WorldWideScience

Sample records for instrumentation run time

  1. Instrumental Variables in the Long Run

    DEFF Research Database (Denmark)

    Casey, Gregory; Klemp, Marc Patrick Brag

    2017-01-01

    In the study of long-run economic growth, it is common to use historical or geographical variables as instruments for contemporary endogenous regressors. We study the interpretation of these conventional instrumental variable (IV) regressions in a general, yet simple, framework. Our aim...... quantitative implications for the field of long-run economic growth. We also use our framework to examine related empirical techniques. We find that two prominent regression methodologies - using gravity-based instruments for trade and including ancestry-adjusted variables in linear regression models - have...... is to estimate the long-run causal effect of changes in the endogenous explanatory variable. We find that conventional IV regressions generally cannot recover this parameter of interest. To estimate this parameter, therefore, we develop an augmented IV estimator that combines the conventional regression...

  2. Instrument Front-Ends at Fermilab During Run II

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas; Slimmer, David; Voy, Duane; /Fermilab

    2011-07-13

    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor.

  3. Instrument front-ends at Fermilab during Run II

    International Nuclear Information System (INIS)

    Meyer, T; Slimmer, D; Voy, D

    2011-01-01

    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor.

  4. Instrument Front-Ends at Fermilab During Run II

    International Nuclear Information System (INIS)

    Meyer, Thomas; Slimmer, David; Voy, Duane

    2011-01-01

    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor.

  5. Instrument front-ends at Fermilab during Run II

    Science.gov (United States)

    Meyer, T.; Slimmer, D.; Voy, D.

    2011-11-01

    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor. Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

  6. EnergyPlus Run Time Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Buhl, Fred; Haves, Philip

    2008-09-20

    EnergyPlus is a new generation building performance simulation program offering many new modeling capabilities and more accurate performance calculations integrating building components in sub-hourly time steps. However, EnergyPlus runs much slower than the current generation simulation programs. This has become a major barrier to its widespread adoption by the industry. This paper analyzed EnergyPlus run time from comprehensive perspectives to identify key issues and challenges of speeding up EnergyPlus: studying the historical trends of EnergyPlus run time based on the advancement of computers and code improvements to EnergyPlus, comparing EnergyPlus with DOE-2 to understand and quantify the run time differences, identifying key simulation settings and model features that have significant impacts on run time, and performing code profiling to identify which EnergyPlus subroutines consume the most amount of run time. This paper provides recommendations to improve EnergyPlus run time from the modeler?s perspective and adequate computing platforms. Suggestions of software code and architecture changes to improve EnergyPlus run time based on the code profiling results are also discussed.

  7. Implementing Run-Time Evaluation of Distributed Timing Constraints in a Real-Time Environment

    DEFF Research Database (Denmark)

    Kristensen, C. H.; Drejer, N.

    1994-01-01

    In this paper we describe a solution to the problem of implementing run-time evaluation of timing constraints in distributed real-time environments......In this paper we describe a solution to the problem of implementing run-time evaluation of timing constraints in distributed real-time environments...

  8. Combining Compile-Time and Run-Time Parallelization

    Directory of Open Access Journals (Sweden)

    Sungdo Moon

    1999-01-01

    Full Text Available This paper demonstrates that significant improvements to automatic parallelization technology require that existing systems be extended in two ways: (1 they must combine high‐quality compile‐time analysis with low‐cost run‐time testing; and (2 they must take control flow into account during analysis. We support this claim with the results of an experiment that measures the safety of parallelization at run time for loops left unparallelized by the Stanford SUIF compiler’s automatic parallelization system. We present results of measurements on programs from two benchmark suites – SPECFP95 and NAS sample benchmarks – which identify inherently parallel loops in these programs that are missed by the compiler. We characterize remaining parallelization opportunities, and find that most of the loops require run‐time testing, analysis of control flow, or some combination of the two. We present a new compile‐time analysis technique that can be used to parallelize most of these remaining loops. This technique is designed to not only improve the results of compile‐time parallelization, but also to produce low‐cost, directed run‐time tests that allow the system to defer binding of parallelization until run‐time when safety cannot be proven statically. We call this approach predicated array data‐flow analysis. We augment array data‐flow analysis, which the compiler uses to identify independent and privatizable arrays, by associating predicates with array data‐flow values. Predicated array data‐flow analysis allows the compiler to derive “optimistic” data‐flow values guarded by predicates; these predicates can be used to derive a run‐time test guaranteeing the safety of parallelization.

  9. Discrete-time modelling of musical instruments

    International Nuclear Information System (INIS)

    Vaelimaeki, Vesa; Pakarinen, Jyri; Erkut, Cumhur; Karjalainen, Matti

    2006-01-01

    This article describes physical modelling techniques that can be used for simulating musical instruments. The methods are closely related to digital signal processing. They discretize the system with respect to time, because the aim is to run the simulation using a computer. The physics-based modelling methods can be classified as mass-spring, modal, wave digital, finite difference, digital waveguide and source-filter models. We present the basic theory and a discussion on possible extensions for each modelling technique. For some methods, a simple model example is chosen from the existing literature demonstrating a typical use of the method. For instance, in the case of the digital waveguide modelling technique a vibrating string model is discussed, and in the case of the wave digital filter technique we present a classical piano hammer model. We tackle some nonlinear and time-varying models and include new results on the digital waveguide modelling of a nonlinear string. Current trends and future directions in physical modelling of musical instruments are discussed

  10. 16 CFR 803.10 - Running of time.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Running of time. 803.10 Section 803.10 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 TRANSMITTAL RULES § 803.10 Running of time. (a...

  11. Aspects for Run-time Component Integration

    DEFF Research Database (Denmark)

    Truyen, Eddy; Jørgensen, Bo Nørregaard; Joosen, Wouter

    2000-01-01

    Component framework technology has become the cornerstone of building a family of systems and applications. A component framework defines a generic architecture into which specialized components can be plugged. As such, the component framework leverages the glue that connects the different inserted...... to dynamically integrate into the architecture of middleware systems new services that support non-functional aspects such as security, transactions, real-time....

  12. Time Optimal Run-time Evaluation of Distributed Timing Constraints in Process Control Software

    DEFF Research Database (Denmark)

    Drejer, N.; Kristensen, C.H.

    1993-01-01

    This paper considers run-time evaluation of an important class of constraints; Timing constraints. These appear extensively in process control systems. Timing constraints are considered in distributed systems, i.e. systems consisting of multiple autonomous nodes......

  13. Optimal Infinite Runs in One-Clock Priced Timed Automata

    DEFF Research Database (Denmark)

    David, Alexandre; Ejsing-Duun, Daniel; Fontani, Lisa

    We address the problem of finding an infinite run with the optimal cost-time ratio in a one-clock priced timed automaton and pro- vide an algorithmic solution. Through refinements of the quotient graph obtained by strong time-abstracting bisimulation partitioning, we con- struct a graph with time...

  14. Accuracy versus run time in an adiabatic quantum search

    International Nuclear Information System (INIS)

    Rezakhani, A. T.; Pimachev, A. K.; Lidar, D. A.

    2010-01-01

    Adiabatic quantum algorithms are characterized by their run time and accuracy. The relation between the two is essential for quantifying adiabatic algorithmic performance yet is often poorly understood. We study the dynamics of a continuous time, adiabatic quantum search algorithm and find rigorous results relating the accuracy and the run time. Proceeding with estimates, we show that under fairly general circumstances the adiabatic algorithmic error exhibits a behavior with two discernible regimes: The error decreases exponentially for short times and then decreases polynomially for longer times. We show that the well-known quadratic speedup over classical search is associated only with the exponential error regime. We illustrate the results through examples of evolution paths derived by minimization of the adiabatic error. We also discuss specific strategies for controlling the adiabatic error and run time.

  15. Combining monitoring with run-time assertion checking

    NARCIS (Netherlands)

    Gouw, Stijn de

    2013-01-01

    We develop a new technique for Run-time Checking for two object-oriented languages: Java and the Abstract Behavioral Specification language ABS. In object-oriented languages, objects communicate by sending each other messages. Assuming encapsulation, the behavior of objects is completely

  16. LHCb's Time-Real Alignment in RunII

    CERN Multimedia

    Batozskaya, Varvara

    2015-01-01

    LHCb has introduced a novel real-time detector alignment and calibration strategy for LHC Run 2. Data collected at the start of the fill will be processed in a few minutes and used to update the alignment, while the calibration constants will be evaluated for each run. This procedure will improve the quality of the online alignment. Critically, this new real-time alignment and calibration procedure allows identical constants to be used in the online and offline reconstruction, thus improving the correlation between triggered and offline selected events. This offers the opportunity to optimise the event selection in the trigger by applying stronger constraints. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from both the operational and physics performance points of view. Specific challenges of this novel configur...

  17. Thermally-aware composite run-time CPU power models

    OpenAIRE

    Walker, Matthew J.; Diestelhorst, Stephan; Hansson, Andreas; Balsamo, Domenico; Merrett, Geoff V.; Al-Hashimi, Bashir M.

    2016-01-01

    Accurate and stable CPU power modelling is fundamental in modern system-on-chips (SoCs) for two main reasons: 1) they enable significant online energy savings by providing a run-time manager with reliable power consumption data for controlling CPU energy-saving techniques; 2) they can be used as accurate and trusted reference models for system design and exploration. We begin by showing the limitations in typical performance monitoring counter (PMC) based power modelling approaches and illust...

  18. LHCb's Real-Time Alignment in Run2

    CERN Multimedia

    Batozskaya, Varvara

    2015-01-01

    Stable, precise spatial alignment and PID calibration are necessary to achieve optimal detector performances. During Run2, LHCb will have a new real-time detector alignment and calibration to reach equivalent performances in the online and offline reconstruction. This offers the opportunity to optimise the event selection by applying stronger constraints as well as hadronic particle identification at the trigger level. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger.

  19. Safety evaluation of the ITP filter/stripper test runs and quiet time runs using simulant solution. Revision 3

    International Nuclear Information System (INIS)

    Gupta, M.K.

    1994-06-01

    The purpose is to provide the technical bases for the evaluation of Unreviewed Safety Question for the In-Tank Precipitation (ITP) Filter/Stripper Test Runs (Ref. 7) and Quiet Time Runs Program (described in Section 3.6). The Filter/Stripper Test Runs and Quiet Time Runs program involves a 12,000 gallon feed tank containing an agitator, a 4,000 gallon flush tank, a variable speed pump, associated piping and controls, and equipment within both the Filter and the Stripper Building

  20. Preventing Run-Time Bugs at Compile-Time Using Advanced C++

    Energy Technology Data Exchange (ETDEWEB)

    Neswold, Richard [Fermilab

    2018-01-01

    When writing software, we develop algorithms that tell the computer what to do at run-time. Our solutions are easier to understand and debug when they are properly modeled using class hierarchies, enumerations, and a well-factored API. Unfortunately, even with these design tools, we end up having to debug our programs at run-time. Worse still, debugging an embedded system changes its dynamics, making it tough to find and fix concurrency issues. This paper describes techniques using C++ to detect run-time bugs *at compile time*. A concurrency library, developed at Fermilab, is used for examples in illustrating these techniques.

  1. SASD and the CERN/SPS run-time coordinator

    International Nuclear Information System (INIS)

    Morpurgo, G.

    1990-01-01

    Structured Analysis and Structured Design (SASD) provides us with a handy way of specifying the flow of data between the different modules (functional units) of a system. But the formalism loses its immediacy when the control flow has to be taken into account as well. Moreover, due to the lack of appropriate software infrastructure, very often the actual implementation of the system does not reflect the module decoupling and independence so much emphasized at the design stage. In this paper the run-time coordinator, a complete software infrastructure to support a real decoupling of the functional units, is described. Special attention is given to the complementarity of our approach and the SASD methodology. (orig.)

  2. Success Run Waiting Times and Fuss-Catalan Numbers

    Directory of Open Access Journals (Sweden)

    S. J. Dilworth

    2015-01-01

    Full Text Available We present power series expressions for all the roots of the auxiliary equation of the recurrence relation for the distribution of the waiting time for the first run of k consecutive successes in a sequence of independent Bernoulli trials, that is, the geometric distribution of order k. We show that the series coefficients are Fuss-Catalan numbers and write the roots in terms of the generating function of the Fuss-Catalan numbers. Our main result is a new exact expression for the distribution, which is more concise than previously published formulas. Our work extends the analysis by Feller, who gave asymptotic results. We obtain quantitative improvements of the error estimates obtained by Feller.

  3. Icelandic Public Pensions: Why time is running out

    Directory of Open Access Journals (Sweden)

    Ólafur Ísleifsson

    2011-12-01

    Full Text Available The aim of this paper is to analyse the Icelandic public sector pension system enjoying a third party guarantee. Defined benefit funds fundamentally differ from defined contribution pension funds without a third party guarantee as is the case with the Icelandic general labour market pension funds. We probe the special nature of the public sector pension funds and make a comparison to the defined contribution pension funds of the general labour market. We explore the financial and economic effects of the third party guarantee of the funds, their investment performance and other relevant factors. We seek an answer to the question why time is running out for the country’s largest pension fund that currently faces the prospect of becoming empty by the year 2022.

  4. Running Speed Can Be Predicted from Foot Contact Time during Outdoor over Ground Running

    NARCIS (Netherlands)

    de Ruiter, C.J.; van Oeveren, B.; Francke, A.; Zijlstra, P.; van Dieen, J.H.

    2016-01-01

    The number of validation studies of commercially available foot pods that provide estimates of running speed is limited and these studies have been conducted under laboratory conditions. Moreover, internal data handling and algorithms used to derive speed from these pods are proprietary and thereby

  5. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk-run-rest mixtures.

    Science.gov (United States)

    Long, Leroy L; Srinivasan, Manoj

    2013-04-06

    On a treadmill, humans switch from walking to running beyond a characteristic transition speed. Here, we study human choice between walking and running in a more ecological (non-treadmill) setting. We asked subjects to travel a given distance overground in a given allowed time duration. During this task, the subjects carried, and could look at, a stopwatch that counted down to zero. As expected, if the total time available were large, humans walk the whole distance. If the time available were small, humans mostly run. For an intermediate total time, humans often use a mixture of walking at a slow speed and running at a higher speed. With analytical and computational optimization, we show that using a walk-run mixture at intermediate speeds and a walk-rest mixture at the lowest average speeds is predicted by metabolic energy minimization, even with costs for transients-a consequence of non-convex energy curves. Thus, sometimes, steady locomotion may not be energy optimal, and not preferred, even in the absence of fatigue. Assuming similar non-convex energy curves, we conjecture that similar walk-run mixtures may be energetically beneficial to children following a parent and animals on long leashes. Humans and other animals might also benefit energetically from alternating between moving forward and standing still on a slow and sufficiently long treadmill.

  6. Compilation time analysis to minimize run-time overhead in preemptive scheduling on multiprocessors

    Science.gov (United States)

    Wauters, Piet; Lauwereins, Rudy; Peperstraete, J.

    1994-10-01

    This paper describes a scheduling method for hard real-time Digital Signal Processing (DSP) applications, implemented on a multi-processor. Due to the very high operating frequencies of DSP applications (typically hundreds of kHz) runtime overhead should be kept as small as possible. Because static scheduling introduces very little run-time overhead it is used as much as possible. Dynamic pre-emption of tasks is allowed if and only if it leads to better performance in spite of the extra run-time overhead. We essentially combine static scheduling with dynamic pre-emption using static priorities. Since we are dealing with hard real-time applications we must be able to guarantee at compile-time that all timing requirements will be satisfied at run-time. We will show that our method performs at least as good as any static scheduling method. It also reduces the total amount of dynamic pre-emptions compared with run time methods like deadline monotonic scheduling.

  7. Run-time middleware to support real-time system scenarios

    NARCIS (Netherlands)

    Goossens, K.; Koedam, M.; Sinha, S.; Nelson, A.; Geilen, M.

    2015-01-01

    Systems on Chip (SOC) are powerful multiprocessor systems capable of running multiple independent applications, often with both real-time and non-real-time requirements. Scenarios exist at two levels: first, combinations of independent applications, and second, different states of a single

  8. TIME MANAGEMENT - AN INSTRUMENT TO IMPROVE PRODUCTIVITY

    Directory of Open Access Journals (Sweden)

    Johan Nortje

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: TIME is an Important element in any persons life as a plannlng mechanlsm to meaningfully organIse activities, or to ensure that a oroject runs WIth but also as a generator of destructive forces over it is lost. In the process of growth and progress ln a dynamIC everchanging envIronment. tIme not only becomes dearer to management, but also $carcet-, and an era of "time poverty" is experienced by many. A varIety of uncontrollable factors may be the cause of such problems, but a danger eXIsts that those factors over which control may be exercised could be lost within the uncontrol labie ones. The objective of this artIcle on tIme management is then to assist in identIfying those "barriers" which lead to "time pover'ty", how to avoid and prevent tIme wastage and apply methods, and make use of ways to promote the effective use of tIme.

    AFRIKAANSE OPSOMMING: TYD is 'n belangrlke faktor In dIe lewe van dIe mens enersyds dlen dlt as 'n beplannlngsmeganlsme am jOU daaglikse aktiwitelte slnvol te orden of am 'n pro.lek met preS1Sle te laat verloop, maar andersvds kan dlt ook vernietigende kragte genereer lndlen 'n mens daaroor beheer verloor. In die proses van groel en voorultgang In 'n dinamles veranderende omgewlng, raak dIe tyd van bestuur nle aIleen kosbaarder n ie, maarook skaar'ser en 'n era van' tydarmoede' word deur ba i e ervaar·. ' n Verskel denhe 1d van onbehee rbare faktore mag hiervoor verantwoordeilk wees, maar dIe gevaar bestaan dat die mens dle greep op dIe beheerbare faktore mag verloor. Die DOEL met hierdle artlkel oor tydsbestuur IS jU1S om behulpsaam te wees met dIe ldentiflsering van "slaggate" wat tot'tydat-moede" aanlelding gee. hoe am tydverkwlstlng te voorkom of te hanteer en die toepassing van metodes en gebruik van hulpmiddels om effektiewe tydsbestuur te bevorder.

  9. How Many Times Should One Run a Computational Simulation?

    DEFF Research Database (Denmark)

    Seri, Raffaello; Secchi, Davide

    2017-01-01

    This chapter is an attempt to answer the question “how many runs of a computational simulation should one do,” and it gives an answer by means of statistical analysis. After defining the nature of the problem and which types of simulation are mostly affected by it, the article introduces statisti......This chapter is an attempt to answer the question “how many runs of a computational simulation should one do,” and it gives an answer by means of statistical analysis. After defining the nature of the problem and which types of simulation are mostly affected by it, the article introduces...

  10. Reinforcement of drinking by running: effect of fixed ratio and reinforcement time1

    Science.gov (United States)

    Premack, David; Schaeffer, Robert W.; Hundt, Alan

    1964-01-01

    Rats were required to complete varying numbers of licks (FR), ranging from 10 to 300, in order to free an activity wheel for predetermined times (CT) ranging from 2 to 20 sec. The reinforcement of drinking by running was shown both by an increased frequency of licking, and by changes in length of the burst of licking relative to operant-level burst length. In log-log coordinates, instrumental licking tended to be a linear increasing function of FR for the range tested, a linear decreasing function of CT for the range tested. Pause time was implicated in both of the above relations, being a generally increasing function of both FR and CT. PMID:14120150

  11. REINFORCEMENT OF DRINKING BY RUNNING: EFFECT OF FIXED RATIO AND REINFORCEMENT TIME.

    Science.gov (United States)

    PREMACK, D; SCHAEFFER, R W; HUNDT, A

    1964-01-01

    Rats were required to complete varying numbers of licks (FR), ranging from 10 to 300, in order to free an activity wheel for predetermined times (CT) ranging from 2 to 20 sec. The reinforcement of drinking by running was shown both by an increased frequency of licking, and by changes in length of the burst of licking relative to operant-level burst length. In log-log coordinates, instrumental licking tended to be a linear increasing function of FR for the range tested, a linear decreasing function of CT for the range tested. Pause time was implicated in both of the above relations, being a generally increasing function of both FR and CT.

  12. Instrumentation development for real time brainwave monitoring.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Lawrence Frederick; Clough, Benjamin W.

    2005-12-01

    The human brain functions through a chemically-induced biological process which operates in a manner similar to electrical systems. The signal resulting from this biochemical process can actually be monitored and read using tools and having patterns similar to those found in electrical and electronics engineering. The primary signature of this electrical activity is the ''brain wave'', which looks remarkably similar to the output of many electrical systems. Likewise, the device currently used in medical arenas to read brain electrical activity is the electroencephalogram (EEG) which is synonymous with a multi-channel oscilloscope reading. Brain wave readings and recordings for medical purposes are traditionally taken in clinical settings such as hospitals, laboratories or diagnostic clinics. The signal is captured via externally applied scalp electrodes using semi-viscous gel to reduce impedance. The signal will be in the 10 to 100 microvolt range. In other instances, where surgeons are attempting to isolate particular types of minute brain signals, the electrodes may actually be temporarily implanted in the brain during a preliminary procedure. The current configurations of equipment required for EEGs involve large recording instruments, many electrodes, wires, and large amounts of hard disk space devoted to storing large files of brain wave data which are then eventually analyzed for patterns of concern. Advances in sensors, signal processing, data storage and microelectronics over the last decade would seem to have paved the way for the realization of devices capable of ''real time'' external monitoring, and possible assessment, of brain activity. A myriad of applications for such a capability are likewise presenting themselves, including the ability to assess brain functioning, level of functioning and malfunctioning. Our plan is to develop the sensors, signal processing, and portable instrumentation package which could

  13. An enhanced Ada run-time system for real-time embedded processors

    Science.gov (United States)

    Sims, J. T.

    1991-01-01

    An enhanced Ada run-time system has been developed to support real-time embedded processor applications. The primary focus of this development effort has been on the tasking system and the memory management facilities of the run-time system. The tasking system has been extended to support efficient and precise periodic task execution as required for control applications. Event-driven task execution providing a means of task-asynchronous control and communication among Ada tasks is supported in this system. Inter-task control is even provided among tasks distributed on separate physical processors. The memory management system has been enhanced to provide object allocation and protected access support for memory shared between disjoint processors, each of which is executing a distinct Ada program.

  14. Safety evaluation of the ITP filter/stripper test runs and quiet time runs using simulant solution

    International Nuclear Information System (INIS)

    Gupta, M.K.

    1993-10-01

    In-Tank Precipitation is a process for removing radioactivity from the salt stored in the Waste Management Tank Farm at Savannah River. The process involves precipitation of cesium and potassium with sodium tetraphenylborate (STPB) and adsorption of strontium and actinides on insoluble sodium titanate (ST) particles. The purpose of this report is to provide the technical bases for the evaluation of Unreviewed Safety Question for the In-Tank Precipitation (ITP) Filter/Stripper Test Runs and Quiet Time Runs Program. The primary objective of the filter-stripper test runs and quiet time runs program is to ensure that the facility will fulfill its design basis function prior to the introduction of radioactive feed. Risks associated with the program are identified and include hazards, both personnel and environmental, associated with handling the chemical simulants; the presence of flammable materials; the potential for damage to the permanenet ITP and Tank Farm facilities. The risks, potential accident scenarios, and safeguards either in place or planned are discussed at length

  15. Safety evaluation of the ITP filter/stripper test runs and quiet time runs using simulant solution

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, M.K.

    1993-10-01

    In-Tank Precipitation is a process for removing radioactivity from the salt stored in the Waste Management Tank Farm at Savannah River. The process involves precipitation of cesium and potassium with sodium tetraphenylborate (STPB) and adsorption of strontium and actinides on insoluble sodium titanate (ST) particles. The purpose of this report is to provide the technical bases for the evaluation of Unreviewed Safety Question for the In-Tank Precipitation (ITP) Filter/Stripper Test Runs and Quiet Time Runs Program. The primary objective of the filter-stripper test runs and quiet time runs program is to ensure that the facility will fulfill its design basis function prior to the introduction of radioactive feed. Risks associated with the program are identified and include hazards, both personnel and environmental, associated with handling the chemical simulants; the presence of flammable materials; the potential for damage to the permanenet ITP and Tank Farm facilities. The risks, potential accident scenarios, and safeguards either in place or planned are discussed at length.

  16. Run-time verification of behavioural conformance for conversational web services

    OpenAIRE

    Dranidis, Dimitris; Ramollari, Ervin; Kourtesis, Dimitrios

    2009-01-01

    Web services exposing run-time behaviour that deviates from their behavioural specifications represent a major threat to the sustainability of a service-oriented ecosystem. It is therefore critical to verify the behavioural conformance of services during run-time. This paper discusses a novel approach for run-time verification of Web services. It proposes the utilisation of Stream X-machines for constructing formal behavioural specifications of Web services which can be exploited for verifyin...

  17. Time limit and time at VO2max' during a continuous and an intermittent run.

    Science.gov (United States)

    Demarie, S; Koralsztein, J P; Billat, V

    2000-06-01

    The purpose of this study was to verify, by track field tests, whether sub-elite runners (n=15) could (i) reach their VO2max while running at v50%delta, i.e. midway between the speed associated with lactate threshold (vLAT) and that associated with maximal aerobic power (vVO2max), and (ii) if an intermittent exercise provokes a maximal and/or supra maximal oxygen consumption longer than a continuous one. Within three days, subjects underwent a multistage incremental test during which their vVO2max and vLAT were determined; they then performed two additional testing sessions, where continuous and intermittent running exercises at v50%delta were performed up to exhaustion. Subject's gas exchange and heart rate were continuously recorded by means of a telemetric apparatus. Blood samples were taken from fingertip and analysed for blood lactate concentration. In the continuous and the intermittent tests peak VO2 exceeded VO2max values, as determined during the incremental test. However in the intermittent exercise, peak VO2, time to exhaustion and time at VO2max reached significantly higher values, while blood lactate accumulation showed significantly lower values than in the continuous one. The v50%delta is sufficient to stimulate VO2max in both intermittent and continuous running. The intermittent exercise results better than the continuous one in increasing maximal aerobic power, allowing longer time at VO2max and obtaining higher peak VO2 with lower lactate accumulation.

  18. Change in skeletal muscle stiffness after running competition is dependent on both running distance and recovery time: a pilot study.

    Science.gov (United States)

    Sadeghi, Seyedali; Newman, Cassidy; Cortes, Daniel H

    2018-01-01

    Long-distance running competitions impose a large amount of mechanical loading and strain leading to muscle edema and delayed onset muscle soreness (DOMS). Damage to various muscle fibers, metabolic impairments and fatigue have been linked to explain how DOMS impairs muscle function. Disruptions of muscle fiber during DOMS exacerbated by exercise have been shown to change muscle mechanical properties. The objective of this study is to quantify changes in mechanical properties of different muscles in the thigh and lower leg as function of running distance and time after competition. A custom implementation of Focused Comb-Push Ultrasound Shear Elastography (F-CUSE) method was used to evaluate shear modulus in runners before and after a race. Twenty-two healthy individuals (age: 23 ± 5 years) were recruited using convenience sampling and split into three race categories: short distance (nine subjects, 3-5 miles), middle distance (10 subjects, 10-13 miles), and long distance (three subjects, 26+ miles). Shear Wave Elastography (SWE) measurements were taken on both legs of each subject on the rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), soleus, lateral gastrocnemius (LG), medial gastrocnemius (MG), biceps femoris (BF) and semitendinosus (ST) muscles. For statistical analyses, a linear mixed model was used, with recovery time and running distance as fixed variables, while shear modulus was used as the dependent variable. Recovery time had a significant effect on the soleus ( p  = 0.05), while running distance had considerable effect on the biceps femoris ( p  = 0.02), vastus lateralis ( p  trend from before competition to immediately after competition. The preliminary results suggest that SWE could potentially be used to quantify changes of muscle mechanical properties as a way for measuring recovery procedures for runners.

  19. Change in skeletal muscle stiffness after running competition is dependent on both running distance and recovery time: a pilot study

    Directory of Open Access Journals (Sweden)

    Seyedali Sadeghi

    2018-03-01

    Full Text Available Long-distance running competitions impose a large amount of mechanical loading and strain leading to muscle edema and delayed onset muscle soreness (DOMS. Damage to various muscle fibers, metabolic impairments and fatigue have been linked to explain how DOMS impairs muscle function. Disruptions of muscle fiber during DOMS exacerbated by exercise have been shown to change muscle mechanical properties. The objective of this study is to quantify changes in mechanical properties of different muscles in the thigh and lower leg as function of running distance and time after competition. A custom implementation of Focused Comb-Push Ultrasound Shear Elastography (F-CUSE method was used to evaluate shear modulus in runners before and after a race. Twenty-two healthy individuals (age: 23 ± 5 years were recruited using convenience sampling and split into three race categories: short distance (nine subjects, 3–5 miles, middle distance (10 subjects, 10–13 miles, and long distance (three subjects, 26+ miles. Shear Wave Elastography (SWE measurements were taken on both legs of each subject on the rectus femoris (RF, vastus lateralis (VL, vastus medialis (VM, soleus, lateral gastrocnemius (LG, medial gastrocnemius (MG, biceps femoris (BF and semitendinosus (ST muscles. For statistical analyses, a linear mixed model was used, with recovery time and running distance as fixed variables, while shear modulus was used as the dependent variable. Recovery time had a significant effect on the soleus (p = 0.05, while running distance had considerable effect on the biceps femoris (p = 0.02, vastus lateralis (p < 0.01 and semitendinosus muscles (p = 0.02. Sixty-seven percent of muscles exhibited a decreasing stiffness trend from before competition to immediately after competition. The preliminary results suggest that SWE could potentially be used to quantify changes of muscle mechanical properties as a way for measuring recovery procedures for runners.

  20. Leisure-time running reduces all-cause and cardiovascular mortality risk.

    Science.gov (United States)

    Lee, Duck-Chul; Pate, Russell R; Lavie, Carl J; Sui, Xuemei; Church, Timothy S; Blair, Steven N

    2014-08-05

    Although running is a popular leisure-time physical activity, little is known about the long-term effects of running on mortality. The dose-response relations between running, as well as the change in running behaviors over time, and mortality remain uncertain. We examined the associations of running with all-cause and cardiovascular mortality risks in 55,137 adults, 18 to 100 years of age (mean age 44 years). Running was assessed on a medical history questionnaire by leisure-time activity. During a mean follow-up of 15 years, 3,413 all-cause and 1,217 cardiovascular deaths occurred. Approximately 24% of adults participated in running in this population. Compared with nonrunners, runners had 30% and 45% lower adjusted risks of all-cause and cardiovascular mortality, respectively, with a 3-year life expectancy benefit. In dose-response analyses, the mortality benefits in runners were similar across quintiles of running time, distance, frequency, amount, and speed, compared with nonrunners. Weekly running even benefits, with 29% and 50% lower risks of all-cause and cardiovascular mortality, respectively, compared with never-runners. Running, even 5 to 10 min/day and at slow speeds benefits. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  1. Time Series Analysis Based on Running Mann Whitney Z Statistics

    Science.gov (United States)

    A sensitive and objective time series analysis method based on the calculation of Mann Whitney U statistics is described. This method samples data rankings over moving time windows, converts those samples to Mann-Whitney U statistics, and then normalizes the U statistics to Z statistics using Monte-...

  2. An Empirical Derivation of the Run Time of the Bubble Sort Algorithm.

    Science.gov (United States)

    Gonzales, Michael G.

    1984-01-01

    Suggests a moving pictorial tool to help teach principles in the bubble sort algorithm. Develops such a tool applied to an unsorted list of numbers and describes a method to derive the run time of the algorithm. The method can be modified to run the times of various other algorithms. (JN)

  3. Lower bounds on the run time of the univariate marginal distribution algorithm on OneMax

    DEFF Research Database (Denmark)

    Krejca, Martin S.; Witt, Carsten

    2017-01-01

    The Univariate Marginal Distribution Algorithm (UMDA), a popular estimation of distribution algorithm, is studied from a run time perspective. On the classical OneMax benchmark function, a lower bound of Ω(μ√n + n log n), where μ is the population size, on its expected run time is proved...... values maintained by the algorithm, including carefully designed potential functions. These techniques may prove useful in advancing the field of run time analysis for estimation of distribution algorithms in general........ This is the first direct lower bound on the run time of the UMDA. It is stronger than the bounds that follow from general black-box complexity theory and is matched by the run time of many evolutionary algorithms. The results are obtained through advanced analyses of the stochastic change of the frequencies of bit...

  4. A novel instrumented multipeg running wheel system, Step-Wheel, for monitoring and controlling complex sequential stepping in mice.

    Science.gov (United States)

    Kitsukawa, Takashi; Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M; Yamamori, Tetsuo

    2011-07-01

    Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice.

  5. Discount-Optimal Infinite Runs in Priced Timed Automata

    DEFF Research Database (Denmark)

    Fahrenberg, Uli; Larsen, Kim Guldstrand

    2009-01-01

    We introduce a new discounting semantics for priced timed automata. Discounting provides a way to model optimal-cost problems for infinite traces and has applications in optimal scheduling and other areas. In the discounting semantics, prices decrease exponentially, so that the contribution...

  6. Design-time application mapping and platform exploration for MP-SoC customised run-time management

    NARCIS (Netherlands)

    Ykman-Couvreur, Ch.; Nollet, V.; Marescaux, T.M.; Brockmeyer, E.; Catthoor, F.; Corporaal, H.

    2007-01-01

    Abstract: In an Multi-Processor system-on-Chip (MP-SoC) environment, a customized run-time management layer should be incorporated on top of the basic Operating System services to alleviate the run-time decision-making and to globally optimise costs (e.g. energy consumption) across all active

  7. Safety provision for nuclear power plants during remaining running time

    International Nuclear Information System (INIS)

    Rossnagel, Alexander; Hentschel, Anja

    2012-01-01

    With the phasing-out of the industrial use of nuclear energy for the power generation, the risk of the nuclear power plants has not been eliminated in principle, but only for a limited period of time. Therefore, the remaining nine nuclear power plants must also be used for the remaining ten years according to the state of science and technology. Regulatory authorities must substantiate the safety requirements for each nuclear power plant and enforce these requirements by means of various regulatory measures. The consequences of Fukushima must be included in the assessment of the safety level of nuclear power plants in Germany. In this respect, the regulatory authorities have the important tasks to investigate and assess the security risks as well as to develop instructions and orders.

  8. On the Use of Running Trends as Summary Statistics for Univariate Time Series and Time Series Association

    OpenAIRE

    Trottini, Mario; Vigo, Isabel; Belda, Santiago

    2015-01-01

    Given a time series, running trends analysis (RTA) involves evaluating least squares trends over overlapping time windows of L consecutive time points, with overlap by all but one observation. This produces a new series called the “running trends series,” which is used as summary statistics of the original series for further analysis. In recent years, RTA has been widely used in climate applied research as summary statistics for time series and time series association. There is no doubt that ...

  9. Effect of treadmill versus overground running on the structure of variability of stride timing.

    Science.gov (United States)

    Lindsay, Timothy R; Noakes, Timothy D; McGregor, Stephen J

    2014-04-01

    Gait timing dynamics of treadmill and overground running were compared. Nine trained runners ran treadmill and track trials at 80, 100, and 120% of preferred pace for 8 min. each. Stride time series were generated for each trial. To each series, detrended fluctuation analysis (DFA), power spectral density (PSD), and multiscale entropy (MSE) analysis were applied to infer the regime of control along the randomness-regularity axis. Compared to overground running, treadmill running exhibited a higher DFA and PSD scaling exponent, as well as lower entropy at non-preferred speeds. This indicates a more ordered control for treadmill running, especially at non-preferred speeds. The results suggest that the treadmill itself brings about greater constraints and requires increased voluntary control. Thus, the quantification of treadmill running gait dynamics does not necessarily reflect movement in overground settings.

  10. Estimation Accuracy on Execution Time of Run-Time Tasks in a Heterogeneous Distributed Environment

    Directory of Open Access Journals (Sweden)

    Qi Liu

    2016-08-01

    Full Text Available Distributed Computing has achieved tremendous development since cloud computing was proposed in 2006, and played a vital role promoting rapid growth of data collecting and analysis models, e.g., Internet of things, Cyber-Physical Systems, Big Data Analytics, etc. Hadoop has become a data convergence platform for sensor networks. As one of the core components, MapReduce facilitates allocating, processing and mining of collected large-scale data, where speculative execution strategies help solve straggler problems. However, there is still no efficient solution for accurate estimation on execution time of run-time tasks, which can affect task allocation and distribution in MapReduce. In this paper, task execution data have been collected and employed for the estimation. A two-phase regression (TPR method is proposed to predict the finishing time of each task accurately. Detailed data of each task have drawn interests with detailed analysis report being made. According to the results, the prediction accuracy of concurrent tasks’ execution time can be improved, in particular for some regular jobs.

  11. System and Component Software Specification, Run-time Verification and Automatic Test Generation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The following background technology is described in Part 5: Run-time Verification (RV), White Box Automatic Test Generation (WBATG). Part 5 also describes how WBATG...

  12. Strong normalization by type-directed partial evaluation and run-time code generation

    DEFF Research Database (Denmark)

    Balat, Vincent; Danvy, Olivier

    1998-01-01

    We investigate the synergy between type-directed partial evaluation and run-time code generation for the Caml dialect of ML. Type-directed partial evaluation maps simply typed, closed Caml values to a representation of their long βη-normal form. Caml uses a virtual machine and has the capability...... to load byte code at run time. Representing the long βη-normal forms as byte code gives us the ability to strongly normalize higher-order values (i.e., weak head normal forms in ML), to compile the resulting strong normal forms into byte code, and to load this byte code all in one go, at run time. We...... conclude this note with a preview of our current work on scaling up strong normalization by run-time code generation to the Caml module language....

  13. ANALYSIS OF POSSIBILITY TO AVOID A RUNNING-DOW ACCIDENT TIMELY BRAKING

    Directory of Open Access Journals (Sweden)

    Sarayev, A.

    2013-06-01

    Full Text Available Such circumstances under which the drive can stop the vehicle by applying timely braking before reaching the pedestrian crossing or decrease the speed to the safe limit to avoid a running-down accident is considered.

  14. Strong Normalization by Type-Directed Partial Evaluation and Run-Time Code Generation

    DEFF Research Database (Denmark)

    Balat, Vincent; Danvy, Olivier

    1997-01-01

    We investigate the synergy between type-directed partial evaluation and run-time code generation for the Caml dialect of ML. Type-directed partial evaluation maps simply typed, closed Caml values to a representation of their long βη-normal form. Caml uses a virtual machine and has the capability...... to load byte code at run time. Representing the long βη-normal forms as byte code gives us the ability to strongly normalize higher-order values (i.e., weak head normal forms in ML), to compile the resulting strong normal forms into byte code, and to load this byte code all in one go, at run time. We...... conclude this note with a preview of our current work on scaling up strong normalization by run-time code generation to the Caml module language....

  15. Development of Real-Time Coal Monitoring Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Rajan Gurjar, Ph.D.

    2010-06-17

    Relying on coal for energy requires optimizing the extraction of heat content from various blends of coal fuel and reducing harmful constituents and byproducts. Having a real-time measurement instrument provides relevant information about toxic constituents released in the atmosphere from burning coal and optimizes the performance of a power plant. A few commercial instruments exist and have been in operation for more than a decade. However, most of these instruments are based on radioactive sources and are bulky, expensive and time-consuming. The proposed instrument is based on the Laser Induced Breakdown Spectroscopy (LIBS). The advantage of LIBS is that it is a standoff instrument, does not require sample preparation and provides precise information about sample constituents.

  16. Investigations of timing during the schedule and reinforcement intervals with wheel-running reinforcement.

    Science.gov (United States)

    Belke, Terry W; Christie-Fougere, Melissa M

    2006-11-01

    Across two experiments, a peak procedure was used to assess the timing of the onset and offset of an opportunity to run as a reinforcer. The first experiment investigated the effect of reinforcer duration on temporal discrimination of the onset of the reinforcement interval. Three male Wistar rats were exposed to fixed-interval (FI) 30-s schedules of wheel-running reinforcement and the duration of the opportunity to run was varied across values of 15, 30, and 60s. Each session consisted of 50 reinforcers and 10 probe trials. Results showed that as reinforcer duration increased, the percentage of postreinforcement pauses longer than the 30-s schedule interval increased. On probe trials, peak response rates occurred near the time of reinforcer delivery and peak times varied with reinforcer duration. In a second experiment, seven female Long-Evans rats were exposed to FI 30-s schedules leading to 30-s opportunities to run. Timing of the onset and offset of the reinforcement period was assessed by probe trials during the schedule interval and during the reinforcement interval in separate conditions. The results provided evidence of timing of the onset, but not the offset of the wheel-running reinforcement period. Further research is required to assess if timing occurs during a wheel-running reinforcement period.

  17. Design Flow Instantiation for Run-Time Reconfigurable Systems: A Case Study

    Directory of Open Access Journals (Sweden)

    Yang Qu

    2007-12-01

    Full Text Available Reconfigurable system is a promising alternative to deliver both flexibility and performance at the same time. New reconfigurable technologies and technology-dependent tools have been developed, but a complete overview of the whole design flow for run-time reconfigurable systems is missing. In this work, we present a design flow instantiation for such systems using a real-life application. The design flow is roughly divided into two parts: system level and implementation. At system level, our supports for hardware resource estimation and performance evaluation are applied. At implementation level, technology-dependent tools are used to realize the run-time reconfiguration. The design case is part of a WCDMA decoder on a commercially available reconfigurable platform. The results show that using run-time reconfiguration can save over 40% area when compared to a functionally equivalent fixed system and achieve 30 times speedup in processing time when compared to a functionally equivalent pure software design.

  18. Running speed during training and percent body fat predict race time in recreational male marathoners.

    Science.gov (United States)

    Barandun, Ursula; Knechtle, Beat; Knechtle, Patrizia; Klipstein, Andreas; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald

    2012-01-01

    Recent studies have shown that personal best marathon time is a strong predictor of race time in male ultramarathoners. We aimed to determine variables predictive of marathon race time in recreational male marathoners by using the same characteristics of anthropometry and training as used for ultramarathoners. Anthropometric and training characteristics of 126 recreational male marathoners were bivariately and multivariately related to marathon race times. After multivariate regression, running speed of the training units (β = -0.52, P marathon race times. Marathon race time for recreational male runners may be estimated to some extent by using the following equation (r (2) = 0.44): race time ( minutes) = 326.3 + 2.394 × (percent body fat, %) - 12.06 × (speed in training, km/hours). Running speed during training sessions correlated with prerace percent body fat (r = 0.33, P = 0.0002). The model including anthropometric and training variables explained 44% of the variance of marathon race times, whereas running speed during training sessions alone explained 40%. Thus, training speed was more predictive of marathon performance times than anthropometric characteristics. The present results suggest that low body fat and running speed during training close to race pace (about 11 km/hour) are two key factors for a fast marathon race time in recreational male marathoner runners.

  19. Methods of Run-Time Error Detection in Distributed Process Control Software

    DEFF Research Database (Denmark)

    Drejer, N.

    of generic run-time error types, design of methods of observing application software behaviorduring execution and design of methods of evaluating run time constraints. In the definition of error types it is attempted to cover all relevant aspects of the application softwaree behavior. Methods of observation......In this thesis, methods of run-time error detection in application software for distributed process control is designed. The error detection is based upon a monitoring approach in which application software is monitored by system software during the entire execution. The thesis includes definition...... and constraint evaluation is designed for the modt interesting error types. These include: a) semantical errors in data communicated between application tasks; b) errors in the execution of application tasks; and c) errors in the timing of distributed events emitted by the application software. The design...

  20. Run-Time and Compiler Support for Programming in Adaptive Parallel Environments

    Directory of Open Access Journals (Sweden)

    Guy Edjlali

    1997-01-01

    Full Text Available For better utilization of computing resources, it is important to consider parallel programming environments in which the number of available processors varies at run-time. In this article, we discuss run-time support for data-parallel programming in such an adaptive environment. Executing programs in an adaptive environment requires redistributing data when the number of processors changes, and also requires determining new loop bounds and communication patterns for the new set of processors. We have developed a run-time library to provide this support. We discuss how the run-time library can be used by compilers of high-performance Fortran (HPF-like languages to generate code for an adaptive environment. We present performance results for a Navier-Stokes solver and a multigrid template run on a network of workstations and an IBM SP-2. Our experiments show that if the number of processors is not varied frequently, the cost of data redistribution is not significant compared to the time required for the actual computation. Overall, our work establishes the feasibility of compiling HPF for a network of nondedicated workstations, which are likely to be an important resource for parallel programming in the future.

  1. Relationship between running kinematic changes and time limit at vVO2max

    Directory of Open Access Journals (Sweden)

    Leonardo De Lucca

    2012-06-01

    Exhaustive running at maximal oxygen uptake velocity (vVO2max can alter running kinematic parameters and increase energy cost along the time. The aims of the present study were to compare characteristics of ankle and knee kinematics during running at vVO2max and to verify the relationship between changes in kinematic variables and time limit (Tlim. Eleven male volunteers, recreational players of team sports, performed an incremental running test until volitional exhaustion to determine vVO2max and a constant velocity test at vVO2max. Subjects were filmed continuously from the left sagittal plane at 210 Hz for further kinematic analysis. The maximal plantar flexion during swing (p<0.01 was the only variable that increased significantly from beginning to end of the run. Increase in ankle angle at contact was the only variable related to Tlim (r=0.64; p=0.035 and explained 34% of the performance in the test. These findings suggest that the individuals under study maintained a stable running style at vVO2max and that increase in plantar flexion explained the performance in this test when it was applied in non-runners.

  2. Adaptive Embedded Systems – Challenges of Run-Time Resource Management

    DEFF Research Database (Denmark)

    Understanding and efficiently controlling the dynamic behavior of adaptive embedded systems is a challenging endavor. The challenges come from the often very complicated interplay between the application, the application mapping, and the underlying hardware architecture. With MPSoC, we have...... the technology to design and fabricate dynamically reconfigurable hardware platforms. However, such platforms will pose new challenges to tools and methods to efficiently explore these platforms at run-time. This talk will address some of the challenges of run-time resource management in adaptive embedded...... systems....

  3. Shorter Ground Contact Time and Better Running Economy: Evidence From Female Kenyan Runners.

    Science.gov (United States)

    Mooses, Martin; Haile, Diresibachew W; Ojiambo, Robert; Sang, Meshack; Mooses, Kerli; Lane, Amy R; Hackney, Anthony C

    2018-06-25

    Mooses, M, Haile, DW, Ojiambo, R, Sang, M, Mooses, K, Lane, AR, and Hackney, AC. Shorter ground contact time and better running economy: evidence from female Kenyan runners. J Strength Cond Res XX(X): 000-000, 2018-Previously, it has been concluded that the improvement in running economy (RE) might be considered as a key to the continued improvement in performance when no further increase in V[Combining Dot Above]O2max is observed. To date, RE has been extensively studied among male East African distance runners. By contrast, there is a paucity of data on the RE of female East African runners. A total of 10 female Kenyan runners performed 3 × 1,600-m steady-state run trials on a flat outdoor clay track (400-m lap) at the intensities that corresponded to their everyday training intensities for easy, moderate, and fast running. Running economy together with gait characteristics was determined. Participants showed moderate to very good RE at the first (202 ± 26 ml·kg·km) and second (188 ± 12 ml·kg·km) run trials, respectively. Correlation analysis revealed significant relationship between ground contact time (GCT) and RE at the second run (r = 0.782; p = 0.022), which represented the intensity of anaerobic threshold. This study is the first to report the RE and gait characteristics of East African female athletes measured under everyday training settings. We provided the evidence that GCT is associated with the superior RE of the female Kenyan runners.

  4. The beam synchronous timing system for the LEP instrumentation

    International Nuclear Information System (INIS)

    Baribaud, G.; Brahy, D.; Cojan, A.; Momal, F.; Rabany, M.; Saban, R.; Wolles, J.C.

    1990-01-01

    The beam instrumentation group of LEP has constructed a number of detectors distributed around the collider: these instruments are interfaced to approximately 100 VME-based computers which acquire and process data autonomously. In order to ensure the coherence of a measurement and to correlate measurements of different instruments, it is essential that the data are acquired at the same moment on all the systems. The beam synchronous timing system ensures this by broadcasting messages that describe to all instruments the action to be performed. The instructions are guaranteed to arrive at exactly the same moment to all stations around the 27 km circumference by careful compensation of the delay for each station. The heart of the system is a commercial 25 MHz 68020-based VME module coupled to an in-house designed message assembler: these are able to synthesize instructions for up to six different kinds of instruments in a single LEP revolution (89 μs). Each listening station provides the hardware with pulses derived from the incoming message, filters the messages according to the addresses and passes them to real-time tasks which set the hardware or acquire the data. A reverse channel, peripheral station to the control room, allows up to eight different signals to inform the master of locally detected events such as beam loss or high background. Special recovery instructions can then be broadcast. (orig.)

  5. Comparing internal and external run-time coupling of CFD and building energy simulation software

    NARCIS (Netherlands)

    Djunaedy, E.; Hensen, J.L.M.; Loomans, M.G.L.C.

    2004-01-01

    This paper describes a comparison between internal and external run-time coupling of CFD and building energy simulation software. Internal coupling can be seen as the "traditional" way of developing software, i.e. the capabilities of existing software are expanded by merging codes. With external

  6. Ada Run Time Support Environments and a common APSE Interface Set. [Ada Programming Support Environment

    Science.gov (United States)

    Mckay, C. W.; Bown, R. L.

    1985-01-01

    The paper discusses the importance of linking Ada Run Time Support Environments to the Common Ada Programming Support Environment (APSE) Interface Set (CAIS). A non-stop network operating systems scenario is presented to serve as a forum for identifying the important issues. The network operating system exemplifies the issues involved in the NASA Space Station data management system.

  7. Differences in ground contact time explain the less efficient running economy in north african runners.

    Science.gov (United States)

    Santos-Concejero, J; Granados, C; Irazusta, J; Bidaurrazaga-Letona, I; Zabala-Lili, J; Tam, N; Gil, S M

    2013-09-01

    The purpose of this study was to investigate the relationship between biomechanical variables and running economy in North African and European runners. Eight North African and 13 European male runners of the same athletic level ran 4-minute stages on a treadmill at varying set velocities. During the test, biomechanical variables such as ground contact time, swing time, stride length, stride frequency, stride angle and the different sub-phases of ground contact were recorded using an optical measurement system. Additionally, oxygen uptake was measured to calculate running economy. The European runners were more economical than the North African runners at 19.5 km · h(-1), presented lower ground contact time at 18 km · h(-1) and 19.5 km · h(-1) and experienced later propulsion sub-phase at 10.5 km · h(-1),12 km · h(-1), 15 km · h(-1), 16.5 km · h(-1) and 19.5 km · h(-1) than the European runners (P Running economy at 19.5 km · h(-1) was negatively correlated with swing time (r = -0.53) and stride angle (r = -0.52), whereas it was positively correlated with ground contact time (r = 0.53). Within the constraints of extrapolating these findings, the less efficient running economy in North African runners may imply that their outstanding performance at international athletic events appears not to be linked to running efficiency. Further, the differences in metabolic demand seem to be associated with differing biomechanical characteristics during ground contact, including longer contact times.

  8. Short- and long-run time-of-use price elasticities in Swiss residential electricity demand

    International Nuclear Information System (INIS)

    Filippini, Massimo

    2011-01-01

    This paper presents an empirical analysis on the residential demand for electricity by time-of-day. This analysis has been performed using aggregate data at the city level for 22 Swiss cities for the period 2000-2006. For this purpose, we estimated two log-log demand equations for peak and off-peak electricity consumption using static and dynamic partial adjustment approaches. These demand functions were estimated using several econometric approaches for panel data, for example LSDV and RE for static models, and LSDV and corrected LSDV estimators for dynamic models. The attempt of this empirical analysis has been to highlight some of the characteristics of the Swiss residential electricity demand. The estimated short-run own price elasticities are lower than 1, whereas in the long-run these values are higher than 1. The estimated short-run and long-run cross-price elasticities are positive. This result shows that peak and off-peak electricity are substitutes. In this context, time differentiated prices should provide an economic incentive to customers so that they can modify consumption patterns by reducing peak demand and shifting electricity consumption from peak to off-peak periods. - Highlights: → Empirical analysis on the residential demand for electricity by time-of-day. → Estimators for dynamic panel data. → Peak and off-peak residential electricity are substitutes.

  9. Primary and secondary effects of real-time feedback to reduce vertical loading rate during running.

    Science.gov (United States)

    Baggaley, M; Willy, R W; Meardon, S A

    2017-05-01

    Gait modifications are often proposed to reduce average loading rate (AVLR) during running. While many modifications may reduce AVLR, little work has investigated secondary gait changes. Thirty-two rearfoot runners [16M, 16F, 24.7 (3.3) years, 22.72 (3.01) kg/m 2 , >16 km/week] ran at a self-selected speed (2.9 ± 0.3 m/s) on an instrumented treadmill, while 3D mechanics were calculated via real-time data acquisition. Real-time visual feedback was provided in a randomized order to cue a forefoot strike (FFS), a minimum 7.5% decrease in step length, or a minimum 15% reduction in AVLR. AVLR was reduced by FFS (mean difference = 26.4 BW/s; 95% CI = 20.1, 32.7; P < 0.001), shortened step length (8.4 BW/s; 95% CI = 2.9, 14.0; P = 0.004), and cues to reduce AVLR (14.9 BW/s; 95% CI = 10.2, 19.6; P < 0.001). FFS, shortened step length, and cues to reduce AVLR all reduced eccentric knee joint work per km [(-48.2 J/kg*m; 95% CI = -58.1, -38.3; P < 0.001), (-35.5 J/kg*m; 95% CI = -42.4, 28.6; P < 0.001), (-23.1 J/kg*m; 95% CI = -33.3, -12.9; P < 0.001)]. However, FFS and cues to reduce AVLR also increased eccentric ankle joint work per km [(54.49 J/kg*m; 95% CI = 45.3, 63.7; P < 0.001), (9.20 J/kg*m; 95% CI = 1.7, 16.7; P = 0.035)]. Potentially injurious secondary effects associated with FFS and cues to reduce AVLR may undermine their clinical utility. Alternatively, a shortened step length resulted in small reductions in AVLR, without any potentially injurious secondary effects. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Integrating software testing and run-time checking in an assertion verification framework

    OpenAIRE

    Mera, E.; López García, Pedro; Hermenegildo, Manuel V.

    2009-01-01

    We have designed and implemented a framework that unifies unit testing and run-time verification (as well as static verification and static debugging). A key contribution of our approach is that a unified assertion language is used for all of these tasks. We first propose methods for compiling runtime checks for (parts of) assertions which cannot be verified at compile-time via program transformation. This transformation allows checking preconditions and postconditions, including conditional...

  11. A Formal Approach to Run-Time Evaluation of Real-Time Behaviour in Distributed Process Control Systems

    DEFF Research Database (Denmark)

    Kristensen, C.H.

    This thesis advocates a formal approach to run-time evaluation of real-time behaviour in distributed process sontrol systems, motivated by a growing interest in applying the increasingly popular formal methods in the application area of distributed process control systems. We propose to evaluate...... because the real-time aspects of distributed process control systems are considered to be among the hardest and most interesting to handle....

  12. Novel Real-time Calibration and Alignment Procedure for LHCb Run II

    CERN Multimedia

    Prouve, Claire

    2016-01-01

    In order to achieve optimal detector performance the LHCb experiment has introduced a novel real-time detector alignment and calibration strategy for Run II of the LHC. For the alignment tasks, data is collected and processed at the beginning of each fill while the calibrations are performed for each run. This real time alignment and calibration allows the same constants being used in both the online and offline reconstruction, thus improving the correlation between triggered and offline selected events. Additionally the newly computed alignment and calibration constants can be instantly used in the trigger, making it more efficient. The online alignment and calibration of the RICH detectors also enable the use of hadronic particle identification in the trigger. The computing time constraints are met through the use of a new dedicated framework using the multi-core farm infrastructure for the LHCb trigger. An overview of all alignment and calibration tasks is presented and their performance is shown.

  13. Implementering Run-time Evaluation of Distributed Timing Constraints in a Micro Kernel

    DEFF Research Database (Denmark)

    Kristensen, C.H.; Drejer, N.; Nielsen, Jens Frederik Dalsgaard

    In the present paper we describe a solution to the problem of implementing time-optimal evaluation of timing constraints in distributed real-time systems......In the present paper we describe a solution to the problem of implementing time-optimal evaluation of timing constraints in distributed real-time systems...

  14. Design and development of a run-time monitor for multi-core architectures in cloud computing.

    Science.gov (United States)

    Kang, Mikyung; Kang, Dong-In; Crago, Stephen P; Park, Gyung-Leen; Lee, Junghoon

    2011-01-01

    Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data.

  15. Design and Development of a Run-Time Monitor for Multi-Core Architectures in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Junghoon Lee

    2011-03-01

    Full Text Available Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data.

  16. A Modular Environment for Geophysical Inversion and Run-time Autotuning using Heterogeneous Computing Systems

    Science.gov (United States)

    Myre, Joseph M.

    Heterogeneous computing systems have recently come to the forefront of the High-Performance Computing (HPC) community's interest. HPC computer systems that incorporate special purpose accelerators, such as Graphics Processing Units (GPUs), are said to be heterogeneous. Large scale heterogeneous computing systems have consistently ranked highly on the Top500 list since the beginning of the heterogeneous computing trend. By using heterogeneous computing systems that consist of both general purpose processors and special- purpose accelerators, the speed and problem size of many simulations could be dramatically increased. Ultimately this results in enhanced simulation capabilities that allows, in some cases for the first time, the execution of parameter space and uncertainty analyses, model optimizations, and other inverse modeling techniques that are critical for scientific discovery and engineering analysis. However, simplifying the usage and optimization of codes for heterogeneous computing systems remains a challenge. This is particularly true for scientists and engineers for whom understanding HPC architectures and undertaking performance analysis may not be primary research objectives. To enable scientists and engineers to remain focused on their primary research objectives, a modular environment for geophysical inversion and run-time autotuning on heterogeneous computing systems is presented. This environment is composed of three major components: 1) CUSH---a framework for reducing the complexity of programming heterogeneous computer systems, 2) geophysical inversion routines which can be used to characterize physical systems, and 3) run-time autotuning routines designed to determine configurations of heterogeneous computing systems in an attempt to maximize the performance of scientific and engineering codes. Using three case studies, a lattice-Boltzmann method, a non-negative least squares inversion, and a finite-difference fluid flow method, it is shown that

  17. Rapid Large Earthquake and Run-up Characterization in Quasi Real Time

    Science.gov (United States)

    Bravo, F. J.; Riquelme, S.; Koch, P.; Cararo, S.

    2017-12-01

    Several test in quasi real time have been conducted by the rapid response group at CSN (National Seismological Center) to characterize earthquakes in Real Time. These methods are known for its robustness and realibility to create Finite Fault Models. The W-phase FFM Inversion, The Wavelet Domain FFM and The Body Wave and FFM have been implemented in real time at CSN, all these algorithms are running automatically and triggered by the W-phase Point Source Inversion. Dimensions (Large and Width ) are predefined by adopting scaling laws for earthquakes in subduction zones. We tested the last four major earthquakes occurred in Chile using this scheme: The 2010 Mw 8.8 Maule Earthquake, The 2014 Mw 8.2 Iquique Earthquake, The 2015 Mw 8.3 Illapel Earthquake and The 7.6 Melinka Earthquake. We obtain many solutions as time elapses, for each one of those we calculate the run-up using an analytical formula. Our results are in agreements with some FFM already accepted by the sicentific comunnity aswell as run-up observations in the field.

  18. Operating Security System Support for Run-Time Security with a Trusted Execution Environment

    DEFF Research Database (Denmark)

    Gonzalez, Javier

    Software services have become an integral part of our daily life. Cyber-attacks have thus become a problem of increasing importance not only for the IT industry, but for society at large. A way to contain cyber-attacks is to guarantee the integrity of IT systems at run-time. Put differently......, it is safe to assume that any complex software is compromised. The problem is then to monitor and contain it when it executes in order to protect sensitive data and other sensitive assets. To really have an impact, any solution to this problem should be integrated in commodity operating systems...... sensitive assets at run-time that we denote split-enforcement, and provide an implementation for ARM-powered devices using ARM TrustZone security extensions. We design, build, and evaluate a prototype Trusted Cell that provides trusted services. We also present the first generic TrustZone driver...

  19. Digital instrumentation and dead-time processing for radionuclide metrology

    International Nuclear Information System (INIS)

    Censier, B.; Bobin, Ch.; Bouchard, J.

    2010-01-01

    Most of the acquisition chains used in radionuclide metrology are based on NIM modules. These analogue setups have been thoroughly tested for decades now, becoming a reference in the field. Nevertheless, the renewal of ageing modules and the need for extra features both call for the development of new acquisition schemes based on digital processing. In this article, several technologies usable for instrumentation are first presented. A review of past and present projects is made in the second part, highlighting the fundamental role of dead-time management. The last part is dedicated to the description of two digital systems developed at LNE-LNHB. The first one has been designed for the instrumentation of a NaI(Tl) well-type crystal set-up, while the second one is used for the management of three photomultipliers in the framework of the TDCR method and as a part of the development of a digital platform for coincidence counting. (authors)

  20. LHCb : Novel real-time alignment and calibration of the LHCb Detector in Run2

    CERN Multimedia

    Tobin, Mark

    2015-01-01

    LHCb has introduced a novel real-time detector alignment and calibration strategy for LHC Run 2. Data collected at the start of the fill will be processed in a few minutes and used to update the alignment, while the calibration constants will be evaluated for each run. This procedure will improve the quality of the online alignment. For example, the vertex locator is retracted and reinserted for stable beam collisions in each fill to be centred on the primary vertex position in the transverse plane. Consequently its position changes on a fill-by-fill basis. Critically, this new realtime alignment and calibration procedure allows identical constants to be used in the online and offline reconstruction, thus improving the correlation between triggered and offline selected events. This offers the opportunity to optimise the event selection in the trigger by applying stronger constraints. The online calibration facilitates the use of hadronic particle identification using the RICH detectors at the trigger level. T...

  1. Novel real-time alignment and calibration of the LHCb detector in Run II

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z., E-mail: zhirui.xu@epfl.ch; Tobin, M.

    2016-07-11

    An automatic real-time alignment and calibration strategy of the LHCb detector was developed for the Run II. Thanks to the online calibration, tighter event selection criteria can be used in the trigger. Furthermore, the online calibration facilitates the use of hadronic particle identification using the Ring Imaging Cherenkov (RICH) detectors at the trigger level. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from both the operational and physics performance points of view. Specific challenges of this novel configuration are discussed, as well as the working procedures of the framework and its performance.

  2. Novel real-time alignment and calibration of the LHCb detector in Run II

    CERN Document Server

    AUTHOR|(CDS)2086132; Tobin, Mark

    2016-01-01

    An automatic real-time alignment and calibration strategy of the LHCb detector was developed for the Run II. Thanks to the online calibration, tighter event selection criteria can be used in the trigger. Furthermore, the online calibration facilitates the use of hadronic particle identification using the Ring Imaging Cherenkov (RICH) detectors at the trigger level. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from both the operational and physics performance points of view. Specific challenges of this novel configuration are discussed, as well as the working procedures of the framework and its performance.

  3. Instrumentation

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.G.

    1982-01-01

    This chapter reviews the parameters which are important to positron-imaging instruments. It summarizes the options which various groups have explored in designing tomographs and the methods which have been developed to overcome some of the limitations inherent in the technique as well as in present instruments. The chapter is not presented as a defense of positron imaging versus single-photon or other imaging modality, neither does it contain a description of various existing instruments, but rather stresses their common properties and problems. Design parameters which are considered are resolution, sampling requirements, sensitivity, methods of eliminating scattered radiation, random coincidences and attenuation. The implementation of these parameters is considered, with special reference to sampling, choice of detector material, detector ring diameter and shielding and variations in point spread function. Quantitation problems discussed are normalization, and attenuation and random corrections. Present developments mentioned are noise reduction through time-of-flight-assisted tomography and signal to noise improvements through high intrinsic resolution. Extensive bibliography. (U.K.)

  4. Novel Real-time Alignment and Calibration of the LHCb detector in Run2

    Science.gov (United States)

    Martinelli, Maurizio; LHCb Collaboration

    2017-10-01

    LHCb has introduced a novel real-time detector alignment and calibration strategy for LHC Run2. Data collected at the start of the fill are processed in a few minutes and used to update the alignment parameters, while the calibration constants are evaluated for each run. This procedure improves the quality of the online reconstruction. For example, the vertex locator is retracted and reinserted for stable beam conditions in each fill to be centred on the primary vertex position in the transverse plane. Consequently its position changes on a fill-by-fill basis. Critically, this new real-time alignment and calibration procedure allows identical constants to be used in the online and offline reconstruction, thus improving the correlation between triggered and offline-selected events. This offers the opportunity to optimise the event selection in the trigger by applying stronger constraints. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from both the operational and physics performance points of view. Specific challenges of this novel configuration are discussed, as well as the working procedures of the framework and its performance.

  5. Run-Time HW/SW Scheduling of Data Flow Applications on Reconfigurable Architectures

    Directory of Open Access Journals (Sweden)

    Ghaffari Fakhreddine

    2009-01-01

    Full Text Available This paper presents an efficient dynamic and run-time Hardware/Software scheduling approach. This scheduling heuristic consists in mapping online the different tasks of a highly dynamic application in such a way that the total execution time is minimized. We consider soft real-time data flow graph oriented applications for which the execution time is function of the input data nature. The target architecture is composed of two processors connected to a dynamically reconfigurable hardware accelerator. Our approach takes advantage of the reconfiguration property of the considered architecture to adapt the treatment to the system dynamics. We compare our heuristic with another similar approach. We present the results of our scheduling method on several image processing applications. Our experiments include simulation and synthesis results on a Virtex V-based platform. These results show a better performance against existing methods.

  6. Novel real-time alignment and calibration of the LHCb detector in Run2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00144085

    2017-01-01

    LHCb has introduced a novel real-time detector alignment and calibration strategy for LHC Run2. Data collected at the start of the fill are processed in a few minutes and used to update the alignment parameters, while the calibration constants are evaluated for each run. This procedure improves the quality of the online reconstruction. For example, the vertex locator is retracted and reinserted for stable beam conditions in each fill to be centred on the primary vertex position in the transverse plane. Consequently its position changes on a fill-by-fill basis. Critically, this new real-time alignment and calibration procedure allows identical constants to be used in the online and offline reconstruction, thus improving the correlation between triggered and offline-selected events. This offers the opportunity to optimise the event selection in the trigger by applying stronger constraints. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructur...

  7. Real-time alignment and calibration of the LHCb Detector in Run II

    CERN Multimedia

    Dujany, Giulio

    2016-01-01

    Stable, precise spatial alignment and PID calibration are necessary to achieve optimal detector performance. During Run2, LHCb has a new real-time detector alignment and calibration to allow equivalent performance in the online and offline reconstruction to be reached. This offers the opportunity to optimise the event selection by applying stronger constraints, and to use hadronic particle identification at the trigger level. The computing time constraints are met through the use of a new dedicated framework using the multi-core farm infrastructure for the trigger. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from the operative and physics performance point of view. Specific challenges of this configuration are discussed, as well as the designed framework and its performance.

  8. Real-time alignment and calibration of the LHCb Detector in Run II

    CERN Multimedia

    Dujany, Giulio

    2015-01-01

    Stable, precise spatial alignment and PID calibration are necessary to achieve optimal detector performance. During Run2, LHCb will have a new real-time detector alignment and calibration to allow equivalent performance in the online and offline reconstruction to be reached. This offers the opportunity to optimise the event selection by applying stronger constraints, and to use hadronic particle identification at the trigger level. The computing time constraints are met through the use of a new dedicated framework using the multi-core farm infrastructure for the trigger. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from the operative and physics performance point of view. Specific challenges of this configuration are discussed, as well as the designed framework and its performance.

  9. Real time data analysis with the ATLAS Trigger at the LHC in Run-2

    CERN Document Server

    Beauchemin, Pierre-Hugues; The ATLAS collaboration

    2018-01-01

    The trigger selection capabilities of the ATLAS detector have been significantly enhanced for the LHC Run- 2 in order to cope with the higher event rates and with the large number of simultaneous interactions (pile-up) per protonproton bunch crossing. A new hardware system, designed to analyse real time event-topologies at Level-1 came to full use in 2017. A hardware-based track reconstruction system, expected to be used real-time in 2018, is designed to provide track information to the high-level software trigger at its full input rate. The high-level trigger selections are largely relying on offline-like reconstruction techniques, and in some cases multivariate analysis methods. Despite the sudden change in LHC operations during the second half of 2017, which caused an increase in pile-up and therefore also in CPU usage of the trigger algorithms, the set of triggers (so called trigger menu) running online has undergone only minor modifications thanks to the robustness and redundancy of the trigger system, a...

  10. Real time data analysis with the ATLAS trigger at the LHC in Run-2

    CERN Document Server

    Beauchemin, Pierre-Hugues; The ATLAS collaboration

    2018-01-01

    The trigger selection capabilities of the ATLAS detector have been significantly enhanced for the LHC Run-2 in order to cope with the higher event rates and with the large number of simultaneous interactions (pile-up) per proton-proton bunch crossing. A new hardware system, designed to analyse real time event-topologies at Level-1 came to full use in 2017. A hardware-based track reconstruction system, expected to be used real-time in 2018, is designed to provide track information to the high-level software trigger at its full input rate. The high-level trigger selections are largely relying on offline-like reconstruction techniques, and in some cases multi-variate analysis methods. Despite the sudden change in LHC operations during the second half of 2017, which caused an increase in pile-up and therefore also in CPU usage of the trigger algorithms, the set of triggers (so called trigger menu) running online has undergone only minor modifications thanks to the robustness and redundancy of the trigger system, ...

  11. Methods of Run-Time Error Detection in Distributed Process Control Software

    DEFF Research Database (Denmark)

    Drejer, N.

    In this thesis, methods of run-time error detection in application software for distributed process control is designed. The error detection is based upon a monitoring approach in which application software is monitored by system software during the entire execution. The thesis includes definition...... and constraint evaluation is designed for the modt interesting error types. These include: a) semantical errors in data communicated between application tasks; b) errors in the execution of application tasks; and c) errors in the timing of distributed events emitted by the application software. The design...... of error detection methods includes a high level software specification. this has the purpose of illustrating that the designed can be used in practice....

  12. Radionuclide inventories for short run-time space nuclear reactor systems

    International Nuclear Information System (INIS)

    Coats, R.L.

    1993-01-01

    Space Nuclear Reactor Systems, especially those used for propulsion, often have expected operation run times much shorter than those for land-based nuclear power plants. This produces substantially different radionuclide inventories to be considered in the safety analyses of space nuclear systems. This presentation describes an analysis utilizing ORIGEN2 and DKPOWER to provide comparisons among representative land-based and space systems. These comparisons enable early, conceptual considerations of safety issues and features in the preliminary design phases of operational systems, test facilities, and operations by identifying differences between the requirements for space systems and the established practice for land-based power systems. Early indications are that separation distance is much more effective as a safety measure for space nuclear systems than for power reactors because greater decay of the radionuclide activity occurs during the time to transport the inventory a given distance. In addition, the inventories of long-lived actinides are very low for space reactor systems

  13. Run-time Phenomena in Dynamic Software Updating: Causes and Effects

    DEFF Research Database (Denmark)

    Gregersen, Allan Raundahl; Jørgensen, Bo Nørregaard

    2011-01-01

    The development of a dynamic software updating system for statically-typed object-oriented programming languages has turned out to be a challenging task. Despite the fact that the present state of the art in dynamic updating systems, like JRebel, Dynamic Code Evolution VM, JVolve and Javeleon, all...... written in statically-typed object-oriented programming languages. In this paper, we present our experience from developing dynamically updatable applications using a state-of-the-art dynamic updating system for Java. We believe that the findings presented in this paper provide an important step towards...... provide very transparent and flexible technical solutions to dynamic updating, case studies have shown that designing dynamically updatable applications still remains a challenging task. This challenge has its roots in a number of run-time phenomena that are inherent to dynamic updating of applications...

  14. The Trick Simulation Toolkit: A NASA/Opensource Framework for Running Time Based Physics Models

    Science.gov (United States)

    Penn, John M.

    2016-01-01

    The Trick Simulation Toolkit is a simulation development environment used to create high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. Its purpose is to generate a simulation executable from a collection of user-supplied models and a simulation definition file. For each Trick-based simulation, Trick automatically provides job scheduling, numerical integration, the ability to write and restore human readable checkpoints, data recording, interactive variable manipulation, a run-time interpreter, and many other commonly needed capabilities. This allows simulation developers to concentrate on their domain expertise and the algorithms and equations of their models. Also included in Trick are tools for plotting recorded data and various other supporting utilities and libraries. Trick is written in C/C++ and Java and supports both Linux and MacOSX computer operating systems. This paper describes Trick's design and use at NASA Johnson Space Center.

  15. Novel time-dependent alignment of the ATLAS Inner Detector in the LHC Run 2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00386283; The ATLAS collaboration

    2016-01-01

    ATLAS is a multipurpose experiment at the LHC proton-proton collider. Its physics goals require an unbiased and high resolution measurement of the charged particle kinematic parameters. These critically depend on the layout and performance of the tracking system and the quality of the alignment of its components. For the LHC Run 2, the system has been upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL). ATLAS Inner Detector alignment framework has been adapted and upgraded to correct very short time scale movements of the sub-detectors. In particular, a mechanical distortion of the IBL staves up to 20 μm and a vertical displacement of the Pixel detector of ~6 μm have been observed during data-taking. The techniques used to correct for these effects and to match the required Inner Detector performance will be presented.

  16. Operating Security System Support for Run-Time Security with a Trusted Execution Environment

    DEFF Research Database (Denmark)

    Gonzalez, Javier

    , it is safe to assume that any complex software is compromised. The problem is then to monitor and contain it when it executes in order to protect sensitive data and other sensitive assets. To really have an impact, any solution to this problem should be integrated in commodity operating systems...... in the Linux operating system. We are in the process of making this driver part of the mainline Linux kernel.......Software services have become an integral part of our daily life. Cyber-attacks have thus become a problem of increasing importance not only for the IT industry, but for society at large. A way to contain cyber-attacks is to guarantee the integrity of IT systems at run-time. Put differently...

  17. Supporting Multiprocessors in the Icecap Safety-Critical Java Run-Time Environment

    DEFF Research Database (Denmark)

    Zhao, Shuai; Wellings, Andy; Korsholm, Stephan Erbs

    The current version of the Safety Critical Java (SCJ) specification defines three compliance levels. Level 0 targets single processor programs while Level 1 and 2 can support multiprocessor platforms. Level 1 programs must be fully partitioned but Level 2 programs can also be more globally...... scheduled. As of yet, there is no official Reference Implementation for SCJ. However, the icecap project has produced a Safety-Critical Java Run-time Environment based on the Hardware-near Virtual Machine (HVM). This supports SCJ at all compliance levels and provides an implementation of the safety......-critical Java (javax.safetycritical) package. This is still work-in-progress and lacks certain key features. Among these is the ability to support multiprocessor platforms. In this paper, we explore two possible options to adding multiprocessor support to this environment: the “green thread” and the “native...

  18. Instrumentation

    International Nuclear Information System (INIS)

    Prieur, G.; Nadi, M.; Hedjiedj, A.; Weber, S.

    1995-01-01

    This second chapter on instrumentation gives little general consideration on history and classification of instrumentation, and two specific states of the art. The first one concerns NMR (block diagram of instrumentation chain with details on the magnets, gradients, probes, reception unit). The first one concerns precision instrumentation (optical fiber gyro-meter and scanning electron microscope), and its data processing tools (programmability, VXI standard and its history). The chapter ends with future trends on smart sensors and Field Emission Displays. (D.L.). Refs., figs

  19. Running vacuum in the Universe and the time variation of the fundamental constants of Nature

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsch, Harald [Nanyang Technological University, Institute for Advanced Study, Singapore (Singapore); Universitaet Muenchen, Physik-Department, Munich (Germany); Sola, Joan [Nanyang Technological University, Institute for Advanced Study, Singapore (Singapore); Universitat de Barcelona, Departament de Fisica Quantica i Astrofisica, Barcelona, Catalonia (Spain); Universitat de Barcelona (ICCUB), Institute of Cosmos Sciences, Barcelona, Catalonia (Spain); Nunes, Rafael C. [Universidade Federal de Juiz de Fora, Dept. de Fisica, Juiz de Fora, MG (Brazil)

    2017-03-15

    We compute the time variation of the fundamental constants (such as the ratio of the proton mass to the electron mass, the strong coupling constant, the fine-structure constant and Newton's constant) within the context of the so-called running vacuum models (RVMs) of the cosmic evolution. Recently, compelling evidence has been provided that these models are able to fit the main cosmological data (SNIa+BAO+H(z)+LSS+BBN+CMB) significantly better than the concordance ΛCDM model. Specifically, the vacuum parameters of the RVM (i.e. those responsible for the dynamics of the vacuum energy) prove to be nonzero at a confidence level >or similar 3σ. Here we use such remarkable status of the RVMs to make definite predictions on the cosmic time variation of the fundamental constants. It turns out that the predicted variations are close to the present observational limits. Furthermore, we find that the time evolution of the dark matter particle masses should be crucially involved in the total mass variation of our Universe. A positive measurement of this kind of effects could be interpreted as strong support to the ''micro-macro connection'' (viz. the dynamical feedback between the evolution of the cosmological parameters and the time variation of the fundamental constants of the microscopic world), previously proposed by two of us (HF and JS). (orig.)

  20. Haemoglobin mass and running time trial performance after recombinant human erythropoietin administration in trained men.

    Directory of Open Access Journals (Sweden)

    Jérôme Durussel

    Full Text Available UNLABELLED: Recombinant human erythropoietin (rHuEpo increases haemoglobin mass (Hb(mass and maximal oxygen uptake (v O(2 max. PURPOSE: This study defined the time course of changes in Hb(mass, v O(2 max as well as running time trial performance following 4 weeks of rHuEpo administration to determine whether the laboratory observations would translate into actual improvements in running performance in the field. METHODS: 19 trained men received rHuEpo injections of 50 IU•kg(-1 body mass every two days for 4 weeks. Hb(mass was determined weekly using the optimized carbon monoxide rebreathing method until 4 weeks after administration. v O(2 max and 3,000 m time trial performance were measured pre, post administration and at the end of the study. RESULTS: Relative to baseline, running performance significantly improved by ∼6% after administration (10:30±1:07 min:sec vs. 11:08±1:15 min:sec, p<0.001 and remained significantly enhanced by ∼3% 4 weeks after administration (10:46±1:13 min:sec, p<0.001, while v O(2 max was also significantly increased post administration (60.7±5.8 mL•min(-1•kg(-1 vs. 56.0±6.2 mL•min(-1•kg(-1, p<0.001 and remained significantly increased 4 weeks after rHuEpo (58.0±5.6 mL•min(-1•kg(-1, p = 0.021. Hb(mass was significantly increased at the end of administration compared to baseline (15.2±1.5 g•kg(-1 vs. 12.7±1.2 g•kg(-1, p<0.001. The rate of decrease in Hb(mass toward baseline values post rHuEpo was similar to that of the increase during administration (-0.53 g•kg(-1•wk(-1, 95% confidence interval (CI (-0.68, -0.38 vs. 0.54 g•kg(-1•wk(-1, CI (0.46, 0.63 but Hb(mass was still significantly elevated 4 weeks after administration compared to baseline (13.7±1.1 g•kg(-1, p<0.001. CONCLUSION: Running performance was improved following 4 weeks of rHuEpo and remained elevated 4 weeks after administration compared to baseline. These field performance effects coincided with r

  1. Effect of Light/Dark Cycle on Wheel Running and Responding Reinforced by the Opportunity to Run Depends on Postsession Feeding Time

    Science.gov (United States)

    Belke, T. W.; Mondona, A. R.; Conrad, K. M.; Poirier, K. F.; Pickering, K. L.

    2008-01-01

    Do rats run and respond at a higher rate to run during the dark phase when they are typically more active? To answer this question, Long Evans rats were exposed to a response-initiated variable interval 30-s schedule of wheel-running reinforcement during light and dark cycles. Wheel-running and local lever-pressing rates increased modestly during…

  2. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised

  3. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  4. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  5. Multisensor Instrument for Real-Time Biological Monitoring

    Science.gov (United States)

    Zhang, Sean (Zhanxiang); Xu, Guoda; Qiu, Wei; Lin, Freddie

    2004-01-01

    The figure schematically depicts an instrumentation system, called a fiber optic-based integration system (FOBIS), that is undergoing development to enable real-time monitoring of fluid cell cultures, bioprocess flows, and the like. The FOBIS design combines a micro flow cytometer (MFC), a microphotometer (MP), and a fluorescence-spectrum- or binding-force-measuring micro-sensor (MS) in a single instrument that is capable of measuring multiple biological parameters simultaneously or sequentially. The fiber-optic-based integration system is so named because the MFC, the MP, and the MS are integrated into a single optical system that is coupled to light sources and photometric equipment via optical fibers. The optical coupling components also include a wavelength-division multiplexer and diffractive optical elements. The FOBIS includes a laserdiode- and fiber-optic-based optical trapping subsystem (optical tweezers ) with microphotometric and micro-sensing capabilities for noninvasive confinement and optical measurement of relevant parameters of a single cell or other particle. Some of the measurement techniques implemented together by the FOBIS have long been used separately to obtain basic understanding of the optical properties of individual cells and other organisms, the optical properties of populations of organisms, and the interrelationships among these properties, physiology of the organisms, and physical processes that govern the media that surround the organisms. For example, flow cytometry yields information on numerical concentrations, cross-sectional areas, and types of cells or other particles. Micro-sensing can be used to measure pH and concentrations of oxygen, carbon dioxide, glucose, metabolites, calcium, and antigens in a cell-culture fluid, thereby providing feedback that can be helpful in improving control over a bioprocess. Microphotometry (including measurements of scattering and fluorescence) can yield further information about optically

  6. Instrument calls and real-time code for laboratory automation

    International Nuclear Information System (INIS)

    Taber, L.; Ames, H.S.; Yamauchi, R.K.; Barton, G.W. Jr.

    1978-01-01

    These programs are the result of a joint Lawrence Livermore Laboratory and Environmental Protection Agency project to automate water quality laboratories. They form the interface between the analytical instruments and the BASIC language programs for data reduction and analysis. They operate on Data General NOVA 840's at Cincinnati and Chicago and on a Data General ECLIPSE C330 at Livermore. The operating system consists of unmodified RDOS, Data General's disk operating system, and Data General's multiuser BASIC modified to provide the instrument CALLs and other functions described. Instruments automated at various laboratories include Technicon AutoAnalyzers, atomic absorption spectrophotometers, total organic carbon analyzers, an emission spectrometer, an electronic balance, sample changers, and an optical spectrophotometer. Other instruments may be automated using these same CALLs, or new CALLs may be written as described

  7. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described

  8. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  9. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk–run–rest mixtures

    Science.gov (United States)

    Long, Leroy L.; Srinivasan, Manoj

    2013-01-01

    On a treadmill, humans switch from walking to running beyond a characteristic transition speed. Here, we study human choice between walking and running in a more ecological (non-treadmill) setting. We asked subjects to travel a given distance overground in a given allowed time duration. During this task, the subjects carried, and could look at, a stopwatch that counted down to zero. As expected, if the total time available were large, humans walk the whole distance. If the time available were small, humans mostly run. For an intermediate total time, humans often use a mixture of walking at a slow speed and running at a higher speed. With analytical and computational optimization, we show that using a walk–run mixture at intermediate speeds and a walk–rest mixture at the lowest average speeds is predicted by metabolic energy minimization, even with costs for transients—a consequence of non-convex energy curves. Thus, sometimes, steady locomotion may not be energy optimal, and not preferred, even in the absence of fatigue. Assuming similar non-convex energy curves, we conjecture that similar walk–run mixtures may be energetically beneficial to children following a parent and animals on long leashes. Humans and other animals might also benefit energetically from alternating between moving forward and standing still on a slow and sufficiently long treadmill. PMID:23365192

  10. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised.

  11. Real time analysis with the upgraded LHCb trigger in Run III

    Science.gov (United States)

    Szumlak, Tomasz

    2017-10-01

    The current LHCb trigger system consists of a hardware level, which reduces the LHC bunch-crossing rate of 40 MHz to 1.1 MHz, a rate at which the entire detector is read out. A second level, implemented in a farm of around 20k parallel processing CPUs, the event rate is reduced to around 12.5 kHz. The LHCb experiment plans a major upgrade of the detector and DAQ system in the LHC long shutdown II (2018-2019). In this upgrade, a purely software based trigger system is being developed and it will have to process the full 30 MHz of bunch crossings with inelastic collisions. LHCb will also receive a factor of 5 increase in the instantaneous luminosity, which further contributes to the challenge of reconstructing and selecting events in real time with the CPU farm. We discuss the plans and progress towards achieving efficient reconstruction and selection with a 30 MHz throughput. Another challenge is to exploit the increased signal rate that results from removing the 1.1 MHz readout bottleneck, combined with the higher instantaneous luminosity. Many charm hadron signals can be recorded at up to 50 times higher rate. LHCb is implementing a new paradigm in the form of real time data analysis, in which abundant signals are recorded in a reduced event format that can be fed directly to the physics analyses. These data do not need any further offline event reconstruction, which allows a larger fraction of the grid computing resources to be devoted to Monte Carlo productions. We discuss how this real-time analysis model is absolutely critical to the LHCb upgrade, and how it will evolve during Run-II.

  12. Personal best marathon time and longest training run, not anthropometry, predict performance in recreational 24-hour ultrarunners.

    Science.gov (United States)

    Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas; Lepers, Romuald

    2011-08-01

    In recent studies, a relationship between both low body fat and low thicknesses of selected skinfolds has been demonstrated for running performance of distances from 100 m to the marathon but not in ultramarathon. We investigated the association of anthropometric and training characteristics with race performance in 63 male recreational ultrarunners in a 24-hour run using bi and multivariate analysis. The athletes achieved an average distance of 146.1 (43.1) km. In the bivariate analysis, body mass (r = -0.25), the sum of 9 skinfolds (r = -0.32), the sum of upper body skinfolds (r = -0.34), body fat percentage (r = -0.32), weekly kilometers ran (r = 0.31), longest training session before the 24-hour run (r = 0.56), and personal best marathon time (r = -0.58) were related to race performance. Stepwise multiple regression showed that both the longest training session before the 24-hour run (p = 0.0013) and the personal best marathon time (p = 0.0015) had the best correlation with race performance. Performance in these 24-hour runners may be predicted (r2 = 0.46) by the following equation: Performance in a 24-hour run, km) = 234.7 + 0.481 (longest training session before the 24-hour run, km) - 0.594 (personal best marathon time, minutes). For practical applications, training variables such as volume and intensity were associated with performance but not anthropometric variables. To achieve maximum kilometers in a 24-hour run, recreational ultrarunners should have a personal best marathon time of ∼3 hours 20 minutes and complete a long training run of ∼60 km before the race, whereas anthropometric characteristics such as low body fat or low skinfold thicknesses showed no association with performance.

  13. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  14. A new view of responses to first-time barefoot running.

    OpenAIRE

    Wilkinson, Mick; Caplan, Nick; Akenhead, Richard; Hayes, Phil

    2015-01-01

    We examined acute alterations in gait and oxygen cost from shod-to-barefoot running in habitually-shod well-trained runners with no prior experience of running barefoot. Thirteen runners completed six-minute treadmill runs shod and barefoot on separate days at a mean speed of 12.5 km·h-1. Steady-state oxygen cost in the final minute was recorded. Kinematic data were captured from 30-consecutive strides. Mean differences between conditions were estimated with 90% confidence intervals. When bar...

  15. The optimal production-run time for a stock-dependent imperfect production process

    Directory of Open Access Journals (Sweden)

    Jain Divya

    2013-01-01

    Full Text Available This paper develops an inventory model for a hypothesized volume flexible manufacturing system in which the production rate is stock-dependent and the system produces both perfect and imperfect quality items. The demand rate of perfect quality items is known and constant, whereas the demand rate of imperfect (non-conforming to specifications quality items is a function of discount offered in the selling price. In this paper, we determine an optimal production-run time and the optimal discount that should be offered in the selling price to influence the sale of imperfect quality items produced by the manufacturing system. The considered model aims to maximize the net profit obtained through the sales of both perfect and imperfect quality items subject to certain constraints of the system. The solution procedure suggests the use of ‘Interior Penalty Function Method’ to solve the associated constrained maximization problem. Finally, a numerical example demonstrating the applicability of proposed model has been included.

  16. Running out of time: exploring women's motivations for social egg freezing.

    Science.gov (United States)

    Baldwin, Kylie; Culley, Lorraine; Hudson, Nicky; Mitchell, Helene

    2018-04-12

    Few qualitative studies have explored women's use of social egg freezing. Derived from an interview study of 31 participants, this article explores the motivations of women using this technology. Semi-structured interviews were conducted with 31 users of social egg freezing resident in UK (n = 23), USA (n = 7) and Norway (n = 1). Interviews were face to face (n = 16), through Skype and Facetime (n = 9) or by telephone (n = 6). Data were analyzed using interpretive thematic analysis. Women's use of egg freezing was shaped by fears of running out of time to form a conventional family, difficulties in finding a partner and concerns about "panic partnering", together with a desire to avoid future regrets and blame. For some women, use of egg freezing was influenced by recent fertility or health diagnoses as well as critical life events. A fifth of the participants also disclosed an underlying fertility or health issue as affecting their decision. The study provides new insights in to the complex motivations women have for banking eggs. It identifies how women's use of egg freezing was an attempt to "preserve fertility" in the absence of the particular set of "life conditions" they regarded as crucial for pursuing parenthood. It also demonstrates that few women were motivated by a desire to enhance their career and that the boundaries between egg freezing for medical and for social reasons may be more porous than first anticipated.

  17. A Test Run of the EGSIEM Near Real-Time Service Based on GRACE Mission Data

    Science.gov (United States)

    Kvas, A.; Gruber, C.; Gouweleeuw, B.; Guntner, A.; Mayer-Gürr, T.; Flechtner, F. M.

    2017-12-01

    To enable the use of GRACE and GRACE-FO data for rapid monitoring applications, the EGSIEM (European Gravity Service for Improved Emergency Management) project, funded by the Horizon 2020 Framework Program for Research and Innovation of the European Union, has implemented a demonstrator for a near real-time (NRT) gravity field service. The goal of this service is to provide daily gravity field solutions with a maximum latency of five days. For this purpose, two independent approaches were developed at the German Research Centre for Geosciences (GFZ) and Graz University of Technology (TUG). Based on these daily gravity field solutions, statistical flood and drought indicators are derived by the EGSIEM Hydrological Service, developed at GFZ. The NRT products are subsequently provided to the Center for Satellite based Crisis Information (ZKI) at the German Aerospace Center as well as the Global Flood Awareness System (GloFAS) at the Joint Research Center of the European Commission. In the first part of this contribution, the performance of the service based on a statistical analysis of historical flood events during the GRACE period is evaluated. Then, results from the six month long operational test run of the service which started on April 1st 2017 are presented and a comparison between historical and operational gravity products and flood indicators is made.

  18. A Run-Time Verification Framework for Smart Grid Applications Implemented on Simulation Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Ciraci, Selim; Sozer, Hasan; Tekinerdogan, Bedir

    2013-05-18

    Smart grid applications are implemented and tested with simulation frameworks as the developers usually do not have access to large sensor networks to be used as a test bed. The developers are forced to map the implementation onto these frameworks which results in a deviation between the architecture and the code. On its turn this deviation makes it hard to verify behavioral constraints that are de- scribed at the architectural level. We have developed the ConArch toolset to support the automated verification of architecture-level behavioral constraints. A key feature of ConArch is programmable mapping for architecture to the implementation. Here, developers implement queries to identify the points in the target program that correspond to architectural interactions. ConArch generates run- time observers that monitor the flow of execution between these points and verifies whether this flow conforms to the behavioral constraints. We illustrate how the programmable mappings can be exploited for verifying behavioral constraints of a smart grid appli- cation that is implemented with two simulation frameworks.

  19. Novel real-time alignment and calibration of LHCb detector for Run II and tracking for the upgrade.

    CERN Document Server

    AUTHOR|(CDS)2091576

    2016-01-01

    LHCb has introduced a novel real-time detector alignment and calibration strategy for LHC Run II. Data collected at the start of the fill is processed in a few minutes and used to update the alignment, while the calibration constants are evaluated for each run. The procedure aims to improve the quality of the online selection and performance stability. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. A similar scheme is planned to be used for Run III foreseen to start in 2020. At that time LHCb will run at an instantaneous luminosity of $2 \\times 10^{33}$ cm$^2$ s$^1$ and a fully software based trigger strategy will be used. The new running conditions and the tighter timing constraints in the software trigger (only 13 ms per event are available) represent a big challenge for track reconstruction. The new software based trigger strategy implies a full detector read-out at the collision rate of 40 MHz. High performance ...

  20. Instruments

    International Nuclear Information System (INIS)

    Buehrer, W.

    1996-01-01

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs

  1. Accuracy analysis of the State-of-Charge and remaining run-time determination for lithium-ion batteries

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Notten, P.H.L.; Op het Veld, J.H.G.; Regtien, Paulus P.L.

    2008-01-01

    This paper describes the various error sources in a real-time State-of-Charge (SoC) evaluation system and their effects on the overall accuracy in the calculation of the remaining run-time of a battery-operated system. The SoC algorithm for Li-ion batteries studied in this paper combines direct

  2. Accuracy analysis of the state-of-charge and remaining run-time determination for lithium-ion batteries

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Notten, P.H.L.; Op het Veld, J.H.G.; Regtien, P.P.L.

    2009-01-01

    This paper describes the various error sources in a real-time State-of-Charge (SoC) evaluation system and their effects on the overall accuracy in the calculation of the remaining run-time of a battery-operated system. The SoC algorithm for Li-ion batteries studied in this paper combines direct

  3. Running the running

    OpenAIRE

    Cabass, Giovanni; Di Valentino, Eleonora; Melchiorri, Alessandro; Pajer, Enrico; Silk, Joseph

    2016-01-01

    We use the recent observations of Cosmic Microwave Background temperature and polarization anisotropies provided by the Planck satellite experiment to place constraints on the running $\\alpha_\\mathrm{s} = \\mathrm{d}n_{\\mathrm{s}} / \\mathrm{d}\\log k$ and the running of the running $\\beta_{\\mathrm{s}} = \\mathrm{d}\\alpha_{\\mathrm{s}} / \\mathrm{d}\\log k$ of the spectral index $n_{\\mathrm{s}}$ of primordial scalar fluctuations. We find $\\alpha_\\mathrm{s}=0.011\\pm0.010$ and $\\beta_\\mathrm{s}=0.027\\...

  4. Biomechanical characteristics of skeletal muscles and associations between running speed and contraction time in 8- to 13-year-old children.

    Science.gov (United States)

    Završnik, Jernej; Pišot, Rado; Šimunič, Boštjan; Kokol, Peter; Blažun Vošner, Helena

    2017-02-01

    Objective To investigate associations between running speeds and contraction times in 8- to 13-year-old children. Method This longitudinal study analyzed tensiomyographic measurements of vastus lateralis and biceps femoris muscles' contraction times and maximum running speeds in 107 children (53 boys, 54 girls). Data were evaluated using multiple correspondence analysis. Results A gender difference existed between the vastus lateralis contraction times and running speeds. The running speed was less dependent on vastus lateralis contraction times in boys than in girls. Analysis of biceps femoris contraction times and running speeds revealed that running speeds of boys were much more structurally associated with contraction times than those of girls, for whom the association seemed chaotic. Conclusion Joint category plots showed that contraction times of biceps femoris were associated much more closely with running speed than those of the vastus lateralis muscle. These results provide insight into a new dimension of children's development.

  5. Instrumental dead-time and its relationship with matrix corrections in X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Thomas, I.L.; Haukka, M.T.; Anderson, D.H.

    1979-01-01

    The relationship between instrumental dead-time and the self-absorption coefficients, αsub(ii) in x.r.f. matrix correction by means of influence coefficients, is not generally recognized but has important analytical consequences. Systematic errors of the order of 1% (relative) for any analyte result from experimental uncertainties in instrumental dead-time. Such errors are applied unevenly across a given range of concentration because the error depends on the calibration standards and on the instrumental conditions used. Refinement of the instrumental dead-time value and other calibration parameters to conform with influence coefficients determined elsewhere assumes exact knowledge of dead-time of the instrument used originally, and quite similar excitation conditions and spectrometer geometry for the two instruments. Though these qualifications may not be met, adjustment of any of the parameters (dead-time, reference concentration, background concentration, self-absorption and other influence coefficients) can be easily achieved. (Auth.)

  6. Finite Difference Time Domain Modeling at USA Instruments, Inc.

    Science.gov (United States)

    Curtis, Richard

    2003-10-01

    Due to the competitive nature of the commercial MRI industry, it is essential for the financial health of a participating company to innovate new coil designs and bring product to market rapidly in response to ever-changing market conditions. However, the technology of MRI coil design is still early in its stage of development and its principles are yet evolving. As a result, it is not always possible to know the relevant electromagnetic effects of a given design since the interaction of coil elements is complex and often counter-intuitive. Even if the effects are known qualitatively, the quantitative results are difficult to obtain. At USA Instruments, Inc., the acquisition of the XFDTDâ electromagnetic simulation tool from REMCOM, Inc., has been helpful in determining the electromagnetic performance characteristics of existing coil designs in the prototype stage before the coils are released for production. In the ideal case, a coil design would be modeled earlier at the conceptual stage, so that only good designs will make it to the prototyping stage and the electromagnetic characteristics better understood very early in the design process and before the testing stage has begun. This paper is a brief overview of using FDTD modeling for MRI coil design at USA Instruments, Inc., and shows some of the highlights of recent FDTD modeling efforts on Birdcage coils, a staple of the MRI coil design portfolio.

  7. Mapping real-life applications on run-time reconfigurable NoC-based MPSoC on FPGA.

    NARCIS (Netherlands)

    Singh, A.K.; Kumar, A.; Srikanthan, Th.; Ha, Y.

    2010-01-01

    Multiprocessor systems-on-chip (MPSoC) are required to fulfill the performance demand of modern real-life embedded applications. These MPSoCs are employing Network-on-Chip (NoC) for reasons of efficiency and scalability. Additionally, these systems need to support run-time reconfiguration of their

  8. An investigation of the relation between the 30 meter running time and the femoral volume fraction in the thigh

    Directory of Open Access Journals (Sweden)

    MY Tasmektepligil

    2009-12-01

    Full Text Available Leg components are thought to be a related to speed. Only a limited number of studies have, however, examined the interaction between speed and bone size. In this study, we examined the relationship between the time taken by football players to run thirty meters and the fraction which the femur forms compared to the entire thigh region. Data collected from thirty male football players of average age 17.3 (between 16-19 years old were analyzed. First we detected the thirty meter running times and then we estimated the volume fraction of the femur to the entire thigh region using stereological methods on magnetic resonance images. Our data showed that there was a highly negative relationship between the 30 meter running times and the volume fraction of the bone to the thigh region. Thus, 30 meter running time decreases as the fraction of the bone to the thigh region increases. In other words, speed increases as the fraction of bone volume increases. Our data indicate that selecting sportsman whose femoral volume fractions are high will provide a significant benefit to enhancing performance in those branches of sports which require speed. Moreover, we concluded that training which can increase the bone volume fraction should be practiced when an increase in speed is desired and that the changes in the fraction of thigh region components should be monitored during these trainings.

  9.  Running speed during training and percent body fat predict race time in recreational male marathoners

    Directory of Open Access Journals (Sweden)

    Barandun U

    2012-07-01

    Full Text Available  Background: Recent studies have shown that personal best marathon time is a strong predictor of race time in male ultramarathoners. We aimed to determine variables predictive of marathon race time in recreational male marathoners by using the same characteristics of anthropometry and training as used for ultramarathoners.Methods: Anthropometric and training characteristics of 126 recreational male marathoners were bivariately and multivariately related to marathon race times.Results: After multivariate regression, running speed of the training units (β=-0.52, P<0.0001 and percent body fat (β=0.27, P <0.0001 were the two variables most strongly correlated with marathon race times. Marathon race time for recreational male runners may be estimated to some extent by using the following equation (r2 = 0.44: race time (minutes = 326.3 + 2.394 × (percent body fat, % – 12.06 × (speed in training, km/hours. Running speed during training sessions correlated with prerace percent body fat (r=0.33, P=0.0002. The model including anthropometric and training variables explained 44% of the variance of marathon race times, whereas running speed during training sessions alone explained 40%. Thus, training speed was more predictive of marathon performance times than anthropometric characteristics.Conclusion: The present results suggest that low body fat and running speed during training close to race pace (about 11 km/hour are two key factors for a fast marathon race time in recreational male marathoner runners.Keywords: body fat, skinfold thickness, anthropometry, endurance, athlete

  10. Long-run sectoral development time series evidence for the German economy

    OpenAIRE

    Dietrich, Andreas; Krüger, Jens J.

    2008-01-01

    In economic development, long-run structural change among the three main sectors of an economy follows a typical pattern with the primary sector (agriculture, mining) first dominating, followed by the secondary sector (manufacturing) and finally by the tertiary sector (services) in terms of employment and value added. We reconsider the verbal theoretical work of Fourastié and build a simple model encompassing its main features, most notably the macroeconomic influences on the sectoral develop...

  11. A low-power timing discriminator for space instrumentation

    International Nuclear Information System (INIS)

    Devoto, P.; Medale, J.-L.; Aoustin, C.; Sauvaud, J.-A.

    2004-01-01

    A front-end electronics for three-dimensional time-of-flight space plasma analyzers has been developed. These mass spectrometers, allowing the determination of the distribution functions of the main ion species, are based on the selection of the ion energy per charge and arrival direction using an electrostatic analyzer, and on the determination of their velocity from the time separating a start and a stop pulse. The start pulse is provided by the collection on a microchannel plate (MCP) of secondary electrons emitted when each ion crosses a thin carbon foil. The stop pulse is provided by the ion hitting a second MCP. The aim of the electronics presented in this article is to process the signals provided by MCPs to generate logic pulses, allowing the measurement of precise time differences. The design consists of an amplifier and a timing discriminator which performs a timing compensation to eliminate the time walk. A first version of the circuit has been developed and achieves a time walk of ∼400 ps for an input amplitude dynamic range of 25 dB. The total power dissipation per channel is ∼14 mW at an event rate of 100 KHz and ∼19 mW at a rate of 1 MHz. The influence of the temperature on the circuit behavior has been investigated. The performances of the circuit in a complete detector were also evaluated. This circuit is designed to be used in various designs for future missions

  12. Optimal design and real time control of the integrated urban run-off system

    DEFF Research Database (Denmark)

    Harremoës, Poul; Rauch, Wolfgang

    1999-01-01

    Traditional design of urban run-off systems is based on fixed rules with respect to the points of demarcation between the three systems involved: the sewer system, the treatment plant and the receiving water. An alternative to fixed rules is to model the total system. There is still uncertainty...... and evaluation of competing alternatives for design. However, the complexity of these systems is such that the parameters associated with pollution are hardly identifiable on the basis of reasonable monitoring programmes. The empirical-iterative approach: structures are built on simplified assumptions...

  13. Time-resolved Laue diffraction from protein crystals: Instrumental considerations

    International Nuclear Information System (INIS)

    Bilderback, D.H.; Cornell Univ., Ithaca, NY; Moffat, K.; Szebenyi, D.M.E.

    1984-01-01

    A serious limitation of macromolecular crystallography has been its inability to determine changes in structure on a biochemical time scale of milliseconds or less. Recently, we have shown that X-ray exposures on single crystals of macromolecules may be obtained in the millisecond time range through the use of intense, polychromatic radiation with Δlambda/lambda approx.= 0.2 derived from the Cornell High Energy Synchrotron Source, CHESS. Such radiation falling on a stationary crystal yields a Laue diffraction pattern, in which almost all Laue reflections arise from a unique set of Miller indices and where their intensities are automatically integrated over wavelength. This Laue technique requires wide band pass optics, which may be obtained by a combination of reflection and transmission mirrors, filters or layered synthetic microstructures. Time-resolved macromolecular crystallography may be achieved by several data collection schemes: 'one-shot' recording coupled to a simple streak camera, repetitive sample perturbation coupled to a detector with temporal resolution and repetitive perturbation which uses the synchrotron pulses for stroboscopic triggering and detection. These schemes are appropriate for different time scales, roughly the milli-, micro- and nanosecond regimes. It appears that time-resolved crystallography is entirely feasible, with an ultimate time resolution limited only by the length of a synchrotron light pulse, some 150 ps at CHESS. (orig.)

  14. The effect of time constraints and running phases on combined event pistol shooting performance.

    Science.gov (United States)

    Dadswell, Clare; Payton, Carl; Holmes, Paul; Burden, Adrian

    2016-01-01

    The combined event is a crucial aspect of the modern pentathlon competition, but little is known about how shooting performance changes through the event. This study aimed to identify (i) how performance-related variables changed within each shooting series and (ii) how performance-related variables changed between each shooting series. Seventeen modern pentathletes completed combined event trials. An optoelectronic shooting system recorded score and pistol movement, and force platforms recorded centre of pressure movement 1 s prior to every shot. Heart rate and blood lactate values were recorded throughout the event. Whilst heart rate and blood lactate significantly increased between series (P  0.05). Thus, combined event shooting performance following each running phase appears similar to shooting performance following only 20 m of running. This finding has potential implications for the way in which modern pentathletes train for combined event shooting, and highlights the need for modern pentathletes to establish new methods with which to enhance shooting accuracy.

  15. Detection of time-varying harmonic amplitude alterations due to spectral interpolations between musical instrument tones.

    Science.gov (United States)

    Horner, Andrew B; Beauchamp, James W; So, Richard H Y

    2009-01-01

    Gradated spectral interpolations between musical instrument tone pairs were used to investigate discrimination as a function of time-averaged spectral difference. All possible nonidentical pairs taken from a collection of eight musical instrument sounds consisting of bassoon, clarinet, flute, horn, oboe, saxophone, trumpet, and violin were tested. For each pair, several tones were generated with different balances between the primary and secondary instruments, where the balance was fixed across the duration of each tone. Among primary instruments it was found that changes to horn and bassoon [corrected] were most easily discriminable, while changes to saxophone and trumpet timbres were least discriminable. Among secondary instruments, the clarinet had the strongest effect on discrimination, whereas the bassoon had the least effect. For primary instruments, strong negative correlations were found between discrimination and their spectral incoherences, suggesting that the presence of dynamic spectral variations tends to increase the difficulty of detecting time-varying alterations such as spectral interpolation.

  16. Real-time instrument-failure detection in the LOFT pressurizer using functional redundancy

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1982-07-01

    The functional redundancy approach to detecting instrument failures in a pressurized water reactor (PWR) pressurizer is described and evaluated. This real-time method uses a bank of Kalman filters (one for each instrument) to generate optimal estimates of the pressurizer state. By performing consistency checks between the output of each filter, failed instruments can be identified. Simulation results and actual pressurizer data are used to demonstrate the capabilities of the technique

  17. Safety, Liveness and Run-time Refinement for Modular Process-Aware Information Systems with Dynamic Sub Processes

    DEFF Research Database (Denmark)

    Debois, Søren; Hildebrandt, Thomas; Slaats, Tijs

    2015-01-01

    and verification of flexible, run-time adaptable process-aware information systems, moved into practice via the Dynamic Condition Response (DCR) Graphs notation co-developed with our industrial partner. Our key contributions are: (1) A formal theory of dynamic sub-process instantiation for declarative, event......We study modularity, run-time adaptation and refinement under safety and liveness constraints in event-based process models with dynamic sub-process instantiation. The study is part of a larger programme to provide semantically well-founded technologies for modelling, implementation......-based processes under safety and liveness constraints, given as the DCR* process language, equipped with a compositional operational semantics and conservatively extending the DCR Graphs notation; (2) an expressiveness analysis revealing that the DCR* process language is Turing-complete, while the fragment cor...

  18. Time series analysis of nuclear instrumentation in EBR-II

    International Nuclear Information System (INIS)

    Imel, G.R.

    1996-01-01

    Results of a time series analysis of the scaler count data from the 3 wide range nuclear detectors in the Experimental Breeder Reactor-II are presented. One of the channels was replaced, and it was desired to determine if there was any statistically significant change (ie, improvement) in the channel's response after the replacement. Data were collected from all 3 channels for 16-day periods before and after detector replacement. Time series analysis and statistical tests showed that there was no significant change after the detector replacement. Also, there were no statistically significant differences among the 3 channels, either before or after the replacement. Finally, it was determined that errors in the reactivity change inferred from subcritical count monitoring during fuel handling would be on the other of 20-30 cents for single count intervals

  19. Design and Implementation of a New Run-time Life-cycle for Interactive Public Display Applications

    OpenAIRE

    Cardoso, Jorge C. S.; Perpétua, Alice

    2015-01-01

    Public display systems are becoming increasingly complex. They are moving from passive closed systems to open interactive systems that are able to accommodate applications from several independent sources. This shift needs to be accompanied by a more flexible and powerful application management. In this paper, we propose a run-time life-cycle model for interactive public display applications that addresses several shortcomings of current display systems. Our mo...

  20. Effect of injection timing on combustion and performance of a direct injection diesel engine running on Jatropha methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Jindal, S. [Mechanical Engineering Department, College of Technology & Engineering, Maharana Pratap University of Agriculture and Technology, Udaipur 313001 (India)

    2011-07-01

    The present study aims at evaluation of effect of injection timing on the combustion, performance and emissions of a small power diesel engine, commonly used for agriculture purpose, running on pure biodiesel, prepared from Jatropha (Jatropha curcas) vegetable oil. The effect of varying injection timing was evaluated in terms of thermal efficiency, specific fuel consumption, power and mean effective pressure, exhaust temperature, cylinder pressure, rate of pressure rise and the heat release rate. It was found that retarding the injection timing by 3 degrees enhances the thermal efficiency by about 8 percent.

  1. Real-time Grill Bar Occupation: Archiving Instrument

    DEFF Research Database (Denmark)

    2015-01-01

    The project explores the unregarded function of the classic Danish grill bar, currently disappearing due to processes of gentrification. Despite its unassuming appearance, the grill bar is a vital place for social interaction and coexistence on an informal basis.Its architecture, often referred......’, conducted at the Aarhus School of Architecture. Engaging Through Architecture: “Real time Grill Bar Occupation wants to engage with the audience and questions the role of the architect (and architecture itself) in relation to the social dimension of the city – more specifically the seemingly banal function...... of the typical Danish grill bar as a vital place of social co-existence and informal interaction”....

  2. Upper Bounds Prediction of the Execution Time of Programs Running on ARM Cortex-A Systems

    OpenAIRE

    Fedotova , Irina; Krause , Bernd; Siemens , Eduard

    2017-01-01

    Part 6: Embedded and Real Time Systems; International audience; This paper describes the application of statistical analysis of the timing behavior for a generic real-time task model. Using specific processor of ARM Cortex-A series and an empirical approach of time values retrieval, the algorithm to predict the upper bounds for the task of the time acquisition operation has been formulated. For the experimental verification of the algorithm, we have used the robust Measurement-Based Probabili...

  3. Comparison of Cleaning Efficacy and Instrumentation Time in Primary Molars: Mtwo Rotary Instruments vs. Hand K-Files.

    Science.gov (United States)

    Ramezanali, Fatemeh; Afkhami, Farzaneh; Soleimani, Ali; Kharrazifard, Mohammad Javad; Rafiee, Farshid

    2015-01-01

    Pulpectomy is the preferred treatment for restorable primary teeth with symptomatic irreversible pulpitis or periradicular lesion. Considering the rather new application of rotary files for pulpectomy of primary teeth, the aim of this study was to compare the cleaning efficacy and instrumentation time of hand K-files and Mtwo rotary system for preparation of human primary molars. This experimental study was conducted on 100 extracted primary maxillary and mandibular intact molars with no resorption. Access cavities were prepared and India ink was injected into the root canal on a vibrator using an insulin syringe. Canals were then divided into 5 groups (n=20): in group I, canals were instrumented using K-files up to #25 for mesial and buccal canals and #30 for palatal and distal canals. In group II, canals were prepared using Mtwo rotary files (15/0.05, 20/0.06 and 25/0.06 for mesial and buccal canals and 15/0.05, 20/0.06, 25/0.06 and finally 30/0.05 for distal and palatal canals). In group III, root canals were only irrigated with saline. Groups IV and V were the positive and negative control groups, respectively. The time required for cleaning and preparation of the canals for each of the specimens in groups I, II and III was recorded. The mean score of cleanliness of Mtwo was not significantly different from K-file group (P>0.05). However the mean instrumentation time in Mtwo group was significantly shorter (Protary files were far more time efficient.

  4. Running speed during training and percent body fat predict race time in recreational male marathoners

    OpenAIRE

    Knechtle, Beat; Barandun,; Knechtle,Patrizia; Klipstein,; Rüst,Christoph Alexander; Rosemann,Thomas; Lepers,Romuald

    2012-01-01

     Background: Recent studies have shown that personal best marathon time is a strong predictor of race time in male ultramarathoners. We aimed to determine variables predictive of marathon race time in recreational male marathoners by using the same characteristics of anthropometry and training as used for ultramarathoners.Methods: Anthropometric and training characteristics of 126 recreational male marathoners were bivariately and multivariately related to marathon race times.Results...

  5. Run-time anomaly detection and mitigation in information-rich cyber-physical systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Next generation space missions require autonomous systems to operate without human intervention for long periods of times in highly dynamic environments. Such...

  6. Validation of virtual instrument for data analysis in metrology of time and frequency

    International Nuclear Information System (INIS)

    Jordao, Bruno; Quaresma, Daniel; Rocha, Pedro; Carvalho, Ricardo; Peixoto, Jose Guilherme

    2016-01-01

    Commercial Software (CS) for collection, analysis and plot time and frequency data plots are being increasingly used in reference laboratories worldwide. With this, it has greatly improved the results of calculations of uncertainty for these values. We propose the creation of a collection of software and data analysis using Virtual Instruments (VI) developed the Primary Laboratory Time and frequency of the National Observatory - ON and validation of this instrument. To validate the instrument developed, it made a comparative analysis between the results obtained (VI) with the results obtained by (CS) widely used in many metrology laboratories. From these results we can conclude that there was equivalence between the analyzed data. (author)

  7. Temporal analysis and scheduling of hard real-time radios running on a multi-processor

    NARCIS (Netherlands)

    Moreira, O.

    2012-01-01

    On a multi-radio baseband system, multiple independent transceivers must share the resources of a multi-processor, while meeting each its own hard real-time requirements. Not all possible combinations of transceivers are known at compile time, so a solution must be found that either allows for

  8. Precise and accurate train run data: Approximation of actual arrival and departure times

    DEFF Research Database (Denmark)

    Richter, Troels; Landex, Alex; Andersen, Jonas Lohmann Elkjær

    with the approximated actual arrival and departure times. As a result, all future statistics can now either be based on track circuit data with high precision or approximated actual arrival times with a high accuracy. Consequently, performance analysis will be more accurate, punctuality statistics more correct, KPI...

  9. Effect of advanced injection timing on emission characteristics of diesel engine running on natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Nwafor, O.M.I. [Department of Mechanical Engineering, Federal University of Technology, Owerri, Imo State (Nigeria)

    2007-11-15

    There has been a growing concern on the emission of greenhouse gases into the atmosphere, whose consequence is global warming. The sources of greenhouse gases have been identified, of which the major contributor is the combustion of fossil fuel. Researchers have intensified efforts towards identifying greener alternative fuel substitutes for the present fossil fuel. Natural gas is now being investigated as potential alternative fuel for diesel engines. Natural gas appears more attractive due to its high octane number and perhaps, due to its environmental friendly nature. The test results showed that alternative fuels exhibit longer ignition delay, with slow burning rates. Longer delays will lead to unacceptable rates of pressure rise with the result of diesel knock. This work examines the effect of advanced injection timing on the emission characteristics of dual-fuel engine. The engine has standard injection timing of 30 BTDC. The injection was first advanced by 5.5 and given injection timing of 35.5 BTDC. The engine performance was erratic on this timing. The injection was then advanced by 3.5 . The engine performance was smooth on this timing especially at low loading conditions. The ignition delay was reduced through advanced injection timing but tended to incur a slight increase in fuel consumption. The CO and CO{sub 2} emissions were reduced through advanced injection timing. (author)

  10. QRTEngine: An easy solution for running online reaction time experiments using Qualtrics.

    Science.gov (United States)

    Barnhoorn, Jonathan S; Haasnoot, Erwin; Bocanegra, Bruno R; van Steenbergen, Henk

    2015-12-01

    Performing online behavioral research is gaining increased popularity among researchers in psychological and cognitive science. However, the currently available methods for conducting online reaction time experiments are often complicated and typically require advanced technical skills. In this article, we introduce the Qualtrics Reaction Time Engine (QRTEngine), an open-source JavaScript engine that can be embedded in the online survey development environment Qualtrics. The QRTEngine can be used to easily develop browser-based online reaction time experiments with accurate timing within current browser capabilities, and it requires only minimal programming skills. After introducing the QRTEngine, we briefly discuss how to create and distribute a Stroop task. Next, we describe a study in which we investigated the timing accuracy of the engine under different processor loads using external chronometry. Finally, we show that the QRTEngine can be used to reproduce classic behavioral effects in three reaction time paradigms: a Stroop task, an attentional blink task, and a masked-priming task. These findings demonstrate that QRTEngine can be used as a tool for conducting online behavioral research even when this requires accurate stimulus presentation times.

  11. RUN COORDINATION

    CERN Multimedia

    Christophe Delaere

    2013-01-01

    The focus of Run Coordination during LS1 is to monitor closely the advance of maintenance and upgrade activities, to smooth interactions between subsystems and to ensure that all are ready in time to resume operations in 2015 with a fully calibrated and understood detector. After electricity and cooling were restored to all equipment, at about the time of the last CMS week, recommissioning activities were resumed for all subsystems. On 7 October, DCS shifts began 24/7 to allow subsystems to remain on to facilitate operations. That culminated with the Global Run in November (GriN), which   took place as scheduled during the week of 4 November. The GriN has been the first centrally managed operation since the beginning of LS1, and involved all subdetectors but the Pixel Tracker presently in a lab upstairs. All nights were therefore dedicated to long stable runs with as many subdetectors as possible. Among the many achievements in that week, three items may be highlighted. First, the Strip...

  12. Exposure time, running and skill-related performance in international u20 rugby union players during an intensified tournament.

    Directory of Open Access Journals (Sweden)

    Christopher J Carling

    Full Text Available This study investigated exposure time, running and skill-related performance in two international u20 rugby union teams during an intensified tournament: the 2015 Junior World Rugby Championship.Both teams played 5 matches in 19 days. Analyses were conducted using global positioning system (GPS tracking (Viper 2™, Statsports Technologies Ltd and event coding (Opta Pro®.Of the 62 players monitored, 36 (57.1% participated in 4 matches and 23 (36.5% in all 5 matches while player availability for selection was 88%. Analyses of team running output (all players completing >60-min play showed that the total and peak 5-minute high metabolic load distances covered were likely-to-very likely moderately higher in the final match compared to matches 1 and 2 in back and forward players. In individual players with the highest match-play exposure (participation in >75% of total competition playing time and >75-min in each of the final 3 matches, comparisons of performance in matches 4 and 5 versus match 3 (three most important matches reported moderate-to-large decreases in total and high metabolic load distance in backs while similar magnitude reductions occurred in high-speed distance in forwards. In contrast, skill-related performance was unchanged, albeit with trivial and unclear changes, while there were no alterations in either total or high-speed running distance covered at the end of matches.These findings suggest that despite high availability for selection, players were not over-exposed to match-play during an intensified u20 international tournament. They also imply that the teams coped with the running and skill-related demands. Similarly, individual players with the highest exposure to match-play were also able to maintain skill-related performance and end-match running output (despite an overall reduction in the latter. These results support the need for player rotation and monitoring of performance, recovery and intervention strategies during

  13. Exposure time, running and skill-related performance in international u20 rugby union players during an intensified tournament

    Science.gov (United States)

    Carling, Christopher J.; Flanagan, Eamon; O’Doherty, Pearse; Piscione, Julien

    2017-01-01

    Purpose This study investigated exposure time, running and skill-related performance in two international u20 rugby union teams during an intensified tournament: the 2015 Junior World Rugby Championship. Method Both teams played 5 matches in 19 days. Analyses were conducted using global positioning system (GPS) tracking (Viper 2™, Statsports Technologies Ltd) and event coding (Opta Pro®). Results Of the 62 players monitored, 36 (57.1%) participated in 4 matches and 23 (36.5%) in all 5 matches while player availability for selection was 88%. Analyses of team running output (all players completing >60-min play) showed that the total and peak 5-minute high metabolic load distances covered were likely-to-very likely moderately higher in the final match compared to matches 1 and 2 in back and forward players. In individual players with the highest match-play exposure (participation in >75% of total competition playing time and >75-min in each of the final 3 matches), comparisons of performance in matches 4 and 5 versus match 3 (three most important matches) reported moderate-to-large decreases in total and high metabolic load distance in backs while similar magnitude reductions occurred in high-speed distance in forwards. In contrast, skill-related performance was unchanged, albeit with trivial and unclear changes, while there were no alterations in either total or high-speed running distance covered at the end of matches. Conclusions These findings suggest that despite high availability for selection, players were not over-exposed to match-play during an intensified u20 international tournament. They also imply that the teams coped with the running and skill-related demands. Similarly, individual players with the highest exposure to match-play were also able to maintain skill-related performance and end-match running output (despite an overall reduction in the latter). These results support the need for player rotation and monitoring of performance, recovery and

  14. QRTEngine: An easy solution for running online reaction time experiments using Qualtrics

    NARCIS (Netherlands)

    Barnhoorn, Jonathan Sebastiaan; Haasnoot, Erwin; Bocanegra, Bruno R.; van Steenbergen, Henk

    2015-01-01

    Performing online behavioral research is gaining increased popularity among researchers in psychological and cognitive science. However, the currently available methods for conducting online reaction time experiments are often complicated and typically require advanced technical skills. In this

  15. Visualizing time: how linguistic metaphors are incorporated into displaying instruments in the process of interpreting time-varying signals

    Science.gov (United States)

    Garcia-Belmonte, Germà

    2017-06-01

    Spatial visualization is a well-established topic of education research that has allowed improving science and engineering students' skills on spatial relations. Connections have been established between visualization as a comprehension tool and instruction in several scientific fields. Learning about dynamic processes mainly relies upon static spatial representations or images. Visualization of time is inherently problematic because time can be conceptualized in terms of two opposite conceptual metaphors based on spatial relations as inferred from conventional linguistic patterns. The situation is particularly demanding when time-varying signals are recorded using displaying electronic instruments, and the image should be properly interpreted. This work deals with the interplay between linguistic metaphors, visual thinking and scientific instrument mediation in the process of interpreting time-varying signals displayed by electronic instruments. The analysis draws on a simplified version of a communication system as example of practical signal recording and image visualization in a physics and engineering laboratory experience. Instrumentation delivers meaningful signal representations because it is designed to incorporate a specific and culturally favored time view. It is suggested that difficulties in interpreting time-varying signals are linked with the existing dual perception of conflicting time metaphors. The activation of specific space-time conceptual mapping might allow for a proper signal interpretation. Instruments play then a central role as visualization mediators by yielding an image that matches specific perception abilities and practical purposes. Here I have identified two ways of understanding time as used in different trajectories through which students are located. Interestingly specific displaying instruments belonging to different cultural traditions incorporate contrasting time views. One of them sees time in terms of a dynamic metaphor

  16. Clinical Evaluation of Quality of Obturation and Instrumentation Time using Two Modified Rotary File Systems with Manual Instrumentation in Primary Teeth.

    Science.gov (United States)

    Govindaraju, Lavanya; Jeevanandan, Ganesh; Subramanian, Emg

    2017-09-01

    Pulp therapy in primary teeth has been performed using various instrumentation techniques. However, the conventional instrumentation technique used for root canal preparation in primary teeth is hand instrumentation. Various Nickel-Titanium (Ni-Ti) instruments are available to perform efficient root canal preparation in primary teeth. These Ni-Ti instruments has been designed to aid in better root canal preparation in permanent teeth but are rarely used in primary teeth. It is necessary to assess the feasibility of using these adult rotary files with a modified sequence in primary teeth. To compare the quality of obturation and instrumentation time during root canal preparation using hand files and modified rotary file systems in primary molars. Forty-five primary mandibular molars were randomly assigned to three experimental groups (n=15). Group I was instrumented using k-hand files, Group II with S2 ProTaper universal file and Group III with 0.25 tip 4% taper K3 rotary file. Standardized digital radiographs were taken before and after root canal instrumentation. Root canal preparation time was also recorded. Statistical analysis of the obtained data was done using SPSS Software version 17.0. An intergroup comparison of the instrumentation time and the quality of obturation was done using ANOVA and Chi-square test with the level of significance set at 0.05. No significant differences were noted with regard to the quality of obturation (p=0.791). However, a statistically significant difference was noted in the instrumentation time between the three groups (pProTaper rotary system had significantly lesser instrumentation time when compared to that of K3 rotary system and hand file system. The hand files, S2 ProTaper Universal and K3 0.25 tip 4% taper files systems performed similarly with respect to the quality of obturation. There was a significant difference in instrumentation time with manual instrumentation compared to the modified rotary file systems in primary

  17. A free-running, time-based readout method for particle detectors

    International Nuclear Information System (INIS)

    Goerres, A; Ritman, J; Stockmanns, T; Bugalho, R; Francesco, A Di; Gastón, C; Gonçalves, F; Rolo, M D; Silva, J C da; Silva, R; Varela, J; Veckalns, V; Mazza, G; Mignone, M; Pietro, V Di; Riccardi, A; Rivetti, A; Wheadon, R

    2014-01-01

    For the EndoTOFPET-US experiment, the TOFPET ASIC has been developed as a front-end chip to read out data from silicon photomultipliers (SiPM) [1]. It introduces a time of flight information into the measurement of a PET scanner and hence reduces radiation exposure of the patient [2]. The chip is designed to work with a high event rate up to 100 kHz and a time resolution of 50 ps LSB. Using two threshold levels, it can measure the leading edge of the event pulse precisely while successfully suppressing dark counts from the SiPM. This also enables a time over threshold determination, leading to a charge measurement of the signal's pulse. The same, time-based concept is chosen for the PASTA chip used in the PANDA experiment. This high-energy particle detector contains sub-systems for specific measurement goals. The innermost of these is the Micro Vertex Detector, a silicon-based tracking system. The PASTA chip's approach is much like the TOFPET ASIC with some differences. The most significant ones are a changed amplifying part for different input signals as well as protection for radiation effects of the high-radiation environment. Apart from that, the simple and general concept combined with a small area and low power consumption support the choice for using this approach

  18. A free-running, time-based readout method for particle detectors

    Science.gov (United States)

    Goerres, A.; Bugalho, R.; Di Francesco, A.; Gastón, C.; Gonçalves, F.; Mazza, G.; Mignone, M.; Di Pietro, V.; Riccardi, A.; Ritman, J.; Rivetti, A.; Rolo, M. D.; da Silva, J. C.; Silva, R.; Stockmanns, T.; Varela, J.; Veckalns, V.; Wheadon, R.

    2014-03-01

    For the EndoTOFPET-US experiment, the TOFPET ASIC has been developed as a front-end chip to read out data from silicon photomultipliers (SiPM) [1]. It introduces a time of flight information into the measurement of a PET scanner and hence reduces radiation exposure of the patient [2]. The chip is designed to work with a high event rate up to 100 kHz and a time resolution of 50 ps LSB. Using two threshold levels, it can measure the leading edge of the event pulse precisely while successfully suppressing dark counts from the SiPM. This also enables a time over threshold determination, leading to a charge measurement of the signal's pulse. The same, time-based concept is chosen for the PASTA chip used in the PANDA experiment. This high-energy particle detector contains sub-systems for specific measurement goals. The innermost of these is the Micro Vertex Detector, a silicon-based tracking system. The PASTA chip's approach is much like the TOFPET ASIC with some differences. The most significant ones are a changed amplifying part for different input signals as well as protection for radiation effects of the high-radiation environment. Apart from that, the simple and general concept combined with a small area and low power consumption support the choice for using this approach.

  19. Run-time Adaptable VLIW Processors : Resources, Performance, Power Consumption, and Reliability Trade-offs

    NARCIS (Netherlands)

    Anjam, F.

    2013-01-01

    In this dissertation, we propose to combine programmability with reconfigurability by implementing an adaptable programmable VLIW processor in a reconfigurable hardware. The approach allows applications to be developed at high-level (C language level), while at the same time, the processor

  20. Deriving Tools from Real-time Runs: A New CCMC Support for SEC and AFWA

    Science.gov (United States)

    Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha

    2008-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions. the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models. and on the transition of appropriate models to space weather forecast centers. As part of the latter activity. the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. After consultations with NOA/SEC and with AFWA, CCMC has developed a set of tools as a first step to make real-time model output useful to forecast centers. In this presentation, we will discuss the motivation for this activity, the actions taken so far, and options for future tools from model output.

  1. Running into trouble with the time-dependent propagation of a wavepacket

    International Nuclear Information System (INIS)

    Garriz, Abel E; Sztrajman, Alejandro; Mitnik, DarIo

    2010-01-01

    The propagation in time of a wavepacket is a conceptually rich problem suitable to be studied in any introductory quantum mechanics course. This subject is covered analytically in most of the standard textbooks. Computer simulations have become a widespread pedagogical tool, easily implemented in computer labs and in classroom demonstrations. However, we have detected issues raising difficulties in the practical effectuation of these codes which are especially evident when discrete grid methods are used. One issue-relatively well known-appears at high incident energies, producing a wavepacket slower than expected theoretically. The other issue, which appears at low wavepacket energies, does not affect the time evolution of the propagating wavepacket proper, but produces dramatic effects on its spectral decomposition. The origin of the troubles is investigated, and different ways to deal with these issues are proposed. Finally, we show how this problem is manifested and solved in the practical case of the electronic spectra of a metal surface ionized by an ultrashort laser pulse.

  2. Running into trouble with the time-dependent propagation of a wavepacket

    Energy Technology Data Exchange (ETDEWEB)

    Garriz, Abel E; Sztrajman, Alejandro; Mitnik, DarIo, E-mail: dmitnik@df.uba.a [Instituto de AstronomIa y Fisica del Espacio, C.C. 67, Suc. 28, (C1428EGA) Buenos Aires (Argentina)

    2010-07-15

    The propagation in time of a wavepacket is a conceptually rich problem suitable to be studied in any introductory quantum mechanics course. This subject is covered analytically in most of the standard textbooks. Computer simulations have become a widespread pedagogical tool, easily implemented in computer labs and in classroom demonstrations. However, we have detected issues raising difficulties in the practical effectuation of these codes which are especially evident when discrete grid methods are used. One issue-relatively well known-appears at high incident energies, producing a wavepacket slower than expected theoretically. The other issue, which appears at low wavepacket energies, does not affect the time evolution of the propagating wavepacket proper, but produces dramatic effects on its spectral decomposition. The origin of the troubles is investigated, and different ways to deal with these issues are proposed. Finally, we show how this problem is manifested and solved in the practical case of the electronic spectra of a metal surface ionized by an ultrashort laser pulse.

  3. Cross-cultural adaptation of research instruments: language, setting, time and statistical considerations.

    Science.gov (United States)

    Gjersing, Linn; Caplehorn, John R M; Clausen, Thomas

    2010-02-10

    Research questionnaires are not always translated appropriately before they are used in new temporal, cultural or linguistic settings. The results based on such instruments may therefore not accurately reflect what they are supposed to measure. This paper aims to illustrate the process and required steps involved in the cross-cultural adaptation of a research instrument using the adaptation process of an attitudinal instrument as an example. A questionnaire was needed for the implementation of a study in Norway 2007. There was no appropriate instruments available in Norwegian, thus an Australian-English instrument was cross-culturally adapted. The adaptation process included investigation of conceptual and item equivalence. Two forward and two back-translations were synthesized and compared by an expert committee. Thereafter the instrument was pretested and adjusted accordingly. The final questionnaire was administered to opioid maintenance treatment staff (n=140) and harm reduction staff (n=180). The overall response rate was 84%. The original instrument failed confirmatory analysis. Instead a new two-factor scale was identified and found valid in the new setting. The failure of the original scale highlights the importance of adapting instruments to current research settings. It also emphasizes the importance of ensuring that concepts within an instrument are equal between the original and target language, time and context. If the described stages in the cross-cultural adaptation process had been omitted, the findings would have been misleading, even if presented with apparent precision. Thus, it is important to consider possible barriers when making a direct comparison between different nations, cultures and times.

  4. Performing T-tests to Compare Autocorrelated Time Series Data Collected from Direct-Reading Instruments.

    Science.gov (United States)

    O'Shaughnessy, Patrick; Cavanaugh, Joseph E

    2015-01-01

    Industrial hygienists now commonly use direct-reading instruments to evaluate hazards in the workplace. The stored values over time from these instruments constitute a time series of measurements that are often autocorrelated. Given the need to statistically compare two occupational scenarios using values from a direct-reading instrument, a t-test must consider measurement autocorrelation or the resulting test will have a largely inflated type-1 error probability (false rejection of the null hypothesis). A method is described for both the one-sample and two-sample cases which properly adjusts for autocorrelation. This method involves the computation of an "equivalent sample size" that effectively decreases the actual sample size when determining the standard error of the mean for the time series. An example is provided for the one-sample case, and an example is given where a two-sample t-test is conducted for two autocorrelated time series comprised of lognormally distributed measurements.

  5. Interface Testing for RTOS System Tasks based on the Run-Time Monitoring

    International Nuclear Information System (INIS)

    Sung, Ahyoung; Choi, Byoungju

    2006-01-01

    Safety critical embedded system requires high dependability of not only hardware but also software. It is intricate to modify embedded software once embedded. Therefore, it is necessary to have rigorous regulations to assure the quality of safety critical embedded software. IEEE V and V (Verification and Validation) process is recommended for software dependability, but a more quantitative evaluation method like software testing is necessary. In case of safety critical embedded software, it is essential to have a test that reflects unique features of the target hardware and its operating system. The safety grade PLC (Programmable Logic Controller) is a safety critical embedded system where hardware and software are tightly coupled. The PLC has HdS (Hardware dependent Software) and it is tightly coupled with RTOS (Real Time Operating System). Especially, system tasks that are tightly coupled with target hardware and RTOS kernel have large influence on the dependability of the entire PLC. Therefore, interface testing for system tasks that reflects the features of target hardware and RTOS kernel becomes the core of the PLC integration test. Here, we define interfaces as overlapped parts between two different layers on the system architecture. In this paper, we identify interfaces for system tasks and apply the identified interfaces to the safety grade PLC. Finally, we show the test results through the empirical study

  6. Interface Testing for RTOS System Tasks based on the Run-Time Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Ahyoung; Choi, Byoungju [Ewha University, Seoul (Korea, Republic of)

    2006-07-01

    Safety critical embedded system requires high dependability of not only hardware but also software. It is intricate to modify embedded software once embedded. Therefore, it is necessary to have rigorous regulations to assure the quality of safety critical embedded software. IEEE V and V (Verification and Validation) process is recommended for software dependability, but a more quantitative evaluation method like software testing is necessary. In case of safety critical embedded software, it is essential to have a test that reflects unique features of the target hardware and its operating system. The safety grade PLC (Programmable Logic Controller) is a safety critical embedded system where hardware and software are tightly coupled. The PLC has HdS (Hardware dependent Software) and it is tightly coupled with RTOS (Real Time Operating System). Especially, system tasks that are tightly coupled with target hardware and RTOS kernel have large influence on the dependability of the entire PLC. Therefore, interface testing for system tasks that reflects the features of target hardware and RTOS kernel becomes the core of the PLC integration test. Here, we define interfaces as overlapped parts between two different layers on the system architecture. In this paper, we identify interfaces for system tasks and apply the identified interfaces to the safety grade PLC. Finally, we show the test results through the empirical study.

  7. Real time analysis with the upgraded LHCb trigger in Run-III

    CERN Multimedia

    Szumlak, Tomasz

    2016-01-01

    The current LHCb trigger system consists of a hardware level, which reduces the LHC bunch-crossing rate of 40 MHz to 1 MHz, a rate at which the entire detector is read out. A second level, implemented in a farm of around 20k parallel processing CPUs, the event rate is reduced to around 12.5 kHz. The LHCb experiment plans a major upgrade of the detector and DAQ system in the LHC long shutdown II (2018-2019 ). In this upgrade, a purely software based trigger system is being developed and it will have to process the full 30 MHz of bunch crossings with inelastic collisions. LHCb will also receive a factor of 5 increase in the instantaneous luminosity, which further contributes to the challenge of reconstructing and selecting events in real time with the CPU farm. We discuss the plans and progress towards achieving efficient reconstruction and selection with a 30 MHz throughput. Another challenge is to exploit the increased signal rate that results from removing the 1 MHz readout bottleneck, combined with the high...

  8. Exploring the Effects of Changes in Future Time Perspective and Perceived Instrumentality on Graded Performance

    Science.gov (United States)

    Eren, Altay

    2009-01-01

    Introduction: This study aimed to explore the possible changes in the Future Time Perspective (FTP) and Perceived Instrumentality (PI) over time as long as one academic semester, as well as to explore whether those changes in FTP and PI explained students' Graded Performance (GP) with regard to a specific course; educational psychology. Method: A…

  9. Effect of the coefficient of friction of a running surface on sprint time in a sled-towing exercise.

    Science.gov (United States)

    Linthorne, Nicholas P; Cooper, James E

    2013-06-01

    This study investigated the effect of the coefficient of friction of a running surface on an athlete's sprint time in a sled-towing exercise. The coefficients of friction of four common sports surfaces (a synthetic athletics track, a natural grass rugby pitch, a 3G football pitch, and an artificial grass hockey pitch) were determined from the force required to tow a weighted sled across the surface. Timing gates were then used to measure the 30-m sprint time for six rugby players when towing a sled of varied weight across the surfaces. There were substantial differences between the coefficients of friction for the four surfaces (micro = 0.21-0.58), and in the sled-towing exercise the athlete's 30-m sprint time increased linearly with increasing sled weight. The hockey pitch (which had the lowest coefficient of friction) produced a substantially lower rate of increase in 30-m sprint time, but there were no significant differences between the other surfaces. The results indicate that although an athlete's sprint time in a sled-towing exercise is affected by the coefficient offriction of the surface, the relationship relationship between the athlete's rate of increase in 30-m sprint time and the coefficient of friction is more complex than expected.

  10. Real-time simulation of ex-core nuclear instrumentation system

    International Nuclear Information System (INIS)

    Zhao Qiang; Zhang Zhijian; Cao Xinrong

    2005-01-01

    Real-time simulation of ex-core nuclear instrumentation system is an indispensable part of nuclear power plant (NPP) full-scope training simulator. The simulation method, which is based upon the theory of measurement, is introduced in the paper. The fitting formula between the measured data and the three-dimensional neutron flux distribution in the core is established. The fitting parameter is adjusted according to the reactor physical calculation or the experiment of power calibration. The simulation result shows that the method can simulate the ex-core neutron instrumentation system accurately in real-time and meets the needs of NPP full-scope training simulator. (authors)

  11. DEVELOPMENT OF AN ON-LINE, REAL-TIME ALPHA RADIATION MEASURING INSTRUMENT FOR LIQUID STREAMS

    International Nuclear Information System (INIS)

    Unknown

    1999-01-01

    Thermo Power Corporation has proven the technical viability of an on-line, real-time alpha radionuclide instrument for aqueous sample analysis through laboratory and initial field tests of the instrument. The instrument has been shown to be isotonically sensitive to extremely low (ten parts per trillion, or femto Curies per liter) levels of a broad range of radioisotopes. Performance enhancement and other scaling data obtained during the course of this investigation have shown that on-line, real-time operation is possible, with a sub 30-minute response time analyzing 20 ppb (30 pCi/1) natural uranium. Now that these initial field tests in Oak Ridge, Tennessee have been successfully completed, Thermo Power plans to conduct comprehensive field tests of the instrument. The purpose of these endurance tests will be to determine the endurance characteristics of the Thermo Alpha Monitor for Water when it is used by non-Thermo Power personnel in a series of one or more extended field tests. Such endurance testing is the vital next step towards the commercialization of the Alpha Monitor. Subsequently, it will be possible to provide the DOE with an instrument that has the capability of obtaining rapid feedback about the concentrations of alpha-emitting isotope contamination in effluent water streams (Subsurface Contaminants Focus Area). It will also be useful for process control of remediation and D and D operations such as monitoring scrubber/rinse water radioactivity levels (Mixed Waste, Plutonium and D and D Focus Areas)

  12. Addressing Thermal Model Run Time Concerns of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA)

    Science.gov (United States)

    Peabody, Hume; Guerrero, Sergio; Hawk, John; Rodriguez, Juan; McDonald, Carson; Jackson, Cliff

    2016-01-01

    The Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) utilizes an existing 2.4 m diameter Hubble sized telescope donated from elsewhere in the federal government for near-infrared sky surveys and Exoplanet searches to answer crucial questions about the universe and dark energy. The WFIRST design continues to increase in maturity, detail, and complexity with each design cycle leading to a Mission Concept Review and entrance to the Mission Formulation Phase. Each cycle has required a Structural-Thermal-Optical-Performance (STOP) analysis to ensure the design can meet the stringent pointing and stability requirements. As such, the models have also grown in size and complexity leading to increased model run time. This paper addresses efforts to reduce the run time while still maintaining sufficient accuracy for STOP analyses. A technique was developed to identify slews between observing orientations that were sufficiently different to warrant recalculation of the environmental fluxes to reduce the total number of radiation calculation points. The inclusion of a cryocooler fluid loop in the model also forced smaller time-steps than desired, which greatly increases the overall run time. The analysis of this fluid model required mitigation to drive the run time down by solving portions of the model at different time scales. Lastly, investigations were made into the impact of the removal of small radiation couplings on run time and accuracy. Use of these techniques allowed the models to produce meaningful results within reasonable run times to meet project schedule deadlines.

  13. Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser

    Science.gov (United States)

    Mehravar, S.; Norwood, R. A.; Peyghambarian, N.; Kieu, K.

    2016-06-01

    Dual-comb technique has enabled exciting applications in high resolution spectroscopy, precision distance measurements, and 3D imaging. Major advantages over traditional methods can be achieved with dual-comb technique. For example, dual-comb spectroscopy provides orders of magnitude improvement in acquisition speed over standard Fourier-transform spectroscopy while still preserving the high resolution capability. Wider adoption of the technique has, however, been hindered by the need for complex and expensive ultrafast laser systems. Here, we present a simple and robust dual-comb system that employs a free-running bidirectionally mode-locked fiber laser operating at telecommunication wavelength. Two femtosecond frequency combs (with a small difference in repetition rates) are generated from a single laser cavity to ensure mutual coherent properties and common noise cancellation. As the result, we have achieved real-time absorption spectroscopy measurements without the need for complex servo locking with accurate frequency referencing, and relatively high signal-to-noise ratio.

  14. Evaluation of the 1996 predictions of the run-timing of wild migrant spring/summer yearling chinook in the Snake River Basin using Program RealTime

    International Nuclear Information System (INIS)

    Townsend, R.L.; Yasuda, D.; Skalski, J.R.

    1997-03-01

    This report is a post-season analysis of the accuracy of the 1996 predictions from the program RealTime. Observed 1996 migration data collected at Lower Granite Dam were compared to the predictions made by RealTime for the spring outmigration of wild spring/summer chinook. Appendix A displays the graphical reports of the RealTime program that were interactively accessible via the World Wide Web during the 1996 migration season. Final reports are available at address http://www.cqs.washington.edu/crisprt/. The CRISP model incorporated the predictions of the run status to move the timing forecasts further down the Snake River to Little Goose, Lower Monumental and McNary Dams. An analysis of the dams below Lower Granite Dam is available separately

  15. Instrument for Real-Time Digital Nucleic Acid Amplification on Custom Microfluidic Devices.

    Directory of Open Access Journals (Sweden)

    David A Selck

    Full Text Available Nucleic acid amplification tests that are coupled with a digital readout enable the absolute quantification of single molecules, even at ultralow concentrations. Digital methods are robust, versatile and compatible with many amplification chemistries including isothermal amplification, making them particularly invaluable to assays that require sensitive detection, such as the quantification of viral load in occult infections or detection of sparse amounts of DNA from forensic samples. A number of microfluidic platforms are being developed for carrying out digital amplification. However, the mechanistic investigation and optimization of digital assays has been limited by the lack of real-time kinetic information about which factors affect the digital efficiency and analytical sensitivity of a reaction. Commercially available instruments that are capable of tracking digital reactions in real-time are restricted to only a small number of device types and sample-preparation strategies. Thus, most researchers who wish to develop, study, or optimize digital assays rely on the rate of the amplification reaction when performed in a bulk experiment, which is now recognized as an unreliable predictor of digital efficiency. To expand our ability to study how digital reactions proceed in real-time and enable us to optimize both the digital efficiency and analytical sensitivity of digital assays, we built a custom large-format digital real-time amplification instrument that can accommodate a wide variety of devices, amplification chemistries and sample-handling conditions. Herein, we validate this instrument, we provide detailed schematics that will enable others to build their own custom instruments, and we include a complete custom software suite to collect and analyze the data retrieved from the instrument. We believe assay optimizations enabled by this instrument will improve the current limits of nucleic acid detection and quantification, improving our

  16. Effects of instrumentation time on microleakage of resin-modified glass ionomer cements.

    Science.gov (United States)

    Yap, Adrian U J; Yeo, Egwin J C; Yap, W Y; Ong, Debbie S B; Tan, Jane W S

    2003-01-01

    This study investigated the effect of instrumentation time on the microleakage of resin-modified glass ionomer cements (RMGICs). Class V cavities were prepared on buccal and lingual/ palatal surfaces of 64 freshly extracted non-carious premolars. The cavities on each tooth were restored with Fuji II LC (FT [GC]) and Photac-Fil Quick (PF [3M-ESPE]). The restored teeth were randomly divided into two groups of 32 teeth. Finishing/polishing was done immediately after light-polymerization in one group and was delayed for one week in the other group. The following finishing/polishing systems were evaluated: (a) Robot Carbides (RC); (b) SuperSnap (SS); (c) OneGloss (OG) and (d) CompoSite Polishers (CS). The sample size for each instrumentation time, material and finishing/polishing system combination was 8. Storage medium for both immediate and delayed instrumentation groups was distilled water at 37 degrees C during the hiatus period. The teeth were subsequently subjected to dye penetration testing (0.5% basic fushcin), sectioned and scored. Data were analyzed using Kruskal-Wallis and Mann-Whitney U tests at significance level 0.05. For PF, significant difference in enamel leakage was observed between immediate and delayed instrumentation with SS and CS. Significant differences in dentin leakage were also observed between the two instrumentation times for SS. For FT, significant differences in leakage between instrumentation times were observed only in dentin and with RC. Where significant differences in dye penetration scores existed, delayed finishing/polishing resulted in less microleakage.

  17. Detection of random alterations to time-varying musical instrument spectra.

    Science.gov (United States)

    Horner, Andrew; Beauchamp, James; So, Richard

    2004-09-01

    The time-varying spectra of eight musical instrument sounds were randomly altered by a time-invariant process to determine how detection of spectral alteration varies with degree of alteration, instrument, musical experience, and spectral variation. Sounds were resynthesized with centroids equalized to the original sounds, with frequencies harmonically flattened, and with average spectral error levels of 8%, 16%, 24%, 32%, and 48%. Listeners were asked to discriminate the randomly altered sounds from reference sounds resynthesized from the original data. For all eight instruments, discrimination was very good for the 32% and 48% error levels, moderate for the 16% and 24% error levels, and poor for the 8% error levels. When the error levels were 16%, 24%, and 32%, the scores of musically experienced listeners were found to be significantly better than the scores of listeners with no musical experience. Also, in this same error level range, discrimination was significantly affected by the instrument tested. For error levels of 16% and 24%, discrimination scores were significantly, but negatively correlated with measures of spectral incoherence and normalized centroid deviation on unaltered instrument spectra, suggesting that the presence of dynamic spectral variations tends to increase the difficulty of detecting spectral alterations. Correlation between discrimination and a measure of spectral irregularity was comparatively low.

  18. Protein Analysis Using Real-Time PCR Instrumentation: Incorporation in an Integrated, Inquiry-Based Project

    Science.gov (United States)

    Southard, Jonathan N.

    2014-01-01

    Instrumentation for real-time PCR is used primarily for amplification and quantitation of nucleic acids. The capability to measure fluorescence while controlling temperature in multiple samples can also be applied to the analysis of proteins. Conformational stability and changes in stability due to ligand binding are easily assessed. Protein…

  19. Planck 2015 results: VII. High Frequency Instrument data processing: Time-ordered information and beams

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A R; Aghanim, N.

    2016-01-01

    The Planck High Frequency Instrument (HFI) has observed the full sky at six frequencies (100, 143, 217, 353, 545, and 857 GHz) in intensity and at four frequencies in linear polarization (100, 143, 217, and 353 GHz). In order to obtain sky maps, the time-ordered information (TOI) containing the d...

  20. Time and setting dependent instrument parameters and proofs of Bell-type inequalities

    OpenAIRE

    Hess, Karl; Philipp, Walter

    2002-01-01

    We show that all proofs of Bell-type inequalities, as discussed in Bell's well known book and as claimed to be relevant to Einstein-Podolsky-Rosen type experiments, come to a halt when Einstein-local time and setting dependent instrument parameters are included.

  1. A time-domain digitally controlled oscillator composed of a free running ring oscillator and flying-adder

    International Nuclear Information System (INIS)

    Liu Wei; Zhang Shengdong; Wang Yangyuan; Li Wei; Ren Peng; Lin Qinglong

    2009-01-01

    A time-domain digitally controlled oscillator (DCO) is proposed. The DCO is composed of a free-running ring oscillator (FRO) and a two lap-selectors integrated flying-adder (FA). With a coiled cell array which allows uniform loading capacitances of the delay cells, the FRO produces 32 outputs with consistent tap spacing for the FA as reference clocks. The FA uses the outputs from the FRO to generate the output of the DCO according to the control number, resulting in a linear dependence of the output period, instead of the frequency on the digital controlling word input. Thus the proposed DCO ensures a good conversion linearity in a time-domain, and is suitable for time-domain all-digital phase locked loop applications. The DCO was implemented in a standard 0.13 μm digital logic CMOS process. The measurement results show that the DCO has a linear and monotonic tuning curve with gain variation of less than 10%, and a very low root mean square period jitter of 9.3 ps in the output clocks. The DCO works well at supply voltages ranging from 0.6 to 1.2 V, and consumes 4 mW of power with 500 MHz frequency output at 1.2 V supply voltage.

  2. Recent run-time experience and investigation of impurities in turbines circuit of Helium plant of SST-1

    International Nuclear Information System (INIS)

    Panchal, P.; Panchal, R.; Patel, R.

    2013-01-01

    One of the key sub-systems of Steady State superconducting Tokamak (SST-1) is cryogenic 1.3 kW at 4.5 K Helium refrigerator/liquefier system. The helium plant consists of 3 nos. of screw compressors, oil removal system, purifier and cold-box with 3 turbo expanders (turbines) and helium cold circulator. During the recent SST-1 plasma campaigns, we observed high pressure drop of the order of 3 bar between the wheel outlet of turbine A and the wheel inlet of turbine - B. This was significant higher values of pressures drop across turbines, which reduced the speed of turbine A and B and in turn reduced the overall plant capacity. The helium circuits in the plant have 10-micron filter at the mouth of turbine - B. Initially, major suspects of such high blockage are assumed to be air-impurity, dust particles or collapse of filter. Several breaks in plant operation have been taken to warm up the turbines circuits up to 90 K to remove condensation of air-impurities at filter. Still this exercise did not solve blockage of filter in turbine circuits. A detailed investigation exercise with air/water regeneration and rinsing of cold box as well as purification of helium gas in buffer tanks are carried out to remove air impurities from cold-box. A trial run of cold box was executed in liquefier mode with turbines up to cryogenic temperatures and solved blockage in turbine circuits. The paper describes run-time experience of helium plant with helium impurity in turbine circuits, methods to remove impurity, demonstration of turbine performance and lessons learnt during this operation. (author)

  3. A new time-of-flight instrument for quantitative surface analysis

    International Nuclear Information System (INIS)

    Veryovkin, Igor V.; Calaway, Wallis F.; Moore, Jerry F.; Pellin, Michael J.; Burnett, Donald S.

    2004-01-01

    A new generation of time-of-flight mass spectrometers that implement ion sputtering and laser desorption for probing solid samples and can operate in regimes of laser post-ionization secondary neutral mass spectrometry and secondary ion mass spectrometry is being developed at Argonne National Laboratory. These new instruments feature novel ion optical systems for efficient extraction of ions from large laser post-ionization volumes and for lossless transport of these ions to detectors. Another feature of this design is a new in-vacuum all-reflecting optical microscope with 0.5-μm resolution. Advanced ion and light optics and three ion sources, including a liquid metal ion gun (focusable to 50 nm) and a low energy ion gun, give rise to an instrument capable of quantitative analyses of samples for the most challenging applications, such as determining elemental concentrations in shallow implants at ultra-trace levels (for example, solar wind samples delivered by NASA Genesis mission) and analyzing individual sub-micrometer particles on a sample stage (such as, interstellar dust delivered by NASA Stardust mission). Construction of a prototype instrument has been completed and testing is underway. A more advanced instrument of similar design is under construction. The overall design of the new instrument and the innovations that make it unique are outlined. Results of the first tests to characterize its analytical capabilities are presented also

  4. Family of the Sun-and-Stars Time-Determining Instruments (Ilseong-jeongsi-ui) Invented During the Joseon Dynasty

    OpenAIRE

    Yong Sam Lee; Sang Hyuk Kim; Byeong-Hee Mihn

    2016-01-01

    We analyze the design and specifications of the Sun-and-Stars Time-Determining group of instruments (Ilseong-jeongsi-ui, 日星定時儀) made during the Joseon dynasty. According to the records of the Sejong Sillok (Veritable Records of King Sejong), Sun-and-Stars Time-Determining Instruments measure the solar time of day and the sidereal time of night through three rings and an alidade. One such instrument, the Simplified Time-Determining Instrument (So-jeongsi-ui, 小定時儀), is made without ...

  5. Real-Time On-Board Airborne Demonstration of High-Speed On-Board Data Processing for Science Instruments (HOPS)

    Science.gov (United States)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.

  6. Liquidity Runs

    NARCIS (Netherlands)

    Matta, R.; Perotti, E.

    2016-01-01

    Can the risk of losses upon premature liquidation produce bank runs? We show how a unique run equilibrium driven by asset liquidity risk arises even under minimal fundamental risk. To study the role of illiquidity we introduce realistic norms on bank default, such that mandatory stay is triggered

  7. Running Club

    CERN Multimedia

    Running Club

    2010-01-01

    The 2010 edition of the annual CERN Road Race will be held on Wednesday 29th September at 18h. The 5.5km race takes place over 3 laps of a 1.8 km circuit in the West Area of the Meyrin site, and is open to everyone working at CERN and their families. There are runners of all speeds, with times ranging from under 17 to over 34 minutes, and the race is run on a handicap basis, by staggering the starting times so that (in theory) all runners finish together. Children (< 15 years) have their own race over 1 lap of 1.8km. As usual, there will be a “best family” challenge (judged on best parent + best child). Trophies are awarded in the usual men’s, women’s and veterans’ categories, and there is a challenge for the best age/performance. Every adult will receive a souvenir prize, financed by a registration fee of 10 CHF. Children enter free (each child will receive a medal). More information, and the online entry form, can be found at http://cern.ch/club...

  8. Mobile instrumentation platform and robotic accessory for real-time screening of hazardous waste

    International Nuclear Information System (INIS)

    Anderson, M.S.; Jaselskis, E.J.

    1992-01-01

    An innovative mobile laboratory for real-time field screening of soils for inorganic hazardous waste using laser ablation-inductively coupled plasma-atomic emission spectrometry sampling and analysis technique is being developed at Ames Laboratory. This sampling technique as well as the concept for installing, monitoring, and controlling the instrumentation and utilities in the mobile laboratory, the robotic sampling accessory, and manual sampling method are discussed. Benefits of this mobile configuration and future development plans also are described

  9. The Responsibility Of Trade Unions In Transaction Collective Instruments About Compensatory Time

    OpenAIRE

    Manuella de Oliveira Soares; Rui Carvalho Piva

    2016-01-01

    The democratic State of Direct aims to provide assurance and effectiveness of fundamental rights in order that human dignity is preserved. In this way, among other fundamental rights is the right to health, in one of its aspects, protects workers' health. Thus, this study, through a bibliographical research aims to demonstrate that unions should be held responsible for damage caused to workers when preparing collective bargaining instruments to the creation of compensatory time with condition...

  10. Neutron xyz - polarization analysis at a time-of-flight instrument

    Energy Technology Data Exchange (ETDEWEB)

    Ehlers, Georg [ORNL; Stewart, John Ross [ISIS Facility, Rutherford Appleton Laboratory; Andersen, Ken [ESS

    2015-01-01

    When implementing a dedicated polarization analysis setup at a neutron time-of-flight instrument with a large area detector, one faces enormous challenges. Nevertheless, significant progress has been made towards this goal over the last few years. This paper addresses systematic limitations of the traditional method that is used to make these measurements, and a possible strategy to overcome these limitations. This will be important, for diffraction as well as inelastic experiments, where the scattering occurs mostly out-of-plane.

  11. Energy expended and knee joint load accumulated when walking, running, or standing for the same amount of time.

    Science.gov (United States)

    Miller, Ross H; Edwards, W Brent; Deluzio, Kevin J

    2015-01-01

    Evidence suggests prolonged bouts of sitting are unhealthy, and some public health messages have recently recommended replacing sitting with more standing. However, the relative benefits of replacing sitting with standing compared to locomotion are not known. Specifically, the biomechanical consequences of standing compared to other sitting-alternatives like walking and running are not well known and are usually not considered in studies on sitting. We compared the total knee joint load accumulated (TKJLA) and the total energy expended (TEE) when performing either walking, running, or standing for a common exercise bout duration (30 min). Walking and running both (unsurprisingly) had much more TEE than standing (+300% and +1100%, respectively). TKJLA was similar between walking and standing and 74% greater in running. The results suggest that standing is a poor replacement for walking and running if one wishes to increases energy expenditure, and may be particularly questionable for use in individuals at-risk for knee osteoarthritis due to its surprisingly high TKJLA (just as high as walking, 56% of the load in running) and the type of loading (continuous compression) it places on cartilage. However, standing has health benefits as an "inactivity interrupter" that extend beyond its direct energy expenditure. We suggest that future studies on standing as an inactivity intervention consider the potential biomechanical consequences of standing more often throughout the day, particularly in the case of prolonged bouts of standing. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. THE MATRYOSHKA RUN. II. TIME-DEPENDENT TURBULENCE STATISTICS, STOCHASTIC PARTICLE ACCELERATION, AND MICROPHYSICS IMPACT IN A MASSIVE GALAXY CLUSTER

    International Nuclear Information System (INIS)

    Miniati, Francesco

    2015-01-01

    We use the Matryoshka run to study the time-dependent statistics of structure-formation-driven turbulence in the intracluster medium of a 10 15 M ☉ galaxy cluster. We investigate the turbulent cascade in the inner megaparsec for both compressional and incompressible velocity components. The flow maintains approximate conditions of fully developed turbulence, with departures thereof settling in about an eddy-turnover time. Turbulent velocity dispersion remains above 700 km s –1 even at low mass accretion rate, with the fraction of compressional energy between 10% and 40%. The normalization and the slope of the compressional turbulence are susceptible to large variations on short timescales, unlike the incompressible counterpart. A major merger occurs around redshift z ≅ 0 and is accompanied by a long period of enhanced turbulence, ascribed to temporal clustering of mass accretion related to spatial clustering of matter. We test models of stochastic acceleration by compressional modes for the origin of diffuse radio emission in galaxy clusters. The turbulence simulation model constrains an important unknown of this complex problem and brings forth its dependence on the elusive microphysics of the intracluster plasma. In particular, the specifics of the plasma collisionality and the dissipation physics of weak shocks affect the cascade of compressional modes with strong impact on the acceleration rates. In this context radio halos emerge as complex phenomena in which a hierarchy of processes acting on progressively smaller scales are at work. Stochastic acceleration by compressional modes implies statistical correlation of radio power and spectral index with merging cores distance, both testable in principle with radio surveys

  13. The Reliability and Validity of a Four-Minute Running Time-Trial in Assessing V˙O2max and Performance

    Directory of Open Access Journals (Sweden)

    Kerry McGawley

    2017-05-01

    Full Text Available Introduction: Traditional graded-exercise tests to volitional exhaustion (GXTs are limited by the need to establish starting workloads, stage durations, and step increments. Short-duration time-trials (TTs may be easier to implement and more ecologically valid in terms of real-world athletic events. The purpose of the current study was to assess the reliability and validity of maximal oxygen uptake (V˙O2max and performance measured during a traditional GXT (STEP and a four-minute running time-trial (RunTT.Methods: Ten recreational runners (age: 32 ± 7 years; body mass: 69 ± 10 kg completed five STEP tests with a verification phase (VER and five self-paced RunTTs on a treadmill. The order of the STEP/VER and RunTT trials was alternated and counter-balanced. Performance was measured as time to exhaustion (TTE for STEP and VER and distance covered for RunTT.Results: The coefficient of variation (CV for V˙O2max was similar between STEP, VER, and RunTT (1.9 ± 1.0, 2.2 ± 1.1, and 1.8 ± 0.8%, respectively, but varied for performance between the three types of test (4.5 ± 1.9, 9.7 ± 3.5, and 1.8 ± 0.7% for STEP, VER, and RunTT, respectively. Bland-Altman limits of agreement (bias ± 95% showed V˙O2max to be 1.6 ± 3.6 mL·kg−1·min−1 higher for STEP vs. RunTT. Peak HR was also significantly higher during STEP compared with RunTT (P = 0.019.Conclusion: A four-minute running time-trial appears to provide more reliable performance data in comparison to an incremental test to exhaustion, but may underestimate V˙O2max.

  14. Real-time operation without a real-time operating system for instrument control and data acquisition

    Science.gov (United States)

    Klein, Randolf; Poglitsch, Albrecht; Fumi, Fabio; Geis, Norbert; Hamidouche, Murad; Hoenle, Rainer; Looney, Leslie; Raab, Walfried; Viehhauser, Werner

    2004-09-01

    We are building the Field-Imaging Far-Infrared Line Spectrometer (FIFI LS) for the US-German airborne observatory SOFIA. The detector read-out system is driven by a clock signal at a certain frequency. This signal has to be provided and all other sub-systems have to work synchronously to this clock. The data generated by the instrument has to be received by a computer in a timely manner. Usually these requirements are met with a real-time operating system (RTOS). In this presentation we want to show how we meet these demands differently avoiding the stiffness of an RTOS. Digital I/O-cards with a large buffer separate the asynchronous working computers and the synchronous working instrument. The advantage is that the data processing computers do not need to process the data in real-time. It is sufficient that the computer can process the incoming data stream on average. But since the data is read-in synchronously, problems of relating commands and responses (data) have to be solved: The data is arriving at a fixed rate. The receiving I/O-card buffers the data in its buffer until the computer can access it. To relate the data to commands sent previously, the data is tagged by counters in the read-out electronics. These counters count the system's heartbeat and signals derived from that. The heartbeat and control signals synchronous with the heartbeat are sent by an I/O-card working as pattern generator. Its buffer gets continously programmed with a pattern which is clocked out on the control lines. A counter in the I/O-card keeps track of the amount of pattern words clocked out. By reading this counter, the computer knows the state of the instrument or knows the meaning of the data that will arrive with a certain time-tag.

  15. [Design and implementation of real-time continuous glucose monitoring instrument].

    Science.gov (United States)

    Huang, Yonghong; Liu, Hongying; Tian, Senfu; Jia, Ziru; Wang, Zi; Pi, Xitian

    2017-12-01

    Real-time continuous glucose monitoring can help diabetics to control blood sugar levels within the normal range. However, in the process of practical monitoring, the output of real-time continuous glucose monitoring system is susceptible to glucose sensor and environment noise, which will influence the measurement accuracy of the system. Aiming at this problem, a dual-calibration algorithm for the moving-window double-layer filtering algorithm combined with real-time self-compensation calibration algorithm is proposed in this paper, which can realize the signal drift compensation for current data. And a real-time continuous glucose monitoring instrument based on this study was designed. This real-time continuous glucose monitoring instrument consisted of an adjustable excitation voltage module, a current-voltage converter module, a microprocessor and a wireless transceiver module. For portability, the size of the device was only 40 mm × 30 mm × 5 mm and its weight was only 30 g. In addition, a communication command code algorithm was designed to ensure the security and integrity of data transmission in this study. Results of experiments in vitro showed that current detection of the device worked effectively. A 5-hour monitoring of blood glucose level in vivo showed that the device could continuously monitor blood glucose in real time. The relative error of monitoring results of the designed device ranged from 2.22% to 7.17% when comparing to a portable blood meter.

  16. Field instruments for real time in-situ crude oil concentration measurements

    International Nuclear Information System (INIS)

    Fuller, C.B.; Bonner, J.S.; Page, C.A.; Arrambide, G.; Sterling, M.C.Jr.; Ojo, T.O.

    2003-01-01

    Accidental oil spills, contaminant release during resuspension, storms, and harmful algal blooms are all episodic events that can effect coastal margins. It is important to quantitatively describe water and ecological quality evolution and predict the impact to these areas by such events, but traditional sampling methods miss environmental activity during cyclical events. This paper presents a new sampling approach that involves continuous, real-time in-situ monitoring to provide data for development of comprehensive modeling protocols. It gives spill response coordinators greater assurance in making decisions using the latest visualization tools which are based on a good understanding of the physical processes at work in pulsed events. Five sensors for rapid monitoring of crude oil concentrations in aquatic systems were described. The in-situ and ex-situ sensors can measure plume transport and estimate polycyclic aromatic hydrocarbon exposure concentrations to assess risk of toxicity. A brief description and evaluation of the following 5 sensors was provided: the LISST-100 by Sequoia Instrument, a submersible multi-angle laser scattering instrument; the AU-10 field fluorometer by Turner Designs, an ex-situ single wavelength fluorometer; the Flashlamp by WET Labs Inc., an in-situ single wavelength fluorometer; and, the ECO-FL3 and SAFire by WET Labs Inc., two in-situ multiple wavelength fluorometers. These instruments were used to analyze crude oil emissions of various concentrations. All of the instruments followed a linear response within the tested concentration range. At the lowest concentrations the LISST-100 was not as effective as the fluorometers because of limited particle volume for scatter. For the AU-10 field fluorometer, the highest concentrations tested were above the measurement range of the instrument. 6 refs., 5 figs

  17. Nuclear energy as a 'golden bridge'? Constitutional legal problems of the negotiation of the prolongation of the running time against skimming of profits

    International Nuclear Information System (INIS)

    Waldhoff, Christian; Aswege, Hanka von

    2010-01-01

    The coalition agreement of Christian Demographic Union (CDU), Christian Social Union (CSU) and Free Democratic Party (FDP) from 26th October, 2009 characterizes the nuclear energy as a bridge technology. The coalition parties explain to prolong the running times of German nuclear power stations up to a reliable replacement by renewable energies. The conditions for the prolongation of the running times are to be regulated in agreement with energy supply companies. In the contribution under consideration, the authors report on the fiscal legal problems of the skimming of profits. Constitutional legal problems of the earmaking of a skimming of profits as well as a consensual agreement are discussed in this contribution. In the result, a financial constitutionally reliable way for the skimming of added profits due to prolongation of the running time is not evident. The legal earmaking of the duty advent for the promotion of renewable energies increases the constitutional doubts.

  18. From climate change uncertainties to strategic options. Objectives, instruments, timing issues

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, C [French Agency for Environment and Energy Management, Paris (France)

    1996-12-31

    The question of climate change is characterised by major uncertainties. For some, this means that no action should be undertaken for the time being. For others, forceful action is needed to avoid potentially disastrous consequences: targets and timetables for emission reductions must be agreed. This communication is an attempt to suggest a third alternative, with two main conclusions. The international decision process should focus on instruments and degrees of effort, rather than on `emission trajectories` (the evolution of emission levels over time), rather than on quantitative objectives tied to precise timetables. In this perspective action can start right away. (author)

  19. From climate change uncertainties to strategic options. Objectives, instruments, timing issues

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, C. [French Agency for Environment and Energy Management, Paris (France)

    1995-12-31

    The question of climate change is characterised by major uncertainties. For some, this means that no action should be undertaken for the time being. For others, forceful action is needed to avoid potentially disastrous consequences: targets and timetables for emission reductions must be agreed. This communication is an attempt to suggest a third alternative, with two main conclusions. The international decision process should focus on instruments and degrees of effort, rather than on `emission trajectories` (the evolution of emission levels over time), rather than on quantitative objectives tied to precise timetables. In this perspective action can start right away. (author)

  20. RUN COORDINATION

    CERN Multimedia

    Christophe Delaere

    2012-01-01

      On Wednesday 14 March, the machine group successfully injected beams into LHC for the first time this year. Within 48 hours they managed to ramp the beams to 4 TeV and proceeded to squeeze to β*=0.6m, settings that are used routinely since then. This brought to an end the CMS Cosmic Run at ~Four Tesla (CRAFT), during which we collected 800k cosmic ray events with a track crossing the central Tracker. That sample has been since then topped up to two million, allowing further refinements of the Tracker Alignment. The LHC started delivering the first collisions on 5 April with two bunches colliding in CMS, giving a pile-up of ~27 interactions per crossing at the beginning of the fill. Since then the machine has increased the number of colliding bunches to reach 1380 bunches and peak instantaneous luminosities around 6.5E33 at the beginning of fills. The average bunch charges reached ~1.5E11 protons per bunch which results in an initial pile-up of ~30 interactions per crossing. During the ...

  1. The acute effects of a caffeine-containing supplement on bench press strength and time to running exhaustion.

    Science.gov (United States)

    Beck, Travis W; Housh, Terry J; Malek, Moh H; Mielke, Michelle; Hendrix, Russell

    2008-09-01

    The purpose of the present study was to examine the acute effects of a caffeine-containing supplement (SUPP) on one-repetition maximum (1-RM) bench press strength and time to running exhaustion (TRE) at a velocity that corresponded to 85% of the peak oxygen uptake ([latin capital V with dot above]O2peak). The study used a double-blinded, placebo-controlled, crossover design. Thirty-one men (mean +/- SD age = 23.0 +/- 2.6 years) were randomly assigned to take either the SUPP or placebo (PLAC) first. The SUPP contained 201 mg of caffeine, and the PLAC was microcrystalline cellulose. All subjects were tested for 1-RM bench press strength and TRE at 45 minutes after taking either the SUPP or PLAC. After 1 week of rest, the subjects returned to the laboratory and ingested the opposite substance (SUPP or PLAC) from what was taken during the previous visit. The 1-RM bench press and TRE tests were then performed in the same manner as before. The results indicated that the SUPP had no effect on 1-RM bench press strength or TRE at 85% [latin capital V with dot above]O2peak. It is possible that the acute effects of caffeine are affected by differences in training status and/or the relative intensity of the exercise task. Future studies should examine these issues, in addition to testing the acute effects of various caffeine doses on performance during maximal strength, power, and aerobic activities. These findings do not, however, support the use of caffeine as an ergogenic aid in untrained to moderately trained individuals.

  2. Tevatron instrumentation: boosting collider performance

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

    2006-05-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

  3. Effects of Glide Path on the Centering Ability and Preparation Time of Two Reciprocating Instruments

    Science.gov (United States)

    Coelho, Marcelo Santos; Fontana, Carlos Eduardo; Kato, Augusto Shoji; de Martin, Alexandre Sigrist; da Silveira Bueno, Carlos Eduardo

    2016-01-01

    Introduction: The aim of this in vitro study was to evaluate the effects of establishing glide path on the centering ability and preparation time of two single-file reciprocating systems in mesial root canals of mandibular molars. Methods and Materials: Sixty extracted mandibular molars with curvatures of 25-39 degrees and separate foramina for the mesiobuccal and mesiolingual canals, were divided into four groups (n=15); WaveOne+glide path; WaveOne; Reciproc+glide path and Reciproc. Non-patent canals were excluded and only one canal in each tooth was instrumented. A manual glide path was established in first and third groups with #10, 15 and 20 hand K-files. Preparation was performed with reciprocating in-and-out motion, with a 3-4 mm amplitude and slight apical pressure. Initial and final radiographs were taken to analyze the amount of dentin removed in the instrumented canals. The radiographs were superimposed with an image editing software and examined to assess discrepancies at 3-, 6- and 9-mm distances from the apex. The Kruskal-Wallis test was used for statistical analysis. The level of significance was set at 0.05. Results: Preparation in groups without glide paths was swifter than the other groups (P=0.001). However, no difference was observed regarding centering ability. Conclusion: Establishing a glide path increased the total instrumentation time for preparing curved canals with WaveOne and Reciproc instruments. Glide path had no influence on the centering ability of these systems. PMID:26843875

  4. Analysis and Design of Bi-Directional DC-DC Converter in the Extended Run Time DC UPS System Based on Fuel Cell and Supercapacitor

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2009-01-01

    Abstract-In this paper, an extended run time DC UPS system structure with fuel cell and supercapacitor is investigated. A wide input range bi-directional dc-dc converter is described along with the phase-shift modulation scheme and phase-shift with duty cycle control, in different modes. The deli......Abstract-In this paper, an extended run time DC UPS system structure with fuel cell and supercapacitor is investigated. A wide input range bi-directional dc-dc converter is described along with the phase-shift modulation scheme and phase-shift with duty cycle control, in different modes...

  5. Family of the Sun-and-Stars Time-Determining Instruments (Ilseong-jeongsi-ui Invented During the Joseon Dynasty

    Directory of Open Access Journals (Sweden)

    Yong Sam Lee

    2016-09-01

    Full Text Available We analyze the design and specifications of the Sun-and-Stars Time-Determining group of instruments (Ilseong-jeongsi-ui, 日星定時儀 made during the Joseon dynasty. According to the records of the Sejong Sillok (Veritable Records of King Sejong, Sun-and-Stars Time-Determining Instruments measure the solar time of day and the sidereal time of night through three rings and an alidade. One such instrument, the Simplified Time-Determining Instrument (So-jeongsi-ui, 小定時儀, is made without the essential component for alignment with the celestial north pole. Among this group of instruments, only two bronze Hundred-Interval-Ring Sundials (Baekgak-hwan-Ilgu, 百刻環日晷 currently exist. A comparison of the functions of these two relics with two Time-Determining Instruments suggests that the Hundred-Interval-Ring Sundial is a Simplified Sundial (So-ilyeong, 小日影, as recorded in the Sejong Sillok and the Seongjong Sillok (Veritable Records of King Seongjong. Furthermore, the Simplified Sundial is a model derived from the Simplified Time-Determining Instrument. During the King Sejong reign, the Sun-and-Stars Time-Determining Instruments were used in military camps of the kingdom’s frontiers, in royal ancestral rituals, and in royal astronomical observatories.

  6. Family of the Sun-and-Stars Time-Determining Instruments (Ilseong-jeongsi-ui) Invented During the Joseon Dynasty

    Science.gov (United States)

    Lee, Yong Sam; Kim, Sang Hyuk; Mihn, Byeong-Hee

    2016-09-01

    We analyze the design and specifications of the Sun-and-Stars Time-Determining group of instruments (Ilseong-jeongsi-ui, 日星定時儀) made during the Joseon dynasty. According to the records of the Sejong Sillok (Veritable Records of King Sejong), Sun-and-Stars Time-Determining Instruments measure the solar time of day and the sidereal time of night through three rings and an alidade. One such instrument, the Simplified Time-Determining Instrument (So-jeongsi-ui, 小定時儀), is made without the essential component for alignment with the celestial north pole. Among this group of instruments, only two bronze Hundred-Interval-Ring Sundials (Baekgak-hwan-Ilgu, 百刻環日晷) currently exist. A comparison of the functions of these two relics with two Time-Determining Instruments suggests that the Hundred-Interval-Ring Sundial is a Simplified Sundial (So-ilyeong, 小日影), as recorded in the Sejong Sillok and the Seongjong Sillok (Veritable Records of King Seongjong). Furthermore, the Simplified Sundial is a model derived from the Simplified Time-Determining Instrument. During the King Sejong reign, the Sun-and-Stars Time-Determining Instruments were used in military camps of the kingdom’s frontiers, in royal ancestral rituals, and in royal astronomical observatories.

  7. Response Time Analysis and Test of Protection System Instrument Channels for APR1400 and OPR1000

    International Nuclear Information System (INIS)

    Lee, Chang Jae; Han, Seung; Yun, Jae Hee; Baek, Seung Min; Lee, Sang Jeong

    2015-01-01

    Safety limits are required to maintain the integrity of physical barriers designed to prevent the uncontrolled release of radioactive materials in nuclear power plants. The safety analysis establishes two critical constraints that include an analytical limit in terms of a measured or calculated variable, and a specific time after the analytical limit is reached to begin protective action. Keeping with the nuclear regulations and industry standards, satisfying these two requirements will ensure that the safety limit will not be exceeded during the design basis event, either an anticipated operational occurrence or a postulated accident. Various studies on the setpoint determination methodology for the safety-related instrumentation have been actively performed to ensure that the requirement of the analytical limit is satisfied. In particular, the protection setpoint methodology for the advanced power reactor 1400 (APP1400) and the optimized power reactor 1000 (OPR1000) has been recently developed to cover both the design basis event and the beyond design basis event. The developed setpoint methodology has also been quantitatively validated using specific computer programs and setpoint calculations. However, the safety of nuclear power plants cannot be fully guaranteed by satisfying the requirement of the analytical limit. In spite of the response time verification requirements of nuclear regulations and industry standards, it is hard to find the studies on the systematically integrated methodology regarding the response time evaluation. In cases of APR1400 and OPR1000, the response time analysis for the plant protection system is partially included in the setpoint calculation and the response time test is separately performed via the specific plant procedure. The test technique has a drawback which is the difficulty to demonstrate completeness of timing test. The analysis technique has also a demerit of resulting in extreme times that not actually possible. Thus

  8. Response Time Analysis and Test of Protection System Instrument Channels for APR1400 and OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Jae; Han, Seung; Yun, Jae Hee; Baek, Seung Min [Department of Instrumentation and Control System Engineering, KEPCO Engineering and Construction, Daejeon (Korea, Republic of); Lee, Sang Jeong [Department of Electronics Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2015-07-01

    Safety limits are required to maintain the integrity of physical barriers designed to prevent the uncontrolled release of radioactive materials in nuclear power plants. The safety analysis establishes two critical constraints that include an analytical limit in terms of a measured or calculated variable, and a specific time after the analytical limit is reached to begin protective action. Keeping with the nuclear regulations and industry standards, satisfying these two requirements will ensure that the safety limit will not be exceeded during the design basis event, either an anticipated operational occurrence or a postulated accident. Various studies on the setpoint determination methodology for the safety-related instrumentation have been actively performed to ensure that the requirement of the analytical limit is satisfied. In particular, the protection setpoint methodology for the advanced power reactor 1400 (APP1400) and the optimized power reactor 1000 (OPR1000) has been recently developed to cover both the design basis event and the beyond design basis event. The developed setpoint methodology has also been quantitatively validated using specific computer programs and setpoint calculations. However, the safety of nuclear power plants cannot be fully guaranteed by satisfying the requirement of the analytical limit. In spite of the response time verification requirements of nuclear regulations and industry standards, it is hard to find the studies on the systematically integrated methodology regarding the response time evaluation. In cases of APR1400 and OPR1000, the response time analysis for the plant protection system is partially included in the setpoint calculation and the response time test is separately performed via the specific plant procedure. The test technique has a drawback which is the difficulty to demonstrate completeness of timing test. The analysis technique has also a demerit of resulting in extreme times that not actually possible. Thus

  9. Triathlon: running injuries.

    Science.gov (United States)

    Spiker, Andrea M; Dixit, Sameer; Cosgarea, Andrew J

    2012-12-01

    The running portion of the triathlon represents the final leg of the competition and, by some reports, the most important part in determining a triathlete's overall success. Although most triathletes spend most of their training time on cycling, running injuries are the most common injuries encountered. Common causes of running injuries include overuse, lack of rest, and activities that aggravate biomechanical predisposers of specific injuries. We discuss the running-associated injuries in the hip, knee, lower leg, ankle, and foot of the triathlete, and the causes, presentation, evaluation, and treatment of each.

  10. Develop real-time dosimetry concepts and instrumentation for long-term missions

    International Nuclear Information System (INIS)

    Braby, L.A.; Ratcliffe, C.A.; Metting, N.F.; Lien, M.K.

    1984-06-01

    The objective was to develop a small, self-contained system to measure dose and evaluate dose equivalent in real time in the complex radiation environment encountered in space. The device utilizes a microdosimetric approach. The instrument consists of two propane filled proportional counters, one of which measures energy deposition by penetrating radiations with LET between 0.24 and 200 keV/μm. The second detector is intended for particles with LET greater than or equal to 200 keV/μm for a minimum of 100 μm. This detector is physically larger in order to obtain reasonable counting statistics on these infrequent micro lesion-forming events. The detectors are combined with an electronic system which consists of three multi-channel analyzers with independent analog to digital converters, computer controlled detector bias supplies, signal conditioning amplifiers, data recording and display devices and a microcomputer which controls the system and calculates dose and dose equivalent. This report includes a brief discussion of microdosimetry as it applies to health physics, an evaluation of different methods for calculating dose equivalent, descriptions of the hardware and software making up the prototype instrument and the results of evaluations of the instrument when exposed to a variety of radiations. Included are operating instructions, software listings, and circuit diagrams. 18 references, 9 figures, 8 tables

  11. Patellofemoral Joint Loads During Running at the Time of Return to Sport in Elite Athletes With ACL Reconstruction.

    Science.gov (United States)

    Herrington, Lee; Alarifi, Saud; Jones, Richard

    2017-10-01

    Patellofemoral joint pain and degeneration are common in patients who undergo anterior cruciate ligament reconstruction (ACLR). The presence of patellofemoral joint pain significantly affects the patient's ability to continue sport participation and may even affect participation in activities of daily living. The mechanisms behind patellofemoral joint pain and degeneration are unclear, but previous research has identified altered patellofemoral joint loading in individuals with patellofemoral joint pain when running. It is unclear whether this process occurs after ACLR. To assess the patellofemoral joint stresses during running in ACLR knees and compare the findings to the noninjured knee and matched control knees. Controlled laboratory study. Thirty-four elite sports practitioners who had undergone ACLR and 34 age- and sex-matched controls participated in the study. The participants' running gait was assessed via 3D motion capture, and knee loads and forces were calculated by use of inverse dynamics. A significance difference was found in knee extensor moment, knee flexion angles, patellofemoral contact force (about 23% greater), and patellofemoral contact pressure (about 27% greater) between the ACLR and the noninjured limb ( P ≤ .04) and between the ACLR and the control limb ( P ≤ .04); no significant differences were found between the noninjured and control limbs ( P ≥ .44). Significantly greater levels of patellofemoral joint stress and load were found in the ACLR knee compared with the noninjured and control knees. Altered levels of patellofemoral stress in the ACLR knee during running may predispose individuals to patellofemoral joint pain.

  12. Effects of selective breeding for increased wheel-running behavior on circadian timing of substrate oxidation and ingestive behavior

    NARCIS (Netherlands)

    Jonas, I.; Vaanholt, L. M.; Doornbos, M.; Garland, T.; Scheurink, A. J. W.; Nyakas, C.; van Dijk, G.; Garland Jr., T.

    2010-01-01

    Fluctuations in substrate preference and utilization across the circadian cycle may be influenced by the degree of physical activity and nutritional status. In the present study, we assessed these relationships in control mice and in mice from a line selectively bred for high voluntary wheel-running

  13. DEVELOPMENT OF AN ON-LINE, REAL-TIME ALPHA RADIATION MEASURING INSTRUMENT FOR LIQUID STREAMS

    International Nuclear Information System (INIS)

    Unknown

    1999-01-01

    The US Department of Energy (DOE) has expressed a need for an on-line, real-time instrument for assaying alpha-emitting radionuclides (uranium and the transuranics) in effluent waters leaving DOE sites to ensure compliance with regulatory limits. Due to the short range of alpha particles in water (approximately40 Im), it is necessary now to intermittently collect samples of water and send them to a central laboratory for analysis. A lengthy and costly procedure is used to separate and measure the radionuclides from each sample. Large variations in radionuclide concentrations in the water may go undetected due to the sporadic sampling. Even when detected, the reading may not be representative of the actual stream concentration. To address these issues, the Advanced Technologies Group of Thermo Power Corporation (a Thermo Electron company) is developing a real-time, field-deployable alpha monitor based on a solid-state silicon wafer semiconductor (US Patent 5,652,013 and pending, assigned to the US Department of Energy). The Thermo Water Alpha Monitor will serve to monitor effluent water streams (Subsurface Contaminants Focus Area) and will be suitable for process control of remediation as well as decontamination and decommissioning (D and D) operations, such as monitoring scrubber or rinse water radioactivity levels (Mixed Waste, Plutonium, and D and D Focus Area). It would be applicable for assaying other liquids, such as oil, or solids after proper preconditioning. Rapid isotopic alpha air monitoring is also possible using this technology. This report details the program's accomplishments to date. Most significantly, the Alpha Monitoring Instrument was successfully field demonstrated on water 100X below the Environmental Protection Agency's proposed safe drinking water limit--down to under 1 pCi/1. During the Field Test, the Alpha Monitoring Instrument successfully analyzed isotopic uranium levels on a total of five different surface water, process water, and

  14. On Gamma Ray Instrument On-Board Data Processing Real-Time Computational Algorithm for Cosmic Ray Rejection

    Science.gov (United States)

    Kizhner, Semion; Hunter, Stanley D.; Hanu, Andrei R.; Sheets, Teresa B.

    2016-01-01

    Richard O. Duda and Peter E. Hart of Stanford Research Institute in [1] described the recurring problem in computer image processing as the detection of straight lines in digitized images. The problem is to detect the presence of groups of collinear or almost collinear figure points. It is clear that the problem can be solved to any desired degree of accuracy by testing the lines formed by all pairs of points. However, the computation required for n=NxM points image is approximately proportional to n2 or O(n2), becoming prohibitive for large images or when data processing cadence time is in milliseconds. Rosenfeld in [2] described an ingenious method due to Hough [3] for replacing the original problem of finding collinear points by a mathematically equivalent problem of finding concurrent lines. This method involves transforming each of the figure points into a straight line in a parameter space. Hough chose to use the familiar slope-intercept parameters, and thus his parameter space was the two-dimensional slope-intercept plane. A parallel Hough transform running on multi-core processors was elaborated in [4]. There are many other proposed methods of solving a similar problem, such as sampling-up-the-ramp algorithm (SUTR) [5] and algorithms involving artificial swarm intelligence techniques [6]. However, all state-of-the-art algorithms lack in real time performance. Namely, they are slow for large images that require performance cadence of a few dozens of milliseconds (50ms). This problem arises in spaceflight applications such as near real-time analysis of gamma ray measurements contaminated by overwhelming amount of traces of cosmic rays (CR). Future spaceflight instruments such as the Advanced Energetic Pair Telescope instrument (AdEPT) [7-9] for cosmos gamma ray survey employ large detector readout planes registering multitudes of cosmic ray interference events and sparse science gamma ray event traces' projections. The AdEPT science of interest is in the

  15. A real time study of the human equilibrium using an instrumented insole with 3 pressure sensors.

    Science.gov (United States)

    Abou Ghaida, Hussein; Mottet, Serge; Goujon, Jean-Marc

    2014-01-01

    The present work deals with the study of the human equilibrium using an ambulatory e-health system. One of the point on which we focus is the fall risk, when losing equilibrium control. A specific postural learning model is presented, and an ambulatory instrumented insole is developed using 3 pressures sensors per foot, in order to determine the real-time displacement and the velocity of the centre of pressure (CoP). The increase of these parameters signals a loss of physiological sensation, usually of vision or of the inner ear. The results are compared to those obtained from classical more complex systems.

  16. The Responsibility Of Trade Unions In Transaction Collective Instruments About Compensatory Time

    Directory of Open Access Journals (Sweden)

    Manuella de Oliveira Soares

    2016-12-01

    Full Text Available The democratic State of Direct aims to provide assurance and effectiveness of fundamental rights in order that human dignity is preserved. In this way, among other fundamental rights is the right to health, in one of its aspects, protects workers' health. Thus, this study, through a bibliographical research aims to demonstrate that unions should be held responsible for damage caused to workers when preparing collective bargaining instruments to the creation of compensatory time with conditions that endanger the health of workers .

  17. Applications of telecommunication technology for optical instrumentation with an emphasis on space-time duality

    Science.gov (United States)

    van Howe, James William

    Telecommunication technology has often been applied to areas of science and engineering seemingly unrelated to communication systems. Innovations such as electronic amplifiers, the transistor, digital coding, optical fiber, and the laser, which all had roots in communication technology, have been implemented in devices from bar-code scanners to fiber endoscopes for medical procedures. In the same way, the central theme of the work in the following chapters has been to borrow both the concepts and technology of telecommunications systems to develop novel optical instrumentation for non-telecom pursuits. This work particularly leverages fiber-integrated electro-optic phase modulators to apply custom phase profiles to ultrafast pulses for control and manipulation. Such devices are typically used in telecom transmitters to encode phase data onto optical pulses (differential phase-shift keying), or for chirped data transmission. We, however, use electro-optic phase modulators to construct four novel optical devices: (1) a programmable ultrafast optical delay line with record scanning speed for applications in optical metrology, interferometry, or broad-band phase arrays, (2) a multiwavelength pulse generator for real-time optical sampling of electronic waveforms, (3) a simple femtosecond pulse generator for uses in biomedical imaging or ultrafast spectroscopy, and (4) a nonlinear phase compensator to increase the energy of fiber-amplified ultrashort pulse systems. In addition, we describe a fifth instrument which makes use of a higher-order mode fiber, similar in design to dispersion compensating fibers used for telecom. Through soliton self-frequency shift in the higher-order mode fiber, we can broadly-tune the center frequency of ultrashort pulses in energy regimes useful for biomedical imaging or ultrafast spectroscopy. The advantages gained through using telecom components in each of these systems are the simplicity and robustness of all-fiber configurations, high

  18. An instrument for real time detection of contamination in space environmental tests chambers

    Science.gov (United States)

    Richmond, R. G.; Harmon, H. N.

    1972-01-01

    An instrument for in situ vacuum detection of surface reflectance changes at 1216A was designed. Using successive reflections, this instrument is more sensitive as an indicator of reflectance changes than similar instruments having only a single reflection. The selection of each component of the instrument and its operational performance is discussed.

  19. Minimizing Experimental Setup Time and Effort at APS beamline 1-ID through Instrumentation Design

    Energy Technology Data Exchange (ETDEWEB)

    Benda, Erika; Almer, Jonathan; Kenesei, Peter; Mashayekhi, Ali; Okasinksi, John; Park, Jun-Sang; Ranay, Rogelio; Shastri, Sarvijt

    2016-01-01

    Sector 1-ID at the APS accommodates a number of dif-ferent experimental techniques in the same spatial enve-lope of the E-hutch end station. These include high-energy small and wide angle X-ray scattering (SAXS and WAXS), high-energy diffraction microscopy (HEDM, both near and far field modes) and high-energy X-ray tomography. These techniques are frequently combined to allow the users to obtain multimodal data, often attaining 1 μm spatial resolution and <0.05º angular resolution. Furthermore, these techniques are utilized while the sam-ple is thermo-mechanically loaded to mimic real operat-ing conditions. The instrumentation required for each of these techniques and environments has been designed and configured in a modular way with a focus on stability and repeatability between changeovers. This approach allows the end station to be more versatile, capable of collecting multi-modal data in-situ while reducing time and effort typically required for set up and alignment, resulting in more efficient beam time use. Key instrumentation de-sign features and layout of the end station are presented.

  20. Just in Time - Expecting Failure: Do JIT Principles Run Counter to DoD’s Business Nature?

    Science.gov (United States)

    2014-04-01

    Regiment. The last several years witnessed both commercial industry and the Department of Defense (DoD) logistics supply chains trending to-ward an...moving items through a production system only when needed. Equating inventory to an avoidable waste instead of adding value to a company directly...Louisiana plant for a week, Honda Motor Company to suspend orders for Japanese-built Honda and Acura models, and pro- ducers of Boeing’s 787 to run billions

  1. Running Linux

    CERN Document Server

    Dalheimer, Matthias Kalle

    2006-01-01

    The fifth edition of Running Linux is greatly expanded, reflecting the maturity of the operating system and the teeming wealth of software available for it. Hot consumer topics such as audio and video playback applications, groupware functionality, and spam filtering are covered, along with the basics in configuration and management that always made the book popular.

  2. RUN COORDINATION

    CERN Multimedia

    C. Delaere

    2013-01-01

    Since the LHC ceased operations in February, a lot has been going on at Point 5, and Run Coordination continues to monitor closely the advance of maintenance and upgrade activities. In the last months, the Pixel detector was extracted and is now stored in the pixel lab in SX5; the beam pipe has been removed and ME1/1 removal has started. We regained access to the vactank and some work on the RBX of HB has started. Since mid-June, electricity and cooling are back in S1 and S2, allowing us to turn equipment back on, at least during the day. 24/7 shifts are not foreseen in the next weeks, and safety tours are mandatory to keep equipment on overnight, but re-commissioning activities are slowly being resumed. Given the (slight) delays accumulated in LS1, it was decided to merge the two global runs initially foreseen into a single exercise during the week of 4 November 2013. The aim of the global run is to check that we can run (parts of) CMS after several months switched off, with the new VME PCs installed, th...

  3. DEVELOPMENT OF AN ON-LINE, REAL-TIME ALPHA RADIATION MEASURING INSTRUMENT FOR LIQUID STREAMS

    International Nuclear Information System (INIS)

    1996-01-01

    The Department of Energy (DOE) has expressed a need for an on-line, real-time instrument for assaying alpha-emitting radionuclides (uranium and the transuranics) in effluent waters leaving DOE sites to ensure compliance with regulatory limits. Due to the short range of alpha particles in water (approximately40 Tm), it is necessary now to intermittently collect samples of water and send them to a central laboratory for analysis. A lengthy and costly procedure is used to separate and measure the radionuclides from each sample. Large variations in radionuclide concentrations in the water may go undetected due to the sporadic sampling. Even when detected, the reading may not be representative of the actual stream concentration. To address these issues, Tecogen, a division of Thermo Power Corporation, a Thermo Electron company, is developing a real-time, field-deployable, alpha monitor based on a solid-state silicon wafer semiconductor (patent pending, to be assigned to the Department of Energy). The Thermo Alpha Monitor (TAM) will serve to monitor effluent water streams (Subsurface Contaminants Focus Area) and will be suitable for process control of remediation as well as decontamination and decommissioning operations, such as monitoring scrubber or rinse water radioactivity levels (Mixed Waste Focus Area and D and D Focus Area). It would be applicable for assaying other liquids, such as oil, or solids after proper preconditioning. Rapid isotopic alpha air monitoring is also possible using this technology. This instrument for direct counting of alpha-emitters in aqueous streams is presently being developed by Thermo Power under a development program funded by the DOE Environmental Management program (DOE-EM), administered by the Morgantown Energy Technology Center (METC). Under this contract, Thermo Power has demonstrated a solid-state, silicon-based semiconductor instrument, which uses a proprietary film-based collection system to quantitatively extract the

  4. [Research and implementation of a real-time monitoring system for running status of medical monitors based on the internet of things].

    Science.gov (United States)

    Li, Yiming; Qian, Mingli; Li, Long; Li, Bin

    2014-07-01

    This paper proposed a real-time monitoring system for running status of medical monitors based on the internet of things. In the aspect of hardware, a solution of ZigBee networks plus 470 MHz networks is proposed. In the aspect of software, graphical display of monitoring interface and real-time equipment failure alarm is implemented. The system has the function of remote equipment failure detection and wireless localization, which provides a practical and effective method for medical equipment management.

  5. Hourly Comparison of GPM-IMERG-Final-Run and IMERG-Real-Time (V-03) over a Dense Surface Network in Northeastern Austria

    Science.gov (United States)

    Sharifi, Ehsan; Steinacker, Reinhold; Saghafian, Bahram

    2017-04-01

    Accurate quantitative daily precipitation estimation is key to meteorological and hydrological applications in hazards forecast and management. In-situ observations over mountainous areas are mostly limited, however, currently available satellite precipitation products can potentially provide the precipitation estimation needed for meteorological and hydrological applications. Over the years, blended methods that use multi-satellites and multi-sensors have been developed for estimating of global precipitation. One of the latest satellite precipitation products is GPM-IMERG (Global Precipitation Measurement with 30-minute temporal and 0.1-degree spatial resolutions) which consists of three products: Final-Run (aimed for research), Real-Time early run, and Real-Time late run. The Integrated Multisatellite Retrievals for GPM (IMERG) products built upon the success of TRMM's Multisatellite Precipitation Analysis (TMPA) products continue to make improvements in spatial and temporal resolutions and snowfall estimates. Recently, researchers who evaluated IMERG-Final-Run V-03 and other precipitation products indicated better performance for IMERG-Final-Run against other similar products. In this study two GPM-IMERG products, namely final run and real time-late run, were evaluated against a dense synoptic stations network (62 stations) over Northeastern Austria for mid-March 2015 to end of January 2016 period at hourly time-scale. Both products were examined against the reference data (stations) in capturing the occurrence of precipitation and statistical characteristics of precipitation intensity. Both satellite precipitation products underestimated precipitation events of 0.1 mm/hr to 0.4 mm/hr in intensity. For precipitations 0.4 mm/hr and greater, the trend was reversed and both satellite products overestimated than station recorded data. IMERG-RT outperformed IMERG-FR for precipitation intensity in the range of 0.1 mm/hr to 0.4 mm/hr while in the range of 1.1 to 1.8 mm

  6. The LHCb Run Control

    CERN Document Server

    Alessio, F; Callot, O; Duval, P-Y; Franek, B; Frank, M; Galli, D; Gaspar, C; v Herwijnen, E; Jacobsson, R; Jost, B; Neufeld, N; Sambade, A; Schwemmer, R; Somogyi, P

    2010-01-01

    LHCb has designed and implemented an integrated Experiment Control System. The Control System uses the same concepts and the same tools to control and monitor all parts of the experiment: the Data Acquisition System, the Timing and the Trigger Systems, the High Level Trigger Farm, the Detector Control System, the Experiment's Infrastructure and the interaction with the CERN Technical Services and the Accelerator. LHCb's Run Control, the main interface used by the experiment's operator, provides access in a hierarchical, coherent and homogeneous manner to all areas of the experiment and to all its sub-detectors. It allows for automated (or manual) configuration and control, including error recovery, of the full experiment in its different running modes. Different instances of the same Run Control interface are used by the various sub-detectors for their stand-alone activities: test runs, calibration runs, etc. The architecture and the tools used to build the control system, the guidelines and components provid...

  7. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection

    Directory of Open Access Journals (Sweden)

    San-Shan Hung

    2016-12-01

    Full Text Available A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2′-bipyridyl dichlororuthenium(II hexahydrate and Tris(bipyridineruthenium(II chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%.

  8. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection.

    Science.gov (United States)

    Hung, San-Shan; Chang, Hsing-Cheng; Chang, I-Nan

    2016-12-08

    A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2'-bipyridyl) dichlororuthenium(II) hexahydrate and Tris(bipyridine)ruthenium(II) chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%.

  9. An instrument for measuring doubling time; Un appareillage de mesure de temps de doublement

    Energy Technology Data Exchange (ETDEWEB)

    Ailloud, J; Chandanson, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    The instrument described here allows the direct and almost immediate measurement, with a precision of the order of 1 per cent, of the time taken by a reactor to double its power. The method of measurement consists of noting the instants when the power of the reactor passes the levels P{sub 1} and P{sub 2} such that P{sub 2} = 2 P{sub 1}, and of measuring the time lapse between these two instants. The instrument picks out, in the course of one rise in power, several levels, P{sub 1}, P{sub 2}, P{sub 3}... etc, chosen in such a manner as to give several successive measurements of the doubling time. It is also capable of making these same measurements when the reactor is working below the critical level. (author) [French] L'appareil decrit ici permet la mesure directe et quasi immediate du temps de doublement de la puissance d'un reacteur avec une precision de l'ordre de 1 pour cent. La methode de mesure consiste a reperer les instants de passage de la puissance du reacteur par des niveaux P{sub 1} et P{sub 2} tels que P{sub 2} = 2 P{sub 1}, et a mesurer le temps ecoule entre ces deux instants. L'appareil repere, au cours d'une meme montee en puissance, plusieurs niveaux, P{sub 1}, P{sub 2}, P{sub 3}... etc, choisis de maniere a donner plusieurs mesures successives du temps de doublement. Il est egalement utilisable pour effectuer ces memes mesures lorsque le reacteur est en regime sous-critique. (auteur)

  10. Plasmonic-based instrument response function for time-resolved fluorescence: toward proper lifetime analysis

    Energy Technology Data Exchange (ETDEWEB)

    Szlazak, Radoslaw; Tutaj, Krzysztof; Grudzinski, Wojciech; Gruszecki, Wieslaw I.; Luchowski, Rafal, E-mail: rafal.luchowski@umcs.pl [Maria Curie-Sklodowska University, Department of Biophysics, Institute of Physics (Poland)

    2013-06-15

    In this report, we investigated the so-called plasmonic platforms prepared to target ultra-short fluorescence and accurate instrumental response function in a time-domain spectroscopy and microscopy. The interaction of metallic nanoparticles with nearby fluorophores results in the increase of the dye fluorescence quantum yield, photostability and decrease of the lifetime parameter. The mentioned properties of platforms were applied to achieve a picosecond fluorescence lifetime (21 ps) of erythrosin B, used later as a better choice for deconvolution of fluorescence decays measured with 'color' sensitive photo-detectors. The ultra-short fluorescence standard based on combination of thin layers of silver film, silver colloidal nanoparticles (about 60 nm in diameter), and top layer of erythrosin B embedded in 0.2 % poly(vinyl) alcohol. The response functions were monitored on two photo-detectors; microchannel plate photomultiplier and single photon avalanche photodiode as a Rayleigh scattering and ultra-short fluorescence. We demonstrated that use of the plasmonic base fluorescence standard as an instrumental response function results in the absence of systematic error in lifetime measurements and analysis.

  11. Low contrast volume run-off CT angiography with optimized scan time based on double-level test bolus technique – feasibility study

    International Nuclear Information System (INIS)

    Baxa, Jan; Vendiš, Tomáš; Moláček, Jiří; Štěpánková, Lucie; Flohr, Thomas; Schmidt, Bernhard; Korporaal, Johannes G.; Ferda, Jiří

    2014-01-01

    Purpose: To verify the technical feasibility of low contrast volume (40 mL) run-off CT angiography (run-off CTA) with the individual scan time optimization based on double-level test bolus technique. Materials and methods: A prospective study of 92 consecutive patients who underwent run-off CTA performed with 40 mL of contrast medium (injection rate of 6 mL/s) and optimized scan times on a second generation of dual-source CT. Individual optimized scan times were calculated from aortopopliteal transit times obtained on the basis of double-level test bolus technique – the single injection of 10 mL test bolus and dynamic acquisitions in two levels (abdominal aorta and popliteal arteries). Intraluminal attenuation (HU) was measured in 6 levels (aorta, iliac, femoral and popliteal arteries, middle and distal lower-legs) and subjective quality (3-point score) was assessed. Relations of image quality, test bolus parameters and arterial circulation involvement were analyzed. Results: High mean attenuation (HU) values (468; 437; 442; 440; 342; 274) and quality score in all monitored levels was achieved. In 91 patients (0.99) the sufficient diagnostic quality (score 1–2) in aorta, iliac and femoral arteries was determined. A total of 6 patients (0.07) were not evaluable in distal lower-legs. Only the weak indirect correlation of image quality and test-bolus parameters was proved in iliac, femoral and popliteal levels (r values: −0.263, −0.298 and −0.254). The statistically significant difference of the test-bolus parameters and image quality was proved in patients with occlusive and aneurysmal disease. Conclusion: We proved the technical feasibility and sufficient quality of run-off CTA with low volume of contrast medium and optimized scan time according to aortopopliteal transit time calculated from double-level test bolus

  12. Running Club

    CERN Multimedia

    Running Club

    2011-01-01

    The cross country running season has started well this autumn with two events: the traditional CERN Road Race organized by the Running Club, which took place on Tuesday 5th October, followed by the ‘Cross Interentreprises’, a team event at the Evaux Sports Center, which took place on Saturday 8th October. The participation at the CERN Road Race was slightly down on last year, with 65 runners, however the participants maintained the tradition of a competitive yet friendly atmosphere. An ample supply of refreshments before the prize giving was appreciated by all after the race. Many thanks to all the runners and volunteers who ensured another successful race. The results can be found here: https://espace.cern.ch/Running-Club/default.aspx CERN participated successfully at the cross interentreprises with very good results. The teams succeeded in obtaining 2nd and 6th place in the Mens category, and 2nd place in the Mixed category. Congratulations to all. See results here: http://www.c...

  13. RUN COORDINATION

    CERN Multimedia

    M. Chamizo

    2012-01-01

      On 17th January, as soon as the services were restored after the technical stop, sub-systems started powering on. Since then, we have been running 24/7 with reduced shift crew — Shift Leader and DCS shifter — to allow sub-detectors to perform calibration, noise studies, test software upgrades, etc. On 15th and 16th February, we had the first Mid-Week Global Run (MWGR) with the participation of most sub-systems. The aim was to bring CMS back to operation and to ensure that we could run after the winter shutdown. All sub-systems participated in the readout and the trigger was provided by a fraction of the muon systems (CSC and the central RPC wheel). The calorimeter triggers were not available due to work on the optical link system. Initial checks of different distributions from Pixels, Strips, and CSC confirmed things look all right (signal/noise, number of tracks, phi distribution…). High-rate tests were done to test the new CSC firmware to cure the low efficiency ...

  14. A toolbox for safety instrumented system evaluation based on improved continuous-time Markov chain

    Science.gov (United States)

    Wardana, Awang N. I.; Kurniady, Rahman; Pambudi, Galih; Purnama, Jaka; Suryopratomo, Kutut

    2017-08-01

    Safety instrumented system (SIS) is designed to restore a plant into a safe condition when pre-hazardous event is occur. It has a vital role especially in process industries. A SIS shall be meet with safety requirement specifications. To confirm it, SIS shall be evaluated. Typically, the evaluation is calculated by hand. This paper presents a toolbox for SIS evaluation. It is developed based on improved continuous-time Markov chain. The toolbox supports to detailed approach of evaluation. This paper also illustrates an industrial application of the toolbox to evaluate arch burner safety system of primary reformer. The results of the case study demonstrates that the toolbox can be used to evaluate industrial SIS in detail and to plan the maintenance strategy.

  15. High precision instrumentation for measuring the true exposure time in diagnostic X-ray examinations

    International Nuclear Information System (INIS)

    Silva, Danubia B.; Santos, Marcus A.P.; Barros, Fabio R.; Santos, Luiz A.P.

    2013-01-01

    One of the most important physical quantities to be evaluated in diagnostic radiology is the radiation exposure time experimented by the patient during the X-ray examination. IAEA and WHO organizations have suggested that any country must create a quality surveillance program to verify if each type of ionizing radiation equipment used in the hospitals and medical clinics are in conformity with the accepted uncertainties following the international standards. The purpose of this work is to present a new high precision methodology for measuring true exposure time in diagnostic X-ray examinations: pulsed, continuous or digital one. An electronic system named CronoX, which will be soon registered at the Brazilian Patent Office (INPI), is the equipment that provides such a high precision measurement. The principle of measurement is based on the electrical signal captured by a sensor that enters in a regeneration amplifier to transform it in a digital signal, which is treated by a microprocessor (uP). The signal treatment results in a two measured times: 1) T rx , the true X-ray exposure time; 2) T nx , the time in which the X-ray machine is repeatedly cut off during the pulsed irradiation and there is no delivery dose to the patient. Conventional Polymat X-ray equipment and dental X-ray machines were used to generate X-ray photons and take the measurements with the electronic systems. The results show that such a high precision instrumentation displays the true exposure time in diagnostic X-ray examinations and indicates a new method to be purposed for the quality surveillance programs in radiology. (author)

  16. Using Simulated Partial Dynamic Run-Time Reconfiguration to Share Embedded FPGA Compute and Power Resources across a Swarm of Unpiloted Airborne Vehicles

    Directory of Open Access Journals (Sweden)

    Kearney David

    2007-01-01

    Full Text Available We show how the limited electrical power and FPGA compute resources available in a swarm of small UAVs can be shared by moving FPGA tasks from one UAV to another. A software and hardware infrastructure that supports the mobility of embedded FPGA applications on a single FPGA chip and across a group of networked FPGA chips is an integral part of the work described here. It is shown how to allocate a single FPGA's resources at run time and to share a single device through the use of application checkpointing, a memory controller, and an on-chip run-time reconfigurable network. A prototype distributed operating system is described for managing mobile applications across the swarm based on the contents of a fuzzy rule base. It can move applications between UAVs in order to equalize power use or to enable the continuous replenishment of fully fueled planes into the swarm.

  17. Effects of cognitive stimulation with a self-modeling video on time to exhaustion while running at maximal aerobic velocity: a pilot study.

    Science.gov (United States)

    Hagin, Vincent; Gonzales, Benoît R; Groslambert, Alain

    2015-04-01

    This study assessed whether video self-modeling improves running performance and influences the rate of perceived exertion and heart rate response. Twelve men (M age=26.8 yr., SD=6; M body mass index=22.1 kg.m(-2), SD=1) performed a time to exhaustion running test at 100 percent maximal aerobic velocity while focusing on a video self-modeling loop to synchronize their stride. Compared to the control condition, there was a significant increase of time to exhaustion. Perceived exertion was lower also, but there was no significant change in mean heart rate. In conclusion, the video self-modeling used as a pacer apparently increased endurance by decreasing perceived exertion without affecting the heart rate.

  18. Passenger Sharing of the High-Speed Railway from Sensitivity Analysis Caused by Price and Run-time Based on the Multi-Agent System

    Directory of Open Access Journals (Sweden)

    Ma Ning

    2013-09-01

    Full Text Available Purpose: Nowadays, governments around the world are active in constructing the high-speed railway. Therefore, it is significant to make research on this increasingly prevalent transport.Design/methodology/approach: In this paper, we simulate the process of the passenger’s travel mode choice by adjusting the ticket fare and the run-time based on the multi-agent system (MAS.Findings: From the research we get the conclusion that increasing the run-time appropriately and reducing the ticket fare in some extent are effective ways to enhance the passenger sharing of the high-speed railway.Originality/value: We hope it can provide policy recommendations for the railway sectors in developing the long-term plan on high-speed railway in the future.

  19. Symmetry in running.

    Science.gov (United States)

    Raibert, M H

    1986-03-14

    Symmetry plays a key role in simplifying the control of legged robots and in giving them the ability to run and balance. The symmetries studied describe motion of the body and legs in terms of even and odd functions of time. A legged system running with these symmetries travels with a fixed forward speed and a stable upright posture. The symmetries used for controlling legged robots may help in elucidating the legged behavior of animals. Measurements of running in the cat and human show that the feet and body sometimes move as predicted by the even and odd symmetry functions.

  20. Planck 2015 results: VII. High Frequency Instrument data processing: Time-ordered information and beams

    International Nuclear Information System (INIS)

    Adam, R.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.

    2016-01-01

    The Planck High Frequency Instrument (HFI) has observed the full sky at six frequencies (100, 143, 217, 353, 545, and 857 GHz) in intensity and at four frequencies in linear polarization (100, 143, 217, and 353 GHz). In order to obtain sky maps, the time-ordered information (TOI) containing the detector and pointing samples must be processed and the angular response must be assessed. The full mission TOI is included in the Planck 2015 release. This study describes the HFI TOI and beam processing for the 2015 release. HFI calibration and map making are described in a companion paper. The main pipeline has been modified since the last release (2013 nominal mission in intensity only), by including a correction for the nonlinearity of the warm readout and by improving the model of the bolometer time response. The beam processing is an essential tool that derives the angular response used in all the Planck science papers and we report an improvement in the effective beam window function uncertainty of more than a factor of 10 relative to the2013 release. Noise correlations introduced by pipeline filtering function are assessed using dedicated simulations. Finally, angular cross-power spectra using data sets that are decorrelated in time are immune to the main systematic effects.

  1. Distance walked and run as improved metrics over time-based energy estimation in epidemiological studies and prevention; evidence from medication use.

    Directory of Open Access Journals (Sweden)

    Paul T Williams

    Full Text Available The guideline physical activity levels are prescribed in terms of time, frequency, and intensity (e.g., 30 minutes brisk walking, five days a week or its energy equivalence and assume that different activities may be combined to meet targeted goals (exchangeability premise. Habitual runners and walkers may quantify exercise in terms of distance (km/day, and for them, the relationship between activity dose and health benefits may be better assessed in terms of distance rather than time. Analyses were therefore performed to test: 1 whether time-based or distance-based estimates of energy expenditure provide the best metric for relating running and walking to hypertensive, high cholesterol, and diabetes medication use (conditions known to be diminished by exercise, and 2 the exchangeability premise.Logistic regression analyses of medication use (dependent variable vs. metabolic equivalent hours per day (METhr/d of running, walking and other exercise (independent variables using cross-sectional data from the National Runners' (17,201 male, 16,173 female and Walkers' Health Studies (3,434 male, 12,384 female.Estimated METhr/d of running and walking activity were 38% and 31% greater, respectively, when calculated from self-reported time than distance in men, and 43% and 37% greater in women, respectively. Percent reductions in the odds for hypertension and high cholesterol medication use per METhr/d run or per METhr/d walked were ≥ 2-fold greater when estimated from reported distance (km/wk than from time (hr/wk. The per METhr/d odds reduction was significantly greater for the distance- than the time-based estimate for hypertension (runners: P<10(-5 for males and P=0.003 for females; walkers: P=0.03 for males and P<10(-4 for females, high cholesterol medication use in runners (P<10(-4 for males and P=0.02 for females and male walkers (P=0.01 for males and P=0.08 for females and for diabetes medication use in male runners (P<10(-3.Although causality

  2. Embedded Real-Time Linux for Instrument Control and Data Logging

    Science.gov (United States)

    Clanton, Sam; Gore, Warren J. (Technical Monitor)

    2002-01-01

    When I moved to the west. coast to take a job at NASA's Ames Research Center in Mountain View, CA, I was impressed with the variety of equipment and software which scientists at the center use to conduct their research. was happy to find that I was just as likely to see a machine running Lenox as one running Windows in the offices and laboratories of NASA Ames (although many people seem to use Moos around here). I was especially happy to find that the particular group with whom I was going to work, the Atmospheric Physics Branch at Ames, relied almost entirely on Lenox machines for their day-to-day work. So it was no surprise that when it was time to construct a new control system for one of their most important pieces of hardware, a switch from an unpredictable DOS-based platform to an Embedded Linux-based one was a decision easily made. The system I am working on is called the Solar Spectral Flux Radiometer (SSFR), a PC-104 based system custom-built by Dr. Warren Gore at Ames. Dr. Gore, Dr. Peter Pilewskie, Dr. Maura Robberies and Larry Pezzolo use the SSFR in their research. The team working on the controller project consists of Dr. Gore, John Pommier, and myself. The SSFR is used by the ,cities Atmospheric Radiation Group to measure solar spectral irradiance at moderate resolution to determine the radiative effect of clouds, aerosols, and gases on climate, and also to infer the physical properties of aerosols and clouds. Two identical SSFR's have been built and successfully deployed in three field missions: 1) the Department of Energy Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment (ARESE) II in February/March, 2000; 2) the Puerto Rico Dust Experiment (PRIDE) in July, 2000; and 3) the South African Regional Science Initiative (SAFARI) in August/September, 2000. Additionally, the SSFR was used to acquire water vapor spectra using the Ames Diameter base-path multiple-reflection absorption cell in a laboratory experiment.

  3. RUN COORDINATION

    CERN Multimedia

    G. Rakness.

    2013-01-01

    After three years of running, in February 2013 the era of sub-10-TeV LHC collisions drew to an end. Recall, the 2012 run had been extended by about three months to achieve the full complement of high-energy and heavy-ion physics goals prior to the start of Long Shutdown 1 (LS1), which is now underway. The LHC performance during these exciting years was excellent, delivering a total of 23.3 fb–1 of proton-proton collisions at a centre-of-mass energy of 8 TeV, 6.2 fb–1 at 7 TeV, and 5.5 pb–1 at 2.76 TeV. They also delivered 170 μb–1 lead-lead collisions at 2.76 TeV/nucleon and 32 nb–1 proton-lead collisions at 5 TeV/nucleon. During these years the CMS operations teams and shift crews made tremendous strides to commission the detector, repeatedly stepping up to meet the challenges at every increase of instantaneous luminosity and energy. Although it does not fully cover the achievements of the teams, a way to quantify their success is the fact that that...

  4. Effect of foot orthoses on magnitude and timing of rearfoot and tibial motions, ground reaction force and knee moment during running.

    Science.gov (United States)

    Eslami, Mansour; Begon, Mickaël; Hinse, Sébastien; Sadeghi, Heydar; Popov, Peter; Allard, Paul

    2009-11-01

    Changes in magnitude and timing of rearfoot eversion and tibial internal rotation by foot orthoses and their contributions to vertical ground reaction force and knee joint moments are not well understood. The objectives of this study were to test if orthoses modify the magnitude and time to peak rearfoot eversion, tibial internal rotation, active ground reaction force and knee adduction moment and determine if rearfoot eversion, tibial internal rotation magnitudes are correlated to peak active ground reaction force and knee adduction moment during the first 60% stance phase of running. Eleven healthy men ran at 170 steps per minute in shod and with foot orthoses conditions. Video and force-plate data were collected simultaneously to calculate foot joint angular displacement, ground reaction forces and knee adduction moments. Results showed that wearing semi-rigid foot orthoses significantly reduced rearfoot eversion 40% (4.1 degrees ; p=0.001) and peak active ground reaction force 6% (0.96N/kg; p=0.008). No significant time differences occurred among the peak rearfoot eversion, tibial internal rotation and peak active ground reaction force in both conditions. A positive and significant correlation was observed between peak knee adduction moment and the magnitude of rearfoot eversion during shod (r=0.59; p=0.04) and shod/orthoses running (r=0.65; p=0.02). In conclusion, foot orthoses could reduce rearfoot eversion so that this can be associated with a reduction of knee adduction moment during the first 60% stance phase of running. Finding implies that modifying rearfoot and tibial motions during running could not be related to a reduction of the ground reaction force.

  5. Custom ultrasonic instrumentation for flow measurement and real-time binary gas analysis in the CERN ATLAS experiment

    Science.gov (United States)

    Alhroob, M.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Boyd, G.; Crespo-Lopez, O.; Degeorge, C.; Deterre, C.; Di Girolamo, B.; Doubek, M.; Favre, G.; Hallewell, G.; Katunin, S.; Lombard, D.; Madsen, A.; McMahon, S.; Nagai, K.; O'Rourke, A.; Pearson, B.; Robinson, D.; Rossi, C.; Rozanov, A.; Stanecka, E.; Strauss, M.; Vacek, V.; Vaglio, R.; Young, J.; Zwalinski, L.

    2017-01-01

    The development of custom ultrasonic instrumentation was motivated by the need for continuous real-time monitoring of possible leaks and mass flow measurement in the evaporative cooling systems of the ATLAS silicon trackers. The instruments use pairs of ultrasonic transducers transmitting sound bursts and measuring transit times in opposite directions. The gas flow rate is calculated from the difference in transit times, while the sound velocity is deduced from their average. The gas composition is then evaluated by comparison with a molar composition vs. sound velocity database, based on the direct dependence between sound velocity and component molar concentration in a gas mixture at a known temperature and pressure. The instrumentation has been developed in several geometries, with five instruments now integrated and in continuous operation within the ATLAS Detector Control System (DCS) and its finite state machine. One instrument monitors C3F8 coolant leaks into the Pixel detector N2 envelope with a molar resolution better than 2ṡ 10-5, and has indicated a level of 0.14 % when all the cooling loops of the recently re-installed Pixel detector are operational. Another instrument monitors air ingress into the C3F8 condenser of the new C3F8 thermosiphon coolant recirculator, with sub-percent precision. The recent effect of the introduction of a small quantity of N2 volume into the 9.5 m3 total volume of the thermosiphon system was clearly seen with this instrument. Custom microcontroller-based readout has been developed for the instruments, allowing readout into the ATLAS DCS via Modbus TCP/IP on Ethernet. The instrumentation has many potential applications where continuous binary gas composition is required, including in hydrocarbon and anaesthetic gas mixtures.

  6. A digital data acquisition system for a time of flight neutron diffuse scattering instrument

    International Nuclear Information System (INIS)

    Venegas, Rafael; Bacza, Lorena; Navarro, Gustavo

    1998-01-01

    Full text. We describe the design of a digital data acquisition system built for acquiring and storing the information produced by a neutron diffuse scattering apparatus. This instrument is based on the analysis of pulsed subthermal neutron which are scattered by a solid or liquid sample, measured as function of the scattered neutron wavelength and momentum direction. The time of flight neutron intensities on 14 different angular detector positions and two fission chambers must be analyzed simultaneously for each neutron burst. A PC controlled data acquisition board system was built based on two parallel multiscannning units, each with its own add-one counting unit, and a common base time generator. The unit plugs onto the ISA bus through an interface card. Two separate counting units were designed, to avoid possible access competition between low counting rate counters at off-axis positions and the higher rate frontal 0 deg and beam monitoring counters. the first unit contains logic for 14 independent and simultaneous multi scaling inputs, with 128 time channels and dwell time per channel of 5, 10 or 20 microseconds. Sweep trigger is synchronized with an electric signal from a coil sensing the rotor. The second unit contains logic for four additional multi scalers using the same external synchronizing signal, similar in all others details to the previously described multi scalers. Basic control routines for the acquisitions were written in C and a program for spectrum display and user interface was written in C ++ for a Windows 3.1 OS. A block diagram of the system is presented

  7. Solution assay instrument operations manual

    International Nuclear Information System (INIS)

    Li, T.K.; Marks, T.; Parker, J.L.

    1983-09-01

    An at-line solution assay instrument (SAI) has been developed and installed in a plutonium purification and americium recovery process area in the Los Alamos Plutonium Processing Facility. The instrument was designed for accurate, timely, and simultaneous nondestructive analysis of plutonium and americium in process solutions that have a wide range of concentrations and americium/plutonium ratios and for routine operation by process technicians who lack instrumentation background. The SAI, based on transmission-corrected, high-resolution gamma-ray spectroscopy, has two measurement stations attached to a single multichannel analyzer/computer system. To ensure the quality of assay results, the SAI has an internal measurement control program, which requires daily and weekly check runs and monitors key aspects of all assay runs. For a 25-ml sample, the assay precision is 5 g/l within a 2000-s count time

  8. Digital instrumentation and dead-time processing for radionuclide metrology; Instrumentation et gestion numerique des temps morts pour la metrologie de la radioactivite

    Energy Technology Data Exchange (ETDEWEB)

    Censier, B.; Bobin, Ch.; Bouchard, J. [CEA Saclay, LIST, Laboratoire national Henri Becquerel (LNE-LNHB), 91 - Gif-sur-Yvette (France)

    2010-07-01

    Most of the acquisition chains used in radionuclide metrology are based on NIM modules. These analogue setups have been thoroughly tested for decades now, becoming a reference in the field. Nevertheless, the renewal of ageing modules and the need for extra features both call for the development of new acquisition schemes based on digital processing. In this article, several technologies usable for instrumentation are first presented. A review of past and present projects is made in the second part, highlighting the fundamental role of dead-time management. The last part is dedicated to the description of two digital systems developed at LNE-LNHB. The first one has been designed for the instrumentation of a NaI(Tl) well-type crystal set-up, while the second one is used for the management of three photomultipliers in the framework of the TDCR method and as a part of the development of a digital platform for coincidence counting. (authors)

  9. A multimodal instrument for real-time in situ study of ultrasound and cavitation mediated drug delivery

    OpenAIRE

    Bian, S; Seth, A; Daly, D; Carlisle, R; Stride, E

    2017-01-01

    The development of a multimodal instrument capable of real-time in situ measurements of cavitation activity and effect in tissue mimicking phantoms during ultrasound and cavitation mediated drug delivery experiments is described here. The instrument features an acoustic arm that can expose phantoms to high-intensity focused-ultrasound while measuring cavitation activity and an optical arm that monitors cavitation effect using confocal microscopy. This combination of modalities allows real-tim...

  10. Impact of Different Time Series Streamflow Data on Energy Generation of a Run-of-River Hydropower Plant

    Science.gov (United States)

    Kentel, E.; Cetinkaya, M. A.

    2013-12-01

    Global issues such as population increase, power supply crises, oil prices, social and environmental concerns have been forcing countries to search for alternative energy sources such as renewable energy to satisfy the sustainable development goals. Hydropower is the most common form of renewable energy in the world. Hydropower does not require any fuel, produces relatively less pollution and waste and it is a reliable energy source with relatively low operating cost. In order to estimate the average annual energy production of a hydropower plant, sufficient and dependable streamflow data is required. The goal of this study is to investigate impact of streamflow data on annual energy generation of Balkusan HEPP which is a small run-of-river hydropower plant at Karaman, Turkey. Two different stream gaging stations are located in the vicinity of Balkusan HEPP and these two stations have different observation periods: one from 1986 to 2004 and the other from 2000 to 2009. These two observation periods show different climatic characteristics. Thus, annual energy estimations based on data from these two different stations differ considerably. Additionally, neither of these stations is located at the power plant axis, thus streamflow observations from these two stream gaging stations need to be transferred to the plant axis. This requirement introduces further errors into energy estimations. Impact of different streamflow data and transfer of streamflow observations to plant axis on annual energy generation of a small hydropower plant is investigated in this study.

  11. Effects of selective breeding for increased wheel-running behavior on circadian timing of substrate oxidation and ingestive behavior.

    Science.gov (United States)

    Jónás, I; Vaanholt, L M; Doornbos, M; Garland, T; Scheurink, A J W; Nyakas, C; van Dijk, G

    2010-04-19

    Fluctuations in substrate preference and utilization across the circadian cycle may be influenced by the degree of physical activity and nutritional status. In the present study, we assessed these relationships in control mice and in mice from a line selectively bred for high voluntary wheel-running behavior, either when feeding a carbohydrate-rich/low-fat (LF) or a high-fat (HF) diet. Housed without wheels, selected mice, and in particular the females, exhibited higher cage activity than their non-selected controls during the dark phase and at the onset of the light phase, irrespective of diet. This was associated with increases in energy expenditure in both sexes of the selection line. In selected males, carbohydrate oxidation appeared to be increased compared to controls. In contrast, selected females had profound increases in fat oxidation above the levels in control females to cover the increased energy expenditure during the dark phase. This is remarkable in light of the finding that the selected mice, and in particular the females showed higher preference for the LF diet relative to controls. It is likely that hormonal and/or metabolic signals increase carbohydrate preference in the selected females, which may serve optimal maintenance of cellular metabolism in the presence of augmented fat oxidation. (c) 2010 Elsevier Inc. All rights reserved.

  12.  Running speed during training and percent body fat predict race time in recreational male marathoners

    OpenAIRE

    Barandun U; Knechtle B; Knechtle P; Klipstein A; Rust CA; Rosemann T; Lepers R

    2012-01-01

     Background: Recent studies have shown that personal best marathon time is a strong predictor of race time in male ultramarathoners. We aimed to determine variables predictive of marathon race time in recreational male marathoners by using the same characteristics of anthropometry and training as used for ultramarathoners.Methods: Anthropometric and training characteristics of 126 recreational male marathoners were bivariately and multivariately related to marathon race times.Results...

  13. Digital Education Governance: Data Visualization, Predictive Analytics, and "Real-Time" Policy Instruments

    Science.gov (United States)

    Williamson, Ben

    2016-01-01

    Educational institutions and governing practices are increasingly augmented with digital database technologies that function as new kinds of policy instruments. This article surveys and maps the landscape of digital policy instrumentation in education and provides two detailed case studies of new digital data systems. The Learning Curve is a…

  14. Pre-Exercise Hyperhydration-Induced Bodyweight Gain Does Not Alter Prolonged Treadmill Running Time-Trial Performance in Warm Ambient Conditions

    Directory of Open Access Journals (Sweden)

    Eric D. B. Goulet

    2012-08-01

    Full Text Available This study compared the effect of pre-exercise hyperhydration (PEH and pre-exercise euhydration (PEE upon treadmill running time-trial (TT performance in the heat. Six highly trained runners or triathletes underwent two 18 km TT runs (~28 °C, 25%–30% RH on a motorized treadmill, in a randomized, crossover fashion, while being euhydrated or after hyperhydration with 26 mL/kg bodyweight (BW of a 130 mmol/L sodium solution. Subjects then ran four successive 4.5 km blocks alternating between 2.5 km at 1% and 2 km at 6% gradient, while drinking a total of 7 mL/kg BW of a 6% sports drink solution (Gatorade, USA. PEH increased BW by 1.00 ± 0.34 kg (P < 0.01 and, compared with PEE, reduced BW loss from 3.1% ± 0.3% (EUH to 1.4% ± 0.4% (HYP (P < 0.01 during exercise. Running TT time did not differ between groups (PEH: 85.6 ± 11.6 min; PEE: 85.3 ± 9.6 min, P = 0.82. Heart rate (5 ± 1 beats/min and rectal (0.3 ± 0.1 °C and body (0.2 ± 0.1 °C temperatures of PEE were higher than those of PEH (P < 0.05. There was no significant difference in abdominal discomfort and perceived exertion or heat stress between groups. Our results suggest that pre-exercise sodium-induced hyperhydration of a magnitude of 1 L does not alter 80–90 min running TT performance under warm conditions in highly-trained runners drinking ~500 mL sports drink during exercise.

  15. SIMPATIQCO: a server-based software suite which facilitates monitoring the time course of LC-MS performance metrics on Orbitrap instruments.

    Science.gov (United States)

    Pichler, Peter; Mazanek, Michael; Dusberger, Frederico; Weilnböck, Lisa; Huber, Christian G; Stingl, Christoph; Luider, Theo M; Straube, Werner L; Köcher, Thomas; Mechtler, Karl

    2012-11-02

    While the performance of liquid chromatography (LC) and mass spectrometry (MS) instrumentation continues to increase, applications such as analyses of complete or near-complete proteomes and quantitative studies require constant and optimal system performance. For this reason, research laboratories and core facilities alike are recommended to implement quality control (QC) measures as part of their routine workflows. Many laboratories perform sporadic quality control checks. However, successive and systematic longitudinal monitoring of system performance would be facilitated by dedicated automatic or semiautomatic software solutions that aid an effortless analysis and display of QC metrics over time. We present the software package SIMPATIQCO (SIMPle AuTomatIc Quality COntrol) designed for evaluation of data from LTQ Orbitrap, Q-Exactive, LTQ FT, and LTQ instruments. A centralized SIMPATIQCO server can process QC data from multiple instruments. The software calculates QC metrics supervising every step of data acquisition from LC and electrospray to MS. For each QC metric the software learns the range indicating adequate system performance from the uploaded data using robust statistics. Results are stored in a database and can be displayed in a comfortable manner from any computer in the laboratory via a web browser. QC data can be monitored for individual LC runs as well as plotted over time. SIMPATIQCO thus assists the longitudinal monitoring of important QC metrics such as peptide elution times, peak widths, intensities, total ion current (TIC) as well as sensitivity, and overall LC-MS system performance; in this way the software also helps identify potential problems. The SIMPATIQCO software package is available free of charge.

  16. Predicting timing of foot strike during running, independent of striking technique, using principal component analysis of joint angles.

    Science.gov (United States)

    Osis, Sean T; Hettinga, Blayne A; Leitch, Jessica; Ferber, Reed

    2014-08-22

    As 3-dimensional (3D) motion-capture for clinical gait analysis continues to evolve, new methods must be developed to improve the detection of gait cycle events based on kinematic data. Recently, the application of principal component analysis (PCA) to gait data has shown promise in detecting important biomechanical features. Therefore, the purpose of this study was to define a new foot strike detection method for a continuum of striking techniques, by applying PCA to joint angle waveforms. In accordance with Newtonian mechanics, it was hypothesized that transient features in the sagittal-plane accelerations of the lower extremity would be linked with the impulsive application of force to the foot at foot strike. Kinematic and kinetic data from treadmill running were selected for 154 subjects, from a database of gait biomechanics. Ankle, knee and hip sagittal plane angular acceleration kinematic curves were chained together to form a row input to a PCA matrix. A linear polynomial was calculated based on PCA scores, and a 10-fold cross-validation was performed to evaluate prediction accuracy against gold-standard foot strike as determined by a 10 N rise in the vertical ground reaction force. Results show 89-94% of all predicted foot strikes were within 4 frames (20 ms) of the gold standard with the largest error being 28 ms. It is concluded that this new foot strike detection is an improvement on existing methods and can be applied regardless of whether the runner exhibits a rearfoot, midfoot, or forefoot strike pattern. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Ultra-high throughput real-time instruments for capturing fast signals and rare events

    Science.gov (United States)

    Buckley, Brandon Walter

    Wide-band signals play important roles in the most exciting areas of science, engineering, and medicine. To keep up with the demands of exploding internet traffic, modern data centers and communication networks are employing increasingly faster data rates. Wide-band techniques such as pulsed radar jamming and spread spectrum frequency hopping are used on the battlefield to wrestle control of the electromagnetic spectrum. Neurons communicate with each other using transient action potentials that last for only milliseconds at a time. And in the search for rare cells, biologists flow large populations of cells single file down microfluidic channels, interrogating them one-by-one, tens of thousands of times per second. Studying and enabling such high-speed phenomena pose enormous technical challenges. For one, parasitic capacitance inherent in analog electrical components limits their response time. Additionally, converting these fast analog signals to the digital domain requires enormous sampling speeds, which can lead to significant jitter and distortion. State-of-the-art imaging technologies, essential for studying biological dynamics and cells in flow, are limited in speed and sensitivity by finite charge transfer and read rates, and by the small numbers of photo-electrons accumulated in short integration times. And finally, ultra-high throughput real-time digital processing is required at the backend to analyze the streaming data. In this thesis, I discuss my work in developing real-time instruments, employing ultrafast optical techniques, which overcome some of these obstacles. In particular, I use broadband dispersive optics to slow down fast signals to speeds accessible to high-bit depth digitizers and signal processors. I also apply telecommunication multiplexing techniques to boost the speeds of confocal fluorescence microscopy. The photonic time stretcher (TiSER) uses dispersive Fourier transformation to slow down analog signals before digitization and

  18. NCU-SWIP Space Weather Instrumentation Payload - Intelligent Sensors On Efficient Real-Time Distributed LUTOS

    Science.gov (United States)

    Yeh, Tse-Liang; Dmitriev, Alexei; Chu, Yen-Hsyang; Jiang, Shyh-Biau; Chen, Li-Wu

    The NCU-SWIP - Space Weather Instrumentation Payload is developed for simultaneous in-situ and remote measurement of space weather parameters for cross verifications. The measurements include in-situ electron density, electron temperature, magnetic field, the deceleration of satellite due to neutral wind, and remotely the linear cumulative intensities of oxygen ion air-glows at 135.6nm and 630.0nm along the flight path in forward, nader, and backward directions for tomographic reconstruction of the electron density distribution underneath. This instrument package is suitable for micro satellite constellation to establish nominal space weather profiles and, thus, to detect abnormal variations as the signs of ionospheric disturbances induced by severe atmospheric weather, or earth quake - mantle movement through their Lithosphere-Atmosphere-Ionosphere Coupling Mechanism. NCU-SWIP is constructed with intelligent sensor modules connected by common bus with their functionalities managed by an efficient distributed real-time system LUTOS. The same hierarchy can be applied to the level of satellite constellation. For example SWIP's in a constellation in coordination with the GNSS Occultation Experiment TriG planned for the Formosa-7 constellation, data can be cross correlated for verification and refinement for real-time, stable and reliable measurements. A SWIP will be contributed to the construction of a MAI Micro Satellite for verification. The SWIP consists of two separate modules: the SWIP main control module and the SWIP-PMTomo sensor module. They are respectively a 1.5kg W120xL120xH100 (in mm) box with forward facing 120mmPhi circular disk probe on a boom top edged at 470mm height and a 7.2kg W126xL590x372H (in mm) slab containing 3 legs looking downwards along the flight path, while consuming the maximum electricity of 10W and 12W. The sensors are 1) ETPEDP measuring 16bits floating potentials for electron temperature range of 1000K to 3000K and 24bits electron

  19. RUN COORDINATION

    CERN Multimedia

    C. Delaere

    2012-01-01

      With the analysis of the first 5 fb–1 culminating in the announcement of the observation of a new particle with mass of around 126 GeV/c2, the CERN directorate decided to extend the LHC run until February 2013. This adds three months to the original schedule. Since then the LHC has continued to perform extremely well, and the total luminosity delivered so far this year is 22 fb–1. CMS also continues to perform excellently, recording data with efficiency higher than 95% for fills with the magnetic field at nominal value. The highest instantaneous luminosity achieved by LHC to date is 7.6x1033 cm–2s–1, which translates into 35 interactions per crossing. On the CMS side there has been a lot of work to handle these extreme conditions, such as a new DAQ computer farm and trigger menus to handle the pile-up, automation of recovery procedures to minimise the lost luminosity, better training for the shift crews, etc. We did suffer from a couple of infrastructure ...

  20. Click trains and the rate of information processing: does "speeding up" subjective time make other psychological processes run faster?

    Science.gov (United States)

    Jones, Luke A; Allely, Clare S; Wearden, John H

    2011-02-01

    A series of experiments demonstrated that a 5-s train of clicks that have been shown in previous studies to increase the subjective duration of tones they precede (in a manner consistent with "speeding up" timing processes) could also have an effect on information-processing rate. Experiments used studies of simple and choice reaction time (Experiment 1), or mental arithmetic (Experiment 2). In general, preceding trials by clicks made response times significantly shorter than those for trials without clicks, but white noise had no effects on response times. Experiments 3 and 4 investigated the effects of clicks on performance on memory tasks, using variants of two classic experiments of cognitive psychology: Sperling's (1960) iconic memory task and Loftus, Johnson, and Shimamura's (1985) iconic masking task. In both experiments participants were able to recall or recognize significantly more information from stimuli preceded by clicks than those preceded by silence.

  1. The LHCb Run Control

    Energy Technology Data Exchange (ETDEWEB)

    Alessio, F; Barandela, M C; Frank, M; Gaspar, C; Herwijnen, E v; Jacobsson, R; Jost, B; Neufeld, N; Sambade, A; Schwemmer, R; Somogyi, P [CERN, 1211 Geneva 23 (Switzerland); Callot, O [LAL, IN2P3/CNRS and Universite Paris 11, Orsay (France); Duval, P-Y [Centre de Physique des Particules de Marseille, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Franek, B [Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX (United Kingdom); Galli, D, E-mail: Clara.Gaspar@cern.c [Universita di Bologna and INFN, Bologna (Italy)

    2010-04-01

    LHCb has designed and implemented an integrated Experiment Control System. The Control System uses the same concepts and the same tools to control and monitor all parts of the experiment: the Data Acquisition System, the Timing and the Trigger Systems, the High Level Trigger Farm, the Detector Control System, the Experiment's Infrastructure and the interaction with the CERN Technical Services and the Accelerator. LHCb's Run Control, the main interface used by the experiment's operator, provides access in a hierarchical, coherent and homogeneous manner to all areas of the experiment and to all its sub-detectors. It allows for automated (or manual) configuration and control, including error recovery, of the full experiment in its different running modes. Different instances of the same Run Control interface are used by the various sub-detectors for their stand-alone activities: test runs, calibration runs, etc. The architecture and the tools used to build the control system, the guidelines and components provided to the developers, as well as the first experience with the usage of the Run Control will be presented

  2. Non-invasive measuring instrument of kVp, R/M and exposure time

    International Nuclear Information System (INIS)

    Laan, Flavio T. van der; Elbern, Alwin W.

    1996-01-01

    The development of an instrument for fast measurement of essential parameters related to quality control of X-ray equipment is described. The unit is designed with a 80 C31 micro controller, a function keyboard, an αnumeric display and a probe with PV diodes. Testing and calibration in this non-invasive instrument has been done at the X-rays equipment for the Santa Rita Hospital in Porto Alegre, Rio Grande do Sul State, Brazil

  3. Changes in running kinematics, kinetics, and spring-mass behavior over a 24-h run.

    Science.gov (United States)

    Morin, Jean-Benoît; Samozino, Pierre; Millet, Guillaume Y

    2011-05-01

    This study investigated the changes in running mechanics and spring-mass behavior over a 24-h treadmill run (24TR). Kinematics, kinetics, and spring-mass characteristics of the running step were assessed in 10 experienced ultralong-distance runners before, every 2 h, and after a 24TR using an instrumented treadmill dynamometer. These measurements were performed at 10 km·h, and mechanical parameters were sampled at 1000 Hz for 10 consecutive steps. Contact and aerial times were determined from ground reaction force (GRF) signals and used to compute step frequency. Maximal GRF, loading rate, downward displacement of the center of mass, and leg length change during the support phase were determined and used to compute both vertical and leg stiffness. Subjects' running pattern and spring-mass behavior significantly changed over the 24TR with a 4.9% higher step frequency on average (because of a significantly 4.5% shorter contact time), a lower maximal GRF (by 4.4% on average), a 13.0% lower leg length change during contact, and an increase in both leg and vertical stiffness (+9.9% and +8.6% on average, respectively). Most of these changes were significant from the early phase of the 24TR (fourth to sixth hour of running) and could be speculated as contributing to an overall limitation of the potentially harmful consequences of such a long-duration run on subjects' musculoskeletal system. During a 24TR, the changes in running mechanics and spring-mass behavior show a clear shift toward a higher oscillating frequency and stiffness, along with lower GRF and leg length change (hence a reduced overall eccentric load) during the support phase of running. © 2011 by the American College of Sports Medicine

  4. Beam instrumentation for the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Ronald S.; Jansson, Andreas; Shiltsev, Vladimir; /Fermilab

    2009-10-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders.

  5. Subjective time runs faster under the influence of bright rather than dim light conditions during the forenoon.

    Science.gov (United States)

    Morita, Takeshi; Fukui, Tomoe; Morofushi, Masayo; Tokura, Hiromi

    2007-05-16

    The study investigated if 6 h morning bright light exposure, compared with dim light exposure, could influence time sense (range: 5-15 s). Eight women served as participants. The participant entered a bioclimatic chamber at 10:00 h on the day before the test day, where an ambient temperature and relative humidity were controlled at 25 degrees C and 60%RH. She sat quietly in a sofa in 50 lx until 22:00 h, retired at 22:00 h and then slept in total darkness. She rose at 07:00 h the following morning and again sat quietly in a sofa till 13:00 h, either in bright (2500 lx) or dim light (50 lx), the order of light intensities between the two occasions being randomized. The time-estimation test was performed from 13:00 to 13:10 h in 200 lx. The participant estimated the time that had elapsed between two buzzers, ranging over 5-15 s, and inputting the estimate into a computer. The test was carried out separately upon each individual. Results showed that the participants estimated higher durations of the given time intervals after previous exposure to 6 h of bright rather than dim light. The finding is discussed in terms of different load errors (difference between the actual core temperature and its thermoregulatory set-point) following 6-h exposure to bright or dim light in the morning.

  6. Digital instrumentation and management of dead time: first results on a NaI well-type detector setup.

    Science.gov (United States)

    Censier, B; Bobin, C; Bouchard, J; Aubineau-Lanièce, I

    2010-01-01

    The LNE-LNHB is engaged in a development program on digital instrumentation, the first step being the instrumentation of a NaI well-type detector set-up. The prototype acquisition card and its technical specifications are presented together with the first comparison with the classical NIM-based acquisition chain, for counting rates up to 100 kcps. The digital instrumentation is shown to be counting-loss free in this range. This validates the main option adopted in this project, namely the implementation of an extending dead time with live-time measurement already successfully used in the MTR2 NIM module developed at LNE-LNHB. Copyright 2010. Published by Elsevier Ltd.

  7. A multimodal instrument for real-time in situ study of ultrasound and cavitation mediated drug delivery.

    Science.gov (United States)

    Bian, Shuning; Seth, Anjali; Daly, Dan; Carlisle, Robert; Stride, Eleanor

    2017-03-01

    The development of a multimodal instrument capable of real-time in situ measurements of cavitation activity and effect in tissue mimicking phantoms during ultrasound and cavitation mediated drug delivery experiments is described here. The instrument features an acoustic arm that can expose phantoms to high-intensity focused-ultrasound while measuring cavitation activity and an optical arm that monitors cavitation effect using confocal microscopy. This combination of modalities allows real-time in situ characterisation of drug delivery in tissue and tissue mimicking phantoms during ultrasound and cavitation mediated drug delivery experiments. A representative result, obtained with a tissue mimicking phantom and acoustically activated droplets, is presented here as a demonstration of the instrument's capabilities and potential applications.

  8. Shortened OR time and decreased patient risk through use of a modular surgical instrument with artificial intelligence.

    Science.gov (United States)

    Miller, David J; Nelson, Carl A; Oleynikov, Dmitry

    2009-05-01

    With a limited number of access ports, minimally invasive surgery (MIS) often requires the complete removal of one tool and reinsertion of another. Modular or multifunctional tools can be used to avoid this step. In this study, soft computing techniques are used to optimally arrange a modular tool's functional tips, allowing surgeons to deliver treatment of improved quality in less time, decreasing overall cost. The investigators watched University Medical Center surgeons perform MIS procedures (e.g., cholecystectomy and Nissen fundoplication) and recorded the procedures to digital video. The video was then used to analyze the types of instruments used, the duration of each use, and the function of each instrument. These data were aggregated with fuzzy logic techniques using four membership functions to quantify the overall usefulness of each tool. This allowed subsequent optimization of the arrangement of functional tips within the modular tool to decrease overall time spent changing instruments during simulated surgical procedures based on the video recordings. Based on a prototype and a virtual model of a multifunction laparoscopic tool designed by the investigators that can interchange six different instrument tips through the tool's shaft, the range of tool change times is approximately 11-13 s. Using this figure, estimated time savings for the procedures analyzed ranged from 2.5 to over 32 min, and on average, total surgery time can be reduced by almost 17% by using the multifunction tool.

  9. Draft Forecasts from Real-Time Runs of Physics-Based Models - A Road to the Future

    Science.gov (United States)

    Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha

    2008-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. After consultations with NOAA/SEC and with AFWA, CCMC has developed a set of tools as a first step to make real-time model output useful to forecast centers. In this presentation, we will discuss the motivation for this activity, the actions taken so far, and options for future tools from model output.

  10. A digital, constant-frequency pulsed phase-locked-loop instrument for real-time, absolute ultrasonic phase measurements

    Science.gov (United States)

    Haldren, H. A.; Perey, D. F.; Yost, W. T.; Cramer, K. E.; Gupta, M. C.

    2018-05-01

    A digitally controlled instrument for conducting single-frequency and swept-frequency ultrasonic phase measurements has been developed based on a constant-frequency pulsed phase-locked-loop (CFPPLL) design. This instrument uses a pair of direct digital synthesizers to generate an ultrasonically transceived tone-burst and an internal reference wave for phase comparison. Real-time, constant-frequency phase tracking in an interrogated specimen is possible with a resolution of 0.000 38 rad (0.022°), and swept-frequency phase measurements can be obtained. Using phase measurements, an absolute thickness in borosilicate glass is presented to show the instrument's efficacy, and these results are compared to conventional ultrasonic pulse-echo time-of-flight (ToF) measurements. The newly developed instrument predicted the thickness with a mean error of -0.04 μm and a standard deviation of error of 1.35 μm. Additionally, the CFPPLL instrument shows a lower measured phase error in the absence of changing temperature and couplant thickness than high-resolution cross-correlation ToF measurements at a similar signal-to-noise ratio. By showing higher accuracy and precision than conventional pulse-echo ToF measurements and lower phase errors than cross-correlation ToF measurements, the new digitally controlled CFPPLL instrument provides high-resolution absolute ultrasonic velocity or path-length measurements in solids or liquids, as well as tracking of material property changes with high sensitivity. The ability to obtain absolute phase measurements allows for many new applications than possible with previous ultrasonic pulsed phase-locked loop instruments. In addition to improved resolution, swept-frequency phase measurements add useful capability in measuring properties of layered structures, such as bonded joints, or materials which exhibit non-linear frequency-dependent behavior, such as dispersive media.

  11. Instrumental variables estimation of exposure effects on a time-to-event endpoint using structural cumulative survival models.

    Science.gov (United States)

    Martinussen, Torben; Vansteelandt, Stijn; Tchetgen Tchetgen, Eric J; Zucker, David M

    2017-12-01

    The use of instrumental variables for estimating the effect of an exposure on an outcome is popular in econometrics, and increasingly so in epidemiology. This increasing popularity may be attributed to the natural occurrence of instrumental variables in observational studies that incorporate elements of randomization, either by design or by nature (e.g., random inheritance of genes). Instrumental variables estimation of exposure effects is well established for continuous outcomes and to some extent for binary outcomes. It is, however, largely lacking for time-to-event outcomes because of complications due to censoring and survivorship bias. In this article, we make a novel proposal under a class of structural cumulative survival models which parameterize time-varying effects of a point exposure directly on the scale of the survival function; these models are essentially equivalent with a semi-parametric variant of the instrumental variables additive hazards model. We propose a class of recursive instrumental variable estimators for these exposure effects, and derive their large sample properties along with inferential tools. We examine the performance of the proposed method in simulation studies and illustrate it in a Mendelian randomization study to evaluate the effect of diabetes on mortality using data from the Health and Retirement Study. We further use the proposed method to investigate potential benefit from breast cancer screening on subsequent breast cancer mortality based on the HIP-study. © 2017, The International Biometric Society.

  12. Transforming parts of a differential equations system to difference equations as a method for run-time savings in NONMEM.

    Science.gov (United States)

    Petersson, K J F; Friberg, L E; Karlsson, M O

    2010-10-01

    Computer models of biological systems grow more complex as computing power increase. Often these models are defined as differential equations and no analytical solutions exist. Numerical integration is used to approximate the solution; this can be computationally intensive, time consuming and be a large proportion of the total computer runtime. The performance of different integration methods depend on the mathematical properties of the differential equations system at hand. In this paper we investigate the possibility of runtime gains by calculating parts of or the whole differential equations system at given time intervals, outside of the differential equations solver. This approach was tested on nine models defined as differential equations with the goal to reduce runtime while maintaining model fit, based on the objective function value. The software used was NONMEM. In four models the computational runtime was successfully reduced (by 59-96%). The differences in parameter estimates, compared to using only the differential equations solver were less than 12% for all fixed effects parameters. For the variance parameters, estimates were within 10% for the majority of the parameters. Population and individual predictions were similar and the differences in OFV were between 1 and -14 units. When computational runtime seriously affects the usefulness of a model we suggest evaluating this approach for repetitive elements of model building and evaluation such as covariate inclusions or bootstraps.

  13. Data acquisition and control system for the IPNS time-of-flight neutron scattering instruments

    International Nuclear Information System (INIS)

    Daly, R.T.; Haumann, J.R.; Kraimer, M.R.; Lenkszus, F.R.; Lidinsky, W.P.; Morgan, C.B.; Rutledge, L.L.; Rynes, P.E.; Tippie, J.W.

    1979-01-01

    The Argonne Intense Pulsed Neutron System (IPNS-I) presently under construction at Argonne National Laboratory will include a number of neutron scattering instruments. This study investigates the data acquisition requirements of these instruments and proposes three alternative multiprocessor systems which will satisfy these requirements. All proposals are star configurations with a super-mini as the central node or HOST. The first proposal is based on front-ends composed of two or more 16-bit microcomputers, the second proposal is based on front ends consisting of a combination of a mini and microcomputers, and the third is based on a minicomputer with an intelligent CAMAC controller

  14. Changes in running pattern due to fatigue and cognitive load in orienteering.

    Science.gov (United States)

    Millet, Guillaume Y; Divert, Caroline; Banizette, Marion; Morin, Jean-Benoit

    2010-01-01

    The aim of this study was to examine the influence of fatigue on running biomechanics in normal running, in normal running with a cognitive task, and in running while map reading. Nineteen international and less experienced orienteers performed a fatiguing running exercise of duration and intensity similar to a classic distance orienteering race on an instrumented treadmill while performing mental arithmetic, an orienteering simulation, and control running at regular intervals. Two-way repeated-measures analysis of variance did not reveal any significant difference between mental arithmetic and control running for any of the kinematic and kinetic parameters analysed eight times over the fatiguing protocol. However, these parameters were systematically different between the orienteering simulation and the other two conditions (mental arithmetic and control running). The adaptations in orienteering simulation running were significantly more pronounced in the elite group when step frequency, peak vertical ground reaction force, vertical stiffness, and maximal downward displacement of the centre of mass during contact were considered. The effects of fatigue on running biomechanics depended on whether the orienteers read their map or ran normally. It is concluded that adding a cognitive load does not modify running patterns. Therefore, all changes in running pattern observed during the orienteering simulation, particularly in elite orienteers, are the result of adaptations to enable efficient map reading and/or potentially prevent injuries. Finally, running patterns are not affected to the same extent by fatigue when a map reading task is added.

  15. Comparison of real-time instruments and gravimetric method when measuring particulate matter in a residential building.

    Science.gov (United States)

    Wang, Zuocheng; Calderón, Leonardo; Patton, Allison P; Sorensen Allacci, MaryAnn; Senick, Jennifer; Wener, Richard; Andrews, Clinton J; Mainelis, Gediminas

    2016-11-01

    This study used several real-time and filter-based aerosol instruments to measure PM 2.5 levels in a high-rise residential green building in the Northeastern US and compared performance of those instruments. PM 2.5 24-hr average concentrations were determined using a Personal Modular Impactor (PMI) with 2.5 µm cut (SKC Inc., Eighty Four, PA) and a direct reading pDR-1500 (Thermo Scientific, Franklin, MA) as well as its filter. 1-hr average PM 2.5 concentrations were measured in the same apartments with an Aerotrak Optical Particle Counter (OPC) (model 8220, TSI, Inc., Shoreview, MN) and a DustTrak DRX mass monitor (model 8534, TSI, Inc., Shoreview, MN). OPC and DRX measurements were compared with concurrent 1-hr mass concentration from the pDR-1500. The pDR-1500 direct reading showed approximately 40% higher particle mass concentration compared to its own filter (n = 41), and 25% higher PM 2.5 mass concentration compared to the PMI 2.5 filter. The pDR-1500 direct reading and PMI 2.5 in non-smoking homes (self-reported) were not significantly different (n = 10, R 2 = 0.937), while the difference between measurements for smoking homes was 44% (n = 31, R 2 = 0.773). Both OPC and DRX data had substantial and significant systematic and proportional biases compared with pDR-1500 readings. However, these methods were highly correlated: R 2 = 0.936 for OPC versus pDR-1500 reading and R 2 = 0.863 for DRX versus pDR-1500 reading. The data suggest that accuracy of aerosol mass concentrations from direct-reading instruments in indoor environments depends on the instrument, and that correction factors can be used to reduce biases of these real-time monitors in residential green buildings with similar aerosol properties. This study used several real-time and filter-based aerosol instruments to measure PM 2.5 levels in a high-rise residential green building in the northeastern United States and compared performance of those instruments. The data show that while the use of real-time

  16. Neighborhood Poverty Impacts Children's Physical Health and Well-Being over Time: Evidence from the Early Development Instrument

    Science.gov (United States)

    Cushon, Jennifer A.; Vu, Lan T. H.; Janzen, Bonnie L.; Muhajarine, Nazeem

    2011-01-01

    Research Findings: The purpose of this study was to investigate how neighborhoods and neighborhood socioeconomic disadvantage impact school readiness over time. School readiness was measured using the Early Development Instrument (EDI) for 3 populations of kindergartners in 2001, 2003, and 2005 in Saskatoon, Saskatchewan, Canada. EDI results…

  17. Instrument for real-time pulse-shape analysis of slit-scan flow cytometry signals

    NARCIS (Netherlands)

    van Oven, C.; Aten, J. A.

    1990-01-01

    An instrument is described which analyses shapes of fluorescence profiles generated by particles passing through the focussed laser beam of a flow cytometer. The output signal of this pulse-shape analyzer is used as input for the signal processing electronics of a commercial flow cytometer system.

  18. 26 CFR 301.6503(d)-1 - Suspension of running of period of limitation; extension of time for payment of estate tax.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Suspension of running of period of limitation... ADMINISTRATION Limitations Limitations on Assessment and Collection § 301.6503(d)-1 Suspension of running of... payment of any estate tax, the running of the period of limitations for collection of such tax is...

  19. Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range

    Science.gov (United States)

    Yu, Anchi; Ye, Xiong; Ionascu, Dan; Cao, Wenxiang; Champion, Paul M.

    2005-11-01

    An electronically delayed two-color pump-probe instrument was developed using two synchronized laser systems. The instrument has picosecond time resolution and can perform scans over hundreds of nanoseconds without the beam divergence and walk-off effects that occur using standard spatial delay systems. A unique picosecond Ti :sapphire regenerative amplifier was also constructed without the need for pulse stretching and compressing optics. The picosecond regenerative amplifier has a broad wavelength tuning range, which suggests that it will make a significant contribution to two-color pump-probe experiments. To test this instrument we studied the rotational correlation relaxation of myoglobin (τr=8.2±0.5ns) in water as well as the geminate rebinding kinetics of oxygen to myoglobin (kg1=1.7×1011s-1, kg2=3.4×107s-1). The results are consistent with, and improve upon, previous studies.

  20. Precision of GNSS instruments by static method comparing in real time

    Directory of Open Access Journals (Sweden)

    Slavomír Labant

    2009-09-01

    Full Text Available Tablet paper describes comparison of measuring accuracy two apparatus from the firm Leica. One of them recieve signals onlyfrom GPS satelites and another instrument is working with GPS and also with GLONASS satelites. Measuring is carry out by RTK staticmethod with 2 minutes observations. Measurement processing is separated to X, Y (position and h (heigh. Adjustment of directobservations is used as a adjusting method.

  1. Development of econometric models for cost and time over-runs: an empirical study of major road construction projects in pakistan

    International Nuclear Information System (INIS)

    Khan, A.; Chaudhary, M.A.

    2016-01-01

    The construction industry is flourishing worldwide and contributes about 10% to the GDP of the world i.e. up to the tune of 4.6 Trillion US dollars. It employs almost 7% of the total employee dpersons and, consumes around 40% of the total energy. The Pakistani construction sector has displayed impressive growth in recent past years. The efficient road network is a key part of construction business and plays a significant role in the economic uplift of country. The overruns in costs and delays in completion of projects are very common phenomena and it has also been observed that the projects involving construction of roads also face problems of delays and cost over runs especially in developing countries. The causes of cost overruns and delays in road projects being undertaken by the premier road construction organization of Pakistan National Highway Authority (NHA) have been considered in this study. It has been done specifically in the context of impact of cause(s) determined from project report of a total of one hundred and thirty one (131) projects. The ten causative factors which we recognize as Design, Planning and Scheduling Related problems, Financial Constraint Related reasons, Social Problem Related reasons, Technical Reasons, Administrative Reasons, Scope Increase, Specification Changes, Cost Escalation Related reasons, Non-Availability of Equipment or Material and Force Majeure play a commanding role in determination of the cost and time over runs. It has also been observed that among these identified causes, the factors of Administrative Reason, Design, Planning and Scheduling Related, Technical Reasons and Force Majeure are the most significant reasons in cost and time overruns. Whereas, the Cost Escalation related reasons has the least impact on cost increase and delays. The NHA possesses a financial worth of around Rs. 36 billion and with an annual turn over amounting to Rs. 22 billion is responsible to perform road construction project in entire

  2. Custom real-time ultrasonic instrumentation for simultaneous mixture and flow analysis of binary gases in the CERN ATLAS experiment

    CERN Document Server

    Alhroob, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Boyd, G.; Crespo-Lopez, O.; Degeorge, C.; Deterre, C.; Di Girolamo, B.; Doubek, M.; Favre, G.; Hallewell, G.; Hasib, A.; Katunin, S.; Lombard, D.; Madsen, A.; McMahon, S.; Nagai, K.; O'Rourke, A.; Pearson, B.; Robinson, D.; Rossi, C.; Rozanov, A.; Stanecka, E.; Strauss, M.; Vacek, V.; Vaglio, R.; Young, J.; Zwalinski, L.

    2017-01-01

    Custom ultrasonic instruments have been developed for simultaneous monitoring of binary gas mixture and flow in the ATLAS Inner Detector. Sound transit times are measured in opposite directions in flowing gas. Flow rate and sound velocity are respectively calculated from their difference and average. Gas composition is evaluated in real-time by comparison with a sound velocity/composition database, based on the direct dependence of sound velocity on component concentrations in a mixture at known temperature and pressure. Five devices are integrated into the ATLAS Detector Control System. Three instruments monitor coolant leaks into N2 envelopes of the silicon microstrip and Pixel detectors. Resolutions better than ±2×10−5±2×10−5 and ±2×10−4±2×10−4 are seen for C3F8 and CO2 leak concentrations in N2 respectively. A fourth instrument detects sub-percent levels of air ingress into the C3F8 condenser of the new thermosiphon coolant recirculator. Following extensive studies a fifth instrument was b...

  3. Design of an EEG-based brain-computer interface (BCI) from standard components running in real-time under Windows.

    Science.gov (United States)

    Guger, C; Schlögl, A; Walterspacher, D; Pfurtscheller, G

    1999-01-01

    An EEG-based brain-computer interface (BCI) is a direct connection between the human brain and the computer. Such a communication system is needed by patients with severe motor impairments (e.g. late stage of Amyotrophic Lateral Sclerosis) and has to operate in real-time. This paper describes the selection of the appropriate components to construct such a BCI and focuses also on the selection of a suitable programming language and operating system. The multichannel system runs under Windows 95, equipped with a real-time Kernel expansion to obtain reasonable real-time operations on a standard PC. Matlab controls the data acquisition and the presentation of the experimental paradigm, while Simulink is used to calculate the recursive least square (RLS) algorithm that describes the current state of the EEG in real-time. First results of the new low-cost BCI show that the accuracy of differentiating imagination of left and right hand movement is around 95%.

  4. Driving-Simulator-Based Test on the Effectiveness of Auditory Red-Light Running Vehicle Warning System Based on Time-To-Collision Sensor

    Directory of Open Access Journals (Sweden)

    Xuedong Yan

    2014-02-01

    Full Text Available The collision avoidance warning system is an emerging technology designed to assist drivers in avoiding red-light running (RLR collisions at intersections. The aim of this paper is to evaluate the effect of auditory warning information on collision avoidance behaviors in the RLR pre-crash scenarios and further to examine the casual relationships among the relevant factors. A driving-simulator-based experiment was designed and conducted with 50 participants. The data from the experiments were analyzed by approaches of ANOVA and structural equation modeling (SEM. The collisions avoidance related variables were measured in terms of brake reaction time (BRT, maximum deceleration and lane deviation in this study. It was found that the collision avoidance warning system can result in smaller collision rates compared to the without-warning condition and lead to shorter reaction times, larger maximum deceleration and less lane deviation. Furthermore, the SEM analysis illustrate that the audio warning information in fact has both direct and indirect effect on occurrence of collisions, and the indirect effect plays a more important role on collision avoidance than the direct effect. Essentially, the auditory warning information can assist drivers in detecting the RLR vehicles in a timely manner, thus providing drivers more adequate time and space to decelerate to avoid collisions with the conflicting vehicles.

  5. A compact time-of-flight SANS instrument optimised for measurements of small sample volumes at the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Kynde, Søren, E-mail: kynde@nbi.ku.dk [Niels Bohr Institute, University of Copenhagen (Denmark); Hewitt Klenø, Kaspar [Niels Bohr Institute, University of Copenhagen (Denmark); Nagy, Gergely [SINQ, Paul Scherrer Institute (Switzerland); Mortensen, Kell; Lefmann, Kim [Niels Bohr Institute, University of Copenhagen (Denmark); Kohlbrecher, Joachim, E-mail: Joachim.kohlbrecher@psi.ch [SINQ, Paul Scherrer Institute (Switzerland); Arleth, Lise, E-mail: arleth@nbi.ku.dk [Niels Bohr Institute, University of Copenhagen (Denmark)

    2014-11-11

    The high flux at European Spallation Source (ESS) will allow for performing experiments with relatively small beam-sizes while maintaining a high intensity of the incoming beam. The pulsed nature of the source makes the facility optimal for time-of-flight small-angle neutron scattering (ToF-SANS). We find that a relatively compact SANS instrument becomes the optimal choice in order to obtain the widest possible q-range in a single setting and the best possible exploitation of the neutrons in each pulse and hence obtaining the highest possible flux at the sample position. The instrument proposed in the present article is optimised for performing fast measurements of small scattering volumes, typically down to 2×2×2 mm{sup 3}, while covering a broad q-range from about 0.005 1/Å to 0.5 1/Å in a single instrument setting. This q-range corresponds to that available at a typical good BioSAXS instrument and is relevant for a wide set of biomacromolecular samples. A central advantage of covering the whole q-range in a single setting is that each sample has to be loaded only once. This makes it convenient to use the fully automated high-throughput flow-through sample changers commonly applied at modern synchrotron BioSAXS-facilities. The central drawback of choosing a very compact instrument is that the resolution in terms of δλ/λ obtained with the short wavelength neutrons becomes worse than what is usually the standard at state-of-the-art SANS instruments. Our McStas based simulations of the instrument performance for a set of characteristic biomacromolecular samples show that the resulting smearing effects still have relatively minor effects on the obtained data and can be compensated for in the data analysis. However, in cases where a better resolution is required in combination with the large simultaneous q-range characteristic of the instrument, we show that this can be obtained by inserting a set of choppers.

  6. Voluntary Wheel Running in Mice.

    Science.gov (United States)

    Goh, Jorming; Ladiges, Warren

    2015-12-02

    Voluntary wheel running in the mouse is used to assess physical performance and endurance and to model exercise training as a way to enhance health. Wheel running is a voluntary activity in contrast to other experimental exercise models in mice, which rely on aversive stimuli to force active movement. This protocol consists of allowing mice to run freely on the open surface of a slanted, plastic saucer-shaped wheel placed inside a standard mouse cage. Rotations are electronically transmitted to a USB hub so that frequency and rate of running can be captured via a software program for data storage and analysis for variable time periods. Mice are individually housed so that accurate recordings can be made for each animal. Factors such as mouse strain, gender, age, and individual motivation, which affect running activity, must be considered in the design of experiments using voluntary wheel running. Copyright © 2015 John Wiley & Sons, Inc.

  7. Species interactions and response time to climate change: ice-cover and terrestrial run-off shaping Arctic char and brown trout competitive asymmetries

    Science.gov (United States)

    Finstad, A. G.; Palm Helland, I.; Jonsson, B.; Forseth, T.; Foldvik, A.; Hessen, D. O.; Hendrichsen, D. K.; Berg, O. K.; Ulvan, E.; Ugedal, O.

    2011-12-01

    There has been a growing recognition that single species responses to climate change often mainly are driven by interaction with other organisms and single species studies therefore not are sufficient to recognize and project ecological climate change impacts. Here, we study how performance, relative abundance and the distribution of two common Arctic and sub-Arctic freshwater fishes (brown trout and Arctic char) are driven by competitive interactions. The interactions are modified both by direct climatic effects on temperature and ice-cover, and indirectly through climate forcing of terrestrial vegetation pattern and associated carbon and nutrient run-off. We first use laboratory studies to show that Arctic char, which is the world's most northernmost distributed freshwater fish, outperform trout under low light levels and also have comparable higher growth efficiency. Corresponding to this, a combination of time series and time-for-space analyses show that ice-cover duration and carbon and nutrient load mediated by catchment vegetation properties strongly affected the outcome of the competition and likely drive the species distribution pattern through competitive exclusion. In brief, while shorter ice-cover period and decreased carbon load favored brown trout, increased ice-cover period and increased carbon load favored Arctic char. Length of ice-covered period and export of allochthonous material from catchments are major, but contrasting, climatic drivers of competitive interaction between these two freshwater lake top-predators. While projected climate change lead to decreased ice-cover, corresponding increase in forest and shrub cover amplify carbon and nutrient run-off. Although a likely outcome of future Arctic and sub-arctic climate scenarios are retractions of the Arctic char distribution area caused by competitive exclusion, the main drivers will act on different time scales. While ice-cover will change instantaneously with increasing temperature

  8. Review: The Use of Real-Time Fluorescence Instrumentation to Monitor Ambient Primary Biological Aerosol Particles (PBAP

    Directory of Open Access Journals (Sweden)

    Mehael J. Fennelly

    2017-12-01

    Full Text Available Primary biological aerosol particles (PBAP encompass many particle types that are derived from several biological kingdoms. These aerosol particles can be composed of both whole living units such as pollen, bacteria, and fungi, as well as from mechanically formed particles, such as plant debris. They constitute a significant proportion of the overall atmospheric particle load and have been linked with adverse health issues and climatic effects on the environment. Traditional methods for their analysis have focused on the direct capture of PBAP before subsequent laboratory analysis. These analysis types have generally relied on direct optical microscopy or incubation on agar plates, followed by time-consuming microbiological investigation. In an effort to address some of these deficits, real-time fluorescence monitors have come to prominence in the analysis of PBAP. These instruments offer significant advantages over traditional methods, including the measurement of concentrations, as well as the potential to simultaneously identify individual analyte particles in real-time. Due to the automated nature of these measurements, large data sets can be collected and analyzed with relative ease. This review seeks to highlight and discuss the extensive literature pertaining to the most commonly used commercially available real-time fluorescence monitors (WIBS, UV-APS and BioScout. It discusses the instruments operating principles, their limitations and advantages, and the various environments in which they have been deployed. The review provides a detailed examination of the ambient fluorescent aerosol particle concentration profiles that are obtained by these studies, along with the various strategies adopted by researchers to analyze the substantial data sets the instruments generate. Finally, a brief reflection is presented on the role that future instrumentation may provide in revolutionizing this area of atmospheric research.

  9. Determinants of the abilities to jump higher and shorten the contact time in a running 1-legged vertical jump in basketball.

    Science.gov (United States)

    Miura, Ken; Yamamoto, Masayoshi; Tamaki, Hiroyuki; Zushi, Koji

    2010-01-01

    This study was conducted to obtain useful information for developing training techniques for the running 1-legged vertical jump in basketball (lay-up shot jump). The ability to perform the lay-up shot jump and various basic jumps was measured by testing 19 male basketball players. The basic jumps consisted of the 1-legged repeated rebound jump, the 2-legged repeated rebound jump, and the countermovement jump. Jumping height, contact time, and jumping index (jumping height/contact time) were measured and calculated using a contact mat/computer system that recorded the contact and air times. The jumping index indicates power. No significant correlation existed between the jumping height and contact time of the lay-up shot jump, the 2 components of the lay-up shot jump index. As a result, jumping height and contact time were found to be mutually independent abilities. The relationships in contact time between the lay-up shot jump to the 1-legged repeated rebound jump and the 2-legged repeated rebound jump were correlated on the same significance levels (p jumping height existed between the 1-legged repeated rebound jump and the lay-up shot jump (p jumping height between the lay-up shot jump and both the 2-legged repeated rebound jump and countermovement jump. The lay-up shot index correlated more strongly to the 1-legged repeated rebound jump index (p jump index (p jump is effective in improving both contact time and jumping height in the lay-up shot jump.

  10. Changes in Running Mechanics During a 6-Hour Running Race.

    Science.gov (United States)

    Giovanelli, Nicola; Taboga, Paolo; Lazzer, Stefano

    2017-05-01

    To investigate changes in running mechanics during a 6-h running race. Twelve ultraendurance runners (age 41.9 ± 5.8 y, body mass 68.3 ± 12.6 kg, height 1.72 ± 0.09 m) were asked to run as many 874-m flat loops as possible in 6 h. Running speed, contact time (t c ), and aerial time (t a ) were measured in the first lap and every 30 ± 2 min during the race. Peak vertical ground-reaction force (F max ), stride length (SL), vertical downward displacement of the center of mass (Δz), leg-length change (ΔL), vertical stiffness (k vert ), and leg stiffness (k leg ) were then estimated. Mean distance covered by the athletes during the race was 62.9 ± 7.9 km. Compared with the 1st lap, running speed decreased significantly from 4 h 30 min onward (mean -5.6% ± 0.3%, P running, reaching the maximum difference after 5 h 30 min (+6.1%, P = .015). Conversely, k vert decreased after 4 h, reaching the lowest value after 5 h 30 min (-6.5%, P = .008); t a and F max decreased after 4 h 30 min through to the end of the race (mean -29.2% and -5.1%, respectively, P running, suggesting a possible time threshold that could affect performance regardless of absolute running speed.

  11. High time resolution boundary layer description using combined remote sensing instruments

    Directory of Open Access Journals (Sweden)

    C. Gaffard

    2008-09-01

    Full Text Available Ground based remote sensing systems for future observation operations will allow continuous monitoring of the lower troposphere at temporal resolutions much better than every 30 min. Observations which may be considered spurious from an individual instrument can be validated or eliminated when considered in conjunction with measurements from other instruments observing at the same location. Thus, improved quality control of atmospheric profiles from microwave radiometers and wind profilers should be sought by considering the measurements from different systems together rather than individually. In future test bed deployments for future operational observing systems, this should be aided by observations from laser ceilometers and cloud radars. Observations of changes in atmospheric profiles at high temporal resolution in the lower troposphere are presented from a 12 channel microwave radiometer and 1290 MHz UHF wind profiler deployed in southern England during the CSIP field experiment in July/August 2005. The observations chosen were from days when thunderstorms occurred in southern England. Rapid changes near the surface in dry layers are considered, both when rain/hail may be falling from above and where the dry air is associated with cold pools behind organised thunderstorms. Also, short term variations in atmospheric profiles and vertical stability are presented on a day with occasional low cloud, when thunderstorms triggered 50 km down wind of the observing site Improved quality control of the individual remote sensing systems need to be implemented, examining the basic quality of the underlying observations as well as the final outputs, and so for instance eliminating ground clutter as far as possible from the basic Doppler spectra measurements of the wind profiler. In this study, this was performed manually. The potential of incorporating these types of instruments in future upper air observational networks leads to the challenge to

  12. First negative ion beam measurement by the Short-Time Retractable Instrumented Kalorimeter Experiment (STRIKE)

    Science.gov (United States)

    Serianni, G.; De Muri, M.; Muraro, A.; Veltri, P.; Bonomo, F.; Chitarin, G.; Pasqualotto, R.; Pavei, M.; Rizzolo, A.; Valente, M.; Franzen, P.; Ruf, B.; Schiesko, L.

    2014-02-01

    The Source for Production of Ion of Deuterium Extracted from Rf plasma (SPIDER) test facility is under construction in Padova to optimise the operation of the beam source of ITER neutral beam injectors. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon-fibre-carbon-composite tiles. A small-scale version of the entire system has been employed in the BAvarian Test MAchine for Negative ions (BATMAN) testbed by arranging two prototype tiles in the vertical direction. The paper presents a description of the mini-STRIKE system and of the data analysis procedures, as well as some results concerning the BATMAN beam under varying operating conditions.

  13. First negative ion beam measurement by the Short-Time Retractable Instrumented Kalorimeter Experiment (STRIKE)

    International Nuclear Information System (INIS)

    Serianni, G.; De Muri, M.; Veltri, P.; Bonomo, F.; Chitarin, G.; Pasqualotto, R.; Pavei, M.; Rizzolo, A.; Valente, M.; Muraro, A.; Franzen, P.; Ruf, B.; Schiesko, L.

    2014-01-01

    The Source for Production of Ion of Deuterium Extracted from Rf plasma (SPIDER) test facility is under construction in Padova to optimise the operation of the beam source of ITER neutral beam injectors. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon-fibre-carbon-composite tiles. A small-scale version of the entire system has been employed in the BAvarian Test MAchine for Negative ions (BATMAN) testbed by arranging two prototype tiles in the vertical direction. The paper presents a description of the mini-STRIKE system and of the data analysis procedures, as well as some results concerning the BATMAN beam under varying operating conditions

  14. First negative ion beam measurement by the Short-Time Retractable Instrumented Kalorimeter Experiment (STRIKE)

    Energy Technology Data Exchange (ETDEWEB)

    Serianni, G., E-mail: gianluigi.serianni@igi.cnr.it; De Muri, M.; Veltri, P.; Bonomo, F.; Chitarin, G.; Pasqualotto, R.; Pavei, M.; Rizzolo, A.; Valente, M. [Consorzio RFX, Euratom-ENEA association, Corso Stati Uniti 4, 35127 Padova (Italy); Muraro, A. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy); Franzen, P.; Ruf, B.; Schiesko, L. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching bei München (Germany)

    2014-02-15

    The Source for Production of Ion of Deuterium Extracted from Rf plasma (SPIDER) test facility is under construction in Padova to optimise the operation of the beam source of ITER neutral beam injectors. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon-fibre-carbon-composite tiles. A small-scale version of the entire system has been employed in the BAvarian Test MAchine for Negative ions (BATMAN) testbed by arranging two prototype tiles in the vertical direction. The paper presents a description of the mini-STRIKE system and of the data analysis procedures, as well as some results concerning the BATMAN beam under varying operating conditions.

  15. Virtual instrumentation technique used in the nuclear digital signal processing system design: Energy and time measurement tests

    International Nuclear Information System (INIS)

    Pechousek, J.; Prochazka, R.; Prochazka, V.; Frydrych, J.

    2011-01-01

    In this report, computer-based digital signal processing system with a 200 MS s -1 sampling digitizer is presented. Virtual instrumentation technique is used to easily develop a system which provides spectroscopy measurements such as amplitude and time signal analysis, with the time-of-flight facility. Several test measurements were performed to determine the characteristics of a system. The presented system may find its application in the coincidence measurement since the system is usable for different types of detectors and sensitive to decay lifetimes from tens of nanoseconds to seconds.

  16. Effects of running time of a cattle-cooling system on core body temperature of cows on dairy farms in an arid environment.

    Science.gov (United States)

    Ortiz, X A; Smith, J F; Bradford, B J; Harner, J P; Oddy, A

    2010-10-01

    Two experiments were conducted on a commercial dairy farm to describe the effects of a reduction in Korral Kool (KK; Korral Kool Inc., Mesa, AZ) system operating time on core body temperature (CBT) of primiparous and multiparous cows. In the first experiment, KK systems were operated for 18, 21, or 24 h/d while CBT of 63 multiparous Holstein dairy cows was monitored. All treatments started at 0600 h, and KK systems were turned off at 0000 h and 0300 h for the 18-h and 21-h treatments, respectively. Animals were housed in 9 pens and assigned randomly to treatment sequences in a 3 × 3 Latin square design. In the second experiment, 21 multiparous and 21 primiparous cows were housed in 6 pens and assigned randomly to treatment sequences (KK operated for 21 or 24 h/d) in a switchback design. All treatments started at 0600 h, and KK systems were turned off at 0300 h for the 21-h treatments. In experiment 1, cows in the 24-h treatment had a lower mean CBT than cows in the 18- and 21-h treatments (38.97, 39.08, and 39.03±0.04°C, respectively). The significant treatment by time interaction showed that the greatest treatment effects occurred at 0600 h; treatment means at this time were 39.43, 39.37, and 38.88±0.18°C for 18-, 21-, and 24-h treatments, respectively. These results demonstrate that a reduction in KK system running time of ≥3 h/d will increase CBT. In experiment 2, a significant parity by treatment interaction was found. Multiparous cows on the 24-h treatment had lower mean CBT than cows on the 21-h treatment (39.23 and 39.45±0.17°C, respectively), but treatment had no effect on mean CBT of primiparous cows (39.50 and 39.63±0.20°C for 21- and 24-h treatments, respectively). A significant treatment by time interaction was observed, with the greatest treatment effects occurring at 0500 h; treatment means at this time were 39.57, 39.23, 39.89, and 39.04±0.24°C for 21-h primiparous, 24-h primiparous, 21-h multiparous, and 24-h multiparous cows

  17. How Marketing Instruments Affect Consumer Behavior in Times of Economic Turbulence

    Directory of Open Access Journals (Sweden)

    Naďa Birčiaková

    2014-01-01

    Full Text Available This article analyzes the behavioural changes in groups of consumers and households on the market with individual commodities, based on the classification of individual reasonable consumption. Consumers expressed the degree of influence in their decision-making on satisfying their needs through selected key marketing factors such as price, brand, quality, habits and experience, advertising, recommendation from friends and relatives, packaging, discounts, new items, and so on. The analysis sought to determine whether the changes in the economic situation in the Czech Republic have an impact on the degree of marketing instrument influence on consumer behavior and decision-making. To express the degree of influence 10 point opinion scale is used. Thanks to the investigation taking place in 2007 with 609 respondents and in 2013 with 516 respondents, it was possible, it was possible to deal with the search for evidence of differences in the importance of individual factors using the Wilcoxon test. In 2013, attention was also paid to the degree of influence of some marketing tools such as price, quality and discount events on consumer behavior and decision-making in selected groups of households created by different income levels and different level of education achieved by the head of the household. The influence is expressed by radial graphs.

  18. Assembly and application of an instrument for attosecond-time-resolved ionization chronoscopy

    International Nuclear Information System (INIS)

    Uphues, T.

    2006-11-01

    In the framework of this thesis a new setup for attosecond time-resolved measurements has been built and observations of ionization dynamics in rare gas atoms have been made. This new technique is entitled Ionization Chronoscopy and gives further evidence that time-resolved experiments in the attosecond regime will become a powerful tool for investigations in atomic physics. (orig.)

  19. Time collimation for elastic neutron scattering instrument at a pulsed source

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Nikitenko, Yu.V.

    1996-01-01

    Conditions for carrying out elastic neutron scattering experiments using the time-of-flight technique are considered. It is shown that the employment of time dependent neutron beam collimation in the source-sample flight path increases the luminosity of the spectrometer under certain resolution restrictions. 3 refs., 8 figs

  20. CDF run II run control and online monitor

    International Nuclear Information System (INIS)

    Arisawa, T.; Ikado, K.; Badgett, W.; Chlebana, F.; Maeshima, K.; McCrory, E.; Meyer, A.; Patrick, J.; Wenzel, H.; Stadie, H.; Wagner, W.; Veramendi, G.

    2001-01-01

    The authors discuss the CDF Run II Run Control and online event monitoring system. Run Control is the top level application that controls the data acquisition activities across 150 front end VME crates and related service processes. Run Control is a real-time multi-threaded application implemented in Java with flexible state machines, using JDBC database connections to configure clients, and including a user friendly and powerful graphical user interface. The CDF online event monitoring system consists of several parts: the event monitoring programs, the display to browse their results, the server program which communicates with the display via socket connections, the error receiver which displays error messages and communicates with Run Control, and the state manager which monitors the state of the monitor programs

  1. The Short-Run And Long-Run Relationship In The Indonesia Islamic Stock Returns

    Directory of Open Access Journals (Sweden)

    M Shabri Abd Majid

    2016-02-01

    Full Text Available This paper aims at empirically examining the short-run and long-run causal relationship between the Indonesian Islamic stock returns and selected macroeconomic variables namely inflation, money supply and exchange rate during the pre- and post- 2008 global financial turmoil period from 2002 until 2007 and from 2008 until 2013 by using monthly data. The methodology used in this study is time series econometric techniques i.e. the unit root test,co-integration test, error correction model (ECM and variance decompositions(VDCs. The findings showed that there is cointegration between Islamic stock prices and macroeconomic variables. The results suggest that inflation, money supply, and exchange rate significantly affected the Islamic stock returns in Indonesia. These variables should be taken into account by the policy-makers as the important policy instruments in stabilizing Islamic stock markets in the countryDOI: 10.15408/aiq.v8i1.2505

  2. Study on deterministic response time design for a class of nuclear Instrumentation and Control systems

    International Nuclear Information System (INIS)

    Chen, Chang-Kuo; Hou, Yi-You; Luo, Cheng-Long

    2012-01-01

    Highlights: ► An efficient design procedure for deterministic response time design of nuclear I and C system. ► We model the concurrent operations based on sequence diagrams and Petri nets. ► The model can achieve the deterministic behavior by using symbolic time representation. ► An illustrative example of the bistable processor logic is given. - Abstract: This study is concerned with a deterministic response time design for computer-based systems in the nuclear industry. In current approach, Petri nets are used to model the requirement of a system specified with sequence diagrams. Also, the linear logic is proposed to characterize the state of changes in the Petri net model accurately by using symbolic time representation for the purpose of acquiring deterministic behavior. An illustrative example of the bistable processor logic is provided to demonstrate the practicability of the proposed approach.

  3. LORD-Q: a long-run real-time PCR-based DNA-damage quantification method for nuclear and mitochondrial genome analysis

    Science.gov (United States)

    Lehle, Simon; Hildebrand, Dominic G.; Merz, Britta; Malak, Peter N.; Becker, Michael S.; Schmezer, Peter; Essmann, Frank; Schulze-Osthoff, Klaus; Rothfuss, Oliver

    2014-01-01

    DNA damage is tightly associated with various biological and pathological processes, such as aging and tumorigenesis. Although detection of DNA damage is attracting increasing attention, only a limited number of methods are available to quantify DNA lesions, and these techniques are tedious or only detect global DNA damage. In this study, we present a high-sensitivity long-run real-time PCR technique for DNA-damage quantification (LORD-Q) in both the mitochondrial and nuclear genome. While most conventional methods are of low-sensitivity or restricted to abundant mitochondrial DNA samples, we established a protocol that enables the accurate sequence-specific quantification of DNA damage in >3-kb probes for any mitochondrial or nuclear DNA sequence. In order to validate the sensitivity of this method, we compared LORD-Q with a previously published qPCR-based method and the standard single-cell gel electrophoresis assay, demonstrating a superior performance of LORD-Q. Exemplarily, we monitored induction of DNA damage and repair processes in human induced pluripotent stem cells and isogenic fibroblasts. Our results suggest that LORD-Q provides a sequence-specific and precise method to quantify DNA damage, thereby allowing the high-throughput assessment of DNA repair, genotoxicity screening and various other processes for a wide range of life science applications. PMID:24371283

  4. Sensory and Instrumental Flavor Changes in Green Tea Brewed Multiple Times

    Science.gov (United States)

    Lee, Jeehyun; Chambers, Delores; Chambers, Edgar

    2013-01-01

    Green teas in leaf form are brewed multiple times, a common selling point. However, the flavor changes, both sensory and volatile compounds, of green teas that have been brewed multiple times are unknown. The objectives of this study were to determine how the aroma and flavor of green teas change as they are brewed multiple times, to determine if a relationship exists between green tea flavors and green tea volatile compounds, and to suggest the number of times that green tea leaves can be brewed. The first and second brews of the green tea samples provided similar flavor intensities. The third and fourth brews provided milder flavors and lower bitterness and astringency when measured using descriptive sensory analysis. In the brewed liquor of green tea mostly linalool, nonanal, geraniol, jasmone, and β-ionone volatile compounds were present at low levels (using gas chromatography-mass spectrometry). The geraniol, linalool, and linalool oxide compounds in green tea may contribute to the floral/perfumy flavor. Green teas in leaf form may be brewed up to four times: the first two brews providing stronger flavor, bitterness, and astringency whereas the third and fourth brews will provide milder flavor, bitterness, and astringency. PMID:28239138

  5. Using Real Time Workshop for rapid and reliable control implementation in the Frascati Tokamak Upgrade Feedback Control System running under RTAI-GNU/Linux

    International Nuclear Information System (INIS)

    Centioli, C.; Iannone, F.; Ledauphin, M.; Panella, M.; Pangione, L.; Podda, S.; Vitale, V.; Zaccarian, L.

    2005-01-01

    The Feedback Control System running at FTU has been recently ported from a commercial platform (based on LynxOS) to an open-source GNU/Linux-based RTAI-LXRT platform, thereby, obtaining significant performance and cost improvements. Based on the new open-source platform, it is now possible to experiment novel control strategies aimed at improving the robustness and accuracy of the feedback control. Nevertheless, the implementation of control ideas still requires a great deal of coding of the control algorithms that, if carried out manually, may be prone to coding errors, therefore time consuming both in the development phase and in the subsequent validation tests consisting of dedicated experiments carried out on FTU. In this paper, we report on recent developments based on Mathworks' Simulink and Real Time Workshop (RTW) packages to obtain a user-friendly environment where the real time code implementing novel control algorithms can be easily generated, tested and validated. Thanks to this new tool, the control designer only needs to specify the block diagram of the control task (namely, a high level and functional description of the new algorithm under consideration) and the corresponding real time code generation and testing is completely automated without any need of dedicated experiments. In the paper, the necessary work carried out to adapt the Real Time Workshop to our RTAI-LXRT context will be illustrated. A necessary re-organization of the previous real time software, aimed at incorporating the code coming from the adapted RTW, will also be discussed. Moreover, we will report on a performance comparison between the code obtained using the automated RTW-based procedure and the hand-written C code, appropriately optimised; at the moment, a preliminary performance comparison consisting of dummy algorithms has shown that the code automatically generated from RTW is faster (about 30% up) than the manually written one. This preliminary result combined with the

  6. Technique for determination of the time constant for relay radioisotope instruments

    International Nuclear Information System (INIS)

    Gol'din, M.L.; Shestialtynov, V.K.

    1981-01-01

    A technique for calculating time constant of a gamma relay used in radio isotope automatics is suggested. It is shown that the time constant of a radioisotope relay device (RRD) mainly depends on parameters of the intergrating circuit ratemeter. Considering the ratemeter as a real communication channel with a limited transmission band, the equation for the active front duration at a ratemeter outlet when applying abrupt voltage to its inlet is obtained. From the complex transmission function of a ratemeter the upper boundary cyclic transmission frequency the substitution of which in the equation of the active front durationg ives the RRD time constant is determined. On the example of calculating the ratemeter for the GR-6 gamma relay a satisfactory coincidence of calculational results with the certificate data is shown [ru

  7. Application of a sensory-instrumental tool to study apple texture characteristics shaped by altitude and time of harvest.

    Science.gov (United States)

    Charles, Mathilde; Corollaro, Maria Laura; Manfrini, Luigi; Endrizzi, Isabella; Aprea, Eugenio; Zanella, Angelo; Corelli Grappadelli, Luca; Gasperi, Flavia

    2018-02-01

    Texture is important in the preferences of apple consumers. Of the pre-harvest factors affecting fruit quality and especially texture, altitude and subsequent climatic conditions are crucial, determining differences in the physiological mechanisms of fruit growth, ripening stage and chemical composition, as demonstrated by several studies. This work applies a detailed sensory-instrumental protocol developed in a previous paper to investigate the impact of altitude, time of harvest and their cross-effect on sensory characteristics of apple, with a focus on texture. Sensory differences were found in relation to altitude, although the profile results were mainly affected by the time of harvest. Fruit from lower altitude was described as juicier, crunchier and sweeter than samples from higher altitude, which were floury, sourer and more astringent. Texture performance, soluble solids content and titratable acidity corroborated this sensory description. Moreover, anatomical data showed that fruit from lower altitude had a larger volume, a higher number of cells and a higher percentage of intercellular spaces. We demonstrated that differences between fruit from various altitudes can be perceived through human senses, and that the proposed sensory-instrumental tool can be used to describe such differences. This study brings more understanding about the impact of altitude and time of harvest on apple sensory properties. This work could support apple producers, from semi-mountainous regions (Alps, Tyrol, etc.), in advertising and valorising their products with their specific characteristics in a more efficient manner. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. The immediate effect of long-distance running on T2 and T2* relaxation times of articular cartilage of the knee in young healthy adults at 3.0 T MR imaging.

    Science.gov (United States)

    Behzadi, Cyrus; Welsch, Goetz H; Laqmani, Azien; Henes, Frank O; Kaul, Michael G; Schoen, Gerhard; Adam, Gerhard; Regier, Marc

    2016-08-01

    To quantitatively assess the immediate effect of long-distance running on T2 and T2* relaxation times of the articular cartilage of the knee at 3.0 T in young healthy adults. 30 healthy male adults (18-31 years) who perform sports at an amateur level underwent an initial MRI at 3.0 T with T2 weighted [16 echo times (TEs): 9.7-154.6 ms] and T2* weighted (24 TEs: 4.6-53.6 ms) relaxation measurements. Thereafter, all participants performed a 45-min run. After the run, all individuals were immediately re-examined. Data sets were post-processed using dedicated software (ImageJ; National Institute of Health, Bethesda, MD). 22 regions of interest were manually drawn in segmented areas of the femoral, tibial and patellar cartilage. For statistical evaluation, Pearson product-moment correlation coefficients and confidence intervals were computed. Mean initial values were 35.7 ms for T2 and 25.1 ms for T2*. After the run, a significant decrease in the mean T2 and T2* relaxation times was observed for all segments in all participants. A mean decrease of relaxation time was observed for T2 with 4.6 ms (±3.6 ms) and for T2* with 3.6 ms (±5.1 ms) after running. A significant decrease could be observed in all cartilage segments for both biomarkers. Both quantitative techniques, T2 and T2*, seem to be valuable parameters in the evaluation of immediate changes in the cartilage ultrastructure after running. This is the first direct comparison of immediate changes in T2 and T2* relaxation times after running in healthy adults.

  9. A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Loveland, W.; Jakobsson, B.; Whitlow, H.J.; Bouanani, M. El; Univ. of North Texas, Denton, TX

    2000-01-01

    A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of ∼ 35 keV/nucleon from the interactions of 400 MeV/nucleon 16 O with nat Xe gas targets

  10. A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V. [V.G.Khlopin Radium Institute, St. Petersburg (Russian Federation); Uppsala Univ. (Sweden). The Svedberg Lab.; Veldhuizen, E.J. van; Aleklett, K. [Uppsala Univ., (Sweden). Dept. of Radiation Sciences; Westerberg, L. [Uppsala University (Sweden). The Svedberg Lab.; Lyapin, V.G. [V.G.Khlopin Radium Institute, St. Petersburg (Russian Federation); Loveland, W. [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry; Bondorf, J. [Niels Bohr Inst., Copenhagen (Denmark); Jakobsson, B. [Lund Univ. (Sweden). Dept. of Physics; Whitlow, H.J. [Lund Univ. (Sweden). Dept. of Nuclear Physics; Bouanani, M. El [Lund Univ. (Sweden). Dept. of Nuclear Physics; Univ. of North Texas, Denton, TX (United States). Dept. of Physics

    2000-07-01

    A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of {approx} 35 keV/nucleon from the interactions of 400 MeV/nucleon {sup 16}O with {sup nat} Xe gas targets.

  11. Dr. Sheehan on Running.

    Science.gov (United States)

    Sheehan, George A.

    This book is both a personal and technical account of the experience of running by a heart specialist who began a running program at the age of 45. In its seventeen chapters, there is information presented on the spiritual, psychological, and physiological results of running; treatment of athletic injuries resulting from running; effects of diet…

  12. Design of real-time communication system for image recognition based colony picking instrument

    Science.gov (United States)

    Wang, Qun; Zhang, Rongfu; Yan, Hua; Wu, Huamin

    2017-11-01

    In order to aachieve autommated observatiion and pickinng of monocloonal colonies, an overall dessign and realizzation of real-time commmunication system based on High-throoughput monooclonal auto-piicking instrumment is propossed. The real-time commmunication system is commposed of PCC-PLC commuunication systtem and Centrral Control CComputer (CCC)-PLC communicatioon system. Bassed on RS232 synchronous serial communnication methood to develop a set of dedicated shoort-range commmunication prootocol betweenn the PC and PPLC. Furthermmore, the systemm uses SQL SSERVER database to rrealize the dataa interaction between PC andd CCC. Moreoover, the commmunication of CCC and PC, adopted Socket Ethernnet communicaation based on TCP/IP protoccol. TCP full-dduplex data cannnel to ensure real-time data eexchange as well as immprove system reliability andd security. We tested the commmunication syystem using sppecially develooped test software, thee test results show that the sysstem can realizze the communnication in an eefficient, safe aand stable way between PLC, PC andd CCC, keep thhe real-time conntrol to PLC annd colony inforrmation collecttion.

  13. Diagnostic instrumentation aboard ISS: just-in-time training for non-physician crewmembers

    Science.gov (United States)

    Foale, C. Michael; Kaleri, Alexander Y.; Sargsyan, Ashot E.; Hamilton, Douglas R.; Melton, Shannon; Martin, David; Dulchavsky, Scott A.

    2005-01-01

    INTRODUCTION: The performance of complex tasks on the International Space Station (ISS) requires significant preflight crew training commitments and frequent skill and knowledge refreshment. This report documents a recently developed "just-in-time" training methodology, which integrates preflight hardware familiarization and procedure training with an on-orbit CD-ROM-based skill enhancement. This "just-in-time" concept was used to support real-time remote expert guidance to complete ultrasound examinations using the ISS Human Research Facility (HRF). METHODS: An American and Russian ISS crewmember received 2 h of "hands on" ultrasound training 8 mo prior to the on-orbit ultrasound exam. A CD-ROM-based Onboard Proficiency Enhancement (OPE) interactive multimedia program consisting of memory enhancing tutorials, and skill testing exercises, was completed by the crewmember 6 d prior to the on-orbit ultrasound exam. The crewmember was then remotely guided through a thoracic, vascular, and echocardiographic examination by ultrasound imaging experts. RESULTS: Results of the CD-ROM-based OPE session were used to modify the instructions during a complete 35-min real-time thoracic, cardiac, and carotid/jugular ultrasound study. Following commands from the ground-based expert, the crewmember acquired all target views and images without difficulty. The anatomical content and fidelity of ultrasound video were adequate for clinical decision making. CONCLUSIONS: Complex ultrasound experiments with expert guidance were performed with high accuracy following limited preflight training and multimedia based in-flight review, despite a 2-s communication latency. In-flight application of multimedia proficiency enhancement software, coupled with real-time remote expert guidance, facilitates the successful performance of ultrasound examinations on orbit and may have additional terrestrial and space applications.

  14. Relationship between running kinematic changes and time limit at vVO2max. DOI: http://dx.doi.org/10.5007/1980-0037.2012v14n4p428

    Directory of Open Access Journals (Sweden)

    Sebastião Iberes Lopes Melo

    2012-07-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2012v14n4p428Exhaustive running at maximal oxygen uptake velocity (vVO2max can alter running kinematic parameters and increase energy cost along the time. The aims of the present study were to compare characteristics of ankle and knee kinematics during running at vVO2max and to verify the relationship between changes in kinematic variables and time limit (Tlim. Eleven male volunteers, recreational players of team sports, performed an incremental running test until volitional exhaustion to determine vVO2max and a constant velocity test at vVO2max. Subjects were filmed continuously from the left sagittal plane at 210 Hz for further kinematic analysis. The maximal plantar flexion during swing (p<0.01 was the only variable that increased significantly from beginning to end of the run. Increase in ankle angle at contact was the only variable related to Tlim (r=0.64; p=0.035 and explained 34% of the performance in the test. These findings suggest that the individuals under study maintained a stable running style at vVO2max and that increase in plantar flexion explained the performance in this test when it was applied in non-runners.

  15. An instrument for small-animal imaging using time-resolved diffuse and fluorescence optical methods

    International Nuclear Information System (INIS)

    Montcel, Bruno; Poulet, Patrick

    2006-01-01

    We describe time-resolved optical methods that use diffuse near-infrared photons to image the optical properties of tissues and their inner fluorescent probe distribution. The assembled scanner uses picosecond laser diodes at 4 wavelengths, an 8-anode photo-multiplier tube and time-correlated single photon counting. Optical absorption and reduced scattering images as well as fluorescence emission images are computed from temporal profiles of diffuse photons. This method should improve the spatial resolution and the quantification of fluorescence signals. We used the diffusion approximation of the radiation transport equation and the finite element method to solve the forward problem. The inverse problem is solved with an optimization algorithm such as ART or conjugate gradient. The scanner and its performances are presented, together with absorption, scattering and fluorescent images obtained with it

  16. Instrumentation problems in the measurement of relaxation time T1 in MRI

    International Nuclear Information System (INIS)

    Leroy-Willig, A.; Roucayrol, J.C.; Bittoun, J.; Courtieu, J.

    1986-01-01

    Longitudinal relaxation (T 1 ) of protons is a sensitive though non specific tool of tissue characterization. T 1 measurement from magnetic resonance images is unprecise, due to several phenomena that we review: time intervals shorter than in spectroscopic sequences; flip angle inhomogeneity; slice selection and spin echoes. In vivo the molecular inhomogeneity can prevent to measure a true T 1 ; motion and blood flow are important causes of errors. The relative effects of these factors are examined from in vitro and in vivo images acquired at 1.5 T. From a mono-echo single-slice saturation sequence reliable values of T 1 are obtained in vitro, the measurement time being compatible with clinical imaging. In vivo, problems due to various causes of motions are still unresolved [fr

  17. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics.

    Science.gov (United States)

    Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul

    2013-07-21

    Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format.

  18. Run Clever - No difference in risk of injury when comparing progression in running volume and running intensity in recreational runners

    DEFF Research Database (Denmark)

    Ramskov, Daniel; Rasmussen, Sten; Sørensen, Henrik

    2018-01-01

    Background/aim: The Run Clever trial investigated if there was a difference in injury occurrence across two running schedules, focusing on progression in volume of running intensity (Sch-I) or in total running volume (Sch-V). It was hypothesised that 15% more runners with a focus on progression...... in volume of running intensity would sustain an injury compared with runners with a focus on progression in total running volume. Methods: Healthy recreational runners were included and randomly allocated to Sch-I or Sch-V. In the first eight weeks of the 24-week follow-up, all participants (n=839) followed...... participants received real-time, individualised feedback on running intensity and running volume. The primary outcome was running-related injury (RRI). Results: After preconditioning a total of 80 runners sustained an RRI (Sch-I n=36/Sch-V n=44). The cumulative incidence proportion (CIP) in Sch-V (reference...

  19. Progress in Near Real-Time Volcanic Cloud Observations Using Satellite UV Instruments

    Science.gov (United States)

    Krotkov, N. A.; Yang, K.; Vicente, G.; Hughes, E. J.; Carn, S. A.; Krueger, A. J.

    2011-12-01

    Volcanic clouds from explosive eruptions can wreak havoc in many parts of the world, as exemplified by the 2010 eruption at the Eyjafjöll volcano in Iceland, which caused widespread disruption to air traffic and resulted in economic impacts across the globe. A suite of satellite-based systems offer the most effective means to monitor active volcanoes and to track the movement of volcanic clouds globally, providing critical information for aviation hazard mitigation. Satellite UV sensors, as part of this suite, have a long history of making unique near-real time (NRT) measurements of sulfur dioxide (SO2) and ash (aerosol Index) in volcanic clouds to supplement operational volcanic ash monitoring. Recently a NASA application project has shown that the use of near real-time (NRT,i.e., not older than 3 h) Aura/OMI satellite data produces a marked improvement in volcanic cloud detection using SO2 combined with Aerosol Index (AI) as a marker for ash. An operational online NRT OMI AI and SO2 image and data product distribution system was developed in collaboration with the NOAA Office of Satellite Data Processing and Distribution. Automated volcanic eruption alarms, and the production of volcanic cloud subsets for multiple regions are provided through the NOAA website. The data provide valuable information in support of the U.S. Federal Aviation Administration goal of a safe and efficient National Air Space. In this presentation, we will highlight the advantages of UV techniques and describe the advances in volcanic SO2 plume height estimation and enhanced volcanic ash detection using hyper-spectral UV measurements, illustrated with Aura/OMI observations of recent eruptions. We will share our plan to provide near-real-time volcanic cloud monitoring service using the Ozone Mapping and Profiler Suite (OMPS) on the Joint Polar Satellite System (JPSS).

  20. First-Time Analysis of Completely Restored DTREM Instrument Data from Apollo 14 and 15

    Science.gov (United States)

    McBride, Marie J.; Williams, David R.; Hills, H. Kent; Turner, Niescja

    2013-01-01

    The Dust, Thermal and Radiation Engineering Measurement (DTREM) packages (figure 1) mounted on the central stations of the Apollo 11, 12, 14, and 15 ALSEPs (Apollo Lunar Surface Experiments Packages) measured the outputs of exposed solar cells and thermistors over time. The goal of the experiment, also commonly known as the dust detector, was to study the long-term effects of dust, radiation, and temperature at the lunar surface on solar cells. The monitors returned data for up to almost 8 years from the lunar surface.

  1. Generation of Long-time Complex Signals for Testing the Instruments for Detection of Voltage Quality Disturbances

    Science.gov (United States)

    Živanović, Dragan; Simić, Milan; Kokolanski, Zivko; Denić, Dragan; Dimcev, Vladimir

    2018-04-01

    Software supported procedure for generation of long-time complex test sentences, suitable for testing the instruments for detection of standard voltage quality (VQ) disturbances is presented in this paper. This solution for test signal generation includes significant improvements of computer-based signal generator presented and described in the previously published paper [1]. The generator is based on virtual instrumentation software for defining the basic signal parameters, data acquisition card NI 6343, and power amplifier for amplification of output voltage level to the nominal RMS voltage value of 230 V. Definition of basic signal parameters in LabVIEW application software is supported using Script files, which allows simple repetition of specific test signals and combination of more different test sequences in the complex composite test waveform. The basic advantage of this generator compared to the similar solutions for signal generation is the possibility for long-time test sequence generation according to predefined complex test scenarios, including various combinations of VQ disturbances defined in accordance with the European standard EN50160. Experimental verification of the presented signal generator capability is performed by testing the commercial power quality analyzer Fluke 435 Series II. In this paper are shown some characteristic complex test signals with various disturbances and logged data obtained from the tested power quality analyzer.

  2. Comparison of quality of obturation and instrumentation time using hand files and two rotary file systems in primary molars: A single-blinded randomized controlled trial.

    Science.gov (United States)

    Govindaraju, Lavanya; Jeevanandan, Ganesh; Subramanian, E M G

    2017-01-01

    In permanent dentition, different rotary systems are used for canal cleaning and shaping. Rotary instrumentation in pediatric dentistry is an emerging concept. A very few studies have compared the efficiency of rotary instrumentation for canal preparation in primary teeth. Hence, this study was performed to compare the obturation quality and instrumentation time of two rotary files systems - Protaper, Mtwo with hand files in primary molars. Forty-five primary mandibular molars were randomly allotted to one of the three groups. Instrumentation was done using K-files in Group 1; Protaper in Group 2; and Mtwo in Group 3. Instrumentation time was recorded. The canal filling quality was assessed as underfill, optimal fill, and overfill. Statistical analysis was done using Chi-square, ANOVA, and post hoc Tukey test. No significant difference was observed in the quality of obturation among three groups. Intergroup comparison of the instrumentation time showed a statistically significant difference between the three groups. The use of rotary instrumentation in primary teeth results in marked reduction in the instrumentation time and improves the quality of obturation.

  3. Development of Interactive Monitoring System for Neutron Scattering Instrument

    Energy Technology Data Exchange (ETDEWEB)

    So, Ji Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Neutron scattering instruments in HANARO research reactor have been contributed to various fields of basic science and material engineering. These instruments are open to publics and researchers can apply beam-time and do experiments with instrument scientists. In most cases, these instruments run for several weeks without stopping, and therefore instrument scientist wants to see the instrument status and receive information if the instruments have some problem. This is important for the safety. However, it is very hard to get instrument information outside of instruments. Access from external site is strongly forbidden in the institute due to the network safety, I developed another way to send instrument status information using commercial short messaging service(SMS). In this presentation, detailed features of this system will be shown. As a prototype, this system is being developed for the single instrument: Disk-chopper time-of-flight instruments (DC-TOF). I have successfully developed instruments and operate for several years. This information messaging system can be used for other neutron scattering instruments.

  4. Work-family conflict and time use: psychometric assessment of an instrument in ELSA-Brazil.

    Science.gov (United States)

    Pinto, Karina Araujo; Menezes, Greice Maria de Souza; Griep, Rosane Härter; Lima, Keury Thaisana Rodrigues Dos Santos; Almeida, Maria da Conceição; Aquino, Estela M L

    2016-07-04

    In this study, we evaluated the psychometric properties of the items to measure the work-family conflict and the time use for personal care and leisure, included in the baseline questionnaire of the Longitudinal Study of Adult Health (ELSA-Brazil). We evaluated temporal stability (7-14 days) using kappa statistic and the validity of the construct by the correlation of Kendall's tau with other variables. Test-retest stability was discreet to moderate and the correlations were compatible with the underlying theory. Future studies in the context of ELSA-Brazil and in other populations will complement the assessment of its relevance. RESUMO Neste estudo, avaliamos as propriedades psicométricas dos itens para mensurar o conflito trabalho-família e o uso do tempo para cuidado pessoal e lazer, incluídos no questionário da linha de base do Estudo Longitudinal de Saúde do Adulto (ELSA-Brasil). Foram avaliadas a estabilidade temporal (7-14 dias) utilizando estatística kappa e a validade do construto pela correlação tau de Kendall com outras variáveis. A estabilidade teste-reteste foi discreta a moderada e as correlações, compatíveis com a teoria subjacente. Estudos futuros no contexto do ELSA-Brasil e em outras populações complementarão a avaliação da sua pertinência.

  5. QBeRT: an innovative instrument for qualification of particle beam in real-time

    Science.gov (United States)

    Gallo, G.; Lo Presti, D.; Bonanno, D. L.; Longhitano, F.; Bongiovanni, D. G.; Reito, S.; Randazzo, N.; Leonora, E.; Sipala, V.; Tommasino, F.

    2016-11-01

    This paper describes an innovative beam diagnostic and monitoring system composed of a position sensitive detector and a residual range detector, based on scintillating optical fiber and on an innovative read-out strategy and reconstruction algorithm. The position sensitive detector consists of four layers of pre-aligned and juxtaposed scintillating fibres arranged to form two identical overlying and orthogonal planes. The 500 μm square section fibres are optically coupled to two Silicon Photomultiplier arrays using a channel reduction system patented by the Istituto Nazionale di Fisica Nucleare. The residual range detector is a stack of sixty parallel layers of the same fibres used in the position detector, each of which is optically coupled to a channel of Silicon Photomultiplier array by wavelength shifting fibres. The sensitive area of the two detectors is 9 × 9 cm2. After being fully characterized at CATANA proton therapy facility, the performance of the prototypes was tested during last year also at TIFPA proton irradiation facility. The unique feature of these detectors is the possibility to work in imaging conditions (e.g. a particle at a time up to 106 particles per second) and in therapy conditions up to 109 particles per second. The combined use of the two detectors, in imaging conditions, as an example of application, allows the particle radiography of an object. In therapy conditions, in particular, the system measures the position, the profiles, the energy and the fluence of the beam.

  6. QBeRT: an innovative instrument for qualification of particle beam in real-time

    International Nuclear Information System (INIS)

    Gallo, G.; Presti, D. Lo; Bonanno, D.L.; Longhitano, F.; Bongiovanni, D.G.; Reito, S.; Randazzo, N.; Leonora, E.; Sipala, V.; Tommasino, F.

    2016-01-01

    This paper describes an innovative beam diagnostic and monitoring system composed of a position sensitive detector and a residual range detector, based on scintillating optical fiber and on an innovative read-out strategy and reconstruction algorithm. The position sensitive detector consists of four layers of pre-aligned and juxtaposed scintillating fibres arranged to form two identical overlying and orthogonal planes. The 500 μm square section fibres are optically coupled to two Silicon Photomultiplier arrays using a channel reduction system patented by the Istituto Nazionale di Fisica Nucleare. The residual range detector is a stack of sixty parallel layers of the same fibres used in the position detector, each of which is optically coupled to a channel of Silicon Photomultiplier array by wavelength shifting fibres. The sensitive area of the two detectors is 9 × 9 cm 2 . After being fully characterized at CATANA proton therapy facility, the performance of the prototypes was tested during last year also at TIFPA proton irradiation facility. The unique feature of these detectors is the possibility to work in imaging conditions (e.g. a particle at a time up to 10 6 particles per second) and in therapy conditions up to 10 9 particles per second. The combined use of the two detectors, in imaging conditions, as an example of application, allows the particle radiography of an object. In therapy conditions, in particular, the system measures the position, the profiles, the energy and the fluence of the beam.

  7. Nanobeacon: A low cost time calibration instrument for the KM3NeT neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, David [IFIC. Instituto de Física Corpuscular, CSIC-Universidad de Valencia, C/Catedrático José Beltrán, 2. 46980 Paterna (Spain); Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT collaboration aims at the construction of a multi-km3 high-energy neutrino telescope in the Mediterranean Sea consisting of a matrix of pressure resistant glass spheres holding each one a set (31) of small area photomultipliers. The main goal of the telescope is to observe cosmic neutrinos through the Cherenkov light induced in sea water by charged particles produced in neutrino interactions with the surrounding medium. A relative time calibration between photomultipliers of the order of 1 ns is required to achieve an optimal performance. Due to the high volume to be covered by KM3NeT, a cost reduction of the different systems is a priority. To this end a very low price calibration device, the so called Nanobeacon, has been designed and developed. At present one of such devices has already been integrated successfully at the KM3NeT telescope and eight of them in the Nemo Tower Phase II. In this article the main properties and operation of this device are described.

  8. Innovative instrumentation

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all

  9. Innovative instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1983-11-15

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all.

  10. Instruments for radiation measurement in life sciences (5). Development of imaging technology in life science. 4. Real-time bioradiography

    International Nuclear Information System (INIS)

    Sasaki, Toru; Iwamoto, Akinori; Tsuboi, Hisashi; Katoh, Toru; Kudo, Hiroyuki; Kazawa, Erito; Watanabe, Yasuyoshi

    2006-01-01

    Real-time bioradiography, new bioradiography method, can collect and produce image of metabolism and function of cell in real-time. The principles of instrumentation, development process and the application examples of neuroscience and biomedical gerontology are stated. The bioradiography method, the gas-tissue live-cell autoradiography method and the real-time bioradiography method are explained. As the application examples, the molecular mechanism of oxidative stress at brain ischemia and the analysis of SOD gene knockout animals are reported. Comparison between FDG-PET of epileptic brain and FDG- bioradiography image of live-cell of brain tissue, the real-time bioradiography system, improvement of image by surface treatment, the detection limit of β + ray from F 18 , image of living-slices of brain tissue by FDG-real-time bioradiography and radioluminography, continuous FDG image of living-slices of rat brain tissue, and analysis of carbohydrate metabolism of living-slices of brain tissue of mouse lacking SOD gene during aerophobia and reoxygenation process are reported. (S.Y.)

  11. Implementing the IA stage and developing an instrument to assess the fidelity of critical time interventional: task shifting

    Directory of Open Access Journals (Sweden)

    Tatiana Fernandes Carpinteiro Silva

    2014-10-01

    Full Text Available One strategy that has been used for treat patients with mental health disorder is the implementation of psychosocial interventions. Like the development of a new drug, which requires safety studies before efficacy assessment, the psychosocial interventions should be implemented following defined stages, with the objective of increase the validity and reliability of such interventions. These stages are IA (pre-pilot, IB (pilot study, II (randomized clinical trial and III (additional studies. This study proposes a description of all activities carried out in implementation of the pre-pilot (IA Critical Time Intervention – Task Shifting (CTI-TS, including the development of manuals and the development of an instrument to assess fidelity to the original protocol. As a result, were performed the adaptation of instruments to be used in the pilot study, the adaptation of CTI-TS manual to Brazilian context, the adaptation of the agents CTI-TS training manual, as well the development of the CTI-TS assessment scale fidelity and its instruction manual. This allows multicentric studies conducted in different contexts could be performed avoiding biases. Considering that Brazil is a country that lacks resources allocated to mental care, it is expected that more psychosocial interventions can be implemented, since it was possible to develop the implementation process according to the methods recommended by the international scientific literature.

  12. Influence of the Heel-to-Toe Drop of Standard Cushioned Running Shoes on Injury Risk in Leisure-Time Runners: A Randomized Controlled Trial With 6-Month Follow-up.

    Science.gov (United States)

    Malisoux, Laurent; Chambon, Nicolas; Urhausen, Axel; Theisen, Daniel

    2016-11-01

    Modern running shoes are available in a wide range of heel-to-toe drops (ie, the height difference between the forward and rear parts of the inside of the shoe). While shoe drop has been shown to influence strike pattern, its effect on injury risk has never been investigated. Therefore, the reasons for such variety in this parameter are unclear. The first aim of this study was to determine whether the drop of standard cushioned running shoes influences running injury risk. The secondary aim was to investigate whether recent running regularity modifies the relationship between shoe drop and injury risk. Randomized controlled trial; Level of evidence, 1. Leisure-time runners (N = 553) were observed for 6 months after having received a pair of shoes with a heel-to-toe drop of 10 mm (D10), 6 mm (D6), or 0 mm (D0). All participants reported their running activities and injuries (time-loss definition, at least 1 day) in an electronic system. Cox regression analyses were used to compare injury risk between the 3 groups based on hazard rate ratios (HRs) and their 95% CIs. A stratified analysis was conducted to evaluate the effect of shoe drop in occasional runners (running regularity, low-drop shoes (D6 and D0) were found to be associated with a lower injury risk in occasional runners (HR, 0.48; 95% CI, 0.23-0.98), whereas these shoes were associated with a higher injury risk in regular runners (HR, 1.67; 95% CI, 1.07-2.62). Overall, injury risk was not modified by the drop of standard cushioned running shoes. However, low-drop shoes could be more hazardous for regular runners, while these shoes seem to be preferable for occasional runners to limit injury risk. © 2016 The Author(s).

  13. Comparison of vertical ground reaction forces during overground and treadmill running. A validation study

    NARCIS (Netherlands)

    Kluitenberg, Bas; Bredeweg, Steef W.; Zijlstra, Sjouke; Zijlstra, Wiebren; Buist, Ida

    2012-01-01

    Background: One major drawback in measuring ground-reaction forces during running is that it is time consuming to get representative ground-reaction force (GRF) values with a traditional force platform. An instrumented force measuring treadmill can overcome the shortcomings inherent to overground

  14. Effect of Minimalist Footwear on Running Efficiency

    Science.gov (United States)

    Gillinov, Stephen M.; Laux, Sara; Kuivila, Thomas; Hass, Daniel; Joy, Susan M.

    2015-01-01

    Background: Although minimalist footwear is increasingly popular among runners, claims that minimalist footwear enhances running biomechanics and efficiency are controversial. Hypothesis: Minimalist and barefoot conditions improve running efficiency when compared with traditional running shoes. Study Design: Randomized crossover trial. Level of Evidence: Level 3. Methods: Fifteen experienced runners each completed three 90-second running trials on a treadmill, each trial performed in a different type of footwear: traditional running shoes with a heavily cushioned heel, minimalist running shoes with minimal heel cushioning, and barefoot (socked). High-speed photography was used to determine foot strike, ground contact time, knee angle, and stride cadence with each footwear type. Results: Runners had more rearfoot strikes in traditional shoes (87%) compared with minimalist shoes (67%) and socked (40%) (P = 0.03). Ground contact time was longest in traditional shoes (265.9 ± 10.9 ms) when compared with minimalist shoes (253.4 ± 11.2 ms) and socked (250.6 ± 16.2 ms) (P = 0.005). There was no difference between groups with respect to knee angle (P = 0.37) or stride cadence (P = 0.20). When comparing running socked to running with minimalist running shoes, there were no differences in measures of running efficiency. Conclusion: When compared with running in traditional, cushioned shoes, both barefoot (socked) running and minimalist running shoes produce greater running efficiency in some experienced runners, with a greater tendency toward a midfoot or forefoot strike and a shorter ground contact time. Minimalist shoes closely approximate socked running in the 4 measurements performed. Clinical Relevance: With regard to running efficiency and biomechanics, in some runners, barefoot (socked) and minimalist footwear are preferable to traditional running shoes. PMID:26131304

  15. Validation of virtual instrument for data analysis in metrology of time and frequency; Validacao do instrumento virtual para analise de dados em metrologia de tempo e frequencia

    Energy Technology Data Exchange (ETDEWEB)

    Jordao, Bruno; Quaresma, Daniel; Rocha, Pedro; Carvalho, Ricardo, E-mail: bjordan@on.br [Observatorio Nacional (ON), Rio de Janeiro, RJ (Brazil). Laboratorio Primario de Tempo e Frequencia; Peixoto, Jose Guilherme [Instituto de Radioprotecao e Dosimetria (LNMRI/IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Laboratorio Nacional de Metrologia das Radiacoes Ionizantes

    2016-07-01

    Commercial Software (CS) for collection, analysis and plot time and frequency data plots are being increasingly used in reference laboratories worldwide. With this, it has greatly improved the results of calculations of uncertainty for these values. We propose the creation of a collection of software and data analysis using Virtual Instruments (VI) developed the Primary Laboratory Time and frequency of the National Observatory - ON and validation of this instrument. To validate the instrument developed, it made a comparative analysis between the results obtained (VI) with the results obtained by (CS) widely used in many metrology laboratories. From these results we can conclude that there was equivalence between the analyzed data. (author)

  16. Direct Measurement of Initial Enrichment, Burn-up and Cooling Time of Spent Fuel Assembly with a Differential Die-Away Technique Based Instrument

    International Nuclear Information System (INIS)

    Henzl, Vladimir; Swinhoe, Martyn T.; Tobin, Stephen J.

    2012-01-01

    An outline of this presentation of what a Differential Die-Away (DDA) instrument can do are: (1) Principle of operation of DDA instrument; (2) Determination of initial enrichment (IE) (σ DDA response increases (die-away time is longer) with increasing fissile content; and (2) Spent fuel => DDA response decreases (die-away time is shorter) with higher burn-up (i.e. more neutron absorbers present).

  17. Running and osteoarthritis.

    Science.gov (United States)

    Willick, Stuart E; Hansen, Pamela A

    2010-07-01

    The overall health benefits of cardiovascular exercise, such as running, are well established. However, it is also well established that in certain circumstances running can lead to overload injuries of muscle, tendon, and bone. In contrast, it has not been established that running leads to degeneration of articular cartilage, which is the hallmark of osteoarthritis. This article reviews the available literature on the association between running and osteoarthritis, with a focus on clinical epidemiologic studies. The preponderance of clinical reports refutes an association between running and osteoarthritis. Copyright 2010 Elsevier Inc. All rights reserved.

  18. A novel mouse running wheel that senses individual limb forces: biomechanical validation and in vivo testing

    Science.gov (United States)

    Roach, Grahm C.; Edke, Mangesh

    2012-01-01

    Biomechanical data provide fundamental information about changes in musculoskeletal function during development, adaptation, and disease. To facilitate the study of mouse locomotor biomechanics, we modified a standard mouse running wheel to include a force-sensitive rung capable of measuring the normal and tangential forces applied by individual paws. Force data were collected throughout the night using an automated threshold trigger algorithm that synchronized force data with wheel-angle data and a high-speed infrared video file. During the first night of wheel running, mice reached consistent running speeds within the first 40 force events, indicating a rapid habituation to wheel running, given that mice generated >2,000 force-event files/night. Average running speeds and peak normal and tangential forces were consistent throughout the first four nights of running, indicating that one night of running is sufficient to characterize the locomotor biomechanics of healthy mice. Twelve weeks of wheel running significantly increased spontaneous wheel-running speeds (16 vs. 37 m/min), lowered duty factors (ratio of foot-ground contact time to stride time; 0.71 vs. 0.58), and raised hindlimb peak normal forces (93 vs. 115% body wt) compared with inexperienced mice. Peak normal hindlimb-force magnitudes were the primary force component, which were nearly tenfold greater than peak tangential forces. Peak normal hindlimb forces exceed the vertical forces generated during overground running (50-60% body wt), suggesting that wheel running shifts weight support toward the hindlimbs. This force-instrumented running-wheel system provides a comprehensive, noninvasive screening method for monitoring gait biomechanics in mice during spontaneous locomotion. PMID:22723628

  19. Identification of key outcome measures when using the instrumented timed up and go and/or posturography for fall screening.

    Science.gov (United States)

    Sample, Renee Beach; Kinney, Allison L; Jackson, Kurt; Diestelkamp, Wiebke; Bigelow, Kimberly Edginton

    2017-09-01

    The Timed Up and Go (TUG) has been commonly used for fall risk assessment. The instrumented Timed Up and Go (iTUG) adds wearable sensors to capture sub-movements and may be more sensitive. Posturography assessments have also been used for determining fall risk. This study used stepwise logistic regression models to identify key outcome measures for the iTUG and posturography protocols. The effectiveness of the models containing these measures in differentiating fallers from non-fallers were then compared for each: iTUG total time duration only, iTUG, posturography, and combined iTUG and posturography assessments. One hundred and fifty older adults participated in this study. The iTUG measures were calculated utilizing APDM Inc.'s Mobility Lab software. Traditional and non-linear posturography measures were calculated from center of pressure during quiet-standing. The key outcome measures incorporated in the iTUG assessment model (sit-to-stand lean angle and height) resulted in a model sensitivity of 48.1% and max re-scaled R 2 value of 0.19. This was a higher sensitivity, indicating better differentiation, compared to the model only including total time duration (outcome of the traditional TUG), which had a sensitivity of 18.2%. When the key outcome measures of the iTUG and the posturography assessments were combined into a single model, the sensitivity was approximately the same as the iTUG model alone. Overall the findings of this study support that the iTUG demonstrates greater sensitivity than the total time duration, but that carrying out both iTUG and posturography does not greatly improve sensitivity when used as a fall risk screening tool. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Kinetic Temperature and Carbon Dioxide from Broadband Infrared Limb Emission Measurements Taken from the TIMED/SABER Instrument

    Science.gov (United States)

    Mertens, Christopher J.; Russell III, James M.; Mlynczak, Martin G.; She, Chiao-Yao; Schmidlin, Francis J.; Goldberg, Richard A.; Lopez-Puertas, Manuel; Wintersteiner, Peter P.; Picard, Richard H.; Winick, Jeremy R.; hide

    2008-01-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment is one of four instruments on NASA's Thermosphere-Ionosphere-Energetics and Dynamics (TIMED) satellite. SABER measures broadband infrared limb emission and derives vertical profiles of kinetic temperature (Tk) from the lower stratosphere to approximately 120 km, and vertical profiles of carbon dioxide (CO2) volume mixing ratio (vmr) from approximately 70 km to 120 km. In this paper we report on SABER Tk/CO2 data in the mesosphere and lower thermosphere (MLT) region from the version 1.06 dataset. The continuous SABER measurements provide an excellent dataset to understand the evolution and mechanisms responsible for the global two-level structure of the mesopause altitude. SABER MLT Tk comparisons with ground-based sodium lidar and rocket falling sphere Tk measurements are generally in good agreement. However, SABER CO2 data differs significantly from TIME-GCM model simulations. Indirect CO2 validation through SABER-lidar MLT Tk comparisons and SABER-radiation transfer comparisons of nighttime 4.3 micron limb emission suggest the SABER-derived CO2 data is a better representation of the true atmospheric MLT CO2 abundance compared to model simulations of CO2 vmr.

  1. Instrumental variables estimation of exposure effects on a time-to-event endpoint using structural cumulative survival models

    DEFF Research Database (Denmark)

    Martinussen, Torben; Vansteelandt, Stijn; Tchetgen Tchetgen, Eric J.

    2017-01-01

    The use of instrumental variables for estimating the effect of an exposure on an outcome is popular in econometrics, and increasingly so in epidemiology. This increasing popularity may be attributed to the natural occurrence of instrumental variables in observational studies that incorporate elem...

  2. Electron run-away

    International Nuclear Information System (INIS)

    Levinson, I.B.

    1975-01-01

    The run-away effect of electrons for the Coulomb scattering has been studied by Dricer, but the question for other scattering mechanisms is not yet studied. Meanwhile, if the scattering is quasielastic, a general criterion for the run-away may be formulated; in this case the run-away influence on the distribution function may also be studied in somewhat general and qualitative manner. (Auth.)

  3. Development of a generic system for real-time data access and remote control of multiple in-situ water quality monitoring instruments

    Science.gov (United States)

    Wright, S. A.; Bennett, G. E.; Andrews, T.; Melis, T. S.; Topping, D. J.

    2005-05-01

    Currently, in-situ monitoring of water quality parameters (e.g. water temperature, conductivity, turbidity) in the Colorado River ecosystem typically consists of deploying instruments in the river, retrieving them at a later date, downloading the datalogger, then examining the data; an arduous process in the remote settings of Grand Canyon. Under this protocol, data is not available real-time and there is no way to detect problems with the instrumentation until after retrieval. The next obvious stage in the development of in-situ monitoring in Grand Canyon was the advent of one-way telemetry, i.e. streaming data in real-time from the instrument to the office and/or the world-wide-web. This protocol allows for real-time access to data and the identification of instrumentation problems, but still requires a site visit to address instrument malfunctions, i.e. the user does not have the ability to remotely control the instrument. At some field sites, such as the Colorado River in Grand Canyon, site visitation is restricted by remoteness and lack of traditional access routes (i.e. roads). Even at less remote sites, it may still be desirable to have two-way communication with instruments in order to, for example, diagnose and potentially fix instrumentation problems, change sampling parameters to save battery power, etc., without having to visit the site. To this end, the U.S. Geological Survey, Grand Canyon Monitoring and Research Center, is currently developing and testing a high-speed, two-way communication system that allows for real-time data access and remote control of instrumentation. The approach tested relies on internet access and may be especially useful in areas where land-line or cellular connections are unavailable. The system is composed of off-the-shelf products, uses a commercial broadband satellite service, and is designed in a generic way such that any instrument that communicates through RS-232 communication (i.e. a serial port) is compatible with

  4. Water Vapor, Temperature, and Ice Particles in Polar Mesosphere as Measured by SABER/TIMED and OSIRIS/Odin Instruments

    Science.gov (United States)

    Feofilov, A. G.; Petelina, S. V.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.

    2009-01-01

    Although many new details on the properties of mesospheric ice particles that farm Polar Mesospheric Clouds (PMCs) and also cause polar mesospheric summer echoes have been recently revealed, certain aspects of mesospheric ice microphysics and dynamics still remain open. The detailed relation between PMC parameters and properties of their environment, as well as interseasonal and interhemispheric differences and trends in PMC properties that are possibly related to global change, are among those open questions. In this work, mesospheric temperature and water vapor concentration measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite are used to study the properties of PMCs with respect to the surrounding atmosphere. The cloud parameters, namely location, brightness, and altitude, are obtained from the observations made by the Optical Spectrograph and Infrared Imager System (OSIRIS) on the Odin satellite. About a thousand of simultaneous common volume measurements made by SABER and OSIRIS in both hemispheres from 2002 until 2008 are used. The correlation between PMC brightness (and occurrence rate) and temperatures at PMC altitudes and at the mesopause is analysed. The relation between PMC parameters, frost point temperature, and gaseous water vapor content in and below the cloud is also discussed. Interseasonal and interhemispheric differences and trends in the above parameters, as well as in PMC peak altitudes and mesopause altitudes are evaluated.

  5. Modernization of ILL instrument electronics

    International Nuclear Information System (INIS)

    Descamps, F.

    1999-01-01

    We have built new general purpose cards for data acquisition taking advantage of recent developments in electronics. At the end of the year, most scheduled instruments at the ILL will be running under UNIX with VME electronics front-end. As the VME electronics of the ILL was designed at the beginning of the eighties, the instrument control section (SCI) at ILL has prepared a renewal plan for two reasons: - first, all the processor cards of the Institute are based on MIZAR processor boards and MIZAR stopped the production of this card last year, as the market was shrinking; - in addition, processors and programmable electronics are now 10 times faster. The electronics services want to take full advantage of these new performances. (author)

  6. Overcoming the "Run" Response

    Science.gov (United States)

    Swanson, Patricia E.

    2013-01-01

    Recent research suggests that it is not simply experiencing anxiety that affects mathematics performance but also how one responds to and regulates that anxiety (Lyons and Beilock 2011). Most people have faced mathematics problems that have triggered their "run response." The issue is not whether one wants to run, but rather…

  7. Overuse injuries in running

    DEFF Research Database (Denmark)

    Larsen, Lars Henrik; Rasmussen, Sten; Jørgensen, Jens Erik

    2016-01-01

    What is an overuse injury in running? This question is a corner stone of clinical documentation and research based evidence.......What is an overuse injury in running? This question is a corner stone of clinical documentation and research based evidence....

  8. PRECIS Runs at IITM

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. PRECIS Runs at IITM. Evaluation experiment using LBCs derived from ERA-15 (1979-93). Runs (3 ensembles in each experiment) already completed with LBCs having a length of 30 years each, for. Baseline (1961-90); A2 scenario (2071-2100); B2 scenario ...

  9. Of faeces and sweat. How much a mouse is willing to run: having a hard time measuring spontaneous physical activity in different mouse sub-strains

    Directory of Open Access Journals (Sweden)

    Dario Coletti

    2017-03-01

    Full Text Available Physical activity has multiple beneficial effects in the physiology and pathology of the organism. In particular, we and other groups have shown that running counteracts cancer cachexia in both humans and rodents. The latter are prone to exercise in wheel-equipped cages even at advanced stages of cachexia. However, when we wanted to replicate the experimental model routinely used at the University of Rome in a different laboratory (i.e. at Paris 6 University, we had to struggle with puzzling results due to unpredicted mouse behavior. Here we report the experience and offer the explanation underlying these apparently irreproducible results. The original data are currently used for teaching purposes in undergraduate student classes of biological sciences.

  10. 105-KE Basin Pilot Run design plan

    International Nuclear Information System (INIS)

    Sherrell, D.L.

    1994-01-01

    This document identifies all design deliverables and procedures applicable to the 105-KE Basin Pilot Run. It also establishes a general design strategy, defines interface control requirements, and covers planning for mechanical, electrical, instrument/control system, and equipment installation design

  11. IMPLEMENTING FISCAL OR MONETARY POLICY IN TIME OF CRISIS? RUNNING GRANGER CAUSALITY TO TEST THE PHILLIPS CURVE IN SOME EURO ZONE COUNTRIES

    Directory of Open Access Journals (Sweden)

    Nico Gianluigi

    2014-12-01

    Full Text Available This paper aims to provide empirical evidence about the theoretical relationship between inflation and unemployment in 9 European countries. Based on two major goals for economic policymakers namely, to keep both inflation and unemployment low, we use the ingredients of the Phillips curve to orient fiscal and monetary policies. These policies are prerogative for the achievement of a desirable combination of unemployment and inflation. More in detail, we attempt to address two basic issues. One strand of the study examines the size and sign of the impact of unemployment rate on percentage changes in inflation. In our preferred econometric model, we have made explicit the evidence according to which one unit increase (% in unemployment reduces inflation of roughly 0.73 percent, on average. Next, we turn to the question concerning the causal link between inflation and unemployment and we derive a political framework enables to orient European policymakers in the implementation of either fiscal or monetary policy. In this context, by means of the Granger causality test, we mainly find evidence of a directional causality which runs from inflation to unemployment in 4 out of 9 European countries under analysis. This result implies that political authorities of Austria, Belgium, Germany and Italy should implement monetary policy in order to achieve pre-established targets of unemployment and inflation. In the same context, a directional causality running from unemployment to inflation has been found in France and Cyprus suggesting that a reduction in the unemployment level can be achieved through controlling fiscal policy. However, succeeding in this goal may lead to an increasing demand for goods and services which, in turn, might cause a higher inflation than expected. Finally, while there is no statistical evidence of a causal link between unemployment and inflation in Finland and Greece, a bidirectional causality has been found in Estonia. This

  12. CRISP instrument manual

    International Nuclear Information System (INIS)

    Bucknall, D.G.; Langridge, Sean

    1997-05-01

    This document is a user manual for CRISP, one of the two neutron reflectomers at ISIS. CRISP is highly automated allowing precision reproducible measurements. The manual provides detailed instructions for the setting-up and running of the instrument and advice on data analysis. (UK)

  13. Observations of Infrared Radiative Cooling in the Thermosphere on Daily to Multiyear Timescales from the TIMED/SABER Instrument

    Science.gov (United States)

    Mlynczak, Martin G.; Hunt, Linda A.; Marshall, B. Thomas; Martin-Torres, F. Javier; Mertens, Christopher J.; Russell, James M., III; Remsberg, Ellis E.; Lopez-Puertas, Manuel; Picard, Richard; Winick, Jeremy; hide

    2009-01-01

    We present observations of the infrared radiative cooling by carbon dioxide (CO2) and nitric oxide (NO) in Earth s thermosphere. These data have been taken over a period of 7 years by the SABER instrument on the NASA TIMED satellite and are the dominant radiative cooling mechanisms for the thermosphere. From the SABER observations we derive vertical profiles of radiative cooling rates (W/cu m), radiative fluxes (W/sq m), and radiated power (W). In the period from January 2002 through January 2009 we observe a large decrease in the cooling rates, fluxes, and power consistent with the declining phase of solar cycle. The power radiated by NO during 2008 when the Sun exhibited few sunspots was nearly one order of magnitude smaller than the peak power observed shortly after the mission began. Substantial short-term variability in the infrared emissions is also observed throughout the entire mission duration. Radiative cooling rates and radiative fluxes from NO exhibit fundamentally different latitude dependence than do those from CO2, with the NO fluxes and cooling rates being largest at high latitudes and polar regions. The cooling rates are shown to be derived relatively independent of the collisional and radiative processes that drive the departure from local thermodynamic equilibrium (LTE) in the CO2 15 m and the NO 5.3 m vibration-rotation bands. The observed NO and CO2 cooling rates have been compiled into a separate dataset and represent a climate data record that is available for use in assessments of radiative cooling in upper atmosphere general circulation models.

  14. The neutron instrument simulation package, NISP

    International Nuclear Information System (INIS)

    Seeger, P.A.; Daemen, L.L.

    2004-01-01

    The Neutron Instrument Simulation Package (NISP) performs complete source-to-detector simulations of neutron instruments, including neutrons that do not follow the expected path. The original user interface (MC( ) Web) is a web-based application, http://strider.lansce.lanl.gov/NISP/Welcome.html. This report describes in detail the newer standalone Windows version, NISP( ) Win. Instruments are assembled from menu-selected elements, including neutron sources, collimation and transport elements, samples, analyzers, and detectors. Magnetic field regions may also be specified for the propagation of polarized neutrons including spin precession. Either interface writes a geometry file that is used as input to the Monte Carlo engine (MC( ) Run) in the user's computer. Both the interface and the engine rely on a subroutine library, MCLIB. The package is completely open source. New features include capillary optics, temperature dependence of Al and Be, revised source files for ISIS, and visualization of neutron trajectories at run time. Also, a single-crystal sample type has been successfully imported from McStas (with more generalized geometry), demonstrating the capability of including algorithms from other sources, and NISP( ) Win may render the instrument in a virtual reality file. Results are shown for two instruments under development.

  15. Instruments and techniques for analysing the time-resolved transverse phase space distribution of high-brightness electron beams

    International Nuclear Information System (INIS)

    Rudolph, Jeniffa

    2012-01-01

    This thesis deals with the instruments and techniques used to characterise the transverse phase space distribution of high-brightness electron beams. In particular, methods are considered allowing to measure the emittance as a function of the longitudinal coordinate within the bunch (slice emittance) with a resolution in the ps to sub-ps range. The main objective of this work is the analysis of techniques applicable for the time-resolved phase space characterisation for future high-brightness electron beam sources and single-pass accelerators based on these. The competence built up by understanding and comparing different techniques is to be used for the design and operation of slice diagnostic systems for the Berlin Energy Recovery Linac Project (BERLinPro). In the framework of the thesis, two methods applicable for slice emittance measurements are considered, namely the zero-phasing technique and the use of a transverse deflector. These methods combine the conventional quadrupole scan technique with a transfer of the longitudinal distribution into a transverse distribution. Measurements were performed within different collaborative projects. The experimental setup, the measurement itself and the data analysis are discussed as well as measurement results and simulations. In addition, the phase space tomography technique is introduced. In contrast to quadrupole scan-based techniques, tomography is model-independent and can reconstruct the phase space distribution from simple projected measurements. The developed image reconstruction routine based on the Maximum Entropy algorithm is introduced. The quality of the reconstruction is tested using different model distributions, simulated data and measurement data. The results of the tests are presented. The adequacy of the investigated techniques, the experimental procedures as well as the developed data analysis tools could be verified. The experimental and practical experience gathered during this work, the

  16. Kinematic and kinetic comparison of running in standard and minimalist shoes.

    Science.gov (United States)

    Willy, Richard W; Davis, Irene S

    2014-02-01

    The purpose of this study was to determine whether running in a minimalist shoe results in a reduction in ground reaction forces and alters kinematics over standard shoe running. The secondary purpose of this study was to determine whether within-session accommodation to a novel minimalist shoe occurs. Subjects were 14 male, rearfoot striking runners who had never run in a minimalist shoe. Subjects were tested while running 3.35 m·s(-1) for 10 min on an instrumented treadmill in a minimalist and a standard shoe as three-dimensional lower extremity kinematics and kinetics were evaluated. Data were collected at minute 1 and then again after 10 min of running in both shoe conditions to evaluate accommodation to the shoe conditions. Shoe-time interactions were not found for any of the variables of interest. Minimalist shoe running resulted in no changes in step length (P = 0.967) or in step rate (P = 0.230). At footstrike, greater knee flexion (P = 0.001) and greater dorsiflexion angle (P = 0.025) were noted in the minimalist shoe. Vertical impact peak (P = 0.017) and average vertical loading rate (P < 0.000) were greater during minimalist shoe running. There were main effects of time as dorsiflexion angle decreased (P = 0.035), foot inclination at footstrike decreased (P = 0.048), and knee flexion at footstrike increased (P = 0.002), yet the vertical impact peak (P = 0.002) and average vertical loading rate (P < 0.000) increased. Running in a minimalist shoe appears to, at least in the short term, increase loading of the lower extremity over standard shoe running. The accommodation period resulted in less favorable landing mechanics in both shoes. These findings bring into question whether minimal shoes will provide enough feedback to induce an alteration that is similar to barefoot running.

  17. Set up and programming of an ALICE Time-Of-Flight trigger facility and software implementation for its Quality Assurance (QA) during LHC Run 2

    CERN Document Server

    Toschi, Francesco

    2016-01-01

    The Cosmic and Topology Trigger Module (CTTM) is the main component of a trigger based on the ALICE TOF detector. Taking advantage of the TOF fast response, this VME board implements the trigger logic and delivers several L0 trigger outputs, used since Run 1, to provide cosmic triggers and rare triggers in pp, p+Pb and Pb+Pb data taking. Due to TOF DCS architectural change of the PCs controlling the CTTM (from 32 bits to 64 bits) it is mandatory to upgrade the software related to the CTTM including the code programming the FPGA firmware. A dedicated CTTM board will be installed in a CERN lab (Meyrin site), with the aim of recreating the electronics chain of the TOF trigger, to get a comfortable porting of the code to the 64 bit environment. The project proposed to the summer student is the setting up of the CTTM and the porting of the software. Moreover, in order to monitor the CTTM Trigger board during the real data taking, the implementation of a new Quality Assurance (QA) code is also crucial, together wit...

  18. Simulation of a suite of generic long-pulse neutron instruments to optimize the time structure of the European Spallation Source.

    Science.gov (United States)

    Lefmann, Kim; Klenø, Kaspar H; Birk, Jonas Okkels; Hansen, Britt R; Holm, Sonja L; Knudsen, Erik; Lieutenant, Klaus; von Moos, Lars; Sales, Morten; Willendrup, Peter K; Andersen, Ken H

    2013-05-01

    We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.

  19. Simulation of a suite of generic long-pulse neutron instruments to optimize the time structure of the European Spallation Source

    International Nuclear Information System (INIS)

    Lefmann, Kim; Klenø, Kaspar H.; Holm, Sonja L.; Sales, Morten; Birk, Jonas Okkels; Hansen, Britt R.; Knudsen, Erik; Willendrup, Peter K.; Lieutenant, Klaus; Moos, Lars von; Andersen, Ken H.

    2013-01-01

    We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3–5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.

  20. Simulation of a suite of generic long-pulse neutron instruments to optimize the time structure of the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Lefmann, Kim; Kleno, Kaspar H.; Holm, Sonja L.; Sales, Morten [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); Danish Workpackage for the ESS Design Update Phase, Universitetsparken 5, 2100 Copenhagen O (Denmark); Birk, Jonas Okkels [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); Danish Workpackage for the ESS Design Update Phase, Universitetsparken 5, 2100 Copenhagen O (Denmark); Laboratory for Quantum Magnetism, Ecole Polytecnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Hansen, Britt R.; Knudsen, Erik; Willendrup, Peter K. [Institute of Physics, Technical University of Denmark, 2800 Lyngby (Denmark); Danish Workpackage for the ESS Design Update Phase, 2800 Lyngby (Denmark); Lieutenant, Klaus [Institute for Energy Technology, Instituttveien 18, 2007 Kjeller (Norway); Helmholtz Center for Energy and Materials, Hahn-Meitner Platz, 14109 Berlin (Germany); German Work Package for the ESS Design Update, Hahn-Meitner Platz, 14109 Berlin (Germany); Moos, Lars von [Department of Energy Conversion and Storage, Technical University of Denmark, 4000 Roskilde (Denmark); Danish Workpackage for the ESS Design Update Phase, 2800 Lyngby (Denmark); Institute for Energy Conversion, Technical University of Denmark, 4000 Roskilde (Denmark); Andersen, Ken H. [European Spallation Source ESS AB, 22100 Lund (Sweden)

    2013-05-15

    We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.

  1. RUNNING INJURY DEVELOPMENT

    DEFF Research Database (Denmark)

    Johansen, Karen Krogh; Hulme, Adam; Damsted, Camma

    2017-01-01

    BACKGROUND: Behavioral science methods have rarely been used in running injury research. Therefore, the attitudes amongst runners and their coaches regarding factors leading to running injuries warrants formal investigation. PURPOSE: To investigate the attitudes of middle- and long-distance runners...... able to compete in national championships and their coaches about factors associated with running injury development. METHODS: A link to an online survey was distributed to middle- and long-distance runners and their coaches across 25 Danish Athletics Clubs. The main research question was: "Which...... factors do you believe influence the risk of running injuries?". In response to this question, the athletes and coaches had to click "Yes" or "No" to 19 predefined factors. In addition, they had the possibility to submit a free-text response. RESULTS: A total of 68 athletes and 19 coaches were included...

  2. Running Injury Development

    DEFF Research Database (Denmark)

    Krogh Johansen, Karen; Hulme, Adam; Damsted, Camma

    2017-01-01

    Background: Behavioral science methods have rarely been used in running injury research. Therefore, the attitudes amongst runners and their coaches regarding factors leading to running injuries warrants formal investigation. Purpose: To investigate the attitudes of middle- and long-distance runners...... able to compete in national championships and their coaches about factors associated with running injury development. Methods: A link to an online survey was distributed to middle- and long-distance runners and their coaches across 25 Danish Athletics Clubs. The main research question was: “Which...... factors do you believe influence the risk of running injuries?”. In response to this question, the athletes and coaches had to click “Yes” or “No” to 19 predefined factors. In addition, they had the possibility to submit a free-text response. Results: A total of 68 athletes and 19 coaches were included...

  3. A High-Throughput Biological Calorimetry Core: Steps to Startup, Run, and Maintain a Multiuser Facility.

    Science.gov (United States)

    Yennawar, Neela H; Fecko, Julia A; Showalter, Scott A; Bevilacqua, Philip C

    2016-01-01

    Many labs have conventional calorimeters where denaturation and binding experiments are setup and run one at a time. While these systems are highly informative to biopolymer folding and ligand interaction, they require considerable manual intervention for cleaning and setup. As such, the throughput for such setups is limited typically to a few runs a day. With a large number of experimental parameters to explore including different buffers, macromolecule concentrations, temperatures, ligands, mutants, controls, replicates, and instrument tests, the need for high-throughput automated calorimeters is on the rise. Lower sample volume requirements and reduced user intervention time compared to the manual instruments have improved turnover of calorimetry experiments in a high-throughput format where 25 or more runs can be conducted per day. The cost and efforts to maintain high-throughput equipment typically demands that these instruments be housed in a multiuser core facility. We describe here the steps taken to successfully start and run an automated biological calorimetry facility at Pennsylvania State University. Scientists from various departments at Penn State including Chemistry, Biochemistry and Molecular Biology, Bioengineering, Biology, Food Science, and Chemical Engineering are benefiting from this core facility. Samples studied include proteins, nucleic acids, sugars, lipids, synthetic polymers, small molecules, natural products, and virus capsids. This facility has led to higher throughput of data, which has been leveraged into grant support, attracting new faculty hire and has led to some exciting publications. © 2016 Elsevier Inc. All rights reserved.

  4. The Effect of Training in Minimalist Running Shoes on Running Economy.

    Science.gov (United States)

    Ridge, Sarah T; Standifird, Tyler; Rivera, Jessica; Johnson, A Wayne; Mitchell, Ulrike; Hunter, Iain

    2015-09-01

    The purpose of this study was to examine the effect of minimalist running shoes on oxygen uptake during running before and after a 10-week transition from traditional to minimalist running shoes. Twenty-five recreational runners (no previous experience in minimalist running shoes) participated in submaximal VO2 testing at a self-selected pace while wearing traditional and minimalist running shoes. Ten of the 25 runners gradually transitioned to minimalist running shoes over 10 weeks (experimental group), while the other 15 maintained their typical training regimen (control group). All participants repeated submaximal VO2 testing at the end of 10 weeks. Testing included a 3 minute warm-up, 3 minutes of running in the first pair of shoes, and 3 minutes of running in the second pair of shoes. Shoe order was randomized. Average oxygen uptake was calculated during the last minute of running in each condition. The average change from pre- to post-training for the control group during testing in traditional and minimalist shoes was an improvement of 3.1 ± 15.2% and 2.8 ± 16.2%, respectively. The average change from pre- to post-training for the experimental group during testing in traditional and minimalist shoes was an improvement of 8.4 ± 7.2% and 10.4 ± 6.9%, respectively. Data were analyzed using a 2-way repeated measures ANOVA. There were no significant interaction effects, but the overall improvement in running economy across time (6.15%) was significant (p = 0.015). Running in minimalist running shoes improves running economy in experienced, traditionally shod runners, but not significantly more than when running in traditional running shoes. Improvement in running economy in both groups, regardless of shoe type, may have been due to compliance with training over the 10-week study period and/or familiarity with testing procedures. Key pointsRunning in minimalist footwear did not result in a change in running economy compared to running in traditional footwear

  5. How to run ions in the future?

    International Nuclear Information System (INIS)

    Küchler, D; Manglunki, D; Scrivens, R

    2014-01-01

    In the light of different running scenarios potential source improvements will be discussed (e.g. one month every year versus two month every other year and impact of the different running options [e.g. an extended ion run] on the source). As the oven refills cause most of the down time the oven design and refilling strategies will be presented. A test stand for off-line developments will be taken into account. Also the implications on the necessary manpower for extended runs will be discussed

  6. Design and development of a highly sensitive, field portable plasma source instrument for on-line liquid stream monitoring and real-time sample analysis

    International Nuclear Information System (INIS)

    Duan, Yixiang; Su, Yongxuan; Jin, Zhe; Abeln, Stephen P.

    2000-01-01

    The development of a highly sensitive, field portable, low-powered instrument for on-site, real-time liquid waste stream monitoring is described in this article. A series of factors such as system sensitivity and portability, plasma source, sample introduction, desolvation system, power supply, and the instrument configuration, were carefully considered in the design of the portable instrument. A newly designed, miniature, modified microwave plasma source was selected as the emission source for spectroscopy measurement, and an integrated small spectrometer with a charge-coupled device detector was installed for signal processing and detection. An innovative beam collection system with optical fibers was designed and used for emission signal collection. Microwave plasma can be sustained with various gases at relatively low power, and it possesses high detection capabilities for both metal and nonmetal pollutants, making it desirable to use for on-site, real-time, liquid waste stream monitoring. An effective in situ sampling system was coupled with a high efficiency desolvation device for direct-sampling liquid samples into the plasma. A portable computer control system is used for data processing. The new, integrated instrument can be easily used for on-site, real-time monitoring in the field. The system possesses a series of advantages, including high sensitivity for metal and nonmetal elements; in situ sampling; compact structure; low cost; and ease of operation and handling. These advantages will significantly overcome the limitations of previous monitoring techniques and make great contributions to environmental restoration and monitoring. (c)

  7. Real-time synchronous measurement of curing characteristics and polymerization stress in bone cements with a cantilever-beam based instrument

    Science.gov (United States)

    Palagummi, Sri Vikram; Landis, Forrest A.; Chiang, Martin Y. M.

    2018-03-01

    An instrumentation capable of simultaneously determining degree of conversion (DC), polymerization stress (PS), and polymerization exotherm (PE) in real time was introduced to self-curing bone cements. This comprises the combination of an in situ high-speed near-infrared spectrometer, a cantilever-beam instrument with compliance-variable feature, and a microprobe thermocouple. Two polymethylmethacrylate-based commercial bone cements, containing essentially the same raw materials but differ in their viscosity for orthopedic applications, were used to demonstrate the applicability of the instrumentation. The results show that for both the cements studied the final DC was marginally different, the final PS was different at the low compliance, the peak of the PE was similar, and their polymerization rates were significantly different. Systematic variation of instrumental compliance for testing reveals differences in the characteristics of PS profiles of both the cements. This emphasizes the importance of instrumental compliance in obtaining an accurate understanding of PS evaluation. Finally, the key advantage for the simultaneous measurements is that these polymerization properties can be correlated directly, thus providing higher measurement confidence and enables a more in-depth understanding of the network formation process.

  8. Programming for a nuclear reactor instrument simulator

    International Nuclear Information System (INIS)

    Cohn, C.E.

    1989-01-01

    A new computerized control system for a transient test reactor incorporates a simulator for pre-operational testing of control programs. The part of the simulator pertinent to the discussion here consists of two microprocessors. An 8086/8087 reactor simulator calculates simulated reactor power by solving the reactor kinetics equations. An 8086 instrument simulator takes the most recent power value developed by the reactor simulator and simulates the appropriate reading on each of the eleven reactor instruments. Since the system is required to run on a one millisecond cycle, careful programming was required to take care of all eleven instruments in that short time. This note describes the special programming techniques used to attain the needed performance

  9. Running Boot Camp

    CERN Document Server

    Toporek, Chuck

    2008-01-01

    When Steve Jobs jumped on stage at Macworld San Francisco 2006 and announced the new Intel-based Macs, the question wasn't if, but when someone would figure out a hack to get Windows XP running on these new "Mactels." Enter Boot Camp, a new system utility that helps you partition and install Windows XP on your Intel Mac. Boot Camp does all the heavy lifting for you. You won't need to open the Terminal and hack on system files or wave a chicken bone over your iMac to get XP running. This free program makes it easy for anyone to turn their Mac into a dual-boot Windows/OS X machine. Running Bo

  10. Fermilab DART run control

    International Nuclear Information System (INIS)

    Oleynik, G.; Engelfried, J.; Mengel, L.

    1996-01-01

    DART is the high speed, Unix based data acquisition system being developed by Fermilab in collaboration with seven High Energy Physics Experiments. This paper describes DART run control, which has been developed over the past year and is a flexible, distributed, extensible system for the control and monitoring of the data acquisition systems. The authors discuss the unique and interesting concepts of the run control and some of the experiences in developing it. They also give a brief update and status of the whole DART system

  11. Fermilab DART run control

    International Nuclear Information System (INIS)

    Oleynik, G.; Engelfried, J.; Mengel, L.

    1995-05-01

    DART is the high speed, Unix based data acquisition system being developed by Fermilab in collaboration with seven High Energy Physics Experiments. This paper describes DART run control, which has been developed over the past year and is a flexible, distributed, extensible system for the, control and monitoring of the data acquisition systems. We discuss the unique and interesting concepts of the run control and some of our experiences in developing it. We also give a brief update and status of the whole DART system

  12. Real-time, high frequency (1 Hz), in situ measurement of HCl and HF gases in volcanic plumes with a novel cavity-enhanced, laser-based instrument

    Science.gov (United States)

    Kelly, P. J.; Sutton, A. J.; Elias, T.; Kern, C.; Clor, L. E.; Baer, D. S.

    2017-12-01

    Primary magmatic halogen-containing gases (HCl, HF, HBr, HI in characteristic order of abundance) are of great interest for volcano monitoring and research because, in general, they are more soluble in magma than other commonly-monitored volcanic volatiles (e.g. CO2, SO2, H2S) and thereby can offer unique insights into shallow magmatic processes. Nevertheless, difficulties in obtaining observations of primary volcanic halogens in gas plumes with traditional methods (e.g. direct sampling, Open-Path Fourier Transform Infrared spectroscopy, filter packs) have limited the number of observations reported worldwide, especially from explosive arc volcanoes. With this in mind, the USGS and Los Gatos Research, Inc. collaborated to adapt a commercially-available industrial in situ HCl-HF analyzer for use in airborne and ground-based measurements of volcanic gases. The new, portable instrument is based around two near-IR tunable diode lasers and uses a vibration-tolerant, enhanced-cavity approach that is well-suited for rugged field applications and yields fast (1 Hz) measurements with a wide dynamic range (0 -2 ppm) and sub-ppb precision (1σ: HCl: <0.4 ppb; HF: <0.1 ppb). In spring 2017 we conducted field tests at Kīlauea Volcano, Hawaii, to benchmark the performance of the new instrument and to compare it with an accepted method for halogen measurements (OP-FTIR). The HCl-HF instrument was run in parallel with a USGS Multi-GAS to obtain in situ H2O-CO2-SO2-H2S-HCl-HF plume compositions. The results were encouraging and quasi-direct comparisons of the in situ and remote sensing instruments showed good agreement (e.g. in situ SO2/HCl = 72 vs. OP-FTIR SO2/HCl = 88). Ground-based and helicopter-based measurements made 0 - 12 km downwind from the vent (plume age 0 - 29 minutes) show that plume SO2/HCl ratios increase rapidly from 60 to 300 around the plume edges, possibly due to uptake of HCl onto aerosols.

  13. Non performing loans (NPLs) in a crisis economy: Long-run equilibrium analysis with a real time VEC model for Greece (2001-2015)

    Science.gov (United States)

    Konstantakis, Konstantinos N.; Michaelides, Panayotis G.; Vouldis, Angelos T.

    2016-06-01

    As a result of domestic and international factors, the Greek economy faced a severe crisis which is directly comparable only to the Great Recession. In this context, a prominent victim of this situation was the country's banking system. This paper attempts to shed light on the determining factors of non-performing loans in the Greek banking sector. The analysis presents empirical evidence from the Greek economy, using aggregate data on a quarterly basis, in the time period 2001-2015, fully capturing the recent recession. In this work, we use a relevant econometric framework based on a real time Vector Autoregressive (VAR)-Vector Error Correction (VEC) model, which captures the dynamic interdependencies among the variables used. Consistent with international evidence, the empirical findings show that both macroeconomic and financial factors have a significant impact on non-performing loans in the country. Meanwhile, the deteriorating credit quality feeds back into the economy leading to a self-reinforcing negative loop.

  14. Influence of Advanced Injection Timing and Fuel Additive on Combustion, Performance, and Emission Characteristics of a DI Diesel Engine Running on Plastic Pyrolysis Oil

    Directory of Open Access Journals (Sweden)

    Ioannis Kalargaris

    2017-01-01

    Full Text Available This paper presents the investigation of engine optimisation when plastic pyrolysis oil (PPO is used as the primary fuel of a direct injection diesel engine. Our previous investigation revealed that PPO is a promising fuel; however the results suggested that control parameters should be optimised in order to obtain a better engine performance. In the present work, the injection timing was advanced, and fuel additives were utilised to overcome the issues experienced in the previous work. In addition, spray characteristics of PPO were investigated in comparison with diesel to provide in-depth understanding of the engine behaviour. The experimental results on advanced injection timing (AIT showed reduced brake thermal efficiency and increased carbon monoxide, unburned hydrocarbons, and nitrogen oxides emissions in comparison to standard injection timing. On the other hand, the addition of fuel additive resulted in higher engine efficiency and lower exhaust emissions. Finally, the spray tests revealed that the spray tip penetration for PPO is faster than diesel. The results suggested that AIT is not a preferable option while fuel additive is a promising solution for long-term use of PPO in diesel engines.

  15. 'Outrunning' the running ear

    African Journals Online (AJOL)

    Chantel

    In even the most experienced hands, an adequate physical examination of the ears can be difficult to perform because of common problems such as cerumen blockage of the auditory canal, an unco- operative toddler or an exasperated parent. The most common cause for a running ear in a child is acute purulent otitis.

  16. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  17. A real-time FPGA based monitoring and fault detection processing system for the Beam Wire Scanner instruments at CERN

    CERN Document Server

    AUTHOR|(CDS)2070252; Tognolini, Maurizio; Zamantzas, Christos

    The CERN Beam Instrumentation group (BE-BI) is designing a new generation of an instrument called Beam Wire Scanner (BWS). This system uses an actuator to move a very thin wire through a particle beams, back and forth with a movement stroke of pi [rad]. To achieve very fast speed when touching the particle beam with such a small stroke, large torque is applied while the expected smoothness of the displacement is crucial. This system relies on a resolver to determine the angular position and power correctly its Permanent Magnet Synchronous Motor (PMSM). In 2016, a failure of the position acquisition chain has highlighted the severe consequences of such problem, which resulted by 24 hours downtime of the Super Proton Synchrotron (SPS) accelerator with significant financial consequences. This work mitigates this single failure point by taking advantage of the existing redundancy in the sensors embedded on the system. The resolver is compared to two Incremental Optical Position Sensor (IOPS) developed in-house ...

  18. Comparison of vertical ground reaction forces during overground and treadmill running. A validation study

    Directory of Open Access Journals (Sweden)

    Kluitenberg Bas

    2012-11-01

    Full Text Available Abstract Background One major drawback in measuring ground-reaction forces during running is that it is time consuming to get representative ground-reaction force (GRF values with a traditional force platform. An instrumented force measuring treadmill can overcome the shortcomings inherent to overground testing. The purpose of the current study was to determine the validity of an instrumented force measuring treadmill for measuring vertical ground-reaction force parameters during running. Methods Vertical ground-reaction forces of experienced runners (12 male, 12 female were obtained during overground and treadmill running at slow, preferred and fast self-selected running speeds. For each runner, 7 mean vertical ground-reaction force parameters of the right leg were calculated based on five successful overground steps and 30 seconds of treadmill running data. Intraclass correlations (ICC(3,1 and ratio limits of agreement (RLOA were used for further analysis. Results Qualitatively, the overground and treadmill ground-reaction force curves for heelstrike runners and non-heelstrike runners were very similar. Quantitatively, the time-related parameters and active peak showed excellent agreement (ICCs between 0.76 and 0.95, RLOA between 5.7% and 15.5%. Impact peak showed modest agreement (ICCs between 0.71 and 0.76, RLOA between 19.9% and 28.8%. The maximal and average loading-rate showed modest to excellent ICCs (between 0.70 and 0.89, but RLOA were higher (between 34.3% and 45.4%. Conclusions The results of this study demonstrated that the treadmill is a moderate to highly valid tool for the assessment of vertical ground-reaction forces during running for runners who showed a consistent landing strategy during overground and treadmill running. The high stride-to-stride variance during both overground and treadmill running demonstrates the importance of measuring sufficient steps for representative ground-reaction force values. Therefore, an

  19. A real time analysis of the self-assembly process using thermal analysis inside the differential scanning calorimeter instrument.

    Science.gov (United States)

    Roy, Debmalya; Shastri, Babita; Mukhopadhyay, K

    2012-07-12

    The supramolecular assembly of the regioregular poly-3-hexylthiophene (rr-P3HT) in solution has been investigated thoroughly in the past. In the current study, our focus is on the enthalpy of nanofiber formation using thermal analysis techniques by performing the self-assembly process inside the differential scanning calorimetry (DSC) instrument. Thermogravimetric analysis (TGA) was carried out to check the concentration of the solvent during the self-assembly process of P3HT in p-xylene. Ultraviolet visible (UV-vis) spectophotometric technique, small-angle X-ray scattering (SAXS) experiment, atomic force microscopic (AFM), and scanning electron microscopic (SEM) images were used to characterize the different experimental yields generated by cooling the reaction mixture at desired temperatures. Comparison of the morphologies of self-assembled products at different fiber formation temperatures gives us an idea about the possible crystallization parameters which could affect the P3HT nanofiber morphology.

  20. When the facts are just not enough: credibly communicating about risk is riskier when emotions run high and time is short.

    Science.gov (United States)

    Reynolds, Barbara J

    2011-07-15

    When discussing risk with people, commonly subject matter experts believe that conveying the facts will be enough to allow people to assess a risk and respond rationally to that risk. Because of this expectation, experts often become exasperated by the seemingly illogical way people assess personal risk and choose to manage that risk. In crisis situations when the risk information is less defined and choices must be made within impossible time constraints, the thought processes may be even more susceptible to faulty heuristics. Understanding the perception of risk is essential to understanding why the public becomes more or less upset by events. This article explores the psychological underpinnings of risk assessment within emotionally laden events and the risk communication practices that may facilitate subject matter experts to provide the facts in a manner so they can be more certain those facts are being heard. Source credibility is foundational to risk communication practices. The public meeting is one example in which these best practices can be exercised. Risks are risky because risk perceptions differ and the psychosocial environment in which risk is discussed complicates making risk decisions. Experts who want to influence the actions of the public related to a threat or risk should understand that decisions often involve emotional as well as logical components. The media and other social entities will also influence the risk context. The Center for Disease Control and Prevention's crisis and emergency-risk communication (CERC) principles are intended to increase credibility and recognize emotional components of an event. During a risk event, CERC works to calm emotions and increase trust which can help people apply the expertise being offered by response officials. Copyright © 2011. Published by Elsevier Inc.

  1. 'Ready to hit the ground running': Alumni and employer accounts of a unique part-time distance learning pre-registration nurse education programme.

    Science.gov (United States)

    Draper, Jan; Beretta, Ruth; Kenward, Linda; McDonagh, Lin; Messenger, Julie; Rounce, Jill

    2014-10-01

    This study explored the impact of The Open University's (OU) preregistration nursing programme on students' employability, career progression and its contribution to developing the nursing workforce across the United Kingdom. Designed for healthcare support workers who are sponsored by their employers, the programme is the only part-time supported open/distance learning programme in the UK leading to registration as a nurse. The international literature reveals that relatively little is known about the impact of previous experience as a healthcare support worker on the experience of transition, employability skills and career progression. To identify alumni and employer views of the perceived impact of the programme on employability, career progression and workforce development. A qualitative design using telephone interviews which were digitally recorded, and transcribed verbatim prior to content analysis to identify recurrent themes. Three geographical areas across the UK. Alumni (n=17) and employers (n=7). Inclusion criterion for alumni was a minimum of two years' post-qualifying experience. Inclusion criteria for employers were those that had responsibility for sponsoring students on the programme and employing them as newly qualified nurses. Four overarching themes were identified: transition, expectations, learning for and in practice, and flexibility. Alumni and employers were of the view that the programme equipped them well to meet the competencies and expectations of being a newly qualified nurse. It provided employers with a flexible route to growing their own workforce and alumni the opportunity to achieve their ambition of becoming a qualified nurse when other more conventional routes would not have been open to them. Some of them had already demonstrated career progression. Generalising results requires caution due to the small, self-selecting sample but findings suggest that a widening participation model of pre-registration nurse education for

  2. When the facts are just not enough: Credibly communicating about risk is riskier when emotions run high and time is short

    International Nuclear Information System (INIS)

    Reynolds, Barbara J.

    2011-01-01

    When discussing risk with people, commonly subject matter experts believe that conveying the facts will be enough to allow people to assess a risk and respond rationally to that risk. Because of this expectation, experts often become exasperated by the seemingly illogical way people assess personal risk and choose to manage that risk. In crisis situations when the risk information is less defined and choices must be made within impossible time constraints, the thought processes may be even more susceptible to faulty heuristics. Understanding the perception of risk is essential to understanding why the public becomes more or less upset by events. This article explores the psychological underpinnings of risk assessment within emotionally laden events and the risk communication practices that may facilitate subject matter experts to provide the facts in a manner so they can be more certain those facts are being heard. Source credibility is foundational to risk communication practices. The public meeting is one example in which these best practices can be exercised. Risks are risky because risk perceptions differ and the psychosocial environment in which risk is discussed complicates making risk decisions. Experts who want to influence the actions of the public related to a threat or risk should understand that decisions often involve emotional as well as logical components. The media and other social entities will also influence the risk context. The Center for Disease Control and Prevention's crisis and emergency-risk communication (CERC) principles are intended to increase credibility and recognize emotional components of an event. During a risk event, CERC works to calm emotions and increase trust which can help people apply the expertise being offered by response officials.

  3. Polyphonic pitch detection and instrument separation

    Science.gov (United States)

    Bay, Mert; Beauchamp, James W.

    2005-09-01

    An algorithm for polyphonic pitch detection and musical instrument separation is presented. Each instrument is represented as a time-varying harmonic series. Spectral information is obtained from a monaural input signal using a spectral peak tracking method. Fundamental frequencies (F0s) for each time frame are estimated from the spectral data using an Expectation Maximization (EM) algorithm with a Gaussian mixture model representing the harmonic series. The method first estimates the most predominant F0, suppresses its series in the input, and then the EM algorithm is run iteratively to estimate each next F0. Collisions between instrument harmonics, which frequently occur, are predicted from the estimated F0s, and the resulting corrupted harmonics are ignored. The amplitudes of these corrupted harmonics are replaced by harmonics taken from a library of spectral envelopes for different instruments, where the spectrum which most closely matches the important characteristics of each extracted spectrum is chosen. Finally, each voice is separately resynthesized by additive synthesis. This algorithm is demonstrated for a trio piece that consists of 3 different instruments.

  4. Demographics and run timing of adult Lost River (Deltistes luxatus) and short nose (Chasmistes brevirostris) suckers in Upper Klamath Lake, Oregon, 2012

    Science.gov (United States)

    Hewitt, David A.; Janney, Eric C.; Hayes, Brian S.; Harris, Alta C.

    2014-01-01

    Data from a long-term capture-recapture program were used to assess the status and dynamics of populations of two long-lived, federally endangered catostomids in Upper Klamath Lake, Oregon. Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) have been captured and tagged with passive integrated transponder (PIT) tags during their spawning migrations in each year since 1995. In addition, beginning in 2005, individuals that had been previously PIT-tagged were re-encountered on remote underwater antennas deployed throughout sucker spawning areas. Captures and remote encounters during spring 2012 were used to describe the spawning migrations in that year and also were incorporated into capture-recapture analyses of population dynamics. Cormack-Jolly-Seber (CJS) open population capture-recapture models were used to estimate annual survival probabilities, and a reverse-time analog of the CJS model was used to estimate recruitment of new individuals into the spawning populations. In addition, data on the size composition of captured fish were examined to provide corroborating evidence of recruitment. Model estimates of survival and recruitment were used to derive estimates of changes in population size over time and to determine the status of the populations in 2011. Separate analyses were conducted for each species and also for each subpopulation of Lost River suckers (LRS). Shortnose suckers (SNS) and one subpopulation of LRS migrate into tributary rivers to spawn, whereas the other LRS subpopulation spawns at groundwater upwelling areas along the eastern shoreline of the lake. In 2012, we captured, tagged, and released 749 LRS at four lakeshore spawning areas and recaptured an additional 969 individuals that had been tagged in previous years. Across all four areas, the remote antennas detected 6,578 individual LRS during the spawning season. Spawning activity peaked in April and most individuals were encountered at Cinder Flats and

  5. High mass resolution, high angular acceptance time-of-flight mass spectroscopy for planetary missions under the Planetary Instrument Definition and Development Program (PIDDP)

    Science.gov (United States)

    Young, David T.

    1991-01-01

    This final report covers three years and several phases of work in which instrumentation for the Planetary Instrument Definition and Development Program (PIDDP) were successfully developed. There were two main thrusts to this research: (1) to develop and test methods for electrostatically scanning detector field-of-views, and (2) to improve the mass resolution of plasma mass spectrometers to M/delta M approximately 25, their field-of-view (FOV) to 360 degrees, and their E-range to cover approximately 1 eV to 50 keV. Prototypes of two different approaches to electrostatic scanning were built and tested. The Isochronous time-of-flight (TOF) and the linear electric field 3D TOF devices were examined.

  6. Running economy and energy cost of running with backpacks.

    Science.gov (United States)

    Scheer, Volker; Cramer, Leoni; Heitkamp, Hans-Christian

    2018-05-02

    Running is a popular recreational activity and additional weight is often carried in backpacks on longer runs. Our aim was to examine running economy and other physiological parameters while running with a 1kg and 3 kg backpack at different submaximal running velocities. 10 male recreational runners (age 25 ± 4.2 years, VO2peak 60.5 ± 3.1 ml·kg-1·min-1) performed runs on a motorized treadmill of 5 minutes durations at three different submaximal speeds of 70, 80 and 90% of anaerobic lactate threshold (LT) without additional weight, and carrying a 1kg and 3 kg backpack. Oxygen consumption, heart rate, lactate and RPE were measured and analysed. Oxygen consumption, energy cost of running and heart rate increased significantly while running with a backpack weighing 3kg compared to running without additional weight at 80% of speed at lactate threshold (sLT) (p=0.026, p=0.009 and p=0.003) and at 90% sLT (p<0.001, p=0.001 and p=0.001). Running with a 1kg backpack showed a significant increase in heart rate at 80% sLT (p=0.008) and a significant increase in oxygen consumption and heart rate at 90% sLT (p=0.045 and p=0.007) compared to running without additional weight. While running at 70% sLT running economy and cardiovascular effort increased with weighted backpack running compared to running without additional weight, however these increases did not reach statistical significance. Running economy deteriorates and cardiovascular effort increases while running with additional backpack weight especially at higher submaximal running speeds. Backpack weight should therefore be kept to a minimum.

  7. HTML 5 up and running

    CERN Document Server

    Pilgrim, Mark

    2010-01-01

    If you don't know about the new features available in HTML5, now's the time to find out. This book provides practical information about how and why the latest version of this markup language will significantly change the way you develop for the Web. HTML5 is still evolving, yet browsers such as Safari, Mozilla, Opera, and Chrome already support many of its features -- and mobile browsers are even farther ahead. HTML5: Up & Running carefully guides you though the important changes in this version with lots of hands-on examples, including markup, graphics, and screenshots. You'll learn how to

  8. Instrumental interaction

    OpenAIRE

    Luciani , Annie

    2007-01-01

    International audience; The expression instrumental interaction as been introduced by Claude Cadoz to identify a human-object interaction during which a human manipulates a physical object - an instrument - in order to perform a manual task. Classical examples of instrumental interaction are all the professional manual tasks: playing violin, cutting fabrics by hand, moulding a paste, etc.... Instrumental interaction differs from other types of interaction (called symbolic or iconic interactio...

  9. On run-time exploitation of concurrency

    NARCIS (Netherlands)

    Holzenspies, P.K.F.

    2010-01-01

    The `free' speed-up stemming from ever increasing processor speed is over. Performance increase in computer systems can now only be achieved through parallelism. One of the biggest challenges in computer science is how to map applications onto parallel computers. Concurrency, seen as the set of

  10. Monte Carlo simulation of neutron scattering instruments

    International Nuclear Information System (INIS)

    Seeger, P.A.; Daemen, L.L.; Hjelm, R.P. Jr.

    1998-01-01

    A code package consisting of the Monte Carlo Library MCLIB, the executing code MC RUN, the web application MC Web, and various ancillary codes is proposed as an open standard for simulation of neutron scattering instruments. The architecture of the package includes structures to define surfaces, regions, and optical elements contained in regions. A particle is defined by its vector position and velocity, its time of flight, its mass and charge, and a polarization vector. The MC RUN code handles neutron transport and bookkeeping, while the action on the neutron within any region is computed using algorithms that may be deterministic, probabilistic, or a combination. Complete versatility is possible because the existing library may be supplemented by any procedures a user is able to code. Some examples are shown

  11. Ubuntu Up and Running

    CERN Document Server

    Nixon, Robin

    2010-01-01

    Ubuntu for everyone! This popular Linux-based operating system is perfect for people with little technical background. It's simple to install, and easy to use -- with a strong focus on security. Ubuntu: Up and Running shows you the ins and outs of this system with a complete hands-on tour. You'll learn how Ubuntu works, how to quickly configure and maintain Ubuntu 10.04, and how to use this unique operating system for networking, business, and home entertainment. This book includes a DVD with the complete Ubuntu system and several specialized editions -- including the Mythbuntu multimedia re

  12. Preclinical, fluorescence and diffuse optical tomography: non-contact instrumentation, modeling and time-resolved 3D reconstruction

    International Nuclear Information System (INIS)

    Nouizi, F.

    2011-09-01

    Time-Resolved Diffuse Optical Tomography (TR-DOT) is a new non-invasive imaging technique increasingly used in the clinical and preclinical fields. It yields optical absorption and scattering maps of the explored organs, and related physiological parameters. Time-Resolved Fluorescence Diffuse Optical Tomography (TR-FDOT) is based on the detection of fluorescence photons. It provides spatio-temporal maps of fluorescent probe concentrations and life times, and allows access to metabolic and molecular imaging which is important for diagnosis and therapeutic monitoring, particularly in oncology. The main goal of this thesis was to reconstruct 3D TR-DOT/TR-FDOT images of small animals using time-resolved optical technology. Data were acquired using optical fibers fixed around the animal without contact with its surface. The work was achieved in four steps: 1)- Setting up an imaging device to record the 3D coordinates of an animal's surface; 2)- Modeling the no-contact approach to solve the forward problem; 3)- Processing of the measured signals taking into account the impulse response of the device; 4)- Implementation of a new image reconstruction method based on a selection of carefully chosen points. As a result, good-quality 3D optical images were obtained owing to reduced cross-talk between absorption and scattering. Moreover, the computation time was cut down, compared to full-time methods using whole temporal profiles. (author)

  13. Causal Analysis of Railway Running Delays

    DEFF Research Database (Denmark)

    Cerreto, Fabrizio; Nielsen, Otto Anker; Harrod, Steven

    Operating delays and network propagation are inherent characteristics of railway operations. These are traditionally reduced by provision of time supplements or “slack” in railway timetables and operating plans. Supplement allocation policies must trade off reliability in the service commitments...... Denmark (the Danish infrastructure manager). The statistical analysis of the data identifies the minimum running times and the scheduled running time supplements and investigates the evolution of train delays along given train paths. An improved allocation of time supplements would result in smaller...

  14. Effects of Gas-Wall Partitioning in Teflon Tubing, Instrumentation and Other Materials on Time-Resolved Measurements of Gas-Phase Organic Compounds

    Science.gov (United States)

    Pagonis, D.; Deming, B.; Krechmer, J. E.; De Gouw, J. A.; Jimenez, J. L.; Ziemann, P. J.

    2017-12-01

    Recently it has been shown that gas-phase organic compounds partition to and from the walls of Teflon environmental chambers. This process is fast, reversible, and can be modeled as absorptive partitioning. Here these studies were extended to investigate gas-wall partitioning inside Teflon tubing by introducing step function changes in the concentration of compounds being sampled and measuring the delay in the response of a proton transfer reaction-mass spectrometer (PTR-MS). We find that these delays are significant for compounds with a saturation vapor concentration (c*) below 106 μg m-3, and that the Teflon tubing and the PTR-MS both contribute to the delays. Tubing delays range from minutes to hours under common sampling conditions and can be accurately predicted by a simple chromatography model across a range of tubing lengths and diameters, flow rates, compound functional groups, and c*. This method also allows one to determine the volatility-dependent response function of an instrument, which can be convolved with the output of the tubing model to correct for delays in instrument response time for these "sticky" compounds. This correction is expected to be of particular interest to researchers utilizing and developing chemical ionization mass spectrometry (CIMS) techniques, since many of the multifunctional organic compounds detected by CIMS show significant tubing and instrument delays. These results also enable better design of sampling systems, in particular when fast instrument response is needed, such as for rapid transients, aircraft, or eddy covariance measurements. Additional results presented here extend this method to quantify the relative sorptive capacities for other commonly used tubing materials, including PFA, FEP, PTFE, PEEK, glass, copper, stainless steel, and passivated steel.

  15. ATLAS people can run!

    CERN Multimedia

    Claudia Marcelloni de Oliveira; Pauline Gagnon

    It must be all the training we are getting every day, running around trying to get everything ready for the start of the LHC next year. This year, the ATLAS runners were in fine form and came in force. Nine ATLAS teams signed up for the 37th Annual CERN Relay Race with six runners per team. Under a blasting sun on Wednesday 23rd May 2007, each team covered the distances of 1000m, 800m, 800m, 500m, 500m and 300m taking the runners around the whole Meyrin site, hills included. A small reception took place in the ATLAS secretariat a week later to award the ATLAS Cup to the best ATLAS team. For the details on this complex calculation which takes into account the age of each runner, their gender and the color of their shoes, see the July 2006 issue of ATLAS e-news. The ATLAS Running Athena Team, the only all-women team enrolled this year, won the much coveted ATLAS Cup for the second year in a row. In fact, they are so good that Peter Schmid and Patrick Fassnacht are wondering about reducing the women's bonus in...

  16. Underwater running device

    International Nuclear Information System (INIS)

    Kogure, Sumio; Matsuo, Takashiro; Yoshida, Yoji

    1996-01-01

    An underwater running device for an underwater inspection device for detecting inner surfaces of a reactor or a water vessel has an outer frame and an inner frame, and both of them are connected slidably by an air cylinder and connected rotatably by a shaft. The outer frame has four outer frame legs, and each of the outer frame legs is equipped with a sucker at the top end. The inner frame has four inner frame legs each equipped with a sucker at the top end. The outer frame legs and the inner frame legs are each connected with the outer frame and the inner frame by the air cylinder. The outer and the inner frame legs can be elevated or lowered (or extended or contracted) by the air cylinder. The sucker is connected with a jet pump-type negative pressure generator. The device can run and move by repeating attraction and releasing of the outer frame legs and the inner frame legs alternately while maintaining the posture of the inspection device stably. (I.N.)

  17. Mean platelet volume (MPV) predicts middle distance running performance.

    Science.gov (United States)

    Lippi, Giuseppe; Salvagno, Gian Luca; Danese, Elisa; Skafidas, Spyros; Tarperi, Cantor; Guidi, Gian Cesare; Schena, Federico

    2014-01-01

    Running economy and performance in middle distance running depend on several physiological factors, which include anthropometric variables, functional characteristics, training volume and intensity. Since little information is available about hematological predictors of middle distance running time, we investigated whether some hematological parameters may be associated with middle distance running performance in a large sample of recreational runners. The study population consisted in 43 amateur runners (15 females, 28 males; median age 47 years), who successfully concluded a 21.1 km half-marathon at 75-85% of their maximal aerobic power (VO2max). Whole blood was collected 10 min before the run started and immediately thereafter, and hematological testing was completed within 2 hours after sample collection. The values of lymphocytes and eosinophils exhibited a significant decrease compared to pre-run values, whereas those of mean corpuscular volume (MCV), platelets, mean platelet volume (MPV), white blood cells (WBCs), neutrophils and monocytes were significantly increased after the run. In univariate analysis, significant associations with running time were found for pre-run values of hematocrit, hemoglobin, mean corpuscular hemoglobin (MCH), red blood cell distribution width (RDW), MPV, reticulocyte hemoglobin concentration (RetCHR), and post-run values of MCH, RDW, MPV, monocytes and RetCHR. In multivariate analysis, in which running time was entered as dependent variable whereas age, sex, blood lactate, body mass index, VO2max, mean training regimen and the hematological parameters significantly associated with running performance in univariate analysis were entered as independent variables, only MPV values before and after the trial remained significantly associated with running time. After adjustment for platelet count, the MPV value before the run (p = 0.042), but not thereafter (p = 0.247), remained significantly associated with running

  18. Mean platelet volume (MPV predicts middle distance running performance.

    Directory of Open Access Journals (Sweden)

    Giuseppe Lippi

    Full Text Available Running economy and performance in middle distance running depend on several physiological factors, which include anthropometric variables, functional characteristics, training volume and intensity. Since little information is available about hematological predictors of middle distance running time, we investigated whether some hematological parameters may be associated with middle distance running performance in a large sample of recreational runners.The study population consisted in 43 amateur runners (15 females, 28 males; median age 47 years, who successfully concluded a 21.1 km half-marathon at 75-85% of their maximal aerobic power (VO2max. Whole blood was collected 10 min before the run started and immediately thereafter, and hematological testing was completed within 2 hours after sample collection.The values of lymphocytes and eosinophils exhibited a significant decrease compared to pre-run values, whereas those of mean corpuscular volume (MCV, platelets, mean platelet volume (MPV, white blood cells (WBCs, neutrophils and monocytes were significantly increased after the run. In univariate analysis, significant associations with running time were found for pre-run values of hematocrit, hemoglobin, mean corpuscular hemoglobin (MCH, red blood cell distribution width (RDW, MPV, reticulocyte hemoglobin concentration (RetCHR, and post-run values of MCH, RDW, MPV, monocytes and RetCHR. In multivariate analysis, in which running time was entered as dependent variable whereas age, sex, blood lactate, body mass index, VO2max, mean training regimen and the hematological parameters significantly associated with running performance in univariate analysis were entered as independent variables, only MPV values before and after the trial remained significantly associated with running time. After adjustment for platelet count, the MPV value before the run (p = 0.042, but not thereafter (p = 0.247, remained significantly associated with running

  19. Hand-operated and rotary ProTaper instruments: a comparison of working time and number of rotations in simulated root canals.

    Science.gov (United States)

    Pasqualini, Damiano; Scotti, Nicola; Tamagnone, Lorenzo; Ellena, Federica; Berutti, Elio

    2008-03-01

    The aim of this study was to compare the effective shaping time and number of rotations required by an endodontist working with hand and rotary ProTaper instruments to completely shape simulated root canals. Eighty Endo Training Blocks (curved canal shape) were used. Manual preflaring was performed with K-Flexofiles #08-10-12-15-17 and #20 Nitiflex at a working length of 18 mm. Specimens were then randomly assigned to 2 different groups (n = 40); group 1 was shaped by using hand ProTaper and group 2 with ProTaper rotary. The number of rotations made in the canal and the effective time required to achieve complete canal shaping were recorded for each instrument. Differences between groups were analyzed with the nonparametric Mann-Whitney U test (P Hand ProTaper required significantly fewer rotations (P ProTaper, whereas the effective working time to fully shape the simulated canal was significantly higher (P hand ProTaper.

  20. Online calculation of the Tevatron collider luminosity using accelerator instrumentation

    International Nuclear Information System (INIS)

    Hahn, A.A.

    1997-07-01

    The luminosity of a collision region may be calculated if one understands the lattice parameters and measures the beam intensities, the transverse and longitudinal emittances, and the individual proton and antiproton beam trajectories (space and time) through the collision region. This paper explores an attempt to make this calculation using beam instrumentation during Run 1b of the Tevatron. The instrumentation used is briefly described. The calculations and their uncertainties are compared to luminosities calculated independently by the Collider Experiments (CDF and D0)

  1. The design of the run Clever randomized trial: running volume, -intensity and running-related injuries.

    Science.gov (United States)

    Ramskov, Daniel; Nielsen, Rasmus Oestergaard; Sørensen, Henrik; Parner, Erik; Lind, Martin; Rasmussen, Sten

    2016-04-23

    Injury incidence and prevalence in running populations have been investigated and documented in several studies. However, knowledge about injury etiology and prevention is needed. Training errors in running are modifiable risk factors and people engaged in recreational running need evidence-based running schedules to minimize the risk of injury. The existing literature on running volume and running intensity and the development of injuries show conflicting results. This may be related to previously applied study designs, methods used to quantify the performed running and the statistical analysis of the collected data. The aim of the Run Clever trial is to investigate if a focus on running intensity compared with a focus on running volume in a running schedule influences the overall injury risk differently. The Run Clever trial is a randomized trial with a 24-week follow-up. Healthy recreational runners between 18 and 65 years and with an average of 1-3 running sessions per week the past 6 months are included. Participants are randomized into two intervention groups: Running schedule-I and Schedule-V. Schedule-I emphasizes a progression in running intensity by increasing the weekly volume of running at a hard pace, while Schedule-V emphasizes a progression in running volume, by increasing the weekly overall volume. Data on the running performed is collected by GPS. Participants who sustain running-related injuries are diagnosed by a diagnostic team of physiotherapists using standardized diagnostic criteria. The members of the diagnostic team are blinded. The study design, procedures and informed consent were approved by the Ethics Committee Northern Denmark Region (N-20140069). The Run Clever trial will provide insight into possible differences in injury risk between running schedules emphasizing either running intensity or running volume. The risk of sustaining volume- and intensity-related injuries will be compared in the two intervention groups using a competing

  2. Using Integration and Autonomy to Teach an Elementary Running Unit

    Science.gov (United States)

    Sluder, J. Brandon; Howard-Shaughnessy, Candice

    2015-01-01

    Cardiovascular fitness is an important aspect of overall fitness, health, and wellness, and running can be an excellent lifetime physical activity. One of the most simple and effective means of exercise, running raises heart rate in a short amount of time and can be done with little to no cost for equipment. There are many benefits to running,…

  3. A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V.; Veldhuizen, E.J. van; Westerberg, L.; Lyapin, V.G.; Aleklett, K.; Loveland, W.; Bondorf, J.; Jakobsson, B.; Whitlow, H.J.; El Bouanani, M

    2000-10-01

    A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate (MCP) time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of {approx}35 keV/nucleon from the interactions of 400 MeV/nucleon {sup 16}O with {sup nat}Xe gas targets.

  4. A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Veldhuizen, E.J. van; Westerberg, L.; Lyapin, V.G.; Aleklett, K.; Loveland, W.; Bondorf, J.; Jakobsson, B.; Whitlow, H.J.; El Bouanani, M.

    2000-01-01

    A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate (MCP) time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of ∼35 keV/nucleon from the interactions of 400 MeV/nucleon 16 O with nat Xe gas targets

  5. Massively parallel Monte Carlo. Experiences running nuclear simulations on a large condor cluster

    International Nuclear Information System (INIS)

    Tickner, James; O'Dwyer, Joel; Roach, Greg; Uher, Josef; Hitchen, Greg

    2010-01-01

    The trivially-parallel nature of Monte Carlo (MC) simulations make them ideally suited for running on a distributed, heterogeneous computing environment. We report on the setup and operation of a large, cycle-harvesting Condor computer cluster, used to run MC simulations of nuclear instruments ('jobs') on approximately 4,500 desktop PCs. Successful operation must balance the competing goals of maximizing the availability of machines for running jobs whilst minimizing the impact on users' PC performance. This requires classification of jobs according to anticipated run-time and priority and careful optimization of the parameters used to control job allocation to host machines. To maximize use of a large Condor cluster, we have created a powerful suite of tools to handle job submission and analysis, as the manual creation, submission and evaluation of large numbers (hundred to thousands) of jobs would be too arduous. We describe some of the key aspects of this suite, which has been interfaced to the well-known MCNP and EGSnrc nuclear codes and our in-house PHOTON optical MC code. We report on our practical experiences of operating our Condor cluster and present examples of several large-scale instrument design problems that have been solved using this tool. (author)

  6. The running pattern and its importance in running long-distance gears

    Directory of Open Access Journals (Sweden)

    Jarosław Hoffman

    2017-07-01

    Full Text Available The running pattern is individual for each runner, regardless of distance. We can characterize it as the sum of the data of the runner (age, height, training time, etc. and the parameters of his run. Building the proper technique should focus first and foremost on the work of movement coordination and the power of the runner. In training the correct running steps we can use similar tools as working on deep feeling. The aim of this paper was to define what we can call a running pattern, what is its influence in long-distance running, and the relationship between the training technique and the running pattern. The importance of a running pattern in long-distance racing is immense, as the more distracted and departed from the norm, the greater the harm to the body will cause it to repetition in long run. Putting on training exercises that shape the technique is very important and affects the running pattern significantly.

  7. Metering instrument of quality factor Q of gravitational wave antenna

    International Nuclear Information System (INIS)

    Jia-yan, C.; Tong-ren, G.

    1982-01-01

    The quality factor, Q, of gravitational wave antenna depends on the material property as well as external conditions, such as temperature, residual pressure in vacuum tank, support type, additional loss from transducer on antenna, etc. In order to find out the relationship between the antenna Q and external conditions automatical operating in succession is required. The authors have designed and made a metering instrument for quality factor Q. The metering instrument of Q can measure Q of the metal cylinder and other bar of higher Q. It can give data of the measurement at regular intervals as desired. It can measure accurately the longitudinal fundamental mode frequency of the cylinder with a digital frequency meter record oscillating signal from metering instrument. Because the metering instrument excites free-vibration of the cylinder with free-running type and keep up the stationary amplitude for a long time. (Auth.)

  8. Time Demand and Radiation Dose in 3D-Fluoroscopy-based Navigation-assisted 3D-Fluoroscopy-controlled Pedicle Screw Instrumentations.

    Science.gov (United States)

    Balling, Horst

    2018-05-01

    Prospective single-center cohort study to record additional time requirements and radiation dose in navigation-assisted O-arm-controlled pedicle screw (PS) instrumentations. The aim of this study was to evaluate amount of extra-time and radiation dose for navigation-assisted PS instrumentations of the thoracolumbosacral spine using O-arm 3D-real-time-navigation (O3DN) compared to non-navigated spinal procedures (NNSPs) with a single C-arm and postoperative computed tomography (CT) scan for controlling PS positions. 3D-navigation is reported to enhance PS insertion accuracy. But time-consuming navigational steps and considerable additional radiation doses seem to limit this modern technique's attraction. A detailed analysis of additional time demand and extra-radiation dose in 3D-navigated spine surgery is not provided in literature, yet. From February 2011 through July 2015, 306 consecutive posterior instrumentations were performed in vertebral levels T10-S1 using O3DN for PS insertion. The duration of procedure-specific navigational steps of the overall collective (I) and the last cohort of 50 consecutive O3DN-surgeries (II) was compared to the average duration of analogous surgical steps in 100 consecutive NNSP using a single C-arm. 3D-radiation dose (dose-length-product, DLP) of navigational and postinstrumentation O-arm scans in group I and II was compared to the average DLP of 100 diagnostic lumbar CT scans. The average presurgical time from patient positioning on the operating table to skin incision was 46.2 ± 10.1 minutes (O3DN, I) and 40.6 ± 9.8 minutes (O3DN, II) versus 30.6 ± 8.3 minutes (NNSP) (P demand of 13.0 minutes compared to NNSP, and with a total DLP below that of a diagnostic lumbar CT scan (P ≈ 0.81). 4.

  9. Barefoot running: biomechanics and implications for running injuries.

    Science.gov (United States)

    Altman, Allison R; Davis, Irene S

    2012-01-01

    Despite the technological developments in modern running footwear, up to 79% of runners today get injured in a given year. As we evolved barefoot, examining this mode of running is insightful. Barefoot running encourages a forefoot strike pattern that is associated with a reduction in impact loading and stride length. Studies have shown a reduction in injuries to shod forefoot strikers as compared with rearfoot strikers. In addition to a forefoot strike pattern, barefoot running also affords the runner increased sensory feedback from the foot-ground contact, as well as increased energy storage in the arch. Minimal footwear is being used to mimic barefoot running, but it is not clear whether it truly does. The purpose of this article is to review current and past research on shod and barefoot/minimal footwear running and their implications for running injuries. Clearly more research is needed, and areas for future study are suggested.

  10. Instrumentation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides instrumentation support for flight tests of prototype weapons systems using a vast array of airborne sensors, transducers, signal conditioning and encoding...

  11. Listing of 502 Times When the Ulysses Magnetic Fields Instrument Observed Waves Due to Newborn Interstellar Pickup Protons

    International Nuclear Information System (INIS)

    Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J.; Murphy, Neil; Nuno, Raquel G.

    2017-01-01

    In two earlier publications we analyzed 502 intervals of magnetic waves excited by newborn interstellar pickup protons that were observed by the Ulysses spacecraft. Due to the considerable effort required in identifying these events, we provide a list of the times for the 502 wave event intervals previously identified. In the process, we provide a brief description of how the waves were found and what their properties are. We also remind the reader of the conditions that permit the waves to reach observable levels and explain why the waves are not seen more often.

  12. Listing of 502 Times When the Ulysses Magnetic Fields Instrument Observed Waves Due to Newborn Interstellar Pickup Protons

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Bradford E. [Physics Department, Florida State University, Tallahassee, Florida (United States); Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J. [Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire (United States); Murphy, Neil [Jet Propulsion Laboratory, Mail Stop 180-600, 4800 Oak Grove Drive, Pasadena, California (United States); Nuno, Raquel G., E-mail: bc13h@my.fsu.edu, E-mail: Charles.Smith@unh.edu, E-mail: Phil.Isenberg@unh.edu, E-mail: Bernie.Vasquez@unh.edu, E-mail: Colin.Joyce@unh.edu, E-mail: Neil.Murphy@jpl.nasa.gov, E-mail: rgnuno@ucla.edu [Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA (United States)

    2017-05-01

    In two earlier publications we analyzed 502 intervals of magnetic waves excited by newborn interstellar pickup protons that were observed by the Ulysses spacecraft. Due to the considerable effort required in identifying these events, we provide a list of the times for the 502 wave event intervals previously identified. In the process, we provide a brief description of how the waves were found and what their properties are. We also remind the reader of the conditions that permit the waves to reach observable levels and explain why the waves are not seen more often.

  13. K-file vs ProFiles in cleaning capacity and instrumentation time in primary molar root canals: An in vitro study

    Directory of Open Access Journals (Sweden)

    N Madan

    2011-01-01

    Full Text Available Objectives: This study compares the efficiency of manual K-files and rotary ProFiles in cleaning capacity and instrumentation time in primary molar root canals. Materials and Methods: Seventy-five maxillary and mandibular primary molar root canals were instrumented with ProFiles and K-files in the step-back manner from size #10 to #40. The teeth were decalcified, dehydrated and cleared, and analyzed for the presence of dye remaining on the root canal walls, which served as an evidence of cleaning capacity of both the techniques. Results: The results showed a significant difference in the cleaning capacity of the root canals with ProFiles and K-files, in apical and coronal thirds of the root canal. ProFiles have been found to be more efficient in cleaning the coronal thirds and K-files in cleaning apical thirds of the root canals. Both the techniques were almost equally effective in cleaning the middle thirds of the canals. The time taken during the cleaning of the root canals appeared to be statistically shorter with K-files than profiles.

  14. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    Science.gov (United States)

    Gardés, E.; Balanzat, E.; Ban-d'Etat, B.; Cassimi, A.; Durantel, F.; Grygiel, C.; Madi, T.; Monnet, I.; Ramillon, J.-M.; Ropars, F.; Lebius, H.

    2013-02-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/μm. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles' stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.

  15. CIB: An Improved Communication Architecture for Real-Time Monitoring of Aerospace Materials, Instruments, and Sensors on the ISS

    Directory of Open Access Journals (Sweden)

    Michael J. Krasowski

    2013-01-01

    Full Text Available The Communications Interface Board (CIB is an improved communications architecture that was demonstrated on the International Space Station (ISS. ISS communication interfaces allowing for real-time telemetry and health monitoring require a significant amount of development. The CIB simplifies the communications interface to the ISS for real-time health monitoring, telemetry, and control of resident sensors or experiments. With a simpler interface available to the telemetry bus, more sensors or experiments may be flown. The CIB accomplishes this by acting as a bridge between the ISS MIL-STD-1553 low-rate telemetry (LRT bus and the sensors allowing for two-way command and telemetry data transfer. The CIB was designed to be highly reliable and radiation hard for an extended flight in low Earth orbit (LEO and has been proven with over 40 months of flight operation on the outside of ISS supporting two sets of flight experiments. Since the CIB is currently operating in flight on the ISS, recent results of operations will be provided. Additionally, as a vehicle health monitoring enabling technology, an overview and results from two experiments enabled by the CIB will be provided. Future applications for vehicle health monitoring utilizing the CIB architecture will also be discussed.

  16. Evolution of the VLT instrument control system toward industry standards

    Science.gov (United States)

    Kiekebusch, Mario J.; Chiozzi, Gianluca; Knudstrup, Jens; Popovic, Dan; Zins, Gerard

    2010-07-01

    The VLT control system is a large distributed system consisting of Linux Workstations providing the high level coordination and interfaces to the users, and VME-based Local Control Units (LCU's) running the VxWorks real-time operating system with commercial and proprietary boards acting as the interface to the instrument functions. After more than 10 years of VLT operations, some of the applied technologies used by the astronomical instruments are being discontinued making it difficult to find adequate hardware for future projects. In order to deal with this obsolescence, the VLT Instrumentation Framework is being extended to adopt well established Commercial Off The Shelf (COTS) components connected through industry standard fieldbuses. This ensures a flexible state of the art hardware configuration for the next generation VLT instruments allowing the access to instrument devices via more compact and simpler control units like PC-based Programmable Logical Controllers (PLC's). It also makes it possible to control devices directly from the Instrument Workstation through a normal Ethernet connection. This paper outlines the requirements that motivated this work, as well as the architecture and the design of the framework extension. In addition, it describes the preliminary results on a use case which is a VLTI visitor instrument used as a pilot project to validate the concepts and the suitability of some COTS products like a PC-based PLCs, EtherCAT8 and OPC UA6 as solutions for instrument control.

  17. The LHC Logging Service Capturing, storing and using time-series data for the world's largest scientific instrument

    CERN Document Server

    Billen, R; CERN. Geneva. AB Department

    2006-01-01

    CERN, the European Laboratory for Particle Physics, is well underway in building the most powerful particle accelerator called LHC (Large Hadron Collider), which will probe deeper into matter than ever before. This circular 27-km long superconducting installation is extremely complex, and its functioning has to be closely monitored. The LHC Logging service is aimed to satisfy the requirement of capturing and storing of any relevant piece of information to track its variation over time. Web-deployed tools have been developed to visualize, correlate and export the data into dedicated off-line analysis tools. The quality of the data, the manageability of the service and the overall system performance are key factors for the service. Oracle technology has been used extensively to support this mission-critical service, which has proven already to be useful during the commissioning phase of individual subsystems of the LHC. The architecture, design and implementation of the LHC Logging service, based on Oracle Data...

  18. HORACE: Software for the analysis of data from single crystal spectroscopy experiments at time-of-flight neutron instruments

    Energy Technology Data Exchange (ETDEWEB)

    Ewings, R.A.; Buts, A.; Le, M.D. [ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX (United Kingdom); Duijn, J. van [Departamento de Mecánica, Universidad de Córdoba, 14071 Córdoba (Spain); Bustinduy, I. [ESS Bilbao, Poligono Ugaldeguren III, Pol. A, 7B - 48170 Zamudio, Bizkaia – País Vasco (Spain); Perring, T.G., E-mail: toby.perring@stfc.ac.uk [ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX (United Kingdom); London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-10-21

    The HORACE suite of programs has been developed to work with large multiple-measurement data sets collected from time-of-flight neutron spectrometers equipped with arrays of position-sensitive detectors. The software allows exploratory studies of the four dimensions of reciprocal space and excitation energy to be undertaken, enabling multi-dimensional subsets to be visualized, algebraically manipulated, and models for the scattering to simulated or fitted to the data. The software is designed to be an extensible framework, thus allowing user-customized operations to be performed on the data. Examples of the use of its features are given for measurements exploring the spin waves of the simple antiferromagnet RbMnF{sub 3} and ferromagnetic iron, and the phonons in URu{sub 2}Si{sub 2}.

  19. HORACE: Software for the analysis of data from single crystal spectroscopy experiments at time-of-flight neutron instruments

    International Nuclear Information System (INIS)

    Ewings, R.A.; Buts, A.; Le, M.D.; Duijn, J. van; Bustinduy, I.; Perring, T.G.

    2016-01-01

    The HORACE suite of programs has been developed to work with large multiple-measurement data sets collected from time-of-flight neutron spectrometers equipped with arrays of position-sensitive detectors. The software allows exploratory studies of the four dimensions of reciprocal space and excitation energy to be undertaken, enabling multi-dimensional subsets to be visualized, algebraically manipulated, and models for the scattering to simulated or fitted to the data. The software is designed to be an extensible framework, thus allowing user-customized operations to be performed on the data. Examples of the use of its features are given for measurements exploring the spin waves of the simple antiferromagnet RbMnF_3 and ferromagnetic iron, and the phonons in URu_2Si_2.

  20. An instrumented timed up and go: the added value of an accelerometer for identifying fall risk in idiopathic fallers

    International Nuclear Information System (INIS)

    Weiss, A; Herman, T; Plotnik, M; Brozgol, M; Giladi, N; Hausdorff, J M

    2011-01-01

    The Timed Up and Go (TUG) test is a widely used measure of mobility and fall risk among older adults that is typically scored using a stopwatch. We tested the hypothesis that a body-fixed accelerometer can enhance the ability of the TUG to identify community-living older adults with a relatively high fall risk of unknown origin. Twenty-three community-living elderly fallers (76.0 ± 3.9 years) and 18 healthy controls (68.3 ± 9.1 years) performed the TUG while wearing a 3D-accelerometer on the lower back. Acceleration-derived parameters included Sit-to-Stand and Stand-to-Sit times, amplitude range (Range), and slopes (Jerk). Average step duration, number of steps, average step length, gait speed, acceleration-median, and standard-deviation were also calculated. While the stopwatch-based TUG duration was not significantly different between the groups, acceleration-derived TUG duration was significantly higher (p = 0.007) among the fallers. Fallers generally exhibited lower Range and Jerk (p < 0.01). While TUG stopwatch duration successfully identified 63% of the subjects, an accelerometer-derived three-measure-combination correctly classified 87% of the subjects. Accelerometer-derived measures were generally not correlated with TUG duration. These findings demonstrate that fallers have difficulty with specific TUG aspects that can be quantified using an accelerometer. Without compromising simplicity of testing, an accelerometer can apparently be combined with TUG duration to provide complementary, objective measures that allow for a more complete, sensitive TUG-based fall risk assessment

  1. 50 MeV Run of the IOTA / FAST Electron Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Edstrom Jr., D.; et al.

    2017-02-02

    The low-energy section of the photoinjector-based electron linear accelerator at the Fermilab Accelerator Science & Technology (FAST) facility was recently commissioned to an energy of 50 MeV. This linear accelerator relies primarily upon pulsed SRF acceleration and an optional bunch compressor to produce a stable beam within a large operational regime in terms of bunch charge, total average charge, bunch length, and beam energy. Various instrumentation was used to characterize fundamental properties of the electron beam including the intensity, stability, emittance, and bunch length. While much of this instrumentation was commissioned in a 20 MeV running period prior, some (including a new Martin- Puplett interferometer) was in development or pending installation at that time. All instrumentation has since been recommissioned over the wide operational range of beam energies up to 50 MeV, intensities up to 4 nC/pulse, and bunch structures from ~1 ps to more than 50 ps in length.

  2. The MCLIB library: Monte Carlo simulation of neutron scattering instruments

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, P.A.

    1995-09-01

    Monte Carlo is a method to integrate over a large number of variables. Random numbers are used to select a value for each variable, and the integrand is evaluated. The process is repeated a large number of times and the resulting values are averaged. For a neutron transport problem, first select a neutron from the source distribution, and project it through the instrument using either deterministic or probabilistic algorithms to describe its interaction whenever it hits something, and then (if it hits the detector) tally it in a histogram representing where and when it was detected. This is intended to simulate the process of running an actual experiment (but it is much slower). This report describes the philosophy and structure of MCLIB, a Fortran library of Monte Carlo subroutines which has been developed for design of neutron scattering instruments. A pair of programs (LQDGEOM and MC{_}RUN) which use the library are shown as an example.

  3. The MCLIB library: Monte Carlo simulation of neutron scattering instruments

    International Nuclear Information System (INIS)

    Seeger, P.A.

    1995-01-01

    Monte Carlo is a method to integrate over a large number of variables. Random numbers are used to select a value for each variable, and the integrand is evaluated. The process is repeated a large number of times and the resulting values are averaged. For a neutron transport problem, first select a neutron from the source distribution, and project it through the instrument using either deterministic or probabilistic algorithms to describe its interaction whenever it hits something, and then (if it hits the detector) tally it in a histogram representing where and when it was detected. This is intended to simulate the process of running an actual experiment (but it is much slower). This report describes the philosophy and structure of MCLIB, a Fortran library of Monte Carlo subroutines which has been developed for design of neutron scattering instruments. A pair of programs (LQDGEOM and MC RUN) which use the library are shown as an example

  4. The psychological benefits of recreational running: a field study.

    Science.gov (United States)

    Szabo, Attila; Abrahám, Júlia

    2013-01-01

    Running yields positive changes in affect, but the external validity of controlled studies has received little attention in the literature. In this inquiry, 50 recreational runners completed the Exercise-Induced Feeling Inventory (Gauvin & Rejeskí, 1993) before and after a bout of self-planned running on an urban running path. Positive changes were seen in all four measures of affect (p run, weekly running time, weekly running distance, and running experience) to the observed changes in affect. The results have revealed that exercise characteristics accounted for only 14-30% of the variance in the recreational runners' affect, in both directions. It is concluded that psychological benefits of recreational running may be linked to placebo (conditioning and/or expectancy) effects.

  5. Measuring care of the elderly: psychometric testing and modification of the Time in Care instrument for measurement of care needs in nursing homes

    Directory of Open Access Journals (Sweden)

    Nyberg Per

    2008-09-01

    Full Text Available Abstract Background Aging entails not only a decrease in the ability to be active, but also a trend toward increased dependence to sustain basic life functions. An important aspect for appropriately elucidating the individual's care needs is the ability to measure them both simply and reliably. Since 2006 a new version of the Time in Care needs (TIC-n instrument (19-item version has been explored and used in one additional municipality with the same structure as the one described in an earlier study. Methods The TIC-n assessment was conducted on a total of 1282 care recipients. Factor analysis (principal component was applied to explore the construct validity of the TIC-n. Cronbach's alpha was calculated to test reliability and for each of the items remaining in the instrument after factor analysis, an inter-rater comparison was carried out on all recipients in both municipalities. Independently of each other, a weighted Kappa (Kw was calculated. Results. The mean of each weighted Kappa (Kw for the dimensions in the two municipalities was 0.75 and 0.76, respectively. Factor analysis showed that all 19 items had a factor loading of ≥ 0.40. Three factors (General Care, Medical Care and Cognitive Care were created. Conclusion The TIC-n instrument has now been tested for validity and reliability in two municipalities with satisfactory results. However, TIC-n can not yet be used as a golden standard, but it can be recommended for use of measurement of individual care needs in municipal elderly care.

  6. netherland hydrological modeling instrument

    Science.gov (United States)

    Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.

    2012-04-01

    Netherlands Hydrological Modeling Instrument A decision support system for water basin management. J.C. Hoogewoud , W.J. de Lange ,A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance the WFD, drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods. For this run different parts of the hydrology have been compared with measurements. For instance, water demands in dry periods (e.g. for irrigation), discharges at outlets, groundwater levels and evaporation. A validation alone is not enough to get support from stakeholders. Involvement from stakeholders in the modeling process is needed. There fore to gain sufficient support and trust in the instrument on different (policy) levels a couple of actions have been taken: 1. a transparent evaluation of modeling-results has been set up 2. an extensive program is running to cooperate with regional waterboards and suppliers of drinking water in improving the NHI 3. sharing (hydrological) data via newly setup Modeling Database for local and national models 4. Enhancing the NHI with "local" information. The NHI is and has been used for many

  7. Darlington up and running

    International Nuclear Information System (INIS)

    Show, Don

    1993-01-01

    We've built some of the largest and most successful generating stations in the world. Nonetheless, we cannot take our knowledge and understanding of the technology for granted. Although, I do believe that we are getting better, building safer, more efficient plants, and introducing significant improvements to our existing stations. Ontario Hydro is a large and technically rich organization. Even so, we realize that partnerships with others in the industry are absolutely vital. I am thinking particularly of Atomic Energy of Canada Limited. We enjoy a very close relationship with Aecl, and their support was never more important than during the N/A Investigations. In recent years, we've strengthened our relationship with Aecl considerably. For example, we recently signed an agreement with Aecl, making available all of the Darlington 900 MW e design. Much of the cooperation between Ontario Hydro and Aecl occurs through the CANDU Engineering Authority and the CANDU Owners Group (CO G). These organizations are helping both of US to greatly improve cooperation and efficiency, and they are helping ensure we get the biggest return on our CANDU investments. CO G also provides an important information network which links CANDU operators in Canada, here in Korea, Argentina, India, Pakistan and Romania. In many respects, it is helping to develop the strong partnerships to support CANDU technology worldwide. We all benefit in the long run form sharing information and resources

  8. Metadata aided run selection at ATLAS

    International Nuclear Information System (INIS)

    Buckingham, R M; Gallas, E J; Tseng, J C-L; Viegas, F; Vinek, E

    2011-01-01

    Management of the large volume of data collected by any large scale scientific experiment requires the collection of coherent metadata quantities, which can be used by reconstruction or analysis programs and/or user interfaces, to pinpoint collections of data needed for specific purposes. In the ATLAS experiment at the LHC, we have collected metadata from systems storing non-event-wise data (Conditions) into a relational database. The Conditions metadata (COMA) database tables not only contain conditions known at the time of event recording, but also allow for the addition of conditions data collected as a result of later analysis of the data (such as improved measurements of beam conditions or assessments of data quality). A new web based interface called 'runBrowser' makes these Conditions Metadata available as a Run based selection service. runBrowser, based on PHP and JavaScript, uses jQuery to present selection criteria and report results. It not only facilitates data selection by conditions attributes, but also gives the user information at each stage about the relationship between the conditions chosen and the remaining conditions criteria available. When a set of COMA selections are complete, runBrowser produces a human readable report as well as an XML file in a standardized ATLAS format. This XML can be saved for later use or refinement in a future runBrowser session, shared with physics/detector groups, or used as input to ELSSI (event level Metadata browser) or other ATLAS run or event processing services.

  9. In vitro investigation of the cleaning efficacy, shaping ability, preparation time and file deformation of continuous rotary, reciprocating rotary and manual instrumentations in primary molars

    Directory of Open Access Journals (Sweden)

    Nahid Ramazani

    2016-03-01

    Full Text Available Background. Efficient canal preparation is the key to successful root canal treatment. This study aimed to assess the cleaning and shaping ability, preparation time and file deformation of rotary, reciprocating and manual instrumentation in canal preparation of primary molars. Methods. The mesiobuccal canals of 64 extracted primary mandibular second molars were injected with India ink. The samples were randomly divided into one control and three experimental groups. Experimental groups were instrumented with K-file, Mtwo in continuous rotation and Reciproc in reciprocating motion, respectively. The control group received no treatment. The files were discarded after four applications. Shaping ability was evaluated using CBCT. After clearing, ink removal was scored. Preparation time and file fracture or deformation was also recorded. Data were analyzed with SPSS 19 using chi-squared, Fisher’s exact test, Kruskal-Wallis and post hoc tests at a significance level of 0.05. Results. Considering cleanliness, at coronal third Reciproc was better than K-file (P < 0.001, but not more effective than Mtwo (P = 0.080. Furthermore, Mtwo leaved the canal cleaner than K-file (P = 0.001. In the middle third, only Reciproc exhibited better cleaning efficacy than K-file (P = 0.005. In the apical third, no difference was detected between the groups (P = 0.794. Regarding shaping ability, no differences were found between Reciproc and Mtwo (P = 1.00. Meanwhile, both displayed better shaping efficacy than K-file (P < 0.05. Between each two groups, there were differences in preparation time (P < 0.05, with Reciproc being the fastest. No file failure occurred. Conclusion. Fast and sufficient cleaning and shaping could be achieved with Mtwo and especially with Reciproc.

  10. In vitro investigation of the cleaning efficacy, shaping ability, preparation time and file deformation of continuous rotary, reciprocating rotary and manual instrumentations in primary molars.

    Science.gov (United States)

    Ramazani, Nahid; Mohammadi, Abbas; Amirabadi, Foroogh; Ramazani, Mohsen; Ehsani, Farzane

    2016-01-01

    Background. Efficient canal preparation is the key to successful root canal treatment. This study aimed to assess the cleaning and shaping ability, preparation time and file deformation of rotary, reciprocating and manual instrumentation in canal preparation of primary molars. Methods. The mesiobuccal canals of 64 extracted primary mandibular second molars were injected with India ink. The samples were randomly divided into one control and three experimental groups. Experimental groups were instrumented with K-file, Mtwo in continuous rotation and Reciproc in reciprocating motion, respectively. The control group received no treatment. The files were discarded after four applications. Shaping ability was evaluated using CBCT. After clearing, ink removal was scored. Preparation time and file fracture or deformation was also recorded. Data were analyzed with SPSS 19 using chi-squared, Fisher's exact test, Kruskal-Wallis and post hoc tests at a significance level of 0.05. Results. Considering cleanliness, at coronal third Reciproc was better than K-file (P < 0.001), but not more effective than Mtwo (P = 0.080). Furthermore, Mtwo leaved the canal cleaner than K-file (P = 0.001). In the middle third, only Reciproc exhibited better cleaning efficacy than K-file (P = 0.005). In the apical third, no difference was detected between the groups (P = 0.794). Regarding shaping ability, no differences were found between Reciproc and Mtwo (P = 1.00). Meanwhile, both displayed better shaping efficacy than K-file (P < 0.05). Between each two groups, there were differences in preparation time (P < 0.05), with Reciproc being the fastest. No file failure occurred. Conclusion. Fast and sufficient cleaning and shaping could be achieved with Mtwo and especially with Reciproc.

  11. High-resolution space-time characterization of convective rain cells: implications on spatial aggregation and temporal sampling operated by coarser resolution instruments

    Science.gov (United States)

    Marra, Francesco; Morin, Efrat

    2017-04-01

    Forecasting the occurrence of flash floods and debris flows is fundamental to save lives and protect infrastructures and properties. These natural hazards are generated by high-intensity convective storms, on space-time scales that cannot be properly monitored by conventional instrumentation. Consequently, a number of early-warning systems are nowadays based on remote sensing precipitation observations, e.g. from weather radars or satellites, that proved effective in a wide range of situations. However, the uncertainty affecting rainfall estimates represents an important issue undermining the operational use of early-warning systems. The uncertainty related to remote sensing estimates results from (a) an instrumental component, intrinsic of the measurement operation, and (b) a discretization component, caused by the discretization of the continuous rainfall process. Improved understanding on these sources of uncertainty will provide crucial information to modelers and decision makers. This study aims at advancing knowledge on the (b) discretization component. To do so, we take advantage of an extremely-high resolution X-Band weather radar (60 m, 1 min) recently installed in the Eastern Mediterranean. The instrument monitors a semiarid to arid transition area also covered by an accurate C-Band weather radar and by a relatively sparse rain gauge network ( 1 gauge/ 450 km2). Radar quantitative precipitation estimation includes corrections reducing the errors due to ground echoes, orographic beam blockage and attenuation of the signal in heavy rain. Intense, convection-rich, flooding events recently occurred in the area serve as study cases. We (i) describe with very high detail the spatiotemporal characteristics of the convective cores, and (ii) quantify the uncertainty due to spatial aggregation (spatial discretization) and temporal sampling (temporal discretization) operated by coarser resolution remote sensing instruments. We show that instantaneous rain intensity

  12. Backward running or absence of running from Creutz ratios

    International Nuclear Information System (INIS)

    Giedt, Joel; Weinberg, Evan

    2011-01-01

    We extract the running coupling based on Creutz ratios in SU(2) lattice gauge theory with two Dirac fermions in the adjoint representation. Depending on how the extrapolation to zero fermion mass is performed, either backward running or an absence of running is observed at strong bare coupling. This behavior is consistent with other findings which indicate that this theory has an infrared fixed point.

  13. Physiological demands of running during long distance runs and triathlons.

    Science.gov (United States)

    Hausswirth, C; Lehénaff, D

    2001-01-01

    The aim of this review article is to identify the main metabolic factors which have an influence on the energy cost of running (Cr) during prolonged exercise runs and triathlons. This article proposes a physiological comparison of these 2 exercises and the relationship between running economy and performance. Many terms are used as the equivalent of 'running economy' such as 'oxygen cost', 'metabolic cost', 'energy cost of running', and 'oxygen consumption'. It has been suggested that these expressions may be defined by the rate of oxygen uptake (VO2) at a steady state (i.e. between 60 to 90% of maximal VO2) at a submaximal running speed. Endurance events such as triathlon or marathon running are known to modify biological constants of athletes and should have an influence on their running efficiency. The Cr appears to contribute to the variation found in distance running performance among runners of homogeneous level. This has been shown to be important in sports performance, especially in events like long distance running. In addition, many factors are known or hypothesised to influence Cr such as environmental conditions, participant specificity, and metabolic modifications (e.g. training status, fatigue). The decrease in running economy during a triathlon and/or a marathon could be largely linked to physiological factors such as the enhancement of core temperature and a lack of fluid balance. Moreover, the increase in circulating free fatty acids and glycerol at the end of these long exercise durations bear witness to the decrease in Cr values. The combination of these factors alters the Cr during exercise and hence could modify the athlete's performance in triathlons or a prolonged run.

  14. Instrumentation development

    International Nuclear Information System (INIS)

    Ubbes, W.F.; Yow, J.L. Jr.

    1988-01-01

    Instrumentation is developed for the Civilian Radioactive Waste Management Program to meet several different (and sometimes conflicting) objectives. This paper addresses instrumentation development for data needs that are related either directly or indirectly to a repository site, but does not touch on instrumentation for work with waste forms or other materials. Consequently, this implies a relatively large scale for the measurements, and an in situ setting for instrument performance. In this context, instruments are needed for site characterization to define phenomena, develop models, and obtain parameter values, and for later design and performance confirmation testing in the constructed repository. The former set of applications is more immediate, and is driven by the needs of program design and performance assessment activities. A host of general technical and nontechnical issues have arisen to challenge instrumentation development. Instruments can be classed into geomechanical, geohydrologic, or other specialty categories, but these issues cut across artificial classifications. These issues are outlined. Despite this imposing list of issues, several case histories are cited to evaluate progress in the area

  15. Shoe cushioning, body mass and running biomechanics as risk factors for running injury: a study protocol for a randomised controlled trial.

    Science.gov (United States)

    Malisoux, Laurent; Delattre, Nicolas; Urhausen, Axel; Theisen, Daniel

    2017-08-21

    Repetitive loading of the musculoskeletal system is suggested to be involved in the underlying mechanism of the majority of running-related injuries (RRIs). Accordingly, heavier runners are assumed to be at a higher risk of RRI. The cushioning system of modern running shoes is expected to protect runners again high impact forces, and therefore, RRI. However, the role of shoe cushioning in injury prevention remains unclear. The main aim of this study is to investigate the influence of shoe cushioning and body mass on RRI risk, while exploring simultaneously the association between running technique and RRI risk. This double-blinded randomised controlled trial will involve about 800 healthy leisure-time runners. They will randomly receive one of two running shoe models that will differ in their cushioning properties (ie, stiffness) by ~35%. The participants will perform a running test on an instrumented treadmill at their preferred running speed at baseline. Then they will be followed up prospectively over a 6-month period, during which they will self-report all their sports activities as well as any injury in an internet-based database TIPPS (Training and Injury Prevention Platform for Sports). Cox regression analyses will be used to compare injury risk between the study groups and to investigate the association among training, biomechanical and anatomical risk factors, and injury risk. The study was approved by the National Ethics Committee for Research (Ref: 201701/02 v1.1). Outcomes will be disseminated through publications in peer-reviewed journals, presentations at international conferences, as well as articles in popular magazines and on specialised websites. NCT03115437, Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Instrument performance evaluation

    International Nuclear Information System (INIS)

    Swinth, K.L.

    1993-03-01

    Deficiencies exist in both the performance and the quality of health physics instruments. Recognizing the implications of such deficiencies for the protection of workers and the public, in the early 1980s the DOE and the NRC encouraged the development of a performance standard and established a program to test a series of instruments against criteria in the standard. The purpose of the testing was to establish the practicality of the criteria in the standard, to determine the performance of a cross section of available instruments, and to establish a testing capability. Over 100 instruments were tested, resulting in a practical standard and an understanding of the deficiencies in available instruments. In parallel with the instrument testing, a value-impact study clearly established the benefits of implementing a formal testing program. An ad hoc committee also met several times to establish recommendations for the voluntary implementation of a testing program based on the studies and the performance standard. For several reasons, a formal program did not materialize. Ongoing tests and studies have supported the development of specific instruments and have helped specific clients understand the performance of their instruments. The purpose of this presentation is to trace the history of instrument testing to date and suggest the benefits of a centralized formal program

  17. Computer utility for interactive instrument control

    International Nuclear Information System (INIS)

    Day, P.

    1975-08-01

    A careful study of the ANL laboratory automation needs in 1967 led to the conclusion that a central computer could support all of the real-time needs of a diverse collection of research instruments. A suitable hardware configuration would require an operating system to provide effective protection, fast real-time response and efficient data transfer. An SDS Sigma 5 satisfied all hardware criteria, however it was necessary to write an original operating system; services include program generation, experiment control real-time analysis, interactive graphics and final analysis. The system is providing real-time support for 21 concurrently running experiments, including an automated neutron diffractometer, a pulsed NMR spectrometer and multi-particle detection systems. It guarantees the protection of each user's interests and dynamically assigns core memory, disk space and 9-track magnetic tape usage. Multiplexor hardware capability allows the transfer of data between a user's device and assigned core area at rates of 100,000 bytes/sec. Real-time histogram generation for a user can proceed at rates of 50,000 points/sec. The facility has been self-running (no computer operator) for five years with a mean time between failures of 10 []ays and an uptime of 157 hours/week. (auth)

  18. Injecting Artificial Memory Errors Into a Running Computer Program

    Science.gov (United States)

    Bornstein, Benjamin J.; Granat, Robert A.; Wagstaff, Kiri L.

    2008-01-01

    Single-event upsets (SEUs) or bitflips are computer memory errors caused by radiation. BITFLIPS (Basic Instrumentation Tool for Fault Localized Injection of Probabilistic SEUs) is a computer program that deliberately injects SEUs into another computer program, while the latter is running, for the purpose of evaluating the fault tolerance of that program. BITFLIPS was written as a plug-in extension of the open-source Valgrind debugging and profiling software. BITFLIPS can inject SEUs into any program that can be run on the Linux operating system, without needing to modify the program s source code. Further, if access to the original program source code is available, BITFLIPS offers fine-grained control over exactly when and which areas of memory (as specified via program variables) will be subjected to SEUs. The rate of injection of SEUs is controlled by specifying either a fault probability or a fault rate based on memory size and radiation exposure time, in units of SEUs per byte per second. BITFLIPS can also log each SEU that it injects and, if program source code is available, report the magnitude of effect of the SEU on a floating-point value or other program variable.

  19. The CMS Level-1 Calorimeter Trigger for LHC Run II

    CERN Document Server

    Zabi, Alexandre; Cadamuro, Luca; Davignon, Olivier; Romanteau, Thierry; Strebler, Thomas; Cepeda, Maria Luisa; Sauvan, Jean-baptiste; Wardle, Nicholas; Aggleton, Robin Cameron; Ball, Fionn Amhairghen; Brooke, James John; Newbold, David; Paramesvaran, Sudarshan; Smith, D; Taylor, Joseph Ross; Fountas, Konstantinos; Baber, Mark David John; Bundock, Aaron; Breeze, Shane Davy; Citron, Matthew; Elwood, Adam Christopher; Hall, Geoffrey; Iles, Gregory Michiel; Laner Ogilvy, Christian; Penning, Bjorn; Rose, A; Shtipliyski, Antoni; Tapper, Alexander; Durkin, Timothy John; Harder, Kristian; Harper, Sam; Shepherd-Themistocleous, Claire; Thea, Alessandro; Williams, Thomas Stephen; Dasu, Sridhara Rao; Dodd, Laura Margaret; Klabbers, Pamela Renee; Levine, Aaron; Ojalvo, Isabel Rose; Ruggles, Tyler Henry; Smith, Nicholas Charles; Smith, Wesley; Svetek, Ales; Forbes, R; Tikalsky, Jesra Lilah; Vicente, Marcelo

    2017-01-01

    Results from the completed Phase 1 Upgrade of the Compact Muon Solenoid (CMS) Level-1 Calorimeter Trigger are presented. The upgrade was completed in two stages, with the first running in 2015 for proton and Heavy Ion collisions and the final stage for 2016 data taking. The Level-1 trigger has been fully commissioned and has been used by CMS to collect over 43 fb-1 of data since the start of the Large Hadron Collider (LHC) Run II. The new trigger has been designed to improve the performance at high luminosity and large number of simultaneous inelastic collisions per crossing (pile-up). For this purpose it uses a novel design, the Time Multiplexed Trigger (TMT), which enables the data from an event to be processed by a single trigger processor at full granularity over several bunch crossings. The TMT design is a modular design based on the uTCA standard. The trigger processors are instrumented with Xilinx Virtex-7 690 FPGAs and 10 Gbps optical links. The TMT architecture is flexible and the number of trigger p...

  20. Tempo de enfermagem em centro de diagnóstico por imagem: desenvolvimento de instrumento Nursing time in a diagnostic imaging center: development of an instrument

    Directory of Open Access Journals (Sweden)

    Carla Weidle Marques da Cruz

    2013-01-01

    Full Text Available OBJETIVO: Desenvolver um instrumento para medir o tempo despendido pela equipe de enfermagem, nas intervenções realizadas em centros de diagnóstico por imagem. MÉTODOS: Estudo transversal desenvolvido em hospital geral particular, conforme estas etapas: A Identificação das atividades de enfermagem por meio de revisão bibliográfica e observação em campo. B Mapeamento cruzado das atividades identificadas em intervenções de enfermagem, conforme a Classificação de Intervenções de Enfermagem (NIC. C Validação das intervenções. D Teste-piloto do instrumento com utilização da técnica de amostragem do trabalho. RESULTADOS: Foram validadas pelos juízes 92 atividades de enfermagem correspondentes a 32 intervenções da Classificação de Intervenções de Enfermagem NIC. As intervenções mais frequentes foram: Assistência em Exames, Documentação, Gerenciamento de Caso, Acompanhamento por telefone, Cuidados na admissão e Troca de Informações sobre cuidados de Saúde. CONCLUSÃO: O instrumento proposto para medição do tempo de trabalho da enfermagem, fundamentado nas intervenções de enfermagem em Centro de Diagnóstico por Imagem, foi validado e encontra-se disponível para utilização.OBJECTIVE: To develop an instrument to measure the time spent by nursing staff in interventions performed in diagnostic imaging centers. METHODS: Cross-sectional study conducted in private general hospital, according to these steps: A Identification of nursing activities through literature review and field observation. B Crossed-mapping of the activities identified in nursing interventions, according to the Nursing Interventions Classification (NIC. C Validation of interventions. D Pilot-test with instrument's utilization, with work-sampling technique. RESULTS: Were validated by the judges 92 nursing activities corresponding to 32 interventions NIC.. These interventions were most frequent: Assistance in exams, Documentation, Case Management

  1. Intra-Rater, Inter-Rater and Test-Retest Reliability of an Instrumented Timed Up and Go (iTUG Test in Patients with Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Rob C van Lummel

    Full Text Available The "Timed Up and Go" (TUG is a widely used measure of physical functioning in older people and in neurological populations, including Parkinson's Disease. When using an inertial sensor measurement system (instrumented TUG [iTUG], the individual components of the iTUG and the trunk kinematics can be measured separately, which may provide relevant additional information.The aim of this study was to determine intra-rater, inter-rater and test-retest reliability of the iTUG in patients with Parkinson's Disease.Twenty eight PD patients, aged 50 years or older, were included. For the iTUG the DynaPort Hybrid (McRoberts, The Hague, The Netherlands was worn at the lower back. The device measured acceleration and angular velocity in three directions at a rate of 100 samples/s. Patients performed the iTUG five times on two consecutive days. Repeated measurements by the same rater on the same day were used to calculate intra-rater reliability. Repeated measurements by different raters on the same day were used to calculate intra-rater and inter-rater reliability. Repeated measurements by the same rater on different days were used to calculate test-retest reliability.Nineteen ICC values (15% were ≥ 0.9 which is considered as excellent reliability. Sixty four ICC values (49% were ≥ 0.70 and < 0.90 which is considered as good reliability. Thirty one ICC values (24% were ≥ 0.50 and < 0.70, indicating moderate reliability. Sixteen ICC values (12% were ≥ 0.30 and < 0.50 indicating poor reliability. Two ICT values (2% were < 0.30 indicating very poor reliability.In conclusion, in patients with Parkinson's disease the intra-rater, inter-rater, and test-retest reliability of the individual components of the instrumented TUG (iTUG was excellent to good for total duration and for turning durations, and good to low for the sub durations and for the kinematics of the SiSt and StSi. The results of this fully automated analysis of instrumented TUG movements

  2. ALICE HLT Run 2 performance overview.

    Science.gov (United States)

    Krzewicki, Mikolaj; Lindenstruth, Volker; ALICE Collaboration

    2017-10-01

    For the LHC Run 2 the ALICE HLT architecture was consolidated to comply with the upgraded ALICE detector readout technology. The software framework was optimized and extended to cope with the increased data load. Online calibration of the TPC using online tracking capabilities of the ALICE HLT was deployed. Offline calibration code was adapted to run both online and offline and the HLT framework was extended to support that. The performance of this schema is important for Run 3 related developments. An additional data transport approach was developed using the ZeroMQ library, forming at the same time a test bed for the new data flow model of the O2 system, where further development of this concept is ongoing. This messaging technology was used to implement the calibration feedback loop augmenting the existing, graph oriented HLT transport framework. Utilising the online reconstruction of many detectors, a new asynchronous monitoring scheme was developed to allow real-time monitoring of the physics performance of the ALICE detector, on top of the new messaging scheme for both internal and external communication. Spare computing resources comprising the production and development clusters are run as a tier-2 GRID site using an OpenStack-based setup. The development cluster is running continuously, the production cluster contributes resources opportunistically during periods of LHC inactivity.

  3. Effective action and brane running

    International Nuclear Information System (INIS)

    Brevik, Iver; Ghoroku, Kazuo; Yahiro, Masanobu

    2004-01-01

    We address the renormalized effective action for a Randall-Sundrum brane running in 5D bulk space. The running behavior of the brane action is obtained by shifting the brane position without changing the background and fluctuations. After an appropriate renormalization, we obtain an effective, low energy brane world action, in which the effective 4D Planck mass is independent of the running position. We address some implications for this effective action

  4. Asymmetric information and bank runs

    OpenAIRE

    Gu, Chao

    2007-01-01

    It is known that sunspots can trigger panic-based bank runs and that the optimal banking contract can tolerate panic-based runs. The existing literature assumes that these sunspots are based on a publicly observed extrinsic randomizing device. In this paper, I extend the analysis of panic-based runs to include an asymmetric-information, extrinsic randomizing device. Depositors observe different, but correlated, signals on the stability of the bank. I find that if the signals that depositors o...

  5. Making consultations run smoothly

    DEFF Research Database (Denmark)

    Jespersen, Astrid Pernille; Elgaard Jensen, Torben

    2012-01-01

    This article investigates the skilful use of time in general practice consultations. It argues that consultation work involves social and material interactions, which are only partially conceptualized in existing medical practice literatures. As an alternative, this article employs ideas from the......-inspired analysis opens up a wider discussion of time as a complex resource and problem in general practice....

  6. Instrumental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-15

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  7. Instrumental analysis

    International Nuclear Information System (INIS)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-01

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  8. LOFT instrumentation

    International Nuclear Information System (INIS)

    Bixby, W.W.

    1979-01-01

    A description of instrumentation used in the Loss-of-Fluid Test (LOFT) large break Loss-of-Coolant Experiments is presented. Emphasis is placed on hydraulic and thermal measurements in the primary system piping and components, reactor vessel, and pressure suppression system. In addition, instrumentation which is being considered for measurement of phenomena during future small break testing is discussed. (orig.) 891 HP/orig. 892 BRE [de

  9. How to run 100 meters ?

    OpenAIRE

    Aftalion, Amandine

    2016-01-01

    A paraitre dans SIAP; The aim of this paper is to bring a mathematical justification to the optimal way of organizing one's effort when running. It is well known from physiologists that all running exercises of duration less than 3mn are run with a strong initial acceleration and a decelerating end; on the contrary, long races are run with a final sprint. This can be explained using a mathematical model describing the evolution of the velocity, the anaerobic energy, and the propulsive force: ...

  10. A Running Start: Resource Guide for Youth Running Programs

    Science.gov (United States)

    Jenny, Seth; Becker, Andrew; Armstrong, Tess

    2016-01-01

    The lack of physical activity is an epidemic problem among American youth today. In order to combat this, many schools are incorporating youth running programs as a part of their comprehensive school physical activity programs. These youth running programs are being implemented before or after school, at school during recess at the elementary…

  11. Similar Running Economy With Different Running Patterns Along the Aerial-Terrestrial Continuum.

    Science.gov (United States)

    Lussiana, Thibault; Gindre, Cyrille; Hébert-Losier, Kim; Sagawa, Yoshimasa; Gimenez, Philippe; Mourot, Laurent

    2017-04-01

    No unique or ideal running pattern is the most economical for all runners. Classifying the global running patterns of individuals into 2 categories (aerial and terrestrial) using the Volodalen method could permit a better understanding of the relationship between running economy (RE) and biomechanics. The main purpose was to compare the RE of aerial and terrestrial runners. Two coaches classified 58 runners into aerial (n = 29) or terrestrial (n = 29) running patterns on the basis of visual observations. RE, muscle activity, kinematics, and spatiotemporal parameters of both groups were measured during a 5-min run at 12 km/h on a treadmill. Maximal oxygen uptake (V̇O 2 max) and peak treadmill speed (PTS) were assessed during an incremental running test. No differences were observed between aerial and terrestrial patterns for RE, V̇O 2 max, and PTS. However, at 12 km/h, aerial runners exhibited earlier gastrocnemius lateralis activation in preparation for contact, less dorsiflexion at ground contact, higher coactivation indexes, and greater leg stiffness during stance phase than terrestrial runners. Terrestrial runners had more pronounced semitendinosus activation at the start and end of the running cycle, shorter flight time, greater leg compression, and a more rear-foot strike. Different running patterns were associated with similar RE. Aerial runners appear to rely more on elastic energy utilization with a rapid eccentric-concentric coupling time, whereas terrestrial runners appear to propel the body more forward rather than upward to limit work against gravity. Excluding runners with a mixed running pattern from analyses did not affect study interpretation.

  12. Integrating Nephelometer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Uin, J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The Integrating Nephelometer (Figure 1) is an instrument that measures aerosol light scattering. It measures aerosol optical scattering properties by detecting (with a wide angular integration – from 7 to 170°) the light scattered by the aerosol and subtracting the light scattered by the carrier gas, the instrument walls and the background noise in the detector (zeroing). Zeroing is typically performed for 5 minutes every day at midnight UTC. The scattered light is split into red (700 nm), green (550 nm), and blue (450 nm) wavelengths and captured by three photomultiplier tubes. The instrument can measure total scatter as well as backscatter only (from 90 to 170°) (Heintzenberg and Charlson 1996; Anderson et al. 1996; Anderson and Ogren 1998; TSI 3563 2015) At ARM (Atmospheric Radiation Measurement), two identical Nephelometers are usually run in series with a sample relative humidity (RH) conditioner between them. This is possible because Nephelometer sampling is non-destructive and the sample can be passed on to another instrument. The sample RH conditioner scans through multiple RH values in cycles, treating the sample. This kind of setup allows to study how aerosol particles’ light scattering properties are affected by humidification (Anderson et al. 1996). For historical reasons, the two Nephelometers in this setup are labeled “wet” and “dry”, with the “dry” Nephelometer usually being the one before the conditioner and sampling ambient air (the names are switched for the MAOS measurement site due to the high RH of the ambient air).

  13. Using New Technologies for Time Diary Data Collection: Instrument Design and Data Quality Findings from a Mixed-Mode Pilot Survey.

    Science.gov (United States)

    Chatzitheochari, Stella; Fisher, Kimberly; Gilbert, Emily; Calderwood, Lisa; Huskinson, Tom; Cleary, Andrew; Gershuny, Jonathan

    2018-01-01

    Recent years have witnessed a steady growth of time-use research, driven by the increased research and policy interest in population activity patterns and their associations with long-term outcomes. There is recent interest in moving beyond traditional paper-administered time diaries to use new technologies for data collection in order to reduce respondent burden and administration costs, and to improve data quality. This paper presents two novel diary instruments that were employed by a large-scale multi-disciplinary cohort study in order to obtain information on the time allocation of adolescents in the United Kingdom. A web-administered diary and a smartphone app were created, and a mixed-mode data collection approach was followed: cohort members were asked to choose between these two modes, and those who were unable or refused to use the web/app modes were offered a paper diary. Using data from a pilot survey of 86 participants, we examine diary data quality indicators across the three modes. Results suggest that the web and app modes yield an overall better time diary data quality than the paper mode, with a higher proportion of diaries with complete activity and contextual information. Results also show that the web and app modes yield a comparable number of activity episodes to the paper mode. These results suggest that the use of new technologies can improve diary data quality. Future research using larger samples should systematically investigate selection and measurement effects in mixed-mode time-use survey designs.

  14. Nuclear energy as a 'golden bridge'? Constitutional legal problems of the negotiation of the prolongation of the running time against skimming of profits; Kernenergie als 'goldene Bruecke'? Verfassungsrechtliche Probleme der Aushandlung von Laufzeitverlaengerungen gegen Gewinnabschoepfungen

    Energy Technology Data Exchange (ETDEWEB)

    Waldhoff, Christian; Aswege, Hanka von [Bonn Univ. (Germany). Lehrstuhl fuer Oeffentliches Recht

    2010-07-15

    The coalition agreement of Christian Demographic Union (CDU), Christian Social Union (CSU) and Free Democratic Party (FDP) from 26th October, 2009 characterizes the nuclear energy as a bridge technology. The coalition parties explain to prolong the running times of German nuclear power stations up to a reliable replacement by renewable energies. The conditions for the prolongation of the running times are to be regulated in agreement with energy supply companies. In the contribution under consideration, the authors report on the fiscal legal problems of the skimming of profits. Constitutional legal problems of the earmaking of a skimming of profits as well as a consensual agreement are discussed in this contribution. In the result, a financial constitutionally reliable way for the skimming of added profits due to prolongation of the running time is not evident. The legal earmaking of the duty advent for the promotion of renewable energies increases the constitutional doubts.

  15. The Run-2 ATLAS Trigger System

    International Nuclear Information System (INIS)

    Martínez, A Ruiz

    2016-01-01

    The ATLAS trigger successfully collected collision data during the first run of the LHC between 2009-2013 at different centre-of-mass energies between 900 GeV and 8TeV. The trigger system consists of a hardware Level-1 and a software-based high level trigger (HLT) that reduces the event rate from the design bunch-crossing rate of 40 MHz to an average recording rate of a few hundred Hz. In Run-2, the LHC will operate at centre-of-mass energies of 13 and 14 TeV and higher luminosity, resulting in up to five times higher rates of processes of interest. A brief review of the ATLAS trigger system upgrades that were implemented between Run-1 and Run-2, allowing to cope with the increased trigger rates while maintaining or even improving the efficiency to select physics processes of interest, will be given. This includes changes to the Level-1 calorimeter and muon trigger systems, the introduction of a new Level-1 topological trigger module and the merging of the previously two-level HLT system into a single event processing farm. A few examples will be shown, such as the impressive performance improvements in the HLT trigger algorithms used to identify leptons, hadrons and global event quantities like missing transverse energy. Finally, the status of the commissioning of the trigger system and its performance during the 2015 run will be presented. (paper)

  16. The CMS trigger in Run 2

    CERN Document Server

    Tosi, Mia

    2018-01-01

    During its second period of operation (Run 2) which started in 2015, the LHC will reach a peak instantaneous luminosity of approximately 2$\\times 10^{34}$~cm$^{-2}s^{-1}$ with an average pile-up of about 55, far larger than the design value. Under these conditions, the online event selection is a very challenging task. In CMS, it is realised by a two-level trigger system: the Level-1 (L1) Trigger, implemented in custom-designed electronics, and the High Level Trigger (HLT), a streamlined version of the offline reconstruction software running on a computer farm.\\\\ In order to face this challenge, the L1 trigger has undergone a major upgrade compared to Run 1, whereby all electronic boards of the system have been replaced, allowing more sophisticated algorithms to be run online. Its last stage, the global trigger, is now able to perform complex selections and to compute high-level quantities, like invariant masses. Likewise, the algorithms that run in the HLT went through big improvements; in particular, new ap...

  17. Running in place

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, R.; Mohsberg, J. (Richard Hunt Associates, Annapolis, MD (United States))

    1993-04-01

    Various resource agencies are diluting FERC's authority to carry out its mandated duties. Greater assertiveness is needed to regain control of the hydropower licensing process. Allowing resource agencies this control has not resulted in a workable process or the timely processing of applications. Several examples illustrate the resulting problems.

  18. Instrumental Capital

    Directory of Open Access Journals (Sweden)

    Gabriel Valerio

    2007-07-01

    Full Text Available During the history of human kind, since our first ancestors, tools have represented a mean to reach objectives which might otherwise seemed impossibles. In the called New Economy, where tangibles assets appear to be losing the role as the core element to produce value versus knowledge, tools have kept aside man in his dairy work. In this article, the author's objective is to describe, in a simple manner, the importance of managing the organization's group of tools or instruments (Instrumental Capital. The characteristic conditions of this New Economy, the way Knowledge Management deals with these new conditions and the sub-processes that provide support to the management of Instrumental Capital are described.

  19. Measuring Sulfur Isotope Ratios from Solid Samples with the Sample Analysis at Mars Instrument and the Effects of Dead Time Corrections

    Science.gov (United States)

    Franz, H. B.; Mahaffy, P. R.; Kasprzak, W.; Lyness, E.; Raaen, E.

    2011-01-01

    The Sample Analysis at Mars (SAM) instrument suite comprises the largest science payload on the Mars Science Laboratory (MSL) "Curiosity" rover. SAM will perform chemical and isotopic analysis of volatile compounds from atmospheric and solid samples to address questions pertaining to habitability and geochemical processes on Mars. Sulfur is a key element of interest in this regard, as sulfur compounds have been detected on the Martian surface by both in situ and remote sensing techniques. Their chemical and isotopic composition can belp constrain environmental conditions and mechanisms at the time of formation. A previous study examined the capability of the SAM quadrupole mass spectrometer (QMS) to determine sulfur isotope ratios of SO2 gas from a statistical perspective. Here we discuss the development of a method for determining sulfur isotope ratios with the QMS by sampling SO2 generated from heating of solid sulfate samples in SAM's pyrolysis oven. This analysis, which was performed with the SAM breadboard system, also required development of a novel treatment of the QMS dead time to accommodate the characteristics of an aging detector.

  20. Effects of gas–wall partitioning in Teflon tubing and instrumentation on time-resolved measurements of gas-phase organic compounds

    Directory of Open Access Journals (Sweden)

    D. Pagonis

    2017-12-01

    Full Text Available Recent studies have demonstrated that organic compounds can partition from the gas phase to the walls in Teflon environmental chambers and that the process can be modeled as absorptive partitioning. Here these studies were extended to investigate gas–wall partitioning of organic compounds in Teflon tubing and inside a proton-transfer-reaction mass spectrometer (PTR-MS used to monitor compound concentrations. Rapid partitioning of C8–C14 2-ketones and C11–C16 1-alkenes was observed for compounds with saturation concentrations (c∗ in the range of 3 × 104 to 1 × 107 µg m−3, causing delays in instrument response to step-function changes in the concentration of compounds being measured. These delays vary proportionally with tubing length and diameter and inversely with flow rate and c∗. The gas–wall partitioning process that occurs in tubing is similar to what occurs in a gas chromatography column, and the measured delay times (analogous to retention times were accurately described using a linear chromatography model where the walls were treated as an equivalent absorbing mass that is consistent with values determined for Teflon environmental chambers. The effect of PTR-MS surfaces on delay times was also quantified and incorporated into the model. The model predicts delays of an hour or more for semivolatile compounds measured under commonly employed conditions. These results and the model can enable better quantitative design of sampling systems, in particular when fast response is needed, such as for rapid transients, aircraft, or eddy covariance measurements. They may also allow estimation of c∗ values for unidentified organic compounds detected by mass spectrometry and could be employed to introduce differences in time series of compounds for use with factor analysis methods. Best practices are suggested for sampling organic compounds through Teflon tubing.

  1. Effects of gas-wall partitioning in Teflon tubing and instrumentation on time-resolved measurements of gas-phase organic compounds

    Science.gov (United States)

    Pagonis, Demetrios; Krechmer, Jordan E.; de Gouw, Joost; Jimenez, Jose L.; Ziemann, Paul J.

    2017-12-01

    Recent studies have demonstrated that organic compounds can partition from the gas phase to the walls in Teflon environmental chambers and that the process can be modeled as absorptive partitioning. Here these studies were extended to investigate gas-wall partitioning of organic compounds in Teflon tubing and inside a proton-transfer-reaction mass spectrometer (PTR-MS) used to monitor compound concentrations. Rapid partitioning of C8-C14 2-ketones and C11-C16 1-alkenes was observed for compounds with saturation concentrations (c∗) in the range of 3 × 104 to 1 × 107 µg m-3, causing delays in instrument response to step-function changes in the concentration of compounds being measured. These delays vary proportionally with tubing length and diameter and inversely with flow rate and c∗. The gas-wall partitioning process that occurs in tubing is similar to what occurs in a gas chromatography column, and the measured delay times (analogous to retention times) were accurately described using a linear chromatography model where the walls were treated as an equivalent absorbing mass that is consistent with values determined for Teflon environmental chambers. The effect of PTR-MS surfaces on delay times was also quantified and incorporated into the model. The model predicts delays of an hour or more for semivolatile compounds measured under commonly employed conditions. These results and the model can enable better quantitative design of sampling systems, in particular when fast response is needed, such as for rapid transients, aircraft, or eddy covariance measurements. They may also allow estimation of c∗ values for unidentified organic compounds detected by mass spectrometry and could be employed to introduce differences in time series of compounds for use with factor analysis methods. Best practices are suggested for sampling organic compounds through Teflon tubing.

  2. Flight Testing and Real-Time System Identification Analysis of a UH-60A Black Hawk Helicopter with an Instrumented External Sling Load

    Science.gov (United States)

    McCoy, Allen H.

    1998-01-01

    Helicopter external air transportation plays an important role in today's world. For both military and civilian helicopters, external sling load operations offer an efficient and expedient method of handling heavy, oversized cargo. With the ability to reach areas otherwise inaccessible by ground transportation, helicopter external load operations are conducted in industries such as logging, construction, and fire fighting, as well as in support of military tactical transport missions. Historically, helicopter and load combinations have been qualified through flight testing, requiring considerable time and cost. With advancements in simulation and flight test techniques there is potential to substantially reduce costs and increase the safety of helicopter sling load certification. Validated simulation tools make possible accurate prediction of operational flight characteristics before initial flight tests. Real time analysis of test data improves the safety and efficiency of the testing programs. To advance these concepts, the U.S. Army and NASA, in cooperation with the Israeli Air Force and Technion, under a Memorandum of Agreement, seek to develop and validate a numerical model of the UH-60 with sling load and demonstrate a method of near real time flight test analysis. This thesis presents results from flight tests of a U.S. Army Black Hawk helicopter with various external loads. Tests were conducted as the U.S. first phase of this MOA task. The primary load was a container express box (CONEX) which contained a compact instrumentation package. The flights covered the airspeed range from hover to 70 knots. Primary maneuvers were pitch and roll frequency sweeps, steps, and doublets. Results of the test determined the effect of the suspended load on both the aircraft's handling qualities and its control system's stability margins. Included were calculations of the stability characteristics of the load's pendular motion. Utilizing CIFER(R) software, a method for near

  3. Advancements in Actuated Musical Instruments

    DEFF Research Database (Denmark)

    Overholt, Daniel; Berdahl, Edgar; Hamilton, Robert

    2011-01-01

    are physical instruments that have been endowed with virtual qualities controlled by a computer in real-time but which are nevertheless tangible. These instruments provide intuitive and engaging new forms of interaction. They are different from traditional (acoustic) and fully automated (robotic) instruments...

  4. Estimating Stair Running Performance Using Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Lauro V. Ojeda

    2017-11-01

    Full Text Available Stair running, both ascending and descending, is a challenging aerobic exercise that many athletes, recreational runners, and soldiers perform during training. Studying biomechanics of stair running over multiple steps has been limited by the practical challenges presented while using optical-based motion tracking systems. We propose using foot-mounted inertial measurement units (IMUs as a solution as they enable unrestricted motion capture in any environment and without need for external references. In particular, this paper presents methods for estimating foot velocity and trajectory during stair running using foot-mounted IMUs. Computational methods leverage the stationary periods occurring during the stance phase and known stair geometry to estimate foot orientation and trajectory, ultimately used to calculate stride metrics. These calculations, applied to human participant stair running data, reveal performance trends through timing, trajectory, energy, and force stride metrics. We present the results of our analysis of experimental data collected on eleven subjects. Overall, we determine that for either ascending or descending, the stance time is the strongest predictor of speed as shown by its high correlation with stride time.

  5. Instrumental aspects

    Directory of Open Access Journals (Sweden)

    Qureshi Navid

    2017-01-01

    Full Text Available Every neutron scattering experiment requires the choice of a suited neutron diffractometer (or spectrometer in the case of inelastic scattering with its optimal configuration in order to accomplish the experimental tasks in the most successful way. Most generally, the compromise between the incident neutron flux and the instrumental resolution has to be considered, which is depending on a number of optical devices which are positioned in the neutron beam path. In this chapter the basic instrumental principles of neutron diffraction will be explained. Examples of different types of experiments and their respective expectable results will be shown. Furthermore, the production and use of polarized neutrons will be stressed.

  6. THE SHORT- AND LONG-RUN RELATIONSHIP IN INDONESIAN ISLAMIC STOCK RETURNS

    Directory of Open Access Journals (Sweden)

    M. Shabri Abdul Majid

    2016-02-01

    Full Text Available This paper aims at empirically examining the short-run and long-run causal relationship between the Indonesian Islamic stock returns and selected macroeconomic variables namely inflation, money supply and exchange rate during the pre- and post- 2008 global financial turmoil period from 2002 until 2007 and from 2008 until 2013 by using monthly data. The methodology used in this study is time series econometric techniques i.e. the unit root test, cointegration test, error correction model (ECM and variance decompositions (VDCs. The findings showed that there is cointegration between Islamic stock prices and macroeconomic variables. The results suggest that inflation, money supply, and exchange rate significantly affected the Islamic stock returns in Indonesia. These variables should be taken into account by the policy makers as the important policy instruments in stabilizing Islamic stock markets in the country.DOI: 10.15408/aiq.v8i1.1863

  7. Nuclear instrumentation for research reactors

    International Nuclear Information System (INIS)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J.

    1997-01-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70'. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs

  8. The Diagnostic Accuracy of Dementia-Screening Instruments With an Administration Time of 10 to 45 Minutes for Use in Secondary Care : A Systematic Review

    NARCIS (Netherlands)

    Appels, Bregje A.; Scherder, Erik

    Early screening for dementia is crucial for identifying reversible causes as well as managing, counseling, and other therapeutic interventions. Many reviews have compared the suitability of very brief screening instruments for use in primary care, but reviews on more extensive instruments in

  9. Surgical Instrument

    NARCIS (Netherlands)

    Dankelman, J.; Horeman, T.

    2009-01-01

    The present invention relates to a surgical instrument for minimall-invasive surgery, comprising a handle, a shaft and an actuating part, characterised by a gastight cover surrounding the shaft, wherein the cover is provided with a coupler that has a feed- through opening with a loskable seal,

  10. Weather Instruments.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  11. Mathematical analysis of running performance and world running records.

    Science.gov (United States)

    Péronnet, F; Thibault, G

    1989-07-01

    The objective of this study was to develop an empirical model relating human running performance to some characteristics of metabolic energy-yielding processes using A, the capacity of anaerobic metabolism (J/kg); MAP, the maximal aerobic power (W/kg); and E, the reduction in peak aerobic power with the natural logarithm of race duration T, when T greater than TMAP = 420 s. Accordingly, the model developed describes the average power output PT (W/kg) sustained over any T as PT = [S/T(1 - e-T/k2)] + 1/T integral of T O [BMR + B(1 - e-t/k1)]dt where S = A and B = MAP - BMR (basal metabolic rate) when T less than TMAP; and S = A + [Af ln(T/TMAP)] and B = (MAP - BMR) + [E ln(T/TMAP)] when T greater than TMAP; k1 = 30 s and k2 = 20 s are time constants describing the kinetics of aerobic and anaerobic metabolism, respectively, at the beginning of exercise; f is a constant describing the reduction in the amount of energy provided from anaerobic metabolism with increasing T; and t is the time from the onset of the race. This model accurately estimates actual power outputs sustained over a wide range of events, e.g., average absolute error between actual and estimated T for men's 1987 world records from 60 m to the marathon = 0.73%. In addition, satisfactory estimations of the metabolic characteristics of world-class male runners were made as follows: A = 1,658 J/kg; MAP = 83.5 ml O2.kg-1.min-1; 83.5% MAP sustained over the marathon distance. Application of the model to analysis of the evolution of A, MAP, and E, and of the progression of men's and women's world records over the years, is presented.

  12. Constraint-Led Changes in Internal Variability in Running

    OpenAIRE

    Haudum, Anita; Birklbauer, Jürgen; Kröll, Josef; Müller, Erich

    2012-01-01

    We investigated the effect of a one-time application of elastic constraints on movement-inherent variability during treadmill running. Eleven males ran two 35-min intervals while surface EMG was measured. In one of two 35-min intervals, after 10 min of running without tubes, elastic tubes (between hip and heels) were attached, followed by another 5 min of running without tubes. To assess variability, stride-to-stride iEMG variability was calculated. Significant increases in variability (36 % ...

  13. Development of a minimization instrument for allocation of a hospital-level performance improvement intervention to reduce waiting times in Ontario emergency departments

    Directory of Open Access Journals (Sweden)

    Anderson Geoff

    2009-06-01

    Full Text Available Abstract Background Rigorous evaluation of an intervention requires that its allocation be unbiased with respect to confounders; this is especially difficult in complex, system-wide healthcare interventions. We developed a short survey instrument to identify factors for a minimization algorithm for the allocation of a hospital-level intervention to reduce emergency department (ED waiting times in Ontario, Canada. Methods Potential confounders influencing the intervention's success were identified by literature review, and grouped by healthcare setting specific change stages. An international multi-disciplinary (clinical, administrative, decision maker, management panel evaluated these factors in a two-stage modified-delphi and nominal group process based on four domains: change readiness, evidence base, face validity, and clarity of definition. Results An original set of 33 factors were identified from the literature. The panel reduced the list to 12 in the first round survey. In the second survey, experts scored each factor according to the four domains; summary scores and consensus discussion resulted in the final selection and measurement of four hospital-level factors to be used in the minimization algorithm: improved patient flow as a hospital's leadership priority; physicians' receptiveness to organizational change; efficiency of bed management; and physician incentives supporting the change goal. Conclusion We developed a simple tool designed to gather data from senior hospital administrators on factors likely to affect the success of a hospital patient flow improvement intervention. A minimization algorithm will ensure balanced allocation of the intervention with respect to these factors in study hospitals.

  14. Development of a minimization instrument for allocation of a hospital-level performance improvement intervention to reduce waiting times in Ontario emergency departments.

    Science.gov (United States)

    Leaver, Chad Andrew; Guttmann, Astrid; Zwarenstein, Merrick; Rowe, Brian H; Anderson, Geoff; Stukel, Therese; Golden, Brian; Bell, Robert; Morra, Dante; Abrams, Howard; Schull, Michael J

    2009-06-08

    Rigorous evaluation of an intervention requires that its allocation be unbiased with respect to confounders; this is especially difficult in complex, system-wide healthcare interventions. We developed a short survey instrument to identify factors for a minimization algorithm for the allocation of a hospital-level intervention to reduce emergency department (ED) waiting times in Ontario, Canada. Potential confounders influencing the intervention's success were identified by literature review, and grouped by healthcare setting specific change stages. An international multi-disciplinary (clinical, administrative, decision maker, management) panel evaluated these factors in a two-stage modified-delphi and nominal group process based on four domains: change readiness, evidence base, face validity, and clarity of definition. An original set of 33 factors were identified from the literature. The panel reduced the list to 12 in the first round survey. In the second survey, experts scored each factor according to the four domains; summary scores and consensus discussion resulted in the final selection and measurement of four hospital-level factors to be used in the minimization algorithm: improved patient flow as a hospital's leadership priority; physicians' receptiveness to organizational change; efficiency of bed management; and physician incentives supporting the change goal. We developed a simple tool designed to gather data from senior hospital administrators on factors likely to affect the success of a hospital patient flow improvement intervention. A minimization algorithm will ensure balanced allocation of the intervention with respect to these factors in study hospitals.

  15. The attitude of the faculty of sport and physical education students toward cross-country running

    Directory of Open Access Journals (Sweden)

    Juhas Irina

    2011-01-01

    Full Text Available The syllabus of the track and field subject at the Faculty of Sport and Physical Education includes cross-country running - running in nature. The main objective of this study was to determine the structure and intensity of students' attitude toward the cross-country running. Besides, the objective was to check the connection of the students' attitude towards the cross-country running and the achieved results of cross-country running, as well as of doing sport and recreational running. The sample comprised 69 students of the second year of studies who attended the cross-country running classes. For measuring the attitude toward the cross-country running, the Connotative differential instrument was used consisting of 15 pairs of opposite adjectives presented in a form of seven-part bipolar scale grouped into three dimensions: affective, cognitive and conative. This instrument was applied within an extensive questionnaire which included questions about doing sports, jogging, as well as the results of cross-country running at the end of the teaching period. The descriptive analysis has shown that students have a positive attitude of moderate intensity toward cross-country running, observed through all three dimensions of attitude. The correlation analysis between the dimensions of attitude toward cross country running and the results achieved at cross country running showed that the correlations are negative and statistically significant, suggesting that if the result of running is better, the students' attitude toward cross country running is more positive. Competitive sport is not connected with the quality of attitude toward cross-country running. The results obtained by the study give grounds for assuming that, given that attitudes are an important component of the motivational aspect of personality, it can be expected that the students' positive attitude toward cross country running would contribute to cross country running application in

  16. EMFs run aground

    International Nuclear Information System (INIS)

    Raloff, J.

    1993-01-01

    Presently no one knows whether electromagnetic fields (EMFs) play a role in human cancer or other ailments, though epidemiological studies over the years have suggested that possibility. A study by the Electric Power Research Institute attempted to quantify everything it could about the magnetic environment of a home, identifying not only major sources of magnetic fields, but also their frequencies, strengths, and how they fall off with distance. Sources of a homes magnetic environment include appliances, overhead powerlines, and grounding connections to metallic water pipes. Fields will vary over time, depending on how much current is passing through the electrically conductive sources. Additional contributors to a home's magnetic background may include unusual wiring in the walls, underground power lines, and near-by high voltage transmission lines. This paper summarizes the study results, indicating weak, persistant EMFs may dominate, but small magnetic field associated with ground currents can end up contributing more to the overall EMF background than appliances producing far larger fields which fall off more quickly with distance. 2 figs

  17. Hitting the ground running

    Energy Technology Data Exchange (ETDEWEB)

    KEENEN,MARTHA JANE; NUSBAUM,ANNA W.

    2000-05-18

    Very few of us get to start clean: getting a new organization, new space, and hiring new people for a new information management program. In over 20 years in some aspect of this profession, the author has never faced that particular challenge. By far the majority of information management opportunities involve taking over from someone else. Sometimes, a predecessor has gone on to better things on his/her initiative; that is not always the case. Sometimes the group is one you were a part of yesterday. If the function functions, time moves on and changes may be needed to accommodate new technology, additional and/or changed tasks, and alterations in corporate missions. If the function does not, it is a good bet that you were hired or promoted as an agent of change. Each of these situations poses challenges. This presentation is about that first few months and first year in a new assignment. In other words, you have the job, now what?

  18. Running continuous academic adoption programmes

    DEFF Research Database (Denmark)

    Nielsen, Tobias Alsted

    Running successful academic adoption programmes requires executive support, clear strategies, tactical resources and organisational agility. These two presentations will discuss the implementation of strategic academic adoption programs down to very concrete tool customisations to meet specific...

  19. Turkey Run Landfill Emissions Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — landfill emissions measurements for the Turkey run landfill in Georgia. This dataset is associated with the following publication: De la Cruz, F., R. Green, G....

  20. Phthalate SHEDS-HT runs

    Data.gov (United States)

    U.S. Environmental Protection Agency — Inputs and outputs for SHEDS-HT runs of DiNP, DEHP, DBP. This dataset is associated with the following publication: Moreau, M., J. Leonard, K. Phillips, J. Campbell,...

  1. Short-run and long-run effects of unemployment on suicides: does welfare regime matter?

    Science.gov (United States)

    Gajewski, Pawel; Zhukovska, Kateryna

    2017-12-01

    Disentangling the immediate effects of an unemployment shock from the long-run relationship has a strong theoretical rationale. Different economic and psychological forces are at play in the first moment and after prolonged unemployment. This study suggests a diverse impact of short- and long-run unemployment on suicides in liberal and social-democratic countries. We take a macro-level perspective and simultaneously estimate the short- and long-run relationships between unemployment and suicide, along with the speed of convergence towards the long-run relationship after a shock, in a panel of 10 high-income countries. We also account for unemployment benefit spending, the share of the population aged 15-34, and the crisis effects. In the liberal group of countries, only a long-run impact of unemployment on suicides is found to be significant (P = 0.010). In social-democratic countries, suicides are associated with initial changes in unemployment (P = 0.028), but the positive link fades over time and becomes insignificant in the long run. Further, crisis effects are a much stronger determinant of suicides in social-democratic countries. Once the broad welfare regime is controlled for, changes in unemployment-related spending do not matter for preventing suicides. A generous welfare system seems efficient at preventing unemployment-related suicides in the long run, but societies in social-democratic countries might be less psychologically immune to sudden negative changes in their professional lives compared with people in liberal countries. Accounting for the different short- and long-run effects could thus improve our understanding of the unemployment-suicide link. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  2. Nuclear instrumentation

    International Nuclear Information System (INIS)

    Weill, Jacky; Fabre, Rene.

    1981-01-01

    This article sums up the Research and Development effort at present being carried out in the five following fields of applications: Health physics and Radioprospection, Control of nuclear reactors, Plant control (preparation and reprocessing of the fuel, testing of nuclear substances, etc.), Research laboratory instrumentation, Detectors. It also sets the place of French industrial activities by means of an estimate of the French market, production and flow of trading with other countries [fr

  3. Divided Instruments

    Science.gov (United States)

    Chapman, A.; Murdin, P.

    2000-11-01

    Although the division of the zodiac into 360° probably derives from Egypt or Assyria around 2000 BC, there is no surviving evidence of Mesopotamian cultures embodying this division into a mathematical instrument. Almost certainly, however, it was from Babylonia that the Greek geometers learned of the 360° circle, and by c. 80 BC they had incorporated it into that remarkably elaborate device gener...

  4. Instrumentation development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Areas being investigated for instrumentation improvement during low-level pollution monitoring include laser opto-acoustic spectroscopy, x-ray fluorescence spectroscopy, optical fluorescence spectroscopy, liquid crystal gas detectors, advanced forms of atomic absorption spectroscopy, electro-analytical chemistry, and mass spectroscopy. Emphasis is also directed toward development of physical methods, as opposed to conventional chemical analysis techniques for monitoring these trace amounts of pollution related to energy development and utilization

  5. Instrumentation maintenance

    International Nuclear Information System (INIS)

    Mack, D.A.

    1976-09-01

    It is essential to any research activity that accurate and efficient measurements be made for the experimental parameters under consideration for each individual experiment or test. Satisfactory measurements in turn depend upon having the necessary instruments and the capability of ensuring that they are performing within their intended specifications. This latter requirement can only be achieved by providing an adequate maintenance facility, staffed with personnel competent to understand the problems associated with instrument adjustment and repair. The Instrument Repair Shop at the Lawrence Berkeley Laboratory is designed to achieve this end. The organization, staffing and operation of this system is discussed. Maintenance policy should be based on studies of (1) preventive vs. catastrophic maintenance, (2) records indicating when equipment should be replaced rather than repaired and (3) priorities established to indicate the order in which equipment should be repaired. Upon establishing a workable maintenance policy, the staff should be instructed so that they may provide appropriate scheduled preventive maintenance, calibration and corrective procedures, and emergency repairs. The education, training and experience of the maintenance staff is discussed along with the organization for an efficient operation. The layout of the various repair shops is described in the light of laboratory space and financial constraints

  6. Space instrumentation: physics and astronomy in harmony?

    International Nuclear Information System (INIS)

    Aderin, M

    2008-01-01

    Surrey Satellite Technology Limited was formed as a company in 1985 and has been involved in 23 small satellite missions, making it the most successful and experienced small satellite supplier in the world. The challenge of getting a satellite into space takes a dedicated multidisciplinary team of physicists and engineers working together to achieve a common goal. In this paper the author will look at the breakdown of the teams for a number of space projects including NigeriaSAT1; one of the satellites that make up the Disaster Monitoring Constellation (DMC), which produces high quality commercial images for monitoring agriculture and the environment as well as dedicating a proportion of it's time to disaster monitoring. Commercial projects like this will be contrasted to instruments such as the Integral Field Unit (IFU) for the NIRSpec instrument on the James Webb Space Telescope (JWST is the replacement for the Hubble Space telescope). Although both projects have been running through commercial contracts at SSTL, how does the final goal of the instrument influence the synergy between the physics and the engineering needed to make it, and what, if any, economic differences are seen?

  7. Constraint-led changes in internal variability in running.

    Science.gov (United States)

    Haudum, Anita; Birklbauer, Jürgen; Kröll, Josef; Müller, Erich

    2012-01-01

    We investigated the effect of a one-time application of elastic constraints on movement-inherent variability during treadmill running. Eleven males ran two 35-min intervals while surface EMG was measured. In one of two 35-min intervals, after 10 min of running without tubes, elastic tubes (between hip and heels) were attached, followed by another 5 min of running without tubes. To assess variability, stride-to-stride iEMG variability was calculated. Significant increases in variability (36 % to 74 %) were observed during tube running, whereas running without tubes after the tube running block showed no significant differences. Results show that elastic tubes affect variability on a muscular level despite the constant environmental conditions and underline the nervous system's adaptability to cope with somehow unpredictable constraints since stride duration was unaltered.

  8. Running as a Key Lifestyle Medicine for Longevity.

    Science.gov (United States)

    Lee, Duck-Chul; Brellenthin, Angelique G; Thompson, Paul D; Sui, Xuemei; Lee, I-Min; Lavie, Carl J

    Running is a popular and convenient leisure-time physical activity (PA) with a significant impact on longevity. In general, runners have a 25%-40% reduced risk of premature mortality and live approximately 3 years longer than non-runners. Recently, specific questions have emerged regarding the extent of the health benefits of running versus other types of PA, and perhaps more critically, whether there are diminishing returns on health and mortality outcomes with higher amounts of running. This review details the findings surrounding the impact of running on various health outcomes and premature mortality, highlights plausible underlying mechanisms linking running with chronic disease prevention and longevity, identifies the estimated additional life expectancy among runners and other active individuals, and discusses whether there is adequate evidence to suggest that longevity benefits are attenuated with higher doses of running. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The Run-2 ATLAS Trigger System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00222798; The ATLAS collaboration

    2016-01-01

    The ATLAS trigger successfully collected collision data during the first run of the LHC between 2009-2013 at different centre-of-mass energies between 900 GeV and 8 TeV. The trigger system consists of a hardware Level-1 and a software-based high level trigger (HLT) that reduces the event rate from the design bunch-crossing rate of 40 MHz to an average recording rate of a few hundred Hz. In Run-2, the LHC will operate at centre-of-mass energies of 13 and 14 TeV and higher luminosity, resulting in roughly five times higher trigger rates. A brief review of the ATLAS trigger system upgrades that were implemented between Run-1 and Run-2, allowing to cope with the increased trigger rates while maintaining or even improving the efficiency to select physics processes of interest, will be given. This includes changes to the Level-1 calorimeter and muon trigger systems, the introduction of a new Level-1 topological trigger module and the merging of the previously two-level HLT system into a single event filter farm. A ...

  10. Determinants of National Savings: A Short and Long Run ...

    African Journals Online (AJOL)

    The study investigated the determinants of national savings by employing the Johansen cointegration technique and error correction model to examine the short run and long run dynamics of the system using time-series data for Ghana over the 1975-2008 period. The study found all the variables to be integrated of order ...

  11. Shock Transmission and Fatigue in Human Running.

    Science.gov (United States)

    Verbitsky, Oleg; Mizrahi, Joseph; Voloshin, Arkady; Treiger, July; Isakov, Eli

    1998-08-01

    The goal of this research was to analyze the effects of fatigue on the shock waves generated by foot strike. Twenty-two subjects were instrumented with an externally attached, lightweight accelerometer placed over the tibial tuberosity. The subjects ran on a treadmill for 30 min at a speed near their anaerobic threshold. Fatigue was established when the end-tidal CO 2 pressure decreased. The results indicated that approximately half of the subjects reached the fatigue state toward the end of the test. Whenever fatigue occurred, the peak acceleration was found to increase. It was thus concluded that there is a clear association between fatigue and increased heel strike-induced shock waves. These results have a significant implication for the etiology of running injuries, since shock wave attenuation has been previously reported to play an important role in preventing such injuries.

  12. Bridging long proxy data time series and instrumental observation in the Virtual Institute of Integrated Climate and Landscape Evolution Analyses - ICLEA

    Science.gov (United States)

    Schwab, Markus J.; Brauer, Achim; Błaszkiewicz, Mirosław; Raab, Thomas; Wilmking, Martin

    2015-04-01

    Understanding causes and effects of present-day climate change on landscapes and the human habitat faces two main challenges, (i) too short time series of instrumental observation that do not cover the full range of variability since mechanisms of climate change and landscape evolution work on different time scales, which often not susceptible to human perception, and, (ii) distinct regional differences due to the location with respect to oceanic/continental climatic influences, the geological underground, and the history and intensity of anthropogenic land-use. Both challenges are central for the ICLEA research strategy and demand a high degree of interdisciplinary. In particular, the need to link observations and measurements of ongoing changes with information from the past taken from natural archives requires joint work of scientists with very different time perspectives. On the one hand, scientists that work at geological time scales of thousands and more years and, on the other hand, those observing and investigating recent processes at short time scales. The GFZ, Greifswald University and the Brandenburg University of Technology together with their partner the Polish Academy of Sciences strive for focusing their research capacities and expertise in ICLEA. ICLEA offers young researchers an interdisciplinary and structured education and promote their early independence through coaching and mentoring. Postdoctoral rotation positions at the ICLEA partner institutions ensure mobility of young researchers and promote dissemination of information and expertise between disciplines. Training, Research and Analytical workshops between research partners of the ICLEA virtual institute are another important measure to qualify young researchers. The long-term mission of the Virtual Institute is to provide a substantiated data basis for sustained environmental maintenance based on a profound process understanding at all relevant time scales. Aim is to explore processes of

  13. Performance data from the ZEPLIN-III second science run

    International Nuclear Information System (INIS)

    Majewski, P; Edwards, B; Kalmus, G E; Lindote, A; Solovov, V N; Chepel, V; DeViveiros, L; Lopes, M I; Akimov, D Yu; Belov, V A; Burenkov, A A; Kobyakin, A S; Kovalenko, A G; Araújo, H M; Currie, A; Horn, M; Lebedenko, V N; Barnes, E J; Ghag, C; Hollingsworth, A

    2012-01-01

    ZEPLIN-III is a two-phase xenon direct dark matter experiment located at the Boulby Mine (U.K.). After its first science run in 2008 it was upgraded with: an array of low background photomultipliers, a new anti-coincidence detector system with plastic scintillator and an improved calibration system. After 319 days of data taking the second science run ended in May 2011. In this paper we describe the instrument performance with emphasis on the position and energy reconstruction algorithm and summarise the final science results.

  14. The Effects of Running Club Membership on Fourth Graders' Achievement of Connecticut State Standard for the Mile Run

    Science.gov (United States)

    Foshay, John D.; Patterson, Melissa

    2010-01-01

    The purpose of this study was to investigate the effects of a running club on the mile run times of fourth grade students. The study was conducted in a suburban elementary school setting in central Connecticut with a student body of 400. The participants for the study included 59 fourth grade students, 30 of whom were boys and 29 of whom were…

  15. Western diet increases wheel running in mice selectively bred for high voluntary wheel running.

    Science.gov (United States)

    Meek, T H; Eisenmann, J C; Garland, T

    2010-06-01

    Mice from a long-term selective breeding experiment for high voluntary wheel running offer a unique model to examine the contributions of genetic and environmental factors in determining the aspects of behavior and metabolism relevant to body-weight regulation and obesity. Starting with generation 16 and continuing through to generation 52, mice from the four replicate high runner (HR) lines have run 2.5-3-fold more revolutions per day as compared with four non-selected control (C) lines, but the nature of this apparent selection limit is not understood. We hypothesized that it might involve the availability of dietary lipids. Wheel running, food consumption (Teklad Rodent Diet (W) 8604, 14% kJ from fat; or Harlan Teklad TD.88137 Western Diet (WD), 42% kJ from fat) and body mass were measured over 1-2-week intervals in 100 males for 2 months starting 3 days after weaning. WD was obesogenic for both HR and C, significantly increasing both body mass and retroperitoneal fat pad mass, the latter even when controlling statistically for wheel-running distance and caloric intake. The HR mice had significantly less fat than C mice, explainable statistically by their greater running distance. On adjusting for body mass, HR mice showed higher caloric intake than C mice, also explainable by their higher running. Accounting for body mass and running, WD initially caused increased caloric intake in both HR and C, but this effect was reversed during the last four weeks of the study. Western diet had little or no effect on wheel running in C mice, but increased revolutions per day by as much as 75% in HR mice, mainly through increased time spent running. The remarkable stimulation of wheel running by WD in HR mice may involve fuel usage during prolonged endurance exercise and/or direct behavioral effects on motivation. Their unique behavioral responses to WD may render HR mice an important model for understanding the control of voluntary activity levels.

  16. A novel approach to the quantitative detection of anabolic steroids in bovine muscle tissue by means of a hybrid quadrupole time-of-flight-mass spectrometry instrument.

    Science.gov (United States)

    Bussche, Julie Vanden; Decloedt, Anneleen; Van Meulebroek, Lieven; De Clercq, Nathalie; Lock, Stephen; Stahl-Zeng, Jianru; Vanhaecke, Lynn

    2014-09-19

    In recent years, the analysis of veterinary drugs and growth-promoting agents has shifted from target-oriented procedures, mainly based on liquid chromatography coupled to triple-quadrupole mass spectrometry (LC-QqQ-MS), towards accurate mass full scan MS (such as Time-of-Flight (ToF) and Fourier Transform (FT)-MS). In this study, the performance of a hybrid analysis instrument (i.e. UHPLC-QuadrupoleTime-of-Flight-MS (QqToF-MS)), able to exploit both full scan HR and MS/MS capabilities within a single analytical platform, was evaluated for confirmatory analysis of anabolic steroids (gestagens, estrogens including stilbenes and androgens) in meat. The validation data was compared to previously obtained results (CD 2002/657/EC) for QqQ-MS and single stage Orbitrap-MS. Additionally, a fractional factorial design was used to shorten and optimize the sample extraction. Validation according to CD 2002/657/EC demonstrated that steroid analysis using QqToF has a higher competing value towards QqQ-MS in terms of selectivity/specificity, compared to single stage Orbitrap-MS. While providing excellent linearity, based on lack-of-fit calculations (F-test, α=0.05 for all steroids except 17β-ethinylestradiol: α=0.01), the sensitivity of QqToF-MS proved for 61.8% and 85.3% of the compounds more sensitive compared to QqQ-MS and Orbitrap-MS, respectively. Indeed, the CCα values, obtained upon ToF-MS/MS detection, ranged from 0.02 to 1.74μgkg(-1) for the 34 anabolic steroids, while for QqQ-MS and Orbitrap-MS values ranged from 0.04 to 0.88μgkg(-1) and from 0.07 to 2.50μgkg(-1), respectively. Using QqToF-MS and QqQ-MS, adequate precision was obtained as relative standard deviations for repeatability and within-laboratory reproducibility, were below 20%. In case of Orbitrap-MS, some compounds (i.e. some estrogens) displayed poor precision, which was possibly caused by some lack of sensitivity at lower concentrations and the absence of MRM-like experiments. Overall, it can be

  17. Piloting procedure for a pile running below critical level

    International Nuclear Information System (INIS)

    Lacour, J.; Raievski, V.

    1957-01-01

    The knowledge of the subcritical state of a reactor in the course of starting up makes it possible to avoid passing too quickly through the critical state. The problem arises every time the pile is put into action again following, for example, an appreciable modification in the fuel charge, or an accidental fall of the security rods during a run at high flux or at high temperature. The method described provides a mean of knowing at each moment the anti-reactivity value of the pile by means of a direct-reading instrument mounted on the control board. This result is obtained by superimposing a fixed frequency oscillation on the normal movement of a control rod, and reading on a phase-meter the dephasing of the neutron density. Theory shows, and experiments confirm, that for a given frequency the dephasing depends only on the lifetime of the fast neutrons, the characteristics of the slow neutrons and the anti-reactivity of the pile. The minimum time necessary for an anti-reactivity determination is equal to a modulation period (from 1 to 4 seconds). (authors) [fr

  18. Children's Fitness. Managing a Running Program.

    Science.gov (United States)

    Hinkle, J. Scott; Tuckman, Bruce W.

    1987-01-01

    A running program to increase the cardiovascular fitness levels of fourth-, fifth-, and sixth-grade children is described. Discussed are the running environment, implementation of a running program, feedback, and reinforcement. (MT)

  19. Short-run and long-run dynamics of farm land allocation

    DEFF Research Database (Denmark)

    Arnberg, Søren; Hansen, Lars Gårn

    2012-01-01

    This study develops and estimates a dynamic multi-output model of farmers’ land allocation decisions that allows for the gradual adjustment of allocations that can result from crop rotation practices and quasi-fixed capital constraints. Estimation is based on micro-panel data from Danish farmers...... that include acreage, output, and variable input utilization at the crop level. Results indicate that there are substantial differences between the short-run and long-run land allocation behaviour of Danish farmers and that there are substantial differences in the time lags associated with different crops...

  20. Barefoot running survey: Evidence from the field

    OpenAIRE

    David Hryvniak; Jay Dicharry; Robert Wilder

    2014-01-01

    Background: Running is becoming an increasingly popular activity among Americans with over 50 million participants. Running shoe research and technology has continued to advance with no decrease in overall running injury rates. A growing group of runners are making the choice to try the minimal or barefoot running styles of the pre-modern running shoe era. There is some evidence of decreased forces and torques on the lower extremities with barefoot running, but no clear data regarding how thi...