WorldWideScience

Sample records for instrumentation reactor technology

  1. Research reactor instrumentation and control technology. Report of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-10-01

    The majority of research reactors operating today were put into operation 20 years ago, and some of them underwent modifications, upgrading and refurbishing since their construction to meet the requirements for higher neutron fluxes. However, a few of these ageing research reactors are still operating with their original instrumentation and control systems (I and C) which are important for reactor safety to guard against abnormal occurrences and reactor control involving startup, shutdown and power regulation. Worn and obsolete I and C systems cause operational problems as well as difficulties in obtaining replacement parts. In addition, satisfying the stringent safety conditions laid out by the nuclear regulatory bodies requires the modernization of research reactors I and C systems and integration of additional instrumentation units to the reactor. In order to clarify these issues and to provide some guidance to reactor operators on state-of-art technology and future trends for the I and C systems for research reactors, a Technical Committee Meeting on Technology and Trends for Research Reactor Instrumentation and Controls was held in Ljubljana, Slovenia, from 4 to 8 December 1995. This publication summarizes the discussions and recommendations resulting from that meeting. This is expected to benefit the research reactor operators planning I and C improvements. Refs, figs, tabs

  2. The instrumentation of fast reactor

    International Nuclear Information System (INIS)

    Endo, Akira

    2003-03-01

    The author has been engaged in the development of fast reactors over the last 30 years with both an involvement with the early technology development on the experimental breeder reactor Joyo, and latterly continuing this work on the prototype breeder reactor, Monju. In order to pass on this experience to younger engineers this paper is produced to outline this experience in the sincere hope that the information given will be utilised in future educational training material. The paper discusses the wide diversity on the associated instrument technology which the fast breeder reactor requires. The first chapter outlines the fast reactor system, followed by discussions on reactor instrumentation, measurement principles, temperature dependencies, and verification response characteristics from various viewpoints, are discussed in chapters two and three. The important issues of failed fuel location detection, and sodium leak detection from steam generators are discussed in chapters 4 and 5 respectively. Appended to this report is an explanation on the methods of measuring response characteristics on instrumentation systems using error analysis, random signal theory and measuring method of response characteristic by AR (autoregressive) model on which it appears is becoming an indispensable problem for persons involved with this technology in the future. (author)

  3. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2013

    Energy Technology Data Exchange (ETDEWEB)

    Hallbert, Bruce [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Thomas, Ken [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2014-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  4. The nuclear instrumentation system of the French 1400 MWe reactors

    International Nuclear Information System (INIS)

    Bourgerette, A.; Mauduit, J.P.

    1993-01-01

    The nuclear instrumentation systems in power reactors in France have made considerable advances thanks to technological progress. The appearance of an integrated digital protection system (SPIN) and the extension of digital techniques have considerably improved performance and operating flexibility. Working on the basis of technology developed jointly with the Nuclear Electronics and Instrumentation Department at the French Atomic Energy Commission (CEA), Framatome and Merlin Gerin have designed the new nuclear instrumentation system for 1400 MW reactors. (authors). 4 figs

  5. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Hallbert, Bruce Perry [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thomas, Kenneth David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  6. The digital reactor protection system for the instrumentation and control of reactor TRIGA PUSPATI (RTP)

    International Nuclear Information System (INIS)

    Nurfarhana Ayuni Joha; Izhar Abu Hussin; Mohd Idris Taib; Zareen Khan Abdul Jalil Khan

    2010-01-01

    Reactor Protection System (RPS) is important for Reactor Instrumentation and Control System. The RPS comprises all redundant electrical devices and circuitry involved in the generation of those initiating signals associated to the trip protective function. The instrumentation system for the RPS provides automatic protection signals against unsafe and improper reactor operation. The physical separation is provided for all of the redundant instrumentation systems to preserve redundancy. The safety protection systems using circuits composed of analog instruments and relays with relay contacts is difficult to realize from various reasons. Therefore, an application of digital technology can be said a logical conclusion also in the light of its functional superiority. (author)

  7. The first Swedish nuclear reactor - from technical prototype to scientific instrument

    International Nuclear Information System (INIS)

    Fjaestad, M.

    2001-01-01

    The first Swedish reactor R1, constructed at the Royal Inst. of Technology in Stockholm, went critical in July 1954. This report presents historical aspects of the reactor, in particular about the reactor as a research instrument and a centre for physical science. The tensions between its role as a prototype and a step in the development of power reactors and that as a scientific instrument are especially focused

  8. Research and engineering application of coordinated instrumentation control and protection technology between reactor and steam turbine generator on nuclear power plant

    International Nuclear Information System (INIS)

    Sun Xingdong

    2014-01-01

    The coordinated instrumentation control and protection technology between reactor and steam turbine generator (TG) usually is very significant and complicated for a new construction of nuclear power plant, because it carries the safety, economy and availability of nuclear power plant. Based on successful practice of a nuclear power plant, the experience on interface design and hardware architecture of coordinated instrumentation control and protection technology between reactor and steam turbine generator was abstracted and researched. In this paper, the key points and engineering experience were introduced to give the helpful instructions for the new project. (author)

  9. Advanced Instrumentation, Information, and Control Systems Technologies Research in Support of Light Water Reactors

    International Nuclear Information System (INIS)

    Hallbert, Bruce P.; Kenneth, Thomas

    2014-01-01

    The Advanced Instrumentation, Information, and Control (II and C) Systems Technologies Pathway conducts targeted research and development (R and D) to address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals to ensure that legacy analog II and C systems are not life-limiting issues for the LWR fleet, and to implement digital II and C technology in a manner that enables broad innovation and business improvement in the nuclear power plant operating model. Resolving long-term operational concerns with the II and C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation's energy and environmental security

  10. Advanced Instrumentation, Information, and Control Systems Technologies Research in Support of Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hallbert, Bruce P.; Kenneth, Thomas [Idaho National Laboratory, Idaho (United States)

    2014-08-15

    The Advanced Instrumentation, Information, and Control (II and C) Systems Technologies Pathway conducts targeted research and development (R and D) to address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals to ensure that legacy analog II and C systems are not life-limiting issues for the LWR fleet, and to implement digital II and C technology in a manner that enables broad innovation and business improvement in the nuclear power plant operating model. Resolving long-term operational concerns with the II and C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation's energy and environmental security.

  11. Nuclear reactor instrumentation at research reactor renewal

    International Nuclear Information System (INIS)

    Baers, B.; Pellionisz, P.

    1981-10-01

    The paper overviews the state-of-the-art of research reactor renewals. As a case study the instrumentation reconstruction of the Finnish 250 kW TRIGA reactor is described, with particular emphasis on the nuclear control instrumentation and equipment which has been developed and manufactured by the Central Research Institute for Physics, Budapest. Beside the presentation of the nuclear instrument family developed primarily for research reactor reconstructions, the quality assurance policy conducted during the manufacturing process is also discussed. (author)

  12. Modernization of control instrumentation and security of reactor IAN - R1

    International Nuclear Information System (INIS)

    Gonzalez, J. M.

    1993-01-01

    The program to modernize IAN-R1 research reactor control and safety instrumentation has been carried out considering two main aspects: updating safety philosophy requirements and acquiring the newest reactor control instrumentation controlled by computer, following the present criteria internationally recognized, for safety and reliable reactor operations and the latest developments of nuclear electronic technology. The new IAN-R1 reactor instrumentation consist of two wide range neutron monitoring channels, commanded by microprocessor a data acquisition system and reactor control, (controlled by computers). The reactor control desk is providing through two displays; all safety and control signals to the reactor operators; furthermore some signals like reactor power, safety and period signals are also showed on digital bar graphics, which are hard wired directly from the neutron monitoring channels

  13. Experimental facility for development of high-temperature reactor technology: instrumentation needs and challenges

    Directory of Open Access Journals (Sweden)

    Sabharwall Piyush

    2015-01-01

    Full Text Available A high-temperature, multi-fluid, multi-loop test facility is under development at the Idaho National Laboratory for support of thermal hydraulic materials, and system integration research for high-temperature reactors. The experimental facility includes a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX and a secondary heat exchanger (SHX. Research topics to be addressed include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs at prototypical operating conditions. Each loop will also include an interchangeable high-temperature test section that can be customized to address specific research issues associated with each working fluid. This paper also discusses needs and challenges associated with advanced instrumentation for the multi-loop facility, which could be further applied to advanced high-temperature reactors. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST facility. A preliminary design configuration of the ARTIST facility will be presented with the required design and operating characteristics of the various components. The initial configuration will include a high-temperature (750 °C, high-pressure (7 MPa helium loop thermally integrated with a molten fluoride salt (KF-ZrF4 flow loop operating at low pressure (0.2 MPa, at a temperature of ∼450 °C. The salt loop will be thermally integrated with the steam/water loop operating at PWR conditions. Experiment design challenges include identifying suitable materials and components that will withstand the required loop operating conditions. The instrumentation needs to be highly accurate (negligible drift in measuring operational data for extended periods of times, as data collected will be

  14. Experimental facility for development of high-temperature reactor technology: instrumentation needs and challenges - 15066

    International Nuclear Information System (INIS)

    Sabharwall, P.; O'Brien, J.E.; Yoon, S.J.; Sun, X.

    2015-01-01

    A high-temperature, multi-fluid, multi-loop test facility is under development at the Idaho National Laboratory for support of thermal hydraulic, materials, and system integration research for high-temperature reactors. The experimental facility includes a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The 3 loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuits heat exchangers (PCHEs) at prototypical operating conditions. Each loop will also include an interchangeable high-temperature test section that can be customized to address specific research issues associated with each working fluid. This paper also discusses needs and challenges associated with advanced instrumentation for the multi-loop facility, which could be further applied to advanced high-temperature reactors. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integrated System Test (ARTIST) facility. A preliminary design configuration of the ARTIST facility will be presented with the required design and operating characteristics of the various components. The initial configuration will include a high-temperature (750 C. degrees), high-pressure (7 MPa) helium loop thermally integrated with a molten fluoride salt (KF-ZrF 4 ) flow loop operating at low pressure (0.2 MPa), at a temperature of ∼ 450 C. degrees. The salt loop will be thermally integrated with the steam/water loop operating at PWR conditions. Experiment design challenges include identifying suitable materials and components that will withstand the required loop operating conditions. The instrumentation needs to be highly accurate (negligible drift) in measuring operational data for extended periods of times, as data collected will be

  15. The first Swedish nuclear reactor - from technical prototype to scientific instrument; Sveriges foersta kaernreaktor - fraan teknisk prototyp till vetenskapligt instrument

    Energy Technology Data Exchange (ETDEWEB)

    Fjaestad, M. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of History of Science and Technology

    2001-01-01

    The first Swedish reactor R1, constructed at the Royal Inst. of Technology in Stockholm, went critical in July 1954. This report presents historical aspects of the reactor, in particular about the reactor as a research instrument and a centre for physical science. The tensions between its role as a prototype and a step in the development of power reactors and that as a scientific instrument are especially focused.

  16. Instrumentation to Enhance Advanced Test Reactor Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  17. Instrumentation to Enhance Advanced Test Reactor Irradiations

    International Nuclear Information System (INIS)

    Rempe, J.L.; Knudson, D.L.; Condie, K.G.; Daw, J.E.; Taylor, S.C.

    2009-01-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  18. University Reactor Instrumentation Program

    International Nuclear Information System (INIS)

    Vernetson, W.G.

    1992-11-01

    Recognizing that the University Reactor Instrumentation Program was developed in response to widespread needs in the academic community for modernization and improvement of research and training reactors at institutions such as the University of Florida, the items proposed to be supported by this grant over its two year period have been selected as those most likely to reduce foreed outages, to meet regulatory concerns that had been expressed in recent years by Nuclear Regulatory Commission inspectors or to correct other facility problems and limitations. Department of Energy Grant Number DE-FG07-90ER129969 was provided to the University of Florida Training Reactor(UFTR) facility through the US Department of Energy's University Reactor Instrumentation Program. The original proposal submitted in February, 1990 requested support for UFTR facility instrumentation and equipment upgrades for seven items in the amount of $107,530 with $13,800 of this amount to be the subject of cost sharing by the University of Florida and $93,730 requested as support from the Department of Energy. A breakdown of the items requested and total cost for the proposed UFTR facility instrumentation and equipment improvements is presented

  19. U.S. Department of Energy instrumentation and controls technology research for advanced small modular reactors

    International Nuclear Information System (INIS)

    Wood, Richard Thomas

    2013-01-01

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD and D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, key DOE programs have substantial ICHMI RD and D elements to their respective research portfolio. This article describes current ICHMI research to support the development of advanced small modular reactors. (author)

  20. Reactor instrumentation and control

    International Nuclear Information System (INIS)

    Wach, D.; Beraha, D.

    1980-01-01

    The methods for measuring radiation are shortly reviewed. The instrumentation for neutron flux measurement is classified into out-of-core and in-core instrumentation. The out-of-core instrumentation monitors the operational range from the subcritical reactor to full power. This large range is covered by several measurement channels which derive their signals from counter tubes and ionization chambers. The in-core instrumentation provides more detailed information on the power distribution in the core. The self-powered neutron detectors and the aeroball system in PWR reactors are discussed. Temperature and pressure measurement devices are briefly discussed. The different methods for leak detection are described. In concluding the plant instrumentation part some new monitoring systems and analysis methods are presented: early failure detection methods by noise analysis, acoustic monitoring and vibration monitoring. The presentation of the control starts from an qualitative assessment of the reactor dynamics. The chosen control strategy leads to the definition of the part-load diagram, which provides the set-points for the different control systems. The tasks and the functions of these control systems are described. In additiion to the control, a number of limiting systems is employed to keep the reactor in a safe operating region. Finally, an outlook is given on future developments in control, concerning mainly the increased application of process computers. (orig./RW)

  1. Feasibility study for CPR1000 incore measurement instrumentation educed from the reactor pressure vessel upper head

    International Nuclear Information System (INIS)

    Guang Jianwei; Liu Qian; Li Wenhong; Duan Yuangang

    2010-01-01

    The article discusses about the feasibility of in-core measurement instrumentation educed from the reactor pressure vessel (RPV) upper head. Incore instrumentation educed from the reactor pressure vessel upper head is one of advanced technology in the third generation nuclear power plant. This technology can reduce the manufacture problem of RPV; decrease the manufacture time effectively. Furthermore, this technology can get rid of the trouble for loss of water caused by many penetrations in the RPV bottom head, can increase security of nuclear power plant. By the description of structure analysis, comparison, maturity for four type incore instrumentation detectors, the incore instrumentation can be educed from RPV upper head, which can increase reactor's security, reduce the manufacture time, decrease group dose in refueling period. The core design ability can be enhanced through this study. (authors)

  2. Nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Duncombe, E.; McGonigal, G.

    1975-01-01

    A liquid metal cooled nuclear reactor is described which has an equal number of fuel sub-assemblies and sensing instruments. Each instrument senses temperature and rate of coolant flow of a coolant derived from a group of three sub-assemblies so that an abnormal value for one sub-assembly will be indicated on three instruments thereby providing for redundancy of up to two of the three instruments. The abnormal value may be a precurser to unstable boiling of coolant

  3. Modernization of reactor instrumentation for research reactors at Trombay

    International Nuclear Information System (INIS)

    Darbhe, M.D.; Chaudhuri, H.

    1989-01-01

    The three research reactors at Trombay, viz., Apsara, Cirus and Zerlina were commissioned in 1956, 1960 and 1961 respectively. The nuclear instrumentation designs were based on the vacuum tube technology, which was prevalent during those days. The effect of component obsolescence of critical components like vacuum tubes, magnetic amplifiers and sensitrol meter relays was strongly felt since early 1970s. Also, the failure rates of the units were observed to show an increasing trend due to ageing and lack of good quality indigenous spares. Hence it was proposed to replace the nuclear instrumentation units for the three reactors, with those employing modern, state of the art solid state devices, keeping indigenous content as high as practicable. The work started in 1977 with the preparations of specifications and the project was scheduled to be completed in 1981. The project was divided into two phases. The Phase I comprising of nuclear channels common to all reactors and Phase II consisting exclusively of regulating system units of Cirus. The salient stages of project progress and completion were: (i) Fabrication and testing of final design prototypes was completed by end of 1982. (ii) Commissioning of new units at Apsara was completed in January 1984. (iii) Commissioning of new units at Cirus was completed in September 1984. An account of experience in all these stages and problems encountered is given. (author). 6 figs

  4. Operational and reliability experience with reactor instrumentation

    International Nuclear Information System (INIS)

    Dixon, F.; Gow, R.S.

    1978-01-01

    In the last 15 years the CEGB has experienced progressive plant development, integration and changes in operating regime through nine nuclear (gas-cooled reactor) power stations with corresponding instrumentation advances leading towards more refined centralized control. Operation and reliability experience with reactor instrumentation is reported in this paper with reference to the progressive changes related to the early magnox, late magnox and AGR periods. Data on instrumentation reliability in terms of reactor forced outages are presented and show that the instrumentation contributions to loss of generating plant availability are small. Reactor safety circuits, neutron flux and temperature measurements, gas analysis and vibration monitoring are discussed. In reviewing the reactor instrumentation the emphasis is on reporting recent experience, particularly on AGR equipment, but overall performance and changes to magnox equipment are included so that some appreciation can be obtained of instrumentation requirements with respect to plant lifetimes. (author)

  5. Advanced In-Pile Instrumentation for Materials Testing Reactors

    Science.gov (United States)

    Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T. C.; Chase, B. M.; Davis, K. L.; Palmer, A. J.; Schley, R. S.

    2014-08-01

    The U.S. Department of Energy sponsors the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to promote U.S. research in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, advancing U.S. energy security needs. A key component of the ATR NSUF effort is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the strategy developed by the Idaho National Laboratory (INL) for identifying instrumentation needed for ATR irradiation tests and the program initiated to obtain these sensors. New sensors developed from this effort are identified, and the progress of other development efforts is summarized. As reported in this paper, INL researchers are currently involved in several tasks to deploy real-time length and flux detection sensors, and efforts have been initiated to develop a crack growth test rig. Tasks evaluating `advanced' technologies, such as fiber-optics based length detection and ultrasonic thermometers, are also underway. In addition, specialized sensors for real-time detection of temperature and thermal conductivity are not only being provided to NSUF reactors, but are also being provided to several international test reactors.

  6. Programming for a nuclear reactor instrument simulator

    International Nuclear Information System (INIS)

    Cohn, C.E.

    1989-01-01

    A new computerized control system for a transient test reactor incorporates a simulator for pre-operational testing of control programs. The part of the simulator pertinent to the discussion here consists of two microprocessors. An 8086/8087 reactor simulator calculates simulated reactor power by solving the reactor kinetics equations. An 8086 instrument simulator takes the most recent power value developed by the reactor simulator and simulates the appropriate reading on each of the eleven reactor instruments. Since the system is required to run on a one millisecond cycle, careful programming was required to take care of all eleven instruments in that short time. This note describes the special programming techniques used to attain the needed performance

  7. Nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Duncombe, E.; McGonigal, G.

    1976-01-01

    Reference is made to the instrumentation of liquid metal cooled fast reactors. In order to ensure the safe operation of such reactors it is necessary to constantly monitor the coolant flowing through the fuel assemblies for temperature and rate of flow, requiring a large number of sensors. An improved and simplified arrangement is claimed in which the fuel assemblies feed a fraction of coolant to three instrument units arranged to sense the temperature and rate of flow of samples of coolant. Each instrument unit comprises a sleeve housing a sensing unit and has a number of inlet ducts arranged for receiving coolant from a fuel assembly together with a single outlet. The sensing unit has three thermocouple hot junctions connected in series, the hot junctions and inlet ducts being arranged in pairs. Electromagnetic windings around an inductive core are arranged to sense variation in flow of liquid metal by flux distortion. Fission product sensing means may also be provided. Full constructional details are given. (U.K.)

  8. Advanced Instrumentation for Transient Reactor Testing

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael L.; Anderson, Mark; Imel, George; Blue, Tom; Roberts, Jeremy; Davis, Kurt

    2018-01-31

    Transient testing involves placing fuel or material into the core of specialized materials test reactors that are capable of simulating a range of design basis accidents, including reactivity insertion accidents, that require the reactor produce short bursts of intense highpower neutron flux and gamma radiation. Testing fuel behavior in a prototypic neutron environment under high-power, accident-simulation conditions is a key step in licensing nuclear fuels for use in existing and future nuclear power plants. Transient testing of nuclear fuels is needed to develop and prove the safety basis for advanced reactors and fuels. In addition, modern fuel development and design increasingly relies on modeling and simulation efforts that must be informed and validated using specially designed material performance separate effects studies. These studies will require experimental facilities that are able to support variable scale, highly instrumented tests providing data that have appropriate spatial and temporal resolution. Finally, there are efforts now underway to develop advanced light water reactor (LWR) fuels with enhanced performance and accident tolerance. These advanced reactor designs will also require new fuel types. These new fuels need to be tested in a controlled environment in order to learn how they respond to accident conditions. For these applications, transient reactor testing is needed to help design fuels with improved performance. In order to maximize the value of transient testing, there is a need for in-situ transient realtime imaging technology (e.g., the neutron detection and imaging system like the hodoscope) to see fuel motion during rapid transient excursions with a higher degree of spatial and temporal resolution and accuracy. There also exists a need for new small, compact local sensors and instrumentation that are capable of collecting data during transients (e.g., local displacements, temperatures, thermal conductivity, neutron flux, etc.).

  9. Safety regulations concerning instrumentation and control systems for research reactors

    International Nuclear Information System (INIS)

    El-Shanshoury, A.I.

    2009-01-01

    A brief study on the safety and reliability issues related to instrumentation and control systems in nuclear reactor plants is performed. In response, technical and strategic issues are used to accomplish instrumentation and control systems safety. For technical issues there are ; systems aspects of digital I and C technology, software quality assurance, common-mode software, failure potential, safety and reliability assessment methods, and human factors and human machine interfaces. The strategic issues are the case-by-case licensing process and the adequacy of the technical infrastructure. The purpose of this work was to review the reliability of the safety systems related to these technical issues for research reactors

  10. Practical course on reactor instrumentation

    International Nuclear Information System (INIS)

    Boeck, H.; Villa, M.

    2004-06-01

    This course is based on the description of the instrumentation of the TRIGA-reactor Vienna, which is used for training research and isotope production. It comprises the following chapters: 1. instrumentation, 2. calibration of the nuclear channels, 3. rod drop time of the control rods, 4. neutron flux density measurements using compensated ionization, 5. neutron flux density measurement with fission chambers (FC), 6. neutron flux density measurement with self-powered neutron detectors (SPND), 7. pressurized water reactor simulator, 8. verification of the radiation level during reactor operation. There is one appendix about neutron-sensitive thermocouples. (nevyjel)

  11. Reactor safety instrumentation of Paks NPP (experience and perspective)

    International Nuclear Information System (INIS)

    Elo, S.; Hamar, K.

    1993-01-01

    The majority of the existing control and protection systems in nuclear power plants use old analog technology and design philosophy. Maintenance and the procurement of spare parts is becoming increasingly difficult. In general there is an age degradation concern. Aging degradation in nuclear power plants must be effectively managed to avoid a loss of vital safety function, shutdown of the station, a reduced power generation, or any failure leading to expensive repair. Even with the best efforts in developing reliable and long life instrumentation and control systems for nuclear power plants it is expected that these systems for most plants will require replacements during the life of the plants. The instrumentation and control system of the nuclear power plants designed during the 70's and constructed in the 80's went out-of-date since nuclear safety is not a static concept and the digital computer technology has undergone rapid improvements during the 70's and 80's. Simultaneously the operation and the maintenance of the I ampersand C system of those plants described above becomes more and more difficult and expensive. In this context the pure quality of the former Soviet designed process instrumentation system increases the needs of upgrading this system. The author reviews the main design characteristics of the reactor safety instrumentation of the Paks NPP. Further he attempts to convey the perspective on upgrading the reactor safety instrumentation as seen by the HAEC and its Nuclear Safety Inspectorate

  12. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Hallbert

    2012-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  13. Advanced In-pile Instrumentation for Material and Test Reactors

    International Nuclear Information System (INIS)

    Rempe, J.L.; Knudson, D.L.; Daw, J.E.; Unruh, T.C.; Chase, B.M.; Davis, K.L.; Palmer, A.J.; Schley, R.S.

    2013-06-01

    The US Department of Energy sponsors the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to promote U.S. research in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, advancing U.S. energy security needs. A key component of the ATR NSUF effort is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the strategy developed by the Idaho National Laboratory (INL) for identifying instrumentation needed for ATR irradiation tests and the program initiated to obtain these sensors. New sensors developed from this effort are identified; and the progress of other development efforts is summarized. As reported in this paper, INL staff is currently involved in several tasks to deploy real-time length and flux detection sensors, and efforts have been initiated to develop a crack growth test rig. Tasks evaluating 'advanced' technologies, such as fiber-optics based length detection and ultrasonic thermometers are also underway. In addition, specialized sensors for real-time detection of temperature and thermal conductivity are not only being provided to NSUF reactors, but are also being provided to several international test reactors. (authors)

  14. Assessment of Sensor Technologies for Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, Kofi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vlim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Britton, Jr, Charles L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wootan, D. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anheier, Jr, N. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diaz, A. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, E. H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chien, H. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Sheen, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Bakhtiari, Sasan [Argonne National Lab. (ANL), Argonne, IL (United States); Gopalsami, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Heifetz, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Tam, S. W. [Argonne National Lab. (ANL), Argonne, IL (United States); Park, Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Upadhyaya, B. R. [Univ. of Tennessee, Knoxville, TN (United States); Stanford, A. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-10-01

    Sensors and measurement technologies provide information on processes, support operations and provide indications of component health. They are therefore crucial to plant operations and to commercialization of advanced reactors (AdvRx). This report, developed by a three-laboratory team consisting of Argonne National Laboratory (ANL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL), provides an assessment of sensor technologies and a determination of measurement needs for AdvRx. It provides the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program and contributes to the design and implementation of AdvRx concepts.

  15. Studies on the instrumentation of a beam-tube medium flux reactor

    International Nuclear Information System (INIS)

    Axmann, A.; Pollet, J.L.; Queudot, J.

    1979-01-01

    In the years 1977/78, the ad hoc commitee for medium-flux reactor development of the Federal Ministry for Research and Technology developed constructional concepts for a medium-flux reactor to be utilized by beam tube experiments. The HMI has elaborated contributions for discussions of the subject of instrumentation, in particular for experiments in solid state physics. These contributions are contained in the report. (orig./RW) [de

  16. Instrumentation Technologies for Improving an Irradiation Testing of Nuclear Fuels and Materials at the HANARO

    International Nuclear Information System (INIS)

    Kim, Bong Goo; Park, Sung Jae; Choo, Ki Nam

    2011-01-01

    Over 50 years of nuclear fuels and materials irradiation testing has led to many countries developing significant improvements in instrumentation to monitor physical parameters and to control the test conditions in Materials Test Reactors (MTRs) or research reactors. Recent effort to deploy new fuels and materials in existing and advanced reactors has increased the demand for well-instrumented irradiation tests. Specifically, demand has increased for tests with sensors capable of providing real-time measurement of key parameters, such as temperature, geometry changes, thermal conductivity, fission gas release, cracking, coating buildup, thermal and fast flux, etc. This review paper documents the current state of instrumentation technologies in MTRs in the world and summarizes on-going research efforts to deploy new sensors. There is increased interest to irradiate new materials and reactor fuels for advanced PWRs and the Gen-IV reactor systems, such as SFRs (Sodium-cooled Fast Reactors), VHTRs (Very-High-Temperature Reactors), SCWRs (Supercritical-Water-cooled Reactors) and GFRs (Gas-cooled Fast Reactor). This review documents the current state of instrumentation technologies in MTRs in the world, identifies challenges faced by previous testing methods and how these challenges were overcome. A wide range of sensors are available to measure key parameters of interest during fuels and materials irradiations in MTRs. Such sensors must be reliable, small size, highly accurate, and able to withstand harsh conditions. On-going development efforts are focusing on providing MTR users a wider range of parameter measurements with increased accuracy. In addition, development efforts are focusing on reducing the impact of sensor on measurements by reducing sensor size. This report includes not only status of instrumentation using research reactors in the world to irradiate nuclear fuels and materials but also future directions relating to instrumentation technologies for

  17. Design of reactor alarm instrument based on SOPC

    International Nuclear Information System (INIS)

    Li Meng; Lu Yi; Rong Ru

    2008-01-01

    The design of embedded alarm instrument in reactors based on Nios II CPU is introduced in this paper. This design uses the SOPC technology based on the Cyclone series FPGA as a digital bench, and connects the MPU and drivers and interface of times, RS232, sdram,and etc. into a FPGA chip. It is proved that the system achieves the design goals in primary experimentation. (authors)

  18. Development of smart nuclear instrumentation for reactors

    International Nuclear Information System (INIS)

    Chaganty, S.P.; Das, D.; Bhatnagar, P.V.; Das, A.; Sreedharan, Preetha; Kataria, S.K.

    2001-01-01

    Variety of nuclear instruments are required for different applications in reactors such as reactor start-up, reactor protection and regulating system, area monitoring, failed fuel detection, stack monitoring etc. Attempts are made to develop a standardized microcomputer based hardware for configuring different types of instruments. PC architecture is chosen due to easy availability of components/boards and software. These instruments have dual redundant Network Interface Cards for connecting to a Primary Radiation Data LAN which in turn can be connected to Plant Information Bus through Gateways. These SMART instruments can be tested/calibrated through specific commands from remote computers connected over the LAN. This paper describes the various issues involved and the design details. (author)

  19. Enhanced in-pile instrumentation at the advanced test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T.; Chase, B. M.; Palmer, J.; Condie, K. G.; Davis, K. L. [Idaho National Laboratory, MS 3840, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2011-07-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper reports results from this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and realtime flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted. (authors)

  20. Enhanced In-Pile Instrumentation at the Advanced Test Reactor

    Science.gov (United States)

    Rempe, Joy L.; Knudson, Darrell L.; Daw, Joshua E.; Unruh, Troy; Chase, Benjamin M.; Palmer, Joe; Condie, Keith G.; Davis, Kurt L.

    2012-08-01

    Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper provides an update on this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

  1. Development of a nuclear reactor control system simulator using virtual instruments

    International Nuclear Information System (INIS)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Lameiras, Fernando Soares

    2011-01-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. This article describes a digital system being developed to simulate the behavior of the operating parameters using virtual instruments. The control objective is to bring the reactor power from its source level (mW) to a full power (kW). It is intended for education of basic reactor neutronic and thermohydraulic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron, control by rods, fuel and coolant temperatures, power, etc. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Centre - CDTN was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. The simulator system is being developed using the LabVIEW (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's) using electronic processor and visual interface in video monitor. The main purpose of the system is to provide training tools for instructors and students, allowing navigating by user-friendly operator interface and monitoring tendencies of the operational variables. It will be an interactive tool for training and teaching and could be used to predict the reactor behavior. Some scenarios are presented to demonstrate that it is possible to know the behavior of some variables from knowledge of input parameters. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility. (author)

  2. Development of a nuclear reactor control system simulator using virtual instruments

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Lameiras, Fernando Soares, E-mail: ajp@cdtn.b, E-mail: amir@cdtn.b, E-mail: fsl@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. This article describes a digital system being developed to simulate the behavior of the operating parameters using virtual instruments. The control objective is to bring the reactor power from its source level (mW) to a full power (kW). It is intended for education of basic reactor neutronic and thermohydraulic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron, control by rods, fuel and coolant temperatures, power, etc. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Centre - CDTN was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. The simulator system is being developed using the LabVIEW (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's) using electronic processor and visual interface in video monitor. The main purpose of the system is to provide training tools for instructors and students, allowing navigating by user-friendly operator interface and monitoring tendencies of the operational variables. It will be an interactive tool for training and teaching and could be used to predict the reactor behavior. Some scenarios are presented to demonstrate that it is possible to know the behavior of some variables from knowledge of input parameters. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility. (author)

  3. Reactor instrumentation renewal of the TRIGA reactor Vienna, Austria

    International Nuclear Information System (INIS)

    Boeck, H.; Weiss, H.; Hood, W.E.; Hyde, W.K.

    1992-01-01

    The TRIGA Mark-II reactor at the Atominstitut in Vienna, Austria is replacing its twenty-four year old instrumentation system with a microprocessor based control system supplied by General Atomics. Ageing components, new governmental safety requirements and a need for state of the art instrumentation for training students has spurred the demand for new reactor instrumentation. In Austria a government appointed expert is assigned the responsibility of reviewing the proposed installation and verifying all safety aspects. After a positive review, final assembly and checkout of the instrumentation system may commence. The instrumentation system consists of three basic modules: the control system console, the data acquisition console and the NH-1000 wide range channel. Digital communications greatly reduce interwiring requirements. Hardwired safety channels are independent of computer control, thus, the instrumentation system in no way relies on any computer intervention for safety function. In addition, both the CSC and DAC computers are continuously monitored for proper operation via watchdog circuits which are capable of shutting down the reactor in the event of computer malfunction. Safety channels include two interlocked NMP-1000 multi-range linear channels for steady state mode, an NPP-1000 linear safety channel for pulse mode and a set of three independent fuel temperature monitoring channels. The microprocessor controlled wide range NM- 1000 digital neutron monitor (fission chamber based) functions as a startup/operational channel, and provides all power level related Interlocks. The Atominstitut TRIGA reactor is configured for four modes of operation: manual mode, automatic mode (servo control), pulsing mode and square wave mode. Control of the standard control rods is via stepping motor control rod drives, which offers the operator the choice of which control rods are operated by the servo system in automatic and square wave model. (author)

  4. EPRTM Reactor neutron instrumentation

    International Nuclear Information System (INIS)

    Pfeiffer, Maxime; SALA, Stephanie

    2013-06-01

    The core safety during operation is linked, in particular, to the respect of criteria related to the heat generated in fuel rods and to the heat exchange between the rods and the coolant. This local power information is linked to the power distribution in the core. In order to evaluate the core power distribution, the EPR TM reactor relies on several types of neutron detectors: - ionization chambers located outside the vessel and used for protection and monitoring - a fixed in-core instrumentation based on Cobalt Self Powered Neutron Detectors used for protection and monitoring - a mobile reference in-core instrumentation based on Vanadium aero-balls This document provides a description of this instrumentation and its use in core protection, limitation, monitoring and control functions. In particular, a description of the detectors and the principles of their signal generation is supplied as well as the description of the treatments related to these detectors in the EPR TM reactor I and C systems (including periodical calibration). (authors)

  5. Nuclear instrumentation for research reactors

    International Nuclear Information System (INIS)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J.

    1997-01-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70'. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs

  6. Device for removing a spent reactor core instrument tube

    International Nuclear Information System (INIS)

    Watanabe, Shigeru; Tsuji, Teruaki.

    1980-01-01

    Purpose: To easily and exactly execute works for removing a used reactor core instrument tube to be mounted in a reactor core from the lattice space of the core or for charging the tube into the lattice of the core. Constitution: When fuel assembly is pulled out of a reactor core and a spent reactor core instrument tube is then bent and removed from the core at periodical inspection time, a lower gripping unit integral with an upper gripping unit and a bending unit is provided at the lower end of a hanging rope of a winch, and lowered to the reactor core. Then, the spent reactor core instrument tube is gripped by the upper and lower gripping units, the bending unit is operated, the spent reactor core instrument tube is bent, and the tube is then pulled upwardly by the winch to remove the tube. (Aizawa, K.)

  7. Availability analysis of the nuclear instrumentation of a research reactor

    International Nuclear Information System (INIS)

    Vianna Filho, Alfredo Marques

    2016-01-01

    The maintenance of systems and equipment is a central question related to Production Engineering. Although systems are not fully reliable, it is often necessary to minimize the failure occurrence likelihood. The failures occurrences can have disastrous consequences during a plane flight or operation of a nuclear power plant. The elaboration of a maintenance plan has as objective the prevention and recovery from system failures, increasing reliability and reducing the cost of unplanned shutdowns. It is also important to consider the issues related to organizations safety, especially those dealing with dangerous technologies. The objective of this thesis is to propose a method for maintenance analysis of a nuclear research reactor, using a socio-technical approach, and focused on existing conditions in Brazil. The research reactor studied belongs to the federal government and it is located in the city of Rio de Janeiro. The specific objective of this thesis is to develop the availability analysis of one of the principal systems of the research reactor, the nuclear instrumentation system. In this analysis, were taken into account not only the technical aspects of the modules related to nuclear instrumentation system, but also the human and organizational factors that could affect the availability of the nuclear instrumentation system. The results showed the influence of these factors on the availability of the nuclear instrumentation system. (author)

  8. Tritium instrumentation for a fusion reactor power plant

    International Nuclear Information System (INIS)

    Shank, K.E.; Easterly, C.E.

    1976-09-01

    A review of tritium instrumentation is presented. This includes a discussion of currently available in-plant instrumentation and methods required for sampling stacks, monitoring process streams and reactor coolants, analyzing occupational work areas for air and surface contamination, and personnel monitoring. Off-site instrumentation and collection techniques are also presented. Conclusions are made concerning the adequacy of existing instrumentation in relation to the monitoring needs for fusion reactors

  9. Instrumentation Needs for Integral Primary System Reactors (IPSRs) - Task 1 Final Report

    International Nuclear Information System (INIS)

    Gary D Storrick; Bojan Petrovic; Luca Oriani; Lawrence E Conway; Diego Conti

    2005-01-01

    This report presents the results of the Westinghouse work performed under Task 1 of this Financial Assistance Award and satisfies a Level 2 Milestone for the project. While most of the signals required for control of IPSRs are typical of other PWRs, the integral configuration poses some new challenges in the design or deployment of the sensors/instrumentation and, in some cases, requires completely new approaches. In response to this consideration, the overall objective of Task 1 was to establish the instrumentation needs for integral reactors, provide a review of the existing solutions where available, and, identify research and development needs to be addressed to enable successful deployment of IPSRs. The starting point for this study was to review and synthesize general characteristics of integral reactors, and then to focus on a specific design. Due to the maturity of its design and availability of design information to Westinghouse, IRIS (International Reactor Innovative and Secure) was selected for this purpose. The report is organized as follows. Section 1 is an overview. Section 2 provides background information on several representative IPSRs, including IRIS. A review of the IRIS safety features and its protection and control systems is used as a mechanism to ensure that all critical safety-related instrumentation needs are addressed in this study. Additionally, IRIS systems are compared against those of current advanced PWRs. The scope of this study is then limited to those systems where differences exist, since, otherwise, the current technology already provides an acceptable solution. Section 3 provides a detailed discussion on instrumentation needs for the representative IPSR (IRIS) with detailed qualitative and quantitative requirements summarized in the exhaustive table included as Appendix A. Section 3 also provides an evaluation of the current technology and the instrumentation used for measurement of required parameters in current PWRs. Section 4

  10. Digital study of nuclear reactor instrument

    International Nuclear Information System (INIS)

    Lv Gongxiang; Yang Zhijun

    2006-01-01

    The paper introduces the design method of nuclear reactor's digital instrument developed by authors based on the AT89C52 single chip microcomputer. Also the instrument system hardware structure and software framework are given. The instrument apply DDC112 which is responsible for the measure of lower current. When designing the instrument system, anti-interference measure of software, especially hardware is considered seriously. (authors)

  11. Technology Transfer Programme In Reactor Digital Instrumentation And Control System (REDICS) Project: Knowledge, Experiences And Future Expectations

    International Nuclear Information System (INIS)

    Nurfarhana Ayuni Joha; Mohamad Puad Abu; Izhar Abu Hussin; Ridzuan Abdul Mutalib; Zareen Khan Abdul Jalil Khan; Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat; Mohd Idris Taib

    2013-01-01

    The PUSPATI TRIGA MARK II research reactor in Malaysia was commissioned in 1982. After 31 years of operation, Nuclear Malaysia is taking an approach for a better research and development in nuclear radiations as well as the technical services that provided. Reactor TRIGA PUSPATI (RTP) is currently upgrading its control console from analogue to digital system. The Reactor Digital Instrumentation and Control System (ReDICS) project is done on cooperation with Korea Atomic Energy Research Institute (KAERI), Korea including the technical part from the design stage until commissioning as well as the Technology Transfer Program (TTP). TTP in this ReDICS project is a part of Human Resource and System Development Program. It was carried out from the design stage until the commissioning of the system. It covers all subjects related to the design on the digital system and the requirements for the operation of RTP. The objective of this paper is to share the knowledge and experiences gained through this ReDICS project. This paper will also discuss the future expectations from this ReDICS project for Nuclear Malaysia and its personnel, as well as to the country. (author)

  12. Safety Evaluation of Kartini Reactor Based on Instrumentation System Design

    International Nuclear Information System (INIS)

    Tjipta Suhaemi; Djen Djen Dj; Itjeu K; Johnny S; Setyono

    2003-01-01

    The safety of Kartini reactor has been evaluated based on instrumentation system aspect. The Kartini reactor is designed by BATAN. Design power of the reactor is 250 kW, but it is currently operated at 100 kW. Instrumentation and control system function is to monitor and control the reactor operation. Instrumentation and control system consists of safety system, start-up and automatic power control, and process information system. The linear power channel and logarithmic power channel are used for measuring power. There are 3 types of control rod for controlling the power, i.e. safety rod, shim rod, and regulating rod. The trip and interlock system are used for safety. There are instrumentation equipment used for measuring radiation exposure, flow rate, temperature and conductivity of fluid The system of Kartini reactor has been developed by introducing a process information system, start-up system, and automatic power control. It is concluded that the instrumentation of Kartini reactor has followed the requirement and standard of IAEA. (author)

  13. On-line Monitoring of Instrumentation in Research Reactors

    International Nuclear Information System (INIS)

    2017-12-01

    This publication is the result of a benchmarking effort undertaken under the IAEA coordinated research project on improved instrumentation and control (I&C) maintenance techniques for research reactors. It lays the foundation for implementation of on-line monitoring (OLM) techniques and establishment of the validity of those for improved maintenance practices in research reactors for a number of applications such as change to condition based calibration, performance monitoring of process instrumentation systems, detection of process anomalies and to distinguish between process problems/effects and instrumentation/sensor issues. The techniques and guidance embodied in this publication will serve the research reactor community in providing the technical foundation for implementation of OLM techniques. It is intended to be used by Member States to implement I&C maintenance and to improve performance of research reactors.

  14. Instrumentation and control of future sodium cooled fast reactors - Design improvements

    International Nuclear Information System (INIS)

    Madhusoodanan, K.; Sakthivel, M.; Chellapandi, P.

    2013-06-01

    India's fast reactor program started with the 40 MWt Fast Breeder Test Reactor. 500 MWe Prototype Fast Breeder Reactor (PFBR) is currently under construction at Kalpakkam. Safety of PFBR is enhanced by improved design features of I and C system. Since the design of Instrumentation and control (I and C) of PFBR, considerable improvements in terms of advancement in technology and indigenization has taken place. Further improvements in I and C is proposed for solving many of the difficulties faced during the design and construction phases of PFBR. Design improvements proposed are covered in this paper which will make the implementation and maintenance of I and C of future SFRs easier. (authors)

  15. Instrumentation renewal at the FIR 1 research reactor in Finland

    International Nuclear Information System (INIS)

    Bars, Bruno; Kall, Leif

    1982-01-01

    The Finnish TRIGA Mark II reactor (FIR 1 100 kW, later 250 kW steady state power and pulsing capability up to 250 MW) has been in operation for 20 years. The reactor is the only research reactor in Finland and is an important research training and service facility, which obviously will be operated for 10...20 years ahead. The mechanical parts of the reactor are in good shape. Some minor modifications have previously been made in the instrumentation. However, the original instrumentation could hardly have been used for 10...20 years ahead without extensive modifications and modernization. After a careful evaluation and planning process the whole reactor instrumentation was renewed in 1981 at a cost of about 400 000 dollar. The renewal was carried out in cooperation with the Central Research Institute for Physics (KFKI) at the Hungarian Academy of Sciences, which delivered the nuclear part of the instrumentation and with the Finnish company Valmet Oy Instrument Works, which delivered the conventional instrumentation, including the automatic power control system and the control console. The instrumentation, which is located in-a new isolated control room is based on modern industrial standard modular units with standardized signal ranges, electronic testing possibilities, galvanically isolated outputs etc. The instrument renewal project was brought successfully to completion in November 1981 after only about 10 working days of shut down time. The reactor is now in routine operation and the experiences gained from the new instrumentation are excellent. (author)

  16. NCSU PULSTAR reactor instrumentation upgrade. Final technical report, September 6, 1990--March 19, 1993

    International Nuclear Information System (INIS)

    Bilyj, S.J.; Perez, P.B.

    1993-01-01

    The Nuclear Reactor Program at North Carolina State University initiated an upgrade program at the NCSU PULSTAR Reactor in 1990. Twenty-year-old instrumentation is currently undergoing replacement with solid-state and current technology equipment. The financial assistance from the United States Department of Energy has been the primary source of support. This report provides the status of the first two phases of the upgrade program

  17. Technological developments and safeguards instrumentation: Responding to new challenges

    International Nuclear Information System (INIS)

    Naito, K.; Rundquist, D.E.

    1994-01-01

    Entering the 1990s, technological tools that were in the research and development stage not so long ago are changing the way inspectors are able to verify nuclear materials at many facilities around the world. Many new instruments - ranging from advanced video monitoring systems to miniature detectors and analysers - already are in place. In some cases, they have been custom-made for specific safeguards tasks, or for placement in locations, such as underwater storage pools for spent reactor fuel, where inspectors cannot go. Standing behind the development of many of these new safeguards instruments are a number of factors. They include: technological advances In computer related fields, such as microprocessing and electronics, and specific areas of instrumentation; technical developments in the nuclear industry and Efficiency improvements and efforts to reduce the costs of safeguards implementation

  18. Incorporation of personal computers in a research reactor instrumentation system for data monitoring and analysis

    International Nuclear Information System (INIS)

    Leopando, L.S.

    1998-01-01

    The research contract was implemented by obtaining off-the shelf personal computer hardware and data acquisition cards, designing the interconnection with the instrumentation system, writing and debugging the software, and the assembling and testing the set-up. The hardware was designed to allow all variables monitored by the instrumentation system to be accessible to the computers, without requiring any major modification of the instrumentation system and without compromising reactor safety in any way. The computer hardware addition was also designed to have no effect on any existing function of the instrumentation system. The software was designed to implement only graphical display and automated logging of reactor variables. Additional functionality could be easily added in the future with software revision because all the reactor variables are already available in the computer. It would even be possible to ''close the loop'' and control the reactor through software. It was found that most of the effort in an undertaking of this sort will be in software development, but the job can be done even by non-computer specialized reactor people working with programming languages they are already familiar with. It was also found that the continuing rapid advance of personal computer technology makes it essential that such a project be undertaken with inevitability of future hardware upgrading in mind. The hardware techniques and the software developed may find applicability in other research reactors, especially those with a generic analog research reactor TRIGA console. (author)

  19. Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Rempe; D. L. Knudson; J. E. Daw

    2011-03-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this review, recommendations were made with respect to what instrumentation is needed at the ATR; and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program’s strategy and initial progress toward accomplishing program objectives. In 2009, a report was issued documenting this instrumentation development strategy and initial progress toward accomplishing instrumentation development program objectives. This document reports progress toward implementing this strategy in 2010.

  20. Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations

    International Nuclear Information System (INIS)

    Rempe, J.L.; Knudson, D.L.; Daw, J.E.

    2011-01-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this review, recommendations were made with respect to what instrumentation is needed at the ATR; and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program's strategy and initial progress toward accomplishing program objectives. In 2009, a report was issued documenting this instrumentation development strategy and initial progress toward accomplishing instrumentation development program objectives. This document reports progress toward implementing this strategy in 2010.

  1. New instrumentation for the IPR-R1 reactor of CDTN

    International Nuclear Information System (INIS)

    Carvalho, P.V.R. de.

    1992-01-01

    The Nuclear Engineering Institute reactor instrumentation area has developed systems and equipment for reactor operation and safety. In such way, the new I and C for IEN Argonauta reactor and the nuclear instrumentation for IPEN critical facility were built. This paper describes our real work, the new I and C systems for IPR-R1, a Triga type reactor, located at CDTN (Belo Horizonte - MG). (author)

  2. Proceeding of the Scientific Meeting and Presentation on Basic Research of Nuclear Science and Technology: Book I. Physics, Reactor Physics and Nuclear Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The proceeding contains papers presented on Scientific Meeting and Presentation on on Basic Research of Nuclear Science and Technology, held in Yogyakarta, 25-27 April 1995. This proceeding is part one from two books published for the meeting contains papers on Physics, Reactor Physics and Nuclear Instrumentation as results of research activities in National Atomic Energy Agency. There are 39 papers indexed individually. (ID)

  3. Proceeding of the Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology. Part I : Physics, Reactor Physics and Nuclear Instrumentation

    International Nuclear Information System (INIS)

    Sudjatmoko; Karmanto, Eko Edy; Supartini, Endang

    1996-04-01

    Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity was held by PPNY BATAN for monitoring the research Activity which achieved in BATAN. The Proceeding contains a proposal about basic which has physics; reactor physics and nuclear instrumentation. This proceedings is the first part from two part which published in series. There are 33 articles which have separated index

  4. Instrumentation and control strategies for an integral pressurized water reactor

    Directory of Open Access Journals (Sweden)

    Belle R. Upadhyaya

    2015-03-01

    Full Text Available Several vendors have recently been actively pursuing the development of integral pressurized water reactors (iPWRs that range in power levels from small to large reactors. Integral reactors have the features of minimum vessel penetrations, passive heat removal after reactor shutdown, and modular construction that allow fast plant integration and a secure fuel cycle. The features of an integral reactor limit the options for placing control and safety system instruments. The development of instrumentation and control (I&C strategies for a large 1,000 MWe iPWR is described. Reactor system modeling—which includes reactor core dynamics, primary heat exchanger, and the steam flashing drum—is an important part of I&C development and validation, and thereby consolidates the overall implementation for a large iPWR. The results of simulation models, control development, and instrumentation features illustrate the systematic approach that is applicable to integral light water reactors.

  5. Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies

    International Nuclear Information System (INIS)

    Hallbert, Bruce P.; Persensky, J.J.; Smidts, Carol; Aldemir, Tunc; Naser, Joseph

    2009-01-01

    The Light Water Reactor Sustainability (LWRS) Program is a research and development (R and D) program sponsored by the U.S. Department of Energy (DOE). The program is operated in close collaboration with industry R and D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of Nuclear Power Plants that are currently in operation. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. Advanced instruments and control (I and C) technologies are needed to support the safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear assets. It also requires that approaches be developed and proven to achieve sustainability of I and C systems throughout the period of extended operation. The strategic objective of the LWRS Program Advanced Instrumentation, Information, and Control Systems Technology R and D pathway is to establish a technical basis for new technologies needed to achieve safety and reliability of operating nuclear assets and to implement new technologies in nuclear energy systems. This will be achieved by carrying out a program of R and D to develop scientific knowledge in the areas of: (1) Sensors, diagnostics, and prognostics to support characterization and prediction of the effects of aging and degradation phenomena effects on critical systems, structures, and components (SSCs); (2) Online monitoring of SSCs and active components, generation of information, and methods to analyze and employ online monitoring information; (3) New methods for visualization, integration, and information use to enhance state awareness and leverage expertise to achieve safer, more readily available

  6. Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

    2009-08-01

    The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U.S. Department of Energy (DOE). The program is operated in close collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of Nuclear Power Plants that are currently in operation. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. Advanced instruments and control (I&C) technologies are needed to support the safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear assets. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. The strategic objective of the LWRS Program Advanced Instrumentation, Information, and Control Systems Technology R&D pathway is to establish a technical basis for new technologies needed to achieve safety and reliability of operating nuclear assets and to implement new technologies in nuclear energy systems. This will be achieved by carrying out a program of R&D to develop scientific knowledge in the areas of: • Sensors, diagnostics, and prognostics to support characterization and prediction of the effects of aging and degradation phenomena effects on critical systems, structures, and components (SSCs) • Online monitoring of SSCs and active components, generation of information, and methods to analyze and employ online monitoring information • New methods for visualization, integration, and information use to enhance state awareness and leverage expertise to achieve safer, more readily available electricity generation

  7. Utilization of the research reactors for the power reactor control instrumentation development

    International Nuclear Information System (INIS)

    Duchene, J.; Verdant, R.; Gilbert, J.

    1977-01-01

    Studies on characteristics and reliability of control instruments lead to testing with various radiations of various intensities and energy spectra. Osiris and Triton reactors present this great variety of radiations and a flexibility of use better than power reactors [fr

  8. FFTF reactor assembly system technology

    International Nuclear Information System (INIS)

    Mangelsdorf, T.A.

    1975-01-01

    An overview is presented of the FFTF reactor and plant together with descriptions of core components, core internals, core system, primary and secondary control rod system, reactor instrumentation, reactor vessel and closure head, and supporting test programs

  9. Instrument accuracy in reactor vessel inventory tracking systems

    International Nuclear Information System (INIS)

    Anderson, J.L.; Anderson, R.L.; Morelock, T.C.; Hauang, T.L.; Phillips, L.E.

    1986-01-01

    Instrumentation needs for detection of inadequate core cooling. Studies of the Three Mile Island accident identified the need for additional instrumentation to detect inadequate core cooling (ICC) in nuclear power plants. Industry studies by plant owners and reactor vendors supported the conclusion that improvements were needed to help operators diagnose the approach to or existence of ICC as well as to provide more complete information for operator control of safety injection flow to minimize the consequences of such an accident. In 1980, the US Nuclear Regulatory Commission (NRC) required further studies by the industry and described ICC instrumentation design requirements that included human factors and environmental considerations. On December 10, 1982, NRC issued to Babcock and Wilcox (B and W) licensees orders for Modification of License and transmitted to pressurized water reactor licensees Generic Letter 82-28 to inform them of the revised NRC requirements. The instrumentation requirements include upgraded subcooling margin monitors (SMM), upgraded core exit thermocouples (CET), and installation of a reactor coolant inventory tracking system. NRC Regulatory Guide 1.97, which covers accident monitoring instrumentation, was revised (Rev. 3) to be consistent with the requirements of item II.F.2 of NUREG-0737

  10. Safeguarding on-power fuelled reactors - instrumentation and techniques

    International Nuclear Information System (INIS)

    Waligura, A.; Konnov, Y.; Smith, R.M.; Head, D.A.

    1977-01-01

    Instrumentation and techniques applicable to safeguarding reactors that are fuelled on-power, particularly the CANDU type, have been developed. A demonstration is being carried out at the Douglas Point Nuclear Generating Station in Canada. Irradiated nuclear materials in certain areas - the reactor and spent fuel storage bays - are monitored using photographic and television cameras, and seals. Item accounting is applied by counting spent-fuel bundles during transfer from the reactor to the storage bay and by placing these spent-fuel bundles in a sealed enclosure. Provision is made for inspection and verification of the bundles before sealing. The reactor's power history is recorded by a track-etch power monitor. Redundancy is provided so that the failure of any single piece of equipment does not invalidate the entire safeguards system. Several safeguards instruments and devices have beeen developed and evaluated. These include a super-8 mm surveillance camera system, a television surveillance system, a spent-fuel bundle counter, a device to detect dummy fuel bundles, a cover for enclosing a stack of spent-fuel bundles, and a seal suitable for underwater installation and ultrasonic interrogation. The information provided by these different instruments should increase the effectiveness of Agency safeguards and, when used in combination with other measures, will facilitate inspection at reactor sites

  11. CAMAC-controlled calibration system for nuclear reactor instruments

    International Nuclear Information System (INIS)

    McDowell, W.P.; Cornella, R.J.

    1977-01-01

    The hardware and the software which have been developed to implement a nuclear instrument calibration system for the Argonne National Laboratory ZPR-VI and ZPR-IX reactor complex are described. The system is implemented using an SEL-840 computer with its associated CAMAC crates and a hardware interface to generate input parameters and measure the required outputs on the instrument under test. Both linear and logarithmic instruments can be calibrated by the system and output parameters can be measured at various automatically selected values of ac line voltage. A complete report on each instrument is printed as a result of the calibration and out-of-tolerance readings are flagged. Operator interface is provided by a CAMAC-controlled Hazeltine terminal. The terminal display leads the operator through the complete calibration procedure. This computer-controlled system is a significant improvement over previously used methods of calibrating nuclear instruments since it reduces reactor downtime and allows rapid detection of long-term changes in instrument calibration

  12. Fabrication of internally instrumented reactor fuel rods

    International Nuclear Information System (INIS)

    Schmutz, J.D.; Meservey, R.H.

    1975-01-01

    Procedures are outlined for fabricating internally instrumented reactor fuel rods while maintaining the original quality assurance level of the rods. Instrumented fuel rods described contain fuel centerline thermocouples, ultrasonic thermometers, and pressure tubes for internal rod gas pressure measurements. Descriptions of the thermocouples and ultrasonic thermometers are also contained

  13. Nuclear instrumentation for research reactors; Instrumentacion nuclear para reactores nucleares de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Unidad de Actividades de Reactores y Centrales Nucleares. Sector Instrumentacion y Control

    1997-10-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70`. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs.

  14. Ship propulsion reactors technology

    International Nuclear Information System (INIS)

    Fribourg, Ch.

    2002-01-01

    This paper takes the state of the art on ship propulsion reactors technology. The french research programs with the corresponding technological stakes, the reactors specifications and advantages are detailed. (A.L.B.)

  15. Operational parameters study of IPR-R1 TRIGA research reactor using virtual instruments

    International Nuclear Information System (INIS)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Lameiras, Fernando Soares

    2013-01-01

    The instrumentation of nuclear reactors is designed with the principle of reliability, redundancy and diversification of control systems. Reliable monitoring of the parameters involved in the chain reaction is of great importance regarding efficiency and operational safety of the installation. The main goal of the simulation system in this proposed paper is to provide the study and improvement in understanding how these operational variables are interrelated and their behavior especially those related to neutronic and thermohydraulics. The work will be developed using the software LabVIEW ® (Laboratory Virtual Instruments Engineering Workbench). The program will enable the study of the variables involved in the operation of the installation throughout its operating range, for instance, a few mW up to 250 kW. The IPR-R1 TRIGA is a research nuclear reactor placed in open pool and cooled by light water with natural circulation. It is located at the Nuclear Technology Development Center (CDTN), in Belo Horizonte Brazil. The developing system employs the modern concept of virtual instruments (VIs), using microprocessors and visual interface on video monitors. LabVIEW ® breaks the paradigm of text-based programming language, for programming based on icons. The system will enable the use of this reactor in training and personnel training in the nuclear field. The work follows the recommendations of the International Atomic Energy Agency (IAEA), which has encouraged its members to develop strategic plans in order to use their research reactors. (author)

  16. Operational parameters study of IPR-R1 TRIGA research reactor using virtual instruments

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Antonio Juscelino; Mesquita, Amir Zacarias; Lameiras, Fernando Soares, E-mail: ajp@cdtn.br, E-mail: amir@cdtn.br, E-mail: fsl@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The instrumentation of nuclear reactors is designed with the principle of reliability, redundancy and diversification of control systems. Reliable monitoring of the parameters involved in the chain reaction is of great importance regarding efficiency and operational safety of the installation. The main goal of the simulation system in this proposed paper is to provide the study and improvement in understanding how these operational variables are interrelated and their behavior especially those related to neutronic and thermohydraulics. The work will be developed using the software LabVIEW ® (Laboratory Virtual Instruments Engineering Workbench). The program will enable the study of the variables involved in the operation of the installation throughout its operating range, for instance, a few mW up to 250 kW. The IPR-R1 TRIGA is a research nuclear reactor placed in open pool and cooled by light water with natural circulation. It is located at the Nuclear Technology Development Center (CDTN), in Belo Horizonte Brazil. The developing system employs the modern concept of virtual instruments (VIs), using microprocessors and visual interface on video monitors. LabVIEW ® breaks the paradigm of text-based programming language, for programming based on icons. The system will enable the use of this reactor in training and personnel training in the nuclear field. The work follows the recommendations of the International Atomic Energy Agency (IAEA), which has encouraged its members to develop strategic plans in order to use their research reactors. (author)

  17. Safeguards instrument to monitor spent reactor fuel

    International Nuclear Information System (INIS)

    Nicholson, N.; Dowdy, E.J.; Holt, D.M.; Stump, C.

    1981-01-01

    A hand-held instrument for monitoring irradiated nuclear fuel inventories located in water-filled storage ponds has been developed. This instrument provides sufficient precise qualitative and quantitative information to be useful as a confirmatory technique to International Atomic Energy Agency inspectors, and is believed to be of potential use to nuclear fuel managers and to operators of spent-fuel storage facilities, both at reactor and away-from-reactor, and to operators of nuclear fuel reprocessing plants. Because the Cerenkov radiation glow can barely be seen by the unaided eye under darkened conditions, a night vision device is incorporated to aid the operator in locating the fuel assembly to be measured. Beam splitting optics placed in front of the image intensifier and a preset aperture select a predetermined portion of the observed scene for measurement of the light intensity using a photomultiplier (PM) tube and digital readout. The PM tube gain is adjusted by use of an internal optical reference source, providing long term repeatability and instrument-to-instrument cnsistency. Interchangeable lenses accommodate various viewing and measuring conditions

  18. Performance Monitoring for Nuclear Safety Related Instrumentation at PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Ridzuan Abdul Mutalib; Mohd Sabri Minhat

    2015-01-01

    The Reactor TRIGA PUSPATI (RTP) at Malaysia Nuclear Agency is a TRIGA Mark II type reactor and pool type cooled by natural circulation of light water. This paper describe on performance monitoring for nuclear safety related instrumentation in TRIGA PUSPATI Reactor (RTP) of based on various parameter of reactor safety instrument channel such as log power, linear power, Fuel temperature, coolant temperature will take into consideration. Methodology of performance on estimation and monitoring is to evaluate and analysis of reactor parameters which is important of reactor safety and control. And also to estimate power measurement, differential of log and linear power and fuel temperature during reactor start-up, operation and shutdown .This study also focus on neutron power fluctuation from fission chamber during reactor start-up and operation. This work will present result of performance monitoring from RTP which indicated the safety parameter identification and initiate safety action on crossing the threshold set point trip. Conclude that performance of nuclear safety related instrumentation will improved the reactor control and safety parameter during reactor start-up, operation and shutdown. (author)

  19. Fusion reactors: physics and technology. Annual progress report

    International Nuclear Information System (INIS)

    Conn, R.W.

    1983-08-01

    Fusion reactors are designed to operate at full power and generally at steady state. Yet experience shows the load variations, licensing constraints, and frequent sub-system failures often require a plant to operate at fractions of rated power. The aim of this study has been to assess the technology problems and design implications of startup and fractional power operation on fusion reactors. The focus of attention has been tandem mirror reactors (TMR) and we have concentrated on the plasma and blanket engineering for startup and fractional power operation. In this report, we first discuss overall problems of startup, shutdown and staged power operation and their influence on TMR design. We then present a detailed discussion of the plasma physics associated with TMR startup and various means of achieving staged power operation. We then turn to the issue of instrumentation and safety controls for fusion reactors. Finally we discuss the limits on transient power variations during startup and shutdown of Li 17 Pb 83 cooled blankets

  20. Modernization of the CDTN IPR-R1 TRIGA reactor instrumentation and control

    International Nuclear Information System (INIS)

    Mesquita, A.Z.; Costa, A.C.L.; Souza, R.M.G.P.

    2009-01-01

    The control system of the IPR-R1 was changed in 1995. Although since the year's 80 was generalized the use of microprocessor technology and video monitors for visual interface, in the IPR-R1 control room it was used analogical system by relay-based logic, and were maintained the mechanical strip chart recorders (ink-pen drive) to measure, monitor and store the operational parameters. It was maintained the measure and the control of, practically, the same variables of the original system, although the reactor power already have been upgraded to 100 kW and began the studies to increase it to 250 kW, which is the current core configuration. For 250 kW operations the fuel heat transfer becomes important and new parameters should be used as safety operational limits. A state-of-the-art instrumentation and control system using microprocessor technology is proposed to replace the present analogical systems. The new system can eliminates most manual data logging, provides automatic or manual reactor operation modes, provides complete real-time operator display, replays historical operating data on monitor or printer, eliminates spare parts replacement problems and meets all applicable international standards as NRC and IEE specifications. This paper describes the research project in process in CDTN that has as objective the modernization of the IPR-R1 TRIGA reactor instrumentation and control of the operational variables. The project also will improve the accomplishment of neutronic and thermal-hydraulic experiments, foreseen in the CDTN research program. (author)

  1. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    International Nuclear Information System (INIS)

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor's Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced

  2. Proceedings of the Seminar on the Development of Nuclear Instrumentation Technology and Engineering

    International Nuclear Information System (INIS)

    Utaja; Setyanto; Suryanto; Martono, Herlan; Kristejo; Pribadi, Rukmono

    2003-01-01

    Proceedings of the Seminar on the Development of Nuclear Instrumentation Technology Engineering,all aspects of result research activity report that have been presented in Seminar of Development and Engineering on Medicine Industry and Environment was held on May 20, 2003. The Seminar encompass Instrumentation : Reactor Control, Industry, Medicine and based on Nuclear Instrumentation and Application, software relevant to Nuclear Engineering . The purpose of this seminar be able to information exchange among research walkers in National Nuclear Energy Agency. There are 20 papers which have separated Index

  3. Field experience in use of radiation instruments in Cirus reactor

    International Nuclear Information System (INIS)

    Ramesh, N.; Sharma, R.C.; Agarwal, S.K.; Sawant, D.K.; Yadav, R.K.B.; Prasad, S.K.

    2005-01-01

    Cirus, located at Bhabha Atomic Research Centre, is a 40 MW (Th) research reactor fuelled by natural uranium, moderated by heavy water and cooled by de-mineralized light water. Graphite is used as reflector in this reactor. The reactor, commissioned in the year 1960, was in operation with availability factor of about 70% till early nineties. There after signs of ageing started surfacing up. After ageing studies, refurbishment plan was finalized and executed during the period from 1997-2002. after successful refurbishment, the reactor is in operation at full power. A wide range of radiation instruments have been used at Cirus for online monitoring of the radiological status of various process systems and environmental releases. Also, variety of survey meters, counting systems and monitors have been used by the health physics unit of the reactor for radiation hazard control. Many of these instruments, which were originally of Canadian design, have undergone changes due to obsolescence or as part of upgradation. This paper describes the experience with the radiation instruments of Cirus, bringing out their effectiveness in meeting the design intent, difficulties faced in their field use, and modifications carried out based on the performance feed back. Also, this paper highlights the areas where further efforts are needed to develop nuclear instrumentation to further strengthen monitoring and surveillance. (author)

  4. Advanced Reactor Technologies - Regulatory Technology Development Plan (RTDP)

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-08-23

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory

  5. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne Leland [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory

  6. Modernization of Safety and Control Instrumentation of the IEA-R1 Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    De Carvalho, P.V., E-mail: paulov@ien.gov.br [Institute of Nuclear Engineering (IEN), National Nuclear Energy Commission (CNEN), Rio de Janeiro (Brazil)

    2014-08-15

    The research reactor IEA-R1 located in the Institute of Energy and Nuclear Research (IPEN), São Paulo, Brazil, obtained its first criticality on 16 September 1957 and since then has served the scientific and medical community in the performance of experiments in applied nuclear physics, as well as the provision of radioisotopes for production of radiopharmaceuticals. The reactor produces radioisotopes {sup 82}Br and {sup 41}Ar for special processes in industrial inspection and {sup 192}Ir and {sup 198}Au as sources of radiation used in brachytherapy, {sup 153}Sm for pain relief in patients with bone metastasis, and calibrated sources of {sup 133}Ba, {sup 137}Cs, {sup 57}Co, {sup 60}Co, {sup 241}Am and {sup 152}Eu used in medical clinics and hospitals practicing nuclear medicine and research laboratories. Services are offered in regular non-destructive testing by neutron radiography, neutron irradiation of silicon for phosphorous doping and other various irradiations with neutrons. The reactor is responsible for producing approximately 70% of radiopharmaceutical {sup 131}I used in Brazil, which saves about US$ 800 000 annually for the country. After more than 50 years of use, most of its equipment and systems have been modernized, and recently the reactor power was increased to 5 MW in order to enhance radioisotope production capability. However, the control room and nuclear instrumentation system used for reactor safety have operated more than 30 years and require constant maintenance. Many equipment and electronic components are obsolete, and replacements are not available in the market. The modernization of the nuclear safety and control instrumentation systems of IEA-R1 is being carried out with consideration for the internationally recognized criteria for safety and reliable reactor operations and the latest developments in nuclear electronic technology. The project for the new reactor instrumentation system specifies three wide range neutron monitoring

  7. Department of reactor technology

    International Nuclear Information System (INIS)

    1980-01-01

    The activities of the Department of Reactor Technology at Risoe during 1979 are described. The work is presented in five chapters: Reactor Engineering, Reactor Physics and Dynamics, Heat Transfer and Hydraulics, The DR 1 Reactor, and Non-Nuclear Activities. A list of the staff and of publications is included. (author)

  8. A basic design of SR4 instrumentation and control system for research reactor

    International Nuclear Information System (INIS)

    Syahrudin Yusuf; M Subhan; Ikhsan Shobari; Sutomo Budihardjo

    2010-01-01

    An SR4 instrumentation and control systems of research reactor is the equipment of nuclear research reactors as power protection devices and control systems. The equipment is to monitor safety parameters and process parameters in the state of reactor shut down, start-up, and in operation at fixed power. In the engineering of Instrumentation and control systems SR4 research reactor, its basic design consists of technical specifications of the reactor protection system devices, technical specifications of the reactor power control system devices, technical specifications information system devices, and systems process termination cabling as a support system. This basic design is used as the basis for the preparation of detailed design and subsequent engineering development of instrumentation systems and control system integrated. (author)

  9. New technologies for acceleration and vibration measurements inside operating nuclear power reactors

    International Nuclear Information System (INIS)

    Runkel, J.; Stegemann, D.; Fiedler, J.; Heidemann, P.; Blaser, R.; Schmid, F.; Trobitz, M.; Hirsch, L.; Thoma, K.

    2000-01-01

    A miniature bi-axial in-core accelerometer has been inserted temporarily inside the travelling in-core probe (TIP) systems of operating 1300 MW el boiling water reactors (BWR) during full power operation. In-core acceleration measurements can be performed in any position of the TIP system. This provides new features of control technologies to preserve the integrity of reactor internals. The radial and axial position where fretting or impacting of instrumentation string tubes or other structures might occur can be localised inside the reactor pressure vessel. The efficiency and long-term performance of subsequent improvements of the mechanical or operating conditions can be controlled with high local resolution and sensitivity. Low frequency vibrations of the instrumentation tubes were measured inside the core. Neutron-mechanical scale factors were determined from neutron noise, measured by the standard in-core neutron instrumentation and from displacements of the TIP tubes, calculated by integration of the measured in-core acceleration signals. The scale factors contribute to qualitative and quantitative monitoring of BWR internals' vibrations only by the use of neutron signals. (authors)

  10. Account of requirements for modernization in VPBER-600 enhanced safety reactor instrumentation and control system development

    International Nuclear Information System (INIS)

    Shashkin, S.L.; Pobedonostsev, A.B.; Drumov, V.V.; Chudin, A.G.

    1993-01-01

    Nuclear power plant (NPP) with VPBER-600 reactor is a station of new generation. The specified term of reactor plant operation is 60 years and taking into account that the proposed term of starting the first power unit is on the turn of centuries one can definitely state that for Russia conditions VPBER-600 is a plant of 21 century. Such far removed term for NPP now in the stage of development as it can seem does not put the problems of modernization as first order tasks. But open-quotes...who does not think about future lives in the past.close quotes It is that the NPP instrumentation and control (I ampersand C) systems are in the most degree subjected to the influence of factors which favor their modifications. These factors can be arbitrarily divided into two groups: (1) inner factors, i.e. changes (failures, aging, etc) in I ampersand C components as well as changes dictated by technological reasons (change of equipment composition, control algorithms, operation modes); (2) outer factors, i.e. intensive development of information technologies and rapid improvement of electronic components. This presentation addresses the problem of modernization of the safety instrumentation for this next generation facility, and the research effort it will entail. The system is designed to allow for modernization, and the relatively easy adoption of new instrumentation and technology as it becomes available

  11. Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    J. Rempe; D. Knudson; J. Daw; T. Unruh; B. Chase; R. Schley; J. Palmer; K. Condie

    2014-01-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support the growth of nuclear science and technology in the United States (US). By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort at the Idaho National Laboratory (INL) is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this initial review, recommendations were made with respect to what instrumentation is needed at the ATR, and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program’s strategy and initial progress toward accomplishing program objectives. Since 2009, annual reports have been issued to provide updates on the program strategy and the progress made on implementing the strategy. This report provides an update reflecting progress as of January 2014.

  12. Reactors based on CANDU technology

    International Nuclear Information System (INIS)

    Bjegun, S.V.; Shirokov, S.V.

    2012-01-01

    The paper analyzes the use CANDU technology in world nuclear energy. Advantages and disadvantages in implementation of this technology are considered in terms of economic and technical aspects. Technological issues related to the use of CANDU reactors and nuclear safety issues are outlined. Risks from implementation of this reactor technology in nuclear energy of Ukraine are determined

  13. Safety evaluation for instrumentation and control system upgrading project of Malaysian TRIGA MARK II PUSPATI Research reactor

    International Nuclear Information System (INIS)

    Ridha Roslan; Nik Mohd Faiz Khairuddin

    2013-01-01

    Full-text: Malaysian TRIGA MARK II research reactor has been in safe operation since its first criticality in 1982. The reactor is licensed to be operated by Malaysian Nuclear Agency to perform training and research development related activities. Due to its extensive operation since last three decades, the option of modifications for safety and safety-related item and component become a necessary to replace the outdated equipment to a stat-of-art, reliable technologies. This paper will present the current regulatory activities performed by Atomic Energy Licensing Board (AELB) to ensure the upgrading of analogue to digital instrumentation and control system is implemented in safe manner. The review activity includes documentation review, manufacturer quality audit and on-site inspection for commissioning. The review performed by AELB is based on The International Atomic Energy Agency (IAEA) Safety Requirements NS-R-4, entitled Safety of Research Reactors. During this endeavour, AELB seeks technical cooperation from Korea Institute of Nuclear Safety (KINS), the nuclear experts organization of the country of origin of the instrumentation and control technology. The regulatory activity is still on-going and is expected to be completed by issuance of Authorization for Restart on December 2013. (author)

  14. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    International Nuclear Information System (INIS)

    Moe, Wayne Leland

    2015-01-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a ''critical path'' for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain ''minimum'' levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial ''first step'' in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by

  15. Digital instrumentation system for nuclear research reactors

    International Nuclear Information System (INIS)

    Aghina, Mauricio A.C.; Carvalho, Paulo Vitor R.

    2002-01-01

    This work describes a proposal for a system of nuclear instrumentation and safety totally digital for the Argonauta Reactor. The system divides in the subsystems: channel of pulses, channel of current, conventional instrumentation and safety system. The connection of the subsystems is made through redundant double local net, using the protocol modbus/rtu. So much the channel of pulses, the current channel and safety's system use modules operating in triple redundancy. (author)

  16. Instruments for non-destructive evaluation of advanced test reactor inpile tubes

    International Nuclear Information System (INIS)

    Livingston, R.A.; Beller, L.S.; Edgett, S.M.

    1986-01-01

    The Advanced Test Reactor is a 250 MW LWR used primarily for irradiation testing of materials contained in inpile tubes that pass through the reactor core. These tubes provided the high pressure and temperature water environment required for the test specimens. The reactor cooling water surrounding the inpile tubes is at much lower pressure and temperature. The structural integrity of the inpile tubes is monitored by routine surveillance to ensure against unplanned reactor shutdowns to replace defective inpile tubes. The improved instruments developed for inpile tube surveillance include a bore profilometer, ultrasonic flaw detetion system and bore diameter gauges. The design and function of these improved instruments is presented

  17. Evolutionary water cooled reactors: Strategic issues, technologies and economic viability. Proceedings of a symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-01

    Symposium on evolutionary water cooled reactors: Strategic issues, technologies and economic viability was intended for managers in utilities, reactor design organizations and hardware manufacturing companies and for government decision makers who need to understand technological advances and the potential of evolutionary water cooled reactors to contribute to near and medium term energy demands. The topics addressed include: strategic issues (global energy outlook, the role of nuclear power in sustainable energy strategies, power generation costs, financing of nuclear plant projects, socio-political factors and nuclear safety requirements); technological advances (instrumentation and control, means od improving prevention and mitigation of severe accidents, development of passive safety systems); keys to economic viability (simplification, standardization, advances in construction and project management, feedback of experience from utilities into new designs, and effective management of plant operation)

  18. The evaluation of equipment and Instrumentation Reliability Factors on Power Reactor

    International Nuclear Information System (INIS)

    Supriatna, Piping; Karlina, Itjeu; Widagdo, Suharyo; Santosa, Kussigit; Darlis; Sudiyono, Bambang; Yuniyanta, Sasongko; Sudarmin

    1999-01-01

    Equipment and instrumentation reliability on type power reactor control room was determined by its pattern and design. the principle of ergonomy applied on equipment and instrumentation layout in this ABWR type reactor are geometric pattern appropriate with economic body motion, average anthropometry data of operator especially operator hand-reach, range of vision, angle of vision, lighting, color arrangement and harmony as will as operator case in operating the equipment system. Limitation criteria of the parameter mentioned above are based on EPRI NP-3659, NURG 0700, and NUREG/CR-3331 documents. Besides that, the (working) physical environment parameter factor of the control room must be designed in order to fulfil the standard criteria of ergonomic condition based on NUREG-0800. The reliability evaluation of equipment and instrumentation system also occurs observed from man machine interaction side which happen between operator and equipment and instrumentation in the ABWR type power reactor control room. From the MMI analysis can be known the working failure possibility which is caused by the operator. The evaluation result of equipment and instrumentation reliability on ABWR type power reactor control room showed that the design of this ABWR control room is good and fulfils the ergonomy standard criteria have been determined

  19. Safeguarding on-power fuelled reactors - instrumentation and techniques

    International Nuclear Information System (INIS)

    Waligura, A.; Konnov, Y.; Smith, R.M.; Head, D.A.

    1977-05-01

    Instrumentation and techniques applicable to safeguarding reactors that are fuelled on-power, particularly the CANDU type, have been developed. A demonstration is being carried out at the Douglas Point Nuclear Generating Station in Canada. Irradiated nuclear materials in certain areas - the reactor and spent fuel storage bays - are monitored using photographic and television cameras, and seals. Item accounting is applied by counting spent-fuel bundles during transfer from the reactor to the storage bay and by placing these spent-fuel bundles in a sealed enclosure. Provision is made for inspection and verification of the bundles before sealing. The reactor's power history is recorded by a Track-Etch power monitor. Redundancy is provided so that the failure of any single piece of equipment does not invalidate the entire safeguards system. Several safeguards instruments and devices have been developed and evaluated. These include a super-8-mm surveillance camera system, a television surveillance system, a spent-fuel bundle counter, a device to detect dummy fuel bundles, a cover for enclosing a stack of spent-fuel bundles, and a seal suitable for underwater installation and ultrasonic interrogation. (author)

  20. Transient response of level instruments in a research reactor

    International Nuclear Information System (INIS)

    Cheng, Lap Y.

    1989-01-01

    A numerical model has been developed to simulate the dynamics of water level instruments in a research nuclear reactor. A bubble device, with helium gas as the working fluid, is used to monitor liquid level by sensing the static head pressure due to the height of liquid in the reactor vessel. A finite-difference model is constructed to study the transient response of the water level instruments to pressure perturbations. The field equations which describe the hydraulics of the helium gas in the bubbler device are arranged in the form of a tridiagonal matrix and the field variables are solved at each time step by the Thomas algorithm. Simulation results indicate that the dynamic response of the helium gas depends mainly on the volume and the inertia of the gas in the level instrument tubings. The anomalies in the simulated level indication are attributed to the inherent lag in the level instrument due to the hydraulics of the system. 1 ref., 5 figs

  1. Irradiation technology (1). Development of new in-pile instrumentation at JMTR

    International Nuclear Information System (INIS)

    Shibata, Akira; Kimura, Nobuaki; Tanimoto, Masataka; Nakamura, Jinichi; Saito, Takashi; Tsuchiya, Kunihiko

    2012-01-01

    Development of instrumentation which can use under severe accident condition is important issue for the purpose to cope with severe accident at nuclear reactors. And also to improve the quality of irradiation tests data and to increase the reliability of safety management system of reactors, the development of new instrumentation is key issue. JAEA is developing several in-pile instrumentations to conduct irradiation tests at JMTR. This study includes the developments of three new instrumentations and describes the characteristics of the instrumentations. These are ECP sensor, new water level indicator and in-reactor observation system using Cherenkov light. (author)

  2. ASTRID, Generation IV advanced sodium technological reactor for industrial demonstration

    International Nuclear Information System (INIS)

    Gauche, F.

    2013-01-01

    ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) is an integrated technology demonstrator designed to demonstrate the operability of the innovative choices enabling fast neutron reactor technology to meet the Generation IV criteria. ASTRID is a sodium-cooled fast reactor with an electricity generating power of 600 MWe. In order to meet the generation IV goals, ASTRID will incorporate the following decisive innovations: -) an improved core with a very low, even negative void coefficient; -) the possible installation of additional safety devices in the core. For example, passive anti-reactivity insertion devices are explored; -) more core instrumentation; -) an energy conversion system with modular steam generators, to limit the effects of a possible sodium-water reaction, or sodium-nitrogen exchangers; -) considerable thermal inertia combined with natural convection to deal with decay heat; -)elimination of major sodium fires by bunkerization and/or inert atmosphere in the premises; -) to take into account off-site hazards (earthquake, airplane crash,...) right from the design stage; -) a complete rethink of the reactor architecture in order to limit the risk of proliferation. ASTRID will also include systems for reducing the length of refueling outages and increasing the burn-up and the duration of the cycle. In-service inspection, maintenance and repair are also taken into account right from the start of the project. The ASTRID prototype should be operational by about 2023. (A.C.)

  3. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2014

    Energy Technology Data Exchange (ETDEWEB)

    Hallbert, Bruce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thomas, Ken [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-07-01

    The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway conducts targeted research and development (R&D) to address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals: (1) to ensure that legacy analog II&C systems are not life-limiting issues for the LWR fleet, and (2) to implement digital II&C technology in a manner that enables broad innovation and business improvement in the nuclear power plant operating model. Resolving long-term operational concerns with the II&C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation's energy and environmental security.

  4. Retrofitting the instrumentation and control system of primary cooling circuit from TRIGA INR 14 MW reactor

    International Nuclear Information System (INIS)

    Preda, M.; Ciocanescu, M.; Ana, E. M.; Cristea, D.

    2008-01-01

    Activities of retrofitting the instrumentation and control system from TRIGA INR primary cooling circuit consists in replacement of actual system for: - parameter measurement; - safety; - reactor external scramming; - protection, command and supply for electrical elements of the system. This retrofitting project is designed to ensure the necessary features of reactor external safety and for technological parameter measurement. The new safety system of main cooling circuit is completely separated from its operating system and is arranged in a panel assembly in reactor control room. The operating system has the following features: - data acquisition; - parameter value and state of command elements displaying; - command elements on hierarchical levels; - operator information through visual and acoustic alarm. (authors)

  5. Design requirements of instrumentation and control systems for next generation reactor

    International Nuclear Information System (INIS)

    Koo, In Soo; Lee, Byung Sun; Park, Kwang Hyun; Park, Heu Yoon; Lee, Dong Young; Kim, Jung Taek; Hwang, In Koo; Chung, Chul Hwan; Hur, Seop; Kim, Chang Hoi; Na, Nan Ju

    1994-03-01

    In this report, the basic design requirements of Instrumentation and Control systems for next generation reactor are described, which are top-tier level, to support the advanced I and C systems. It contains the requirements in accordance with the plant reliability, the plant performance, the operator's aid functions, the features for maintenance and testing, licensing issues for I and C systems. Advanced I and C systems are characterized such as the application of the digital and the human engineering technologies. To development of this requirements, the I and C systems for the foreign passive and the evolutionary types of reactor and the domestic conventional reators were reviewed and anlysed. At the detail design stage, these requirements will be used for top-tier requirements. To develop the detail design requirements in the future, more quantitive and qualitive analyses are need to be added. (Author) 44 refs

  6. Design requirements of instrumentation and control systems for next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koo, In Soo; Lee, Byung Sun; Park, Kwang Hyun; Park, Heu Yoon; Lee, Dong Young; Kim, Jung Taek; Hwang, In Koo; Chung, Chul Hwan; Hur, Seop; Kim, Chang Hoi; Na, Nan Ju [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-03-01

    In this report, the basic design requirements of Instrumentation and Control systems for next generation reactor are described, which are top-tier level, to support the advanced I and C systems. It contains the requirements in accordance with the plant reliability, the plant performance, the operator`s aid functions, the features for maintenance and testing, licensing issues for I and C systems. Advanced I and C systems are characterized such as the application of the digital and the human engineering technologies. To development of this requirements, the I and C systems for the foreign passive and the evolutionary types of reactor and the domestic conventional reators were reviewed and anlysed. At the detail design stage, these requirements will be used for top-tier requirements. To develop the detail design requirements in the future, more quantitive and qualitive analyses are need to be added. (Author) 44 refs.

  7. The scientific use of technological instruments

    NARCIS (Netherlands)

    Boon, Mieke; Hansson, Sven Ove

    2015-01-01

    One of the most obvious ways in which the natural sciences depend on technology is through the use of instruments. This chapter presents a philosophical analysis of the role of technological instruments in science. Two roles of technological instruments in scientific practices are distinguished:

  8. Efforts onto electricity and instrumentation technology for nuclear power generation

    International Nuclear Information System (INIS)

    Hayakawa, Toshifumi

    2000-01-01

    Nuclear power generation shares more than 1/3 of all amounts of in-land generation at present, as a supplying source of stable electric energy after 2000 either. As a recent example of efforts onto electricity and instrumentation technology for nuclear power generation, there are, on instrumentation control system a new central control board aiming at reduction of operator's load, protection of human error, and upgrading of system reliability and economics by applying high level micro-processor applied technique and high speed data transfer technique to central monitoring operation and plant control protection, on a field of reactor instrumentation a new digital control rod position indicator improved of conventional system on a base of operation experience and recent technology, on a field of radiation instrumentation a new radiation instrumentation system accumulating actual results in a wide application field on a concept of application to nuclear power plant by adopting in-situ separation processing system using local network technique, and on a field of operation maintenance and management a conservation management system for nuclear generation plant intending of further effectiveness of operation maintenance management of power plant by applying of operation experience and recent data processing and communication technology. And, in the large electric apparatus, there are some generators carried out production and verification of a model one with actual size in lengthwise dimension, to correspond to future large capacity nuclear power plant. By this verification, it was proved that even large capacity generator of 1800 MVA class could be manufactured. (G.K.)

  9. Nuclear Reactors and Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  10. Reactor instrumentation experience at IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Soares, A.J.

    1997-01-01

    The Instituto de Pesquisas Energeticas e Nucleares (IPEN) in Sao Paulo started in 1977 development of nuclear instrumentation. In 1982 two groups were established, one responsible for maintenance of electronic equipment and the other, the Nuclear Instrumentation Section (NIS), for new projects, such as a light water moderated critical facility (IPEN/MB-0). The NIS had the responsibility to execute all necessary activities to develop the ''nonconventional'' instrumentation systems: control, protection and radiation monitoring for the IPEN/MB-01 facility. After the commissioning of the critical facility the NIS group started the development of instrumentation systems for a power reactor. As a first step an overall review of the quality assurance programme was implemented. In parallel the development of self powered detectors was carried out. (author). 7 figs

  11. Advanced optical instruments technology

    Science.gov (United States)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-08-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  12. Nuclear instrument engineering - the measuring and informative basis of nuclear science and technology

    International Nuclear Information System (INIS)

    Matveev, V.V.; Krasheninnikov, I.S.; Murin, I.D.; Stas', K.N.

    1977-01-01

    The cornerstones of developing nuclear instrument engineering in the USSR are shortly discussed. The industry is based on a well developed theory. A system approach is a characteristic feature of the present-day measuring and control systems engineering. Major functions of reactor instruments measuring different types of ionizing radiation are discussed at greater length. Nuclear measuring and control instruments and methods are widely used in different fields of science and technoloay and in different industries in the USSR. The efficient and safe operation of a nuclear facility is underlined to depend strongly upon a correlation between a technological process and the information and control system of the facility

  13. Radiation protection commissioning of neutron beam instruments at the OPAL research reactor

    International Nuclear Information System (INIS)

    Parkes, Alison; Saratsopoulos, John; Deura, Michael; Kenny, Pat

    2008-01-01

    The neutron beam facilities at the 20 MW OPAL Research Reactor were commissioned in 2007 and 2008. The initial suite of eight neutron beam instruments on two thermal neutron guides, two cold neutron guides and one thermal beam port located at the reactor face, together with their associated shielding were progressively installed and commissioned according to their individual project plans. Radiation surveys were systematically conducted as reactor power was raised in a step-wise manner to 20 MW in order to validate instrument shielding design and performance. The performance of each neutron guide was assessed by neutron energy spectrum and flux measurements. The activation of beam line components, decay times assessments and access procedures for Bragg Institute beam instrument scientists were established. The multiple configurations for each instrument and the influence of operating more than one instrument or beamline simultaneously were also tested. Areas of interest were the shielding around the secondary shutters, guide shield and bunker shield interfaces and monochromator doors. The shielding performance, safety interlock checks, improvements, radiation exposures and related radiation protection challenges are discussed. This paper discusses the health physics experience of commissioning the OPAL Research Reactor neutron beam facilities and describes health physics results, actions taken and lessons learned during commissioning. (author)

  14. Instrumentation and control improvements at Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Christensen, L.J.; Planchon, H.P.

    1993-01-01

    The purpose of this paper is to describe instrumentation and control (I ampersand C) system improvements at Experimental Breeder Reactor 11 (EBR-11). The improvements are focused on three objectives; to keep the reactor and balance of plant (BOP) I ampersand C systems at a high level of reliability, to provide diagnostic systems that can provide accurate information needed for analysis of fuel performance, and to provide systems that will be prototypic of I ampersand C systems of the next generation of liquid metal reactor (LMR) plants

  15. Advanced Reactor Licensing: Experience with Digital I&C Technology in Evolutionary Plants

    Energy Technology Data Exchange (ETDEWEB)

    Wood, RT

    2004-09-27

    This report presents the findings from a study of experience with digital instrumentation and controls (I&C) technology in evolutionary nuclear power plants. In particular, this study evaluated regulatory approaches employed by the international nuclear power community for licensing advanced l&C systems and identified lessons learned. The report (1) gives an overview of the modern l&C technologies employed at numerous evolutionary nuclear power plants, (2) identifies performance experience derived from those applications, (3) discusses regulatory processes employed and issues that have arisen, (4) captures lessons learned from performance and regulatory experience, (5) suggests anticipated issues that may arise from international near-term deployment of reactor concepts, and (6) offers conclusions and recommendations for potential activities to support advanced reactor licensing in the United States.

  16. Communication and computer technologies for teaching physics in nuclear reactors

    International Nuclear Information System (INIS)

    Murua, C; Chautemps, A; Odetto, J; Keil, W; Trivino, S; Rossi, F; Perez Lucero, A

    2012-01-01

    In order to train personnel inn order to train personnel in Embalse Nuclear Power Plant, and provided that such training given primarily on the location of such a facility, we designed a pedagogical strategy that combined the use of conventional resources with new information technologies. Since the Nuclear Reactor RA-0 is an ideal tool for teaching Reactor Physics, priority was the use of it, both locally remotely. The teaching strategy is based on four pillar: -Lectures on the Power Plant (using a virtual classroom to support); -Remote monitoring of Ra-0 Nuclear Reactor parameters while operating (RA0REMOTO); -Use, through the Internet, of the Ra-0 Nuclear Reactor Simulator (RA0SIMUL); -Made in the Nuclear Reactor RA-0 of Reactor Physics practical. The work emphasizes RA0REMOTO and RA0SIMUL systems. The RA0REMOTO system is an appendix of the Electronic Data Acquisition System (SEAD) of the Nuclear Reactor RA-0. This system acquires signals from Reactor instrumentation and sends them to a server running the software that 'publish' the reactor parameters on the internet. Students may, during the lectures, monitor any parameter of the reactor while it operates, which allows teachers to compare theory with reality. RA0SIMUL is a simulator on the RA-0, which allows students to 'operate' a reactor analyzing the underlying physics concepts (author)

  17. Department of Reactor Technology

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included.......The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included....

  18. Instrumentation and control for reactor power setback in PFBR

    International Nuclear Information System (INIS)

    Upadhyay, Chandra Kant; Vasal, Tanmay; Nagaraj, C.P.; Madhusoodanan, K.

    2013-01-01

    In Prototype Fast Breeder Reactor (PFBR), a 500 MWe plant, Reactor Power Setback is a special operation envisaged for bulk power reduction on occurrence of certain events in Balance of Plant. The bulk power reduction requires a large negative reactivity perturbation if reactor is operating on nominal power. This necessitates a reliable monitoring system with fault tolerant I and C architecture in order to inhibit reactor SCRAM on negative reactivity trip signal. The impact of above events on the process is described. Design of a functional prototype module to carry out RPSB logic operation and its interface with other instruments has been discussed. (author)

  19. Status of advanced technology and design for water cooled reactors: Light water reactors

    International Nuclear Information System (INIS)

    1988-10-01

    Water reactors represent a high level of performance and safety. They are mature technology and they will undoubtedly continue to be the main stream of nuclear power. There are substantial technological development programmes in Member States for further improving the technology and for the development of new concepts in water reactors. Therefore the establishment of an international forum for the exchange of information and stimulation of international co-operation in this field has emerged. In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors has been undertaken to document the major current activities and different trends of technological improvements and developments for future water reactors. Part I of the report dealing with LWRs has now been prepared and is based mainly on submissions from Member States. It is hoped that this part of the report, containing the status of advanced light water reactor design and technology of the year 1987 and early 1988 will be useful for disseminating information to Agency Member States and for stimulating international cooperation in this subject area. 93 refs, figs and tabs

  20. Status of advanced technology and design for water cooled reactors: Heavy water reactors

    International Nuclear Information System (INIS)

    1989-07-01

    In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of the IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors, has been undertaken to document the major current activities and trends of technological improvement and development for future water reactors. Part I of the report dealing with Light Water Reactors (LWRs) was published in 1988 (IAEA-TECDOC-479). Part II of the report covers Heavy Water Reactors (HWRs) and has now been prepared. This report is based largely upon submissions from Member States. It has been supplemented by material from the presentations at the IAEA Technical Committee and Workshop on Progress in Heavy Water Reactor Design and Technology held in Montreal, Canada, December 6-9, 1988. It is hoped that this part of the report, containing the status of advanced heavy water reactor technology up to 1988 and ongoing development programmes will aid in disseminating information to Member States and in stimulating international cooperation. Refs, figs and tabs

  1. Advanced nuclear reactor types and technologies

    International Nuclear Information System (INIS)

    Ignatiev, V.; Devell, L.

    1995-01-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary

  2. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V [ed.; Feinberg, O; Morozov, A [Russian Research Centre ` Kurchatov Institute` , Moscow (Russian Federation); Devell, L [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  3. Advances in light water reactor technologies

    CERN Document Server

    Saito, Takehiko; Ishiwatari, Yuki; Oka, Yoshiaki

    2010-01-01

    ""Advances in Light Water Reactor Technologies"" focuses on the design and analysis of advanced nuclear power reactors. This volume provides readers with thorough descriptions of the general characteristics of various advanced light water reactors currently being developed worldwide. Safety, design, development and maintenance of these reactors is the main focus, with key technologies like full MOX core design, next-generation digital I&C systems and seismic design and evaluation described at length. This book is ideal for researchers and engineers working in nuclear power that are interested

  4. Remote Monitoring and Instrumentation Strategies for Integral Reactors

    International Nuclear Information System (INIS)

    Upadhyaya, Belle R.; Lish, Matthew R.; Tarver, Rayan A.; Hines, J. Wesley

    2014-01-01

    The University of Tennessee is engaged in research and development projects related to instrumentation and controls for small modular reactors (SMR) and integral pressurized water reactors (iPWR). The approach incorporates the deployment of physics-based models for control design and parameter estimation, development of noncontact sensors for flow monitoring, and placement of sensors to maximize fault detection and isolation. The results of research and development illustrate the feasibility of sensor location in space-constrained environment. Major issues and challenges in I and C design are addressed

  5. Remote Monitoring and Instrumentation Strategies for Integral Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, Belle R.; Lish, Matthew R.; Tarver, Rayan A.; Hines, J. Wesley [University of Tennessee, Knoxville (United States)

    2014-08-15

    The University of Tennessee is engaged in research and development projects related to instrumentation and controls for small modular reactors (SMR) and integral pressurized water reactors (iPWR). The approach incorporates the deployment of physics-based models for control design and parameter estimation, development of noncontact sensors for flow monitoring, and placement of sensors to maximize fault detection and isolation. The results of research and development illustrate the feasibility of sensor location in space-constrained environment. Major issues and challenges in I and C design are addressed.

  6. Digital instrument for reactivity measurements in a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chwaszczewski, S [Institute of Nuclear Research, Warsaw (Poland)

    1979-07-01

    An instrument for digital determination of the reactivity in nuclear reactors is described. It is based on the CAMAC standard apparatus, suitable for the use of pulse or current type neutron detectors and operates with prompt response and an output signal proportional to the core neutron flux. The measured data of neutron flux and reactivity can be registered by a digital display unit, an indicator, or, by request of the operator, a paper type punch. The algorithms used for reactivity calculation are considered and the results of numerical studies on those algorithms are discussed. The instrument has been used for determining the reactivity of the control elements in the fast-thermal assembly ANNA and in the research reactor MARIA. Some results of these measurements are given.

  7. Jones' instrument technology

    CERN Document Server

    Jones, Ernest Beachcroft; Kingham, Edward G; Radnai, Rudolf

    1985-01-01

    Jones' Instrument Technology, Volume 5: Automatic Instruments and Measuring Systems deals with general trends in automatic instruments and measuring systems. Specific examples are provided to illustrate the principles of such devices. A brief review of a considerable number of standards is undertaken, with emphasis on the IEC625 Interface System. Other relevant standards are reviewed, including the interface and backplane bus standards. This volume is comprised of seven chapters and begins with a short introduction to the principles of automatic measurements, classification of measuring system

  8. Halden Reactor Project Workshop: Understanding Advanced Instrumentation and Controls Issues

    International Nuclear Information System (INIS)

    Beltracchi, L.

    1991-01-01

    A Halden Reactor Project Workshop on 'Understanding Advanced Instrumentation and Controls Issues' was held in Halden, Norway, during June 17-18, 1991. The objectives of the workshop were to (1) identify and prioritize the types of technical information that the Halden Project can produce to facilitate the development of man-machine interface guidelines and (2) to identify methods to effectively integrate and disseminate this information to signatory organizations. As a member of the Halden Reactor Project, the Nuclear Regulatory Commission (NRC) requested the workshop. This request resulted from the NRC's need for human factors guidelines for the evaluation of advanced instrumentation and controls. The Halden Reactor Project is a cooperative agreement among several countries belonging to the Organization for Economic Cooperation and Development (OECD). The US began its association with the Halden Project in 1958 through the Atomic Energy Commission. The project's activities are centered at the Halden heavy-water reactor and its associated man-machine laboratory in Halden, Norway. The research program conducted at Halden consists of studies on fuel performance and computer-based man-machine interfaces

  9. Status of liquid metal cooled fast reactor technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants Refs, figs, tabs

  10. Status of liquid metal cooled fast reactor technology

    International Nuclear Information System (INIS)

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants

  11. Current Abstracts Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bales, J.D.; Hicks, S.C. [eds.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  12. U.S. Department of Energy University Reactor Instrumentation Program Final Report for 1992-94 Grant for the University of Florida Training Reactor

    International Nuclear Information System (INIS)

    Vernetson, William G.

    1999-01-01

    Overall, the instrumentation obtained under the first year 1992-93 University Reactor Instrumentation Program grant assured that the goals of the program were well understood and met as well as possible at the level of support provided for the University of Florida Training Reactor facility. Though the initial grant support of $21,000 provided toward the purchase of $23,865 of proposed instrumentation certainly did not meet many of the facility's needs, the instrumentation items obtained and implemented did meet some critical needs and hence the goals of the Program to support modernization and improvement of reactor facilities such as the UFTR within the academic community. Similarly, the instrumentation obtained under the second year 1993-94 University Reactor Instrumentation Program grant again met some of the critical needs for instrumentation support at the UFTR facility. Again, though the grant support of $32,799 for proposed instrumentation at the same cost projection does not need all of the facility's needs, it does assure continued facility viability and improvement in operations. Certainly, reduction of forced unavailability of the reactor is the most obvious achievement of the University Reactor Instrumentation Program to date at the UFTR. Nevertheless, the ability to close out several expressed-inspection concerns of the Nuclear Regulatory Commission with acquisition of the low level survey meter and the area radiation monitoring system is also very important. Most importantly, with modest cost sharing the facility has been able to continue and even accelerate the improvement and modernization of a facility, especially in the Neutron Activation Analysis Laboratory, that is used by nearly every post-secondary school in the State of Florida and several in other states, by dozens of departments within the University of Florida, and by several dozen high schools around the State of Florida on a regular basis. Better, more reliable service to such a broad

  13. Laser-Based Maintenance and Repair Technologies for Reactor Components

    International Nuclear Information System (INIS)

    Masaki Yoda; Naruhiko Mukai; Makoto Ochiai; Masataka Tamura; Satoshi Okada; Katsuhiko Sato; Motohiko Kimura; Yuji Sano; Noboru Saito; Seishi Shima; Tetsuo Yamamoto

    2004-01-01

    Toshiba has developed various laser-based maintenance and repair technologies and applied them to existing nuclear power plants. Laser-based technology is considered to be the best tool for remote processing in nuclear power plants, and particularly so for the maintenance and repair of reactor core components. Accessibility could be drastically improved by a simple handling system owing to the absence of reactive force against laser irradiation and the flexible optical fiber. For the preventive maintenance, laser peening (LP) technology was developed and applied to reactor components in operating BWR plants. LP is a novel process to improve residual stress from tensile to compressive on material surface layer by irradiating focused high-power laser pulses in water. We have developed a fiber-delivered LP system as a preventive maintenance measure against stress corrosion cracking (SCC). Laser ultrasonic testing (LUT) has a great potential to be applied to the remote inspection of reactor components. Laser-induced surface acoustic wave (SAW) inspection system was developed using a compact probe with a multi-mode optical fiber and an interferometer. The developed system successfully detected a micro slit of 0.5 mm depth on weld metal and heat-affected zone (HAZ). An artificial SCC was also detected by the system. We are developing a new LP system combined with LUT to treat the inner surface of bottom-mounted instruments (BMI) of PWR plants. Underwater laser seal welding (LSW) technology was also developed to apply surface crack. LSW is expected to isolate the crack tip from corrosive water environment and to stop the propagation of the crack. Rapid heating and cooling of the process minimize the heat effect, which extends the applicability to neutron-irradiated material. This paper describes recent advances in the development and application of such laser-based technologies. (authors)

  14. Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    J. Wesley Hines; Belle R. Upadhyaya; J. Michael Doster; Robert M. Edwards; Kenneth D. Lewis; Paul Turinsky; Jamie Coble

    2011-05-31

    Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topical areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus

  15. Instrumentation of fuel safety test rods of the PWR system in the Phebus reactor

    International Nuclear Information System (INIS)

    Schley, Robert; Leveque, J.P.; Aujollet, J.M.; Dutraive, Pierre; Colome, Jean; Bouly, J.C.

    1979-01-01

    The tests were performed in an experimental cell centred in the core of the PHEBUS water reactor of 50 MW. The CEA make two types of apparatus for testing the safety of PWR fuel. One is for testing a single fuel stick and the other a bunch of 25 sticks. The instrumentation described enables the main parameters of the test to be known: temperatures of the fuel - central temperature of the UO 2 - cladding surface temperatures; temperature of the cooling circuits - thermal balance - temperatures of the structures, etc.; coolant pressure; internal pressure of the fuel sticks; direction and flow rate of the fluid. This instrumentation and the technological problems to be overcome are described and the results of the first tests carried out are given [fr

  16. Programming for a nuclear reactor instrument simulation

    International Nuclear Information System (INIS)

    Cohn, C.

    1988-01-01

    This note discusses 8086/8087 machine-language programming for simulation of nuclear reactor instrument current inputs by means of a digital-analog converter (DAC) feeding a bank of series input resistors. It also shows FORTRAN programming for generating the parameter tales used in the simulation. These techniques would be generally useful for high-speed simulation of quantities varying over many orders of magnitude

  17. Virtual maintenance technology for reactor system based on PPR technology

    International Nuclear Information System (INIS)

    Wu Yaxiang; Ma Baiyong

    2009-01-01

    Based on the Product, Process and Resources (PPR) technology, the establishing technology of virtual maintenance environment for the reactor system and the process structure tree for virtual maintenance is studied, and the flow for the maintainability design and simulation for reactor system is put forward. Based on the subsection simulation of maintenance process and layered design of maintenance actions, the leveled structure of the reactor system virtual maintenance task is studied. The relation for the data of product, process and resource is described by Plan Evaluation and Review Technology (PERT) diagram to define the maintenance operation. (authors)

  18. Experience in Reviewing Small Modular Reactor Technology

    International Nuclear Information System (INIS)

    Ahmad Nabil Abdul Rahim; Alfred, S.L.; Phongsakorn, P.

    2015-01-01

    Malaysia is in the stage of conducting Preliminary Technical Feasibility Study for the Deployment of Small Modular Reactor (SMR). There are different types of SMR, some already under construction in Argentina (CAREM) and China (HTR-PM) - (light water reactor and high temperature reactor technologies), others with near-term deployment such as SMART in South Korea, ACP100 in China, mPower and NuScale in the US, and others with longer term deployment prospects (liquid-metal cooled reactor technologies). The study was mainly to get an overview of the technology available in the market. The SMR ranking in the study was done through listing out the most deployable technology in the market according to their types. As a new comer country, the proven technology with an excellent operation history will usually be the main consideration points. (author)

  19. The French Atomic Energy Commission program in the field of reactor instrumentation and control

    International Nuclear Information System (INIS)

    Golinelli, C.; Bernard, P.; Thomas, J.B.

    1992-01-01

    The worldwide slowing-down of the nuclear reactor construction must not lead to decrease the Research and Development effort. Particularly, in the field of the Nuclear Instrumentation and Control, new technologies are quickly changing: sensors, electronics, optronics, computer science... The nuclear industry is reluctant to the introduction of new concepts and of sophisticated technologies. Safety requires highly qualified systems. The development process must respect each step: - interest evaluation of the new idea, - designing and manufacturing of a prototype equipment, - qualification using an experimental facility or with a simulator, - qualification in operational condition (reliability, ageing, accidental standards...). We present an overview of the French CEA program covering the IC domain from the sensors to the operator screen

  20. University Reactor Instrumentation Grant. Final report 08/06/1998 - 08/13/1999

    International Nuclear Information System (INIS)

    Bajorek, S. M.

    2000-01-01

    A noble gas air monitoring system was purchased through the University Reactor Instrumentation Grant Program. This monitor was installed in the Kansas State TRIGA reactor bay at a location near the top surface of the reactor pool according to recommendation by the supplier. This system is now functional and has been incorporated into the facility license

  1. Upgrade of Instrumentation for Purdue Reactor PUR-1

    International Nuclear Information System (INIS)

    Revankar, S.T.; Merritt, E.; Bean, R.

    2000-01-01

    The major objective of this program was to upgrade and replace instruments and equipment that significantly improve the performance, control and operational capability of the Purdue University nuclear reactor (PUR-1). Under this major objective two projects on instrument upgrade were implemented. The first one was to convert the vacuum tube control and safety amplifiers (CSA) to solid state electronics, and the other was to upgrade the electrical and electronic shielding. This report is the annual report and gives the efforts and progress achieved on these two projects from July 1999 to June 2000

  2. Development of source range measurement instrument in Xi'an pulsed reactor

    CERN Document Server

    Wang Li

    2002-01-01

    Source range measurement instrument in Xi'an pulsed reactor is key equipment of low-side measuring in source range. At the same time, it is also weighty component of out-of-pile neutron-flux level observation system. The authors have done some researching and renovating based on the similar type devices used in nuclear reactor to improve the meter sensitivity, measuring range, noise proof features, reliability in running and maintainability which belong to the main performance index of the instrument. The design ideas, configurations, working principle, performance indexes, technique features and effect in utilizing are introduced briefly

  3. Reactor and process design in sustainable energy technology

    CERN Document Server

    Shi, Fan

    2014-01-01

    Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. Emphasis on reactor engineering in sustainable energy techn...

  4. Advanced Reactor Licensing: Experience with Digital I and C Technology in Evolutionary Plants

    International Nuclear Information System (INIS)

    Wood, RT

    2004-01-01

    This report presents the findings from a study of experience with digital instrumentation and controls (I and C) technology in evolutionary nuclear power plants. In particular, this study evaluated regulatory approaches employed by the international nuclear power community for licensing advanced l and C systems and identified lessons learned. The report (1) gives an overview of the modern l and C technologies employed at numerous evolutionary nuclear power plants, (2) identifies performance experience derived from those applications, (3) discusses regulatory processes employed and issues that have arisen, (4) captures lessons learned from performance and regulatory experience, (5) suggests anticipated issues that may arise from international near-term deployment of reactor concepts, and (6) offers conclusions and recommendations for potential activities to support advanced reactor licensing in the United States

  5. The experimental and technological developments reactor

    International Nuclear Information System (INIS)

    Carbonnier, J.L.

    2003-01-01

    THis presentation concerns the REDT, gas coolant reactor for experimental and technological developments. The specifications and the research programs concerning this reactor are detailed;: materials, safety aspects, core physic, the corresponding fuel cycle, the reactor cycle and the program management. (A.L.B.)

  6. Assessment of the high temperature fission chamber technology for the French fast reactor program

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, C.; Filliatre, P.; Geslot, B.; Domenech, T.; Normand, S. [Commissariat a l' Energie Atomique, CEA (France)

    2011-07-01

    High temperature fission chambers are key instruments for the control and protection of the sodium-cooled fast reactor. First, the developments of those neutron detectors, which are carried out either in France or abroad are reviewed. Second, the French realizations are assessed with the use of the technology readiness levels in order to identify tracks of improvement. (authors)

  7. Reactor science and technology: operation and control of reactors

    International Nuclear Information System (INIS)

    Qiu Junlong

    1994-01-01

    This article is a collection of short reports on reactor operation and research in China in 1991. The operation of and research activities linked with the Heavy Water Research Reactor, Swimming Pool Reactor and Miniature Neutron Source Reactor are briefly surveyed. A number of papers then follow on the developing strategies in Chinese fast breeder reactor technology including the conceptual design of an experimental fast reactor (FFR), theoretical studies of FFR thermo-hydraulics and a design for an immersed sodium flowmeter. Reactor physics studies cover a range of topics including several related to work on zero power reactors. The section on reactor safety analysis is concerned largely with the assessment of established, and the presentation of new, computer codes for use in PWR safety calculations. Experimental and theoretical studies of fuels and reactor materials for FBRs, PWRs, BWRs and fusion reactors are described. A final miscellaneous section covers Mo-Tc isotope production in the swimming pool reactor, convective heat transfer in tubes and diffusion of tritium through plastic/aluminium composite films and Li 2 SiO 3 . (UK)

  8. A digital instrument for reactivity measurements in a nuclear reactor

    International Nuclear Information System (INIS)

    Chwaszczewski, S.

    1979-01-01

    An instrument for digital determination of the reactivity in nuclear reactors is described. It is based on the CAMAC standard apparatus, suitable for the use of pulse or current type neutron detectors and operates with prompt response and an output signal proportional to the core neutron flux. The measured data of neutron flux and reactivity can be registered by a digital display unit, an indicator, or, by request of the operator, a paper type punch. The algorithms used for reactivity calculation are considered and the results of numerical studies on those algorithms are discussed. The instrument has been used for determining the reactivity of the control elements in the fast-thermal assembly ANNA and in the research reactor MARIA. Some results of these measurements are given. (author)

  9. Human machine interface for research reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Mohd Idris Taib; Izhar Abu Hussin; Zareen Khan Abdul Jalil Khan; Nurfarhana Ayuni Joha

    2010-01-01

    Most present design of Human Machine Interface for Research Reactor Instrumentation and Control System is modular-based, comprise of several cabinets such as Reactor Protection System, Control Console, Information Console as well as Communication Console. The safety, engineering and human factor will be concerned for the design. Redundancy and separation of signal and power supply are the main factor for safety consideration. The design of Operator Interface absolutely takes consideration of human and environmental factors. Physical parameters, experiences, trainability and long-established habit patterns are very important for user interface, instead of the Aesthetic and Operator-Interface Geometry. Physical design for New Instrumentation and Control System of RTP are proposed base on the state-of- the-art Human Machine Interface design. (author)

  10. Nuclear reactors' construction costs: The role of lead-time, standardization and technological progress

    International Nuclear Information System (INIS)

    Berthelemy, Michel; Escobar Rangel, Lina

    2013-01-01

    This paper provides the first comparative analysis of nuclear reactor construction costs in France and the United States. Studying the cost of nuclear power has often been a challenge, owing to the lack of reliable data sources and heterogeneity between countries, as well as the long time horizon which requires controlling for input prices and structural changes. We build a simultaneous system of equations for overnight costs and construction time (lead-time) to control for endogeneity, using expected demand variation as an instrument. We argue that benefits from nuclear reactor program standardization can arise through short term coordination gains, when the diversity of nuclear reactors' technologies under construction is low, or through long term benefits from learning spillovers from past reactor construction experience, if those spillovers are limited to similar reactors. We find that overnight construction costs benefit directly from learning spillovers but that these spillovers are only significant for nuclear models built by the same Architect-Engineer (A- E). In addition, we show that the standardization of nuclear reactors under construction has an indirect and positive effect on construction costs through a reduction in lead-time, the latter being one of the main drivers of construction costs. Conversely, we also explore the possibility of learning by searching and find that, contrary to other energy technologies, innovation leads to construction costs increases. (authors)

  11. Comparison of SANS instruments at reactors and pulsed sources

    International Nuclear Information System (INIS)

    Thiyagarajan, P.; Epperson, J.E.; Crawford, R.K.; Carpenter, J.M.; Hjelm, R.P. Jr.

    1992-01-01

    Small angle neutron scattering is a general purpose technique to study long range fluctuations and hence has been applied in almost every field of science for material characterization. SANS instruments can be built at steady state reactors and at the pulsed neutron sources where time-of-flight (TOF) techniques are used. The steady state instruments usually give data over small q ranges and in order to cover a large q range these instruments have to be reconfigured several times and SANS measurements have to be made. These instruments have provided better resolution and higher data rates within their restricted q ranges until now, but the TOF instruments are now developing to comparable performance. The TOF-SANS instruments, by using a wide band of wavelengths, can cover a wide dynamic q range in a single measurement. This is a big advantage for studying systems that are changing and those which cannot be exactly reproduced. This paper compares the design concepts and performances of these two types of instruments

  12. Instrumentation and control of the fast breeder reactors

    International Nuclear Information System (INIS)

    Juengst, U.

    1982-01-01

    Generally the Liquid Metal Fast Breeder Reactor (LMFBR) in comparison to the Leight Water Reactors hasn't exceptionally different requirements to the instrumentation and control systems. There fore the paper restricts itself to outline the peculiarities of LMFBR's exemplified at the design of the German Breeder SNR-300 beeing under construction. The special sodium instrumentation for temperature level, flow and pressure in the main systems is described. The automatic control system enabled the plant to follow the bad demand of the grid immidiately. The nuclear power production itself is stabilized by inherent coefficients of the core. An exceptional high reliability of the shut down systems is necessary; there fore all LMFBR's have two completely independant and diverse shut down systems. In the SNR-300 also the control of decay heat removal and the active safety systems for enclosure of radioactivity are distributed to two independent and diverse plant protection systems (PPS) so that the first system covered the accidents due to internal events and the second systems managed the external events such as earthquake and aircraft crash. (orig.)

  13. Development of mechanical design technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn

    1999-03-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose application such as small capacity power generation, co-generation and sea water desalination. With this in mind, an integral reactor SMART is under development. Design concepts, system layout and types of equipment of integral reactor are significantly different from those of loop type reactor. Conceptual design development of mechanical structures of integral reactor SMART is completed through the first stage of the project. Efforts were endeavored for the establishment of design basis and evaluation of applicable codes and standards. Design and functional requirements of major structural components were setup, and three dimensional structural modelling of SMART reactor vessel assembly was prepared. Also, maintenance and repair scheme as well as preliminary fabricability evaluation were carried out. Since small integral reactor technology includes sensitive technologies and know-how's, it is hard to achieve systematic and comprehensive technology transfer from nuclear-advanced countries. Thus, it is necessary to develop the related design technology and to verify the adopted methodologies through test and experiments in order to assure the structural integrity of reactor system. (author)

  14. Development of mechanical design technology for integral reactor

    International Nuclear Information System (INIS)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn

    1999-03-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose application such as small capacity power generation, co-generation and sea water desalination. With this in mind, an integral reactor SMART is under development. Design concepts, system layout and types of equipment of integral reactor are significantly different from those of loop type reactor. Conceptual design development of mechanical structures of integral reactor SMART is completed through the first stage of the project. Efforts were endeavored for the establishment of design basis and evaluation of applicable codes and standards. Design and functional requirements of major structural components were set up, and three dimensional structural modelling of SMART reactor vessel assembly was prepared. Also, maintenance and repair scheme as well as preliminary fabricability evaluation were carried out. Since small integral reactor technology includes sensitive technologies and know-how's, it is hard to achieve systematic and comprehensive technology transfer from nuclear-advanced countries. Thus, it is necessary to develop the related design technology and to verify the adopted methodologies through test and experiments in order to assure the structural integrity of reactor system. (author)

  15. Reactor technology assessment and selection utilizing systems engineering approach

    Science.gov (United States)

    Zolkaffly, Muhammed Zulfakar; Han, Ki-In

    2014-02-01

    The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

  16. Instrument lance for boiling water reactors

    International Nuclear Information System (INIS)

    Proell, N.; Bertz, S.; Graebener, K.H.

    1980-01-01

    The instrument lance contains in the lance cover pipe a thimble as part of the drive chamber system. Other thimbles serve to carry neutron detectors. Detectors can be exchanged without opening the reactor pressure vessel and without removing the fuel elements. Furthermore the detector exchange is independent from the fuel element cycle. The measurement lance passes from the bottom of the pressure vessel over the total hight of the core in the water ducts between the fuel elements and can thus determine the neutron flux distribution. (DG) [de

  17. Systemization of Design and Analysis Technology for Advanced Reactor

    International Nuclear Information System (INIS)

    Kim, Keung Koo; Lee, J.; Zee, S. K.

    2009-01-01

    The present study is performed to establish the base for the license application of the original technology by systemization and enhancement of the technology that is indispensable for the design and analysis of the advanced reactors including integral reactors. Technical reports and topical reports are prepared for this purpose on some important design/analysis methodology; design and analysis computer programs, structural integrity evaluation of main components and structures, digital I and C systems and man-machine interface design. PPS design concept is complemented reflecting typical safety analysis results. And test plans and requirements are developed for the verification of the advanced reactor technology. Moreover, studies are performed to draw up plans to apply to current or advanced power reactors the original technologies or base technologies such as patents, computer programs, test results, design concepts of the systems and components of the advanced reactors. Finally, pending issues are studied of the advanced reactors to improve the economics and technology realization

  18. Status of international cooperation in nuclear technology on testing/research reactors between JAEA and INP-NNC

    International Nuclear Information System (INIS)

    Kawamura, Hiroshi; Tsuchiya, Kunihiko; Takemoto, Noriyuki; Kimura, Akihiro; Tanimoto, Masataka; Izumo, Hironobu; Chakrov, Petr; Gizatulin, Shamil; Chakrova, Yelena; Ludmila, Chkushuina; Asset, Shaimerdenov; Nataliya, Romanova

    2012-02-01

    Based on the implementing arrangement between National Nuclear Center of the Republic of Kazakhstan (NNC) and the Japan Atomic Energy Agency (JAEA) for 'Nuclear Technology on Testing/Research Reactors' in cooperation in Research and Development in Nuclear Energy and Technology, four specific topics of cooperation (STC) have been carried out from June, 2009. Four STCs are as follows; (1) STC No.II-1 : International Standard of Instrumentation. (2) STC No.II-2 : Irradiation Technology of RI Production. (3) STC No.II-3 : Lifetime Expansion of Beryllium Reflector. (4) STC No.II-4 : Irradiation Technology for NTD-Si. The information exchange, personal exchange and cooperation experiments are carried out under these STCs. The status in the field of nuclear technology on testing/research reactors in the implementing arrangement is summarized, and future plans of these specific topics of cooperation are described in this report. (author)

  19. Providing nuclear reactor control information in the presence of instrument failures

    International Nuclear Information System (INIS)

    Tylee, J.L.; Purviance, J.E.

    1986-01-01

    A technique for using unfailed instrument outputs to generate optimal estimates of failed sensor outputs is presented and evaluated. The technique uses a bank of discrete, linear Kalman filters, each dedicated to one instrument, and a combinatory logic to perform the output estimation. The technique is tested using measurement data from a university research reactor

  20. Measurement of two phase flow properties using the nuclear reactor instruments

    International Nuclear Information System (INIS)

    Albrecht, R.W.; Washington Univ., Seattle; Crowe, R.D.; Dailey, D.J.; Kosaly, G.; Damborg, M.J.

    1982-01-01

    A procedure is introduced for characterizing one dimensional, two phase flow in terms of three properties; propagation, structure, and dynamics. It is shown that all of these properties can be measured by analyzing the response of the reactor neutron field to a two phase flow perturbation. Therefore, a nuclear reactor can be regarded as a two phase flow instrument. (author)

  1. Nuclear instrumentation systems in prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Vijayakumaran, P.M.; Nagaraj, C.P.; Paramasivan-Pillai, C.; Ramakrishnan, R.; Sivaramakrishna, M.

    2004-01-01

    The nuclear instrumentation systems of the Prototype Fast Breeder Reactor (PFBR) primarily comprise of global Neutron Flux Monitoring, Failed Fuel Detection and Location, Radiation Monitoring and Post-Accident Monitoring. High temperature fission chambers are provided at in-vessel locations for monitoring neutron flux. Failed fuel detection and location is by monitoring the cover gas for fission gases and primary sodium for delayed neutrons. Signals of the core monitoring detectors are used to initiate SCRAM (safety action) to protect the reactor from various postulated initiating events. Radiation levels in all potentially radioactive areas are monitored to act as an early warning system to keep the release of radioactivity to the environment and exposure to personnel well below the permissible limits. Fission Chambers and Gamma Ionisation Chambers are located in the reactor vault concrete for monitoring the neutron flux and gamma radiation levels during and after an accident. (authors)

  2. Preliminary nuclear power reactor technology qualitative assessment for Malaysia

    International Nuclear Information System (INIS)

    Shamsul Amri Sulaiman

    2011-01-01

    Since the worlds first nuclear reactor major breakthrough in December 02, 1942, the nuclear power industry has undergone tremendous development and evolution for more than half a century. After surpassing moratorium of nuclear power plant construction caused by catastrophic accidents at Three-mile island (1979) and Chernobyl (1986), today, nuclear energy is back on the policy agendas of many countries, both developed and developing, signaling nuclear revival or nuclear renaissance. Selection of suitable nuclear power technology has thus been subjected to primary attention. This short paper attempts to draw preliminary technology assessment for the first nuclear power reactor technology for Malaysia. Methodology employed is qualitative analysis collating recent finding of tnb-kepco preliminary feasibility study for nuclear power program in peninsular malaysia and other published presentations and/or papers by multiple experts. The results suggested that pressurized water reactor (PWR) is the prevailing technology in terms of numbers and plant performances, and while the commercialization of generation IV reactors is remote (e.g. Not until 2030), generation III/ III+ NPP models are commercially available on the market today. Five (5) major steps involved in reactor technology selection were introduced with a focus on introducing important aspects of selection criteria. Three (3) categories for the of reactor technology selection were used for the cursory evaluation. The outcome of these analyses shall lead to deeper and full analyses of the recommended reactor technologies for a comprehensive feasibility study in the near future. Recommendations for reactor technology option were also provided for both strategic and technical recommendations. The paper shall also implore the best way to select systematically the first civilian nuclear power reactor. (Author)

  3. Status of Fast Reactor Research and Technology Development

    International Nuclear Information System (INIS)

    2012-01-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  4. Status of Fast Reactor Research and Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  5. Status of Fast Reactor Research and Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  6. Status of Fast Reactor Research and Technology Development

    International Nuclear Information System (INIS)

    2013-01-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  7. Nuclear power reactor technology

    International Nuclear Information System (INIS)

    1978-09-01

    Risoe National Laboratory was established more than twenty years ago with research and development of nuclear reactor technology as its main objective. The Laboratory has by now accumulated many years of experience in a number of areas vital to nuclear reactor technology. The work and experience of, and services offered by the Laboratory within the following fields are described: Health physics site supervision; Treatment of low and medium level radioactive waste; Core performance evaluation; Transient analysis; Accident analysis; Fuel management; Fuel element design, fabrication and performance evaluation; Non-destructive testing of nuclear fuel; Theoretical and experimental structural analysis; Reliability analysis; Site evaluation. Environmental risk and hazard calculation; Review and analysis of safety documentation. Risoe has already given much assistance to the authorities, utilities and industries in such fields, carrying out work on both light and heavy water reactors. The Laboratory now offers its services to others as a consultant, in education and training of staff, in planning, in qualitative and quantitative analysis, and for the development and specification of fabrication techniques. (author)

  8. CANDU technology for generation III + AND IV reactors

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    2005-01-01

    Atomic Energy of Canada Limited (AECL) is the original developer of the CANDU?reactor, one of the three major commercial power reactor designs now used throughout the world. For over 60 years, AECL has continued to evolve the CANDU design from the CANDU prototypes in the 1950s and 1960s through to the second generation reactors now in operation, including the Generation II+ CANDU 6. The next phase of this evolution, the Generation III+ Advanced CANDU ReactorTM (ACRTM), continues the strategy of basing next generation technology on existing CANDU reactors. Beyond the ACR, AECL is developing the Generation IV CANDU Super Critical Water Reactor. Owing to the evolutionary nature of these advanced reactors, advanced technology from the development programs is also being applied to operating CANDU plants, for both refurbishments and upgrading of existing systems and components. In addition, AECL is developing advanced technology that covers the entire life cycle of the CANDU plant, including waste management and decommissioning. Thus, AECL maintains state-of-the-art expertise and technology to support both operating and future CANDU plants. This paper outlines the scale of the current core knowledge base that is the foundation for advancement and support of CANDU technology. The knowledge base includes advancements in materials, fuel, safety, plant operations, components and systems, environmental technology, waste management, and construction. Our approach in each of these areas is to develop the underlying science, carry out integrated engineering scale tests, and perform large-scale demonstration testing. AECL has comprehensive R and D and engineering development programs to cover all of these elements. The paper will show how the ongoing expansion of the CANDU knowledge base has led to the development of the Advanced CANDU Reactor. The ACR is a Generation III+ reactor with substantially reduced costs, faster construction, and enhanced passive safety and operating

  9. What is the future for fast reactor technology?

    International Nuclear Information System (INIS)

    Kraev, Kamen

    2017-01-01

    NucNet spoke to Vladimir Kriventsev, team leader for fast reactor technology development at the International Atomic Energy Agency (IAEA), about the possibilities and challenges of technology development in the fast reactor sector. Today, the field of fast reactors is vibrant and full of fascinating developments, some which will have an impact in the nearer term and others in the longer term.

  10. What is the future for fast reactor technology?

    Energy Technology Data Exchange (ETDEWEB)

    Kraev, Kamen [NucNet, Brussels (Belgium). The Independent Global Nuclear News Agency

    2017-08-15

    NucNet spoke to Vladimir Kriventsev, team leader for fast reactor technology development at the International Atomic Energy Agency (IAEA), about the possibilities and challenges of technology development in the fast reactor sector. Today, the field of fast reactors is vibrant and full of fascinating developments, some which will have an impact in the nearer term and others in the longer term.

  11. Availability analysis of the nuclear instrumentation of a research reactor; Analise da disponibilidade da instrumentacao nuclear de um reator de pesquisa

    Energy Technology Data Exchange (ETDEWEB)

    Vianna Filho, Alfredo Marques

    2016-07-01

    The maintenance of systems and equipment is a central question related to Production Engineering. Although systems are not fully reliable, it is often necessary to minimize the failure occurrence likelihood. The failures occurrences can have disastrous consequences during a plane flight or operation of a nuclear power plant. The elaboration of a maintenance plan has as objective the prevention and recovery from system failures, increasing reliability and reducing the cost of unplanned shutdowns. It is also important to consider the issues related to organizations safety, especially those dealing with dangerous technologies. The objective of this thesis is to propose a method for maintenance analysis of a nuclear research reactor, using a socio-technical approach, and focused on existing conditions in Brazil. The research reactor studied belongs to the federal government and it is located in the city of Rio de Janeiro. The specific objective of this thesis is to develop the availability analysis of one of the principal systems of the research reactor, the nuclear instrumentation system. In this analysis, were taken into account not only the technical aspects of the modules related to nuclear instrumentation system, but also the human and organizational factors that could affect the availability of the nuclear instrumentation system. The results showed the influence of these factors on the availability of the nuclear instrumentation system. (author)

  12. Proceedings of symposium on intelligent nuclear instrumentation-2001

    International Nuclear Information System (INIS)

    Kataria, S.K.; Vaidya, P.P.; Das, Debashis; Narurkar, P.V.

    2001-02-01

    Advances in the field of instrumentation are relevant to many areas of importance such as nuclear and accelerator based research, reactor monitoring and control, non-destructive testing and evaluation, laser programme and health and environment monitoring etc. The nuclear instrumentation is a specialized field with very specific expertise in detection, processing and its analysis. The symposium covers various fields of nuclear interest such as radiation detectors, application of ASICs and FPGA in instruments, field instruments, nuclear instrumentation for basic research, accelerator, reactor, health and environmental monitoring instrumentation, medical instrumentation, instrument net working inclusive of field buses, WEB based and wireless technologies, software tools, AI technique in instrumentation etc., in this specialized area. Papers relevant to INIS are indexed separately

  13. University Reactor Instrumentation grant program. Final report, September 7, 1990--August 31, 1995

    International Nuclear Information System (INIS)

    Talnagi, J.W.

    1998-01-01

    The Ohio State University Nuclear Reactor Laboratory (OSU NRL) participated in the Department of Energy (DOE) grant program commonly denoted as the University Reactor Instrumentation (URI) program from the period September 1990 through August 1995, after which funding was terminated on a programmatic basis by DOE. This program provided funding support for acquisition of capital equipment targeted for facility upgrades and improvements, including modernizing reactor systems and instrumentation, improvements in research and instructional capabilities, and infrastructure enhancements. The staff of the OSU NRL submitted five grant applications during this period, all of which were funded either partially or in their entirety. This report will provide an overview of the activities carried out under these grants and assess their impact on the OSU NRL facilities

  14. Development of inherent core technologies for advanced reactor

    International Nuclear Information System (INIS)

    Kim, Keung Koo; Noh, J.M.; Hwang, D.H.

    1999-03-01

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  15. Development of inherent core technologies for advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keung Koo; Noh, J.M.; Hwang, D.H. [and others

    1999-03-01

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  16. Technological considerations in emergency instrumentation preparedness. Phase II-D. Evaluation testing and calibration methodology for emergency radiological instrumentation

    International Nuclear Information System (INIS)

    Bramson, P.E.; Andersen, B.V.; Fleming, D.M.; Kathren, R.L.; Mulhern, O.R.; Newton, C.E.; Oscarson, E.E.; Selby, J.M.

    1976-09-01

    In response to recommendations from the Advisory Committee on Reactor Safeguards, the Division of Operational Safety, U.S. ERDA has contracted with Battelle, Pacific Northwest Laboratories to survey the adequacy of existing instrumentation at nuclear fuel cycle facilities to meet emergency requirements and to develop technical criteria for instrumentation systems to be used in assessment of environmental conditions following plant emergencies. This report, the fifth in a series, provides: (1) calibration methods to assure the quality of radiological measurements and (2) testing procedures for determining whether an emergency radiological instrument meets the performance specifications. Three previous reports in this series identified the emergency instrumentation needs for power reactors, mixed oxide fuel plants, and fuel reprocessing facilities. Each of these three reports contains a Section VI, which sets forth applicable radiological instrument performance criteria and calibration requirements. Testing and calibration procedures in this report have been formatted in two parts: IV and V, each divided into three subsections: (1) Power Reactors, (2) Mixed Oxide Fuel Plants, and (3) Fuel Reprocessing Facilities. The three performance criteria subsections directly coincide with the performance criteria sections of the previous reports. These performance criteria sections have been reproduced in this report as Part III with references of ''required action'' added

  17. Materials and Components Technology Division research summary, 1992

    International Nuclear Information System (INIS)

    1992-11-01

    The Materials and Components Technology Division (MCT) provides a research and development capability for the design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs related to nuclear energy support the development of the Integral Fast Reactor (IFR): life extension and accident analyses for light water reactors (LWRs); fuels development for research and test reactors; fusion reactor first-wall and blanket technology; and safe shipment of hazardous materials. MCT Conservation and Renewables programs include major efforts in high-temperature superconductivity, tribology, nondestructive evaluation (NDE), and thermal sciences. Fossil Energy Programs in MCT include materials development, NDE technology, and Instrumentation design. The division also has a complementary instrumentation effort in support of Arms Control Technology. Individual abstracts have been prepared for the database

  18. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    Matsuura, S.; Nakahara, Y.; Takano, H.

    1983-09-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1982 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Since fiscal 1982, Systematic research and development work on safeguards technology has been added to the activities of the Department. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  19. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    International Nuclear Information System (INIS)

    Monteleone, S.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors

  20. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  1. Instrumentation for PSD based neutron diffractometers at Dhruva reactor

    International Nuclear Information System (INIS)

    Pande, S.S.; Borkar, S.P.; Prafulla, S.; Srivastava, V.D.; Behare, A.; Mukhopadhyay, P.K.; Ghodgaonkar, M.D.; Kataria, S.K.

    2004-01-01

    Linear position sensitive detectors (PSDs) are widely used to configure neutron diffractometers and other instruments. Necessary front-end electronics and a data acquisition system is developed to cater to such instruments built around the Dhruva research reactor in BARC. These include three diffractometers with multiple PSDs and four with single PSD. The front-end electronics consists of high voltage units, preamplifiers, shaping amplifiers, ratio ADCs (RDC). The data acquisition system consists of an interface card and software. Commercially available hardware like temperature controller or stepper motor controller connected over GPIB or RS232 are also integrated in the data acquisition system. The data acquisition is automated so that it can continue unattended for control parameter like temperature, thus enabling optimum utilization of available beam time. The instrumentation is scalable and can be easily configured for various instrumental requirements. The front-end electronics and the data acquisition system are described here. (author)

  2. Backfitting in Rossendorf research reactor control and instrumentation system

    International Nuclear Information System (INIS)

    Klebau, J.; Seidler, S.

    1985-01-01

    The paper generally describes a decentralized Hierarchical Information System (HIS) which has been developed for backfitting in Rossendorf Research Reactor (RFR) control and instrumentation system. The RFR was put into operation in 1957 and reconstructed from 2 MW up to a thermal power of 10 MW at the end of the sixties. Backfitting is planned by use of an advanced computerized control system for the next years. Main tasks of HIS are: Processmonitoring, online-disturbance analysis, technical diagnosis, direct digital control and use of a special industrial robot for discharging of irradiated materials out of the reactor. Experiences obtained by HIS during a testperiod will be presented. (author)

  3. Overview of remote technologies applied to research reactor fuel

    International Nuclear Information System (INIS)

    Oerdoegh, M.; Takats, F.

    1999-01-01

    This paper gives a brief overview of the remote technologies applied to research reactor fuels. Due to many reasons, the remote technology utilization to research reactor fuel is not so widespread as it is for power reactor fuels, however, the advantages of the application of such techniques are obvious. (author)

  4. Maintenance technologies for reactor internals

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kenji [Nuclear Energy Systems and Services Div., Toshiba Corp., Tokyo (Japan); Kobayashi, Masahiro [Toshiba Corp., Yokohama (Japan). Keihin Product Operations; Sano, Yuji; Kimura, Seiichiro [Power and Industrial Systems Research and Development Center, Toshiba Corp., Tokyo(Japan)

    2000-10-01

    Toshiba places the highest priority on maintenance technologies for the reactor pressure vessel (RPV) and its internals in operating nuclear power plants. This paper summarizes the status of applied laser maintenance technologies, both preventive and repair. For laser peeing and laser desensitization treatment (LDT) technologies in particular, field applications are also described in detail. In the future, the area of field applications for preventive maintenance, repair, and inspection technologies will be further expanded. (author)

  5. Reactor surface contamination stabilization. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-11-01

    Contaminated surfaces, such as the face of a nuclear reactor, need to be stabilized (fixed) to avoid airborne contamination during decontamination and decommissioning activities, and to prepare for interim safe storage. The traditional (baseline) method of fixing the contamination has been to spray a coating on the surfaces, but ensuring complete coverage over complex shapes, such as nozzles and hoses, is difficult. The Hanford Site C Reactor Technology Demonstration Group demonstrated innovative technologies to assess stabilization properties of various coatings and to achieve complete coverage of complex surfaces on the reactor face. This demonstration was conducted in two phases: the first phase consisted of a series of laboratory assessments of various stabilization coatings on metal coupons. For the second phase, coatings that passed the laboratory tests were applied to the front face of the C Reactor and evaluated. The baseline coating (Rust-Oleum No. 769) and one of the innovative technologies did not completely cover nozzle assemblies on the reactor face, the most critical of the second-phase evaluation criteria. However, one of the innovative coating systems, consisting of a base layer of foam covered by an outer layer of a polymeric film, was successful. The baseline technology would cost approximately 33% as much as the innovative technology cost of $64,000 to stabilize an entire reactor face (196 m 2 or 2116 ft 2 ) with 2,004 nozzle assemblies, but the baseline system failed to provide complete surface coverage

  6. Space-reactor electric systems: subsystem technology assessment

    International Nuclear Information System (INIS)

    Anderson, R.V.; Bost, D.; Determan, W.R.

    1983-01-01

    This report documents the subsystem technology assessment. For the purpose of this report, five subsystems were defined for a space reactor electric system, and the report is organized around these subsystems: reactor; shielding; primary heat transport; power conversion and processing; and heat rejection. The purpose of the assessment was to determine the current technology status and the technology potentials for different types of the five subsystems. The cost and schedule needed to develop these potentials were estimated, and sets of development-compatible subsystems were identified

  7. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1978-10-01

    Research activities in the Division of Reactor Engineering in fiscal 1977 are described. Works of the Division are development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and development of Liquid Metal Fast Breeder Reactor for Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and Committee on Reactor Physics. (Author)

  8. Renovation of PARR instrumentation and controls

    International Nuclear Information System (INIS)

    Karim, A.; Haq, I.; Akhtar, K.M.; Alam, G.D.

    1987-01-01

    The Pakistan research reactor (PARR) was commissioned in 1965 and operated since then in accordance with the requirements. In the first instance, it was proposed that the controls and instrumentation be modernized according to the state of current technology and for meeting the more stringent safety, and operational needs. A computer has been added for data acquisition, logging and analysis. A closed circuit television system has been installed to monitor access of personnel to the reactor building and for viewing the reactor core with an underwater camera. This report gives a brief account of the old instrumentation and some details of the new replacements. (orig./A.B)

  9. Instrumentation for PSD-based neutron diffractometers at Dhruva reactor

    Science.gov (United States)

    Pande, S. S.; Borkar, S. P.; Prafulla, S.; Srivastava, V. D.; Behare, A.; Mukhopadhyay, P. K.; Ghodgaonkar, M. D.; Kataria, S. K.

    2004-08-01

    Linear position sensitive detectors (PSDs) are widely used to configure neutron diffractometers and other instruments. Necessary front-end electronics and a data acquisition system [1] is developed to cater to such instruments built around the Dhruva research reactor in BARC. These include three diffractometers with multiple PSDs and four with single PSD. The front-end electronics consists of high voltage units, preamplifiers [2], shaping amplifiers, ratio ADCs (RDC) [3]. The data acquisition system consists of an interface card and software. Commercially available hardware like temperature controller or stepper motor controller connected over GPIB or RS232 are also integrated in the data acquisition system. The data acquisition is automated so that it can continue unattended for control parameter like temperature, thus enabling optimum utilization of available beam time. The instrumentation is scalable and can be easily configured for various instrumental requirements. The front-end electronics and the data acquisition system are described here.

  10. Difference of reactor core nuclear instrument between AP1000 and CPR1000

    International Nuclear Information System (INIS)

    Zhang Shidong; Zhou Can; Deng Tian

    2014-01-01

    As a typical generation Ⅲ reactor technique, the AP1000 applies many advanced design concepts, simplifies the design, reduces equipment quantities, and thus enhances systematic reliability. The comparison of reactor core measurement instrument differences between AP1000 and CPR1000 from several aspects was involved in the paper. Through analysis and comparison of these differences, passive design concepts and characteristics of AP1000 are familiarized, and conveniences for staffs engaged in CPR1000 to learn and grasp AP1000 technique are provided. It is useful in reactor start up, operation and maintenance. (authors)

  11. Development of a Remotely-operated Visual Inspection System for Reactor Vessel Bottommounted Instrument Penetrations of KSNP and Lessons Learned

    International Nuclear Information System (INIS)

    Jeong, Kyungmin; Choi, Youngsu; Lee, Sunguk; Seo, Yongchil; Kang, Jong Gyu; Kim, Seungho; Jung, Seungho

    2006-01-01

    In April 2003, South Texas Project Unit 1 made a surprising discovery of boron acid leakage from two nozzles from a bare-metal examination of the reactor vessel bottom-mounted instrument penetrations during a routine refueling outage. A small powdery substance about 150mg was found on the outside of two instrument guide penetration nozzles on the bottom of the reactor. The primary coolant water of pressurized water reactors has caused cracking in penetrations with Alloy 600 through a process called primary water stress corrosion cracking. In South Korea, it is required to conduct 100% visual inspection of the outside of instrument guide penetration nozzles on the bottom of PWRs to confirm the integrity of reactor vessel. This paper describes the remotely-operated visual inspection systems for reactor vessel bottom-mounted instrument penetrations dispatched two times to Youngkwang NPPs and discusses the lessons learned

  12. Assessing information needs and instrument availability for a pressurized water reactor during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Duane J. (Idaho National Engineering Laboratory, Idaho Falls, ID 83415 (United States)); Arcieri, William C. (Idaho National Engineering Laboratory, Idaho Falls, ID 83415 (United States)); Ward, Leonard W. (Idaho National Engineering Laboratory, Idaho Falls, ID 83415 (United States))

    1994-07-01

    A five-step methodology was developed to evaluate information needs for nuclear power plants under accident conditions and the availability of plant instrumentation during severe accidents. Step 1 examines the credible accidents and their relationships to plant safety functions. Step 2 determines the information that personnel involved in accident management will need to understand plant behavior. Step 3 determines the capability of the instrumentation to function properly under severe accident conditions. Step 4 determines the conditions expected during the identified severe accidents. Step 5 compares the instrument capabilities and severe accident conditions, to evaluate the availability of the instrumentation to supply needed plant information. This methodology was applied to a pressurized water reactor with a large dry containment and the results are presented. A companion article describes application of the methodology to a boiling water reactor with a Mark I containment. ((orig.))

  13. Assessing information needs and instrument availability for a pressurized water reactor during severe accidents

    International Nuclear Information System (INIS)

    Hanson, Duane J.; Arcieri, William C.; Ward, Leonard W.

    1994-01-01

    A five-step methodology was developed to evaluate information needs for nuclear power plants under accident conditions and the availability of plant instrumentation during severe accidents. Step 1 examines the credible accidents and their relationships to plant safety functions. Step 2 determines the information that personnel involved in accident management will need to understand plant behavior. Step 3 determines the capability of the instrumentation to function properly under severe accident conditions. Step 4 determines the conditions expected during the identified severe accidents. Step 5 compares the instrument capabilities and severe accident conditions, to evaluate the availability of the instrumentation to supply needed plant information. This methodology was applied to a pressurized water reactor with a large dry containment and the results are presented. A companion article describes application of the methodology to a boiling water reactor with a Mark I containment. ((orig.))

  14. Cryogenics in nuclear reactor technology

    International Nuclear Information System (INIS)

    Dharmadurai, G.

    1982-01-01

    The cryogenic technology has significantly contributed to the development of several proven techniques for use in the nuclear power industry. A noteworthy feature is the unique role of cryogenics in minimising the release of radioactive and some chemical pollutants to the environment during the operation of various plants associated with this industry. The salient technological features of several cryogenic processes relevant to the nuclear reactor technology are discussed. (author)

  15. Development of technology for next generation reactor - Research of evaluation technology for nuclear power plant -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)] [and others

    1993-09-01

    For development of next generation reactor, a project for evaluation technology for nuclear power plant is performed. Evaluation technology is essential to next generation reactor for reactor safety and system analysis. For design concept, detailed evaluation technologies are studied as follows: evaluation of safety margin, evaluation of safety facilities, evaluation of measurement and control technology; man-machine interface. Especially for thermal efficiency, thermal properties and chemical composition of inconel 690 tube, instead of inconel 600 tube, are measured for steam generator. (Author).

  16. Instrumentation for the advanced high-flux reactor workshop: proceedings

    International Nuclear Information System (INIS)

    Moon, R.M.

    1984-01-01

    The purpose of the Workshop on Instrumentation for the Advanced High-Flux Reactor, held on May 30, 1984, at the Oak Ridge National Laborattory, was two-fold: to announce to the scientific community that ORNL has begun a serious effort to design and construct the world's best research reactor, and to solicit help from the scientific community in planning the experimental facilities for this reactor. There were 93 participants at the workshop. We are grateful to the visiting scientists for their enthusiasm and interest in the reactor project. Our goal is to produce a reactor with a peak thermal flux in a large D 2 O reflector of 5 x 10 15 n/cm 2 s. This would allow the installation of unsurpassed facilities for neutron beam research. At the same time, the design will provide facilities for isotope production and materials irradiation which are significantly improved over those now available at ORNL. This workshop focussed on neutron beam facilities; the input from the isotope and materials irradiation communities will be solicited separately. The reactor project enjoys the full support of ORNL management; the present activities are financed by a grant of $663,000 from the Director's R and D Fund. However, we realize that the success of the project, both in realization and in use of the reactor, depends on the support and imagination of a broad segment of the scientific community. This is more a national project than an ORNL project. The reactor would be operated as a national user facility, open to any research proposal with high scientific merit. It is therefore important that we maintain a continuing dialogue with outside scientists who will be the eventual users of the reactor and the neutron beam facilities. The workshop was the first step in establishing this dialogue; we anticipate further workshops as the project continues

  17. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1985-08-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1984 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, reactor physics experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, safeguards technology, and activities of the Committee on Reactor Physics. (author)

  18. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Matsuura, Shojiro; Nakahara, Yasuaki; Takano, Hideki

    1982-09-01

    Research and development activities in the Division of Reactor Engineering in fiscal 1981 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  19. A review of the UK fast reactor programme, March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R D

    1979-07-01

    The Status report of the UK activities related to fast-breeder reactor activities includes the following: summary of the operating experience of the prototype Fast Reactor (PFR) during 1978; design studies of the commercial demonstration fast reactor (CDFR); design studies of later advanced LMFBR; engineering developments of high temperature sodium loop, steam generators and instrumentation; materials development; corrosion problems; sodium technology; fuel elements development; PFR fuel reprocessing; safety issues molten fuel-coolant interaction; core structure test; accident analysis; reactor performance studies; experimental reactor physics; fuel management and general neutronics calculation for CDFR; reactor instruments.

  20. A review of the UK fast reactor programme, March 1979

    International Nuclear Information System (INIS)

    Smith, R.D.

    1979-01-01

    The Status report of the UK activities related to fast-breeder reactor activities includes the following: summary of the operating experience of the prototype Fast Reactor (PFR) during 1978; design studies of the commercial demonstration fast reactor (CDFR); design studies of later advanced LMFBR; engineering developments of high temperature sodium loop, steam generators and instrumentation; materials development; corrosion problems; sodium technology; fuel elements development; PFR fuel reprocessing; safety issues molten fuel-coolant interaction; core structure test; accident analysis; reactor performance studies; experimental reactor physics; fuel management and general neutronics calculation for CDFR; reactor instruments

  1. Overview of U.S. Fast Reactor Technology Program

    International Nuclear Information System (INIS)

    Hill, Robert

    2013-01-01

    • Concept development studies guide R&D tasks by evaluating system impact for broad variety of technology options: – Small-scale facilities for R&D on key technology; – No near-term plan for demonstration reactor. • Fast reactor R&D is focused on key technologies innovations for performance improvement (cost reduction): – Advanced Structural Materials; – Advanced Energy Conversion; – Advanced Modeling and Simulation. • Other R&D is conducted to address known technology challenges: – Safety and Licensing; – Fuels Development; – Undersodium Viewing

  2. HTGR Measurements and Instrumentation Systems

    International Nuclear Information System (INIS)

    Ball, Sydney J.; Holcomb, David Eugene; Cetiner, Mustafa Sacit

    2012-01-01

    This report provides an integrated overview of measurements and instrumentation for near-term future high-temperature gas-cooled reactors (HTGRs). Instrumentation technology has undergone revolutionary improvements since the last HTGR was constructed in the United States. This report briefly describes the measurement and communications needs of HTGRs for normal operations, maintenance and inspection, fuel fabrication, and accident response. The report includes a description of modern communications technologies and also provides a potential instrumentation communications architecture designed for deployment at an HTGR. A principal focus for the report is describing new and emerging measurement technologies with high potential to improve operations, maintenance, and accident response for the next generation of HTGRs, known as modular HTGRs, which are designed with passive safety features. Special focus is devoted toward describing the failure modes of the measurement technologies and assessing the technology maturity.

  3. Light Water Reactor Sustainability Program: Digital Technology Business Case Methodology Guide

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lawrie, Sean [ScottMadden, Inc., Raleigh, NC (United States); Hart, Adam [ScottMadden, Inc., Raleigh, NC (United States); Vlahoplus, Chris [ScottMadden, Inc., Raleigh, NC (United States)

    2014-09-01

    The Department of Energy’s (DOE’s) Light Water Reactor Sustainability Program aims to develop and deploy technologies that will make the existing U.S. nuclear fleet more efficient and competitive. The program has developed a standard methodology for determining the impact of new technologies in order to assist nuclear power plant (NPP) operators in building sound business cases. The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway is part of the DOE’s Light Water Reactor Sustainability (LWRS) Program. It conducts targeted research and development (R&D) to address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals: (1) to ensure that legacy analog II&C systems are not life-limiting issues for the LWR fleet and (2) to implement digital II&C technology in a manner that enables broad innovation and business improvement in the NPP operating model. Resolving long-term operational concerns with the II&C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation’s energy and environmental security. The II&C Pathway is conducting a series of pilot projects that enable the development and deployment of new II&C technologies in existing nuclear plants. Through the LWRS program, individual utilities and plants are able to participate in these projects or otherwise leverage the results of projects conducted at demonstration plants. Performance advantages of the new pilot project technologies are widely acknowledged, but it has proven difficult for utilities to derive business cases for justifying investment in these new capabilities. Lack of a business case is often cited by utilities as a barrier to pursuing wide-scale application of digital technologies to nuclear plant work activities. The decision to move forward with funding usually hinges on

  4. Nuclear reactors' construction costs: The role of lead-time, standardization and technological progress

    International Nuclear Information System (INIS)

    Berthélemy, Michel; Escobar Rangel, Lina

    2015-01-01

    This paper provides an econometric analysis of nuclear reactor construction costs in France and the United States based on overnight costs data. We build a simultaneous system of equations for overnight costs and construction time (lead-time) to control for endogeneity, using change in expected electricity demand as instrument. We argue that the construction of nuclear reactors can benefit from standardization gains through two channels. First, short term coordination benefits can arise when the diversity of nuclear reactors' designs under construction is low. Second, long term benefits can occur due to learning spillovers from past constructions of similar reactors. We find that construction costs benefit directly from learning spillovers but that these spillovers are only significant for nuclear models built by the same Architect–Engineer. In addition, we show that the standardization of nuclear reactors under construction has an indirect and positive effect on construction costs through a reduction in lead-time, the latter being one of the main drivers of construction costs. Conversely, we also explore the possibility of learning by searching and find that, contrary to other energy technologies, innovation leads to construction costs increases. -- Highlights: •This paper analyses the determinants of nuclear reactors construction costs and lead-time. •We study short term (coordination gains) and long term (learning by doing) benefits of standardization in France and the US. •Results show that standardization of nuclear programs is a key factor for reducing construction costs. •We also suggest that technological progress has contributed to construction costs escalation

  5. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  6. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  7. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Hirota, Jitsuya; Asaoka, Takumi; Suzuki, Tomoo; Mitani, Hiroshi; Akino, Fujiyoshi

    1977-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1976 are described. Works of the division concern mainly the development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and the development of Liquid Metal Fast Breeder Reactor in Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and activities of the Committee on Reactor Physics. (auth.)

  8. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1984-08-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1983 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  9. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1976-09-01

    Research activities conducted in Reactor Engineering Division in fiscal 1975 are summarized in this report. Works in the division are closely related to the development of multi-purpose High-temperature Gas Cooled Reactor, the development of Liquid Metal Fast Breeder Reactor by Power Reactor and Nuclear Fuel Development Corporation, and engineering research of thermonuclear fusion reactor. Many achievements are described concerning nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of the Committee on Reactor Physics. (auth.)

  10. Chemistry and technology of Molten Salt Reactors - history and perspectives

    International Nuclear Information System (INIS)

    Uhlir, Jan

    2007-01-01

    Molten Salt Reactors represent one of promising future nuclear reactor concept included also in the Generation IV reactors family. This reactor type is distinguished by an extraordinarily close connection between the reactor physics and chemical technology, which is given by the specific features of the chemical form of fuel, representing by molten fluoride salt and circulating through the reactor core and also by the requirements of continuous 'on-line' reprocessing of the spent fuel. The history of Molten Salt Reactors reaches the period of fifties and sixties, when the first experimental Molten Salt Reactors were constructed and tested in ORNL (US). Several molten salt techniques dedicated to fresh molten salt fuel processing and spent fuel reprocessing were studied and developed in those days. Today, after nearly thirty years of discontinuance, a renewed interest in the Molten Salt Reactor technology is observed. Current experimental R and D activities in the area of Molten Salt Reactor technology are realized by a relatively small number of research institutions mainly in the EU, Russia and USA. The main effort is directed primarily to the development of separation processes suitable for the molten salt fuel processing and reprocessing technology. The techniques under development are molten salt/liquid metal extraction processes, electrochemical separation processes from the molten salt media, fused salt volatilization techniques and gas extraction from the molten salt medium

  11. Developments in gaseous core reactor technology

    International Nuclear Information System (INIS)

    Diaz, N.J.; Dugan, E.T.

    1979-01-01

    An effort to characterize the most promising concepts for large, central-station electrical generation was done under the auspices of the Nonproliferation Alternative Systems Assessment Program (NASAP). The two leading candidates were identified from this effort: The Mixed-Flow Gaseous Core Reactor (MFGCR) and the Heterogeneous Gas Core Reactor (HGCR). Key advantages over other nuclear concepts are weighed against the disadvantages of an unproven technology and the cost-time for deployment to make a sound decision on RandD support for these promising reactor alternatives. 38 refs

  12. Development of essential system technologies for advanced reactor

    International Nuclear Information System (INIS)

    Bae, Y. Y.; Hwang, Y. D.; Cho, B. H. and others

    1999-03-01

    Basic design of SMART adopts the new advanced technologies which were not applied in the existing 1000MWe PWR. However, the R and D experience on these advanced essential technologies is lacking in domestic nuclear industry. Recently, a research on these advanced technologies has been performed as a part of the mid-and-long term nuclear R and D program, but the research was limited only for the small scale fundamental study. The research on these essential technologies such as helically coiled tube steam generator, self pressurizer, core cooling by natural circulation required for the development of integral reactor SMART have not been conducted in full scale. This project, therefore, was performed for the development of analysis models and methodologies, system analysis and thermal hydraulic experiments on the essential technologies to be applied to the 300MWe capacity of integral reactor SMART and the advanced passive reactor expected to be developed in near future with the emphasis on experimental investigation. (author)

  13. Reactor engineering department annual report

    International Nuclear Information System (INIS)

    1990-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1989 (April 1, 1989 - March 31, 1990). One of major Department's programs is the assessment of the high conversion light water reactor and the design activities of advanced reactor system. Development of a high energy proton linear accelerator for the nuclear engineering including is also TRU incineration promoted. Other major tasks of the Department are various basic researches on nuclear data and group constants, theoretical methods and code development, on reactor physics experiments and analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics, technology assessment of nuclear energy and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  14. Nuclear reactor instrumentation power monitor

    International Nuclear Information System (INIS)

    Suzuki, Shigeru.

    1989-01-01

    The present invention concerns a nuclear reactor instrumentation power monitor that can be used in, for example, BWR type nuclear power plants. Signals from multi-channel detectors disposed on field units are converted respectively by LPRM signal circuits. Then, the converted signals are further converted by a multiplexer into digital signals and transmitted as serial data to a central monitor unit. The thus transmitted serial data are converted into parallel data in the signal processing section of the central monitor unit. Then, LPRM signals are taken out from each of channel detectors to conduct mathematical processing such as trip judgment or averaging. Accordingly, the field unit and the central monitor unit can be connected by way of only one data transmission cable thereby enabling to reduce the number of cables. Further, since the data are transmitted on digital form, it less undergoes effect of noises. (I.S.)

  15. Technology evolution of the Tropomi instrument

    NARCIS (Netherlands)

    Vries, J. de; Hoogeveen, R.; Voors, R.; Kleipool, Q.; Veefkind, P.; Aben, I.; Snel, R.; Valk, N.C.J. van der; Visser, H.; Otter, G.C.J.

    2012-01-01

    TROPOMI is the sun backscatter trace gas instrument on ESA's Sentinel-5 precursor satellite. TROPOMI builds upon a rich heritage from similar instruments, the main ones being SCIAMACHY on ESA's ENVISAT and OMI on NASA's AURA satellite. This paper explains how the technology from the heritage

  16. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  17. Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration. Final Report. Volume 1

    International Nuclear Information System (INIS)

    Hines, J. Wesley; Upadhyaya, Belle R.; Doster, J. Michael; Edwards, Robert M.; Lewis, Kenneth D.; Turinsky, Paul; Coble, Jamie

    2011-01-01

    Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topical areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus

  18. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1975-11-01

    Research activities in fiscal 1974 in Reactor Engineering Division of eight laboratories and computing center are described. Works in the division are closely related with the development of a multi-purpose High-temperature Gas Cooled Reactor, the development of a Liquid Metal Fast Breeder Reactor in Power Reactor and Nuclear Fuel Development Corporation, and engineering of thermonuclear fusion reactors. They cover nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and aspects of the computing center. (auth.)

  19. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1980-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1979 are described. The work of the Division is closely related to development of multi-purpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committees on Reactor Physics and on Decomissioning of Nuclear Facilities. (author)

  20. Technology selection for offshore underwater small modular reactors

    International Nuclear Information System (INIS)

    Shivan, Koroush; Ballinger, Ronald; Buongiorno, Jacopo; Forsberg, Charles; Kazimi, Mujid; Todreas, Neil

    2016-01-01

    This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030-2040 time frame. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR) designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1) a lead-bismuth fast reactor based on the Russian SVBR-100; (2) a novel organic cooled reactor; (3) an innovative superheated water reactor; (4) a boiling water reactor based on Toshiba's LSBWR; and (5) an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical CO 2 cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50-80%) with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options

  1. Technology selection for offshore underwater small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shivan, Koroush; Ballinger, Ronald; Buongiorno, Jacopo; Forsberg, Charles; Kazimi, Mujid; Todreas, Neil [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge (United States)

    2016-12-15

    This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030-2040 time frame. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR) designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1) a lead-bismuth fast reactor based on the Russian SVBR-100; (2) a novel organic cooled reactor; (3) an innovative superheated water reactor; (4) a boiling water reactor based on Toshiba's LSBWR; and (5) an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical CO{sub 2} cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50-80%) with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options.

  2. Technology Selection for Offshore Underwater Small Modular Reactors

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-12-01

    Full Text Available This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030–2040 timeframe. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1 a lead–bismuth fast reactor based on the Russian SVBR-100; (2 a novel organic cooled reactor; (3 an innovative superheated water reactor; (4 a boiling water reactor based on Toshiba's LSBWR; and (5 an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical CO2 cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50–80% with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options.

  3. Development of design technology for advanced pressurized water reactor

    International Nuclear Information System (INIS)

    Kim, Si Hwan; Chang, Moon Hee; Lee, Jong Chul

    1991-08-01

    In order to investigate the feasibility of the domestic passive reactor development, the analysis and evaluation on the development status, technical characteristics, and the safety and economy for the overseas passive reactors were carried out based on the vendor's information. Also the domestic nuclear technology basis was surveyed. The analysis and evaluation of the development status and technical characteristics were performed mainly for the AP-600 developed by Westing house and the SIR of UKAEA. The new design concepts and system characteristics have been evaluated by utilizing EPRI Utility Requirement Documents and Lahmeyer evaluation criteria. Based on this evaluation the recommendable design concepts in each major system were selected. The feasibility for the domestic passive reactor development has focused on the safety, technology and economy aspects, and on the applicability of the existing domestic technology to the design of the passive reactor. And the development plan for the domestic passive reactor was recommended in a step by step way. (Author)

  4. The KNK II instrumentation for global and local supervision of the reactor core

    International Nuclear Information System (INIS)

    Steiger, W.O.

    1991-01-01

    After an introduction into the KNK plant itself, their historical development and their present situation, the instrumentation of the global and local supervision of the KNK II-core as well as the main safety-related instrumentation and control systems is described. Special emphasis is laid on the instrumentation of the reactor protection systems and the shut down systems. After that some practices are reported about instrumentation behavior and lessons learned from the operation and maintenance of the above mentioned systems. At last follows a short description of the special instrumentation for the detection of failed fuel subassemblies and of the plant data processing system. (author). 4 refs, 18 tabs

  5. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Kim, K. Y.

    2002-03-01

    In general, small and medium-sized integral reactors adopt new technology such as passive and inherent safety concepts to minimize the necessity of power source and operator actions, and to provide the automatic measures to cope with any accidents. Specifically, such reactors are often designed with a lower core power density and with soluble boron free concept for system simplification. Those reactors require ultra long cycle operation for higher economical efficiency. This cycle length requirement is one of the important factors in the design of burnable absorbers as well as assurance of shutdown margin. Hence, both computer code system and design methodology based on the today's design technology for the current commercial reactor cores require intensive improvement for the small and medium-sized soluble boron free reactors. New database is also required for the development of this type of reactor core. Under these technical requirements, conceptual design of small integral reactor SMART has been performed since July 1997, and recently completed under the long term nuclear R and D program. Thus, the final objectives of this work is design and development of an integral reactor core and development of necessary indigenous design technology. To reach the goal of the 2nd stage R and D program for basic design of SMART, design bases and requirements adequate for ultra long cycle and soluble boron free concept are established. These bases and requirements are satisfied by the core loading pattern. Based on the core loading pattern, nuclear, and thermal and hydraulic characteristics are analyzed. Also included are fuel performance analysis and development of a core protection and monitoring system that is adequate for the soluble boron free core of an integral reactor. Core shielding design analysis is accomplished, too. Moreover, full scope interface data are produced for reactor safety and performance analyses and other design activities. Nuclear, thermal and

  6. Life extension activities and modernization strategies for instrumentation ampersand control systems of research and power reactors in India

    International Nuclear Information System (INIS)

    Chaganty, S.P.; Bairi, B.R.

    1993-01-01

    Based on three and half decades of experience gained in the operation and maintenance of Instrumentation and Control Systems of nuclear reactors in India, specific investigations were made to understand various aspects of aging. The analysis of the failure rates of various instruments, plant outage figures and obsolescence of components have necessitated the replacement of instrumentation to improve the reliability and performance. The aging models available were used to determine the extent of performance degradation and to formulate maintenance strategies. The nuclear instrumentation of the aging research reactors at Bhabha Atomic Research Centre (BARC) has been replaced with high reliability equipment using modern integrated circuits. This has resulted in an improvement in the mean time between failure (MTBF) by a factor of five. The neutronic instrumentation of Fast Breeder Test Reactor (FBTR) at Madras is currently being upgraded with the introduction of microprocessor based safety units for reactivity computation and online testing of safety logic with Fine Impulse Technique. The operating experience has also indicated the necessity of developing online surveillance methods and status monitoring of various systems to detect aging. Online cable insulation measurement technique and noise analysis methods for vibration monitoring have been developed. Campbell method of signal processing has been successfully used in extending the useful life of Local Power Range monitors in the Boiling Water Reactor at Tarapur. In order to improve reliability, accuracy and provide efficient man machine interface, microprocessor based systems with online testing features have been installed in power reactors. These include the high performance reactor regulating system and centralised radiation monitoring systems commissioned at Kakrapara power station. The paper describes the above systems and the modernization strategies for nuclear instrumentation and control

  7. Proceedings of the 5. International Topical Meeting on Nuclear Plant Instrumentation Controls, and Human Machine Interface Technology

    International Nuclear Information System (INIS)

    2006-01-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of nuclear power systems. The ICHMI system, together with plant personnel, is the 'central nervous system' for operating plants. It senses basic parameters, monitors performance, integrates information, and makes adjustments to plant operations as necessary. It also responds to failures and off-normal events, thus ensuring goals of efficient power production and safety. The ICHMI system embodies the sensing, communications, monitoring, control, and presentation and command systems between the process (i.e., the reactor, heat transport, and energy conversion systems) and the plant personnel. It enables plant personnel to more effectively monitor the health of the plant and to identify opportunities to improve the performance of equipment and systems as well as to anticipate, understand, and respond to potential problems. Improved controls provide the basis to operate more closely to performance margins, and the improved integration of automatic and human response enables them to work cooperatively to accomplish production and safety goals. The ICHMI system thus directly impacts the performance of the entire plant and thereby the economics, safety, and security of current and future reactor designs. The 5. International Topical Meeting on Nuclear Plant Instrumentation Control and Human-Machine Interface Technology (NPIC and HMIT 2006) is specifically devoted to advances in these important technologies. In these proceedings, more than 200 papers and panel sessions from all over the world have been assembled to share the most recent information and innovations in ICHMI technology and to discuss the important issues that face the future of the industry. The papers fall into two major groupings: instrumentation and control (I and C) and human-machine interface technology (HMIT). The I and C papers are organized into five tracks. 'Systems

  8. Proceedings of the 5. International Topical Meeting on Nuclear Plant Instrumentation Controls, and Human Machine Interface Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of nuclear power systems. The ICHMI system, together with plant personnel, is the 'central nervous system' for operating plants. It senses basic parameters, monitors performance, integrates information, and makes adjustments to plant operations as necessary. It also responds to failures and off-normal events, thus ensuring goals of efficient power production and safety. The ICHMI system embodies the sensing, communications, monitoring, control, and presentation and command systems between the process (i.e., the reactor, heat transport, and energy conversion systems) and the plant personnel. It enables plant personnel to more effectively monitor the health of the plant and to identify opportunities to improve the performance of equipment and systems as well as to anticipate, understand, and respond to potential problems. Improved controls provide the basis to operate more closely to performance margins, and the improved integration of automatic and human response enables them to work cooperatively to accomplish production and safety goals. The ICHMI system thus directly impacts the performance of the entire plant and thereby the economics, safety, and security of current and future reactor designs. The 5. International Topical Meeting on Nuclear Plant Instrumentation Control and Human-Machine Interface Technology (NPIC and HMIT 2006) is specifically devoted to advances in these important technologies. In these proceedings, more than 200 papers and panel sessions from all over the world have been assembled to share the most recent information and innovations in ICHMI technology and to discuss the important issues that face the future of the industry. The papers fall into two major groupings: instrumentation and control (I and C) and human-machine interface technology (HMIT). The I and C papers are organized into five tracks

  9. The United States Advanced Reactor Technologies Research and Development Program

    International Nuclear Information System (INIS)

    O’Connor, Thomas J.

    2014-01-01

    The following aspects are addressed: • Nuclear energy mission; • Reactor research development and deployment (RD&D) programs: - Light Water Reactor Sustainability Program; - Small Modular Reactor Licensing Technical Support; - Advanced Reactor Technologies (ART)

  10. Molten salt reactors: reactor cores

    International Nuclear Information System (INIS)

    1983-01-01

    In this critical analysis of the MSBR I project are examined the problems concerning the reactor core. Advantages of breeding depend essentially upon solutions to technological problems like continuous reprocessing or graphite behavior under neutron irradiation. Graphite deformation, moderator unloading, control rods and core instrumentation require more studies. Neutronics of the core, influence of core geometry and salt composition, fuel evolution, and thermohydraulics are reviewed [fr

  11. Study on modeling technology in digital reactor system

    International Nuclear Information System (INIS)

    Liu Xiaoping; Luo Yuetong; Tong Lili

    2004-01-01

    Modeling is the kernel part of a digital reactor system. As an extensible platform for reactor conceptual design, it is very important to study modeling technology and develop some kind of tools to speed up preparation of all classical computing models. This paper introduces the background of the project and basic conception of digital reactor. MCAM is taken as an example for modeling and its related technologies used are given. It is an interface program for MCNP geometry model developed by FDS team (ASIPP and HUT), and designed to run on windows system. MCAM aims at utilizing CAD technology to facilitate creation of MCNP geometry model. There have been two ways for MCAM to utilize CAD technology: (1) Making use of user interface technology in aid of generation of MCNP geometry model; (2) Making use of existing 3D CAD model to accelerate creation of MCNP geometry model. This paper gives an overview of MCAM's major function. At last, several examples are given to demonstrate MCAM's various capabilities. (authors)

  12. Control and instrumentation system of the Zero Power Reactor at IEA, Sao Paulo (Brazil)

    International Nuclear Information System (INIS)

    Peluso, M.A.V.; Matsuda, K.; Hukai, R.

    1974-01-01

    The control and instrumentation system of the Zero Power Reactor at the IEA (Institute of Atomic Energy - Sao Paulo, Brazil) is described. Technical specifications of the main items of equipment are presented in a general way. Information is also given on the connection between the system described and the electrical supply system of the IEA reactor physics laboratory [pt

  13. Test reactor: basic to U.S. breeder reactor development

    International Nuclear Information System (INIS)

    Miller, B.J.; Harness, A.J.

    1975-01-01

    Long-range energy planning in the U. S. includes development of a national commercial breeder reactor program. U. S. development of the LMFBR is following a conservative sequence of extensive technology development through use of test reactors and demonstration plants prior to construction of commercial plants. Because materials and fuel technology development is considered the first vital step in this sequence, initial U. S. efforts have been directed to the design and construction of a unique test reactor. The Fast Flux Test Facility, FFTF, is a 400 MW(t) reactor with driver fuel locations, open test locations, and closed loops for higher risk experiments. The FFTF will provide a prototypic LMFBR core environment with sufficient instrumentation for detailed core environmental characterization and a testing capability substituted for breeder capability. The unique comprehensive fuel and materials testing capability of the FFTF will be key to achieving long-range objectives of increased power density, improved breeding gain and shorter doubling times. (auth)

  14. In core instrumentation for online nuclear heating measurements of material testing reactor

    International Nuclear Information System (INIS)

    Reynard, C.; Andre, J.; Brun, J.; Carette, M.; Janulyte, A.; Merroun, O.; Zerega, Y.; Lyoussi, A.; Bignan, G.; Chauvin, J-P.; Fourmentel, D.; Glayse, W.; Gonnier, C.; Guimbal, P.; Iracane, D.; Villard, J.-F.

    2010-01-01

    The present work focuses on nuclear heating. This work belongs to a new advanced research program called IN-CORE which means 'Instrumentation for Nuclear radiations and Calorimetry Online in REactor' between the LCP (University of Provence-CNRS) and the CEA (French Atomic Energy Commission) - Jules Horowitz Reactor (JHR) program. This program started in September 2009 and is dedicated to the conception and the design of an innovative mobile experimental device coupling several sensors and ray detectors for on line measurements of relevant physical parameters (photonic heating, neutronic flux ...) and for an accurate parametric mapping of experimental channels in the JHR Core. The work presented below is the first step of this program and concerns a brief state of the art related to measurement methods of nuclear heating phenomena in research reactor in general and MTR in particular. A special care is given to gamma heating measurements. A first part deals with numerical codes and models. The second one presents instrumentation divided into various kinds of sensor such as calorimeter measurements and gamma ionization chamber measurements. Their basic principles, characteristics such as metrological parameters, operating mode, disadvantages/advantages, ... are discussed. (author)

  15. Overview of Nuclear Reactor Technologies Portfolio

    International Nuclear Information System (INIS)

    O’Connor, Thomas J.

    2012-01-01

    Office of Nuclear Energy Roadmap R&D Objectives: • Develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors; • Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; • Develop sustainable nuclear fuel cycles; • Develop capabilities to reduce the risks of nuclear proliferation and terrorism

  16. U.S. Status of Fast Reactor Research and Technology

    International Nuclear Information System (INIS)

    Hill, Robert

    2012-01-01

    Summary: • Fast reactor R&D is focused on key technologies innovations for performance improvement (cost reduction) and safety: 1. System Integration and Concept Development; 2. Safety Technology; 3. Advanced Materials; 4. Ultrasonic Viewing; 5. Advanced Energy Conversion (Supercritical CO 2 Brayton cycle); 6. Reactor Simulation; 7. Nuclear Data; 8. Advanced Fuels. • Fast reactors have flexible capability for actinide management: – A wide variety of fuel cycle options are being considered; • International R&D collaboration pursued in Generation-IV and multilateral arrangements

  17. Roadmap for Research, Development, and Demonstration of Instrumentation, Controls, and Human-Machine Interface Technologies

    International Nuclear Information System (INIS)

    Miller, Don W.; Arndt, Steven A.; Bond, Leonard J.; Dudenhoeffer, Donald D.; Hallbert, Bruce P.; Holcomb, David E.; Wood, Richard T.; Naser, Joseph A.; O'Hara, John M.; Quinn, Edward L.

    2008-01-01

    Instrumentation, controls, and human-machine interfaces are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface (ICHMI) systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by a number of concerns. Although international implementation of evolutionary nuclear power plants and the progression toward new plants in the United States have spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, design and development programs by the U.S. Department of Energy (DOE) for advanced reactor concepts, such as the Generation IV Program and Next Generation Nuclear Plant (NGNP), introduce different plant conditions and unique plant configurations that increase the need for enhanced ICHMI capabilities to fully achieve programmatic goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, there are challenges that need to be addressed to enable the nuclear power industry to effectively and efficiently complete the transition to safe and comprehensive use of digital technology

  18. Decommissioning of reactor facilities (2). Required technology

    International Nuclear Information System (INIS)

    Yanagihara, Satoshi

    2014-01-01

    Decommissioning of reactor facilities was planned to perform progressive dismantling, decontamination and radioactive waste disposal with combination of required technology in a safe and economic way. This article outlined required technology for decommissioning as follows: (1) evaluation of kinds and amounts of residual radioactivity of reactor facilities with calculation and measurement, (2) decontamination technology of metal components and concrete structures so as to reduce worker's exposure and production of radioactive wastes during dismantling, (3) dismantling technology of metal components and concrete structures such as plasma arc cutting, band saw cutting and controlled demolition with mostly remote control operation, (3) radioactive waste disposal for volume reduction and reuse, and (4) project management of decommissioning for safe and rational work to secure reduction of worker's exposure and prevent the spreading of contamination. (T. Tanaka)

  19. Digital nuclear instrumentation application to nuclear power plant

    International Nuclear Information System (INIS)

    Burel, J.-P.; Fanet, H.

    1993-01-01

    The use of digital techniques for the control of nuclear reactors offers an interesting prospect in the improvement of the operation and safety of reactors. Thanks to close collaboration between Merlin Gerin and the French Atomic Energy Commission, a new piece of technology for nuclear instrumentation systems has been developed in order to meet the needs of different types of reactors. The principles of measurement are presented and the technology used is described. Other interesting points of this technology in addition to installation, operation and safety are examined. The digital neutron measurements are already operating in research reactors in France and will be installed in a different configuration in the new 1400 MW nuclear power plant. Integration into different designs is easily attainable by adapting the information transmission mode according to the technology present in the protection system and the treatment and visualization systems. (author)

  20. The KNK II instrumentation for global and local supervision of the reactor core

    International Nuclear Information System (INIS)

    Steiger, W.O.

    1990-01-01

    After an introduction into the KNK plant itself, their historical development and their present situation, the instrumentation of the global and local supervision of the KNK II-core as well as the main safety-related i- and c-systems are described. Special emphasis is laid on the instrumentation of the reactor protection systems and the shutdown systems. After that some practices are reported about instrumentation behavior and lessons learned from the operation and maintenance of the above mentioned systems. At last follows a short description of the special instrumentation for the detection of failed fuel subassemblies and of the plant data processing system. (orig.)

  1. Fusion instrumentation and control: a development strategy

    International Nuclear Information System (INIS)

    Hsu, P.Y.; Greninger, R.C.; Longhurst, G.R.; Madden, P.

    1981-01-01

    We have examined requirements for a fusion instrumentation and control development program to determine where emphasis is needed. The complex, fast, and closely coupled system dynamics of fusion reactors reveal a need for a rigorous approach to the development of instrumentation and control systems. A framework for such a development program should concentrate on three principal need areas: the operator-machine interface, the data and control system architecture, and fusion compatible instruments and sensors. System dynamics characterization of the whole fusion reactor system is also needed to facilitate the implementation process in each of these areas. Finally, the future need to make the instrumentation and control system compatible with the requirements of a commercial plant is met by applying transition technology. These needs form the basis for the program tasks suggested

  2. Astrbiology Science and Technology for Instrument Development (ASTID)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Astrobiology Science and Technology for Instrument Development (ASTID) develops instrumentation capabilities to help meet Astrobiology science requirements on...

  3. CANDU nuclear reactor technology

    International Nuclear Information System (INIS)

    Kakaria, B. K.

    1994-01-01

    AECL has over 40 years of experience in the nuclear field. Over the past 20 years, this unique Canadian nuclear technology has made a worldwide presence, In addition to 22 CANDU reactors in Canada, there are also two in India, one in Pakistan, one in Argentina, four in Korea and five in Romania. CANDU advancements are based on evolutionary plant improvements. They consist of system performance improvements, design technology improvements and research and development in support of advanced nuclear power. Given the good performance of CANOU plants, it is important that this CANDU operating experience be incorporated into new and repeat designs

  4. Methods and tools for the validation of neutron instrumentation; methods for the detection of loose VVER-1000 reactor internals. Technical report

    International Nuclear Information System (INIS)

    Stulik, P.; Sipek, B.; Pecinka, L.

    2004-12-01

    The following topics are addressed: (1) Development, tuning and laboratory testing of the proposed DMTS distributed system; (2) Testing of selected technological equipment and software within the technology of the Temelin NPP; (3) Proposal for basic performance testing of the temperature measurement dynamics on Temelin primary circuit loops; (4) Data for the design and manufacture of 2 measuring chains for the processing of operating signals from internal reactor detectors at the Dukovany-4 reactor unit using a modified experimental AMV set and the DMTS system being developed; (5) Trial measurement with the DMTS system; (6) Evaluation of the usability of signals from the ionization chambers of the innovated instrumentation and control system within the in-service diagnosis system of the Dukovany NPP using the DMTS system being developed; and (7) Calculation of acoustic frequencies of the Temelin primary circuit by means of electromechanical analogy for loop configurations including the effects of the pressurizer and idle coolant loops. (P.A.)

  5. Proceedings of the Third Scientific Presentation on Reactor Safety Technology

    International Nuclear Information System (INIS)

    1998-01-01

    These proceedings contains the results of research and development on reactor safety technology which carried out by Reactor Safety Technology Centre, National Atomic Energy Agency, Serpong, Indonesia during 1997/1998 fiscal year. The presentation was held on 13-14 May 1998 at Serpong,Indonesia

  6. New technology in nuclear power plant instrumentation and control

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The primary topic of this book is what can be done to improve nuclear power plant operation safety and the economic benefits that can be gained with the utilization of advance instrumentation and control technology. Other topics discussed are the industry's reluctance to accept new designs determining cost effective improvements, and difficulties in meeting regulatory standards with new technology control. The subjects will be useful when considering the area of instrumentation and control for enhancing plant operation and safety. Contents: Advanced Instrumention, Plant Control and Monitoring, Plant Diagnostics and Failure Detection, Human Factors Considerations in Instrumentation and Control, NRC and Industry Perspective on Advanced Instrumentation and Control

  7. Power Nuclear Reactors: technology and innovation for development in future

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2009-01-01

    The conference is about some historicals task of the fission technology as well as many types of Nuclear Reactors. Enrichment of fuel, wastes, research reactors and power reactors, a brief advertisment about Uruguay electric siystem and power generation, energetic worldwide, proliferation, safety reactors, incidents, accidents, Three-Mile Island accident, Chernobil accident, damages, risks, classification and description of Power reactors steam generation, nuclear reactor cooling systems, future view

  8. Simulator platform for fast reactor operation and safety technology demonstration

    International Nuclear Information System (INIS)

    Vilim, R.B.; Park, Y.S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J.

    2012-01-01

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  9. Simulator platform for fast reactor operation and safety technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J. (Nuclear Engineering Division)

    2012-07-30

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  10. Radiation-hardened micro-electronics for nuclear instrumentation

    International Nuclear Information System (INIS)

    Van Uffelen, M.

    2007-01-01

    The successful development and deployment of future fission and thermonuclear fusion reactors depends to a large extent on the advances of different enabling technologies. Not only the materials need to be custom engineered but also the instrumentation, the electronics and the communication equipment need to support operation in this harsh environment, with expected radiation levels during maintenance up to several MGy. Indeed, there are yet no commercially available electronic devices available off-the-shelf which demonstrated a satisfying operation at these extremely high radiation levels. The main goal of this task is to identify commercially available radiation tolerant technologies, and to design dedicated and integrated electronic circuits, using radiation hardening techniques, both at the topological and architectural level. Within a stepwise approach, we first design circuits with discrete components and look for an equivalent integrated technology. This will enable us to develop innovative instrumentation and communication tools for the next generation of nuclear reactors, where both radiation hardening and miniaturization play a dominant role

  11. Job/task analysis for I ampersand C [Instrumentation and Controls] instrument technicians at the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Duke, L.L.

    1989-09-01

    To comply with Department of Energy Order 5480.XX (Draft), a job/task analysis was initiated by the Maintenance Management Department at Oak Ridge National Laboratory (ORNL). The analysis was applicable to instrument technicians working at the ORNL High Flux Isotope Reactor (HFIR). This document presents the procedures and results of that analysis. 2 refs., 2 figs

  12. Reliability test for reactor internals rejuvenation technology

    International Nuclear Information System (INIS)

    Uchiyama, Junichi

    1998-01-01

    41 transparencies were presented on the subject of 'Reliability test for reactor internals rejuvenation technology'. The items presented give an introduction on the management of plant life in Japan and introduce the Nuclear Power Engineering Corporation (NUPEC). The question of what reliability tests for rejuvenation of reactor internals are is discussed in some detail and an outline of each test is given. Altogether six methods to rejuvenate reactor internals are presented, two of which have already been applied to actual plants. The presentation was supported by many detailed drawings and images

  13. Substitution models for overlapping technologies - an application to fast reactor deployment

    International Nuclear Information System (INIS)

    Lehtinen, R.; Silvennoinen, P.; Vira, J.

    1982-01-01

    In this paper market penetration models are discussed in the context of interacting technologies. An increased confidence credit is proposed for a technology that can draw on other overlapping technologies. The model is also reduced to a numerically tractable form. As an application, scenarios of fast reactor deployment are derived under different assumptions on the uranium and fast reactor investment costs and by varying model parameters for the penetration of fusion and solar technologies. The market share of fast reactors in electricity generation is expected to lie between zero and 40 per cent in 2050 depending on the market parameters. (orig.) [de

  14. Decommissioning of Swedish nuclear power reactors. Technology and costs

    International Nuclear Information System (INIS)

    1994-06-01

    The main topics discussed are planning, technology and costs of decommissioning nuclear power reactors. Oskarshamn-3 (BWR) and Ringhals-4 (PWR) have been used as reference reactors. 29 refs, figs, tabs

  15. Reactor technology. Progress report, January--March 1978

    International Nuclear Information System (INIS)

    Warren, J.L.

    1978-07-01

    Progress is reported in eight program areas. The nuclear Space Electric Power Supply Program examined safety questions in the aftermath of the COSMOS 954 incident, examined the use of thermoelectric converters, examined the neutronic effectiveness of various reflecting materials, examined ways of connecting heat pipes to one another, studied the consequences of the failure of one heat pipe in the reactor core, and did conceptual design work on heat radiators for various power supplies. The Heat Pipe Program reported progress in the design of ceramic heat pipes, new application of heat pipes to solar collectors, and final performance tests of two pipes for HEDL applications. Under the Nuclear Process Heat Program, work continues on computer codes to model a pebble bed high-temperature gas-cooled reactor, adaptation of a set of German reactor calculation codes to use on U.S. computers, and a parametric study of a certain resonance integral required in reactor studies. Under the Nonproliferation Alternative Sources Assessment Program LASL has undertaken an evaluation of a study of gaseous core reactors by Southern Science Applications, Inc. Independently LASL has developed a proposal for a comprehensive study of gaseous uranium-fueled reactor technology. The Plasma Core Reactor Program has concentrated on restacking the beryllium reflector and redesigning the nuclear control system. The status of and experiments on four critical assemblies, SKUA, Godiva IV, Big Ten, and Flattop, are reported. The Nuclear Criticality Safety Program carried out several tasks including conducting a course, doing several annual safety reviews and evaluating the safety of two Nevada test devices. During the quarter one of the groups involved in reactor technology has acquired responsibility for the operation of a Cockroft-Walton accelerator. The present report contains information on the use of machine and improvements being made in its operation

  16. Problems and Instruments of Product and Technological Diversification of Manufacturing

    Directory of Open Access Journals (Sweden)

    Kuzmin Oleg Ye.

    2015-03-01

    Full Text Available The purpose of the article involves identification of objectives and development of instruments for product and technological diversification aimed at updating the range of products and introducing innovative technologies, which will ensure a high level of competitiveness and create preconditions for steady development of the enterprise. As a result of studying the literary sources the objectives and instruments for development of enterprises by means of product and technological diversification have been defined. The article suggests effective instruments of product and technological diversification of manufacturing, namely: the model of expansion of the product range, multi-criteria model of optimization of the product range, a modified model of Kantorovich-Koopmans for implementing new production technologies with set limits on the product output. Further research relate to formation of instruments for manufacturing diversification by means of introducing new types of production.

  17. Activities in the field of nuclear reactor instrumentation and control in Poland - 1991 status

    International Nuclear Information System (INIS)

    Mikulski, A.T.

    1992-01-01

    The report gives a condensed overview of activity in the field of nuclear reactor instrumentation and control in Poland over the last few years. The work was performed parallel in two directions related to the construction of the first Nuclear Power Plant at Zarnowlec and to the changes made for two research reactors at Swierk. The first direction, according to government decision, was cancelled at the end of 1990 and the results obtained up to now are briefly summarized. The second one is in progress, some minor changes in I and C for the EWA reactor and significant improvements for the MARIA reactor are under way. The results of this activity are presented. (author). 6 refs

  18. Nuclear reactor fuel cycle technology with pyroelectrochemical processes

    International Nuclear Information System (INIS)

    Skiba, O.V.; Maershin, A.A.; Bychkov, A.V.; Zhdanov, A.N.; Kislyj, V.A.; Vavilov, S.K.; Babikov, L.G.

    1999-01-01

    A group of dry technologies and processes of vibro-packing granulated fuel in combination with unique properties of vibro-packed FEs make it possible to implement a new comprehensive approach to the fuel cycle with plutonium fuel. Testing of a big number of FEs with vibro-packed U-Pu oxide fuel in the BOR-60 reactor, successful testing of experimental FSAs in the BN-600 rector, reliable operation of the experimental and research complex facilities allow to make the conclusion about a real possibility to develop a safe, economically beneficial U-Pu fuel cycle based on the technologies enumerated above and to use both reactor-grade and weapon-grade plutonium in nuclear reactors with a reliable control and accounting system [ru

  19. Contributions of research Reactors in science and technology

    International Nuclear Information System (INIS)

    Butt, N.M.; Bashir, J.

    1992-12-01

    In the present paper, after defining a research reactor, its basic constituents, types of reactors, their distribution in the world, some typical examples of their uses are given. Particular emphasis in placed on the contribution of PARR-I (Pakistan Research Reactor-I), the 5 MW Swimming Pool Research reactor which first became critical at the Pakistan Institute of Nuclear Science and Technology (PINSTECH) in Dec. 1965 and attained its full power in June 1966. This is still the major research facility at PINSTECH for research and development. (author)

  20. Core-adjacent instrumentation systems for pebble bed reactors for process heat application - state of planning

    International Nuclear Information System (INIS)

    Benninghofen, G.; Serafin, N.; Spillekothen, H.G.; Hecker, R.; Brixy, H.; Serpekian, T.

    1982-06-01

    Planning and theoretical/experimental development work for core surveillance instrumentation systems is being performed to meet requirements of pebble bed reactors for process heat application. Detailed and proved instrumentation concepts are now available for the core-adjacent instrumentation systems. The current work and the results of neutron flux measurements at high temperatures are described. Operation devices for long-term accurate gas outlet temperature measurements up to approximately 1423 deg. K will also be discussed. (author)

  1. UPGRADE OF INSTRUMENTATION FOR PURDUE REACTOR PUR-1, PHASE 3

    International Nuclear Information System (INIS)

    Revankar, S. T.

    2004-01-01

    The major objective of this program is to upgrade and replace instruments and equipment that significantly improve the performance, control and operational capability of the Purdue University nuclear reactor (PUR-1). Under this major objective one project on design and installation of interface cards for channel four detector was considered. This report is the final report and gives the efforts and progress achieved on these projects from August 2002 to July 2004

  2. Reactor instrumentation and control in nuclear power plants in Germany

    International Nuclear Information System (INIS)

    Aleite, W.

    1993-01-01

    The pertinent legislation, guidelines and standards of importance for nuclear power plant construction as well as the relevant committees in Germany are covered. The impact of international developments on the German regulatory scene is mentioned. A series of 15 data sheets on reactor control, followed by 5 data sheets on instrumentation and control in nuclear power plants, which were drawn up for German plants, are compared and commented in some detail. Digitalization of instrumentation and control systems continues apace. To illustrate the results that can be achieved with a digitalized information system, a picture series that documents a plant test of behavior on simulated steam generator tube rupture is elaborately commented. An outlook on backfitting and upgrading applications concludes this paper. (orig.) [de

  3. International Conference on Physics and Technology of Reactors and Applications

    International Nuclear Information System (INIS)

    2011-01-01

    Full text : The international conference on physics and technology of reactors is organized by the Moroccan Association for Nuclear enggineering and Reactor Technology (GMTR) with the collaboration of the Centre for Energy and Nuclear Sciences and Techniques (CNESTEN) and under the auspices of the ministry of Energy, Mining, Water and Environment. The programme of the PHYTRA2 conference covers a wide variety of topics. The conference is organised in one plenary session, eight oral technical sessions and one poster session. The oral and poster technical sessions covers the usual topics of nuclear engineering including one session on research reactors utilisation and computational methods for research reactors

  4. Methods and instrumentation for investigating Hall sensors during their irradiation in nuclear research reactors

    International Nuclear Information System (INIS)

    Bolshakova, I.; Holyaka, R.; Makido, E.; Marusenkov, A.; Shurygin, F.; Yerashok, V.; Moreau, P. J.; Vayakis, G.; Duran, I.; Stockel, J.; Chekanov, V.; Konopleva, R.; Nazarkin, I.; Kulikov, S.; Leroy, C.

    2009-01-01

    Present work discusses the issues of creating the instrumentation for testing the semiconductor magnetic field sensors during their irradiation with neutrons in nuclear reactors up to fluences similar to neutron fluences in steady-state sensor locations in ITER. The novelty of the work consists in Hall sensor parameters being investigated: first, directly during the irradiation (in real time), and, second, at high irradiation levels (fast neutron fluence > 10 18 n/cm 2 ). Developed instrumentation has been successfully tested and applied in the research experiments on radiation stability of magnetic sensors in IBR-2 (JINR, Dubna) and VVR-M (PNPI, Saint-Petersburg) reactors. The 'Remote-Rad' bench consists of 2 heads (head 1 and head 2) bearing investigated sensors put in a ceramic setting, of electronic unit, of personal computer and of signal lines. Each head contains 6 Hall sensors and a coil for generating test magnetic field. Moreover head 1 contains thermocouples for temperature measurement while the temperature of head 2 is measured by thermo-resistive method. The heads are placed in the reactor channel

  5. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    International Nuclear Information System (INIS)

    Baldwin, Thomas; Tawfik, Magdy; Bond, Leonard

    2010-01-01

    has shown great interest in supplying necessary support to help this industry to move forward as indicated by the recent workshop conducted in support of this interest. The Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies provided an opportunity for industry stakeholders and researchers to gather in order to collectively identify the nuclear industry's needs in the areas of OLM technologies including diagnostics, prognostics, and RUL. Additionally, the workshop provided the opportunity for attendees to pinpoint technology gaps and research capabilities along with the fostering of future collaboration in order to bridge the gaps identified. Attendees concluded that a research and development program is critical to future nuclear operations. Program activities would result in enhancing and modernizing the critical capabilities of instrumentation, information, and control technologies for long-term nuclear asset operation and management. Adopting a comprehensive On Line Monitoring research program intends to: (1) Develop national capabilities at the university and laboratory level; (2) Create or renew infrastructure needed for long-term research, education, and testing; (3) Support development and testing of needed I and C technologies; and (4) Improve understanding of, confidence in, and decisions to employ these new technologies in the nuclear power sector and achieve successful licensing and deployment.

  6. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Baldwin; Magdy Tawfik; Leonard Bond

    2010-06-01

    shown great interest in supplying necessary support to help this industry to move forward as indicated by the recent workshop conducted in support of this interest. The Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies provided an opportunity for industry stakeholders and researchers to gather in order to collectively identify the nuclear industry’s needs in the areas of OLM technologies including diagnostics, prognostics, and RUL. Additionally, the workshop provided the opportunity for attendees to pinpoint technology gaps and research capabilities along with the fostering of future collaboration in order to bridge the gaps identified. Attendees concluded that a research and development program is critical to future nuclear operations. Program activities would result in enhancing and modernizing the critical capabilities of instrumentation, information, and control technologies for long-term nuclear asset operation and management. Adopting a comprehensive On Line Monitoring research program intends to: • Develop national capabilities at the university and laboratory level • Create or renew infrastructure needed for long-term research, education, and testing • Support development and testing of needed I&C technologies • Improve understanding of, confidence in, and decisions to employ these new technologies in the nuclear power sector and achieve successful licensing and deployment.

  7. Is light water reactor technology sustainable?

    International Nuclear Information System (INIS)

    Rothwell, G.; Van der Zwaan, B.

    2001-01-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  8. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1975-02-01

    This report summarizes main research achievements in the 48th fiscal year which were made by Reactor Engineering Division consisted of eight laboratories and Computing Center. The major research and development projects, with which the research programmes in the Division are associated, are development of High Temperature Gas Cooled Reactor for multi-purpose use, development of Liquid Metal Fast Breeder Reactor conducted by Power Reactor and Nuclear Fuel Development Corporation, and Engineering Research Programme for Thermonuclear Fusion Reactor. Many achievements are reported in various research items such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of Computing Center. (auth.)

  9. ITER: a technology test bed for a fusion reactor

    International Nuclear Information System (INIS)

    Huguet, M.; Green, B.J.

    1996-01-01

    The ITER Project aims to establish nuclear fusion as an energy source that has potential safety and environmental advantages, and to develop the technologies required for a fusion reactor. ITER is a collaborative project between the European Union, Japan, the Russian Federation and the United States of America. During the current phase of the Project, an R and D programme of about 850 million dollars is underway to develop the technologies required for ITER. This technological effort should culminate in the construction of the components and systems of the ITER machine and its auxiliaries. The main areas of technological development include the first wall and divertor technology, the blanket technology and tritium breeding, superconducting magnet technology, pulsed power technology and remote handling. ITER is a test bed and an essential step to establish the technology of future fusion reactors. Many of the ITER technologies are of potential interest to other fields and their development is expected to benefit the industries involved. (author)

  10. Instrumenting a pressure suppression experiment for a MK I boiling water reactor: another measurements engineering challenge

    International Nuclear Information System (INIS)

    Shay, W.M.; Brough, W.G.; Miller, T.B.

    1977-01-01

    A scale test facility of a pressure suppression system from a boiling water reactor was instrumented with seven types of transducers to obtain high-accuracy experimental data during a hypothetical loss-of-coolant accident. The instrumentation verified the analysis of the dynamic loading of the pressure suppression system

  11. Workshop on Advanced Technologies for Planetary Instruments, part 1

    International Nuclear Information System (INIS)

    Appleby, J.F.

    1993-01-01

    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DOD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments

  12. Development of technology for next generation reactor - Development of next generation reactor in Korea -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); and others

    1993-09-01

    The project, development of next generation reactor, aims overall related technology development and obtainment of related license in 2001. The development direction is to determine the reactor type and to build up the design concept in 1994. For development trend analysis of foreign next generation reactor, level-1 PSA, fuel cycle analysis and computer code development are performed on System 80+ and AP 600. Especially for design characteristics analysis and volume upgrade of AP 600, nuclear fuel and reactor core design analysis, coolant circuit design analysis, mechanical structure design analysis and safety analysis etc. are performed. (Author).

  13. 4. generation sodium-cooled fast reactors. The ASTRID technological demonstrator

    International Nuclear Information System (INIS)

    2012-12-01

    The sodium-cooled fast reactor (SFR) concept is one of the four fast neutron concepts selected by the Generation IV International Forum (GIF). SFRs have favourable technical characteristics and they are the sole type of reactor for which significant industrial experience feedback is available. After a discussion of the past experience gained on fast breeder reactors in the world (benefits, difficulties and problematics), the authors discuss the main improvement domains and the associated R and D advances (reactor safety, prevention and mitigation of severe accidents, the sodium-water risk, detection of sodium leaks, increased availability, instrumentation and inspection, control and repairability, assembly handling and washing). Then, they describe the technical requirements and safety objectives of the ASTRID experimental project, notably with its reactivity management, cooling management, and radiological containment management functions. They describe and discuss requirements to be met and choices made for Astrid, and the design options for its various components (core and fuels, nuclear heater, energy conversion system, fuel assembly handling, instrumentation and in-service inspection, control and command). They present the installations which are associated with the ASTRID cycle, evoke the development and use of simulations and codes, describe the industrial organization and the international collaboration about the ASTRID project, present the planning and cost definition

  14. Proceedings of workshop on reactor shutdown system

    International Nuclear Information System (INIS)

    1997-03-01

    India has gained considerable experience in design, development, construction and operation of research and power reactors during the last four decades. Reactor shutdown system (RSS) is the most important engineered safety system of any reactor. A lot of technological developments have taken place to improve the reactor shutdown systems, particularly with advancement in reliability analysis and instrumentation and control. If the reactor is not shutdown, the fuel may melt, releasing radioactivity and possibly reactivity addition as in the case of Fast Breeder Reactor (FBR). Apart from radiological safety consequences, large investment has to be written off. The function of the RSS is to stop fission chain reaction and prevent breach of fuel. The design of RSS is multidisciplinary. It requires reactor physics analysis, design of absorber rods, drive mechanisms, safety logic to order shutdown and instrumentation to detect unsafe conditions. High reliability is essential and this requires two independent shutdown systems. This book contains the proceedings of the workshop on reactor shutdown system and papers relevant to INIS are indexed separately

  15. Advanced nuclear reactor safety design technology research in NPIC

    International Nuclear Information System (INIS)

    Yu, H.

    2014-01-01

    After the Fukushima accident happen, Nuclear Power Plants (NPPs) construction has been suspended in China for a time. Now the new regulatory rule has been proposed that the most advanced safety standard must be adopted for the new NPPs and practical elimination of large fission product release by design during the next five plans period. So the advanced reactor research is developing in China. NPIC is engaging on the ACP1000 and ACP100 (Small Module Reactor) design. The main design character will be introduced in this paper. The Passive Combined with Active (PCWA) design was adopted during the ACP1000 design to reduce the core damage frequency (CDF); the Cavity Injection System (CIS) is design to mitigation the consequence of the severe accident. Advance passive safety system was designed to ensure the long term residual heat removal during the Small Module Reactor (SMR). The SMR will be utilized to be the floating reactors, district heating reactor and so on. Besides, the Science and Technology on Reactor System Design Technology Laboratory (LRSDT) also engaged on the fundamental thermal-hydraulic characteristic research in support of the system validation. (author)

  16. Analysis and upgrade of instrumentation and control systems for the modernization of research reactors

    International Nuclear Information System (INIS)

    1988-01-01

    This document provides assistance in the review and planning process for the upgrade of instrumentation and control systems (I and C systems) and related safety features of the reactor protection system for research reactors. In the interest of safety a need was realized to evaluate the performance of outdated I and C systems. An advisory group was assembled to develop guidelines and to provide recommendations for the upgrade of I and C systems. The recommendations on I and C systems upgrade contained in this document were developed by the advisory group using as guidelines the established safety criteria and operating standards for research reactors. 24 refs

  17. Microprocessor-based, on-line decision aid for resolving conflicting nuclear reactor instrumentation

    International Nuclear Information System (INIS)

    Alesso, H.P.

    1981-01-01

    We describe one design for a microprocessor-based, on-line decision aid for identifying and resolving false, conflicting, or misleading instrument indications resulting from certain systems interactions for a pressurized water reactor. The system processes sensor signals from groups of instruments that track together under nominal transient and certain accident conditions, and alarms when they do not track together. We examine multiple-casualty systems interaction and formulate a trial grouping of variables that track together under specified conditions. A two-of-three type redundancy check of key variables provides alarm and indication of conflicting information when one signal suddenly tracks in opposition due to multiple casualty, instrument failure, and/or locally abnormal conditions. Since a vote count of two of three variables in conflict as inconclusive evidence, the system is not designed to provide tripping or corrective action, but improves the operator/instrument interface by providing additional and partially digested information

  18. Technological considerations in emergency instrument preparedness

    International Nuclear Information System (INIS)

    Selby, J.M.

    1976-01-01

    Emergency preparedness has been emphasized during the development of the nuclear industry. Existing instrumentation technology has been effectively applied to minimizing the probability of accidents. Radiological instrumentation provided for the measurement of ambient radiation levels or routine releases of radioactive material is usually adequate to provide an early warning that an accident is occurring. In contrast, radiological instrumentation capable of providing a reasonable measure of the source term which could be involved in a severe accident has not received enough attention. In emergency planning the capability should be established for identifying as promptly as possible the need for evasive action out in the plant environs and for minimizing the consequences of an accident in terms of resultant human exposure. Therefore instrumentation is required to measure the source term no matter where the point of release might be, together with instrumentation for obtaining meteorological data sufficient to establish the path of the release in the environment

  19. Technology development of fast reactor fuel reprocessing technology in India

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2009-01-01

    India is committed to the large scale induction of fast breeder reactors beginning with the construction of 500 MWe Prototype Fast Breeder Reactor, PFBR. Closed fuel cycle is a prerequisite for the success of the fast reactors to reduce the external dependence of the fuel. In the Indian context, spent fuel reprocessing, with as low as possible out of pile fissile inventory, is another important requirement for increasing the share in power generation through nuclear route as early as possible. The development of this complex technology is being carried out in four phases, the first phase being the developmental phase, in which major R and D issues are addressed, while the second phase is the design, construction and operation of a pilot plant, called CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell. The third phase is the construction and operation of Demonstration of Fast Reactor Fuel Reprocessing Plant (DFRP) which will provide experience in fast reactor fuel reprocessing with high availability factors and plant throughput. The design, construction and operation of the commercial plant (FRP) for reprocessing of PFBR fuel is the fourth phase, which will provide the requisite confidence for the large scale induction of fast reactors

  20. A review of the U.K. fast reactor programme: March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R D [United Kingdom Atomic Energy Authority, Risley (United Kingdom)

    1978-07-01

    The review of the UK fast reactor programme covers the description of Dounreay Fast Reactor shut down after seventeen years of successful operation; description of prototype fast reactor (PFR); core design parameters safety features and plant design for commercial demonstration fast reactor (CDFR). Engineering development is related to large sodium rigs, coolant circuit hydraulics and vibration, instrumentation and components. The subjects of interest are material development, sodium technology, fast reactor fuel, fuel cycle, reactor safety, reactor performance studies.

  1. A review of the U.K. fast reactor programme: March 1978

    International Nuclear Information System (INIS)

    Smith, R.D.

    1978-01-01

    The review of the UK fast reactor programme covers the description of Dounreay Fast Reactor shut down after seventeen years of successful operation; description of prototype fast reactor (PFR); core design parameters safety features and plant design for commercial demonstration fast reactor (CDFR). Engineering development is related to large sodium rigs, coolant circuit hydraulics and vibration, instrumentation and components. The subjects of interest are material development, sodium technology, fast reactor fuel, fuel cycle, reactor safety, reactor performance studies

  2. Is light water reactor technology sustainable?

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, G. [Stanford Univ., Dept. of Economics, CA (United States); Van der Zwaan, B. [Vrije Univ., Amsterdam, Inst. for Environmental Studies (Netherlands)

    2001-07-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  3. Instrumentation availability during severe accidents for a boiling water reactor with a Mark I containment

    International Nuclear Information System (INIS)

    Arcieri, W.C.; Hanson, D.J.

    1992-02-01

    In support of the US Nuclear Regulatory Commission Accident Management Research Program, the availability of instruments to supply accident management information during a broad range of severe accidents is evaluated for a Boiling Water Reactor with a Mark I containment. Results from this evaluation include: (1) the identification of plant conditions that would impact instrument performance and information needs during severe accidents; (2) the definition of envelopes of parameters that would be important in assessing the performance of plant instrumentation for a broad range of severe accident sequences; and (3) assessment of the availability of plant instrumentation during severe accidents

  4. Materials and Components Technology Division research summary, 1991

    International Nuclear Information System (INIS)

    1991-04-01

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base

  5. Materials and Components Technology Division research summary, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base.

  6. Instrumentation device at the outside of reactor and method of using the same

    International Nuclear Information System (INIS)

    Ichige, Masayuki.

    1997-01-01

    The present invention provides instrumentation device at the outside of a reactor capable of measuring conditions of inside of a reactor, such as the power of the reactor, distribution of voids or water level while considering hysteresis of neutrons or γ-rays from the inside to the outside of the reactor. Namely, a plurality of radiation detectors are disposed being elongated in vertical direction at a predetermined distance on the outer circumference of a reactor pressure vessel. The detectors detect intensity of radiation rays and the detection time at a plurality of positions of the outer side of the reactor. An amplifier amplifies the detected signals. A signal processing device determines the positions and the time of the emitted radiation rays based on the amplified detected signals. An analysis device analyzes spacial distribution and time distribution of the energy and the intensity of the radiation rays (neutron or γ-rays) based on the signals of predetermined radiation rays at the outer side of the reactor. Then, spacial and time variation components and the power distribution, water level, change of the water level, void distribution are calculated while considering decay of the radiation rays based on the distribution of material densities of incore structures. (I.S.)

  7. Space reactor system and subsystem investigations: assessment of technology issues for the reactor and shield subsystem. SP-100 Program

    International Nuclear Information System (INIS)

    Atkins, D.F.; Lillie, A.F.

    1983-01-01

    As part of Rockwell's effort on the SP-100 Program, preliminary assessment has been completed of current nuclear technology as it relates to candidate reactor/shield subsystems for the SP-100 Program. The scope of the assessment was confined to the nuclear package (to the reactor and shield subsystems). The nine generic reactor subsystems presented in Rockwell's Subsystem Technology Assessment Report, ESG-DOE-13398, were addressed for the assessment

  8. The control-and-instrumentation system of the IEA zero power reactor and its reliability calculation

    International Nuclear Information System (INIS)

    Peluso, M.A.V.

    1978-01-01

    The control-and instrumentation system for the Instituto de Energia Atomica Zero Power Reactor is described and the design criteria are presented and discussed. The reliability analysis for the reactor protection system was performed using the fault tree method. This was done using a computer code based on the Monte Carlo simulation. That code is an adaptation of the SAFTE-I, for the IBM 360/155 IEA Computer. (Author) [pt

  9. AFRRI's conversion to a microprocessor-based reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Moore, Mark L.; Hodgdon, Kenneth M.

    1986-01-01

    The Armed Forces Radiobiology Research Institute (AFRRI) is procuring a state-of- the-art microprocessor-based instrumentation and control system to operate AFRRI's 1 MW (steady-state), 3000 MW (pulse) TRIGA Mark-F reactor. This system will replace the current control console while improving or maintaining the existing operational capabilities and safety characteristics. The new unit will have a 15-year design life using state-of-the-art components

  10. Survey of fusion reactor technology

    International Nuclear Information System (INIS)

    Chung, M.K.; Kang, H.D.; Oh, Y.K.; Lee, K.W.; In, S.Y.; Kim, Y.C.

    1983-01-01

    The present object of the fusion research is to accomplish the scientific break even by the year of 1986. In view of current progress in the field of Fusion reactor development, we decided to carry out the conceptual design of Tokamak-type fusion reactor during the year of 82-86 in order to acquire the principles of the fusion devices, find the engineering problems and establish the basic capabilities to develop the key techniques with originality. In this year the methods for calculating the locations of the poloidal coils and distribution of the magnetic field, which is one of the most essential and complicated task in the fusion reactor design works, were established. Study on the optimization of the design method of toroidal field coil was also done. Through this work, we established the logic for the design of the toroidal field coil in tokamak and utilize this technique to the design of small compact tokamak. Apart from the development work as to the design technology of tokamak, accelerating column and high voltage power supply (200 KVDC, 100 mA) for intense D-T neutron generator were constructed and now beam transport systems are under construction. This device will be used to develop the materials and the components for the tokamak fusion reactor. (Author)

  11. Nuclear instrumentation system operating experience and nuclear instrument testing in the EBR-II

    International Nuclear Information System (INIS)

    Yingling, G.E.; Curran, R.N.

    1980-01-01

    In March of 1972 three wide range nuclear channels were purchased from Gulf Atomics Corporation and installed in EBR-II as a test. The three channels were operated as a test until April 1975 when they became a permanent part of the reactor shutdown system. Also described are the activities involved in evaluating and qualifying neutron detectors for LMFBR applications. Included are descriptions of the ANL Components Technology Division Test Program and the EBR-II Nuclear Instrument Test Facilities (NITF) used for the in-reactor testing and a summary of program test results from EBR-II

  12. Japan Atomic Energy Research Institute, Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1979-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1978 are described. Works of the Division are development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and development of Liquid Metal Fast Breeder Reactor for Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and Committees on Reactor Physics and in Decommissioning of Nuclear Facilities. (author)

  13. Underwater laser beam welding technology for reactor vessel nozzles of PWRs

    International Nuclear Information System (INIS)

    Yoda, Masaki; Tamura, Masataka; Tamura, Masataka

    2010-01-01

    Toshiba has developed an underwater laser beam welding technology for the maintenance of reactor vessel nozzles of pressurized water reactors (PWRs), which eliminates the need for the drainage of water from the reactor vessel. The new welding system makes it possible to both reduce the work period and minimize the radiation exposure of workers compared with conventional technologies for welding in ambient air. We have confirmed the effectiveness of this technology through experiments in which stress corrosion cracking (SCC) was mitigated on the inner surfaces of nozzles. We are promoting its practical application in Japan and overseas in cooperation with Westinghouse Electric Company, a group company of Toshiba. (author)

  14. Nuclear reactors and technology in the next stage

    International Nuclear Information System (INIS)

    Orlov, V.

    2000-01-01

    Author deals with the perspectives of development of nuclear power. It is possible to create in a fairly short time reactors and fuel technology that would meet the main requirements for large-scale power production, i.e.: (a) to afford a 100-fold reduction in the specific consumption of uranium, by utilizing thousands of tonnes of Pu accumulated in the spent fuel from the reactors of the fl t stage; .to rule out nuclear disasters, by taking advantage of the intrinsic properties and behavior of reactor, coolant, fuel, etc., with the plants made simpler and cheaper; (b) to hit a balance between the radiotoxicity of waste and that of feed uranium, by providing neutron transmutation; (c) to create power reactors and fuel cycle technology that would not afford extraction of weapon-grade materials. To fulfil all these requirements, it is necessary to provide substantial neutron excess in a chain reaction for Pu breeding, to use fuel with an equilibrium composition, to bum actinides and LLFPs. All this can be done only in fast reactors. Fast reactors can also provide fuel for thermal reactors that might still be used for some applications, operating in a Th/U cycle, which is the best option for such facilities. Novel engineering solutions will be necessary: high-density heat-conductive fuel (UPuN), chemically inert high-boiling coolant (Pb), dry reprocessing. These issues have been studied well enough to allow embarking on the development of advanced fast reactors. Minatom institutions are finalizing a detailed design of a demonstration BREST-300 plant, complete with an on-site fuel cycle that will meet the requirements of large-scale nuclear power. Hopefully, construction of this plant at Beloyarsk site with its subsequent trial operation would open a door to the next stage in nuclear power development. (author)

  15. Upgrade of the NCSU PULSTAR instrumentation power channels. Final technical report, September 1, 1992 - August 31, 1994

    International Nuclear Information System (INIS)

    Perez, P.B.

    1998-01-01

    The Nuclear Reactor Program at North Carolina State University initiated an upgrade program at the NCSU PULSTAR Reactor in 1990. The originally supplied instrumentation has been replaced with solid-state and current technology equipment. The financial assistance from the US Department of Energy has been the primary source of support. This is the final report for the Instrumentation Upgrade

  16. New technology for BWR power plant control and instrumentation

    International Nuclear Information System (INIS)

    Takano, Yoshiyuki; Nakamura, Makoto; Murata, Fumio.

    1992-01-01

    Nuclear power plants are facing strong demands for higher reliability and cost-performance in their control and instrumentation systems. To meet these needs, Hitachi is developing advanced control and instrumentation technology by rationalizing the conventional technology in that field. The rationalization is done through the utilization of reliable digital technology and optical transmission technology, and others, which are now commonly used in computer applications. The goal of the development work is to ensure safe, stable operation of the plant facilities and to secure harmony between man and machine. To alleviate the burdens of the operators, the latest electronic devices are being employed to create an advanced man-machine interface, and to promote automatic operation of the plant based upon the automatic operation of individual systems. In addition, the control and instrumentation system, including the safety system, incorporates more and more digital components in order to further enhance the reliability and maintainability of the plant. (author)

  17. The role of the IAEA in advanced technologies for water-cooled reactors

    International Nuclear Information System (INIS)

    Cleveland, J.

    1996-01-01

    The role of the IAEA in advanced technologies for water-cooled reactors is described, including the following issues: international collaboration ways through international working group activities; IAEA coordinated research programmes; cooperative research in advanced water-cooled reactor technology

  18. Reactor Technology Options Study for Near-Term Deployment of GNEP Grid-Appropriate Reactors

    International Nuclear Information System (INIS)

    Ingersoll, Daniel T.; Poore, Willis P. III

    2007-01-01

    World energy demand is projected to significantly increase over the coming decades. The International Energy Agency projects that electricity demand will increase 50% by 2015 and double by 2030, with most of the increase coming in developing countries as they experience double-digit rates of economic growth and seek to improve their standards of living. Energy is the necessary driver for human development, and the demand for energy in these countries will be met using whatever production technologies are available. Recognizing this inevitable energy demand and its implications for the United States, the U.S. National Security Strategy has proposed the Global Nuclear Energy Partnership (GNEP) to work with other nations to develop and deploy advanced nuclear recycling and reactor technologies. This initiative will help provide reliable, emission-free energy with less of the waste burden of older technologies and without making available separated plutonium that could be used by rogue states or terrorists for nuclear weapons. These new technologies will make possible a dramatic expansion of safe, clean nuclear energy to help meet the growing global energy demand. In other words, GNEP seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy without increasing the risk of nuclear weapon proliferation. This global expansion of nuclear power is strategically important to the United States for several reasons, including the following: (1) National security, by reducing the competition and potential for conflict over increasingly scarce fossil energy resources; (2) Economic security, by helping maintain stable prices for nonrenewable resources such as oil, gas, and coal; (3) Environmental security, by replacing or off-setting large-scale burning of greenhouse gas-emitting fuels for electricity production; and (4) Regaining technical leadership, through deployment of innovative U.S. technology-based reactors. Fully meeting

  19. Reactor Technology Options Study for Near-Term Deployment of GNEP Grid-Appropriate Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, Daniel T [ORNL; Poore III, Willis P [ORNL

    2007-09-01

    World energy demand is projected to significantly increase over the coming decades. The International Energy Agency projects that electricity demand will increase 50% by 2015 and double by 2030, with most of the increase coming in developing countries as they experience double-digit rates of economic growth and seek to improve their standards of living. Energy is the necessary driver for human development, and the demand for energy in these countries will be met using whatever production technologies are available. Recognizing this inevitable energy demand and its implications for the United States, the U.S. National Security Strategy has proposed the Global Nuclear Energy Partnership (GNEP) to work with other nations to develop and deploy advanced nuclear recycling and reactor technologies. This initiative will help provide reliable, emission-free energy with less of the waste burden of older technologies and without making available separated plutonium that could be used by rogue states or terrorists for nuclear weapons. These new technologies will make possible a dramatic expansion of safe, clean nuclear energy to help meet the growing global energy demand. In other words, GNEP seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy without increasing the risk of nuclear weapon proliferation. This global expansion of nuclear power is strategically important to the United States for several reasons, including the following: (1) National security, by reducing the competition and potential for conflict over increasingly scarce fossil energy resources; (2) Economic security, by helping maintain stable prices for nonrenewable resources such as oil, gas, and coal; (3) Environmental security, by replacing or off-setting large-scale burning of greenhouse gas-emitting fuels for electricity production; and (4) Regaining technical leadership, through deployment of innovative U.S. technology-based reactors. Fully meeting

  20. Indigenous technology development : seismic switch for nuclear reactors

    International Nuclear Information System (INIS)

    Varghese, Shiju; Shah, Jay; Limaye, P.K.; Soni, N.L; Patel, R.J.

    2016-01-01

    After Fukushima incident it has become a regulatory requirement to have automatic reactor trip on detection of earthquake beyond OBE level. Seismic Switches that meets the technical specifications required for nuclear reactor use were not available in the market. Hence, on Nuclear Power Corporation of India Ltd (NPCIL's) request, Refuelling Technology Division, BARC has developed Seismic Switches (electronic earthquake detectors) required for this application. Functionality of the system was successfully tested using a Shake Table. Two different designs of seismic switches have been developed. One is a microcontroller based system (digital) and the other is fully analogue electronics (analog) based. These switches are designed to meet the technical requirements of Class IA systems of nuclear reactors. It is also designed to meet other qualification tests such as EMI/EMC, climatic, vibration, and reliability requirements. In addition to nuclear industry seismic switches are having potential use in oil and gas, power plants, buildings and other industrial installations. These technologies are currently available for technology transfer and details are published in BARC website. This paper describes the requirements, principle of operation, and features and testing of the developed systems. (author)

  1. Design for the human-machine interface of a digitalized reactor control-room

    International Nuclear Information System (INIS)

    Qu Ronghong; Zhang Liangju; Li Duo; Yu Hui

    2005-01-01

    Digitalized technology is implemented in the instrumentation and control system of an in-construction research reactor, which advances information display in both contents and styles in a nuclear reactor control-room, and greatly improves human-machine interface. In the design for a digitalized nuclear reactor control-room there are a series of new problems and technologies should be considered seriously. This paper mainly introduces the design for the digitalized control-room of the research nuclear reactor and covered topics include design principle of human-machine interface, organization and classification of interface graphics, technologies and principles based on human factors engineering and implemented in the graphics design. (authors)

  2. Instrumentation and Controls Division progress report, September 1, 1980-July 1, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Klobe, L.E.E. (ed.)

    1982-12-01

    Activities are reported by the Reactor Systems Section, Research Instrument Section, and the Measurement and Controls Engineering Section. Reactor system activities include dynamic analysis, survillanc and diagnostic methods, design and evaluation, detectors, facilities support, process instrumentation development, and special assignments. Activities in the Research Instrument Section include the Navy-ORNL RADIAC development program, advanced ..gamma.. and x ray detector systems, neutron detection and subcriticality measurements, circuit development, position-sensitive detectors, stand-alone computers, environmental monitoring-detectors and systems, plant security, engineering support for fusion energy division, engineering support for accelerator physics, and communications: radio, closed-circuit tv, and computer. Activities in the Measurement and Controls Engineering Section include the AVLIS program; gas centrifuge enrichment technology support; Advanced Instrumentation for Reflood Studies (AIDRS) program; instrumentation development support for fuel reprocessing; in-core experiments and reactor systems; energy, conservation, and electric power systems; computer systems; measurements research; and fossil energy studies Publications are listed. (WHK)

  3. Instrumentation and Controls Division progress report, September 1, 1980-July 1, 1982

    International Nuclear Information System (INIS)

    Klobe, L.E.E.

    1982-12-01

    Activities are reported by the Reactor Systems Section, Research Instrument Section, and the Measurement and Controls Engineering Section. Reactor system activities include dynamic analysis, survillanc and diagnostic methods, design and evaluation, detectors, facilities support, process instrumentation development, and special assignments. Activities in the Research Instrument Section include the Navy-ORNL RADIAC development program, advanced #betta# and x ray detector systems, neutron detection and subcriticality measurements, circuit development, position-sensitive detectors, stand-alone computers, environmental monitoring-detectors and systems, plant security, engineering support for fusion energy division, engineering support for accelerator physics, and communications: radio, closed-circuit tv, and computer. Activities in the Measurement and Controls Engineering Section include the AVLIS program; gas centrifuge enrichment technology support; Advanced Instrumentation for Reflood Studies (AIDRS) program; instrumentation development support for fuel reprocessing; in-core experiments and reactor systems; energy, conservation, and electric power systems; computer systems; measurements research; and fossil energy studies Publications are listed

  4. Research programs carried out at the TRIGA Mark II reactor Vienna

    International Nuclear Information System (INIS)

    Bock, H.

    1978-01-01

    During the period July 1976 to July 1978 approximately 170 papers have been published by staff members of the Atominstitute in scientific journals covering the main research fields which are: radiation physics; nuclear physics; reactor technology; neutron solid state physics; radiochemistry; health physics. In the department of reactor technology research work was is done on in-core instrumentation, failed fuel element detection systems and neutron radiography

  5. Technology development, climate and use of instruments; Teknologiutvikling, klima og virkemiddelbruk

    Energy Technology Data Exchange (ETDEWEB)

    Bye, Brita; Faehn, Taran; Heggedal, Tom-Reiel; Hatlen, Liv Mari

    2009-06-15

    This report sheds light on our technology as a driving force for growth and welfare and the importance technology in particular can have on the climate area. We explain the optimal use of policy instruments to stimulate technology development on climate and energy area, the extent to which the assessment of the use of instruments will be different for this field than for technology in general, and the importance interaction with other climate policy instruments will have. The report is based on existing international literature on this subject, and explain the relevant Norwegian analysis. We emphasize the situation of a small open country like Norway and the role national technology policy can have. (Author)

  6. Analysis on Configuration of I and C Systems for an Advanced HANARO Reactors

    International Nuclear Information System (INIS)

    Park, Gee Yong; Jung, H. S.; Ryu, J. S.; Park, C.

    2006-01-01

    In an advanced HANARO reactor (AHR), the instrumentation and control (I and C) systems are designed based on the digital system rather than the analog system installed in an existing HANARO instrumentation and control systems. While the safety and functionality of analog-based instrumentation and control system are experienced over a long period of operating time and also well-validated, the obsolescence and the lack of flexibility of this system have to move from the analog technology to the digital technology in the instrumentation and control systems to be used in nuclear power plants as well as nuclear research reactors. For establishing the adequate structure of instrumentation and control systems for an AHR, various instrumentation and control architectures are analyzed for their merits and demerits for use in I and C systems of an AHR and the most promising instrumentation and control architecture for an AHR are drawn from this analysis. The conceptual configuration of a digital-based safety shutdown system is proposed in this report

  7. Instrumentation availability for a pressurized water reactor with a large dry containment during severe accidents

    International Nuclear Information System (INIS)

    Arcieri, W.C.; Hanson, D.J.

    1991-03-01

    In support of the US Nuclear Regulatory Commission (NRC) Accident Management Research Program, the availability of instruments to supply accident management information during a broad range of severe accidents is evaluated for a pressurized water reactor with a large dry containment. Results from this evaluation include the following: (a) identification of plant conditions that would impact instrument performance and information needs during severe accidents, (b) definition of envelopes of parameters that would be important in assessing the performance of plant instrumentation for a broad range of severe accident sequences, and (c) assessment of the availability of plant instrumentation during severe accidents. 16 refs., 3 figs., 4 tabs

  8. RBMK nuclear reactors: Proposals for instrumentation and control improvements to enhanced safety and availability. IEC technical report of type 3. Working material

    International Nuclear Information System (INIS)

    1995-01-01

    The present material presents a CD+V draft report ''RBMK nuclear reactors: Proposals for instrumentation and control improvements to enhance safety and availability'' prepared by the Joint IEC/IAEA team during 1993-1995. Experience has demonstrated the need to improve the safety instrumentation of the RBMK type reactors using well proven modern technology. The working group identified the upgrades and changes of the highest priority based on the evaluation of the RBMK systems and the events where the instrumentation was found to be inadequate for safe operation. The subjects discussed in this document were not selected on a systematic basis but were selected by the IEC and IAEA experts as considered to be appropriate to the activities of the IEC and for which technical experience was available. The items identified therefore do not reflect any ranking of the safety issues or any priority or impact on safety of any of the measures were they to be implemented. Many important safety issued and areas where physical measures are required to improve safety have been omitted and indeed not even acknowledged in this document. The recommendations presented in the document differ from those normally produced by the IEC in the form of standards as they are of a transitory nature and some have already been overtaken by the continuing process of improvements to plant safety. Figs and tabs

  9. Gas-cooled reactor technology: a bibliography

    International Nuclear Information System (INIS)

    Raleigh, H.D.

    1981-09-01

    Included are 3358 citations on gas-cooled reactor technology contained in the DOE Energy Data Base for the period January 1978 through June 1981. The citations include reports, journal articles, books, conference papers, patents, and monographs. Corporate, Personal Author, Subject, Contract Number, and Report Number Indexes are provided

  10. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    1993-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1992 (April 1, 1992-March 31, 1993). The major Department's programs promoted in the year are the assessment of the high conversion light water reactor, the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project were also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  11. Japan Atomic Energy Research Institute, Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1981-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1980 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  12. Quantification of chlorine in zirconium oxide and biological samples by instrumental NAA utilizing PCF of Dhruva reactor

    International Nuclear Information System (INIS)

    Shinde, Amol D.; Reddy, A.V.R.; Acharya, R.; Balaji Rao, Y.

    2012-01-01

    Recently studies on chlorine contents in various samples are being pursued due to its corrosive nature. Chlorine present at trace level in various finished products as well as powder is used as a raw material for production of different types of zircaloys used as structural materials in nuclear technology. As a part of quality assurance program, it is necessary to quantify chlorine accurately with suitable and simple technique. In the present work we have applied instrumental neutron activation analysis (INAA) utilizing its short-lived activation product ( 38 Cl, 37 min, 1642 and 2168 keV) for its estimation. Pneumatic Carrier Facility (PCF) of Dhruva reactor, BARC was used sample irradiation of zirconium oxide dry powder, synthetic wax and IAEA RMs 1515 (Apple leaves) and Lichen 336. (author)

  13. Review Paper: Review of Instrumentation for Irradiation Testing of Nuclear Fuels and Materials

    International Nuclear Information System (INIS)

    Kim, Bong Goo; Rempe, Joy L.; Villard, Jean-Francois; Solstadd, Steinar

    2011-01-01

    Over 50 years of nuclear fuels and materials irradiation testing has led to many countries developing significant improvements in instrumentation to monitor physical parameters and to control the test conditions in material test reactors (MTRs). Recently, there is increased interest to irradiate new materials and reactor fuels for advanced pressurized water reactors and Gen-IV reactor systems, such as sodium-cooled fast reactors, very high temperature reactors, supercritical water-cooled reactors, and gas-cooled fast reactors. This review paper documents the current state of instrumentation technologies in MTRs in the world and summarizes ongoing research efforts to deploy new sensors. As described in this paper, a wide range of sensors is available to measure key parameters of interest during fuels and materials irradiations in MTRs. Ongoing development efforts focus on providing MTR users a wider range of parameter measurements with smaller, higher accuracy sensors.

  14. Technology development and demonstration for TRIGA research reactor decontamination, decommissioning and site restoration

    International Nuclear Information System (INIS)

    Oh, Won Zin; Jung, Ki Jung; Lee, Byung Jik

    1997-01-01

    This paper describes the introduction to research reactor decommissioning plan at KAERI, the background of technology development and demonstration, and the current status of the system decontamination technology for TRIGA reactors, concrete decontamination and dust treatment technologies, wall ranging robot and graphic simulation of dismantling processes, soil decontamination and restoration technology, recycling or reuse technologies for radioactive metallic wastes, and incineration technology demonstration for combustible wastes. 9 figs

  15. 105-C Reactor interim safe storage project technology integration plan

    International Nuclear Information System (INIS)

    Pulsford, S.K.

    1997-01-01

    The 105-C Reactor Interim Safe Storage Project Technology Integration Plan involves the decontamination, dismantlement, and interim safe storage of a surplus production reactor. A major goal is to identify and demonstrate new and innovative D and D technologies that will reduce costs, shorten schedules, enhance safety, and have the potential for general use across the RL complex. Innovative technologies are to be demonstrated in the following areas: Characterization; Decontamination; Waste Disposition; Dismantlement, Segmentation, and Demolition; Facility Stabilization; and Health and Safety. The evaluation and ranking of innovative technologies has been completed. Demonstrations will be selected from the ranked technologies according to priority. The contractor team members will review and evaluate the demonstration performances and make final recommendations to DOE

  16. Development of technologies for nuclear reactors of small and medium sized

    International Nuclear Information System (INIS)

    2011-08-01

    This meeting include: countries presentations, themes and objectives of the training course, reactor types, design, EPR, APR1400, A P 1000, A PWR, ATMEA 1, VVER-1000, A PWR, ATMEA 1, VVER 1200, Boiling Water Reactor, A BWR, A BWR -II, ESBUR, Ke ren, AREVA, Heavy Water Reactor, Candu 6, Acr-1000, HWR, Bw, Iris, CAREM NuCcale, Smart, KLT-HOS, Westinghouse small modular Reactor, Gas Cooled Reactors, PBMR, React ores enfriados con metales liquidos, Hs, Prism,Terra Power, Hyper ion, appliance's no electric as de energia, Generation IV Reactors,VHTR, Gas Fast Reactor, Sodium Fast Reactor, Molten salt Reactor, Lfr, Water Cooled Reactor, Technology Assessment Process, Fukushima accident.

  17. R and D of On-line Reprocessing Technology for Molten-Salt Reactor Systems

    International Nuclear Information System (INIS)

    Uhlir, Jan; Tulackova, Radka; Chuchvalcova Bimova, Karolina

    2006-01-01

    The Molten Salt Reactor (MSR) represents one of promising future nuclear reactor concept included in the Generation IV reactors family. The reactor can be operated as the thorium breeder or as the actinide transmuter. However, the future deployment of Molten-Salt Reactors will be significantly dependent on the successful mastering of advanced reprocessing technologies dedicated to their fuel cycle. Here the on-line reprocessing technology connected with the fuel circuit of MSR is of special importance because the reactor cannot be operated for a long run without the fuel salt clean-up. Generally, main MSR reprocessing technologies are pyrochemical, majority of them are fluoride technologies. The proposed flow-sheets of MSR on-line reprocessing are based on a combination of molten-salt / liquid metal extraction and electro-separation processes, which can be added to the gas extraction process already verified during the MSRE project in ORNL. The crucial separation method proposed for partitioning of actinides from fission products is based on successive Anodic dissolution and Cathodic deposition processes in molten fluoride media. (authors)

  18. Particle Bed Reactor engine technology

    Science.gov (United States)

    Sandler, S.; Feddersen, R.

    1992-03-01

    This paper discusses the Particle Bed Reactor (PBR) based propulsion system being developed under the Space Nuclear Thermal Propulsion (SNTP) program. A PBR engine is a light weight, compact propulsion system which offers significant improvement over current technology systems. Current performance goals are a system thrust of 75,000 pounds at an Isp of 1000 sec. A target thrust to weight ratio (T/W) of 30 has been established for an unshielded engine. The functionality of the PBR, its pertinent technology issues and the systems required to make up a propulsion system are described herein. Accomplishments to date which include hardware development and tests for the PBR engine are also discussed. This paper is intended to provide information on and describe the current state-of-the-art of PBR technology.

  19. Particle Bed Reactor engine technology

    International Nuclear Information System (INIS)

    Sandler, S.; Feddersen, R.

    1992-01-01

    This paper discusses the Particle Bed Reactor (PBR) based propulsion system being developed under the Space Nuclear Thermal Propulsion (SNTP) program. A PBR engine is a light weight, compact propulsion system which offers significant improvement over current technology systems. Current performance goals are a system thrust of 75,000 pounds at an Isp of 1000 sec. A target thrust to weight ratio (T/W) of 30 has been established for an unshielded engine. The functionality of the PBR, its pertinent technology issues and the systems required to make up a propulsion system are described herein. Accomplishments to date which include hardware development and tests for the PBR engine are also discussed. This paper is intended to provide information on and describe the current state-of-the-art of PBR technology. 4 refs

  20. Department of Reactor Technology annual progress report 1 January -31 December 1977

    International Nuclear Information System (INIS)

    1978-04-01

    The work of the Department of Reactor Technology within the following fields is described: reactor engineering, reactor operation, structural reliability, system reliability, reactor physics, fuel management, reactor accident analysis for LOCA and ECC, containment analysis, experimental heat transfer, reactor core dynamics and power plant simulators, experimental activation measurements and neutron radiography at the DR 1 reactor, underground storage of gas, solar heating and underground heat storage, wind power. (author)

  1. Neutron beam facilities at the replacement research reactor

    International Nuclear Information System (INIS)

    Kennedy, S.

    1999-01-01

    Full text: On September 3rd 1997 the Australian Federal Government announced their decision to replace the HIFAR research reactor by 2005. The proposed reactor will be a multipurpose reactor with improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The neutron beam facilities are intended to cater for Australian scientific needs well into the 21st century. In the first stage of planning the neutron Beam Facilities at the replacement reactor, a Consultative Group was formed (BFCG) to determine the scientific capabilities of the new facility. Members of the group were drawn from academia, industry and government research laboratories. The BFCG submitted their report in April 1998, outlining the scientific priorities to be addressed. Cold and hot neutron sources are to be included, and cold and thermal neutron guides will be used to position most of the instruments in a neutron guide hall outside the reactor confinement building. In 2005 it is planned to have eight instruments installed with a further three to be developed by 2010, and seven spare instrument positions for development of new instruments over the life of the reactor. A beam facilities technical group (BFTG) was then formed to prepare the engineering specifications for the tendering process. The group consisted of some members of the BFCG, several scientists and engineers from ANSTO, and scientists from leading neutron scattering centres in Europe, USA and Japan. The BFTG looked in detail at the key components of the facility such as the thermal, cold and hot neutron sources, neutron collimators, neutron beam guides and overall requirements for the neutron guide hall. The report of the BFTG, completed in August 1998, was incorporated into the draft specifications for the reactor project, which were distributed to potential reactor vendors. An assessment of the first stage of reactor vendor submissions was completed in

  2. The law as an instrument of technology control and as a basis for technological development

    International Nuclear Information System (INIS)

    Kloepfer, M.

    1998-01-01

    In public debates about German industry's global competitiveness it becomes evident that environmental law and the technology-related law are almost exclusively perceived as systems of law which - for reasons of environmental protection and protection of public health - are setting restraints to technological development. This is a narrow perspective neglecting the functions of the law as an instrument providing legal security and a reliable framework for developments. In a democratic, constitutional state, the environmental law and the technology-related law are instruments providing for protection of the basic, general rights and requirements of technology, and contribute to ensuring general acceptance of technologic development. (orig./CB) [de

  3. Nuclear Energy Enabling Technologies (NEET) Reactor Materials: News for the Reactor Materials Crosscut, May 2016

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science in Radiation and Dynamics Extremes

    2016-09-26

    In this newsletter for Nuclear Energy Enabling Technologies (NEET) Reactor Materials, pages 1-3 cover highlights from the DOE-NE (Nuclear Energy) programs, pages 4-6 cover determining the stress-strain response of ion-irradiated metallic materials via spherical nanoindentation, and pages 7-8 cover theoretical approaches to understanding long-term materials behavior in light water reactors.

  4. Evaluating Russian space nuclear reactor technology for United States applications

    International Nuclear Information System (INIS)

    Polansky, G.F.; Schmidt, G.L.; Voss, S.S.; Reynolds, E.L.

    1994-01-01

    Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch

  5. Development of pressure boundaries leak detection technology for nuclear reactor

    International Nuclear Information System (INIS)

    Zhang Yao; Zhang Dafa; Chen Dengke; Zhang Liming

    2008-01-01

    The leak detection for the pressure boundaries is an important safeguard in nuclear reactor operation. In the paper, the status and the characters on the development of the pressure boundaries leak detection technology for the nuclear reactor were reviewed, especially, and the advance of the radiation leak detection technology and the acoustic emission leak detection technology were analyzed. The new advance trend of the leak detection technology was primarily explored. According to the analysis results, it is point out that the advancing target of the leak detection technology is to enhance its response speed, sensitivity, and reliability, and to provide effective information for operator and decision-maker. The realization of the global leak detection and the whole life cycle health monitoring for the nuclear boundaries is a significant advancing tendency of the leak detection technology. (authors)

  6. Development of volumetric methane measurement instrument for laboratory scale anaerobic reactors

    International Nuclear Information System (INIS)

    Sahito, A.R.

    2015-01-01

    In the present study, a newly developed VMMI (volumetric Methane-Measuring Instrument) for laboratory scale anaerobic reactors is presented. The VMMI is a reliable, inexpensive, easy to construct, easy to use, corrosion resistant device that does not need maintenance, can measure a wide flow range of gas at varying pressure and temperature. As per the results of the error analysis, the accuracy of the VMMI is unilateral, i.e. -6.91 %. The calibration of VMMI was investigated and a linear variation was found; hence, in situ calibration is recommended for this type of instrument. As per chromatographic analysis, it absorbs almost 100% of the carbon dioxide present in the biogas, results only the methane, and thus eliminates the need of cost intensive composition analysis of biogas through gas chromatograph. (author)

  7. Integrated Instrumentation and Control Upgrade Plan

    International Nuclear Information System (INIS)

    Wilkinson, D.; Sun, B.; Wray, L.; Smith, J.

    1992-02-01

    This document presents the first industry-wide integrated research and development plan to support upgrading instrumentation and control (I ampersand C) systems in nuclear power plants in the United States. The plan encompasses both solving obsolescence problems and introducing modern I ampersand C technology into the industry. Accomplishing this plan will provide the technological base to modernize existing plants, as well as bridge the gap to meet Advanced Light Water Reactor (ALWR) requirements for modern I ampersand C systems. This plan defines Research and Development tasks to meet the identified needs for the following technical elements: Instrumentation, Control and Protection, Man-Machine Support Systems, Maintenance, Communications, Verification and Validation, and Specifications and Standards

  8. Advanced Technologies and Instrumentation at the National Science Foundation

    Science.gov (United States)

    Kurczynski, Peter; Neff, James E.

    2018-01-01

    Over its more than thirty-year history, the Advanced Technologies and Instrumentation (ATI) program within the Division of Astronomical Sciences has provided grants to support the development and deployment of detectors and instrumentation for ground-based astronomy. This program has enabled scientific advances in diverse fields from solar physics to exoplanets to cosmology. ATI has provided instrumentation for both small and large observatories from radio through visible wavebands. It has played a role in the early development of major initiatives such as the Large Synoptic Survey Telescope. Technology development for astronomy unfolds over a longer period than the lifetime of a single grant. This review will consider ATI from an historical perspective to assess its impact on astronomy.

  9. CRDIAC: Coupled Reactor Depletion Instrument with Automated Control

    International Nuclear Information System (INIS)

    Logan, Steven K.

    2012-01-01

    When modeling the behavior of a nuclear reactor over time, it is important to understand how the isotopes in the reactor will change, or transmute, over that time. This is especially important in the reactor fuel itself. Many nuclear physics modeling codes model how particles interact in the system, but do not model this over time. Thus, another code is used in conjunction with the nuclear physics code to accomplish this. In our code, Monte Carlo N-Particle (MCNP) codes and the Multi Reactor Transmutation Analysis Utility (MRTAU) were chosen as the codes to use. In this way, MCNP would produce the reaction rates in the different isotopes present and MRTAU would use cross sections generated from these reaction rates to determine how the mass of each isotope is lost or gained. Between these two codes, the information must be altered and edited for use. For this, a Python 2.7 script was developed to aid the user in getting the information in the correct forms. This newly developed methodology was called the Coupled Reactor Depletion Instrument with Automated Controls (CRDIAC). As is the case in any newly developed methodology for modeling of physical phenomena, CRDIAC needed to be verified against similar methodology and validated against data taken from an experiment, in our case AFIP-3. AFIP-3 was a reduced enrichment plate type fuel tested in the ATR. We verified our methodology against the MCNP Coupled with ORIGEN2 (MCWO) method and validated our work against the Post Irradiation Examination (PIE) data. When compared to MCWO, the difference in concentration of U-235 throughout Cycle 144A was about 1%. When compared to the PIE data, the average bias for end of life U-235 concentration was about 2%. These results from CRDIAC therefore agree with the MCWO and PIE data, validating and verifying CRDIAC. CRDIAC provides an alternative to using ORIGEN-based methodology, which is useful because CRDIAC's depletion code, MRTAU, uses every available isotope in its depletion

  10. Repair and preventive maintenance technology for BWR reactor internals and piping

    International Nuclear Information System (INIS)

    Ootsubo, Tooru; Itou, Takashi; Sakashita, Akihiro

    2009-01-01

    Stress corrosion cracking of welding portion has found in many domestic and foreign BWR reactor internals and Primary Loop Recirculation piping. Also, repair and preventive maintenance technologies for SCC has been developed and/or adopted to BWRs in recent years. This paper introduces the sample of these technologies, such as seal-welding for SCC on BWR reactor internals, preventive maintenance technology for PLR piping such as Corrosion Resistant Cladding, Internal Polishing and Induction Heating Stress Improvement. These technologies are introduced on 'E-Journal of Advanced Maintenance', which is an international journal on a exclusive website of Japan Society of Maintenology. (author)

  11. Department of Reactor Technology annual progress report 1 January - 31 December 1978

    International Nuclear Information System (INIS)

    1979-04-01

    The activities of the department of reactor technology at Risoe during 1978 are described. The work is presented in five chapters: Reactor Engineering, Reactor Physics and Dynamics, Heat Transfer and Hydraulics, The DR 1 Reactor, and Non-Nuclear Activities. A list of the staff and of publications is included. (author)

  12. Fusion reactor design and technology 1986. V. 1

    International Nuclear Information System (INIS)

    1987-01-01

    The first volume of the Proceedings of the Fourth Technical Committee Meeting and Workshop on Fusion Reactor Design and Technology organized by the IAEA (Yalta, 26 May - 6 June 1986) includes 36 papers devoted to the following topics: fusion programmes (3 papers), tokamaks (15 papers), non-tokamak reactors and open systems (9 papers), inertial confinement concepts (5 papers), fission-fusion hybrids (4 papers). Each of these papers has a separate abstract. Refs, figs and tabs

  13. Validation of an instrument to measure students' motivation and self-regulation towards technology learning

    Science.gov (United States)

    Liou, Pey-Yan; Kuo, Pei-Jung

    2014-05-01

    Background:Few studies have examined students' attitudinal perceptions of technology. There is no appropriate instrument to measure senior high school students' motivation and self-regulation toward technology learning among the current existing instruments in the field of technology education. Purpose:The present study is to validate an instrument for assessing senior high school students' motivation and self-regulation towards technology learning. Sample:A total of 1822 Taiwanese senior high school students (1020 males and 802 females) responded to the newly developed instrument. Design and method:The Motivation and Self-regulation towards Technology Learning (MSRTL) instrument was developed based on the previous instruments measuring students' motivation and self-regulation towards science learning. Exploratory and confirmatory factor analyses were utilized to investigate the structure of the items. Cronbach's alpha was applied for measuring the internal consistency of each scale. Furthermore, multivariate analysis of variance was used to examine gender differences. Results:Seven scales, including 'Technology learning self-efficacy,' 'Technology learning value,' 'Technology active learning strategies,' 'Technology learning environment stimulation,' 'Technology learning goal-orientation,' 'Technology learning self-regulation-triggering,' and 'Technology learning self-regulation-implementing' were confirmed for the MSRTL instrument. Moreover, the results also showed that male and female students did not present the same degree of preference in all of the scales. Conclusions:The MSRTL instrument composed of seven scales corresponding to 39 items was shown to be valid based on validity and reliability analyses. While male students tended to express more positive and active performance in the motivation scales, no gender differences were found in the self-regulation scales.

  14. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Halsey, William [Lawrence Livermore National Laboratory (LLNL); Hayner, George [Idaho National Laboratory (INL); Katoh, Yutai [ORNL; Klett, James William [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Stoller, Roger E [ORNL; Wilson, Dane F [ORNL

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  15. Technological studies for obtaining lead oxide compacts used in generation IV nuclear reactors

    International Nuclear Information System (INIS)

    Paraschiv, I.; Benga, D.

    2016-01-01

    One of the main concerns of the nuclear research at this moment is the development of the necessary technologies for Generation IV reactors. The main candidate as coolant agent in these reactors is molten lead but this material involves ensuring the oxygen control, due to potential contamination of coolant through the formation of solid oxides and the influence on the corrosion rate of structural parts and for this reason, the oxygen concentration must be kept in a well specified domain. One of the proposed methods for oxygen monitoring and control in the technology of Generation IV reactors, is the use of PbO compacts. For this paper technological tests were performed for developing and setting the optimal parameters in order to attain lead oxide compacts necessary for the oxygen control technology in Generation IV nuclear reactors. (authors)

  16. Update on reactors and reactor instruments in Asia

    Science.gov (United States)

    Rao, K. R.

    1991-10-01

    The 1980s have seen the commissioning of several medium flux (∼10 14 neutrons/cm 2s) research reactors in Asia. The reactors are based on indigenous design and development in India and China. At Dhruva reactor (India), a variety of neutron spectrometers have been established that have provided useful data related to the structure of high- Tc materials, phonon density of states, magnetic moment distributions and micellar aggregation during the last couple of years. Polarised neutron analysis, neutron interferometry and neutron spin echo methods are some of the new techniques under development. The spectrometers and associated automaton, detectors and neutron guides have all been indigenously developed. This paper summarises the developments and on-going activities in Bangladesh, China, India, Indonesia, Korea, Malaysia, the Philippines and Thailand.

  17. Update on reactors and reactor instruments in Asia

    International Nuclear Information System (INIS)

    Rao, K.R.

    1991-01-01

    The 1980s have seen the commissioning of several medium flux (∝10 14 neutrons/cm 2 s) research reactors in Asia. The reactors are based on indigenous design and development in India and China. At Dhruva reactor (India), a variety of neutron spectrometers have been established that have provided useful data related to the structure of high-Tc materials, phonon density of states, magnetic moment distributions and micellar aggregation during the last couple of years. Polarised neutron analysis, neutron interferometry and neutron spin echo methods are some of the new techniques under development. The spectrometers and associated automaton, detectors and neutron guides have all been indigenously developed. This paper summarises the developments and on-going activities in Bangladesh, China, India, Indonesia, Korea, Malaysia, the Philippines and Thailand. (orig.)

  18. Qualification issues for advanced light-water reactor protection systems

    International Nuclear Information System (INIS)

    Korsah, K.; Clark, R.L.; Antonescu, C.

    1993-01-01

    The instrumentation and control (I ampersand C) systems in advanced reactors will make extensive use of digital controls, microprocessors, multiplexing, and fiber optic transmission. Elements of these advances in I ampersand C have been implemented on some current operating plants. However, the widespread use of the above technologies, as well as the use of artificial intelligence with minimum reliance on human operator control of reactors, highlights the need to develop standards for qualifying the I ampersand C used in the next generation of nuclear power plants. As a first step in this direction, the protection system I ampersand C for present-day plants was compared to that proposed for advanced light-water reactors (ALWRs). An evaluation template was developed by assembling a configuration of a safety channel instrument string for a generic ALWR, then comparing the impact of environmental stressors on that string to their effect on an equivalent instrument string from an existing light-water reactor. The template was then used to suggest a methodology for the qualification of microprocessor-based protection systems. The methodology identifies standards/regulatory guides (or lack thereof) for the qualification of microprocessor-based safety I ampersand C systems. This approach addresses in part issues raised in NRC policy document SECY-91-292, which recognizes that advanced I ampersand C systems for the nuclear industry are ''being developed without consensus standards. as the technology available for design is ahead of the technology that is well understood through experience and supported by application standards.''

  19. Status of fusion technology development in JAERI stressing steady-state operation for future reactors

    International Nuclear Information System (INIS)

    Matsuda, Shinzaburo

    2000-01-01

    This paper reports on the progress of the fusion reactor technologies developed at the Japan Atomic Energy Research Institute (JAERI) and expected to lead to a future steady state operation reactor. In particular, superconducting coil technology for plasma confinement, NBI and RF systems technology for plasma control and current drive, fueling and pumping systems technology for particle control, heat removal technology, and development of long life materials are highlighted as the important key elements for the future steady state operation. It will be discussed how these key technologies have already been developed by the ITER (International Thermonuclear Experimental Reactor) technology R and D as well as by the Japanese domestic program, and which technologies are planned for the near future

  20. Strategic need for a multi-purpose thermal hydraulic loop for support of advanced reactor technologies

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, James E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yoon, Su -Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); Housley, Gregory K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation

  1. A look at the fusion reactor technology

    International Nuclear Information System (INIS)

    Rohatgi, V.K.

    1985-01-01

    The prospects of fusion energy have been summarised in this paper. The rapid progress in the field in recent years can be attributed to the advances in various technologies. The commercial fusion energy depends more heavily on the evolution and improvement in these technologies. With better understanding of plasma physics, the fusion reactor designs have become more realistic and comprehensive. It is now possible to make intercomparison between various concepts within the frame work of the established technologies. Assuming certain growth rate of the technological development, it is estimated that fusion energy can become available during the early part of the next century. (author)

  2. Reactor Engineering Department annual report, April 1, 1985 - March 31, 1986

    International Nuclear Information System (INIS)

    1986-08-01

    Research and development activities in the Department of Reactor Engineering in fiscal 1985 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor, High Conversion Light Water Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, reactor physics experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, reactor decommissioning technology, and activities of the Committee on Reactor Physics. (author)

  3. Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Mays, Gary T [ORNL; Pointer, William David [ORNL; Robb, Kevin R [ORNL; Yoder Jr, Graydon L [ORNL

    2013-11-01

    Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

  4. The status and prospects of nuclear reactor technology development

    International Nuclear Information System (INIS)

    Juhn, P.E.

    2001-01-01

    Nuclear power is a proven technology which currently contributes about 16% to the world electricity supply and, to a much lesser extent, to heat supply in some countries. Nuclear Power is economically competitive with fossil fuels for base load electricity generation in many countries, and is one of the commercially proven energy supply options that could be extended in the future to reduce environmental burdens, especially greenhouse gas emissions, from the electricity sector. Over the past five decades, nearly ten thousand reactor-years of operating experience have been accumulated with current nuclear power plants. However, nuclear power is currently at a cross-road. There are no new nuclear power construction projects in most parts of the world, except some countries in East Asia and Eastern Europe. The main issues are economic competitiveness with cheap gas plants and public concerns on nuclear waste disposal and safety. Strong economic growth and the shrinking of existing electricity over-capacities could favour nuclear power. Since nuclear power emits no greenhouse gases to the environment, its development could be further accelerated by a breakthrough in innovative nuclear reactor technology development. Great attention also needs to be paid to the design of new nuclear reactors, which are modularized and faster to construct, thus reducing capital investment and construction period, and thereby improving their overall economics and their compatibility with the infrastructure of, in particular, developing countries, where new energy demands are expected. This paper discusses the future world energy outlook, challenges for and progresses on nuclear power; overview of new nuclear reactor technology development; and the role of the International Atomic Energy Agency (IAEA) in the development of new innovative nuclear reactors. (author)

  5. Laser light scattering instrument advanced technology development

    Science.gov (United States)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  6. Specialists' meeting on gas-cooled reactor core and high temperature instrumentation, Windermere, UK, 15-17 June 1982. Summary report

    International Nuclear Information System (INIS)

    1982-09-01

    The Specialists' Meeting on ''Gas-Cooled Reactor Core and High Temperature Instrumentation'' was held at the Beech Hill Hotel, Windermere in England on June 15-17 1982. The meeting was sponsored by the IAEA on the recommendation of the International Working Group on Gas Cooled Reactors and was hosted by the Windscale Nuclear Power Development Laboratories of the UKAEA. The meeting was attended by 43 participants from Belgium, France, Federal Republic of Germany, Japan, United Kingdom of Great Britain and Northern Ireland and the United States of America. The objective of the meeting was to provide a forum, both formal and informal, for the exchange and discussion of technical information relating to instrumentation being used or under development for the measurement of core parameters, neutron flux, temperature, coolant flow etc. in gas cooled reactors. The technical part of the meeting was divided into five subject sessions: (A) Temperature Measurement (B) Neutron Detection Instrumentation (C) HTR Instrumentation - General (D) Gas Analysis and Failed Fuel Detection (E) Coolant Mass Flow and Leak Detection. A total of twenty-five papers were presented by the participants on behalf of their organizations during the meeting. A programme of the meeting and list of participants are given in appendices to this report

  7. Current status and perspective of advanced loop type fast reactor in fast reactor cycle technology development project

    International Nuclear Information System (INIS)

    Niwa, Hajime; Aoto, Kazumi; Morishita, Masaki

    2007-01-01

    After selecting the combination of the sodium-cooled fast reactor (SFR) with oxide fuel, the advanced aqueous reprocessing and the simplified pelletizing fuel fabrication as the most promising concept of FR cycle system, 'Feasibility Study on Commercialized Fast Reactor Cycle Systems' was finalized in 2006. Instead, a new project, Fast Reactor Cycle Technology Development Project (FaCT Project) was launched in Japan focusing on development of the selected concepts. This paper describes the current status and perspective of the advanced loop type SFR system in the FaCT Project, especially on the design requirements, current design as well as the related innovative technologies together with the development road-map. Some considerations on advantages of the advanced loop type design are also described. (authors)

  8. Department of Reactor Technology: annual progress report 1 January - 31 December 1976

    International Nuclear Information System (INIS)

    1977-06-01

    The work of the Department of Reactor Technology within the following fields is described: reactor engineering, structural reliability, system reliability, radiation fiels in nuclear power plants, reactor physics, fuel management, fission product decay analysis, steady-state thermo-hydraulics, reactor accident analysis for LOCA and ECC, containment analysis, experimental heat transfer, reactor core dynamics and power plant simulators, control rod ejection accident analysis, economic studies for power plants, experimental activation measurements and neutron radiography at the DR 1 reactor. (author)

  9. Reactor Engineering Department annual report (April 1, 1990 - March 31, 1991)

    International Nuclear Information System (INIS)

    1991-09-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1990 (April 1, 1990 - March 31, 1991). The major Department's programs promoted in the year are the assessment of the high conversion light water reactor, the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researches on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics, technology assessment of nuclear energy and technology developments related to the reactor physics facilities. The cooperative works to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  10. Reactor Engineering Department annual report (April 1, 1991-March 31, 1992)

    International Nuclear Information System (INIS)

    1992-08-01

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1991 (April 1, 1991-March 31, 1992). The major Department's programs promoted in the year are assessment of the high conversion light water reactor, the design activities of advanced reactor system and development of a high energy proton linear accelerator for the engineering applications including TRU incineration. Other major tasks of the Department are various basic researchers on the nuclear data and group constants, the developments of theoretical methods and codes, the reactor physics experiments and their analyses, fusion neutronics, radiation shielding, reactor instrumentation, reactor control/diagnosis, thermohydraulics, technology assessment of nuclear energy and technology developments related to the reactor physics facilities. The cooperative work to JAERI's major projects such as the high temperature gas cooled reactor or the fusion reactor and to PNC's fast reactor project also progressed. The activities of the Research Committee on Reactor Physics are also summarized. (author)

  11. Novel Technology for Phenol Wastewater Treatment Using Electrochemical Reactor

    Directory of Open Access Journals (Sweden)

    Yuncheng Xie

    2015-01-01

    Full Text Available There are various electrochemical approaches to save energy, mostly by means of equipment improvement coupled with other water treatment technologies. Replacement of DC power with pulse power, modified reactor coupled with photocatalysis can decrease cost. But more or less additional input is developed, or infrastructure has to be replaced. In this paper, an N-Step electrochemical reactor, based on stage reaction modeling, is put forward. On the basis of not changing equipment investment and by adjustment of the operating current density at different levels, power consumption decreases. This model develops a foundation of electrochemical water treatment technology for the engineering application.

  12. Use of microcomputers in the environmental analysis of research nuclear reactors

    International Nuclear Information System (INIS)

    Molnary, L. de

    1988-01-01

    An automatic meteorological monitoring system developed by Department of Reactor Technology of IPEN/CNEN-SP, is described. The system integrates an environmental analysis program of research reactors. The basic characteristic of this system is the utilization of personal computers to control all meteorological data aquisition in a several levels instrumented tower. (author) [pt

  13. Effect of in-core instrumentation mounting location on external reactor vessel cooling

    International Nuclear Information System (INIS)

    Suh, Jungsoo; Ha, Huiun

    2017-01-01

    Highlights: • Numerical simulations were conducted for the evaluation of an IVR-ERVC application. • The ULPU-V experiment was simulated for the validation of numerical method. • The effect of ICI mounting location on an IVR-ERVC application was investigated. • TM-ICI is founded to be superior to BM-ICI for successful application of IVR-ERVC. - Abstract: The effect of in-core instrumentation (ICI) mounting location on the application of in-vessel corium retention through external reactor vessel cooling (IVR-ERVC), used to mitigate severe accidents in which the nuclear fuel inside the reactor vessel becomes molten, was investigated. Numerical simulations of the subcooled boiling flow within an advanced pressurized-water reactor (PWR) in IVR-ERVC applications were conducted for the cases of top-mounted ICI (TM-ICI) and bottom-mounted ICI (BM-ICI), using the commercially available computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the RPI model were used for turbulence closure and subcooled flow boiling, respectively. To validate the numerical method for IVR applications, numerical simulations of ULPU-V experiments were also conducted. The BM-ICI reactor vessel was modeled using a simplified design of an advanced PWR with BM-ICI; the TM-ICI counterpart was modeled by removing the ICI parts from the original geometry. It was found that TM-ICI was superior to BM-ICI for successful application of IVR-ERVC. For the BM-ICI case, the flow field was complicated because of the existence of ICIs and a significant temperature gradient was observed near the ICI nozzles on the lower part of the reactor vessel, where the ICIs were attached. These observations suggest that the existence of ICI below the reactor vessel hinders reactor vessel cooling.

  14. Reliability tests for reactor internals rejuvenation technology

    International Nuclear Information System (INIS)

    Fujimaki, Katsumi; Hitoki, Yoichi; Otsubo, Toru; Uchiyama, Junichi

    1998-01-01

    Structural damage due to aging degradation of LWR reactor internals has been reported in several nuclear plants. NUPEC has started a project to test the reliability of the technology for rejuvenating reactor internals which has been funded by the Ministry of International Trade and Industry (MITI) of Japan since 1995. The project follows the policy of a report that the MITI has formally issued in April 1996 summarizing the countermeasures to be considered for aging nuclear plants and equipment. This paper gives an outline of the test plans and results which are directed at preventive maintenance before damage and repair after damage for reactor internals aging degradation. The test results for the replacement methods of ICM housing and BWR core shroud have shown that the methods were reliable and the structural integrity was appropriate based on the evaluation. (author)

  15. Advances in zirconium technology for nuclear reactor application

    International Nuclear Information System (INIS)

    Ganguly, C.

    2002-01-01

    Zirconium alloys are extensively used as a material for cladding nuclear fuels and for making core structurals of water-cooled nuclear power reactors all over the world for generation of nearly 16 percent of the worlds electricity. Only four countries in the world, namely France, USA, Russia and India, have large zirconium industry and capability to manufacture reactor grade zirconium sponge, a number of zirconium alloys and a wide variety of structural components for water cooled nuclear reactor. The present paper summarises the status of zirconium technology and highlights the achievement of Nuclear Fuel Complex during the last ten years in developing a wide variety of zirconium alloys and components for water-cooled nuclear power programme

  16. Contributions of fast breeder test reactor to the advanced technology in India

    International Nuclear Information System (INIS)

    Kapoor, R.P.

    2001-01-01

    Fast Breeder Test Reactor (FBTR) is a 40 MWt/13.2 MWe loop type, sodium cooled, plutonium rich mixed carbide fuelled reactor. Its operation at Indira Gandhi Centre for Atomic Research, since first criticality in 1985, has contributed immensely to the advancement of this multidisciplinary and complex fast breeder technology in the country. It has also given a valuable operational feedback for the design of 500 MWe Prototype Fast Breeder Reactor. This paper highlights FBTR's significant contributions to this important technology which has a potential to provide energy security to the country in future. (author)

  17. Development of fuel cycle technology for molten-salt reactor systems

    International Nuclear Information System (INIS)

    Uhlir, J.

    2006-01-01

    Full text: Full text: The Molten-Salt Reactor (MSR) represents one of promising advanced reactor type assigned to the GEN IV reactor systems. It can be operated either as thorium breeder within the Th -133U fuel cycle or as actinide transmuter incinerating transuranium fuel. Essentially the main advantage of MSR comes out from the prerequisite, that this reactor type should be directly connected with the 'on-line' reprocessing of circulating liquid (molten-salt) fuel. This principle should allow very effective extraction of freshly constituted fissile material (233U). Besides, the on-line fuel salt clean up is necessary within a long run to keep the reactor in operation. As a matter of principle, it permits to clear away typical reactor poisons like xenon, krypton, lanthanides etc. and possibly also other products of burned plutonium and transmuted minor actinides. The fuel salt clean up technology should be linked with the fresh MSR fuel processing to continuously refill the new fuel (thorium or transuranics) into the reactor system. On the other hand, the technologies of fresh transuranium molten-salt fuel processing from the current LWR spent fuel and of the on-line reprocessing of MSR fuel represent two killing points of the whole MSR technology, which have to be successfully solved before MSR deployment in the future. There are three main pyrochemical partitioning techniques proposed for processing and/or reprocessing of MSR fuel: Fluoride volatilization processes, Molten salt / liquid metal extraction processes and Electrochemical separation processes. Two of them - Fluoride Volatility Method and Electrochemical separation process from fluoride media are under development in the Nuclear Research Institute Rez pic. R and D in the field of Fluoride Volatility Method is concentrated to the development and verification of experimental semi-pilot technology for LWR spent fuel reprocessing, which may result in a product the form and composition of which might be

  18. Radiation detectors for reactors

    International Nuclear Information System (INIS)

    Balagi, V.

    2005-01-01

    Detection and measurement of radiation plays a vital role in nuclear reactors from the point of view of control and safety, personnel protection and process control applications. Various types of radiation are measured over a wide range of intensity. Consequently a variety of detectors find use in nuclear reactors. Some of these devices have been developed in Electronics Division. They include gas-filled detectors such as 10 B-lined proportional counters and chambers, fission detectors and BF 3 counters are used for the measurement of neutron flux both for reactor control and safety, process control as well as health physics instrumentation. In-core neutron flux instrumentation employs the use detectors such as miniature fission detectors and self-powered detectors. In this development effort, several indigenous materials, technologies and innovations have been employed to suit the specific requirement of nuclear reactor applications. This has particular significance in view of the fact that several new types of reactors such as P-4, PWR and AHWR critical facilities, FBTR, PFBR as well as the refurbishment of old units like CIRUS are being developed. The development work has sought to overcome some difficulties associated with the non-availability of isotopically enriched neutron-sensing materials, achieving all-welded construction etc. The present paper describes some of these innovations and performance results. (author)

  19. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    International Nuclear Information System (INIS)

    Allen, T.R.; Benson, J.B.; Foster, J.A.; Marshall, F.M.; Meyer, M.K.; Thelen, M.C.

    2009-01-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  20. Nuclear reactor technology progress report, vol. 4

    International Nuclear Information System (INIS)

    1981-01-01

    The works of the Engineering Section, Fast Experimental Reactor Division, are roughly classified into the technologies concerning the reactor core, abnormality monitoring, the plant, purity control and operation planning. In this paper, the activities of the Engineering Section, the operational results of Joyo and the foreign informations on FBRs in this quarter are reported. The second regular inspection carried out successively from the previous quarter was completed, and the fourth cycle operation of Joyo at 75 MW was started. The measurement of CP around the primary system pipings and equipments, the preliminary test of a core flow meter for Monju, and the various characteristic tests were carried out during this period. 2 N reports, 1 SA report and 63 memos were drawn up in this quarter. The test plan to be carried out during the period of the fourth to sixth cycle operations in this last year using the MK-1 core was formed and decided. Various meetings within and outside the division are reported. The data obtained in the operational characteristic test and special test are shown. As the results concerning the reactor technologies, the development of dosimetry techniques, the measurement and analysis of the core characteristics, the measurement of the temperature and flow velocity of coolant at the fuel assembly exit, the system pressure loss in the primary cooling system and others are reported. (Kako, I.)

  1. Possible new basis for fast reactor subassembly instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, A G

    1977-03-01

    This is a digest of a paper presented to the Risley Engineering Society. The theme is a speculation that the core instrumentation problem for a liquid metal fast breeder reactor might be transformed by developments in the realm of infrared television and in pattern recognition by computer. There is a possible need to measure coolant flow and cooled exit temperature for each subassembly, with familiar fail-to-safety characteristics. Present methods use electrical devices, for example thermocouples, but this gives rise to cabling problems. It might be possible, however, to instal at the top of each subassembly a mechanical device that gives a direct indication of temperature and flow visible to an infrared television camera. Signal transmission by cable would then be replaced by direct observation. A possible arrangement for such a system is described and is shown in schematic form. It includes pattern recognition by computer. It may also be possible to infer coolant temperature directly from the characteristics of the infrared radiation emitted by a thin stainless steel sheet in contact with the sodium, and an arrangement for this is shown. The type of pattern produced for on-line interpretation by computer is also shown. It is thought that this new approach to the problem of subassembly instrumentation is sufficiently attractive to justify a close study of the problems involved.

  2. Hydrogen water chemistry for boiling water reactors

    International Nuclear Information System (INIS)

    Cowan, R.L.; Cowan, R.L.; Kass, J.N.; Law, R.J.

    1985-01-01

    Hydrogen Water Chemistry (HWC) is now a practical countermeasure for intergranular stress corrosion cracking (IGSCC) susceptibility of reactor structural materials in Boiling Water Reactors (BWRs). The concept, which involves adding hydrogen to the feedwater to suppress the formation of oxidizing species in the reactor, has been extensively studied in both the laboratory and in several operating plants. The Dresden-2 Unit of Commonwealth Edison Company has completed operation for one full 18-month fuel cycle under HWC conditions. The specifications, procedures, equipment, instrumentation and surveillance programs needed for commercial application of the technology are available now. This paper provides a review of the benefits to be obtained, the side affects, and the special operational considerations needed for commercial implementation of HWC. Technological and management ''Lessons Learned'' from work conducted to date are also described

  3. Design and installation of advanced computer safety related instrumentation

    International Nuclear Information System (INIS)

    Koch, S.; Andolina, K.; Ruether, J.

    1993-01-01

    The rapidly developing area of computer systems creates new opportunities for commercial utilities operating nuclear reactors to improve plant operation and efficiency. Two of the main obstacles to utilizing the new technology in safety-related applications is the current policy of the licensing agencies and the fear of decision making managers to introduce new technologies. Once these obstacles are overcome, advanced diagnostic systems, CRT-based displays, and advanced communication channels can improve plant operation considerably. The article discusses outstanding issues in the area of designing, qualifying, and licensing of computer-based instrumentation and control systems. The authors describe the experience gained in designing three safety-related systems, that include a Programmable Logic Controller (PLC) based Safeguard Load Sequencer for NSP Prairie Island, a digital Containment Isolation monitoring system for TVA Browns Ferry, and a study that was conducted for EPRI/NSP regarding a PLC-based Reactor Protection system. This article presents the benefits to be gained in replacing existing, outdated equipment with new advanced instrumentation

  4. Reliability tests for reactor internals replacement technology

    International Nuclear Information System (INIS)

    Fujimaki, K.; Uchiyama, J.; Ohtsubo, T.

    2000-01-01

    Structural damage due to aging degradation of LWR reactor internals has been reported in several nuclear plants. NUPEC has started a project to test the reliability of the technology for replacing reactor internals, which was directed at preventive maintenance before damage and repair after damage for the aging degradation. The project has been funded by the Ministry of International Trade and Industry (MITI) of Japan since 1995, and it follows the policy of a report that the MITI has formally issued in April 1996 summarizing the countermeasures to be considered for aging nuclear plants and equipment. This paper gives an outline of the whole test plans and the test results for the BWR reactor internals replacement methods; core shroud, ICM housing, and CRD Housing and stub tube. The test results have shown that the methods were reliable and the structural integrity was appropriate based on the evaluation. (author)

  5. Proceedings of 18th international conference on structural mechanics in reactor technology

    International Nuclear Information System (INIS)

    2005-07-01

    The 18th International Conference on Structural Mechanics in Reactor Technology was held on August 7-12, 2005 in Beijing, China, and Sponsored by International Association for Structural Mechanics in Reactor Technology, Chinese Nuclear Society, Chinese Society of Theoretical and Applied Mechanics, and Tsinghua University. 486 abstracts are Collected. The contents includes: opening, plenary and keynote presentations; computational mechanics; fuel and core structures; aging, life extension, and license renewal; design methods and rules for components; fracture mechanics; concrete material, containment and other structures; analysis and design for dynamic and extreme loads; seismic analysis, design and qualification; structural reliability and probabilistic safety assessment (PSA); operation, inspection and maintenance; severe accident management and structural evaluation; advanced reactors and generation IV reactors; decommissioning of nuclear facilities and waste management.

  6. Technology which led to the westinghouse inherently safe liquid metal reactor

    International Nuclear Information System (INIS)

    Schmidt, J.E.; Coffield, R.D.; Doncals, R.A.; Kalinowski, J.E.; Markley, R.A.

    1985-01-01

    The Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor programs resulted in an understanding of liquid metal reactor behavior that is being used to design inherent safety capability into liquid metal reactors. Technological advances give the same beneficial operating characteristics of conventional liquid metal reactors, however, the addition of inherently safe design features precludes the initiation of hypothetical core disruptive accidents. These innovative features permit inherent safety capability to be demonstrated with more than adequate margins. Also, the variety of inherent safety features provides the designers with options in selecting inherent design features for a specific reactor application

  7. Medium-Power Lead-Alloy Reactors: Missions for This Reactor Technology

    International Nuclear Information System (INIS)

    Todreas, Neil E.; MacDonald, Philip E.; Hejzlar, Pavel; Buongiorno, Jacopo; Loewen, Eric P.

    2004-01-01

    A multiyear project at the Idaho National Engineering and Environmental Laboratory and the Massachusetts Institute of Technology investigated the potential of medium-power lead-alloy-cooled technology to perform two missions: (1) the production of low-cost electricity and (2) the burning of actinides from light water reactor (LWR) spent fuel. The goal of achieving a high power level to enhance economic performance simultaneously with adoption of passive decay heat removal and modularity capabilities resulted in designs in the range of 600-800 MW(thermal), which we classify as a medium power level compared to the lower [∼100 MW(thermal)] and higher [2800 MW(thermal)] power ratings of other lead-alloy-cooled designs. The plant design that was developed shows promise of achieving all the Generation-IV goals for future nuclear energy systems: sustainable energy generation, low overnight capital cost, a very low likelihood and degree of core damage during any conceivable accident, and a proliferation-resistant fuel cycle. The reactor and fuel cycle designs that evolved to achieve these missions and goals resulted from study of the following key trade-offs: waste reduction versus reactor safety, waste reduction versus cost, and cost versus proliferation resistance. Secondary trade-offs that were also considered were monolithic versus modular design, active versus passive safety systems, forced versus natural circulation, alternative power conversion cycles, and lead versus lead-bismuth coolant.These studies led to a selection of a common modular design with forced convection cooling, passive decay heat removal, and a supercritical CO 2 power cycle for all our reactor concepts. However, the concepts adopt different core designs to optimize the achievement of the two missions. For the low-cost electricity production mission, a design approach based on fueling with low enriched uranium operating without costly reprocessing in a once-through cycle was pursued to achieve a

  8. Nuclear electronic equipment for control and monitoring panel. Procedure guide for on-site tests of nuclear reactor instruments

    International Nuclear Information System (INIS)

    1975-10-01

    By the use of a procedure for on-site testing of nuclear reactor instruments it should be possible to judge their ability to guarantee the reactor safety and availability at the moment of divergence or during operation. Such a procedure must therefore be created as a work implement for the quick and reliable installation of electronic devices necessary for nuclear reactor control and supervision. A standard document is proposed for this purpose, allowing a ''test programme'' to be set up before the equipment is installed on the site [fr

  9. LOFT reactor vessel 290/sup 0/ downcomer stalk instrument penetration flange stress analysis

    Energy Technology Data Exchange (ETDEWEB)

    Finicle, D.P.

    1978-06-06

    The LOFT Reactor Vessel 290/sup 0/ Downcomer Stalk Instrument Penetration Flange Stress Analysis has been completed using normal operational and blowdown loading. A linear elastic analysis was completed using simplified hand analysis techniques. The analysis was in accordance with the 1977 ASME Boiler and Pressure Vessel Code, Section III, for a Class 1 component. Loading included internal pressure, bolt preload, and thermal gradients due to normal operating and blowdown.

  10. Proceedings of the Seminar on Research Result of Research Reactor Technology Centre 2003

    International Nuclear Information System (INIS)

    Endiah Puji Hastuti; Setiyanto; Taswanda Taryo; Mohammad Dhandhang Purwadi; Pinem, Surian; Tarigan, Alim; Hasibuan, Djaruddin; Kadarusmanto; Amir Hamzah

    2004-05-01

    The Proceeding of the Seminar on Research Result of Research Reactor Technology Centre 2003 held by P2TRR has been reported researcher are expected to use the reports as references to research activities in Science and Technology, especially in field of Nuclear Reactor. There are 27 papers which have separated index. (PPIN)

  11. University Reactor Instrumentation Program. Final report, September 30, 1993--March 31, 1996

    International Nuclear Information System (INIS)

    1997-01-01

    The University of Massachusetts Lowell Research Reactor has received a total of $115,723.00 from the Department of Energy (DOE) Instrumentation Program (DOE Grant No. DE-FG02-91ID13083) and $40,000 in matching funds from the University of Massachusetts Lowell administration. The University of Massachusetts Lowell Research Reactor has been serving the University and surrounding communities since it first achieved criticality in May 1974. The principle purpose of the facility is to provide a multidisciplinary research and training center for the University of Massachusetts Lowell and other New England academic institutions. The facility promotes student and industrial research, in addition to providing education and training for nuclear scientists, technicians, and engineers. The 1 MW thermal reactor contains a variety of experimental facilities which, along with a 0.4 megacurie cobalt source, effectively supports the research and educational programs of many university departments including Biology, Chemistry, Nuclear and Plastics Engineering, Radiological Sciences, Physics, and other campuses of the University of Massachusetts system. Although the main focus of the facility is on intra-university research, use by those outside the university is fully welcomed and highly encouraged

  12. On use of ZPR research reactors and associated instrumentation and measurement methods for reactor physics studies

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, J.P. [CEA,DEN, DER, SPEX, Experimental Physics Service, Cadarache, F-13108 St-Paul-Lez-Durance (France); Blaise, P. [CEA, DEN, DER, SPEX Experimental Programs Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France)

    2015-07-01

    The French atomic and alternative energies -CEA- is strongly involved in research and development programs concerning the use of nuclear energy as a clean and reliable source of energy and consequently is working on the present and future generation of reactors on various topics such as ageing plant management, optimization of the plutonium stockpile, waste management and innovative systems exploration. Core physics studies are an essential part of this comprehensive R and D effort. In particular, the Zero Power Reactor (ZPR) of CEA: EOLE, MINERVE and MASURCA play an important role in the validation of neutron (as well photon) physics calculation tools (codes and nuclear data). The experimental programs defined in the CEA's ZPR facilities aim at improving the calculation routes by reducing the uncertainties of the experimental databases. They also provide accurate data on innovative systems in terms of new materials (moderating and decoupling materials) and new concepts (ADS, ABWR, new MTR (e.g. JHR), GENIV) involving new fuels, absorbers and coolant materials. Conducting such interesting experimental R and D programs is based on determining and measuring main parameters of phenomena of interest to qualify calculation tools and nuclear data 'libraries'. Determining these parameters relies on the use of numerous and different experimental techniques using specific and appropriate instrumentation and detection tools. Main ZPR experimental programs at CEA, their objectives and challenges will be presented and discussed. Future development and perspectives regarding ZPR reactors and associated programs will be also presented. (authors)

  13. Reactor technology progress report on Joyo, vol. 6

    International Nuclear Information System (INIS)

    1982-01-01

    The works of the Technology Section, Fast Experimental Reactor Division, Power Reactor and Nuclear Fuel Development Corp., are roughly divided into core technology, anomaly monitoring techniques, plant technology, purity control techniques and operation planning and management. In this book, the state of activities in the Technology Section, the result of operation of Joyo and the foreign information related to FBRs in the quarter from July to September, 1981, are reported. The operation of Joyo of 75 MW rating No. 5 cycle was finished on August 9, and after fuel handling and FFDL test, the operation of special test cycle was carried out in September. In this quarter, main report papers were one N-report and 108 memos. The examination of the preliminary analysis and the plan for shifting to the MK-2 core and the performance test, and the planning of the core construction for the operation from No. 1 to No. 3 cycle with the MK-2 core and the analysis of its characteristics were carried out. The revision of the long term plan of the Technology Section was started in July, and the first draft was completed in September. The compilation of the general report on the MK-1 core was started in July. Three meetings for technical discussion within the Division were held. (Kako, I.)

  14. The Preliminary Study of High Temperature Gas Cooled Reactors (HTGRs) Technology

    International Nuclear Information System (INIS)

    Nurfarhana Ayuni Joha; Izhar Abu Hussin; Ridzuan Abdul Mutalib

    2015-01-01

    High Temperature Gas Cooled Reactors (HTGRs) have attracted worldwide interest because of their high outlet temperatures, which allow them to be used for applications beyond electricity generation. HTGRs have been built and operated since as far back as the 1970s. Experimental and demonstration reactors of this type have operated in China, Great Britain, Germany, Japan, and the United States of America. This paper is written to share the valuable knowledge and information of HTGRs technology as a mean to enrich peoples understanding of the technology. This paper will present the technological features of HTGRs that allow for a modular design with inherently safe characteristics. (author)

  15. Tritium monitoring within the reactor hall of a DT fusion reactor

    International Nuclear Information System (INIS)

    Jalbert, R.A.

    1983-01-01

    Monitoring the reactor hall atmosphere of DT-fueled fusion reactors will probably be performed with conventional ion chamber and proportional counter instruments modified as necessry to deal with the background radiation. Background includes external neutron and gamma radiation and internal beta-gamma radiation from the activated atmosphere. Although locating instruments in remote areas of the reactor hall and adding local shielding and electronic compensation may be feasible, placing the instruments in accessible low-background areas outside of the reactor hall and doing remote sampling is preferable and solves most of the radiation problems. The remaining problem of the activated atmosphere may be solved by recently developed instruments in conjunction with the use of semi-permeable membranes currently under development and evaluation

  16. Nuclear data for fusion reactor technology

    International Nuclear Information System (INIS)

    1988-06-01

    The meeting was organized in four sessions and four working groups devoted to the following topics: Requirements of nuclear data for fusion reactor technology (6 papers); Status of experimental and theoretical investigations of microscopic nuclear data (10 papers); Status of existing libraries for fusion neutronic calculations (5 papers); and Status of integral experiments and benchmark tests (6 papers). A separate abstract was prepared for each of these papers

  17. Planning of the development of the MMIS core technology based on nuclear-IT convergence

    International Nuclear Information System (INIS)

    Kwon, Kee Choon; Kim, Chang Hwoi; Hwang, In Koo

    2012-01-01

    - Drive nuclear-IT convergence technologies such as middleware applied new concept nuclear instrumentation and control architecture, automated operation of future nuclear power plant, virtual reality/augmented reality, design and verification technology of a nuclear power plant main control room, software dependability, and cyber security technology - Write state-of-the-art report for the nuclear instrumentation and control based on IT convergence - A prototype which implemented related equipment and software subject to nuclear reactor operator that reside in the main control room (Reactor Operator, RO) order to a on-site operator (Local Operator, LO) and confirm the task performance matches the RO's intention - 'IT Convergence intelligent instrumentation and control technology' project planning for the Fourth Nuclear Power Research and Development in the long-term plan

  18. Implementation Plan for Qualification of Sodium-Cooled Fast Reactor Technology Information

    Energy Technology Data Exchange (ETDEWEB)

    Moe, Wayne [Idaho National Lab. (INL), Idaho Falls, ID (United States); Honma, George [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This document identifies and discusses implementation elements that can be used to facilitate consistent and systematic evaluation processes relating to quality attributes of technical information (with focus on SFR technology) that will be used to support licensing of advanced reactor designs. Information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The approach for determining acceptability of test data, analysis, and/or other technical information is based on guidance provided in INL/EXT-15-35805, “Guidance on Evaluating Historic Technology Information for Use in Advanced Reactor Licensing.” The implementation plan can be adopted into a working procedure at each of the national laboratories performing data qualification, or by applicants seeking future license application for advanced reactor technology.

  19. Advanced Measuring (Instrumentation Methods for Nuclear Installations: A Review

    Directory of Open Access Journals (Sweden)

    Wang Qiu-kuan

    2012-01-01

    Full Text Available The nuclear technology has been widely used in the world. The research of measurement in nuclear installations involves many aspects, such as nuclear reactors, nuclear fuel cycle, safety and security, nuclear accident, after action, analysis, and environmental applications. In last decades, many advanced measuring devices and techniques have been widely applied in nuclear installations. This paper mainly introduces the development of the measuring (instrumentation methods for nuclear installations and the applications of these instruments and methods.

  20. Nuclear vapor thermal reactor propulsion technology

    International Nuclear Information System (INIS)

    Maya, I.; Diaz, N.J.; Dugan, E.T.; Watanabe, Y.; McClanahan, J.A.; Wen-Hsiung Tu; Carman, R.L.

    1993-01-01

    The conceptual design of a nuclear rocket based on the vapor core reactor is presented. The Nuclear Vapor Thermal Rocket (NVTR) offers the potential for a specific impulse of 1000 to 1200 s at thrust-to-weight ratios of 1 to 2. The design is based on NERVA geometry and systems with the solid fuel replaced by uranium tetrafluoride (UF 4 ) vapor. The closed-loop core does not rely on hydrodynamic confinement of the fuel. The hydrogen propellant is separated from the UF 4 fuel gas by graphite structure. The hydrogen is maintained at high pressure (∼100 atm), and exits the core at 3,100 K to 3,500 K. Zirconium carbide and hafnium carbide coatings are used to protect the hot graphite from the hydrogen. The core is surrounded by beryllium oxide reflector. The nuclear reactor core has been integrated into a 75 klb engine design using an expander cycle and dual turbopumps. The NVTR offers the potential for an incremental technology development pathway to high performance gas core reactors. Since the fuel is readily available, it also offers advantages in the initial cost of development, as it will not require major expenditures for fuel development

  1. An assessment of space reactor technology needs and recommendations for development

    International Nuclear Information System (INIS)

    Marshall, A.C.; Wiley, R.L.

    1996-01-01

    In order to provide a strategy for space reactor technology development, the Defense Nuclear Agency (DNA) has authorized a brief review of potential national needs that may be addressed by space reactor systems. A systematic approach was used to explore needs at several levels that are increasingly specific. sm-bullet Level 0 emdash General Trends and Issues sm-bullet Level 1 emdash Generic Space Capabilities to Address Trends sm-bullet Level 2 emdash Requirements to Support Capabilities sm-bullet Level 3 emdash System Types Capable of Meeting Requirements sm-bullet Level 4 emdash Generic Reactor System Types sm-bullet Level 5 emdash Specific Baseline Systems Using these findings, a strategy was developed to support important space reactor technologies within a limited budget. A preliminary evaluation identified key technical issues and provide a prioritized set of candidate research projects. The evaluation of issues and the recommended research projects are presented in a companion paper. copyright 1996 American Institute of Physics

  2. The IAEA Activities in the Field of Fast Reactors Technology Development

    International Nuclear Information System (INIS)

    Monti, Stefano

    2011-01-01

    Main activities of the IAEA Programme on Fast Reactor: Carry out Collaborative Research Projects (CRPs) of common interest to the TWG-FR Member States in the field of FRs and ADS; Secure Training and Education in the field of fast neutron system physics, technology and applications; Support Fast Reactor data retrieval and knowledge preservation activities in MSs; Provide support to IAEA Nuclear Safety and Security Department for preparation of fast reactor Safety standards / requirements / guides. IAEA TWG-FR Functions: Provide advice and guidance, and marshal support in their countries for implementation of IAEA’s programmatic activities in the area of advanced technologies and R&D for fast reactors and sub-critical hybrid systems for energy production and for utilization/transmutation of long-lived nuclides; Provide a forum for information and knowledge sharing on national and international development programs; Act as a link between IAEA’s activities in the specific area of the TWG-FR and national scientific communities, delivering information from and to national communities

  3. Progress in space nuclear reactor power systems technology development - The SP-100 program

    Science.gov (United States)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  4. On the selection of financing instruments to push the development of new technologies: Application to clean energy technologies

    International Nuclear Information System (INIS)

    Olmos, Luis; Ruester, Sophia; Liong, Siok-Jen

    2012-01-01

    Achieving climate policy goals requires mobilizing public funds to bring still immature clean technologies to competitiveness and create new technological options. The format of direct public support must be tailored to the characteristics of technologies addressed. Based on the experience accumulated with innovation programs, we have identified those features of innovation that should directly condition the choice of direct support instruments. These include the funding gap between the cost of innovation activities and the amount of private funds leveraged; the ability of technologies targeted to compete for public funds in the market; the probability that these technologies fail to reach the market; and the type of entity best suited to conduct these activities. Clean innovation features are matched to those of direct support instruments to provide recommendations on the use to be made of each type of instrument. Given the large financing gap of most clean energy innovation projects, public grants and contracts should finance a large part of clean pre-deployment innovation. However, public loans, equity investments, prizes and tax credits or rebates can successfully support certain innovation processes at a lower public cost. Principles derived are applied to identify the instrument best suited to a case example. - Highlights: ► Public financing instruments must be tailored to the features of supported innovation. ► Instruments should trigger desired innovation at the lowest public cost possible. ► They should strike the right balance between technology selection and competition. ► Public funds mobilized through them should reach the innovating entity. ► Public loans, equity investments, prizes, and rebates should be used in specific cases.

  5. In-core instrumentation and in-situ measurement in connection with fuel behaviour. Working material

    International Nuclear Information System (INIS)

    1996-01-01

    The subject of this meeting has been touched on briefly in most of the Specialist's and topical meetings related to fuel behaviour. On the basis of the conclusions and recommendations of these meetings the International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) recommended the Agency to organize a dedicated Specialist's Meeting on the subject. The twenty one papers covered the instrumentation, sensors, methods and computer codes currently used in Material Test Reactor (MTR) and power reactors as well as improved instrumentation and methods. The meeting acknowledged the fast development of fuel modelling and therefore the growing need of dedicated high burnup fuel experiments carried out in MTR reactors on refabricated rods from power reactors. In order to reduce safety margins in power reactors, thus improving economics, the necessity to develop more sophisticated on-line calculations, based on improved sensors, was recognized, although this development is limited by insufficient knowledge of the mechanisms involved. Refs, figs, tabs

  6. From reactors to long pulse sources

    International Nuclear Information System (INIS)

    Mezei, F.

    1995-01-01

    We will show, that by using an adapted instrumentation concept, the performance of a continuous source can be emulated by one switch on in long pulses for only about 10% of the total time. This 10 fold gain in neutron economy opens up the way for building reactor like sources with an order of magnitude higher flux than the present technological limits. Linac accelerator driven spallation lends itself favorably for the realization of this kind of long pulse sources, which will be complementary to short pulse spallation sources, the same way continuous reactor sources are

  7. Reprocessing technology for present water reactor fuels

    International Nuclear Information System (INIS)

    McMurray, P.R.

    1977-01-01

    The basic Purex solvent extraction technology developed and applied in the U.S. in the 1950's provides a well-demonstrated and efficient process for recovering uranium and plutonium for fuel recycle and separating the wastes for further treatment and packaging. The technologies for confinement of radioactive effluents have been developed but have had limited utilization in the processing of commercial light water reactor fuels. Technologies for solidification and packaging of radioactive wastes have not yet been demonstrated but significant experience has been gained in laboratory and engineering scale experiments with simulated commercial reprocessing wastes and intermediate level wastes. Commercial scale experience with combined operations of all the required processes and equipment are needed to demonstrate reliable reprocessing centers

  8. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-07-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics.

  9. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    International Nuclear Information System (INIS)

    1988-01-01

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics

  10. Development of system integration technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Moon Hee; Kang, D. J.; Kim, K. K. and others

    1999-03-01

    The objective of this report is to integrate the conceptual design of an integral reactor, SMART producing thermal energy of 330 MW, which will be utilized to supply energy for seawater desalination and small-scale power generation. This project also aims to develop system integration technology for effective design of the reactor. For the conceptual design of SMART, preliminary design requirements including the top-tier requirements and design bases were evaluated and established. Furthermore, in the view of the application of codes and standards to the SMART design, existing laws, codes and standards were analyzed and evaluated with respect to its applicability. As a part of this evaluation, directions and guidelines were proposed for the development of new codes and standards which shall be applied to the SMART design. Regarding the integration of SMART conceptual designs, major design activities and interfaces between design departments were established and coordinated through the design process. For the effective management of all design schedules, a work performance evaluation system was developed and applied to the design process. As the results of this activity, an integrated output of SMART designs was produced. Two additional scopes performed in this project include the preliminary economic analysis on the SMART utilization for seawater desalination, and the planning of verification tests for technology implemented into SMART and establishing development plan of the computer codes to be used for SMART design in the next phase. The technical cooperation with foreign country and international organization for securing technologies for integral reactor design and its application was coordinated and managed through this project. (author)

  11. Tritium interactions of potential importance to fusion reactor systems: technology requirements

    International Nuclear Information System (INIS)

    Wilkes, W.R.

    1976-01-01

    The tritium technology requirements created by the controlled thermonuclear research program to develop a demonstration fusion power reactor by the year 2000 are reviewed. It is found that the majority of the technological advances which are needed to ensure adequate tritium containment in a tritium breeding power reactor need to be demonstrated on a pilot scale by approximately 1983, so that they may be incorporated into EPR-II, the second of two planned experimental power reactors. The most important advances include development of containment materials with permeabilities to tritium well below measured values for stainless steel; large scale, low inventory deuterium-tritium separation systems; and improved monitoring and assay systems. There are less critical requirements for information about the effects of tritium and helium on the mechanical properties of materials, the effects of tritium on biological systems, and data on physical and chemical properties of tritium. Substantial progress needs to be made on these problems early enough to permit possible solutions to be tested on EPR-I. In addition, major improvements in tritium handling equipment are required for EPR-I. Those technological problems for which solutions have not yet been demonstrated by EPR-II must be solved by 1989 if they are to be assured successful application in the demonstration reactor

  12. Reactor materials research as an effective instrument of nuclear reactor perfection

    International Nuclear Information System (INIS)

    Baryshnikov, M.

    2006-01-01

    The work is devoted to reactor materiology, as to the practical tool of nuclear reactor development. The work is illustrated with concrete examples from activity experience of the appropriate division of the Russian Research Centre Kurchatov Institute - Institute of Reactor Materials Research and Radiation Nanotechnologies. Besides the description of some modern potentials of the mentioned institute is given. (author)

  13. APPLICATION OF MEMBRANE SORPTION REACTOR TECHNOLOGY FOR LRW MANAGEMENT

    International Nuclear Information System (INIS)

    Glagolenko, Yuri; Dzekun, Evgeny; Myasoedovg, Boris; Gelis, Vladimir; Kozlitin, Evgeny; Milyutin, Vitaly; Trusov, Lev; Rengel, Mike; Mackay, Stewart M.; Johnson, Michael E.

    2003-01-01

    A new membrane-sorption technology has been recently developed and industrially implemented in Russia for the treatment of the Liquid (Low-Level) Radioactive Waste (LRW). The first step of the technology is a precipitation of the radionuclides and/or their adsorption onto sorbents of small particle size. The second step is filtration of the precipitate/sorbent through the metal-ceramic membrane, Trumem.. The unique feature of the technology is a Membrane-Sorption Reactor (MSR), in which the precipitation / sorption and the filtration of the radionuclides occur simultaneously, in one stage. This results in high efficiency, high productivity and compactness of the equipment, which are the obvious advantages of the developed technology. Two types of MSR based on Flat Membranes device and Centrifugal Membrane device were developed. The advantages and disadvantages of application of each type of the reactors are discussed. The MSR technology has been extensively tested and efficiently implemented at ''Mayak '' nuclear facility near Chelyabinsk, Russia as well as at other Russian sites. The results of this and other applications of the MSR technology at the different Russian nuclear facilities are discussed. The results of the first industrial applications of the MSR technology for radioactive waste treatment in Russia and analysis of the available information about LRW accumulated in other countries imply that this technology can be successfully used for the Low Level Radioactive Waste treatment in the USA and in other nuclear countries

  14. Recent IAEA activities to support advanced water cooled reactor technology development

    International Nuclear Information System (INIS)

    Choi, J.-H.; Bilbao y Leon, S.; Rao, A.S.

    2009-01-01

    The International Atomic Energy Agency (IAEA) is the world's center of cooperation in the nuclear field. The IAEA works with its Member States and multiple partners worldwide to promote safe, secure and peaceful nuclear technologies. To catalyse innovation in nuclear power technology in Member States, the IAEA coordinates cooperative research, promotes information exchange, and analyses technical data and results, with a focus on reducing capital costs and construction periods while further improving performance, safety and proliferation resistance. This paper summarizes the recent major IAEA activities to support technology development for water cooled reactors, which is the most common type of reactor design at present and will probably still be in the near future. (author)

  15. ECLSS Integration Analysis: Advanced ECLSS Subsystem and Instrumentation Technology Study for the Space Exploration Initiative

    Science.gov (United States)

    1990-01-01

    In his July 1989 space policy speech, President Bush proposed a long range continuing commitment to space exploration and development. Included in his goals were the establishment of permanent lunar and Mars habitats and the development of extended duration space transportation. In both cases, a major issue is the availability of qualified sensor technologies for use in real-time monitoring and control of integrated physical/chemical/biological (p/c/b) Environmental Control and Life Support Systems (ECLSS). The purpose of this study is to determine the most promising instrumentation technologies for future ECLSS applications. The study approach is as follows: 1. Precursor ECLSS Subsystem Technology Trade Study - A database of existing and advanced Atmosphere Revitalization (AR) and Water Recovery and Management (WRM) ECLSS subsystem technologies was created. A trade study was performed to recommend AR and WRM subsystem technologies for future lunar and Mars mission scenarios. The purpose of this trade study was to begin defining future ECLSS instrumentation requirements as a precursor to determining the instrumentation technologies that will be applicable to future ECLS systems. 2. Instrumentation Survey - An instrumentation database of Chemical, Microbial, Conductivity, Humidity, Flowrate, Pressure, and Temperature sensors was created. Each page of the sensor database report contains information for one type of sensor, including a description of the operating principles, specifications, and the reference(s) from which the information was obtained. This section includes a cursory look at the history of instrumentation on U.S. spacecraft. 3. Results and Recommendations - Instrumentation technologies were recommended for further research and optimization based on a consideration of both of the above sections. A sensor or monitor technology was recommended based on its applicability to future ECLS systems, as defined by the ECLSS Trade Study (1), and on whether its

  16. In-pile instrumentation improvements for fuel irradiations in test reactor

    International Nuclear Information System (INIS)

    Blanc, J.Y.; Bernard, J.L.; Estrade, J.; Geoffroy, G.

    1996-01-01

    Knowledge of fuel limits and safety margins in normal and off-normal transients in nuclear power plants remains a constant preoccupation for electricity producers and fuel manufacturers. Accurate determination of such limits, through fuel irradiation testing in the OSIRIS reactor at Saclay is closely linked to the reliability of appropriate instrumentation techniques. Two paths are currently followed to obtain short experimental rods: segmented fuel coming directly from power plants, or re-fabrication of rods in hot cells with our FABRICE process. It can be associated with instrumentation such as fuel centerline thermocouple in annular pellets, pressure transducer or fission gas release measurement by gamma-spectrometry using helium sweeping, in analytic experiments. Our present development, to be implemented in 1993, is the the centerline instrumentation of a fuel column with solid pellets. Inserting the thermocouple requires a cold drilling machine, using CO 2 freezing of broken UO 2 (with liquid nitrogen). During the fuel rod irradiation itself, we try to lower the uncertainties associated to power determination, using thermal balance or neutronic calibration, or even gamma spectrometry. A description of the new test train designed for the ISABELLE water loop in OSIRIS is given, with special emphasis on instrumentation: a LVDT for measuring fuel rod elongation and eventual clad failure, and increased number and better localization of thermocouples and SPDN. The third part is devoted to the measurements by optical microdensitometry of neutron radiographs of the fuel pellet dish modification after irradiation. Dishes are generally disappearing through thermal and mechanical deformation of the pellet, and this can eventually be modelized to better understand pellet-cladding mechanical interaction. (author). 3 refs, 5 figs

  17. Design technology development of the main coolant pump for an integral reactor

    International Nuclear Information System (INIS)

    Park, J. S.; Lee, J. S.; Kim, M. H.; Kim, D. W.; Kim, J. I.

    2004-01-01

    All of the reactor coolant pump currently used in commercial nuclear power plant were imported from foreign country. Now, the developing program of design technology for the reactor coolant pump will be started in a few future by domestic researchers. At this stage, the design technology of the main coolant pump for an integral reactor is developed based on the regulation of domestic nuclear power plant facilities. The main coolant pump is a canned motor axial pump, which accommodates all constraints required from the integral reactor system. The main coolant pump does not have mechanical seal device because the rotor of motor and the shaft of impeller are the same one. There is no flywheel on the rotating shaft of main coolant pump so that the coastdown duration time is short when the electricity supply is cut off

  18. Current status and technology development tendency of research reactors in china

    International Nuclear Information System (INIS)

    Ke Guotu; Shen Feng; Zhao Shouzhi; Zhang Weiguo; Yuan Luzheng

    2009-01-01

    The current status and development history of domestic and abroad research reactors (RRs) are mentioned. The representative RRs and their respective technology characteristics are introduced. The utilizations of China's RRs, mainly included as nuclear engineering technology, basic research applications of nuclear technology, teaching and personnel training, are explained. (authors)

  19. Thermophysical instruments for non-destructive examination of tightness and internal gas pressure or irradiated power reactor fuel rods

    International Nuclear Information System (INIS)

    Pastoushin, V.V.; Novikov, A.Yu.; Bibilashvili, Yu.K.

    1998-01-01

    The developed thermophysical method and technical instruments for non-destructive leak-tightness and gas pressure inspection inside irradiated power reactor fuel rods and FAs under poolside and hot cell conditions are described. The method of gas pressure measuring based on the examination of parameters of thermal convection that aroused in gas volume of rod plenum by special technical instruments. The developed method and technique allows accurate value determination of not only one of the main critical rod parameters, namely total internal gas pressure, that forms rod mean life in the reactor core, but also the partial pressure of every main constituent of gaseous mixture inside irradiated fuel rod, that provides the feasibility of authentic and reliable leak-tightness detection. The described techniques were experimentally checked during the examination of all types power reactor fuel rods existing in Russia (WWER, BN, RBMK) and could form the basis for new technique development for non-destructive examination of PWR (and other) type rods and FAs having gas plenum filled with spring or another elements of design. (author)

  20. Indian fast reactor technology: Current status and future programme

    Indian Academy of Sciences (India)

    IGCAR is responsible for the design, R & D, manufacturing technology and regulatory clear- ances. ... material production that can be used to fuel another reactor. ..... The nuclear steam supply system components are being manufactured suc-.

  1. Analysis of key technologies for virtual instruments metrology

    Science.gov (United States)

    Liu, Guixiong; Xu, Qingui; Gao, Furong; Guan, Qiuju; Fang, Qiang

    2008-12-01

    Virtual instruments (VIs) require metrological verification when applied as measuring instruments. Owing to the software-centered architecture, metrological evaluation of VIs includes two aspects: measurement functions and software characteristics. Complexity of software imposes difficulties on metrological testing of VIs. Key approaches and technologies for metrology evaluation of virtual instruments are investigated and analyzed in this paper. The principal issue is evaluation of measurement uncertainty. The nature and regularity of measurement uncertainty caused by software and algorithms can be evaluated by modeling, simulation, analysis, testing and statistics with support of powerful computing capability of PC. Another concern is evaluation of software features like correctness, reliability, stability, security and real-time of VIs. Technologies from software engineering, software testing and computer security domain can be used for these purposes. For example, a variety of black-box testing, white-box testing and modeling approaches can be used to evaluate the reliability of modules, components, applications and the whole VI software. The security of a VI can be assessed by methods like vulnerability scanning and penetration analysis. In order to facilitate metrology institutions to perform metrological verification of VIs efficiently, an automatic metrological tool for the above validation is essential. Based on technologies of numerical simulation, software testing and system benchmarking, a framework for the automatic tool is proposed in this paper. Investigation on implementation of existing automatic tools that perform calculation of measurement uncertainty, software testing and security assessment demonstrates the feasibility of the automatic framework advanced.

  2. Proceedings of the seminar on optimization technology of the use of G.A. Siwabessy Research Reactor

    International Nuclear Information System (INIS)

    1999-01-01

    Seminar on optimization technology of the use of G.A. Siwabessy research reactor was held on March 16, 1999 at the Multipurpose Reactor Center, Serpong, Indonesia. During the seminar, have presented 14 papers about activities or researches on reactor operation technology, use of G.A. Siwabessy research reactor, engineering and nuclear installation development, maintenance and quality assurances. The seminar was held as a tool for developing non-researcher functional workers

  3. Proceedings of the seminar on optimization technology of the use of G.A. Siwabessy Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Seminar on optimization technology of the use of G.A. Siwabessy research reactor was held on March 16, 1999 at the Multipurpose Reactor Center, Serpong, Indonesia. During the seminar, have presented 14 papers about activities or researches on reactor operation technology, use of G.A. Siwabessy research reactor, engineering and nuclear installation development, maintenance and quality assurances. The seminar was held as a tool for developing non-researcher functional workers.

  4. Reactor technology

    International Nuclear Information System (INIS)

    Erdoes, P.

    1977-01-01

    This is one of a series of articles discussing aspects of nuclear engineering ranging from a survey of various reactor types for static and mobile use to mention of atomic thermo-electric batteries of atomic thermo-electric batteries for cardiac pacemakers. Various statistics are presented on power generation in Europe and U.S.A. and economics are discussed in some detail. Molten salt reactors and research machines are also described. (G.M.E.)

  5. Planning of the development of the MMIS core technology based on nuclear-IT convergence

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon; Kim, Chang Hwoi; Hwang, In Koo [KAERI, Daejeon (Korea, Republic of); and others

    2012-01-15

    - Drive nuclear-IT convergence technologies such as middleware applied new concept nuclear instrumentation and control architecture, automated operation of future nuclear power plant, virtual reality/augmented reality, design and verification technology of a nuclear power plant main control room, software dependability, and cyber security technology - Write state-of-the-art report for the nuclear instrumentation and control based on IT convergence - A prototype which implemented related equipment and software subject to nuclear reactor operator that reside in the main control room (Reactor Operator, RO) order to a on-site operator (Local Operator, LO) and confirm the task performance matches the RO's intention - 'IT Convergence intelligent instrumentation and control technology' project planning for the Fourth Nuclear Power Research and Development in the long-term plan.

  6. Development of technologies for nuclear reactors of small and medium sized; Desarrollo de Tecnologias para Reactores Nucleares de pequeno y medio tamano

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-15

    This meeting include: countries presentations, themes and objectives of the training course, reactor types, design, EPR, APR1400, A P 1000, A PWR, ATMEA 1, VVER-1000, A PWR, ATMEA 1, VVER 1200, Boiling Water Reactor, A BWR, A BWR -II, ESBUR, Ke ren, AREVA, Heavy Water Reactor, Candu 6, Acr-1000, HWR, Bw, Iris, CAREM NuCcale, Smart, KLT-HOS, Westinghouse small modular Reactor, Gas Cooled Reactors, PBMR, React ores enfriados con metales liquidos, Hs, Prism,Terra Power, Hyper ion, appliance's no electric as de energia, Generation IV Reactors,VHTR, Gas Fast Reactor, Sodium Fast Reactor, Molten salt Reactor, Lfr, Water Cooled Reactor, Technology Assessment Process, Fukushima accident.

  7. Recognition of Instrumentation Gauge in the Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Nuclear emergency robots were developed in 2001 as the countermeasure following the criticality accident at the JCO (uranium refinery facility) in Tokaimura, Japan in 1999. We assumed that these nuclear emergency robots were deployed (or put into) for a mitigation (or management) of severe accident, for example, occurred at Fukushima Daiichi nuclear power plant. In the case, the image understanding using a color CCD camera, loaded on the nuclear emergency robot, is important. We proposed an image processing technique to read indication value of the IC water level gauges using the structural characteristics of the instrumentation panels (water level gauges) located inside the reactor building. At first, we recognized the scales on the instrumentation panel using the geometric shape of the panel. And then, we could read the values of the instrumentation gauge by calculating the slope of the needle on the gauge. Using the proposed algorithm, we deciphered instrumentation panels for the four water level gauges and indicators shown on the IC video released by TEPCO and Japanese Nuclear Regulatory Commission of Japan. In this paper, recognition of the instrumentation gauges inside reactor building of the nuclear power plant by an image processing technology is described.

  8. Materials technologies of light water reactors

    International Nuclear Information System (INIS)

    Begley, R.

    1984-01-01

    Satisfactory materials performance is a key element in achieving reliable operation of light water reactors. Outstanding performance under rigorous operational conditions has been exhibited by pressure boundary components, core internals, fuel cladding, and other critical components of these systems. Corrosion and stress corrosion phenomena have, however, had an impact on plant availability, most notably relating to pipe cracking in BWR systems and steam generator corrosion in PWR systems. These experiences have stimulated extensive development activities by the nuclear industry in improved NDE techniques, investigation of corrosion phenomena, as well as improved materials and repair processes. This paper reviews key materials performance aspects of light water reactors with particular emphasis on the progress which has been made in modeling of corrosion phenomena, control of the plant operating environment, advanced material development, and application of sophisticated repair procedures. Implementation of this technology provides the basis for improved plant availability

  9. Validation of an Instrument to Measure Students' Motivation and Self-Regulation towards Technology Learning

    Science.gov (United States)

    Liou, Pey-Yan; Kuo, Pei-Jung

    2014-01-01

    Background: Few studies have examined students' attitudinal perceptions of technology. There is no appropriate instrument to measure senior high school students' motivation and self-regulation toward technology learning among the current existing instruments in the field of technology education. Purpose: The present study is to validate an…

  10. Instrumenting a pressure suppression experiment for a Mark I boiling water reactor: another measurements engineering challenge

    International Nuclear Information System (INIS)

    Shay, W.M.; Brough, W.G.; Miller, T.B.

    1978-01-01

    A 1 / 5 -scale test facility of a pressure-suppression system from a Mark I boiling water reactor was instrumented with seven types of transducers to obtain high-accuracy, dynamic loading data during a hypothetical loss-of-coolant accident. A total of 27 air tests have been completed with an average of 175 transducers recorded for each test. An end-to-end calibration of the total measurement system was run to establish accuracy of the data. The instrumentation verified the analysis of the dynamic loading of the pressure-suppression system

  11. New nuclear technologies will help to ensure the public trust and further development of research reactors

    International Nuclear Information System (INIS)

    Miasnikov, S.V.

    2001-01-01

    Decrease of public trust to research reactors causes the concern of experts working in this field. In the paper the reasons of public mistrust to research reactors are given. A new technology of 99 Mo production in the 'Argus' solution reactor developed in the Russian Research Centre 'Kurchatov Institute' is presented as an example assisting to eliminate these reasons. 99 Mo is the most widespread and important medical isotope. The product received employing a new technology completely meets the international specifications. Besides, the proposed technology raises the efficiency of 235 U consumption practically up to 100% and allows using a reactor with power 10 and more times lower than that in the target technology. The developed technology meets the requirements of the community to nuclear safety of manufacture, reduction of radioactive waste and non-proliferation of nuclear materials. (author)

  12. About the study of irradiation effects on in-core instrumentation

    International Nuclear Information System (INIS)

    Angelino, G.

    1972-01-01

    The knowledge of in-core instrumentation performances is a very important item when irradiations of technological interest are concerned. When measurement of small changes in mechanical or thermal properties is of major importance, the effect of neutron and gamma irradiation on various transducers must be thoroughly evaluated. A rig mock-up was irradiated in the Triga Mark II Reactor of the Pavia University to assess the possibility of carrying out a study on irradiation effects on in-core instrumentation. Data on neutron flux distribution and γ-heating effect were collected from this preliminary experiment; at the same time a complete check was performed on rig assembling procedure, on the behaviour under operating conditions, and on the reactor loading and unloading operations. (author)

  13. Integration of improved decontamination and characterization technologies in the decommissioning of the CP-5 research reactor

    International Nuclear Information System (INIS)

    Bhattacharyya, S. K.; Boing, L. E.

    2000-01-01

    The aging of research reactors worldwide has resulted in a heightened awareness in the international technical decommissioning community of the timeliness to review and address the needs of these research institutes in planning for and eventually performing the decommissioning of these facilities. By using the reactors already undergoing decommissioning as test beds for evaluating enhanced or new/innovative technologies for decommissioning, it is possible that new techniques could be made available for those future research reactor decommissioning projects. Potentially, the new technologies will result in: reduced radiation doses to the work force, larger safety margins in performing decommissioning and cost and schedule savings to the research institutes in performing the decommissioning of these facilities. Testing of these enhanced technologies for decontamination, dismantling, characterization, remote operations and worker protection are critical to furthering advancements in the technical specialty of decommissioning. Furthermore, regulatory acceptance and routine utilization for future research reactor decommissioning will be assured by testing and developing these technologies in realistically contaminated environments prior to use in the research reactors. The decommissioning of the CP-5 Research Reactor is currently in the final phase of dismantlement. In this paper the authors present results of work performed at Argonne National Laboratory (ANL) in the development, testing and deployment of innovative and/or enhanced technologies for the decommissioning of research reactors

  14. Progress report on fast breeder reactor development in Japan

    International Nuclear Information System (INIS)

    1979-01-01

    The experimental fast reactor ''Joyo'' will be tested at 75 MW output, starting in April, 1980. In connection with the accident in the Three Mile Island plant, the reexamination of the plant safety and the rechecking-up of the maintenance control system were carried out, and the special inspection by the Science and Technology Agency was executed from May 21 to 23, 1979. Thereafter, the preparation for raising the power output was completed. The periodical inspection after the completion of 50 MW operation is being carried out. The state of progress of various equipments and the codes for core characteristic analysis is reported. The construction preliminary design (2) of the prototype reactor ''Monju'' is examined, and the same design (3) is prepared. The analysis of the decay heat in the prototype reactor is carried on for the safety licensing. The technological investigation of LMFBRs in foreign countries is under way. The preliminary design (4) of the demonstration reactor is under examination, and the technical specifications of the conceptual design (1) are prepared. The researches and developments of reactor physics, structural components, instrumentation and control, sodium technology, fuel materials, structures and materials, safety and steam generators are reported. (Kako, I.)

  15. Qualification issues associated with the use of advanced instrumentation and control systems hardware in nuclear power plants

    International Nuclear Information System (INIS)

    Korsah, K.; Antonescu, C.

    1993-01-01

    The instrumentation and control (I ampersand C) systems in advanced reactors will make extensive use of digital controls, microprocessors, multiplexing, and Tiber-optic transmission. Elements of these advances in I ampersand C have been implemented on some current operating plants. However, the widespread use of the above technologies, as well as the use of artificial intelligence with minimum reliance on human operator control of reactors, highlights the need to develop standards for qualifying I ampersand C used in the next generation of nuclear power plants. As a first step in this direction, the protection system I ampersand C for present-day plants was compared to that proposed for advanced light water reactors (ALWRs). An evaluation template was developed by assembling a configuration of a safety channel instrument string for a generic ALWR, then comparing the impact of environmental stressors on that string to their effect on an equivalent instrument string from an existing light water reactor. The template was then used to address reliability issues for microprocessor-based protection systems. Standards (or lack thereof) for the qualification of microprocessor-based safety I ampersand C systems were also identified. This approach addresses in part issues raised in Nuclear Regulatory Commission policy document SECY-91-292. which recognizes that advanced I ampersand C systems for the nuclear industry are ''being developed without consensus standards, as the technology available for design is ahead of the technology that is well understood through experience and supported by application standards.''

  16. IAEA activities in gas-cooled reactor technology development

    International Nuclear Information System (INIS)

    Cleveland, J.; Kupitz, J.

    1992-01-01

    The International Atomic Energy Agency (IAEA) has the charter to ''foster the exchange of scientific and technical information'', and ''encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world''. This paper describes the Agency's activities in Gas-cooled Reactor (GCR) technology development

  17. Fusion reactor design and technology program in China

    International Nuclear Information System (INIS)

    Huang, J.H.

    1994-01-01

    A fusion-fission hybrid reactor program was launched in 1987. The purpose of development of the hybrid reactor is twofold: to solve the problem of nuclear fuel supply for an expected large-scale development of fission reactor plants, and to maintain the momentum of fusion research. The program is described and the activities and progress of the program are presented. Two conceptual designs of an engineering test reactor with tokamak configuration were developed at the Southwestern Institute of Physics and the Institute of Plasma Physics. The results are a tokamak engineering test breeder (TETB) series design and a fusion-fission hybrid reactor design (SSEHR), characterized by a liquid-Li self-cooled blanket and an He-cooled solid tritium breeder blanket respectively. In parallel with the design studies, relevant technological experiments on a small or medium scale have been supported by this program. These include LHCD, ICRH and pellet injection in the area of plasma engineering; neutronics integral experiments with U, Pu, Fe and Be; various irradiation tests of austenitic and ferritic steels, magnetohydrodynamic (MHD) pressure drop experiments using a liquid metal loop; research into permeation barriers for tritium and hydrogen isotopes; solid tritium breeder tests using an in-situ loop in a fission reactor. All these experiments have proceeded successfully. The second step of this program is now starting. It seems reasonable that most of the research carried out in the first step will continue. ((orig.))

  18. A possible new basis for fast reactor subassembly instrumentation

    International Nuclear Information System (INIS)

    Edwards, A.G.

    1977-01-01

    This is a digest of a paper presented to the Risley Engineering Society. The theme is a speculation that the core instrumentation problem for a liquid metal fast breeder reactor might be transformed by developments in the realm of infrared television and in pattern recognition by computer. There is a possible need to measure coolant flow and cooled exit temperature for each subassembly, with familiar fail-to-safety characteristics. Present methods use electrical devices, for example thermocouples, but this gives rise to cabling problems. It might be possible, however, to instal at the top of each subassembly a mechanical device that gives a direct indication of temperature and flow visible to an infrared television camera. Signal transmission by cable would then be replaced by direct observation. A possible arrangement for such a system is described and is shown in schematic form. It includes pattern recognition by computer. It may also be possible to infer coolant temperature directly from the characteristics of the infrared radiation emitted by a thin stainless steel sheet in contact with the sodium, and an arrangement for this is shown. The type of pattern produced for on-line interpretation by computer is also shown. It is thought that this new approach to the problem of subassembly instrumentation is sufficiently attractive to justify a close study of the problems involved. (U.K.)

  19. Progress report on fast breeder reactor development in Japan, July - September 1977

    International Nuclear Information System (INIS)

    1978-06-01

    As for the experimental fast breeder reactor ''Joyo'', the low power performance tests have been continued, and the measurements of reactor noise, the reactivity of fuel assemblies, power distribution and Na-void effect have been made. Efforts have been exerted to develop the required maintenance equipments, to manufacture the transfer rotor maintenance facilities, and to construct the spent fuel storing and cooling facilities. The analysis and calculation of the core characteristics have been in progress. The design work on the prototype fast breeder reactor ''Monju'' has been continued, and the development of the computer codes for the design has progressed. Informations have been gathered regarding the technological developments of LMFBRs overseas. The surveys on the site for ''Monju'' have been carried out. The design and research works on the demonstration reactor were started, and the general design factors such as the steam condition and the plant layout have been studied. As for the research and development of reactor physics, structural components, instrumentation and control, sodium technology, fuel materials, structural materials, safety, and steam generators, the progresses are reported in detail. High performance neutron detectors for nuclear instrumentation have been under development, and the tagging gas method for fuel failure detection and location system has been tested. (Kako, I.)

  20. Welding of sule elements for nuclear reactors with solid state YAG laser using instrumentated testing equipments

    International Nuclear Information System (INIS)

    Bourgault, F.; Lacoste, J.; Schley, R.; Kluzinski, C.; Piednoir, P.

    1985-09-01

    The instrumentation of the equipment for carrying out safety tests on fuel elements for nuclear reactors requires special thermocouples adapted to the prevailing agressive medium. The investigations described deal essentially with the operational and metallurgical weldability tests out on the safety test zircaloy piping in the pressurized water circuit (PHEBUS-programme) [fr

  1. Improvement and utilization of irradiation capsule technology in HANARO

    International Nuclear Information System (INIS)

    Choo, Kee-Nam; Cho, Man-Soon; Kim, Bong-Goo; Lee, Cheol-Yong; Yang, Sung-Woo; Shin, Yoon-Taek; Park, Seng-Jae; Jung, Hoan-Sung

    2012-01-01

    Several improvements of irradiation capsule technology regarding irradiation test parameters, such as temperature and neutron flux/fluence, and regarding instrumentation have progressed at HANARO since the last KAERI-JAERI joint seminar held in 2008. The standard HANARO capsule technology that was developed for use in a commercial power plant temperature of about 300degC was improved to apply to a temperature range of 100-1000degC for the irradiation test of materials of new research reactors and future nuclear systems. Low-flux and long-term irradiation technologies have been developed at HANARO. As a beginning step of the localization of capsule instrumentation technology, the irradiation performance of a domestically produced thermocouple and LVDT will be examined at HANARO. The accuracy of an evaluation of neutron fluence and precise welding technology are also being examined at HANARO. Based on these accumulated capsule technologies, a HANARO irradiation capsule system is being actively utilized for the national R and D programme on commercial nuclear reactors and nuclear fuel cycle technology in Korea. HANARO has recently started the irradiation support of R and D relevant to future nuclear systems including SMART, VHTR, and SFR, and HANARO is preparing new support relevant to new research and Fusion reactors. (author)

  2. Enabling instrumentation and technology for 21st century light sources

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, J.M.; Shea, T.J.; Denes, P.; Siddons, P.; Attwood, D.; Kaertner, F.; Moog, L.; Li, Y.; Sakdinawat, A.; Schlueter, R.

    2010-06-01

    We present the summary from the Accelerator Instrumentation and Technology working group, one of the five working groups that participated in the BES-sponsored Workshop on Accelerator Physics of Future Light Sources held in Gaithersburg, MD September 15-17, 2009. We describe progress and potential in three areas: attosecond instrumentation, photon detectors for user experiments, and insertion devices.

  3. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Boing, L.E.; Henley, D.R.; Manion, W.J.; Gordon, J.W.

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs

  4. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.; Henley, D.R. (Argonne National Lab., IL (USA)); Manion, W.J.; Gordon, J.W. (Nuclear Energy Services, Inc., Danbury, CT (USA))

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs.

  5. An Instrument to Determine the Technological Literacy Levels of Upper Secondary School Students

    Science.gov (United States)

    Luckay, Melanie B.; Collier-Reed, Brandon I.

    2014-01-01

    In this article, an instrument for assessing upper secondary school students' levels of technological literacy is presented. The items making up the instrument emerged from a previous study that employed a phenomenographic research approach to explore students' conceptions of technology in terms of their understanding of the "nature…

  6. Fast instrumentation for loss of coolant accident (LOCA) experimental studies pertaining to nuclear reactors

    International Nuclear Information System (INIS)

    Venkat Raj, V.; Sreenivas Rao, G.; Belokar, D.G.; Dolas, P.K.

    1989-01-01

    The loss of coolant accident (LOCA) which involves a breach in the pressure boundary of the primary coolant system (PCS) is one of the postulated accident conditions against which the safety of the reactor system is to be ensured. Mathematical models have been developed to analyse this kind of transients. However, because of the extremely complicated nature of the phenomena involved, it is necessary to validate the analytical models with appropriate experimental data. Many parameters are to be measured during the experiments, out of which temperature, pressure, void fraction and two-phase mass flow rate are the most important parameters. Since the phenomenon is very fast, special fast response instruments are required. This paper deals with the considerations that govern the selection of appropriate instruments and the development of suitable instruments for transient two-phase flow and void fraction measurements. The requirements of the associated fast data acquisition system are also discussed. (author). 4 figs

  7. Status of fast reactor technology in China

    International Nuclear Information System (INIS)

    Xu Mi

    1992-01-01

    The paper has introduced briefly the recent news about the Chinese nuclear programme on PWR and FBR. Concerning the FFR design, some issues under consideration have been presented, including the matches between thermo-parameters of primary sodium and of steam, the arrangement of control and safety rods which correspond to first and second shut-down systems, the structure of inner vessel and the axial length of subassembly. With regard to the R and D of FBR technology, some results on sodium technology and on the cladding materials have been given in the paper. Finally, some progress and troubles on site selection for this reactor have also been outlined. (author)

  8. Proposal for a technology-neutral safety approach for new reactor designs

    International Nuclear Information System (INIS)

    2007-09-01

    Many states are considering an expansion of their nuclear power generation programmes. Many of the technologies and concepts are new and innovative. The current design and licensing rules are applicable to mostly large water reactors and there are no accepted rules in place for design, safety assessment and licensing for new innovative nuclear power plants. This TECDOC proposes a (new) safety approach and a methodology to generate technology-neutral (i.e. independent of reactor technology) safety requirements and a 'safe design' for advanced and innovative reactors. The experience gained in decades of design and licensing, combined with the development of risk-based concepts, has provided insights that will form the basis for new safety rules and requirements. Many lessons learned acknowledge the importance of such concepts as safety goals and defence in depth and the benefits of integrating risk insights early in an iterative design process. A new safety approach will incorporate many of the new developments in these concepts. For example, the probabilistic elements of defence in depth will help define the cumulative provisions to compensate for uncertainty and incompleteness of our knowledge of accident initiation and progression. This TECDOC also identifies areas of work, which will require further definition, research and development and guidance on application. This publication is to be used as a guide to developing a new technology-neutral safety approach, and as a guide in the application of methodologies to define the safety requirements for an innovative reactor designs. The method proposes an integration of deterministic and probabilistic considerations with established principles and concepts such as safety goals and defence in depth. The TECDOC recommends that the structure of the new technology-neutral main pillars for the design and licensing of innovative nuclear reactors be developed following a top-down approach to reflect a newer risk-informed and

  9. Development of mechanical design technology for integral reactor

    International Nuclear Information System (INIS)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn; Kim, Jong Wook; Choi, Woo Seok

    2002-03-01

    This report is the final documentation of the 'Development of Mechanical Design Technology for Integral Reactor' which describes the design activities including reactor vessel assembly structural modelling, normal operation and transient analysis, preparation of design specification, major component stress analysis, evaluation of structural integrity, review of fabricability, maintenance and repair scheme, etc. To establish the design requirements and applicable codes and standards, each GDC criterion was reviewed regarding the SMART structural characteristics and design status, and then the applicability and point of issues were evaluated. To accomodate the result of the core optimization program, modification of pressure vessel and reactor internal components were carried out. SG nozzles were rearranged to penetrate the pressure vessel wall instead of the annular cover. Coolant flow path through the MCP impeller was revised and the adjacent structures were modified. Dynamic analysis model was developed reflecting all the structural changes to perform the seismic and BLPB analysis. Fracture mechanics evaluation on the structural integrity of the reactor pressure vessel was also conducted. Besides, equipment maintenance and replacement plan including the refueling scheme was discussed to confirm the embodiment of SMART through construction and operation

  10. The advanced test reactor national scientific user facility advancing nuclear technology

    International Nuclear Information System (INIS)

    Allen, T.R.; Thelen, M.C.; Meyer, M.K.; Marshall, F.M.; Foster, J.; Benson, J.B.

    2009-01-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  11. Code of practice for in-core instrumentation for neutron fluence rate (flux) measurements in power reactors

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    This standard applies to in-core (on-line) neutron detectors and instrumentation which is designed for safety, information or control purposes. It also applies to components in so far as these components are contained within the primary envelope of the reactor. The detector types usually used are dc ionization chambers and self-powered neutron detectors

  12. Oak Ridge National Laboratory Support of Non-light Water Reactor Technologies: Capabilities Assessment for NRC Near-term Implementation Action Plans for Non-light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    The Oak Ridge National Laboratory (ORNL) has a rich history of support for light water reactor (LWR) and non-LWR technologies. The ORNL history involves operation of 13 reactors at ORNL including the graphite reactor dating back to World War II, two aqueous homogeneous reactors, two molten salt reactors (MSRs), a fast-burst health physics reactor, and seven LWRs. Operation of the High Flux Isotope Reactor (HFIR) has been ongoing since 1965. Expertise exists amongst the ORNL staff to provide non-LWR training; support evaluation of non-LWR licensing and safety issues; perform modeling and simulation using advanced computational tools; run laboratory experiments using equipment such as the liquid salt component test facility; and perform in-depth fuel performance and thermal-hydraulic technology reviews using a vast suite of computer codes and tools. Summaries of this expertise are included in this paper.

  13. Nuclear technology education at the new AKR-2 of the technical university Dresden

    International Nuclear Information System (INIS)

    Hansen, W.; Wolf, T.; Hurtado, A.

    2009-01-01

    The former research and training reactor AKR-1 was completely renewed, including the peripheral technical systems and the modernization of the reactor instrumentation with digital control technology. After licensing by the local authorities the technical University Dresden has Germany's latest training reactor. Basic experiments are performed for the following disciplines: nuclear energy technology, physics, teacher training, industrial engineering, nuclear medicine. Training courses cover nuclear medicine, nuclear physics, radiation protection and reactor physics. Further tasks include research program on neutron detectors, neutron physics, radiation spectroscopy, nuclear data bases.

  14. Upgrade of reactor operation technology

    International Nuclear Information System (INIS)

    Itoh, Hideaki; Suzuki, Toshiaki; O-kawa, Toshikatsu

    2003-01-01

    To improve operational reliability and availability, the operation technology for a fast reactor was developed in the ''JOYO''. This report describes the upgrading of the simulator, plant operation management tools and fuel handling system for the MK-III core operation. The simulator was modified to the MK-III version to verify operation manuals, and to train operators in MK-III operation. The plant operation management tool was replaced on the operation experience to increase the reliability and efficiency of plant management works relating to plant operation and maintenance. To shorten the refueling period, the fuel handling system was upgraded to full automatic remote control. (author)

  15. Environmental policy instruments and technological change in the energy sector: findings from comparative empirical research

    International Nuclear Information System (INIS)

    Skjaerseth, J.B.; Christiansen, A.C.

    2006-01-01

    This article explores the extent to which and in what ways environmental policy instruments may affect patterns of environmental friendly technological change in the energy sector. Our argument is based on the assumption, however, that technological change is also affected by the political context in which the instruments are applied and by the nature of the problem itself. Comparative empirical research involving different European countries, sectors and policy fields were examined, including climate change, air pollution and wind power. The relationship between environmental policy instruments and technological change is extremely complex, not least due to the impact of other factors that may be more decisive than environmental ones. Against this backdrop, it was concluded that: 1) a portfolio of policy instruments works to the extent that different types of policy instruments affect the different drivers and stages behind technological change needed to solve specific problems. The need for a portfolio of policy instruments depends on the technological challenge being faced; 2) voluntary approaches facilitated constructive corporate strategies, but mandatory approaches tended to be more effective in stimulating short term major technological change; 3) voluntary approaches work well in the short term when the problem to be solved is characterized by lack of information and coordination. (author)

  16. Technological improvements to high temperature thermocouples for nuclear reactor applications

    International Nuclear Information System (INIS)

    Schley, R.; Leveque, J.P.

    1980-07-01

    The specific operating conditions of thermocouples in nuclear reactors have provided an incentive for further advances in high temperature thermocouple applications and performance. This work covers the manufacture and improvement of existing alloys, the technology of clad thermocouples, calibration drift during heat treatment, resistance to thermal shock and the compatibility of insulating materials with thermo-electric alloys. The results lead to specifying improved operating conditions for thermocouples in nuclear reactor media (pressurized water, sodium, uranium oxide) [fr

  17. Home-made refurbishment of the instrumentation and control system of the TRIGA reactor of the University of Pavia

    International Nuclear Information System (INIS)

    Borio di Tigliole, A.; Cagnazzo, M.; Magrotti, G.; Manera, S.; Salvini, A.; Musitelli, G.; Nardo, R.

    2008-01-01

    The Instrumentation and Control (I and C) System of the TRIGA reactor of the University of Pavia was dated and, in order to grant a safe and continuous reactor operation for the future, it became necessary to substitute or to upgrade the system. Since the substitution of the I and C system with a new-made one was very difficult to be performed due to long authorization procedures, an home-made refurbishment was planned. Using commercial components of high quality, almost a complete substitution, channel-by-channel, of the I and C system was realized without changing the operating and safety logics. The system includes: - the Reactor Linear Power Channel and Chart Recorder; - the Reactor Percent Power Safety Channel; - the High Voltage and Low Voltage Power Supply; - the Automatic Reactor Power Control; - the Fuel Elements and Cooling-Water Temperatures Measuring Channels; - the Water Conductivity Measuring Channel. The refurbished I and C system shows a very good operational behavior and reliability and will assure a continuous operation of the reactor for the future

  18. Development programs on decommissioning technology for reactors and fuel cycle facilities in Japan

    International Nuclear Information System (INIS)

    Fujiki, K.

    1992-01-01

    The Science and Technology Agency (STA) of Japan is promoting technology development for decommissioning of nuclear facilities by entrusting various research programs to concerned research organisations: JAERI, PNC and RANDEC, including first full scale reactor decommissioning of JPDR. According to the results of these programs, significant improvement on dismantling techniques, decontamination, measurement etc. has been achieved. Further development of advanced decommissioning technology has been started in order to achieve reduction of duration of decommissioning work and occupational exposures in consideration of the decommissioning of reactors and fuel cycle facilities. (author) 5 refs.; 7 figs.; 1 tab

  19. Progress report on fast breeder reactor development at PNC, Japan, October - December, 1974

    International Nuclear Information System (INIS)

    1975-03-01

    Following the completion of building construction and equipment installation for the experimental fast breeder reactor ''Joyo'' at PNC's Oarai Engineering Center, hydrostatic pressure and leak tests were conducted on the reactor vessel. For the prototype fast breeder reactor ''Monju'', specification was finalized after the design adjustment. For the period from October to December, 1974, the following matters are described: construction of the Joyo, design of the Monju, reactor physics, components and equipments, instruments and control, sodium technology, fuel and material research and development, safety research and development, and steam generator. (Mori, K.)

  20. Digital control of research reactors

    International Nuclear Information System (INIS)

    Crump, J.C. III.; Richards, W.J.; Heidel, C.C.

    1991-01-01

    Research reactors provide an important service for the nuclear industry. Developments and innovations used for research reactors can be later applied to larger power reactors. Their relatively inexpensive cost allows research reactors to be an excellent testing ground for the reactors of tomorrow. One area of current interest is digital control of research reactor systems. Digital control systems offer the benefits of implementation and superior system response over their analog counterparts. At McClellan Air Force Base in Sacramento, California, the Stationary Neutron Radiography System (SNRS) uses a 1,000-kW TRIGA reactor for neutron radiography and other nuclear research missions. The neutron radiography beams generated by the reactor are used to detect corrosion in aircraft structures. While the use of the reactor to inspect intact F-111 wings is in itself noteworthy, there is another area in which the facility has applied new technology: the instrumentation and control system (ICS). The ICS developed by General Atomics (GA) contains several new and significant items: (a) the ability to servocontrol on three rods, (b) the ability to produce a square wave, and (c) the use of a software configurator to tune parameters affected by the actual reactor core dynamics. These items will probably be present in most, if not all, future research reactors. They were developed with increased control and overall usefulness of the reactor in mind

  1. Results of research and development activities in 1989 of the Institute for Neutron Physics and Reactor Technology

    International Nuclear Information System (INIS)

    1990-03-01

    The Institute for Neutron Physics and Reactor Technology treats research problems of nuclear engineering, mainly those that are related to the development of sodium-cooled fast breeder reactors and fusion reactor technology. The activities are in approximately equal parts of an experimental and theoretical nature. A great part of the research activities is performed in co-operation with other institutes and industrial groups in the framework of projects. For the Fast Breeder Reactor Project the Institute works on reactor physical design and safety problems by the core of large-scale fast breeder reactors. Questions concerning the consequences of accidents in light water reactors upon the environment and the population are treated as part of the Nuclear Safety Project. The Institute contributes to the Reprocessing Project with theoretical investigations on the physics of the fuel cycle and by developing control devices for a reprocessing plant. In the framework of the Fusion Project the Institute is concerned with neutron physical and technological questions of the breeder blanket. (orig.) [de

  2. Preliminary Conceptual Design and Development of Core Technology of Very High Temperature Gas-Cooled Reactor Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jong Hwa; Kang, H. S.; Gil, C. S. and others

    2006-05-15

    For the nuclear hydrogen production system, the VHTR technology and the IS cycle technology are being developed. A comparative evaluation on the block type reactor and the pebble type reactor is performed to decide a proper nuclear hydrogen production reactor. 100MWt prismatic type reactor is tentatively decided and its safety characteristics are roughly investigated. Computation codes of nuclear design, thermo-fluid design, safety-performance analysis are developed and verified. Also, the development of a risk informed design technology is started. Experiments for metallic materials and graphites are carried out for the selection of materials of VHTR components. Diverse materials for process heat exchanger are studied in various corrosive environments. Pyrolytic carbon and SiC coating technology is developed and fuel manufacturing technology is basically established. Computer program is developed to evaluate the performance of coated particle fuels.

  3. Preliminary Conceptual Design and Development of Core Technology of Very High Temperature Gas-Cooled Reactor Hydrogen Production

    International Nuclear Information System (INIS)

    Chang, Jong Hwa; Kang, H. S.; Gil, C. S. and others

    2006-05-01

    For the nuclear hydrogen production system, the VHTR technology and the IS cycle technology are being developed. A comparative evaluation on the block type reactor and the pebble type reactor is performed to decide a proper nuclear hydrogen production reactor. 100MWt prismatic type reactor is tentatively decided and its safety characteristics are roughly investigated. Computation codes of nuclear design, thermo-fluid design, safety-performance analysis are developed and verified. Also, the development of a risk informed design technology is started. Experiments for metallic materials and graphites are carried out for the selection of materials of VHTR components. Diverse materials for process heat exchanger are studied in various corrosive environments. Pyrolytic carbon and SiC coating technology is developed and fuel manufacturing technology is basically established. Computer program is developed to evaluate the performance of coated particle fuels

  4. Instrumentation and Controls evaluation for space nuclear power systems

    International Nuclear Information System (INIS)

    Anderson, J.L.; Oakes, L.C.

    1984-01-01

    Design of control and protection systems should be coordinated with the design of the neutronic, thermal-hydraulic, and mechanical aspects of the core and plant at the earliest possible stage of concept development. An integrated systematic design approach is necessary to prevent uncoordinated choices in one technology area from imposing impractical or impossible requirements in another. Significant development and qualification will be required for virtually every aspect of reactor control and instrumentation. In-core instrumentation widely used in commercial light water reactors will not likely be usable in the higher temperatures of a space power plant. Thermocouples for temperature measurement and gamma thermometers for flux measurement appear to be the only viable candidates. Recent developments in ex-core neutron detectors may provide achievable alternatives to in-core measurements. Reliable electronic equipment and high-temperature actuators will require major development efforts

  5. A view of technology maturity assessment to realize fusion reactor by Japanese young researchers

    International Nuclear Information System (INIS)

    Kasada, Ryuta; Goto, Takuya; Miyazawa, Junichi; Fujioka, Shinsuke; Hiwatari, Ryoji; Oyama, Naoyuki; Tanigawa, Hiroyasu

    2013-01-01

    Japanese young researchers who have interest in realizing fusion reactor have analyzed Technology Readiness Levels (TRL) in Young Scientists Special Interest Group on Fusion Reactor Realization. In this report, brief introduction to TRL assessment and a view of TRL assessment against fusion reactor projects conducting in Japan. (J.P.N.)

  6. Malaysian Preparation for Nuclear Power Plant Instrumentation and Control System

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Nurfarhana Ayuni Joha; Kamarudin Sulaiman; Izhar Abu Hussin

    2011-01-01

    Instrumentation and Control System is required in Nuclear Power Plant for their safe and effective operation. The system is combination and integrated from detectors, actuators, analog system as well as digital system. Current design of system definitely follows of electronic as well as computer technology, with strictly follow regulation and guideline from local regulator as well as International Atomic Energy Agency. Commercial Off-The-Shelf products are extensively used with specific nucleonic instrumentation. Malaysian experiences depend on Reactor TRIGA PUSPATI Instrumentation and Control, Power Plant Instrumentation and Control as well as Process Control System. However Malaysians have capabilities to upgrade themself from Electronics, Computers, Electrical and Mechanical based. Proposal is presented for Malaysian preparation. (author)

  7. Development of core design and analyses technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  8. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  9. International Conference on Physics and Technology of Reactors and Applications

    International Nuclear Information System (INIS)

    2007-01-01

    The first international conference on physics and technology of reactors and applications (PHYTRA 1) which took place in Marrakech (Morocco) from 14 to 16 March 2007, was designed to bring together scientists, teachers and students from universities, research centres and industry and other institutions to exchange knowledge and to discuss ideas and future issues. The programmes of the PHYTRA 1 conference covers a wide variety topics, the conference was organised in three plenary sessions, ten oral technical sessions and two poster sessions. The plenary sessions covers the following topics : The prospects of nuclear energy, The situation of nuclear sciences and energy in Morocco and Africa, and the new development in reactor physics and reactor design [fr

  10. Nuclear technology and reactor safety engineering. The situation ten years after the Chernobyl reactor accident

    International Nuclear Information System (INIS)

    Birkhofer, A.

    1996-01-01

    Ten years ago, on April 26, 1986 the most serious accident ever in the history of nuclear tgechnology worldwide happened in unit 4 of the nuclear power plant in Chernobyl in the Ukraine, this accident unveiling to the world at large that the Soviet reactor design lines are bearing unthought of safety engineering deficits. The dimensions of this reactor accident on site, and the radioactive fallout spreading far and wide to many countries in Europe, vividly nourished the concern of great parts of the population in the Western world about the safety of nuclear technology, and re-instigated debates about the risks involved and their justification. Now that ten years have elapsed since the accident, it is appropriate to strike a balance and analyse the situation today. The number of nuclear power plants operating worldwide has been growing in the last few years and this trend will continue, primarily due to developments in Asia. The Chernobyl reactor accident has pushed the international dimension of reactor safety to the foreground. Thus the Western world had reason enough to commit itself to enhancing the engineered safety of reactors in East Europe. The article analyses some of the major developments and activities to date and shows future perspectives. (orig.) [de

  11. Maintenance technologies for SCC of PWR

    International Nuclear Information System (INIS)

    Okimura, Koji; Hori, Nobuyuki; Kanzaki, Hiroshi; Tokuhisa, Kiichi; Kamo, Kazuhiko; Kurokawa, Masaaki

    2007-01-01

    The recent technologies of test, relaxation of deterioration, repairing and change of materials are explained for safe and stable operation of pressurized water reactor (PWR). Stress corrosion cracking (SCC) is originated by three factors such as materials, stress and environment. The eddy current test (ECT) method for the stream generator pipe and the ultrasonic test method for welding part of pipe were developed as the test technologies. Primary water stress corrosion cracking (PWSCC) of Inconel 600 in the welding part is explained. The shot peening of instrument in the gas, the water jet peening of it in water, and laser irradiation on the surface are illustrated as some examples of improvement technology of stress. The cladding of Inconel 690 on Inconel 600 is carried out under the condition of environmental cut. Total or some parts of the upper part of reactor, stream generator and structure in the reactor are changed by the improvement technologies. Changing Inconel 600 joint in the exit pipe of reactor with Inconel 690 is illustrated. (S.Y.)

  12. High-temperature gas-cooled reactor steam-cycle/cogeneration lead plant. Plant Protection and Instrumentation System design description

    International Nuclear Information System (INIS)

    1983-01-01

    The Plant Protection and Instrumentation System provides plant safety system sense and command features, actuation of plant safety system execute features, preventive features which maintain safety system integrity, and safety-related instrumentation which monitors the plant and its safety systems. The primary function of the Plant Protection and Instrumentation system is to sense plant process variables to detect abnormal plant conditions and to provide input to actuation devices directly controlling equipment required to mitigate the consequences of design basis events to protect the public health and safety. The secondary functions of the Plant Protection and Instrumentation System are to provide plant preventive features, sybsystems that monitor plant safety systems status, subsystems that monitor the plant under normal operating and accident conditions, safety-related controls which allow control of reactor shutdown and cooling from a remote shutdown area

  13. NPP Temelin instrumentation and control system upgrade and verification

    International Nuclear Information System (INIS)

    Ubra, O.; Petrlik, J.

    1998-01-01

    Two units of Ver 1000 type of the Czech nuclear power plant Temelin, which are under construction are being upgraded with the latest instrumentation and control system delivered by WEC. To confirm that the functional design of the new Reactor Control and Limitation System, Turbine Control System and Plant Control System are in compliance with the Czech customer requirements and that these requirements are compatible with NPP Temelin upgraded technology, the verification of the control systems has been performed. The method of transient analysis has been applied. Some details of the NPP Temelin Reactor Control and Limitation System verification are presented.(author)

  14. Qualification issues associated with the use of advanced instrumentation and control systems hardware in nuclear power plants

    International Nuclear Information System (INIS)

    Korsah, K.; Antonescu, C.

    1993-01-01

    The instrumentation and control (I ampersand C) systems in advanced reactors will make extensive use of digital controls, microprocessors, multiplexing, and fiber-optic transmission. Elements of these advances in I ampersand C have been implemented on some current operating plants. However, the widespread use of the above technologies, as well as the use of artificial intelligence with minimum reliance on human operator control of reactors, highlights the need to develop standards for qualifying I ampersand C used in the next generation of nuclear power plants. As a first step in this direction, the protection system I ampersand C for present-day plants was compared to that proposed for advanced light water reactors (ALWRs). An evaluation template was developed by assembling a configuration of a safety channel instrument string for a generic ALWR, then comparing the impact of environmental stressors on that string to their effect on an equivalent instrument string from an existing light water reactor. The template was then used to address reliability issues for microprocessor-based protection systems. Standards (or lack thereof) for the qualification of microprocessor-based safety I ampersand C systems were also identified. This approach addresses in part issues raised in Nuclear Regulatory Commission policy document SECY-91-292, which recognizes that advanced I ampersand C systems for the nuclear industry are open-quotes being developed without consensus standards, as the technology available for design is ahead of the technology that is well understood through experience and supported by application standards.close quotes

  15. Design of and initial results from a Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC

    Directory of Open Access Journals (Sweden)

    D. R. Glowacki

    2007-10-01

    Full Text Available The design of a Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC is described and initial results obtained from HIRAC are presented. The ability of HIRAC to perform in-situ laser-induced fluorescence detection of OH and HO2 radicals with the Fluorescence Assay by Gas Expansion (FAGE technique establishes it as internationally unique for a chamber of its size and pressure/temperature variable capabilities. In addition to the FAGE technique, HIRAC features a suite of analytical instrumentation, including: a multipass FTIR system; a conventional gas chromatography (GC instrument and a GC instrument for formaldehyde detection; NO/NO2, CO, O3, and H2O vapour analysers. Ray tracing simulations and NO2 actinometry have been utilized to develop a detailed model of the radiation field within HIRAC. Comparisons between the analysers and the FTIR coupled to HIRAC have been performed, and HIRAC has also been used to investigate pressure dependent kinetics of the chlorine atom reaction with ethene and the reaction of O3 and t-2-butene. The results obtained are in good agreement with literature recommendations and Master Chemical Mechanism predictions. HIRAC thereby offers a highly instrumented platform with the potential for: (1 high precision kinetics investigations over a range of atmospheric conditions; (2 detailed mechanism development, significantly enhanced according to its capability for measuring radicals; and (3 field instrument intercomparison, calibration, development, and investigations of instrument response at a range of atmospheric conditions.

  16. LOFT instrumented fuel design and operating experience

    International Nuclear Information System (INIS)

    Russell, M.L.

    1979-01-01

    A summary description of the Loss-of-Fluid Test (LOFT) system instrumented core construction details and operating experience through reactor startup and loss-of-coolant experiment (LOCE) operations performed to date are discussed. The discussion includes details of the test instrumentation attachment to the fuel assembly, the structural response of the fuel modules to the forces generated by a double-ended break of a pressurized water reactor (PWR) coolant pipe at the inlet to the reactor vessel, the durability of the LOFT fuel and test instrumentation, and the plans for incorporation of improved fuel assembly test instrumentation features in the LOFT core

  17. Experimental neutronic science and instrumentation: from hybrid reactors to fourth generation reactors

    International Nuclear Information System (INIS)

    Jammes, Ch.

    2010-07-01

    After an overview of his academic career and scientific and research activities, the author proposes a rather detailed synthesis and overview of his scientific activities in the fields of cross sections and Doppler effect (development and validation of a code), on the MUSE-4 hybrid reactor (experiments, static and dynamic measurements), on the TRADE hybrid reactor (experimental means, sub-critical reactivity measurement), on the RACE hybrid reactor (experimental results, modelling and interpretation), and on neutron detection (design and modelling of fission chamber, on-line measurement of the fast flow). The next part gives an overview of some research programs (neutron monitoring in sodium-cool fast reactors, research and development on fission chambers, improvement of effective delayed neutron measurements)

  18. The multiphase instrumentation: a tool for the development of refining and petrochemical processes; L'instrumentation multiphasique: un outil pour le developpement des procedes de raffinage et petrochimie

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, C.; Bayle, J.; Harter, I.; Schweitzer, J.M. [Institut Francais du Petrole. Centre d' Etude et de Developpement Industriel de Solaize, 69 (France)

    2001-07-01

    In the framework of the development of processes involving several phases, a study of contactors hydrodynamics is performed on units of significant size, before extrapolating the pilot results to industrial reactors. In these multiphase processes, the phases most often in contact are: liquid/gas, liquid/gas/solid and gas/solid. The study of their hydrodynamics requires the development of specific multiphase measurement techniques. Taking into consideration the complexity of the flows involved and the size of reactors, a global input-output characterization of the hydrodynamics is not sufficient and it is necessary to have access to the local flow parameters (velocity, flux, fraction of each phase). Moreover, the environment of the measurement (hydrocarbon-type fluid, real catalyst support, pressure) imposes the development of specific instruments of measurement with additional constraints (safety, robustness..). These measurements aim at analyzing the structure of the flows involved, validating the new technologies (distributors, separators, exchangers) and finally supplying a database for the validation of multiphase hydrodynamic models. This article proposes a review of the instrumentation techniques developed in the framework of 3 classes of multiphase reactors: fluidized bed reactors (gas/solid flow), slurry bubble column reactors (liquid/gas/solid flow), and fixed bed reactors (gas/liquid flow through a granular bed). (J.S.)

  19. Development of Safety Analysis Technology for Integral Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, S. K. [Korea Atomic Energy Research Institute, Taejeon (Korea); Seul, K. W.; Kim, W. S.; Kim, W. K.; Yun, Y. G.; Ahn, H. J.; Lee, J. S.; Sin, A. D. [Korea Institute of Nuclear Safety, Taejeon (Korea)

    2000-03-01

    The Nuclear Desalination Plant(NDP) is being developed to produce electricity and fresh water, and is expected to locate near population zone. In the aspect of safety, it is required to protect the public and environment from the possible releases of fission products and to prevent the fresh water from the contamination of radioactivity. Thus, in a present study, the safety characteristics of the integral reactor adopting passive and inherent safety features significantly different from existing nuclear power plants were investigated based on the design of foreign and domestic integral reactors. Also, safety requirements applicable to the NDP were analyzed based on the regulatory requirements for current and advanced reactor designs, and use requirements for small-medium size reactors. Based on these analyses, some safety concerns to be considered in the design stage have been identified. They includes the use of proven technology for new safety systems, the systematic classification and selection of design basis accidents, and the safety assurance of desalination-related systems. These efforts to identify and resolve the safety concerns in the design stage will provide the early confidence of SMART safety to designers, and the technical basis to evaluate the safety to reviewers in the future. 8 refs., 20 figs., 4 tabs. (Author)

  20. Development of safety analysis technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Suk K.; Song, J. H.; Chung, Y. J. and others

    1999-03-01

    Inherent safety features and safety system characteristics of the SMART integral reactor are investigated in this study. Performance and safety of the SMART conceptual design have been evaluated and confirmed through the performance and safety analyses using safety analysis system codes as well as a preliminary performance and safety analysis methodology. SMART design base events and their acceptance criteria are identified to develop a preliminary PIRT for the SMART integral reactor. Using the preliminary PIRT, a set of experimental program for the thermal hydraulic separate effect tests and the integral effect tests was developed for the thermal hydraulic model development and the system code validation. Safety characteristics as well as the safety issues of the integral reactor has been identified during the study, which will be used to resolve the safety issues and guide the regulatory criteria for the integral reactor. The results of the performance and safety analyses performed during the study were used to feedback for the SMART conceptual design. The performance and safety analysis code systems as well as the preliminary safety analysis methodology developed in this study will be validated as the SMART design evolves. The performance and safety analysis technology developed during the study will be utilized for the SMART basic design development. (author)

  1. Developing an instrument for assessing students' concepts of the nature of technology

    Science.gov (United States)

    Liou, Pey-Yan

    2015-05-01

    Background:The nature of technology has been rarely discussed despite the fact that technology plays an essential role in modern society. It is important to discuss students' concepts of the nature of technology, and further to advance their technological literacy and adaptation to modern society. There is a need to assess high school students' concepts of the nature of technology. Purpose:This study aims to engage in discourse on students' concepts of the nature of technology based on a proposed theoretical framework. Moreover, another goal is to develop an instrument for measuring students' concepts of the nature of technology. Sample:Four hundred and fifty-five high school students' perceptions of technology were qualitatively analyzed. Furthermore, 530 students' responses to a newly developed questionnaire were quantitatively analyzed in the final test. Design and method:First, content analysis was utilized to discuss and categorize students' statements regarding technology and its related issues. The Student Concepts of the Nature of Technology Questionnaire was developed based on the proposed theoretical framework and was supported by the students' qualitative data. Finally, exploratory factor analysis and reliability analysis were applied to determine the structure of the items and the internal consistency of each scale. Results:Through a process of instrument development, the Student Concepts of the Nature of Technology Questionnaire was shown to be a valid and reliable tool for measuring students' concepts of the nature of technology. This newly developed questionnaire is composed of 29 items in six scales, namely 'technology as artifacts,' 'technology as an innovation change,' 'the current role of technology in society,' 'technology as a double-edged sword,' 'technology as a science-based form,' and 'history of technology.' Conclusions:The Student Concepts of the Nature of Technology Questionnaire has been confirmed as a reasonably valid and reliable

  2. R and D directions for the development of CANDU reactors

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    1998-01-01

    Full text: AECL is carrying out a comprehensive R and D programme to advance all aspects of CANDU reactor technology. These programs are focusing on three main strategic directions: improved economics, enhanced safety, and fuel cycle flexibility. R and D areas include fuel cycle development, heavy water technology, fuel channel development, safety technology, control and instrumentation, reactor chemistry, systems and components, and health and environment. In each case, the R and D programs have short, medium, and long-term goals to achieve the overall strategic directions. Most of the programs seek to further develop and exploit some of the unique characteristics of pressurized heavy water reactors. Examples of this include high neutron economy and on-power fueling which allow several different fuel cycles, the presence of large water heat sinks for enhanced safety, and modular components that can be easily replaced for plant life extension. This presentation reviews AECL's product development directions and the R and D programs that have been begun for their development

  3. Power supply for control and instrumentation in Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Raghavan, K.; Shanmugam, T.K.

    1977-01-01

    The design and operation of the four 'no-break' power supplies for control and instrumentation in the Fast Breeder Test Reactor (FBTR), Kalpakkam, are described. Interruptions in the power supplies are eliminated by redundancy and battery back-up source while voltage dips and transients are taken care by automatic regulation system. The four power supplies are : (1) 24 V D.C. exclusively for neutronic and safety circuits, (2) 48 V D.C. for control logic indication lamps and solenoid valves, (3) 220 V D.C. for switchgear control, control room emergency lighting and D.C. flushing oil pump for the turbine and (4) 220 V A.C. single-phase 50 H/Z for computers and electronics of control and instrumentation. Stationary lead-acid batteries (lead antimony type) in floating mode operation with rectifier/charger are used for emergency back-up. All these power supplies are fed by 415 V, 3-phase, 50 HZ emergency supply buses which are provided with diesel generator back-up. Static energy conversion system (in preference to mechanical rotation system) is used for A.C. to D.C. and also for A.C. to A.C. conversion. (M.G.B.)

  4. The status of fast reactor technology development in China

    International Nuclear Information System (INIS)

    Xu Mi

    2000-01-01

    Considering the future clean energy supply in China, a rather consistent opinion is to develop nuclear power step by step with the contribution from a supplementary one up to an important one. The large scale utilization of nuclear energy obviously determines the interest in fast breeders; China right now already has about 300 GWe total electricity capacity using conventional energy resources. As the first step for fast reactor technology development in the country, the China Experimental Fast Reactor (CEFR) project is still under detail design stage, which is a sodium cooled pool type fast reactor with 65 MW thermal power matched with a turbine-generator of 25 MW. The ordering of the components is continuing. The site is ready and the steel works for the 3 m x 69 m x 82.5 m foundation base of reactor building are being arranged layer by layer. The review to the PSAR by the China National Nuclear Safety Administration (CNNSA) is going to the final stage, if everything goes smoothly. The first pouring of the concrete for the reactor building will be in the middle of the year 2000. The brief introduction of the CEFR design, safety characteristics, the main results of the safety analysis and design test demonstration are given in the paper. (author)

  5. Technological aspects of intrinsically safe and economical reactor (ISER)

    International Nuclear Information System (INIS)

    Yamada, Nobuyuki; Oda, Junro; Yamanaka, Kazuo; Sugawara, Ichiro.

    1987-01-01

    ISER is a modified version of process inherent ultimate safe reactor (PIUS) developed by ASEA-ATOM, Sweden, and follows the same inherent safety principle, that is, passive reactor shutdown through the introduction of borated pool water into a core via an interface, and passive decay heat removal by natural circulation. The most significant deviation from the PIUS is that the ISER employs a steel reactor pressure vessel enclosed in the reactor pit, instead of a prestressed concrete reactor pressure vessel of the PIUS. The merits of using steel pressure vessels are siting versatility including barge-mounted plants, low cost, the standardization and serial production of total NSSSs through the weight reduction and compaction of primary system, as well as the possibility of utilizing current LWR technology, which minimizes R and D effort. In this paper, the design features of the latest version of ISERs are shown, and the specific problems of the key components are discussed. The primary system consists of a primary coolant loop and a borated water pool, which are connected with upper and lower interfaces. The nuclear design and thermohydraulic design, the operation and maintenance, and the design features of a steam generator, a pressurizer, interfaces and so on are described. (Kako, I.)

  6. Diagnosis of electric equipment at the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Truong Sinh

    1999-01-01

    The Dalat Nuclear Research Reactor (DNRR) is a pool type of its kind in the world: Soviet-designed core and control system harmoniously integrated into the left-over infrastructure of the former American-made TRIGA MARK II reactor, which includes the reactor tank and shielding, graphite reflector, beam tubes and thermal column. The reactor is mainly used for radioisotope and radiopharmaceutical production, elemental analysis using neutron activation techniques, neutron beam exploitation, silicon doping, and reactor physics experimentation. For safe operation of the reactor maintenance work has been carried out for the reactor control and instrumentation, reactor cooling, ventilation, radiomonitoring, mechanical, normal electric supply systems as well as emergency electric diesel generators and the water treatment station. Technical management of the reactor includes periodical maintenance as required by technical specifications, training, re-training and control of knowledge for reactor staff. During recent years, periodic preventive maintenance (PPM) has been carried out for the electric machines of the technological systems. (author)

  7. Guideline for Performing Systematic Approach to Evaluate and Qualify Legacy Documents that Support Advanced Reactor Technology Activity

    Energy Technology Data Exchange (ETDEWEB)

    Honma, George [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    The establishment of a systematic process for the evaluation of historic technology information for use in advanced reactor licensing is described. Efforts are underway to recover and preserve Experimental Breeder Reactor II and Fast Flux Test Facility historical data. These efforts have generally emphasized preserving information from data-acquisition systems and hard-copy reports and entering it into modern electronic formats suitable for data retrieval and examination. The guidance contained in this document has been developed to facilitate consistent and systematic evaluation processes relating to quality attributes of historic technical information (with focus on sodium-cooled fast reactor (SFR) technology) that will be used to eventually support licensing of advanced reactor designs. The historical information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The evaluation process is prescribed in terms of SFR technology, but the process can be used to evaluate historical information for any type of advanced reactor technology. An appendix provides a discussion of typical issues that should be considered when evaluating and qualifying historical information for advanced reactor technology fuel and source terms, based on current light water reactor (LWR) requirements and recent experience gained from Next Generation Nuclear Plant (NGNP).

  8. Guideline for Performing Systematic Approach to Evaluate and Qualify Legacy Documents that Support Advanced Reactor Technology Activity

    International Nuclear Information System (INIS)

    Honma, George

    2015-01-01

    The establishment of a systematic process for the evaluation of historic technology information for use in advanced reactor licensing is described. Efforts are underway to recover and preserve Experimental Breeder Reactor II and Fast Flux Test Facility historical data. These efforts have generally emphasized preserving information from data-acquisition systems and hard-copy reports and entering it into modern electronic formats suitable for data retrieval and examination. The guidance contained in this document has been developed to facilitate consistent and systematic evaluation processes relating to quality attributes of historic technical information (with focus on sodium-cooled fast reactor (SFR) technology) that will be used to eventually support licensing of advanced reactor designs. The historical information may include, but is not limited to, design documents for SFRs, research-and-development (R&D) data and associated documents, test plans and associated protocols, operations and test data, international research data, technical reports, and information associated with past U.S. Nuclear Regulatory Commission (NRC) reviews of SFR designs. The evaluation process is prescribed in terms of SFR technology, but the process can be used to evaluate historical information for any type of advanced reactor technology. An appendix provides a discussion of typical issues that should be considered when evaluating and qualifying historical information for advanced reactor technology fuel and source terms, based on current light water reactor (LWR) requirements and recent experience gained from Next Generation Nuclear Plant (NGNP).

  9. Ion sensors in reactor technology

    International Nuclear Information System (INIS)

    Strnad, M.; Kott, J.

    1977-01-01

    A new temperature measurement technique is shown based on the steep phase transformation of some substances accompanied with a marked change in their electric conductivity. A survey is given of the physicochemical properties of some ion crystals and the problems are discussed of interpreting the steep changes in the crystal electric conductivity for ion thermometers. Technological problems are also discussed of ion sensor production for reactor technology applications. The CdI 2 , KIO 3 , K 2 Cr 2 O 7 thermometric compounds were used sealed in the Supermax silicon-aluminium glass or in silica glass with platinum bushings. Changes are described in the hysteresis effects of ion thermometers with CdI 2 , KIO 3 and K 2 Cr 2 O 7 in dependence on neutron irradiation with doses of 1.5x10 18 n.cm -2 , 8.5x10 17 n.cm -2 and 4.5x10 22 n.cm -2 , respectively. The thermometric parameters were compared in the radiation experiments, of ion sensors, Chromel-Alumel thermocouples and platinum resistance thermometers. (B.S.)

  10. Evaluation of the current fast neutron flux monitoring instrumentation applied to LFR demonstrator ALFRED. Capabilities and limitations

    International Nuclear Information System (INIS)

    Lepore, Luigi; Remetti, Romolo; Cappelli, Mauro

    2015-01-01

    Among Gen IV projects for future nuclear power plants, Lead Fast Reactors (LFR) seem to be a very interesting solution due to their benefits in terms of fuel cycle, coolant-safety and waste management. The novelty of the matter causes some open issues about coolant chemical aspect, structural aspects, monitoring instrumentation, etc. Particularly hard neutron flux spectra would make traditional neutron instrumentation unfit to all reactor conditions, i.e. source, intermediate, and power range. Identification of new models of nuclear instrumentation specialized for LFR neutron flux monitoring asks for an accurate evaluation of the environment the sensor will work in. In this study, thermal-hydraulics and chemical conditions for LFR core environment will be assumed, as the neutron flux will be studied extensively by means of the Monte Carlo transport code MCNPX. The core coolant’s high temperature drastically reduces the candidate instrumentation, because only some kind of fission chambers and Self Powered Neutron Detectors can be operated in such an environment. This work aims to evaluate the capabilities of the available instrumentation (usually designed for Sodium Fast Reactors, SFRs) when exposed to the neutron spectrum derived from ALFRED, a pool-type small-power LFR project to demonstrate the feasibility of this technology into the European framework. This paper shows that such instruments do follow the power evolution, but they are not completely suitable to detect the whole range of reactor power. Some improvements are then possible in order to increase the signal-to-noise ratio, by optimizing each instrument in the range of reactor power, such to get the best solution. Some new detector designs are here proposed, and the possibilities for prototyping and testing by means of a fast reactor investigated. (author)

  11. Proceedings (slides) of the OECD/NEA Workshop on Innovations in Water-cooled Reactor Technologies

    International Nuclear Information System (INIS)

    Spiler, Joze; Kim, Sang-Baik; ); Feron, Fabien; Jaervinen, Marja-Leena; Husse, Julien; ); Ferraro, Giovanni; Bertels, Frank; Denk, Wolfgang; Tuomisto, Harri; Golay, Michael; Buongiorno, J.; Todreas, N.; Adams, E.; Briccetti, A.; Jurewicz, J.; Kindfuller, V.; Srinivasan, G.; Strother, M.; Minelli, P.; Fasil, E.; Zhang, J.; Genzman, G.; Epinois, Bertrand de l'; Kim, Shin Whan; Laaksonen, Jukka; Maltsev, Mikhail; Yu, CHongxing; Powell, David; Gorgemans, Julie; Hopwood, Jerry; Bylov, Igor; Bakhmetyev, Alexander M.; Lepekhin, Andrey N.; Fadeev, Yuriy P.; Bruna, Giovanni; Gulliford, Jim; ); Ham-Su, Rosaura; Thevenot, Caroline; GAUTIER, Guy-Marie; MARSAULT, Philippe; PIGNATEL, Jean-Francois; White, Andrew; )

    2015-02-01

    New technologies and solutions have been developed over more than thirty years to improve the safety, performance and economics of nuclear power plants. Particular efforts were made in designing systems to prevent or mitigate nuclear accidents and, greatly limit or even avoid any offsite release of radioactivity. Reactor designs developed in the 1980's and later are often referred to as Generation III (Gen III) reactors. They offer enhanced safety compared to earlier Generation II (Gen II) designs, as well as improved performance and economics. Examples of Gen III safety design features include solutions for corium localisation, advanced containment structures, improved emergency core-cooling systems, filtered venting systems, hydrogen risk management solutions, etc. Some of these solutions have also been back-fitted or partially adapted to existing reactors, based on recommendations from regulators or modernisation efforts by the utilities operating these reactors, to bring their level of safety to levels approaching those of the more modern designs. Other innovations found in the latest water-cooled reactor designs include the use of passive safety systems, and often associated with those, a simplification in the design of the reactor. Gen III reactors also feature better economics, for example increased design lifetime up to 60 years, ability to use 100% MOX fuel and operate with higher flexibility, higher thermal efficiencies and reduced staff requirements. Modularity is often quoted as a feature of some Gen III designs as a way of reducing the construction times and simplifying the decommissioning of the plant. The scope of the Workshop includes, inter alia: - Evolution of regulatory and design requirements for commercial water-cooled reactors; - Innovations in water-cooled reactor technologies that allowed significant improvement in the level of safety, with a discussion on advantages and challenges of active vs. passive safety systems; - Innovations under

  12. Refabricated and instrumented fuel rods

    International Nuclear Information System (INIS)

    Silberstein, K.

    2005-01-01

    Nuclear Fuel for power reactors capabilities evaluation is strongly based on the intimate knowledge of its behaviour under irradiation. This knowledge can be acquired from refabricated and instrumented fuel rods irradiated at different levels in commercial reactors. This paper presents the development and qualification of a new technique called RECTO related to a double-instrumented rod re-fabrication process developed by CEA/LECA hot laboratory facility at CADARACHE. The technique development includes manufacturing of the properly dimensioned cavity in the fuel pellet stack to house the thermocouple and the use of a newly designed pressure transducer. An analytic irradiation of such a double-instrumented fuel rod will be performed in OSIRIS test reactor starting October 2004. (Author)

  13. MHTGR [Modular High-Temperature Gas-Cooled Reactor] technology development plan

    International Nuclear Information System (INIS)

    Homan, F.J.; Neylan, A.J.

    1988-01-01

    This paper presents the approach used to define the technology program needed to support design and licensing of a Modular High-Temperature Gas-Cooled Reactor (MHTGR). The MHTGR design depends heavily on data and information developed during the past 25 years to support large HTGR (LHTGR) designs. The technology program focuses on MHTGR-specific operating and accident conditions, and on validation of models and assumptions developed using LHTGR data. The technology program is briefly outlined, and a schedule is presented for completion of technology work which is consistent with completion of a Final Safety Summary Analysis Report (FSSAR) by 1992

  14. Thai research reactor

    International Nuclear Information System (INIS)

    Aramrattana, M.

    1987-01-01

    The Office of Atomic Energy for Peace (OAEP) was established in 1962, as a reactor center, by the virtue of the Atomic Energy for Peace Act, under operational policy and authority of the Thai Atomic Energy for Peace Commission (TAEPC); and under administration of Ministry of Science, Technology and Energy. It owns and operates the only Thai Research Reactor (TRR-1/M1). The TRR-1/M1 is a mixed reactor system constituting of the old MTR type swimming pool, irradiation facilities and cooling system; and TRIGA Mark III core and control instrumentation. The general performance of TRR-1/M1 is summarized in Table I. The safe operation of TRR-1/M1 is regulated by Reactor Safety Committee (RSC), established under TAEPC, and Health Physics Group of OAEP. The RCS has responsibility and duty to review of and make recommendations on Reactor Standing Orders, Reactor Operation Procedures, Reactor Core Loading and Requests for Reactor Experiments. In addition,there also exist of Emergency Procedures which is administered by OAEP. The Reactor Operation Procedures constitute of reactor operating procedures, system operating procedures and reactor maintenance procedures. At the level of reactor routine operating procedures, there is a set of Specifications on Safety and Operation Limits and Code of Practice from which reactor shift supervisor and operators must follow in order to assure the safe operation of TRR-1/M1. Table II is the summary of such specifications. The OAEP is now upgrading certain major components of the TRR-1/M1 such as the cooling system, the ventilation system and monitoring equipment to ensure their adequately safe and reliable performance under normal and emergency conditions. Furthermore, the International Atomic Energy Agency has been providing assistance in areas of operation and maintenance and safety analysis. (author)

  15. OSIRIS Nuclear Reactors and Services Department

    International Nuclear Information System (INIS)

    2008-01-01

    OSIRIS is an experimental reactor with a thermal power of 70 megawatts. It is a light-water reactor, open-core pool type, the principal aim of which is to carry out tests and irradiate the fuel elements and structural materials of nuclear power stations under a high flux of neutrons, and to produce radioisotopes. Located within the French Atomic Energy Commission (CEA) centre at Saclay, it is close to many research teams and inspection laboratories and has a large-scale technological infrastructure. After a presentation of the characteristics of the reactor, the document presents its irradiation positions and experimental conditions (Geometry, Neutron flux, Gamma heating) and its experimental devices (CHOUCA, IRMA, PHAETON, GRIFFONOS, ISABELLE loops, MERCI, IRIS, Instrumentation of the devices, Qualification of the instrumentation). A forth part presents the facilities that are provided to guarantee the quality of the irradiations carried out in the reactor: ISIS reactor model, hot cells, non-destructive inspection means, chemical control of the water, tools for on-line data acquisition and follow-up of experiments, and the calculation and modelling group. A last part is devoted to the hot labs associated to OSIRIS: the LECI, a hot laboratory located on the Saclay site and mainly designed for the study of irradiated materials, and the LECA and STAR facilities, located on the CEA site in Cadarache in the south of France, and which supplement those of Saclay for fuel studies

  16. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  17. The status of fast reactor technology development in China

    International Nuclear Information System (INIS)

    Xu Mi

    1998-01-01

    The paper describes recent status and trends on Chinese national economy, electrical power capacity and nuclear power development. The preliminary design of the CEFR has been approved by the State Science and Technology Commission. Now it is in the detail design stage. It is planned that the first pot of concrete will be in April of 1999, in the end of 2000 the reactor building construction will be finished and the first criticality of the reactor will be envisaged in July 2003. The brief of preliminary design, analysis results of some beyond design basic accidents and design basic accidents, CEFR research works, and international cooperation are presented in the paper. (author)

  18. Defining the "proven technology" technical criterion in the reactor technology assessment for Malaysia's nuclear power program

    Science.gov (United States)

    Anuar, Nuraslinda; Kahar, Wan Shakirah Wan Abdul; Manan, Jamal Abdul Nasir Abd

    2015-04-01

    Developing countries that are considering the deployment of nuclear power plants (NPPs) in the near future need to perform reactor technology assessment (RTA) in order to select the most suitable reactor design. The International Atomic Energy Agency (IAEA) reported in the Common User Considerations (CUC) document that "proven technology" is one of the most important technical criteria for newcomer countries in performing the RTA. The qualitative description of five desired features for "proven technology" is relatively broad and only provides a general guideline to its characterization. This paper proposes a methodology to define the "proven technology" term according to a specific country's requirements using a three-stage evaluation process. The first evaluation stage screens the available technologies in the market against a predefined minimum Technology Readiness Level (TRL) derived as a condition based on national needs and policy objectives. The result is a list of technology options, which are then assessed in the second evaluation stage against quantitative definitions of CUC desired features for proven technology. The potential technology candidates produced from this evaluation is further narrowed down to obtain a list of proven technology candidates by assessing them against selected risk criteria and the established maximum allowable total score using a scoring matrix. The outcome of this methodology is the proven technology candidates selected using an accurate definition of "proven technology" that fulfills the policy objectives, national needs and risk, and country-specific CUC desired features of the country that performs this assessment. A simplified assessment for Malaysia is carried out to demonstrate and suggest the use of the proposed methodology. In this exercise, ABWR, AP1000, APR1400 and EPR designs assumed the top-ranks of proven technology candidates according to Malaysia's definition of "proven technology".

  19. On the implementation of new technology modules for fusion reactor systems codes

    International Nuclear Information System (INIS)

    Franza, F.; Boccaccini, L.V.; Fisher, U.; Gade, P.V.; Heller, R.

    2015-01-01

    Highlights: • At KIT a new technology modules for systems code are under development. • A new algorithm for the definition of the main reactor's components is defined. • A new blanket model based on 1D neutronics analysis is described. • A new TF coil stress model based on 3D electromagnetic analysis is described. • The models were successfully benchmarked against more detailed models. - Abstract: In the frame of the pre-conceptual design of the next generation fusion power plant (DEMO), systems codes are being used from nearly 20 years. In such computational tools the main reactor components (e.g. plasma, blanket, magnets, etc.) are integrated in a unique computational algorithm and simulated by means of rather simplified mathematical models (e.g. steady state and zero dimensional models). The systems code tries to identify the main design parameters (e.g. major radius, net electrical power, toroidal field) and to make the reactor's requirements and constraints to be simultaneously accomplished. In fusion applications, requirements and constraints can be either of physics or technology kind. Concerning the latest category, at Karlsruhe Institute of Technology a new modelling activity has been recently launched aiming to develop improved models focusing on the main technology areas, such as neutronics, thermal-hydraulics, electromagnetics, structural mechanics, fuel cycle and vacuum systems. These activities started by developing: (1) a geometry model for the definition of poloidal profiles for the main reactors components, (2) a blanket model based on neutronics analyses and (3) a toroidal field coil model based on electromagnetic analysis, firstly focusing on the stresses calculations. The objective of this paper is therefore to give a short outline of these models.

  20. RA Reactor

    International Nuclear Information System (INIS)

    1978-02-01

    In addition to basic characteristics of the RA reactor, organizational scheme and financial incentives, this document covers describes the state of the reactor components after 18 years of operation, problems concerned with obtaining the licence for operation with 80% fuel, problems of spent fuel storage in the storage pool of the reactor building and the need for renewal of reactor equipment, first of all instrumentation [sr

  1. Strengthening the R and D on fast reactor technology, and promoting its industrialization

    International Nuclear Information System (INIS)

    Wan Gang

    2008-01-01

    Based on the strategic thoughts of energy development in China expounded by Jiang Zemin in the article entitled 'Reflections on Energy Issues in China', the author points out in this paper that R and Ds on fast reactor technology shall be carried out timely in China by taking full advantage of international scientific resources, and overall planning in this regard shall be made as well. The point of view of strengthening fast reactor technology R and D and promoting its industrialization is also put forward in the paper. (authors)

  2. RMB: the new Brazilian Multipurpose Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Perrotta, Jose Augusto, E-mail: perrotta@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: The Brazilian research reactors have a limited capacity for radioisotopes production, leading to a high dependence on external supply for radioisotopes used in nuclear medicine. In order to overcome this condition and due to the old age of these research reactors, the Brazilian Nuclear Energy Commission decided, in 2008, to construct a new research reactor. The new reactor named RMB (Brazilian Multipurpose Reactor) will be part of a new nuclear research center, to be built on a site about 100 kilometers from São Paulo city, in the southern part of Brazil. The new nuclear research center will have a 30 MW open pool type research reactor using low enriched uranium fuel, and several associated laboratories in order to produce radioisotopes for medical and industrial use, to use neutron beams in scientific and technological research; to perform neutron activation analysis; and to perform materials and fuels irradiation tests. Regarding the neutron beams use, the RMB design provides thermal and cold neutron beams. From one side of the reactor, the neutron guides will extend to an experimental hall of instruments named Neutron Guide Hall where it will be installed the scattering instruments. In the initial stage of the reactor operation, the intent is to implement two neutron guides for thermal neutrons and another two for cold neutrons. The 2015 SBPMAT symposium has presented the technical overview of the RMB project and its main buildings, structures and components. At this year symposium, the RMB presentation updates some technical information and the development status of the project, discussing the negative results of the Brazilian political and economic crisis to the project development and its future perspectives. (author)

  3. Ulysse, mentor reactor

    International Nuclear Information System (INIS)

    Bouquin, B.; Rio, I.; Safieh, J.

    1997-01-01

    On July 23, 1961, the ULYSSE reactor began its first power rise. Designed at that time to train nuclear engineering students and reactor operators, this reactor still remains an indispensable tool for nuclear teaching and a choice instrument for scientists. (author)

  4. Acoustic Emission for on-line reactor pressure boundary monitoring

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.; Pappas, R.A.

    1985-01-01

    The program objective is to develop AE for continuous surveillance to assess flaw growth in reactor pressure boundaries. Technology in the laboratory is being evaluated on structures. Results have demonstrated basic feasibility of the program objective. AE monitoring a long term fatigue test of a pressure vessel demonstrated an instrument system, and the ability to detect unexpected as well as well as known fatigue cracks. Monitoring a nuclear reactor system shows that the coolant flow noise problem is manageable and AE can be detected under simulated operating conditions

  5. Development of safety analysis technology for integral reactor; evaluation on safety concerns of integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Chul; Kim, Woong Sik; Lee, J. H. [Korea Institute of Nuclear Safety, Taejeon (Korea)

    2002-03-01

    The Nuclear Desalination Plant (NDP) is being developed to produce electricity and fresh water, and is expected to locate near population zone. In the aspect of safety, it is required to protect the public and environment from the possible releases of fission products and to prevent the fresh water from the contamination of radioactivity. Thus, in this study, the safety characteristics of the integral reactor adopting passive and inherent safety features significantly different from existing nuclear power plants were investigated. Also, safety requirements applicable to the NDP were analyzed based on the regulatory requirements for current light water reactor and advanced reactor designs, and user requirements for small-medium size reactors. Based on these analyses, some safety concerns to be considered in the design stage have been identified and discussed. They include the use of proven technology for new safety features, systematic event classification and selection, strengthening containment function, and the safety impacts on desalination-related systems. The study presents the general safety requirements applicable to licensing of an integral reactor and suggests additional regulatory requirements, which need to be developed, based on the direction to resolution of the safety concerns. The efforts to identify and technically resolve the safety concerns in the design stage will provide the early confidence of SMART safety and the technical basis to evaluate the safety to designers and reviewers in the future. Suggestion on the development of additional regulatory requirements will contribute for the regulator to taking actions for licensing of an integral reactor. 66 refs., 5 figs., 24 tabs. (Author)

  6. Improved Nuclear Reactor and Shield Mass Model for Space Applications

    Science.gov (United States)

    Robb, Kevin

    2004-01-01

    New technologies are being developed to explore the distant reaches of the solar system. Beyond Mars, solar energy is inadequate to power advanced scientific instruments. One technology that can meet the energy requirements is the space nuclear reactor. The nuclear reactor is used as a heat source for which a heat-to-electricity conversion system is needed. Examples of such conversion systems are the Brayton, Rankine, and Stirling cycles. Since launch cost is proportional to the amount of mass to lift, mass is always a concern in designing spacecraft. Estimations of system masses are an important part in determining the feasibility of a design. I worked under Michael Barrett in the Thermal Energy Conversion Branch of the Power & Electric Propulsion Division. An in-house Closed Cycle Engine Program (CCEP) is used for the design and performance analysis of closed-Brayton-cycle energy conversion systems for space applications. This program also calculates the system mass including the heat source. CCEP uses the subroutine RSMASS, which has been updated to RSMASS-D, to estimate the mass of the reactor. RSMASS was developed in 1986 at Sandia National Laboratories to quickly estimate the mass of multi-megawatt nuclear reactors for space applications. In response to an emphasis for lower power reactors, RSMASS-D was developed in 1997 and is based off of the SP-100 liquid metal cooled reactor. The subroutine calculates the mass of reactor components such as the safety systems, instrumentation and control, radiation shield, structure, reflector, and core. The major improvements in RSMASS-D are that it uses higher fidelity calculations, is easier to use, and automatically optimizes the systems mass. RSMASS-D is accurate within 15% of actual data while RSMASS is only accurate within 50%. My goal this summer was to learn FORTRAN 77 programming language and update the CCEP program with the RSMASS-D model.

  7. Micro processor based research reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Hyde, W.K.

    1987-01-01

    The system consists of a Control System Computer (CSC) incorporated into a Reactor Control Console (RCC) and a Data Acquisition and Control Unit (DAC) adjacent to the reactor. The CSC has a high resolution color graphics CRT monitor which provides real-time graphic simulation of the reactor and a number of bar graphs displaying strategic parameters of the reactor system. In addition, abnormal or dangerous conditions are displayed. The CSC is equipped with two printers eliminating manual logging of reactor data. The reactor display and pulse mode display may also be printed. Historical data is saved in the system's large capacity memory and may be replayed and/or printed. Because of the CSC's inherent high speed math capability, raw reactor data will be quickly converted and displayed in real-time. Data can be presented in meaningful engineering units. The DAC provides a high speed data acquisition and control capability adjacent to the reactor. It continuously collects data from the reactor system, concentrates the data into a database and transmits it to the CSC when requested. Data transmission is over one of two data trunks to the CSC. The secondary trunk is used if the primary trunk fails. The data trunks drastically reduce the wiring requirements between the reactor and the Control Console. During steady-state operation of the reactor, operator commands to adjust the rod positions is transmitted from the CSC to the DAC which re-issues the commands to the drive mechanisms. In the automatic mode, the DAC will control the position of the rods via a PID algorithm. The system is independently monitored by two or more safety computers. Their function is to monitor the power level, the rate of change of power and fuel temperature of the reactor and to independently shut the reactor down in the event of a potentially dangerous (scram) condition. (author)

  8. Regulatory instrument review: Management of aging of LWR [light water reactor] major safety-related components

    International Nuclear Information System (INIS)

    Werry, E.V.

    1990-10-01

    This report comprises Volume 1 of a review of US nuclear plant regulatory instruments to determine the amount and kind of information they contain on managing the aging of safety-related components in US nuclear power plants. The review was conducted for the US Nuclear Regulatory Commission (NRC) by the Pacific Northwest Laboratory (PNL) under the NRC Nuclear Plant Aging Research (NPAR) Program. Eight selected regulatory instruments, e.g., NRC Regulatory Guides and the Code of Federal Regulations, were reviewed for safety-related information on five selected components: reactor pressure vessels, steam generators, primary piping, pressurizers, and emergency diesel generators. Volume 2 will be concluded in FY 1991 and will also cover selected major safety-related components, e.g., pumps, valves and cables. The focus of the review was on 26 NPAR-defined safety-related aging issues, including examination, inspection, and maintenance and repair; excessive/harsh testing; and irradiation embrittlement. The major conclusion of the review is that safety-related regulatory instruments do provide implicit guidance for aging management, but include little explicit guidance. The major recommendation is that the instruments be revised or augmented to explicitly address the management of aging

  9. Hydraulic stud-tensioning machines in reactor technology

    International Nuclear Information System (INIS)

    Lachner, H.

    1978-01-01

    Hydraulic multiple stud tensioner (MST) for the simultaneous prestressing of all the stud bolts is make it possible to achieve highly accurate prestress levels in the highly stressed bolts holding down the top head of reactor pressure vessels. These machines can remove and replace the nuts and studs, and can rotate these components upwards and downwards, during the operation of opening and closing the reactor pressure vessel. In order to reduce the radiation exposure of the service personnel, and also to reduce the time required for this work which may lie in the critical path of the refuelling time schedule, it is desirable to achieve complete mechanisation of these machines, including remote control and remote monitoring. The devices and components required for this purpose are without precedent in machine construction with respect to their functions and to the load range involved. The reported operating experience therefore also covers some points of general interest while the data on maintenance reflect the known status of the technology. (orig.) [de

  10. A study on future nuclear reactor technology and development strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. Y.; Kim, S. H.; Sohn, D. S.; Suk, S. D.; Zee, S. K.; Yang, M. H.; Kim, H. J.; Park, W. S

    2000-12-01

    Development of nuclear reactor and fuel cycle technology for future is essential to meet the current issues such as enhancement of nuclear power reactor safety, economically competitive with gas turbine power generation, less production of radioactive waste, proliferation resistant fuel cycle, and public acceptance in consideration of lack of energy resources in the nuclear countries worldwide as well as in Korea. This report deals with as follows, 1) Review the world energy demand and supply perspective and analyse nature of energy and sustainable development to set-up nuclear policy in Korea 2) Recaptitulate the current long term nuclear R and D activities 3) Review nuclear R and D activities and programs of USA, Japan, France, Russia, international organizations such as IAEA, OECD/NEA 4) Recommend development directions of nuclear reactors and fuels.

  11. A study on future nuclear reactor technology and development strategy

    International Nuclear Information System (INIS)

    Kim, S. Y.; Kim, S. H.; Sohn, D. S.; Suk, S. D.; Zee, S. K.; Yang, M. H.; Kim, H. J.; Park, W. S.

    2000-12-01

    Development of nuclear reactor and fuel cycle technology for future is essential to meet the current issues such as enhancement of nuclear power reactor safety, economically competitive with gas turbine power generation, less production of radioactive waste, proliferation resistant fuel cycle, and public acceptance in consideration of lack of energy resources in the nuclear countries worldwide as well as in Korea. This report deals with as follows, 1) Review the world energy demand and supply perspective and analyse nature of energy and sustainable development to set-up nuclear policy in Korea 2) Recaptitulate the current long term nuclear R and D activities 3) Review nuclear R and D activities and programs of USA, Japan, France, Russia, international organizations such as IAEA, OECD/NEA 4) Recommend development directions of nuclear reactors and fuels

  12. State-of-the-art report for the instrumentation and control technology based on the nuclear-information technology convergence

    International Nuclear Information System (INIS)

    Kwon, Kee Choon; Kim, Chang Hwoi; Lee, Dong Young; Lee, Cheol Kwon; Lee, Hyun Chul

    2011-12-01

    As digitalized the instrumentation and control systems in nuclear power plants, in the past that were implemented in an analog system or circuit for monitoring, control and protection, most of the them is implemented in embedded software based on hardware platform. Digital instrumentation and control system hardware platforms and a digital safety systems have developed in Korea. The fundamental technology of the software part of MMIS (Man-Machine Interface System) has achieved the localization. But in order to secure our global competitiveness, in the -based software, the source of the content areas / It is needed to develop core technologies of the software and contents areas based on the nuclear-IT convergence technology. In this report, the IT technology centered for the characteristics of embedded software applied to nuclear power is described. Also state-of-the-art IT technologies that will converge to nuclear power plants are mentioned

  13. Gas-cooled reactor coolant circulator and blower technology

    International Nuclear Information System (INIS)

    1988-08-01

    In the previous 17 meetings held within the framework of the International Working Group on Gas-Cooled Reactors, a wide variety of topics and components have been addressed, but the San Diego meeting represented the first time that a group of specialists had been convened to discuss circulator and blower related technology. A total of 20 specialists from 6 countries attended the meeting in which 15 technical papers were presented in 5 sessions: circulator operating experience I and II (6 papers); circulator design considerations I and II (6 papers); bearing technology (3 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  14. Development of a research nuclear reactor simulator using LABVIEW®

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Aldo Marcio Fonseca; Mesquita, Amir Zacarias; Pinto, Antonio Juscelino; Souza, Luiz Claudio Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. The most important variable in the nuclear reactors control is the power released by fission of the fuel in the core which is directly proportional to neutron flux. It was developed a digital system to simulate the neutron evolution flux and monitoring their interaction on the other operational parameters. The control objective is to bring the reactor power from its source level (mW) to a few W. It is intended for education of basic reactor neutronic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron and control by rods. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Center - CDTN (Belo Horizonte/Brazil) was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. They are cooled by light water under natural convection and are characterized by being inherently safety. The simulation system was developed using the LabVIEW® (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's). The main purpose of the system is to provide to analyze the behavior, and the tendency of some processes that occur in the reactor using a user-friendly operator interface. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility.(author)

  15. Development of a research nuclear reactor simulator using LABVIEW®

    International Nuclear Information System (INIS)

    Lage, Aldo Marcio Fonseca; Mesquita, Amir Zacarias; Pinto, Antonio Juscelino; Souza, Luiz Claudio Andrade

    2015-01-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. The most important variable in the nuclear reactors control is the power released by fission of the fuel in the core which is directly proportional to neutron flux. It was developed a digital system to simulate the neutron evolution flux and monitoring their interaction on the other operational parameters. The control objective is to bring the reactor power from its source level (mW) to a few W. It is intended for education of basic reactor neutronic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron and control by rods. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Center - CDTN (Belo Horizonte/Brazil) was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. They are cooled by light water under natural convection and are characterized by being inherently safety. The simulation system was developed using the LabVIEW® (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's). The main purpose of the system is to provide to analyze the behavior, and the tendency of some processes that occur in the reactor using a user-friendly operator interface. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility.(author)

  16. Some possibilities of utilisation of TRIGA reactors in the future

    International Nuclear Information System (INIS)

    Stegnar, Peter; Byrne, Anthony R.

    2008-01-01

    Full text. In this presentation, some possibilities for the future use of TRIGA reactors are discussed. The use and practical applications of neutron activation analysis, both in instrumental and radiochemical analysis, is presented based on the experience of the Institute's TRIGA Mark II Reactor in Ljubljana. The limited use of isotope production for medicine and industry is also discussed as well as some other potential applications, i.e. prompt gamma neutron activation analysis and an approach to BNCT (Boron Neutron Capture Therapy). The possibility of using TRIGA reactors for training in nuclear safety, radiological protection and other relevant fields of science and technology is also addressed in the presentation

  17. Liquid metal reactor development. Development of LMR coolant technology

    Energy Technology Data Exchange (ETDEWEB)

    Nam, H. Y.; Choi, S. K.; Hwang, J. s.; Lee, Y. B.; Choi, B. H.; Kim, J. M.; Kim, Y. G.; Kim, M. J.; Lee, S. D.; Kang, Y. H.; Maeng, Y. Y.; Kim, T. R.; Park, J. H.; Park, S. J.; Cha, J. H.; Kim, D. H.; Oh, S. K.; Park, C. G.; Hong, S. H.; Lee, K. H.; Chun, M. H.; Moon, H. T.; Chang, S. H.; Lee, D. N.

    1997-07-15

    Following studies have been performed during last three years as the 1.2 phase study of the mid and long term nuclear technology development plan. First, the small scale experiments using the sodium have been performed such as the basic turbulent mixing experiment which is related to the design of a compact reactor, the flow reversal characteristics experiment by natural circulation which is necessary for the analysis of local flow reversal when the electromagnetic pump is installed, the feasibility test of the decay heat removal by wall cooling and the operation of electromagnetic pump. Second, the technology of operation mechanism of sodium facility is developed and the technical analysis and fundamental experiments of sodium measuring technology has been performed such as differential pressure measuring experiment, local flow rate measuring experimenter, sodium void fraction measuring experiment, under sodium facility, the free surface movement experiment and the side orifice pressure drop experiment. A new bounded convection scheme was introduced to the ELBO3D thermo-hydraulic computer code designed for analysis of experimental result. A three dimensional computer code was developed for the analysis of free surface movement and the analysis model of transmission of sodium void fraction was developed. Fourth, the small scale key components are developed. The submersible-in-pool type electromagnetic pump which can be used as primary pump in the liquid metal reactor is developed. The SASS which uses the Curie-point electromagnet and the mock-up of Pantograph type IVTM were manufactured and their feasibility was evaluated. Fifth, the high temperature characteristics experiment of stainless steel which is used as a major material for liquid metal reactor and the material characteristics experiment of magnet coil were performed. (author). 126 refs., 98 tabs., 296 figs.

  18. The assessment of technological and safety aspects of small power reactor SMART

    International Nuclear Information System (INIS)

    Antariksawan, A.R.; Ekariansyah, Andi S.; Sony, D.T.; Suharno; Hastowo, Hudi

    2002-01-01

    This paper describes and discusses the technology and safety of small nuclear power plant SMART. The reactor SMART produces 300 MWth of power is cooled and moderated with light water and integral PWR type developed by KAERI. At present, the development activities had reached the end of basic design stage. The concept design of reactor SMART is based on safety enhancement, economic competitiveness and high performance. The fuel is uranium oxide with approximately 5% w/o enrichment. The safety characteristics of the core are shown with low power density around 62.6 W/cc, high negative reactivity coefficient, and high shutdown and thermal margin. Besides the inherent safety characteristics, SMART is equipped with engineered safety features and severe accident management system which are in compliance with the IAEA recommendations. The application of SMART for dual-purpose produces 90 Mwe and 40,000 to fresh water a day. Based on the technology and core characteristics of the reactor SMART, it is very interesting to be deeply assessed

  19. Fabrication and Testing of a Modular Micro-Pocket Fission Detector Instrumentation System for Test Nuclear Reactors

    Science.gov (United States)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.

    2018-01-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of

  20. Light Water Reactor Sustainability Program Reactor Safety Technologies Pathway Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L. [Univ. of Wisconsin, Madison, WI (United States); Peko, D. [US Dept. of Energy, Washington, DC (United States); Farmer, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Rempe, J. [Rempe and Associates LLC, Idaho Falls, ID (United States); Humrickhouse, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Robb, K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauntt, R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Osborn, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-01

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safety initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary