). During the irradiation phase, the tested fuel rod can be stressed due to thermal, mechanical, nuclear effects which can modify its geometry (dilatation, swelling effects). After the test, the return to normal conditions can have as consequence the disappearance of the phenomenon or give access to partial information (final deformation). Generally, to follow the phenomena related to the irradiation phase, the experimental rod contained in the test device is instrumented with thermocouples and LVDT. As complement of this instrumentation, new sensors using innovating technologies are studied (deformation sensor integrating optical fibres). Through the example of a fuel irradiation device foreseen for the JHR, this paper aims to describe the present development of an innovating instrumentation with the objective to measure, in real time and under flux, the fuel rod deformation phenomena during a ramp test.

  20. Beam-Profile Instrumentation for a Beam-Halo Measurement Overall Description, Operation, and Beam Data

    CERN Document Server

    Gilpatrick, J D; Day, L; Kerstiens, D; Stettler, M; Valdiviez, R

    2001-01-01

    The halo experiment presently being conducted at the Low Energy Demonstration Accelerator (LEDA) at Los Alamos National Laboratory (LANL) has specific instruments that acquire horizontally and vertically projected particle-density beam distributions out to greater than 105:1 dynamic range. We measure the core of the distributions using traditional wire scanners, and the tails of the distribution using water-cooled graphite scraping devices. The wire scanner and halo scrapers are mounted on the same moving frame whose location is controlled with stepper motors. A sequence within the Experimental Physics and Industrial Control System (EPICS) software communicates with a National Instrument LabVIEW virtual instrument to control the movement and location of the scanner/scraper assembly. Secondary electrons from the wire scanner 33 μm carbon wire and protons impinging on the scraper are both detected with a lossy-integrator electronic circuit. Algorithms implemented within EPICS and in Research Systems Interactiv...

  1. An instrument for measuring pharmacist and physician attitudes towards collaboration: preliminary psychometric data.

    Science.gov (United States)

    Hojat, Mohammadreza; Gonnella, Joseph S

    2011-01-01

    This study was designed to develop an instrument for measuring attitudes toward pharmacist-physician collaborative relationships for administration to practicing pharmacists and physicians, as well as to students in pharmacy and medical schools. Based on a review of literature, a preliminary version of an instrument was developed (30 items), and through a pilot study of face validity and content validity with 12 pharmacists and 10 physicians, 18 items were chosen for quantitative analyses. We asked 88 respondents (61 pharmacists, 27 physicians) to judge the relevance, clarity, and representativeness of each item to the concept of pharmacist-physician collaborative relationships. Sixteen items with a relevancy endorsement greater than 85% and significant item-total score correlations were retained. The following underlying constructs emerged from factor analysis: "collaboration and team work," "accountability," "overlapping responsibility," and "authority". These factors supported the multidimensionality and construct validity of the instrument. No gender difference was observed; however, pharmacists scored higher than physicians on the total score of the instrument. The Cronbach's coefficient alpha was .81 for pharmacists, .92 for physicians, and .87 for the combined sample. Encouraged by these preliminary findings, we plan to undertake further research to examine the instrument's psychometric properties including criterion-related and predictive validities with larger and more representative samples of pharmacists, physicians, and students in pharmacy and medical schools.

  2. [Development of chlorophyll concentration nondestructive measurement instrument based on spectral analysis technology].

    Science.gov (United States)

    Li, Qing-Bo; Xu, Yu-Po; Zhang, Chao-Hang; Zhang, Guang-Jun; Wu, Jin-Guang

    2009-10-01

    A portable nondestructive measuring instrument for plant chlorophyll was developed, which can perform real-time, quick and nondestructive measurement of chlorophyll. The instrument is mainly composed of four parts, including leaves clamp, driving circuit of light source, photoelectric detection and signal conditioning circuit and micro-control system. A new scheme of light source driving was proposed, which can not only achieve constant current, but also control the current by digital signal. The driving current can be changed depending on different light source and measurement situation by actual operation, which resolves the matching problem of output intensity of light source and input range of photoelectric detector. In addition, an integrative leaves clamp was designed, which simplified the optical structure, enhanced the stability of apparatus, decreased the loss of incident light and improved the signal-to-noise ratio and precision. The photoelectric detection and signal conditioning circuit achieve the conversion between optical signal and electrical signal, and make the electrical signal meet the requirement of AD conversion, and the photo detector is S1133-14 of Hamamatsu Company, with a high detection precision. The micro-control system mainly achieves control function, dealing with data, data storage and so on. As the most important component, microprocessor MSP430F149 of TI Company has many advantages, such as high processing speed, low power, high stability and so on. And it has an in-built 12 bit AD converter, so the data-acquisition circuit is simpler. MSP430F149 is suitable for portable instrument. In the calibration experiment of the instrument, the standard value was measured by chlorophyll meter SPAD-502, multiple linear calibration models were built, and the instrument performance was evaluated. The correlation coefficient between chlorophyll prediction value and standard value is 0.97, and the root mean square error of prediction is about 1

  3. The Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI: design, execution, and early results

    Directory of Open Access Journals (Sweden)

    A. J. M. Piters

    2012-02-01

    Full Text Available From June to July 2009 more than thirty different in-situ and remote sensing instruments from all over the world participated in the Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI. The campaign took place at KNMI's Cabauw Experimental Site for Atmospheric Research (CESAR in the Netherlands. Its main objectives were to determine the accuracy of state-of-the-art ground-based measurement techniques for the detection of atmospheric nitrogen dioxide (both in-situ and remote sensing, and to investigate their usability in satellite data validation. The expected outcomes are recommendations regarding the operation and calibration of such instruments, retrieval settings, and observation strategies for the use in ground-based networks for air quality monitoring and satellite data validation. Twenty-four optical spectrometers participated in the campaign, of which twenty-one had the capability to scan different elevation angles consecutively, the so-called Multi-axis DOAS systems, thereby collecting vertical profile information, in particular for nitrogen dioxide and aerosol. Various in-situ samplers and lidar instruments simultaneously characterized the variability of atmospheric trace gases and the physical properties of aerosol particles. A large data set of continuous measurements of these atmospheric constituents has been collected under various meteorological conditions and air pollution levels. Together with the permanent measurement capability at the CESAR site characterizing the meteorological state of the atmosphere, the CINDI campaign provided a comprehensive observational data set of atmospheric constituents in a highly polluted region of the world during summertime. First detailed comparisons performed with the CINDI data show that slant column measurements of NO2, O4 and HCHO with MAX-DOAS agree within 5 to 15%, vertical profiles of NO2 derived from several independent

  4. Application of Allan Deviation to Assessing Uncertainties of Continuous-measurement Instruments, and Optimizing Calibration Schemes

    Science.gov (United States)

    Jacobson, Gloria; Rella, Chris; Farinas, Alejandro

    2014-05-01

    Technological advancement of instrumentation in atmospheric and other geoscience disciplines over the past decade has lead to a shift from discrete sample analysis to continuous, in-situ monitoring. Standard error analysis used for discrete measurements is not sufficient to assess and compare the error contribution of noise and drift from continuous-measurement instruments, and a different statistical analysis approach should be applied. The Allan standard deviation analysis technique developed for atomic clock stability assessment by David W. Allan [1] can be effectively and gainfully applied to continuous measurement instruments. As an example, P. Werle et al has applied these techniques to look at signal averaging for atmospheric monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS) [2]. This presentation will build on, and translate prior foundational publications to provide contextual definitions and guidelines for the practical application of this analysis technique to continuous scientific measurements. The specific example of a Picarro G2401 Cavity Ringdown Spectroscopy (CRDS) analyzer used for continuous, atmospheric monitoring of CO2, CH4 and CO will be used to define the basics features the Allan deviation, assess factors affecting the analysis, and explore the time-series to Allan deviation plot translation for different types of instrument noise (white noise, linear drift, and interpolated data). In addition, the useful application of using an Allan deviation to optimize and predict the performance of different calibration schemes will be presented. Even though this presentation will use the specific example of the Picarro G2401 CRDS Analyzer for atmospheric monitoring, the objective is to present the information such that it can be successfully applied to other instrument sets and disciplines. [1] D.W. Allan, "Statistics of Atomic Frequency Standards," Proc, IEEE, vol. 54, pp 221-230, Feb 1966 [2] P. Werle, R. Miicke, F. Slemr, "The Limits

  5. Assessment of Customer Service in Academic Health Care Libraries (ACSAHL): an instrument for measuring customer service*†

    OpenAIRE

    2001-01-01

    Objectives: In a pilot study, the library had good results using SERVQUAL, a respected and often-used instrument for measuring customer satisfaction. The SERVQUAL instrument itself, however, received some serious and well-founded criticism from the respondents to our survey. The purpose of this study was to test the comparability of the results of SERVQUAL with a revised and shortened instrument modeled on SERVQUAL. The revised instrument, the Assessment of Customer Service in Academic Health...

  6. SIDRA instrument for measurements of particle fluxes at satellite altitudes. Laboratory prototype

    Science.gov (United States)

    Dudnik, O. V.; Prieto, M.; Kurbatov, E. V.; Sanchez, S.; Timakova, T. G.; Spassky, A. V.; Dubina, V. N.; Parra, P.

    2013-01-01

    The design concept and first set of results are presented for electronic modules of a laboratory prototype of the small-size satellite instrument SIDRA intended for measurements of charged particle fluxes in outer space. The working prototype consists of a detector assembly based on high-purity silicon and fast scintillation detectors, modules of analogue and digital processing, and a secondary power supply module. The first results are discussed of a Monte-Carlo simulation of the instrument with the use of the GEANT4 toolkit and of measurements of the main parameters of charge-sensitive pre-amplifiers, shapers, and peak detectors. Results of calibration measurements with the use of radioactive sources and beams of accelerated charged particles are presented.

  7. Smartphone measurement engineering - Innovative challenges for science and education, instrumentation and training

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, D; Dittrich, P-G; Duentsch, E, E-mail: dietrich-hofmann@t-online.d [Senior Network Manager NEMO SpectroNet, Technologie- und Innovationspark Jena GmbH, Wildenbruchstrasse 15, D-07745 Jena (Germany)

    2010-07-01

    Smartphones have an enormous conceptual and structural influence on measurement science and education, instrumentation and training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  8. Towards convective heat transfer enhancement: surface modification, characterization and measurement techniques

    NARCIS (Netherlands)

    Taha, T.J.; Thakur, D.B.; van der Meer, Theodorus H.

    2012-01-01

    In this work, heat transfer surface modification and heat transfer measurement technique is developed. Heat transfer investigation was aimed to study the effect of carbon nano fibers (extremely high thermal conductive material) on the enhancement level in heat transfer. Synthesis of these carbon nan

  9. Towards convective heat transfer enhancement: surface modification, characterization and measurement techniques

    NARCIS (Netherlands)

    Taha, T.J.; Thakur, D.B.; Meer, van der T.H.

    2012-01-01

    In this work, heat transfer surface modification and heat transfer measurement technique is developed. Heat transfer investigation was aimed to study the effect of carbon nano fibers (extremely high thermal conductive material) on the enhancement level in heat transfer. Synthesis of these carbon nan

  10. Development of a laser-induced heat flux technique for measurement of convective heat transfer coefficients in a supersonic flowfield

    Science.gov (United States)

    Porro, A. Robert; Keith, Theo G., Jr.; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the load surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimental results agreed reasonably well with theoretical predictions of convective heat transfer of flat plate laminar boundary layers. The results indicate that this non-intrusive optical measurement technique has the potential to obtain high quality surface convective heat transfer measurements in high speed flowfields.

  11. Using the Rasch measurement model to design a report writing assessment instrument.

    Science.gov (United States)

    Carlson, Wayne R

    2013-01-01

    This paper describes how the Rasch measurement model was used to develop an assessment instrument designed to measure student ability to write law enforcement incident and investigative reports. The ability to write reports is a requirement of all law enforcement recruits in the state of Michigan and is a part of the state's mandatory basic training curriculum, which is promulgated by the Michigan Commission on Law Enforcement Standards (MCOLES). Recently, MCOLES conducted research to modernize its training and testing in the area of report writing. A structured validation process was used, which included: a) an examination of the job tasks of a patrol officer, b) input from content experts, c) a review of the professional research, and d) the creation of an instrument to measure student competency. The Rasch model addressed several measurement principles that were central to construct validity, which were particularly useful for assessing student performances. Based on the results of the report writing validation project, the state established a legitimate connectivity between the report writing standard and the essential job functions of a patrol officer in Michigan. The project also produced an authentic instrument for measuring minimum levels of report writing competency, which generated results that are valid for inferences of student ability. Ultimately, the state of Michigan must ensure the safety of its citizens by licensing only those patrol officers who possess a minimum level of core competency. Maintaining the validity and reliability of both the training and testing processes can ensure that the system for producing such candidates functions as intended.

  12. Do we understand what the mercury speciation instruments are actually measuring? Results of RAMIX.

    Science.gov (United States)

    Gustin, Mae Sexauer; Huang, Jiaoyan; Miller, Matthieu B; Peterson, Christianna; Jaffe, Daniel A; Ambrose, Jesse; Finley, Brandon D; Lyman, Seth N; Call, Kevin; Talbot, Robert; Feddersen, Dara; Mao, Huiting; Lindberg, Steven E

    2013-07-02

    From August 22 to September 16, 2012, atmospheric mercury (Hg) was measured from a common manifold in the field during the Reno Atmospheric Mercury Intercomparison eXperiment. Data were collected using Tekran systems, laser induced fluorescence, and evolving new methods. The latter included the University of Washington-Detector for Oxidized Mercury, the University of Houston Mercury instrument, and a filter-based system under development by the University of Nevada-Reno. Good transmission of total Hg was found for the manifold. However, despite application of standard protocols and rigorous quality control, systematic differences in operationally defined forms of Hg were measured by the sampling systems. Concentrations of reactive Hg (RM) measured with new methods were at times 2-to-3-fold higher than that measured by Tekran system. The low RM recovery by the latter can be attributed to lack of collection as the system is currently configured. Concentrations measured by all instruments were influenced by their sampling location in-the-manifold and the instrument analytical configuration. On the basis of collective assessment of the data, we hypothesize that reactions forming RM were occurring in the manifold. Results provide a new framework for improved understanding of the atmospheric chemistry of Hg.

  13. Application of the Hand-instrument of Measurement of Tyre Gap and Diameter in Cement Rotary Kiln

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This article is concerned with the cement rotary kiln, the hand-instrument of measurements of tyre gap and the outer diameter. The accuracy of measurements of tyre gap and diameter is less than ±1mm. The hand- instrument wins two patents in China. It has been applied to the measurement for 16 sets of cement rotary kiln in China.

  14. Development of an instrument to measure medical students’ perceptions of the assessment environment: initial validation

    Directory of Open Access Journals (Sweden)

    Joong Hiong Sim

    2015-10-01

    Full Text Available Introduction: Assessment environment, synonymous with climate or atmosphere, is multifaceted. Although there are valid and reliable instruments for measuring the educational environment, there is no validated instrument for measuring the assessment environment in medical programs. This study aimed to develop an instrument for measuring students’ perceptions of the assessment environment in an undergraduate medical program and to examine the psychometric properties of the new instrument. Method: The Assessment Environment Questionnaire (AEQ, a 40-item, four-point (1=Strongly Disagree to 4=Strongly Agree Likert scale instrument designed by the authors, was administered to medical undergraduates from the authors’ institution. The response rate was 626/794 (78.84%. To establish construct validity, exploratory factor analysis (EFA with principal component analysis and varimax rotation was conducted. To examine the internal consistency reliability of the instrument, Cronbach's α was computed. Mean scores for the entire AEQ and for each factor/subscale were calculated. Mean AEQ scores of students from different academic years and sex were examined. Results: Six hundred and eleven completed questionnaires were analysed. EFA extracted four factors: feedback mechanism (seven items, learning and performance (five items, information on assessment (five items, and assessment system/procedure (three items, which together explained 56.72% of the variance. Based on the four extracted factors/subscales, the AEQ was reduced to 20 items. Cronbach's α for the 20-item AEQ was 0.89, whereas Cronbach's α for the four factors/subscales ranged from 0.71 to 0.87. Mean score for the AEQ was 2.68/4.00. The factor/subscale of ‘feedback mechanism’ recorded the lowest mean (2.39/4.00, whereas the factor/subscale of ‘assessment system/procedure’ scored the highest mean (2.92/4.00. Significant differences were found among the AEQ scores of students from different

  15. Unattended instruments for ground-based hyperspectral measurements: development and application for plant photosynthesis monitoring

    Science.gov (United States)

    Cogliati, S.; Rossini, M.; Meroni, M.; Barducci, A.; Julitta, T.; Colombo, R.

    2011-12-01

    The aim of the present work is the development of ground-based hyperspectral systems capable of collecting continuous and long-term hyperspectral measurements of the Earth-surface. The development of such instruments includes the optical design, the development of the data acquisition (Auto3S) and processing software as well as the definition of the calibration procedures. In particular an in-field calibration methodologie based on the comparison between field spectra and data modeled using Radiative Transfer (RT) approach has been proposed to regularly upgrade instrument calibration coefficients. Two different automatic spectrometric systems have been developed: the HyperSpectral Irradiometer (HSI) [Meroni et al., 2011] and the Multiplexer Radiometer Irradiometer (MRI) [Cogliati, 2011]. Both instruments are able to continuously measure: sun incoming irradiance (ETOT) and irradiance (ES, HSI)/radiance (LS, MRI) upwelling from the investigated surface. Both instruments employ two Ocean Optics HR4000 spectrometers sharing the same optical signal that allow to simultaneously collect "fine" (1 nm Full Width at Half Maximum, FWHM) spectra in the 400-1000 nm rangeand "ultra-fine" (0.1 nm FWHM) spectra within the 700-800 nm. The collected optical data allow to estimate biochemical/structural properties of vegetation (e.g. NDVI) as well as its photosynthetic efficiency through the Photochemical Reflectance Index (PRI) and the analysis of sun-induced chlorophyll Fluorescence in the O2-A Fraunhofer line (F@760). The automatic instruments were operated in coordination with eddy covariance flux tower measurements of carbon exchange in the framework of several field campaigns: HSI was employed in a subalpine pasture (2009-ongoing) (www.phenoalp.eu) while MRI was employed in 2009 in the Sen3Exp field survey promoted by the European Space Agency as consolidation study to the future mission Sentinel-3. Results show that the proposed instruments succeeded in collecting continuous

  16. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  17. Direct measurement of heat transfer rates and coefficients in freezing processes by the use of heat flux sensors

    Energy Technology Data Exchange (ETDEWEB)

    Amarante, A.; Lanoiselle, J.L.; Ramirez, A.

    2003-10-01

    Heat exchange is often complex to assess in freezing equipment. Either the extensive calculation procedures based on product time-temperature data, or the lack of accurate thermophysical properties, or even the non-uniform processing conditions in industrial equipment, results in increased difficulty in calculating accurate heat exchange parameters. The present study aims to solve this kind of problem by introducing the use of heat flux sensors (or fluxmeters) for an online measurement of heat exchange parameters during freezing processes. Since food products often have irregular, moist and greasy surfaces, bad attachment of the sensors can lead to low accuracy in heat flux measurement. First, a technique was improved in this particular and a numerical procedure based on matching the experimental and simulated temperature histories was used to calibrate the sensors attached to Tylose gels submitted to freezing and thawing cycles. Following this, the sensors were applied directly to a vegetable product undergoing freezing in a static freezer to measure the instantaneous product heat release rate and the local heat transfer coefficient. A fluxmeter-plastic transducer was also developed and used, coupled to an anemometer to map axially and transversally the local effective heat transfer coefficient and air speed profiles in a Super-Contact freezing tunnel. Results were compared with numerical simulations and showed good agreement. Irregular air speed distribution and low efficiency heat transfer zones were accurately detected, providing information for equipment optimization. (author)

  18. Agreement among three instruments for measuring functional health status and quality of life in pediatric orthopaedics.

    Science.gov (United States)

    Wren, Tishya A L; Sheng, Minya; Hara, Reiko; Otsuka, Norman Y; Bowen, Richard E; Scaduto, Anthony A; Kay, Robert M; Chan, Linda S

    2007-03-01

    The Child Health Questionnaire (CHQ), Pediatric Outcomes Data Collection Instrument (PODCI), and Pediatric Evaluation and Disability Inventory (PEDI) are the 3 instruments commonly used to measure function and quality of life in pediatric orthopaedics. This study compared answers to specific questions on the CHQ, PODCI, and PEDI given by the parents of 66 children with cerebral palsy, who completed all 3 questionnaires. Both Spanish- and English-speaking subjects were included. No overlapping questions were found between the CHQ and PEDI. Of the 8 questions that overlapped between the CHQ and PODCI, 2 questions (general health and change in health) had weighted kappa greater than 0.70, with responses within +/-1 point for more than 95% of respondents. These 2 questions had almost exactly the same wording on both questionnaires. The other 6 questions had fair to poor agreement between questionnaires (kappa, 0.10-0.55). All 5 questions that were addressed by both the PODCI and PEDI also had poor agreement (kappa < 0.40). There was little correspondence between the preconceived match quality and the actual matching results (r=0.41; P=0.16). These results suggest that differences in wording have a significant and unpredictable effect on parents' responses; this should be considered when selecting from among different instruments. Of the instruments used in this study, the CHQ is the easiest to administer and is a good general quality of life measure; however, the PODCI or PEDI may be preferred if information about more specific functional activities is desired.

  19. Final Report: Wireless Instrument for Automated Measurement of Clean Cookstove Usage and Black Carbon Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lukac, Martin [Cirrus Sense LLC, Los Angeles, CA (United States); Ramanathan, Nithya [Cirrus Sense LLC, Los Angeles, CA (United States); Graham, Eric [Cirrus Sense LLC, Los Angeles, CA (United States)

    2013-09-10

    Black carbon (BC) emissions from traditional cooking fires and other sources are significant anthropogenic drivers of radiative forcing. Clean cookstoves present a more energy-efficient and cleaner-burning vehicle for cooking than traditional wood-burning stoves, yet many existing cookstoves reduce emissions by only modest amounts. Further research into cookstove use, fuel types, and verification of emissions is needed as adoption rates for such stoves remain low. Accelerated innovation requires techniques for measuring and verifying such cookstove performance. The overarching goal of the proposed program was to develop a low-cost, wireless instrument to provide a high-resolution profile of the cookstove BC emissions and usage in the field. We proposed transferring the complexity of analysis away from the sampling hardware at the measurement site and to software at a centrally located server to easily analyze data from thousands of sampling instruments. We were able to build a low-cost field-based instrument that produces repeatable, low-cost estimates of cookstove usage, fuel estimates, and emission values with low variability. Emission values from our instrument were consistent with published ranges of emissions for similar stove and fuel types.

  20. An evaluation of Brix refractometry instruments for measurement of colostrum quality in dairy cattle.

    Science.gov (United States)

    Bielmann, V; Gillan, J; Perkins, N R; Skidmore, A L; Godden, S; Leslie, K E

    2010-08-01

    Acquisition of high quality colostrum is an important factor influencing neonatal calf health. Many methods have been used to assess the Ig concentration of colostrum; however, improved, validated evaluation tools are needed. The aims of this study were to evaluate both optical and digital Brix refractometer instruments for the measurement of Ig concentration of colostrum as compared with the gold standard radial immunodiffusion assay laboratory assessment and to determine the correlation between Ig measurements taken from fresh and frozen colostrum samples for both Brix refractometer instruments. This research was completed using 288 colostrum samples from 3 different farms. It was concluded that the optical and digital Brix refractometers were highly correlated for both fresh and frozen samples (r=0.98 and r=0.97, respectively). Correlation between both refractometer instruments for fresh and frozen samples and the gold standard radial immunodiffusion assay were determined to be very similar, with a correlation coefficient between 0.71 and 0.74. Both instruments exhibited excellent test characteristics, indicating an appropriate cut-off point of 22% Brix score for the identification of good quality colostrum.

  1. Remote Measurement of Heat Flux from Power Plant Cooling Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Alfred J.; Kurzeja, Robert J.; Villa-Aleman, Eliel; Bollinger, James S.; Pendergast, Malcolm M.

    2013-06-01

    Laboratory experiments have demonstrated a correlation between the rate of heat loss q" from an experimental fluid to the air above and the standard deviation σ of the thermal variability in images of the fluid surface. These experimental results imply that q" can be derived directly from thermal imagery by computing σ. This paper analyses thermal imagery collected over two power plant cooling lakes to determine if the same relationship exists. Turbulent boundary layer theory predicts a linear relationship between q" and σ when both forced (wind driven) and free (buoyancy driven) convection are present. Datasets derived from ground- and helicopter-based imagery collections had correlation coefficients between σ and q" of 0.45 and 0.76, respectively. Values of q" computed from a function of σ and friction velocity u* derived from turbulent boundary layer theory had higher correlations with measured values of q" (0.84 and 0.89). Finally, this research may be applicable to the problem of calculating losses of heat from the ocean to the atmosphere during high-latitude cold-air outbreaks because it does not require the information typically needed to compute sensible, evaporative, and thermal radiation energy losses to the atmosphere.

  2. Complete velocity distribution in river cross-sections measured by acoustic instruments

    Science.gov (United States)

    Cheng, R.T.; Gartner, J.W.; ,

    2003-01-01

    To fully understand the hydraulic properties of natural rivers, velocity distribution in the river cross-section should be studied in detail. The measurement task is not straightforward because there is not an instrument that can measure the velocity distribution covering the entire cross-section. Particularly, the velocities in regions near the free surface and in the bottom boundary layer are difficult to measure, and yet the velocity properties in these regions play the most significant role in characterizing the hydraulic properties. To further characterize river hydraulics, two acoustic instruments, namely, an acoustic Doppler current profiler (ADCP), and a "BoogieDopp" (BD) were used on fixed platforms to measure the detailed velocity profiles across the river. Typically, 20 to 25 stations were used to represent a river cross-section. At each station, water velocity profiles were measured independently and/or concurrently by an ADCP and a BD. The measured velocity properties were compared and used in computation of river discharge. In a tow-tank evaluation of a BD, it has been confirmed that BD is capable of measuring water velocity at about 11 cm below the free-surface. Therefore, the surface velocity distribution across the river was extracted from the BD velocity measurements and used to compute the river discharge. These detailed velocity profiles and the composite velocity distribution were used to assess the validity of the classic theories of velocity distributions, conventional river discharge measurement methods, and for estimates of channel bottom roughness.

  3. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Y.; Fernandez-Panella, A.; Correa, A.; Shepherd, R.; Landen, O.; London, R. A.; Sterne, P. A.; Whitley, H. D.; Fratanduono, D.; Collins, G. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Sio, H. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Boehly, T. R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-09-15

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. The sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  4. Active Radiation Level Measurement on New Laboratory Instrument for Evaluating the Antibacterial Activity of Radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Joh, Eunha; Park, Jang Guen [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    A disc method has been widely used to measure the antibacterial effect of chemical agents. However, it is difficult to measure the antibacterial effect of radioisotopes using a disc method. A disc method is a method for diffusing a drug by placing the drug containing disc on the medium. In this method, radioisotopes are diffused on the medium and it is difficult to measure the exact effect by radiation. Thus, new laboratory equipment needs to evaluate the antibacterial activity by the radioisotopes. In this study, we measured the radiation level of radioisotopes on a new laboratory instrument using a MCNP. A disc method has been widely used to measure the antibacterial effect of chemical agents. This method uses a drug diffusion system for the measurement of anti-bacterial antibiotics. To measure the antimicrobial activity of a radioisotope, a new type of laboratory instrument is necessary to prevent the drug from spreading. The radioisotopes are used to diagnose and treat cancer. However, studies for anti-biotical use have not progressed. The radiation of radioisotopes has the effect of killing bacteria. Before this study proceeds further, it is necessary to be able to measure the antimicrobial activity of the radioisotope easily in the laboratory. However, in this study, it was possible to measure the antimicrobial activity of the radioisotope in the laboratory using a new laboratory instrument. We intend to start evaluation studies of the antibacterial activity of specific radioisotopes. In addition, it will be possible to develop research to overcome diseases caused by bacteria in the future.

  5. Measurement of natural convective heat transfer coefficient along the surface of a heated wire using digital holographic interferometry.

    Science.gov (United States)

    Kumar, Varun; Kumar, Manoj; Shakher, Chandra

    2014-09-20

    In this paper, the local convective heat transfer coefficient (h) is measured along the surface of an electrically heated vertical wire using digital holographic interferometry (DHI). Experiments are conducted on wires of different diameters. The experimentally measured values are within the range as given in the literature. DHI is expected to provide a more accurate local convective heat transfer coefficient (h) as the value of the temperature gradient required for the calculation of "h" can be obtained more accurately than by other existing optical interferometric techniques without the use of a phase shifting technique. This is because in digital holography phase measurement accuracy is expected to be higher.

  6. Evaluation study of the suitability of instrumentation to measure ambient NH3 concentrations under field conditions

    Science.gov (United States)

    Twigg, Marsailidh

    2017-04-01

    The uncertainties in emissions of ammonia (NH3) in Europe are large, partially due to the difficulty in monitoring of ambient concentrations due to its sticky nature. In the European Monitoring and Evaluation Program (EMEP) the current recommended guidelines to measure NH3 are by coated annular denuders with offline analysis. This method, however, is no longer used in most European countries and each one has taken a different strategy to monitor atmospheric ammonia due to the increase of commercial NH3 monitoring instrumentation available over the last 20 years. In June 2014, a 3 year project funded under the European Metrology Research Programme, "Metrology for Ammonia in Ambient Air" (MetNH3), started with the aim to develop metrological traceability for the measurement of NH3 in air from primary gas mixtures and instrumental standards to field application. This study presents the results from the field intercomparison (15 instruments) which was held in South East Scotland in August 2016 over an intensively managed grassland. The study compared active sampling methods to a meteorological traceable method which was developed during the project with the aim to produce a series of guidelines for ambient NH3 measurements. Preliminary results highlight both the importance of inlets and management of relative humidity in the measurement of ambient NH3 and of the requirement to carry out frequent intercomparison of NH3 instrumentation. Overall, it would be recommended from this study that a WMO-GAW world centre for NH3 would be established and support integration of standards into both routine and research measurements.

  7. Measurement of the earth radiation balance as an instrument design problem.

    Science.gov (United States)

    Yates, H W

    1977-02-01

    The net radiation balance of the earth is important globally for synoptic scale models and long-term climatic trends. It is important at the mesoscale level because it is a strong driving force on local meteorological phenomena. Both synoptic and mesoscale measurements are possible only from earth orbiting spacecraft, and serious efforts have been made to implement them. They have not achieved sufficient accuracy, precision, and stability to be really meaningful meteorologically. Measuring a small difference between two large numbers-the input to the earth and the earth radiation to space-is quite difficult and compounded by the spectral differences between the two. The instrumental considerations to achieving improvements in net radiation balance are discussed. The ratio of input to outflow, like albedo, is a dimensionless number which is amenable to measurement without recourse to calibrated instruments. If the solar constant is indeed reasonably constant, this ratio, which is more easily measured than an absolute value of either quantity, will be acceptable. Instrument stability, both spectral and absolute, as well as calibration methods and accuracy will be discussed with specific emphasis on estimating how and to what degree they can be improved.

  8. Measurement of Perceived Stress Among Pregnant Women: A Comparison of Two Different Instruments.

    Science.gov (United States)

    Solivan, Amber E; Xiong, Xu; Harville, Emily W; Buekens, Pierre

    2015-09-01

    Assess the amount of agreement between the classification of stress from the Perceived Stress Scale (PSS) and the Assessment of Stress portion of the Prenatal Psychosocial Profile (PPP) among pregnant women. A secondary data analysis on a cross-sectional study of 301 pregnant women from the New Orleans and Baton Rouge areas who were exposed to Hurricane Katrina was conducted. Women with complete data (219) were analyzed. Women scoring in the third tertile of each instrument were compared. The kappa statistic was used to assess agreement between instruments. Additional comparisons were made with three instruments that measure other important psychosocial constructs that could be related to stress: the Edinburgh Depression Scale (EDS) and the Assessments of Support (partner and other support) and Self-Esteem from the PPP. No significant difference was found between the two tests. The PSS and the PPP were both statistically significantly correlated to each other (ρ = 0.71, p < 0.01). Thirty-five women were classified discordantly resulting in a Kappa Coefficient of 0.61 (95% CI 0.50-0.72, p < 0.01). No significant differences were found between these two instruments in correlation with the EDS (PPP, r = 0.76; PSS, r = 0.72; p < 0.01 for each), partner support (PPP, r = -0.47; PSS r = -0.46; p < 0.01 for each), other support (PPP, r = -0.31; PSS r = -0.32; p < 0.01 for each) and self-esteem (PPP, r = -0.41; PSS, r = -0.52; p < 0.01 for each), respectively. Given the similarities between the PSS and PPP, researchers are encouraged to choose and administer one instrument to participants, or to use the instruments in combination as an external reliability check.

  9. Time-resolved, local temperature measurements during pulsed laser heating

    Energy Technology Data Exchange (ETDEWEB)

    Kappes, Ralf S; Li Chen; Butt, Hans-Juergen; Gutmann, Jochen S, E-mail: kappes@mpip-mainz.mpg.d [Max Planck Institute for Polymer Research, D-55128 Mainz (Germany)

    2010-08-15

    To analyse processes during laser heating, one needs to be able to measure temperatures of about 1000 K within one microsecond and with micrometre resolution. To achieve this accuracy, we set up a high-performance optical detection system with a microsecond gated camera in combination with selected interference filters to detect the thermal emission spectrum in the visible range. By fitting the emission spectrum to Planck's law, we are able to collect an area temperature profile for time intervals as short as one microsecond. Thus we can show that a polymer film, which is doped with an organic dye for energy conversion, can reach temperatures of at least 900 K, which is high above its 'normal' decomposition temperature. It is, furthermore, possible to relate the temperature to the effect of the laser beam on the polymer film.

  10. Measuring Plasma Flows in Transition Region Loops Using the MOSES Instrument

    Science.gov (United States)

    Smart, Roy; Kankelborg, Charles C.; Bonham, Nick; Courrier, Hans

    2017-08-01

    While traditional slit spectrographs have been extremely valuable for observing coronal loops, the narrow slit of these instruments does not allow the properties and dynamic evolution of coronal loops to be measured simultaneously across their entire structure. The Multi-Order Solar EUV Spectrograph (MOSES) is a rocket-borne slitless spectrograph capable of measuring doppler shifts simultaneously over a wide field of view. On August 27, 2015, we observed AR 12403 in Ne VII (46.5 nm) at T ~ 500,000 K. We present time dependent measurements of downflow velocities for loop footpoints, with physical interpretation based on 1D modeling.

  11. Using sonic anemometer temperature to measure sensible heat flux in strong winds

    Directory of Open Access Journals (Sweden)

    S. P. Burns

    2012-09-01

    Full Text Available Sonic anemometers simultaneously measure the turbulent fluctuations of vertical wind (w' and sonic temperature (Ts', and are commonly used to measure sensible heat flux (H. Our study examines 30-min heat fluxes measured with a Campbell Scientific CSAT3 sonic anemometer above a subalpine forest. We compared H calculated with Ts to H calculated with a co-located thermocouple and found that, for horizontal wind speed (U less than 8 m s−1, the agreement was around ±30 W m−2. However, for U ≈ 8 m s−1, the CSAT H had a generally positive deviation from H calculated with the thermocouple, reaching a maximum difference of ≈250 W m−2 at U ≈ 18 m s−1. With version 4 of the CSAT firmware, we found significant underestimation of the speed of sound and thus Ts in high winds (due to a delayed detection of the sonic pulse, which resulted in the large CSAT heat flux errors. Although this Ts error is qualitatively similar to the well-known fundamental correction for the crosswind component, it is quantitatively different and directly related to the firmware estimation of the pulse arrival time. For a CSAT running version 3 of the firmware, there does not appear to be a significant underestimation of Ts; however, a Ts error similar to that of version 4 may occur if the CSAT is sufficiently out of calibration. An empirical correction to the CSAT heat flux that is consistent with our conceptual understanding of the Ts error is presented. Within a broader context, the surface energy balance is used to evaluate the heat flux measurements, and the usefulness of side-by-side instrument comparisons is discussed.

  12. Training of Specialists in Information and Measurement Instrumentation in the Competence Discourse

    Directory of Open Access Journals (Sweden)

    Kvesko Svetlana

    2016-01-01

    Full Text Available Refocusing the assessment of the results of educational process from “qualifications” to the concepts of “competence” and “competency” is important in the context for the theoretical and methodological analysis of training in the sphere of information and measurement instrumentation and technologies. The purpose of this paper is to study of the training of today’s experts in the field of Information and Measurement Technologies and Instrumentation in the competence discourse. Based on the application of the analysis and interdisciplinary approach methods, the authors concluded the integrative nature of competency-based approach in educational process. The research has revealed the key social competencies and their characteristics.

  13. Data enhancement and analysis through mathematical deconvolution of signals from scientific measuring instruments

    Science.gov (United States)

    Wood, G. M.; Rayborn, G. H.; Ioup, J. W.; Ioup, G. E.; Upchurch, B. T.; Howard, S. J.

    1981-01-01

    Mathematical deconvolution of digitized analog signals from scientific measuring instruments is shown to be a means of extracting important information which is otherwise hidden due to time-constant and other broadening or distortion effects caused by the experiment. Three different approaches to deconvolution and their subsequent application to recorded data from three analytical instruments are considered. To demonstrate the efficacy of deconvolution, the use of these approaches to solve the convolution integral for the gas chromatograph, magnetic mass spectrometer, and the time-of-flight mass spectrometer are described. Other possible applications of these types of numerical treatment of data to yield superior results from analog signals of the physical parameters normally measured in aerospace simulation facilities are suggested and briefly discussed.

  14. Development of an inner profile measurement instrument using a ring beam device

    Science.gov (United States)

    Yoshizawa, T.; Wakayama, T.

    2010-11-01

    Inner profile measurement is an important matter in such fields as medicine, dentistry and anthropology as well as mechanical engineering and other industrial applications. Here we describe recent development of our measurement principle for inner diameter of pipes and/or holes. The key device in this technique is a ring beam device which consists of a conical mirror and a laser diode. And the fundamental principle is based on optical sectioning without using any contact type stylus. The optically sectioned profile of an inner wall of a pipe-like object is analyzed to give the inner profile in addition to the inner diameter. This optical instrument with a simple and small configuration is now under development for practical uses. In our hitherto trial experimental works, the availability of this instrument has been evaluated in many cases and availability for practical applications is expected, especially, for measurement and inspection of mechanical components and elements besides pipes. This ring beam device consisting of a conical mirror and a LD is assembled to form a disk-like light sheet. We show measurement result of pipes and holes, and, at the same time, report a compact inner profile measuring instrument at this point. Both the ring beam device and a miniaturized CCD camera are fabricated into a glass tube. Availability of this instrument is shown by measuring the inner profiles of various pipes. In response to this trial, there appeared a strong request that not only the internal but external profiles should be measured simultaneously. Therefore we propose potentially possible method for measurement of external profile at the same time with internal profile. If one pair of concave mirrors are used in our arrangement, external profile is captured. In combination with inner profile measurement technique, simultaneous measurement of inner and outer profiles becomes attainable. A measurement result on a bevel gear shows availability of here proposed

  15. Airborne In-Situ Measurements of Formaldehyde over California: First Results from the COFFEE Instrument

    Science.gov (United States)

    Marrero, Josette; St. Clair, Jason; Yates, Emma; Swanson, Andrew; Gore, Warren; Iraci, Laura; Hanisco, Thomas

    2016-04-01

    Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere, playing a role multiple atmospheric processes. Measurements of HCHO can be used to help quantify convective transport, the abundance of VOCs, and ozone production in urban environments. The Compact Formaldehyde FluorescencE Experiment (COFFEE) instrument uses Non-Resonant Laser Induced Fluorescence (NR-LIF) to detect trace concentrations of HCHO as part of the Alpha Jet Atmospheric eXperiment (AJAX) payload. Developed at NASA GSFC, COFFEE is a small, low maintenance instrument with a sensitivity of 100 pptv and a quick response time (1 sec). The COFFEE instrument has been customized to fit in an external wing pod on the Alpha Jet aircraft based at NASA ARC. The instrument can operate over a broad range of altitudes, from boundary layer to lower stratosphere, making it well suited for the Alpha Jet, which can access altitudes from the surface up to 40,000 ft. We will present results from flights performed over the Central Valley of California, including boundary layer measurements and vertical profiles in the tropospheric column. This region is of particular interest, due to its elevated levels of HCHO, revealed in satellite images, as well as its high ozone concentrations. In addition to HCHO, the AJAX payload includes measurements of atmospheric ozone, methane, and carbon dioxide. These results will be presented in conjunction with formaldehyde. Targets in the Central Valley consist of an oil field, agricultural areas, and highways, each of which can emit HCHO primarily and generate HCHO through secondary production. Formaldehyde is one of the few urban pollutants that can be measured from space. Plans to compare in-situ COFFEE data with satellite-based HCHO observations such as those from OMI (Aura) and OMPS (SuomiNPP) will also be presented.

  16. Scanning instrumentation for measuring magnetic field trapping in high Tc superconductors

    Science.gov (United States)

    Sisk, R. C.; Helton, A. J.

    1993-01-01

    Computerized scanning instrumentation measures and displays trapped magnetic fields across the surface of high Tc superconductors at 77 K. Data are acquired in the form of a raster scan image utilizing stepping motor stages for positioning and a cryogenic Hall probe for magnetic field readout. Flat areas up to 45 mm in diameter are scanned with 0.5-mm resolution and displayed as false color images.

  17. Measuring Empowerment Among People With Psychotic Disorders: A Comparison of Three Instruments

    OpenAIRE

    Castelein, S; Gaag, van der, V.; Bruggeman, R; van Busschbach, J.T.; Wiersma, D

    2008-01-01

    Objective: This study compared three instruments that are used to measure empowerment of people with psychotic disorders. The study evaluated internal consistency, discriminant and convergent validity, sensitivity to symptom levels, and clinical usefulness. Methods: Fifty patients in the Netherlands were administered the Empowerment Scale (ES), the Personal Empowerment Scale ( PES), and the Mental Health Confidence Scale (MHCS). Results: The MHCS had good internal consistency, whereas the lev...

  18. The Development of a Tactical-Level Full Range Leadership Measurement Instrument

    Science.gov (United States)

    2010-03-01

    shown that the range of typical leadership behaviors may vary depending on the organizational level of the leader (Den Hartog et al., 1997...Den Hartog et al., 1997). Accordingly, this effort was designed to develop a full range leadership model measurement instrument that targets low- to...302 (1997). Den Hartog , Deanne N., Jaap J. Van Muijen, and Paul L. Koopman. “Transactional versus transformational leadership: An analysis of the

  19. Instruments and Methods for Measuring the Flow of Water Around Ships and Ship Models

    Science.gov (United States)

    1948-03-01

    Showing Arrangement of Orifices Figure 2 - Cylindrical Pitot Tube tubes convenient for observation, or, in the mercury manometer , to bring the water...investigate the wake of models at high* er speeds, it became necessary to have an instrument with a greater range of measurement. A 13-tube mercury ... manometer was designed for this purpose. This iU Figure 9 - Spherical Pltot Tube and Manometer Mounted on Model Th« position of the sphere relative

  20. DEVELOPMENT OF ON-LINE INSTRUMENTATION AND TECHNIQUES TO DETECT AND MEASURE PARTICULATES

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Wu; Steve Palm; Yongchun Tang; William A. Goddard III

    2004-10-31

    In this quarter, we have finished construction of the first field deployable multi-wavelength PM measurement system. This system is retrofit from the system that we designed and tested in the lab, and by adding light blocking covers and rugged electronic boxes, we are now testing the instrument in our industrial collaborator's site with a turbine power generator. We are collecting data on PM emissions from the engine under different load conditions and fuel/air mixing ratios.

  1. In-pile critical heat flux and post-dryout heat transfer measurements – A historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Groeneveld, D.C., E-mail: degroeneveld@gmail.com

    2017-06-15

    In the 1960s’ and 1970s’ Canada was a world leader in performing in-reactor heat transfer experiments on fuel bundles instrumented with miniature sheath thermocouples. Several Critical Heat Flux (CHF) and Post-CHF experiments were performed in Chalk River’s NRU and NRX reactors on water-cooled 3-, 18-, 19-, 21-, and 36-element fuel bundles. Most experiments were obtained at steady-state conditions, where the power was raised gradually from single-phase conditions up to the CHF and beyond. Occasionally, post-dryout temperatures up to 600 °C were maintained for several hours. In some tests, the fuel behaviour during loss-of-flow and blowdown transients was investigated – during these transients sheath temperatures could exceed 2000 °C. Because of the increasingly more stringent licensing requirements for in-pile heat transfer tests on instrumented fuel bundles, no in-pile CHF and post-dryout tests on fuel bundles have been performed anywhere in the world for the past 40 years. This paper provides details of these unique in-pile experiments and describes some of their heat transfer results.

  2. International Classification of Functioning, Disability, and Health in women with breast cancer: a proposal for measurement instruments.

    Science.gov (United States)

    Carvalho, Flávia Nascimento de; Koifman, Rosalina Jorge; Bergmann, Anke

    2013-06-01

    The International Classification of Functioning, Disability, and Health (ICF) aims at standardization, but its applicability requires consistent instruments. In Brazil, invasive therapeutic approaches are frequent, leading to functional alterations. The current study thus aimed to identify and discuss instruments capable of measuring ICF core set codes for breast cancer. The review included ICF studies in women with breast cancer diagnosis and studies with the objective of translating and validating instruments for the Brazilian population, and consistent with the codes. Review studies, systematic or not, were excluded. Eight instruments were selected, and the WHOQOL-Bref was the most comprehensive. The use of various instruments showed 19 coinciding codes, and the instruments as a whole covered 58 of the total of 81 codes. The use of multiple instruments is time-consuming, so new studies are needed to propose parsimonious tools capable of measuring functioning in women treated for breast cancer.

  3. Instrumented measurement of balance and postural control in individuals with lower limb amputation: a critical review.

    Science.gov (United States)

    Jayakaran, Prasath; Johnson, Gillian M; Sullivan, S John; Nitz, Jennifer C

    2012-09-01

    Measurement of balance and postural performance that underpins activities of daily living is important in the rehabilitation of individuals with a lower limb amputation (LLA), and there are a number of methods and strategies available for this purpose. To provide an evidence-based choice of approach, this review aims to critically review the tasks and outcome measures utilized in studies investigating static and dynamic balance using instrumented measurement devices in individuals with a LLA. A systematic search was conducted on multiple databases using keyword or subject headings appropriate to the respective database. Articles investigating static or dynamic balance in adults with LLA by means of instrumented measures were considered for the review. A total of 21 articles were included in the review. The static balance ability of individuals with an LLA has been investigated thoroughly, but their dynamic balance attributes remain relatively unexplored. Although the individual studies do provide valuable information on balance ability in the LLA, the heterogeneity in study designs and measures did not allow an overall analysis of the tasks and the outcome measures used. On the basis of these findings, this review provides an insight into the measurement of balance in amputees to inform novice researchers and clinicians working with individuals with an LLA.

  4. Self Validation of Radiance Measurements from the CERES (TRMM)Instrument

    Science.gov (United States)

    Paden, Jack; Pandey, Dhirendra K.; Lee, Robert B., III; Priestley, Kory J.

    1999-01-01

    Eight continuous months of earth-nadir-viewing radiance measurements from the 3-channel Tropical Rainfall Measuring Mission (TRMM,) Clouds and the Earth's Radiant Energy System (CERES) scanning radiometric measurement instrument, have been analyzed. While previous remote sensing satellites, such as the Earth Radiation Budget Experiment (ERBE) covered all subsets of the broadband radiance spectrum (total, longwave and shortwave.) CERES has two subset channels (window and shortwave) which do not give continuous frequency coverage over the total band. Previous experience with ERBE indicated the need for us to model the equivalent daytime longwave radiance using a window channel regression, which will allow us to validate the performance of the instrument using a three-channel inter-comparison. Limiting our consideration to the fixed azimuth plane, cross-track, scanning mode (FAPS), each nadir-viewing measurement was averaged into three subjective categories called daytime, nighttime, and twilight. Daytime was defined as any measurement taken when the solar zenith angle (SZA) was less than 90 ; nighttime was taken to be any measurement where the SZA was greater than 117 ; and twilight was everything else. Our analysis indicates that there are only two distinct categories of nadir-view data; daytime, and non-daytime (i.e., the union of the nighttime and twilight sets); and that the CERES longwave radiance is predictable to an accuracy of 1%, based on the SZA, and window channel measurements.

  5. Differential thermoluminescence (DTL) -a new instrument for measurement of thermoluminescence with suppression of blackbody radiation.

    Science.gov (United States)

    Manche, E P

    1978-06-01

    A new instrumental technique for the determination of thermoluminescent glow curves, especially useful for investigation at high temperatures, is described. Two samples, identical in all respects except that one is preheated, are simultaneously heated. The light outputs from the samples are individually modulated at two different frequencies, fed to a single photomultiplier tube the output of which is amplified by two lock-in amplifiers. The selectively amplified signals are further fed to a differential amplifier which cancels out the undesirable blackbody radiation to give a signal due only to the luminophor. This technique conveniently extends the temperature range of thermoluminescence and further allows high-temperature investigation of emissions in the red region of the spectrum.

  6. Optoelectronic instrumentation enhancement using data mining feedback for a 3D measurement system

    Science.gov (United States)

    Flores-Fuentes, Wendy; Sergiyenko, Oleg; Gonzalez-Navarro, Félix F.; Rivas-López, Moisés; Hernandez-Balbuena, Daniel; Rodríguez-Quiñonez, Julio C.; Tyrsa, Vera; Lindner, Lars

    2016-12-01

    3D measurement by a cyber-physical system based on optoelectronic scanning instrumentation has been enhanced by outliers and regression data mining feedback. The prototype has applications in (1) industrial manufacturing systems that include: robotic machinery, embedded vision, and motion control, (2) health care systems for measurement scanning, and (3) infrastructure by providing structural health monitoring. This paper presents new research performed in data processing of a 3D measurement vision sensing database. Outliers from multivariate data have been detected and removal to improve artificial intelligence regression algorithm results. Physical measurement error regression data has been used for 3D measurements error correction. Concluding, that the joint of physical phenomena, measurement and computation is an effectiveness action for feedback loops in the control of industrial, medical and civil tasks.

  7. Variability in measuring (instrumental) activities of daily living functioning and functional decline in hospitalized older medical patients: a systematic review.

    OpenAIRE

    Buurman, B. M.; van Munster, B.C.; Korevaar, J. C.; de Haan, R. J.; de Rooij, S. E.

    2011-01-01

    OBJECTIVE: To study instruments used and definitions applied in order to measure (instrumental) activities of daily living (I [ADL]) functioning and functional decline in hospitalized older medical patients. STUDY DESIGN: We systematically searched Medline, Embase, and the Cochrane Database of Systematic Reviews from 1990 to January 2010. Articles were included if they (1) focused on acute hospitalization for medical illness in older patients; (2) described the instrument used to measure func...

  8. The Second Cabauw Intercomparison Campaign for Nitrogen Dioxide Measuring Instruments — CINDI-2 — Overview

    Science.gov (United States)

    Apituley, Arnoud; van Roozendael, Michel; Hendrick, Francois; Kreher, Karin; Richter, Andreas; Wagner, Thomas; Friess, Udo; Participants, Cindi-2

    2017-04-01

    For the validation of space borne observations of NO2 and other trace gases from hyperspectral imagers, ground based instruments based on the MAXDOAS technique are an excellent choice, since they rely on similar retrieval techniques as the observations from orbit. In both cases, retrievals take into account the light path of scattered sunlight though the entire atmosphere. Since MAXDOAS instruments are relatively low cost and can be operated autonomously almost anywhere, they are credible candidates to form a world-wide ground based reference network for satellite observations. To ensure proper traceability of the MAXDOAS observations, a thorough intercomparison is mandatory. The Cabauw Experimental Site for Atmospheric Research (CESAR) site in centre of The Netherlands was the stage of the Cabauw Intercomparison of Nitrogen Dioxide Measuring Instruments (CINDI) in June-July 2009 and again for the second campaign, CINDI-2, in 2016. Cabauw was chosen because the flat terrain offered a free view of large parts of the horizon, needed to accommodate the viewing geometry of the MAXDOAS observations. The location is under influence of both clean as well as polluted airmasses. This gives a wide range of possible trace gas concentrations and mixtures. Furthermore, at CESAR a wide range of observations are routinely carried out that fulfil the requirement to provide the background necessary for unraveling the differences between the observations from different MAXDOAS instruments that can be quite diverse in design and data treatment. These observations include parameters needed to understand the light paths, i.e. in-situ aerosol observations of optical and microphysical properties, as well as vertical profiles of aerosol optical properties by (Raman) lidar. In addition, vertical profiles of NO2 could be measured during CINDI-2 using the unique NO2 sonde, and a NO2 lidar system. With the imminent launch of Sentinel-5 Precursor/TROPOMI, with a nadir pixelsize of 3.5 × 3

  9. Convective Heat Transfer at the Martian Boundary Layer, Measurement and Model

    Science.gov (United States)

    Tomás Soria-Salinas, Álvaro; Zorzano-Mier, María Paz; Martín-Torres, Javier

    2016-04-01

    We present a measuring concept to measure the convective heat transfer coefficient h near a spacecraft operating on the surface of Mars. This coefficient can be used to derive the speed of the wind and direction, and to detect its modulations. This measuring concept will be used in the instrument HABIT (HabitAbility: Brines, Irradiance and Temperature) for the Surface Platform of ExoMars 2018 (ESA-Roscosmos). The method is based on the use of 3 Resistance Temperature Thermodetectors (RTD) that measure the temperature at 3 locations along the axial direction of a rod of length L: at the base of the rod, Tb, an intermediate point x = L/n, TLn, and the tip,Ta. This sensing fin is called the Air Temperature Sensor (ATS). HABIT shall incorporate three ATS, oriented in perpendicular directions and thus exposed to wind in a different way. Solving these equations for each ATS, provides three fluid temperatures Tf as well as three m parameters that are used to derive three heat transfer coefficients h. This magnitude is dependent on the local forced convection and therefore is sensitive to the direction, speed and modulations of the wind. The m-parameter has already proven to be useful to investigate the convective activity at the planetary boundary layer on Mars and to determine the height of the planetary boundary layer. This method shall be presented here by: 1) Introducing the mathematical concepts for the retrieval of the m-parameter; 2) performing ANSYS simulations of the fluid dynamics and the thermal environment around the ATS-rods under wind conditions in Mars; and 3) comparing the method by using data measurements from the Rover Environmental Monitoring Station (REMS) at the Curiosity rover of NASA's Mars Science Laboratory project currently operating on Mars. The results shall be compared with the wind sensor measurements of three years of REMS operation on Mars.

  10. Value-Personality Link Measured With Novel Instruments Developed With an Emic Perspective

    Directory of Open Access Journals (Sweden)

    Suna Tevrüz

    2017-05-01

    Full Text Available The first aim of this study is to investigate whether instruments developed with an emic approach in Turkey produce the same trait-value links obtained with studies using near universal instruments, and if emic traits and value concepts are composed under agency and communal conceptions. So, the first aim of this study is to inspect the conceptual similarities in the links between traits and values. The second aim is to examine the moderating effect of disposable income on the strength of the trait-value relationship. Undergraduate and graduate students (N = 595 from six universities in Istanbul responded to the Personality Profile Scale (PPS and the Life Goal Values (LGV questionnaire. Second order factor analysis indicated that indigenous value and trait items were representative of communal and agency conceptions. Furthermore, most of the value-trait links revealed with regression analysis, and the sinusoid relationships revealed with Pearson correlation coefficients were consistent with the findings measured with near universal instruments. Additionally found relationships between traits and especially conservation values can be interpreted as the instrumentality of agentic traits for personal as well for social focused values. Disposable income had a moderating effect on five trait-value relationships and three out of five were weaker in the low-income group.

  11. Development of an instrument to measure professional attitudes in nursing students in Turkey.

    Science.gov (United States)

    Hisar, Filiz; Karadağ, Ayise; Kan, Adnan

    2010-11-01

    The aim of the current study was to develop an instrument to determine the professional attitude of nursing students. The data were collected through a scale developed by the authors with the statements on attitude, including 8 sub-groups and 28 items. This was a Likert-type scale, ranging from 5 to 1. The sampling of the investigation comprised 1339 final-year undergraduate nursing students in Turkey. Eight factors were defined depending on the reliability and validity study of the professionalism instrument for nursing students. These factors accounted for 65.5% of the total variance. The correlation of the sub-factors in the scale ranged from 0.71 to 0.84. Cronbach alpha value was 0.90 and Cronbach alpha coefficient for sub-factors was between 0.71 and 0.84. Item test correlations calculated for the validity and the homogeneity of the instrument's items were between 0.30 and 0.63. In conclusion, it was found that the instrument was a valid and reliable assessment tool that can be used to measure professional attitudes of nursing students. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Construction and Validation of a Measurement Instrument for Attitudes towards Teamwork

    Science.gov (United States)

    Mendo-Lázaro, Santiago; Polo-del-Río, María I.; Iglesias-Gallego, Damián; Felipe-Castaño, Elena; León-del-Barco, Benito

    2017-01-01

    Cooperative, collaborative learning and other forms of group learning methods are increasingly used in classrooms. Knowing students’ attitudes toward teamwork has great value since they influence the students’ learning results as well as their social development. So it is necessary to have robust instruments to provide a better understanding of these attitudes and preferences concerning teamwork. Such instruments also help to identify the factors that promote positive or negative attitudes within the context of group activities. Using a sample of 750 first and second year university students studying a degree in Kindergarten, Primary and Social Education, an instrument measuring attitudes toward team learning has been developed. Two distinct factors were obtained through various factorial analyses and structural equations: Academic attitudes and Social and emotional attitudes. Our study reveals that the instrument is both valid and reliable. Its application is both simple and fast and it has important implications for planning teaching and learning activities that contribute to an improvement in attitudes as well as the practice of teaching in the context of learning through teamwork. PMID:28676775

  13. Instrumental Develovement of 50 Meters Free Style Swimming Speed Measurement Based on Microcontroller Arduino Uno

    Science.gov (United States)

    Badruzaman; Rusdiana, A.; Gilang, M. R.; Martini, T.

    2017-03-01

    This study is purposed to make a software and hardware instrument in controlling the velocity of 50 meters free style swimming speed measurement based on microcontroller Arduino Uno. The writer uses 6 participants of advanced 2015 college students of sport education. The materials he uses are electronical series of microcontroller Arduino Uno base, laser sensors shone on light dependent resistor, laser receiver functions as a detector of laser cutting block, cables as connector transfering the data. This device consist of 4 installable censors in every 10 meters with the result of swimming speed showed on the monitors using visual basic 6.0 software. This instrument automatically works when the buzzer is pushed and also runs the timer on the application. For the procedure, the writer asks the participants to swim in free style along 50 meters. When the athlete swims, they will cut the laser of every censors so that it gives a signal to stop the running timer on the monitoring application. The output result the writer gets from this used instrument is to know how fast a swimmer swim in maximum speed, to know the time and distance of acceleration and decelaration that happens. The result of validity instrument shows 0,605 (high), while the reliability is 0,833 (very high).

  14. A framework and a measurement instrument for sustainability of work practices in long-term care.

    Science.gov (United States)

    Slaghuis, Sarah S; Strating, Mathilde M H; Bal, Roland A; Nieboer, Anna P

    2011-11-16

    In health care, many organizations are working on quality improvement and/or innovation of their care practices. Although the effectiveness of improvement processes has been studied extensively, little attention has been given to sustainability of the changed work practices after implementation. The objective of this study is to develop a theoretical framework and measurement instrument for sustainability. To this end sustainability is conceptualized with two dimensions: routinization and institutionalization. The exploratory methodological design consisted of three phases: a) framework development; b) instrument development; and c) field testing in former improvement teams in a quality improvement program for health care (N teams = 63, N individual = 112). Data were collected not until at least one year had passed after implementation.Underlying constructs and their interrelations were explored using Structural Equation Modeling and Principal Component Analyses. Internal consistency was computed with Cronbach's alpha coefficient. A long and a short version of the instrument are proposed. The χ2- difference test of the -2 Log Likelihood estimates demonstrated that the hierarchical two factor model with routinization and institutionalization as separate constructs showed a better fit than the one factor model (p work practices. Even though the two dimensions routinization and institutionalization are related, they are clearly distinguishable and each has distinct value in the discussion of sustainability. Finally, the subscales conformed to psychometric properties defined in literature. The instrument can be used in the evaluation of improvement projects.

  15. An evaluation of a novel instrument for measuring macular pigment optical density: the MPS 9000.

    Science.gov (United States)

    Loughman, James; Scanlon, Grainne; Nolan, John M; O'Dwyer, Veronica; Beatty, Stephen

    2012-03-01

    Of the antioxidants found in the human retina, only the macular carotenoid quantities can be estimated noninvasively (albeit in a collective fashion), thus facilitating study of their role in that tissue. The aim of this study was to evaluate concordance between macular pigment optical density (MPOD) values recorded on a commercially available instrument, the MPS 9000, with those of an already validated heterochromatic flicker photometry instrument. Also, we assessed and compared test-retest variability for each instrument. Macular pigment optical density at 0.5 retinal eccentricity was measured using two different heterochromatic flicker photometers, the MPS 9000 and the Macular Densitometer(TM), in 39 healthy subjects. Test-retest variability was evaluated separately for each instrument by taking three readings over a 1-week period in 25 subjects. There was a moderate positive correlation for MPOD at 0.5° of retinal eccentricity between the MPS 9000 and the Macular Densitometer described by the linear equation y = 0.763x + 0.172 (r = 0.68, p MPS 9000 (t = -4.103, p MPS 9000 and from 0.11 to 0.12 [mean (±SD): 0.12 (0.01)] for the Macular Densitometer. The results demonstrate that the MPS 9000 consistently yields MPOD readings, which are lower than that found with the Macular Densitometer, and exhibits substantial test-retest variability. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.

  16. Construction and Validation of a Measurement Instrument for Attitudes towards Teamwork

    Directory of Open Access Journals (Sweden)

    Santiago Mendo-Lázaro

    2017-06-01

    Full Text Available Cooperative, collaborative learning and other forms of group learning methods are increasingly used in classrooms. Knowing students’ attitudes toward teamwork has great value since they influence the students’ learning results as well as their social development. So it is necessary to have robust instruments to provide a better understanding of these attitudes and preferences concerning teamwork. Such instruments also help to identify the factors that promote positive or negative attitudes within the context of group activities. Using a sample of 750 first and second year university students studying a degree in Kindergarten, Primary and Social Education, an instrument measuring attitudes toward team learning has been developed. Two distinct factors were obtained through various factorial analyses and structural equations: Academic attitudes and Social and emotional attitudes. Our study reveals that the instrument is both valid and reliable. Its application is both simple and fast and it has important implications for planning teaching and learning activities that contribute to an improvement in attitudes as well as the practice of teaching in the context of learning through teamwork.

  17. Measurement and quantification of fluorescent changes in ocular tissue using a novel confocal instrument

    Science.gov (United States)

    Buttenschoen, Kim K.; Girkin, John M.; Daly, Daniel J.

    2014-05-01

    Our sight is a major contributor to our quality of life. The treatment of diseases like macular degeneration and glaucoma, however, presents a challenge as the delivery of medication to ocular tissue is not well understood. The instrument described here will help quantify targeted delivery by non-invasively and simultaneously measuring light reflected from and fluorescence excited in the eye, used as position marker and to track compounds respectively. The measurement concept has been proven by monitoring the diffusion of fluorescein and a pharmaceutical compound for treating open angle glaucoma in vitro in a cuvette and in ex vivo porcine eyes. To obtain a baseline of natural fluorescence we measured the change in corneal and crystalline lens autofluorescence in volunteers over a week. We furthermore present data on 3D ocular autofluorescence. Our results demonstrate the capability to measure the location and concentration of the compound of interest with high axial and temporal resolution of 178 μm and 0.6 s respectively. The current detection limit is 2 nM for fluorescein, and compounds with a quantum yield as low as 0.01 were measured to concentrations below 1 μM. The instrument has many applications in assessing the diffusion of fluorescent compounds through the eye and skin in vitro and in vivo, measuring autofluorescence of ocular tissues and reducing the number of animals needed for research. The instrument has the capability of being used both in the clinical and home care environment opening up the possibility of measuring controlled drug release in a patient friendly manner.

  18. Construct distinctiveness and variance composition of multi-dimensional instruments: Three short-form masculinity measures.

    Science.gov (United States)

    Levant, Ronald F; Hall, Rosalie J; Weigold, Ingrid K; McCurdy, Eric R

    2015-07-01

    Focusing on a set of 3 multidimensional measures of conceptually related but different aspects of masculinity, we use factor analytic techniques to address 2 issues: (a) whether psychological constructs that are theoretically distinct but require fairly subtle discriminations by survey respondents can be accurately captured by self-report measures, and (b) how to better understand sources of variance in subscale and total scores developed from such measures. The specific measures investigated were the: (a) Male Role Norms Inventory-Short Form (MRNI-SF); (b) Conformity to Masculine Norms Inventory-46 (CMNI-46); and (c) Gender Role Conflict Scale-Short Form (GRCS-SF). Data (N = 444) were from community-dwelling and college men who responded to an online survey. EFA results demonstrated the discriminant validity of the 20 subscales comprising the 3 instruments, thus indicating that relatively subtle distinctions between norms, conformity, and conflict can be captured with self-report measures. CFA was used to compare 2 different methods of modeling a broad/general factor for each of the 3 instruments. For the CMNI-46 and MRNI-SF, a bifactor model fit the data significantly better than did a hierarchical factor model. In contrast, the hierarchical model fit better for the GRCS-SF. The discussion addresses implications of these specific findings for use of the measures in research studies, as well as broader implications for measurement development and assessment in other research domains of counseling psychology which also rely on multidimensional self-report instruments. (c) 2015 APA, all rights reserved).

  19. Under-ice eddy covariance flux measurements of heat, salt, momentum, and dissolved oxygen in an artificial sea ice pool

    DEFF Research Database (Denmark)

    Else, B. G T; Rysgaard, S.; Attard, K.

    2015-01-01

    Turbulent exchanges under sea ice play a controlling role in ice mass balance, ice drift, biogeochemistry, and mixed layer modification. In this study, we examined the potential to measure under-ice turbulent exchanges of heat, salt, momentum, and dissolved oxygen using eddy covariance...... as ice grew from 5 to 25 cm thick. Heat, momentum, and dissolved oxygen fluxes were all successfully derived. Quantification of salt fluxes was unsuccessful due to noise in the conductivity sensor, a problem which appears to be resolved in a subsequent version of the instrument. Heat fluxes during...... initial ice growth were directed upward at 10 to 25 W m−2. Dissolved oxygen fluxes were directed downward at rates of 5 to 50mmolm−2 d−1 throughout the experiment, at times exceeding the expected amount of oxygen rejected with the brine during ice growth. Bubble formation and dissolution was identified...

  20. Combined lock-in thermography and heat flow measurements for analysing heat dissipation during fatigue crack propagation

    Directory of Open Access Journals (Sweden)

    J. Bär

    2015-10-01

    Full Text Available During fatigue crack propagation experiments with constant force as well as constant stress intensity lock in thermography and heat flow measurements with a new developed peltier sensor have been performed. With lock in thermography space resolved measurements are possible and the evaluation allows to distinguish between elastic and dissipated energies. The specimens have to be coated with black paint to enhance the emissivity. The thickness of the coating influences the results and therefore quantitative measurements are problematic. The heat flow measurements are easy to perform and provide quantitative results but only integral in an area given by the used peltier element. To get comparable results the values measured with thermography were summarized in an area equivalent to that of the peltier element. The experiments with constant force show a good agreement between the thermography and the heat flow measurements. In case of the experiments with a constant stress intensity some differences become visible. Whereas the thermography measurements show a linear decrease of the signal with rising crack length, the heat flow measurements show a clearly nonlinear dependency. Obviously the measured energies in thermography and peltier based heat flow measurement are not comparable