WorldWideScience

Sample records for instrumental solutions modes

  1. High degree modes and instrumental effects

    Energy Technology Data Exchange (ETDEWEB)

    Korzennik, S G [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Rabello-Soares, M C; Schou, J [Stanford University, Stanford, CA (United States)], E-mail: skorzennik@cfa.harvard.edu

    2008-10-15

    Full-disk observations taken with the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) spacecraft, or the upgraded Global Oscillations Network Group (GONG) instruments, have enough spatial resolution to resolve modes up to {iota} = 1000 if not {iota} = 1500. The inclusion of such high-degree modes (i.e., {iota} {<=} 1000) improves dramatically inferences near the surface. Unfortunately, observational and instrumental effects cause the characterization of high degree modes to be quite complicated. Indeed, the characteristics of the solar acoustic spectrum are such that, for a given order, mode lifetimes get shorter and spatial leaks get closer in frequency as the degree of a mode increases. A direct consequence of this property is that individual modes are resolved only at low and intermediate degrees. At high degrees the individual modes blend into ridges and the power distribution of the ridge defines the ridge central frequency, masking the underlying mode frequency. An accurate model of the amplitude of the peaks that contribute to the ridge power distribution is needed to recover the underlying mode frequency from fitting the ridge. We present a detailed discussion of the modeling of the ridge power distribution, and the contribution of the various observational and instrumental effects on the spatial leakage, in the context of the MDI instrument. We have constructed a physically motivated model (rather than an ad hoc correction scheme) that results in a methodology that can produce unbiased estimates of high-degree modes. This requires that the instrumental characteristics are well understood, a task that has turned out to pose a major challenge. We also present our latest results, where most of the known instrumental and observational effects that affect specifically high-degree modes were removed. These new results allow us to focus our attention on changes with solar activity. Finally, we present variations of mode

  2. Decay Mode Solutions for Kadomtsev-Petviashvili Equation

    International Nuclear Information System (INIS)

    Fan Guohao; Deng Shufang; Zhang Meng

    2012-01-01

    The decay mode solutions for the Kadomtsev-Petviashvili (KP) equation are derived by Hirota method (direct method). The decay mode solution is a new set of analytical solutions with Airy function. (general)

  3. Wide-range bipolar pulse conductance instrument employing current and voltage modes with sampled or integrated signal acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Calhoun, R K; Holler, F J [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry; Geiger, jr, R F; Nieman, T A [Illinois Univ., Urbana, IL (United States). Dept. of Chemistry; Caserta, K J [Procter and Gamble Co., Cincinnati, OH (United States)

    1991-11-05

    An instrument for measuring solution conductance using the bipolar pulse technique is described. The instrument is capable of measuring conductances in the range of 5x10{sup -9}-10{Omega}{sup -1} with 1% accuracy or better in as little as 32 {mu}s. Accuracy of 0.001-0.01% is achievable over the range 1x10{sup -6}-1{Omega}{sup -1}. Circuitry and software are described that allow the instrument to adjust automatically the pulse height, pulse duration, excitation mode (current or voltage pulse) and data acquisition mode (sampled or integrated) to acquire data of optimum accuracy and precision. The urease-catalyzed decomposition of urea is used to illustrate the versality of the instrument, and other applications are cited. (author). 60 refs.; 7 figs.; 2 tabs.

  4. Realization of OFCC based Transimpedance Mode Instrumentation Amplifier

    Directory of Open Access Journals (Sweden)

    Neeta Pandey

    2016-01-01

    Full Text Available The paper presents an instrumentation amplifier suitable for amplifying the current source transducer signals. It provides a voltage output. It has a high gain, common mode rejection ratio and gain independent bandwidth. It uses three Operational Floating Current Conveyors (OFCCs and four resistors. The effect of nonidealities of OFCC on performance of proposed transimpedance instrumentation amplifier (TIA is also analyzed. The proposal has been verified through SPICE simulations using CMOS based schematicThe paper presents an instrumentation amplifier suitable for amplifying the current source transducer signals. It provides a voltage output. It has a high gain, common mode rejection ratio and gain independent bandwidth. It uses three operational floating current conveyors (OFCCs and four resistors. The effect of nonidealities of OFCC on performance of proposed transimpedance instrumentation amplifier (TIA is also analyzed. The proposal has been verified through SPICE simulations using CMOS based schematic.

  5. Solution assay instrument operations manual

    International Nuclear Information System (INIS)

    Li, T.K.; Marks, T.; Parker, J.L.

    1983-09-01

    An at-line solution assay instrument (SAI) has been developed and installed in a plutonium purification and americium recovery process area in the Los Alamos Plutonium Processing Facility. The instrument was designed for accurate, timely, and simultaneous nondestructive analysis of plutonium and americium in process solutions that have a wide range of concentrations and americium/plutonium ratios and for routine operation by process technicians who lack instrumentation background. The SAI, based on transmission-corrected, high-resolution gamma-ray spectroscopy, has two measurement stations attached to a single multichannel analyzer/computer system. To ensure the quality of assay results, the SAI has an internal measurement control program, which requires daily and weekly check runs and monitors key aspects of all assay runs. For a 25-ml sample, the assay precision is 5 g/l within a 2000-s count time

  6. Innovative operating modes and techniques for the spaceborne imaging radar-C instrument

    Science.gov (United States)

    Huneycutt, Bryan L.

    1990-01-01

    The operation of the spaceborne imaging radar-C (SIR-C) is discussed. The SIR-C instrument has been designed to obtain simultaneous multifrequency and simultaneous multipolarization radar images from a low earth orbit. It is a multiparameter imaging radar which will be flown during at least two different seasons. The instrument has been designed to operate in innovative modes such as the squint alignment mode, the extended aperture mode, the scansar mode, and the interferometry mode. The instrument has been designed to demonstrate innovative engineering techniques such as beam nulling for echo tracking, pulse-repetition frquency hopping for Doppler centroid tracking, generating the frequency step chirp for radar parameter flexibility, block floating point quantizing for data rate compression, and elevation beamwidth broadening for increasing the swath illumination.

  7. OFCC based voltage and transadmittance mode instrumentation amplifier

    Science.gov (United States)

    Nand, Deva; Pandey, Neeta; Pandey, Rajeshwari; Tripathi, Prateek; Gola, Prashant

    2017-07-01

    The operational floating current conveyor (OFCC) is a versatile active block due to the availability of both low and high input and output impedance terminals. This paper addresses the realization of OFCC based voltage and transadmittance mode instrumentation amplifiers (VMIA and TAM IA). It employs three OFCCs and seven resistors. The transadmittance mode operation can easily be obtained by simply connecting an OFCC based voltage to current converter at the output. The effect of non-idealities of OFCC, in particular finite transimpedance and tracking error, on system performance is also dealt with and corresponding mathematical expressions are derived. The functional verification is performed through SPICE simulation using CMOS based implementation of OFCC.

  8. Effect of Instrumentation Techniques, Irrigant Solutions and Artificial accelerated Aging on Fiberglass Post Bond Strength to Intraradicular Dentin.

    Science.gov (United States)

    Santana, Fernanda Ribeiro; Soares, Carlos José; Silva, Júlio Almeida; Alencar, Ana Helena Gonçalves; Renovato, Sara Rodrigues; Lopes, Lawrence Gonzaga; Estrela, Carlos

    2015-07-01

    To evaluate the effect of instrumentation techniques, irrigant solutions and specimen aging on fiberglass posts bond strength to intraradicular dentine. A total of 120 bovine teeth were prepared and randomized into control and experimental groups resulting from three study factors (instrumentation techniques, irrigant solutions, specimen aging). Posts were cemented with RelyX U100. Samples were submitted to push-out test and failure mode was evaluated under a confocal microscope. In specimens submitted to water artificial aging, nickel-titanium rotary instruments group presented higher bond strength values in apical third irrigated with NaOCl or chlorhexi-dine. Irrigation with NaOCl resulted in higher bond strength than ozonated water. Artificial aging resulted in significant bond strength increase. Adhesive cement-dentin failure was prevalent in all the groups. Root canal preparation with NiTi instruments associated with NaOCl irrigation and ethylenediaminetetra acetic acid (EDTA) increased bond strength of fiberglass posts cemented with self-adhesive resin cement to intraradicular dentine. Water artificial aging significantly increased post-Clinical significance: The understanding of factors that may influence the optimal bond between post-cement and cement-dentin are essential to the success of endodontically treated tooth restoration.

  9. A general solution strategy of modified power method for higher mode solutions

    International Nuclear Information System (INIS)

    Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung

    2016-01-01

    A general solution strategy of the modified power iteration method for calculating higher eigenmodes has been developed and applied in continuous energy Monte Carlo simulation. The new approach adopts four features: 1) the eigen decomposition of transfer matrix, 2) weight cancellation for higher modes, 3) population control with higher mode weights, and 4) stabilization technique of statistical fluctuations using multi-cycle accumulations. The numerical tests of neutron transport eigenvalue problems successfully demonstrate that the new strategy can significantly accelerate the fission source convergence with stable convergence behavior while obtaining multiple higher eigenmodes at the same time. The advantages of the new strategy can be summarized as 1) the replacement of the cumbersome solution step of high order polynomial equations required by Booth's original method with the simple matrix eigen decomposition, 2) faster fission source convergence in inactive cycles, 3) more stable behaviors in both inactive and active cycles, and 4) smaller variances in active cycles. Advantages 3 and 4 can be attributed to the lower sensitivity of the new strategy to statistical fluctuations due to the multi-cycle accumulations. The application of the modified power method to continuous energy Monte Carlo simulation and the higher eigenmodes up to 4th order are reported for the first time in this paper. -- Graphical abstract: -- Highlights: •Modified power method is applied to continuous energy Monte Carlo simulation. •Transfer matrix is introduced to generalize the modified power method. •All mode based population control is applied to get the higher eigenmodes. •Statistic fluctuation can be greatly reduced using accumulated tally results. •Fission source convergence is accelerated with higher mode solutions.

  10. Process instrument monitoring for SNM solution surveillance

    International Nuclear Information System (INIS)

    Armatys, C.M.; Johnson, C.E.; Wagner, E.P.

    1983-02-01

    A process monitoring computer system at the Idaho Chemical Processing Plant (ICPP) is being used to evaluate nuclear fuel reprocessing plant data for Safeguards surveillance capabilities. The computer system was installed to collect data from the existing plant instruments and to evaluate what safeguards assurances can be provided to complement conventional accountability and physical protection measures. Movements of solutions containing special nuclear material (SNM) can be observed, activities associated with accountancy measurements (mixing, sampling, and bulk measurement) can be confirmed, and long-term storage of SNM solutions can be monitored to ensure containment. Special precautions must be taken, both in system design and operation to ensure adequate coverage of essential measured parameters and interpretation of process data, which can be comprised by instrument malfunctions or failures, unreliable data collection, or process activities that deviate from readily identified procedures. Experience at ICPP and prior evaluations at the Tokai reprocessing plant show that the use of process data can provide assurances that accountability measurement procedures are followed and SNM solutions are properly contained and can help confirm that SNM controls are in effect within a facility

  11. Nondestructive assay instrument for measurement of plutonium in solutions

    International Nuclear Information System (INIS)

    Shirk, D.G.; Hsue, F.; Li, T.K.; Canada, T.R.

    1979-01-01

    A nondestructive assay (NDA) instrument that measures the 239 Pu content in solutions, using a passive gamma-ray spectroscopy technique, has been developed and installed in the LASL Plutonium Processing Facility. A detailed evaluation of this instrument has been performed. The results show that the instrument can routinely determine 239 Pu concentrations of 1 to 500 g/l with accuracies of 1 to 5% and assay times of 1 to 2 x 10 3 s

  12. Technical Training seminar: Texas Instruments

    CERN Multimedia

    2006-01-01

    Monday 6 November TECHNICAL TRAINING SEMINAR 14:00 to 17:30 - Training Centre Auditorium (bldg. 593) Texas Instruments Technical Seminar Michael Scholtholt, Field Application Engineer / TEXAS INSTRUMENTS (US, D, CH) POWER - A short approach to Texas Instruments power products Voltage mode vs. current mode control Differentiating DC/DC converters by analyzing control and compensation schemes: line / load regulation, transient response, BOM, board space, ease-of-use Introduction to the SWIFT software FPGA + CPLD power solutions WIRELESS / CHIPCON Decision criteria when choosing a RF platform Introduction to Texas Instruments wireless products: standardized platforms proprietary platforms ( 2.4 GHz / sub 1 GHz) development tools Antenna design: example for 2.4 GHz questions, discussion Industrial partners: Robert Medioni, François Caloz / Spoerle Electronic, CH-1440 Montagny (VD), Switzerland Phone: +41 24 447 0137, email: RMedioni@spoerle.com, http://www.spoerle.com Language: English. Free s...

  13. On spurious resonant modes in the MOT solution of time domain EFIE

    KAUST Repository

    Shi, Yifei

    2013-07-01

    Theoretically, internal resonant modes should not be induced in the marching-on-in-time (MOT) solution of the time domain electric field integral equation since zero initial conditions are enforced at the beginning of time marching and the internal resonant modes do not satisfy these initial conditions. However, these spurious modes are always observed in the MOT solution. It has been conjectured in the past that numerical errors might establish the necessary initial conditions and allow the incident field to induce the internal resonant modes. Systematic numerical experiments carried out in this work prove this conjecture by demonstrating that the internal resonant modes\\' amplitudes are indeed dictated by the numerical errors and the spectrum of the incident field. © 2013 IEEE.

  14. Programmable Input Mode Instrumentation Amplifier Using Multiple Output Current Conveyors

    Directory of Open Access Journals (Sweden)

    Pankiewicz Bogdan

    2017-03-01

    Full Text Available In this paper a programmable input mode instrumentation amplifier (IA utilising second generation, multiple output current conveyors and transmission gates is presented. Its main advantage is the ability to choose a voltage or current mode of inputs by setting the voltage of two configuration nodes. The presented IA is prepared as an integrated circuit block to be used alone or as a sub-block in a microcontroller or in a field programmable gate array (FPGA, which shall condition analogue signals to be next converted by an analogue-to-digital converter (ADC. IA is designed in AMS 0.35 µm CMOS technology and the power supply is 3.3 V; the power consumption is approximately 9.1 mW. A linear input range in the voltage mode reaches ± 1.68 V or ± 250 µA in current mode. A passband of the IA is above 11 MHz. The amplifier works in class A, so its current supply is almost constant and does not cause noise disturbing nearby working precision analogue circuits.

  15. An Investigation of Digital Instrumentation and Control System Failure Modes

    International Nuclear Information System (INIS)

    Korsah, Kofi; Cetiner, Mustafa Sacit; Muhlheim, Michael David; Poore, Willis P. III

    2010-01-01

    A study sponsored by the Nuclear Regulatory Commission study was conducted to investigate digital instrumentation and control (DI and C) systems and module-level failure modes using a number of databases both in the nuclear and non-nuclear industries. The objectives of the study were to obtain relevant operational experience data to identify generic DI and C system failure modes and failure mechanisms, and to obtain generic insights, with the intent of using results to establish a unified framework for categorizing failure modes and mechanisms. Of the seven databases studied, the Equipment Performance Information Exchange database was found to contain the most useful data relevant to the study. Even so, the general lack of quality relative to the objectives of the study did not allow the development of a unified framework for failure modes and mechanisms of nuclear I and C systems. However, an attempt was made to characterize all the failure modes observed (i.e., without regard to the type of I and C equipment under consideration) into common categories. It was found that all the failure modes identified could be characterized as (a) detectable/preventable before failures, (b) age-related failures, (c) random failures, (d) random/sudden failures, or (e) intermittent failures. The percentage of failure modes characterized as (a) was significant, implying that a significant reduction in system failures could be achieved through improved online monitoring, exhaustive testing prior to installation, adequate configuration control or verification and validation, etc.

  16. Development of a green mode DC/DC converter available to portable nuclear instrument

    International Nuclear Information System (INIS)

    Gao Feiyan; Wu Longxiong; Tan Wei; Tang Yaogeng

    2010-01-01

    A green mode DC/DC converter was developed which suitable to the portable nuclear instrument which is powered by battery and is sometime at stand-by mode. Some updated control approaches such as pseudo-resonant type power supply control and synchronous rectification were adopted to makethe DC/DC converter operate with low power consumption and high efficiency. The test results the battery can be prolonged with this converter. (authors)

  17. On the DC loop modes in the MOT solution of the time domain EFIE

    KAUST Repository

    Shi, Yifei; Bagci, Hakan; Lu, Mingyu

    2014-01-01

    When marching-on-in-time (MOT) method is applied to solve the time domain electric field integral equation (TD-EFIE), DC loop modes are always observed in the solution. In theory these modes should not be observed since they do not satisfy the relaxed initial conditions. Their appearance is attributed to numerical errors. It is shown here that when Rao-Wilton-Glisson basis and Lagrange interpolation functions are used to discretize the TD-EFIE, errors due to this space-time discretization have zero impact on the DC loop modes. Numerical experiments demonstrate that the numerical errors due to approximate solution of the MOT matrix system have more dominant impact on DC loop modes in the MOT solution.

  18. On the DC loop modes in the MOT solution of the time domain EFIE

    KAUST Repository

    Shi, Yifei

    2014-07-01

    When marching-on-in-time (MOT) method is applied to solve the time domain electric field integral equation (TD-EFIE), DC loop modes are always observed in the solution. In theory these modes should not be observed since they do not satisfy the relaxed initial conditions. Their appearance is attributed to numerical errors. It is shown here that when Rao-Wilton-Glisson basis and Lagrange interpolation functions are used to discretize the TD-EFIE, errors due to this space-time discretization have zero impact on the DC loop modes. Numerical experiments demonstrate that the numerical errors due to approximate solution of the MOT matrix system have more dominant impact on DC loop modes in the MOT solution.

  19. Matrix method for two-dimensional waveguide mode solution

    Science.gov (United States)

    Sun, Baoguang; Cai, Congzhong; Venkatesh, Balajee Seshasayee

    2018-05-01

    In this paper, we show that the transfer matrix theory of multilayer optics can be used to solve the modes of any two-dimensional (2D) waveguide for their effective indices and field distributions. A 2D waveguide, even composed of numerous layers, is essentially a multilayer stack and the transmission through the stack can be analysed using the transfer matrix theory. The result is a transfer matrix with four complex value elements, namely A, B, C and D. The effective index of a guided mode satisfies two conditions: (1) evanescent waves exist simultaneously in the first (cladding) layer and last (substrate) layer, and (2) the complex element D vanishes. For a given mode, the field distribution in the waveguide is the result of a 'folded' plane wave. In each layer, there is only propagation and absorption; at each boundary, only reflection and refraction occur, which can be calculated according to the Fresnel equations. As examples, we show that this method can be used to solve modes supported by the multilayer step-index dielectric waveguide, slot waveguide, gradient-index waveguide and various plasmonic waveguides. The results indicate the transfer matrix method is effective for 2D waveguide mode solution in general.

  20. “MODAL NOISE” IN SINGLE-MODE FIBERS: A CAUTIONARY NOTE FOR HIGH PRECISION RADIAL VELOCITY INSTRUMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Samuel; Roy, Arpita; Mahadevan, Suvrath [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Schwab, Christian, E-mail: shalverson@psu.edu [Macquarie University, Sydney, NSW 2109 (Australia)

    2015-12-01

    Exploring the use of single-mode fibers (SMFs) in high precision Doppler spectrometers has become increasingly attractive since the advent of diffraction-limited adaptive optics systems on large-aperture telescopes. Spectrometers fed with these fibers can be made significantly smaller than typical “seeing-limited” instruments, greatly reducing cost and overall complexity. Importantly, classical mode interference and speckle issues associated with multi-mode fibers, also known as “modal noise,” are mitigated when using SMFs, which also provide perfect radial and azimuthal image scrambling. However, SMFs do support multiple polarization modes, an issue that is generally ignored for larger-core fibers given the large number of propagation modes. Since diffraction gratings used in most high resolution astronomical instruments have dispersive properties that are sensitive to incident polarization changes, any birefringence variations in the fiber can cause variations in the efficiency profile, degrading illumination stability. Here we present a cautionary note outlining how the polarization properties of SMFs can affect the radial velocity (RV) measurement precision of high resolution spectrographs. This work is immediately relevant to the rapidly expanding field of diffraction-limited, extreme precision RV spectrographs that are currently being designed and built by a number of groups.

  1. Development of a plutonium solution-assay instrument with isotopic capability

    International Nuclear Information System (INIS)

    Hsue, S.T.; Marks, T.

    1992-01-01

    A new generation of solution-assay instrument has been developed to satisfy all the assay requirements of an aqueous plutonium-recovery operation. The assay is based on a transmission-corrected passive assay technique. We have demonstrated that the system can cover a concentration range of 0.5--300 g/ell with simultaneous isotopic determination. The system can be used to assay input and eluate streams of the recovery operation. The system can be modified to measure low-concentration effluent solutions from the recovery operation covering 0.01--40 g/ell. The same system has also been modified to assay plutonium solutions enriched in 242 Pu. 6 refs

  2. The two modes extension to the Berk-Breizman equation: Delayed differential equations and asymptotic solutions

    International Nuclear Information System (INIS)

    Marczynski, Slawomir

    2011-01-01

    The integro-differential Berk-Breizman (BB) equation, describing the evolution of particle-driven wave mode is transformed into a simple delayed differential equation form ν∂a(τ)/∂τ=a(τ) -a 2 (τ- 1) a(τ- 2). This transformation is also applied to the two modes extension of the BB theory. The obtained solutions are presented together with the derived asymptotic analytical solutions and the numerical results.

  3. On the static loop modes in the marching-on-in-time solution of the time-domain electric field integral equation

    KAUST Repository

    Shi, Yifei; Bagci, Hakan; Lu, Mingyu

    2014-01-01

    When marching-on-in-time (MOT) method is applied to solve the time-domain electric field integral equation, spurious internal resonant and static loop modes are always observed in the solution. The internal resonant modes have recently been studied by the authors; this letter investigates the static loop modes. Like internal resonant modes, static loop modes, in theory, should not be observed in the MOT solution since they do not satisfy the zero initial conditions; their appearance is attributed to numerical errors. It is discussed in this letter that the dependence of spurious static loop modes on numerical errors is substantially different from that of spurious internal resonant modes. More specifically, when Rao-Wilton-Glisson functions and Lagrange interpolation functions are used as spatial and temporal basis functions, respectively, errors due to space-time discretization have no discernible impact on spurious static loop modes. Numerical experiments indeed support this discussion and demonstrate that the numerical errors due to the approximate solution of the MOT matrix system have dominant impact on spurious static loop modes in the MOT solution. © 2014 IEEE.

  4. Non-dissipative kinetic simulation and analytical solution of three-mode equations of ion temperature gradient instability

    International Nuclear Information System (INIS)

    Watanabe, T.-H.; Sugama, H.; Sato, T.

    1999-12-01

    A non-dissipative drift kinetic simulation scheme, which rigorously satisfies the time-reversibility, is applied to the three-mode coupling problem of the ion temperature gradient (ITG) instability. It is found from the simulation that the three-mode ITG system repeats growth and decay with a period which shows a logarithmic divergence for infinitesimal initial perturbations. Accordingly, time average of the mode amplitude vanishes, as the initial amplitude approaches to zero. An exact solution is analytically given for a class of initial conditions. An excellent agreement is confirmed between the analytical solution and numerical results. The results obtained here provide a useful reference for basic benchmarking of theories and simulation of the ITG modes. (author)

  5. Whispering Gallery Mode Based Optical Fiber Sensor for Measuring Concentration of Salt Solution

    Directory of Open Access Journals (Sweden)

    Chia-Chin Chiang

    2013-01-01

    Full Text Available An optical fiber solution-concentration sensor based on whispering gallery mode (WGM is proposed in this paper. The WGM solution-concentration sensors were used to measure salt solutions, in which the concentrations ranged from 1% to 25% and the wavelength drifted from the left to the right. The experimental results showed an average sensitivity of approximately 0.372 nm/% and an R2 linearity of 0.8835. The proposed WGM sensors are of low cost, feasible for mass production, and durable for solution-concentration sensing.

  6. On spurious resonant modes in the MOT solution of time domain EFIE

    KAUST Repository

    Shi, Yifei; Bagci, Hakan; Lu, Mingyu

    2013-01-01

    Theoretically, internal resonant modes should not be induced in the marching-on-in-time (MOT) solution of the time domain electric field integral equation since zero initial conditions are enforced at the beginning of time marching and the internal

  7. Dual-mode ultraflow access networks: a hybrid solution for the access bottleneck

    Science.gov (United States)

    Kazovsky, Leonid G.; Shen, Thomas Shunrong; Dhaini, Ahmad R.; Yin, Shuang; De Leenheer, Marc; Detwiler, Benjamin A.

    2013-12-01

    Optical Flow Switching (OFS) is a promising solution for large Internet data transfers. In this paper, we introduce UltraFlow Access, a novel optical access network architecture that offers dual-mode service to its end-users: IP and OFS. With UltraFlow Access, we design and implement a new dual-mode control plane and a new dual-mode network stack to ensure efficient connection setup and reliable and optimal data transmission. We study the impact of the UltraFlow system's design on the network throughput. Our experimental results show that with an optimized system design, near optimal (around 10 Gb/s) OFS data throughput can be attained when the line rate is 10Gb/s.

  8. VLT instruments: industrial solutions for non-scientific detector systems

    Science.gov (United States)

    Duhoux, P.; Knudstrup, J.; Lilley, P.; Di Marcantonio, P.; Cirami, R.; Mannetta, M.

    2014-07-01

    Recent improvements in industrial vision technology and products together with the increasing need for high performance, cost efficient technical detectors for astronomical instrumentation have led ESO with the contribution of INAF to evaluate this trend and elaborate ad-hoc solutions which are interoperable and compatible with the evolution of VLT standards. The ESPRESSO spectrograph shall be the first instrument deploying this technology. ESO's Technical CCD (hereafter TCCD) requirements are extensive and demanding. A lightweight, low maintenance, rugged and high performance TCCD camera product or family of products is required which can operate in the extreme environmental conditions present at ESO's observatories with minimum maintenance and minimal downtime. In addition the camera solution needs to be interchangeable between different technical roles e.g. slit viewing, pupil and field stabilization, with excellent performance characteristics under a wide range of observing conditions together with ease of use for the end user. Interoperability is enhanced by conformance to recognized electrical, mechanical and software standards. Technical requirements and evaluation criteria for the TCCD solution are discussed in more detail. A software architecture has been adopted which facilitates easy integration with TCCD's from different vendors. The communication with the devices is implemented by means of dedicated adapters allowing usage of the same core framework (business logic). The preference has been given to cameras with an Ethernet interface, using standard TCP/IP based communication. While the preferred protocol is the industrial standard GigE Vision, not all vendors supply cameras with this interface, hence proprietary socket-based protocols are also acceptable with the provision of a validated Linux compliant API. A fundamental requirement of the TCCD software is that it shall allow for a seamless integration with the existing VLT software framework

  9. Development of Temperature Control Solutions for Non-Instrumented Nucleic Acid Amplification Tests (NINAAT

    Directory of Open Access Journals (Sweden)

    Tamás Pardy

    2017-06-01

    Full Text Available Non-instrumented nucleic acid amplification tests (NINAAT are a novel paradigm in portable molecular diagnostics. They offer the high detection accuracy characteristic of nucleic acid amplification tests (NAAT in a self-contained device, without the need for any external instrumentation. These Point-of-Care tests typically employ a Lab-on-a-Chip for liquid handling functionality, and perform isothermal nucleic acid amplification protocols that require low power but high accuracy temperature control in a single well-defined temperature range. We propose temperature control solutions based on commercially available heating elements capable of meeting these challenges, as well as demonstrate the process by which such elements can be fitted to a NINAAT system. Self-regulated and thermostat-controlled resistive heating elements were evaluated through experimental characterization as well as thermal analysis using the finite element method (FEM. We demonstrate that the proposed solutions can support various NAAT protocols, as well as demonstrate an optimal solution for the loop-mediated isothermal amplification (LAMP protocol. Furthermore, we present an Arduino-compatible open-source thermostat developed for NINAAT applications.

  10. Interaction mode and nanoparticle formation of bovine serum albumin and anthocyanin in three buffer solutions

    International Nuclear Information System (INIS)

    Zhou, Rui; Dong, Xueyan; Song, Lanlan; Jing, Hao

    2014-01-01

    Investigation of interaction mode of bovine serum albumin (BSA) and anthocyanin (ACN) in different solutions will help us understand the interaction mechanism and functional change of bioactive small molecule and biomacromolecule. This study investigated the binding mode, including binding constant, number of binding sites, binding force of BSA and ACN interaction in three buffer solutions of phosphate (PBS), sodium chloride (NaCl), and PBS-NaCl, using fluorescence spectroscopy and synchronous fluorescence spectroscopy. Formation and characteristics of BSA–ACN complex were also investigated using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The results showed that ACN could interact with BSA at both tyrosine (Tyr) and tryptophan (Trp) residues through both hydrogen bonds and van der Waals force, and the same binding mode was seen in dH 2 O and three buffer solutions. The value of binding constant K was decreased as the temperature increased from 298 K to 308 K, and the decreasing degree was in the order of dH 2 O (9.0×10 4 )>NaCl (2.64×10 4 )/PBS (2.37×10 4 )>PBS-NaCl (0.88×10 4 ), which was inversely correlated with the ionic strength of the buffer solutions of PBS-NaCl>NaCl>PBS. It indicated that stability of BSA–ACN complex was affected most in dH 2 O than in three buffer solutions. The BSA and ACN interaction led to formation of BSA–ACN nanoparticles. The sizes of BSA–ACN nanoparticles in dH 2 O were smaller than that in three buffer solutions, which correlated with stronger binding force between BSA and ACN in dH 2 O than in three buffer solutions at room temperature (25 °C, 298 K). - Highlights: • We report the influences of four solutions on the BSA–ACN interaction. • We report the relationship between BSA–ACN interaction and particle size of complex. • The stability of BSA–ACN complex was affected most in dH 2 O than in buffer solutions

  11. Two Novel Methods and Multi-Mode Periodic Solutions for the Fermi-Pasta-Ulam Model

    Science.gov (United States)

    Arioli, Gianni; Koch, Hans; Terracini, Susanna

    2005-04-01

    We introduce two novel methods for studying periodic solutions of the FPU β-model, both numerically and rigorously. One is a variational approach, based on the dual formulation of the problem, and the other involves computer-assisted proofs. These methods are used e.g. to construct a new type of solutions, whose energy is spread among several modes, associated with closely spaced resonances.

  12. Texas Instruments Technical Seminar: Power Management and Wireless

    CERN Multimedia

    2006-01-01

    Monday 6 November TECHNICAL TRAINING SEMINAR 14:00 to 17:30 - Training Centre Auditorium (bldg. 593) Texas Instruments Technical Seminar: Power Management and Wireless Michael Scholtholt, Field Application Engineer / TEXAS INSTRUMENTS (US, D, CH) The range of power management products available today offers the possibility to find the best solution for each application. To select the right product it is therefore necessary to understand system requirements, how power supply products work, and where they differentiate. This Technical Training Seminar will also present an overview of how to choose the right RF platform based on markets and applications: nowadays almost everbody has at least one wireless product in use, and this tendency seems to increase significantly. Power Management Voltage mode vs. current mode control Differentiating DC/DC converters by analyzing control and compensation schemes: line / load regulation, transient response, BOM, board space, ease-of-use Introduction to evaluati...

  13. Texas Instruments Technical Seminar: Power Management and Wireless

    CERN Multimedia

    2006-01-01

    Monday 6 November TECHNICAL TRAINING SEMINAR 14:00 to 17:30 - Training Centre Auditorium (bldg. 593) Texas Instruments Technical Seminar: Power Management and Wireless Michael Scholtholt, Field Application Engineer / TEXAS INSTRUMENTS (US, D, CH) The range of power management products available today offers the possibility to find the best solution for each application. To select the right product it is therefore necessary to understand system requirements, how power supply products work, and where they differentiate. This Technical Training Seminar will also present an overview of how to choose the right RF platform based on markets and applications: nowadays almost everbody has at least one wireless product in use, and this tendency seems to increase significantly. Power Management Voltage mode vs. current mode control Differentiating DC/DC converters by analyzing control and compensation schemes: line / load regulation, transient response, BOM, board space, ease-of-use Introduction to evalu...

  14. Maintenance of nuclear instruments

    International Nuclear Information System (INIS)

    Oliveira Rebelo, A.M. de; Santos, C.J.F. dos; Jesus, E.F.O. de; Silva, L.E.M.C.; Borges, J.C.

    1988-01-01

    A program to design and repairing of nuclear instruments for teaching and research was founded in the UFRJ to find solutions for technical support problem - The GEMD-RADIACOES. This group has assisted to several groups of the University in recuperation and conservation of devices like: Linear scanner, Cromatograph and system of radiation detection in general. Recuperation of these devices had required a study of theirs operations modes, to make it possible the setting up of a similar system. Recuperation also involves operation tests, calibration and technical for users, orienting them to get the best performance. (Author) [pt

  15. Low-sensitivity, low-bounce, high-linearity current-controlled oscillator suitable for single-supply mixed-mode instrumentation system.

    Science.gov (United States)

    Hwang, Yuh-Shyan; Kung, Che-Min; Lin, Ho-Cheng; Chen, Jiann-Jong

    2009-02-01

    A low-sensitivity, low-bounce, high-linearity current-controlled oscillator (CCO) suitable for a single-supply mixed-mode instrumentation system is designed and proposed in this paper. The designed CCO can be operated at low voltage (2 V). The power bounce and ground bounce generated by this CCO is less than 7 mVpp when the power-line parasitic inductance is increased to 100 nH to demonstrate the effect of power bounce and ground bounce. The power supply noise caused by the proposed CCO is less than 0.35% in reference to the 2 V supply voltage. The average conversion ratio KCCO is equal to 123.5 GHz/A. The linearity of conversion ratio is high and its tolerance is within +/-1.2%. The sensitivity of the proposed CCO is nearly independent of the power supply voltage, which is less than a conventional current-starved oscillator. The performance of the proposed CCO has been compared with the current-starved oscillator. It is shown that the proposed CCO is suitable for single-supply mixed-mode instrumentation systems.

  16. Structural failure modes in vertical tanks: reinforcement evaluation and solutions

    International Nuclear Information System (INIS)

    Alcantud Abellan, M.; Orden Martinez, A.

    1995-01-01

    Vertical storage tanks are essential components in the safety of nuclear plant systems. It has been shown that the traditional method of analysing seismic loads is not conservative, as it does not take account of the interaction between fluid and tank structure. This paper identifies different possible structural failure modes in tanks due to seismic load, and methods devised by various authors to evaluate tank structure capacity under different failure modes. These methods are based on experimental data relating to the structural behaviour of tanks during actual seismic events, tests, and theoretical analyses. The paper describes the problems of these structures under seismic loads in nuclear plants. It proposes solutions to the main structural problem, tank anchorage, for which the re-evaluation of the anchorage capacity is required, using methods (finite element) less conservative than those proposed by other authors. Also proposed is the local reinforcement of anchorages to increase their capacity. (Author) 4 refs

  17. Measurements of urea and glucose in aqueous solutions with dual-beam near-infrared Fourier-transform spectroscopy

    DEFF Research Database (Denmark)

    Jensen, P.S.; Bak, J.

    2002-01-01

    of these two modes of operation. The concentrations of aqueous solutions of urea and glucose in the ranges 0-40 mg/dL and 0-250 mg/dL, respectively, were determined by principal component regression using both modes. The dual-beam technique eliminated instrumental variations present in the single...

  18. Novel seismic instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    Bolleter, W.; Savary, C.

    1998-01-01

    Conforming to the latest issues of the Nuclear Regulatory Commission Regulatory Guide, a novel hardware and software solution for seismic instrumentation is presented. Both instrumentation and PC-based data evaluation software for post-earthquake actions are type-tested and approved by the German TUeV. Reference installations replacing obsolete analog instrumentation were successfully completed and are presented. The instrumentation consists of highly linear, solid-state capacitive accelerometers as well as digital recorders storing the signals from the sensors in situ. These recorders are linked in a star-topology network to a central unit that permanently communicates with them via fiber-optic cable or current-loop links. The central unit is responsible for alerting and synchronizes all recorders which otherwise act autonomously. Data evaluation is handled by a PC-based software package. It includes automatic data evaluation after earthquakes (batch mode), interactive data evaluation software for detailed data analysis, and software tools for remote operation, maintenance and data storage. (author)

  19. Numerical tools for musical instruments acoustics: analysing nonlinear physical models using continuation of periodic solutions

    OpenAIRE

    Karkar , Sami; Vergez , Christophe; Cochelin , Bruno

    2012-01-01

    International audience; We propose a new approach based on numerical continuation and bifurcation analysis for the study of physical models of instruments that produce self- sustained oscillation. Numerical continuation consists in following how a given solution of a set of equations is modified when one (or several) parameter of these equations are allowed to vary. Several physical models (clarinet, saxophone, and violin) are formulated as nonlinear dynamical systems, whose periodic solution...

  20. Exploring the structure of biological macromolecules in solution using Quokka, the small angle neutron scattering instrument, at ANSTO

    International Nuclear Information System (INIS)

    Wood, Kathleen; Jeffries, Cy M.; Knott, Robert B.; Sokolova, Anna; Jacques, David A.; Duff, Anthony P.

    2015-01-01

    Small angle neutron scattering (SANS) is widely used to extract structural parameters, shape and other types of information from a vast array of materials. The technique is applied to biological macromolecules and their complexes in solution to reveal information often not accessible by other techniques. SANS measurements on biomolecules present some particular challenges however, one of which is suitable instrumentation. This review details SANS experiments performed on two well-characterised globular proteins (lysozyme and glucose isomerase) using Quokka, the recently commissioned SANS instrument at the Australian Nuclear Science and Technology Organisation (ANSTO). The instrument configuration as well as data collection and reduction strategies for biological investigations are discussed and act as a general reference for structural biologists who use the instrument. Both model independent analysis of the two proteins and ab initio modelling illustrate that Quokka-SANS data can be used to successfully model the overall shapes of proteins in solution, providing a benchmark for users

  1. Rotary mode system initial instrument calibration

    International Nuclear Information System (INIS)

    Johns, B.R.

    1994-01-01

    The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files

  2. Automated assay of uranium solution concentration and enrichment

    International Nuclear Information System (INIS)

    Horley, E.C.; Gainer, K.; Hansen, W.J.; Kelley, T.A.; Parker, J.L.; Sampson, T.E.; Walton, G.; Jones, S.A.

    1992-01-01

    For the first time, the concentration and enrichment of uranium solutions can be measured in one step. We have developed a new instrument to automatically measure the concentration and enrichment of uranium solutions through the adaptation of a commercial robot. Two identical solution enrichment systems are being installed in the Portsmouth Gaseous Diffusion Plant. These automated systems will reduce radiation exposure to personnel and increase the reliability and repeatability of the measurements. Each robotic system can process up to 40 batch and 8 priority samples in an unattended mode. Both passive gamma-ray and x-ray fluorescence (XRF) analyses are performed to determine total uranium concentration and 235 U enrichment. Coded samples are read by a bar-code reader to determine measurement requirements, then assayed by either or both of the gamma-ray and XRF instruments. The robot moves the sample containers and operates all shield doors and shutters, reducing hardware complexity. If the robots is out of service, an operator can manually perform all operations

  3. Harmonic Mode-Locked Fiber Laser based on Photonic Crystal Fiber Filled with Topological Insulator Solution

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2015-04-01

    Full Text Available We reported that the photonic crystal fiber (PCF filled with TI:Bi2Te3 nanosheets solution could act as an effective saturable absorber (SA. Employing this TI-PCF SA device; we constructed an ytterbium-doped all-fiber laser oscillator and achieved the evanescent wave mode-locking operation. Due to the large cavity dispersion; the fundamental mode-locking pulse had the large full width at half maximum (FWHM of 2.33 ns with the repetition rate of ~1.11 MHz; and the radio frequency (RF spectrum with signal-to-noise ratio (SNR of 61 dB. In addition; the transition dynamics from a bunched state of pulses to harmonic mode-locking (HML was also observed; which was up to 26th order.

  4. Mode-mismatched confocal thermal-lens microscope with collimated probe beam

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, Humberto, E-mail: hcabrera@ictp.it [SPIE-ICTP Anchor Research Laboratory, International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste (Italy); Centro Multidisciplinartio de Ciencias, Instituto Venezolano de Investigaciones Científicas (IVIC), Mérida 5101 (Venezuela, Bolivarian Republic of); Korte, Dorota; Franko, Mladen [Laboratory for Environmental Research, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica (Slovenia)

    2015-05-15

    We report a thermal lens microscope (TLM) based on an optimized mode-mismatched configuration. It takes advantage of the coaxial counter propagating tightly focused excitation and collimated probe beams, instead of both focused at the sample, as it is in currently known TLM setups. A simple mathematical model that takes into account the main features of the instrument is presented. The confocal detection scheme and the introduction of highly collimated probe beam allow enhancing the versatility, limit of detection (LOD), and sensitivity of the instrument. The theory is experimentally verified measuring ethanol’s absorption coefficient at 532.8 nm. Additionally, the presented technique is applied for detection of ultra-trace amounts of Cr(III) in liquid solution. The achieved LOD is 1.3 ppb, which represents 20-fold enhancement compared to transmission mode spectrometric techniques and a 7.5-fold improvement compared to previously reported methods for Cr(III) based on thermal lens effect.

  5. Reducing surface tension in endodontic chelator solutions has no effect on their ability to remove calcium from instrumented root canals.

    Science.gov (United States)

    Zehnder, Matthias; Schicht, Olivier; Sener, Beatrice; Schmidlin, Patrick

    2005-08-01

    The aim of this study was to evaluate the effect of reducing surface tension in endodontic chelator solutions on their ability to remove calcium from instrumented root canals. Aqueous solutions containing 15.5% EDTA, 10% citric acid, or 18% 1- hydroxyethylidene-1, 1-bisphosphonate (HEBP) were prepared with and without 1% (wt/wt) polysorbate (Tween) 80 and 9% propylene glycol. Surface tension in these solutions was measured using the Wilhelmy method. Sixty-four extracted, single-rooted human teeth of similar length were instrumented and irrigated with a 1% sodium hypochlorite solution and then randomly assigned (n = 8 per group) to receive a final one-minute rinse with 5 ml of test solutions, water, or the pure aqueous Tween/propylene glycol solution. Calcium concentration in eluates was measured using atomic absorption spectrometry. Incorporation of wetting agents resulted in a reduction of surface tension values by approximately 50% in all tested solutions. However, none of the solutions with reduced surface tension chelated more calcium from canals than their pure counterparts (p > 0.05).

  6. Bloch Modes and Evanescent Modes of Photonic Crystals: Weak Form Solutions Based on Accurate Interface Triangulation

    Directory of Open Access Journals (Sweden)

    Matthias Saba

    2015-01-01

    Full Text Available We propose a new approach to calculate the complex photonic band structure, both purely dispersive and evanescent Bloch modes of a finite range, of arbitrary three-dimensional photonic crystals. Our method, based on a well-established plane wave expansion and the weak form solution of Maxwell’s equations, computes the Fourier components of periodic structures composed of distinct homogeneous material domains from a triangulated mesh representation of the inter-material interfaces; this allows substantially more accurate representations of the geometry of complex photonic crystals than the conventional representation by a cubic voxel grid. Our method works for general two-phase composite materials, consisting of bi-anisotropic materials with tensor-valued dielectric and magnetic permittivities ε and μ and coupling matrices ς. We demonstrate for the Bragg mirror and a simple cubic crystal closely related to the Kelvin foam that relatively small numbers of Fourier components are sufficient to yield good convergence of the eigenvalues, making this method viable, despite its computational complexity. As an application, we use the single gyroid crystal to demonstrate that the consideration of both conventional and evanescent Bloch modes is necessary to predict the key features of the reflectance spectrum by analysis of the band structure, in particular for light incident along the cubic [111] direction.

  7. Failure mode taxonomy for assessing the reliability of Field Programmable Gate Array based Instrumentation and Control systems

    International Nuclear Information System (INIS)

    McNelles, Phillip; Zeng, Zhao Chang; Renganathan, Guna; Chirila, Marius; Lu, Lixuan

    2017-01-01

    Highlights: • The use FPGAs in I&C systems in Nuclear Power Plants is an important issue (IAEA). • OECD-NEA published a failure mode taxonomy for software-based digital I&C systems. • This paper extends the OECD-NEA taxonomy to model FPGA-based systems. • FPGA failure modes, failure effects, uncovering methods are categorized/described. • Provides an example of modelling an FPGA-Based RTS/ESFAS using the FPGA taxonomy. - Abstract: Field Programmable Gate Arrays (FPGAs) are a form of programmable digital hardware configured to perform digital logic functions. This configuration (programming) is performed using Hardware Description Language (HDL), making FPGAs a form of HDL Programmed Device (HPD). In the nuclear field, FPGAs have seen use in upgrades and replacements of obsolete Instrumentation and Control (I&C) systems. This paper expands upon previous work that resulted in extensive FPGA failure mode data, to allow for the application of the OECD-NEA failure modes taxonomy. The OECD-NEA taxonomy presented a method to model digital (software-based) I&C systems, based on the hardware and software failure modes, failure uncovering effects and levels of abstraction, using a Reactor Trip System/Engineering Safety Feature Actuation System (RTS/ESFAS) as an example system. To create the FPGA taxonomy, this paper presents an additional “sub-component” level of abstraction, to demonstrate the effect of the FPGA failure modes and failure categories on an FPGA-based system. The proposed FPGA taxonomy is based on the FPGA failure modes, failure categories, failure effects and uncovering situations. The FPGA taxonomy is applied to the RTS/ESFAS test system, to demonstrate the effects of the anticipated FPGA failure modes on a digital I&C system, and to provide a modelling example for this proposed taxonomy.

  8. Solution of the Lambda modes problem of a nuclear power reactor using an h–p finite element method

    International Nuclear Information System (INIS)

    Vidal-Ferrandiz, A.; Fayez, R.; Ginestar, D.; Verdú, G.

    2014-01-01

    Highlights: • An hp finite element method is proposed for the Lambda modes problem of a nuclear reactor. • Different strategies can be implemented for increasing the accuracy of the solutions. • 2D and 3D benchmarks have been studied obtaining accurate results. - Abstract: Lambda modes of a nuclear power reactor have interest in reactor physics since they have been used to develop modal methods and to study BWR reactor instabilities. An h–p-Adaptation finite element method has been implemented to compute the dominant modes the fundamental mode and the next subcritical modes of a nuclear reactor. The performance of this method has been studied in three benchmark problems, a homogeneous 2D reactor, the 2D BIBLIS reactor and the 3D IAEA reactor

  9. Gamma ray NDA assay system for total plutonium and isotopics in plutonium product solutions

    International Nuclear Information System (INIS)

    Cowder, L.R.; Hsue, S.T.; Johnson, S.S.; Parker, J.L.; Russo, P.A.; Sprinkle, J.K.; Asakura, Y.; Fukuda, T.; Kondo, I.

    1979-01-01

    A LASL-designed gamma-ray NDA instrument for assay of total plutonium and isotopics of product solutions at Tokai-Mura is currently installed and operating. The instrument is, optimally, a densitometer that uses radioisotopic sources for total plutonium measurements at the K absorption edge. The measured transmissions of additional gamma-ray lines from the same radioisotopic sources are used to correct for self-attenuation of passive gamma rays from plutonium. The corrected passive data give the plutonium isotopic content of freshly separated to moderately aged solutions. This off-line instrument is fully automated under computer control, with the exception of sample positioning, and operates routinely in a mode designed for measurement control. A one-half percent precision in total plutonium concentration is achieved with a 15-minute measurement

  10. Using New Technologies for Time Diary Data Collection: Instrument Design and Data Quality Findings from a Mixed-Mode Pilot Survey.

    Science.gov (United States)

    Chatzitheochari, Stella; Fisher, Kimberly; Gilbert, Emily; Calderwood, Lisa; Huskinson, Tom; Cleary, Andrew; Gershuny, Jonathan

    2018-01-01

    Recent years have witnessed a steady growth of time-use research, driven by the increased research and policy interest in population activity patterns and their associations with long-term outcomes. There is recent interest in moving beyond traditional paper-administered time diaries to use new technologies for data collection in order to reduce respondent burden and administration costs, and to improve data quality. This paper presents two novel diary instruments that were employed by a large-scale multi-disciplinary cohort study in order to obtain information on the time allocation of adolescents in the United Kingdom. A web-administered diary and a smartphone app were created, and a mixed-mode data collection approach was followed: cohort members were asked to choose between these two modes, and those who were unable or refused to use the web/app modes were offered a paper diary. Using data from a pilot survey of 86 participants, we examine diary data quality indicators across the three modes. Results suggest that the web and app modes yield an overall better time diary data quality than the paper mode, with a higher proportion of diaries with complete activity and contextual information. Results also show that the web and app modes yield a comparable number of activity episodes to the paper mode. These results suggest that the use of new technologies can improve diary data quality. Future research using larger samples should systematically investigate selection and measurement effects in mixed-mode time-use survey designs.

  11. The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes.

    Science.gov (United States)

    Whale, Thomas F; Holden, Mark A; Wilson, Theodore W; O'Sullivan, Daniel; Murray, Benjamin J

    2018-05-07

    Heterogeneous nucleation of ice from aqueous solutions is an important yet poorly understood process in multiple fields, not least the atmospheric sciences where it impacts the formation and properties of clouds. In the atmosphere ice-nucleating particles are usually, if not always, mixed with soluble material. However, the impact of this soluble material on ice nucleation is poorly understood. In the atmospheric community the current paradigm for freezing under mixed phase cloud conditions is that dilute solutions will not influence heterogeneous freezing. By testing combinations of nucleators and solute molecules we have demonstrated that 0.015 M solutions (predicted melting point depression nucleate ice up to around 3 °C warmer than they do in pure water. In contrast, dilute solutions of certain alkali metal halides can dramatically depress freezing points for the same nucleators. At 0.015 M, solutes can enhance or deactivate the ice-nucleating ability of a microcline feldspar across a range of more than 10 °C, which corresponds to a change in active site density of more than a factor of 10 5 . This concentration was chosen for a survey across multiple solutes-nucleant combinations since it had a minimal colligative impact on freezing and is relevant for activating cloud droplets. Other nucleators, for instance a silica gel, are unaffected by these 'solute effects', to within experimental uncertainty. This split in response to the presence of solutes indicates that different mechanisms of ice nucleation occur on the different nucleators or that surface modification of relevance to ice nucleation proceeds in different ways for different nucleators. These solute effects on immersion mode ice nucleation may be of importance in the atmosphere as sea salt and ammonium sulphate are common cloud condensation nuclei (CCN) for cloud droplets and are internally mixed with ice-nucleating particles in mixed-phase clouds. In addition, we propose a pathway dependence where

  12. On the nonlinear dynamics of trolling-mode AFM: Analytical solution using multiple time scales method

    Science.gov (United States)

    Sajjadi, Mohammadreza; Pishkenari, Hossein Nejat; Vossoughi, Gholamreza

    2018-06-01

    Trolling mode atomic force microscopy (TR-AFM) has resolved many imaging problems by a considerable reduction of the liquid-resonator interaction forces in liquid environments. The present study develops a nonlinear model of the meniscus force exerted to the nanoneedle of TR-AFM and presents an analytical solution to the distributed-parameter model of TR-AFM resonator utilizing multiple time scales (MTS) method. Based on the developed analytical solution, the frequency-response curves of the resonator operation in air and liquid (for different penetration length of the nanoneedle) are obtained. The closed-form analytical solution and the frequency-response curves are validated by the comparison with both the finite element solution of the main partial differential equations and the experimental observations. The effect of excitation angle of the resonator on horizontal oscillation of the probe tip and the effect of different parameters on the frequency-response of the system are investigated.

  13. Nuclear instrument maintenance - problems, solutions, and obstacles

    International Nuclear Information System (INIS)

    Vuister, P.H.

    1983-01-01

    In 200 laboratories of South-East Asia, Latin America and Africa a survey was made of the state of instrumentation for nuclear medicine. The principal cause of failures and defects was inadequate quality control and preventive maintenance. On the basis of the survey coordinated research programs were compiled for the maintenance of nuclear instruments. The four principal points of the programs are: to safeguard quality and stable electric power supplies for the instruments, to safeguard permanent temperature and humidity in the environment in which the equipment is operated, effective maintenance, and training of personnel. In the years 1981 and 1982, 14 local training courses were run in which emphasis was put on practicals and tests in mechanics and electronics

  14. On the internal resonant modes in marching-on-in-time solution of the time domain electric field integral equation

    KAUST Repository

    Shi, Yifei; Bagci, Hakan; Lu, Mingyu

    2013-01-01

    Internal resonant modes are always observed in the marching-on-in-time (MOT) solution of the time domain electric field integral equation (EFIE), although 'relaxed initial conditions,' which are enforced at the beginning of time marching, should in theory prevent these spurious modes from appearing. It has been conjectured that, numerical errors built up during time marching establish the necessary initial conditions and induce the internal resonant modes. However, this conjecture has never been proved by systematic numerical experiments. Our numerical results in this communication demonstrate that, the internal resonant modes' amplitudes are indeed dictated by the numerical errors. Additionally, it is shown that in a few cases, the internal resonant modes can be made 'invisible' by significantly suppressing the numerical errors. These tests prove the conjecture that the internal resonant modes are induced by numerical errors when the time domain EFIE is solved by the MOT method. © 2013 IEEE.

  15. On the internal resonant modes in marching-on-in-time solution of the time domain electric field integral equation

    KAUST Repository

    Shi, Yifei

    2013-08-01

    Internal resonant modes are always observed in the marching-on-in-time (MOT) solution of the time domain electric field integral equation (EFIE), although \\'relaxed initial conditions,\\' which are enforced at the beginning of time marching, should in theory prevent these spurious modes from appearing. It has been conjectured that, numerical errors built up during time marching establish the necessary initial conditions and induce the internal resonant modes. However, this conjecture has never been proved by systematic numerical experiments. Our numerical results in this communication demonstrate that, the internal resonant modes\\' amplitudes are indeed dictated by the numerical errors. Additionally, it is shown that in a few cases, the internal resonant modes can be made \\'invisible\\' by significantly suppressing the numerical errors. These tests prove the conjecture that the internal resonant modes are induced by numerical errors when the time domain EFIE is solved by the MOT method. © 2013 IEEE.

  16. Determination of acid ionization constants for weak acids by osmometry and the instrumental analysis self-evaluation feedback approach to student preparation of solutions

    Science.gov (United States)

    Kakolesha, Nyanguila

    One focus of this work was to develop of an alternative method to conductivity for determining the acid ionization constants. Computer-controlled osmometry is one of the emerging analytical tools in industrial research and clinical laboratories. It is slowly finding its way into chemistry laboratories. The instrument's microprocessor control ensures shortened data collection time, repeatability, accuracy, and automatic calibration. The equilibrium constants of acetic acid, chloroacetic acid, bromoacetic acid, cyanoacetic acid, and iodoacetic acid have been measured using osmometry and their values compared with the existing literature values obtained, usually, from conductometric measurements. Ionization constant determined by osmometry for the moderately strong weak acids were in reasonably good agreement with literature values. The results showed that two factors, the ionic strength and the osmotic coefficient, exert opposite effects in solutions of such weak acids. Another focus of the work was analytical chemistry students solution preparation skills. The prevailing teacher-structured experiments leave little room for students' ingenuity in quantitative volumetric analysis. The purpose of this part of the study was to improve students' skills in making solutions using instrument feedback in a constructivist-learning model. After making some solutions by weighing and dissolving solutes or by serial dilution, students used the spectrophotometer and the osmometer to compare their solutions with standard solutions. Students perceived the instrument feedback as a nonthreatening approach to monitoring the development of their skill levels and liked to clarify their understanding through interacting with an instructor-observer. An assessment of the instrument feedback and the constructivist model indicated that students would assume responsibility for their own learning if given the opportunity. This study involved 167 students enrolled in Quantitative Chemical

  17. A Security Solution for IEEE 802.11's Ad-hoc Mode:Password-Authentication and Group Diffie-Hellman Key Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel, Bresson; Olivier, Chevassut; David, Pointcheval

    2005-10-01

    The IEEE 802 standards ease the deployment of networkinginfrastructures and enable employers to accesscorporate networks whiletraveling. These standards provide two modes of communication calledinfrastructure and ad-hoc modes. A security solution for the IEEE802.11's infrastructure mode took several years to reach maturity andfirmware are still been upgraded, yet a solution for the ad-hoc modeneeds to be specified. The present paper is a first attempt in thisdirection. It leverages the latest developments in the area ofpassword-based authentication and (group) Diffie-Hellman key exchange todevelop a provably-secure key-exchange protocol for IEEE 802.11's ad-hocmode. The protocol allows users to securely join and leave the wirelessgroup at time, accommodates either a single-shared password orpairwise-shared passwords among the group members, or at least with acentral server; achieves security against dictionary attacks in theideal-hash model (i.e. random-oracles). This is, to the best of ourknowledge, the first such protocol to appear in the cryptographicliterature.

  18. Instrumentation Cables Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Muna, Alice Baca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaFleur, Chris Bensdotter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteria 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended to drift

  19. Acoustic rotation modes in complex plasmas

    International Nuclear Information System (INIS)

    Bai Dongxue; Wang Zhengxiong; Wang Xiaogang

    2004-01-01

    Acoustic rotation modes in complex plasmas are investigated in a cylindrical system with an axial symmetry. The linear mode solution is derived. The mode in an infinite area is reduced to a classical dust acoustic wave in the region away from the centre. When the dusty plasma is confined in a finite region, the breathing and rotating-void behaviour are observed. Vivid structures of different mode number solutions are illustrated

  20. Tris-amidoximate uranyl complexes via η2 binding mode coordinated in aqueous solution shown by X-ray absorption spectroscopy and density functional theory methods.

    Science.gov (United States)

    Zhang, Linjuan; Qie, Meiying; Su, Jing; Zhang, Shuo; Zhou, Jing; Li, Jiong; Wang, Yu; Yang, Shitong; Wang, Shuao; Li, Jingye; Wu, Guozhong; Wang, Jian Qiang

    2018-03-01

    The present study sheds some light on the long-standing debate concerning the coordination properties between uranyl ions and the amidoxime ligand, which is a key ingredient for achieving efficient extraction of uranium. Using X-ray absorption fine structure combined with theoretical simulation methods, the binding mode and bonding nature of a uranyl-amidoxime complex in aqueous solution were determined for the first time. The results show that in a highly concentrated amidoxime solution the preferred binding mode between UO 2 2+ and the amidoxime ligand is η 2 coordination with tris-amidoximate species. In such a uranyl-amidoximate complex with η 2 binding motif, strong covalent interaction and orbital hybridization between U 5f/6d and (N, O) 2p should be responsible for the excellent binding ability of the amidoximate ligand to uranyl. The study was performed directly in aqueous solution to avoid the possible binding mode differences caused by crystallization of a single-crystal sample. This work also is an example of the simultaneous study of local structure and electronic structure in solution systems using combined diagnostic tools.

  1. Reactor instrumentation renewal of the TRIGA reactor Vienna, Austria

    International Nuclear Information System (INIS)

    Boeck, H.; Weiss, H.; Hood, W.E.; Hyde, W.K.

    1992-01-01

    The TRIGA Mark-II reactor at the Atominstitut in Vienna, Austria is replacing its twenty-four year old instrumentation system with a microprocessor based control system supplied by General Atomics. Ageing components, new governmental safety requirements and a need for state of the art instrumentation for training students has spurred the demand for new reactor instrumentation. In Austria a government appointed expert is assigned the responsibility of reviewing the proposed installation and verifying all safety aspects. After a positive review, final assembly and checkout of the instrumentation system may commence. The instrumentation system consists of three basic modules: the control system console, the data acquisition console and the NH-1000 wide range channel. Digital communications greatly reduce interwiring requirements. Hardwired safety channels are independent of computer control, thus, the instrumentation system in no way relies on any computer intervention for safety function. In addition, both the CSC and DAC computers are continuously monitored for proper operation via watchdog circuits which are capable of shutting down the reactor in the event of computer malfunction. Safety channels include two interlocked NMP-1000 multi-range linear channels for steady state mode, an NPP-1000 linear safety channel for pulse mode and a set of three independent fuel temperature monitoring channels. The microprocessor controlled wide range NM- 1000 digital neutron monitor (fission chamber based) functions as a startup/operational channel, and provides all power level related Interlocks. The Atominstitut TRIGA reactor is configured for four modes of operation: manual mode, automatic mode (servo control), pulsing mode and square wave mode. Control of the standard control rods is via stepping motor control rod drives, which offers the operator the choice of which control rods are operated by the servo system in automatic and square wave model. (author)

  2. Nonlinear surface elastic modes in crystals

    Science.gov (United States)

    Gorentsveig, V. I.; Kivshar, Yu. S.; Kosevich, A. M.; Syrkin, E. S.

    1990-03-01

    The influence of nonlinearity on shear horizontal surface elastic waves in crystals is described on the basis of the effective nonlinear Schrödinger equation. It is shown that the corresponding solutions form a set of surface modes and the simplest mode coincides with the solution proposed by Mozhaev. The higher order modes have internal frequencies caused by the nonlinearity. All these modes decay in the crystal as uoexp(- z/ zo) atz≫ zo- u o-1 ( z is the distance from the crystal surface, uo the wave amplitude at the surface). The creation of the modes from a localized surface excitation has a threshold. The stability of the modes is discussed.

  3. Assessment of the measurement control program for solution assay instruments at the Los Alamos National Laboratory Plutonium Facility

    International Nuclear Information System (INIS)

    Goldman, A.S.

    1985-05-01

    This report documents and reviews the measurement control program (MCP) over a 27-month period for four solution assay instruments (SAIs) Facility. SAI measurement data collected during the period January 1982 through March 1984 were analyzed. The sources of these data included computer listings of measurements emanating from operator entries on computer terminals, logbook entries of measurements transcribed by operators, and computer listings of measurements recorded internally in the instruments. Data were also obtained from control charts that are available as part of the MCP. As a result of our analyses we observed agreement between propagated and historical variances and concluded instruments were functioning properly from a precision aspect. We noticed small, persistent biases indicating slight instrument inaccuracies. We suggest that statistical tests for bias be incorporated in the MCP on a monthly basis and if the instrument bias is significantly greater than zero, the instrument should undergo maintenance. We propose the weekly precision test be replaced by a daily test to provide more timely detection of possible problems. We observed that one instrument showed a trend of increasing bias during the past six months and recommend a randomness test be incorporated to detect trends in a more timely fashion. We detected operator transcription errors during data transmissions and advise direct instrument transmission to the MCP to eliminate these errors. A transmission error rate based on those errors that affected decisions in the MCP was estimated as 1%. 11 refs., 10 figs., 4 tabs

  4. Automation and instrument control applied to an experimental study of electron transport dynamics in an avalanche mode resistive plater chamber

    International Nuclear Information System (INIS)

    Ridenti, Marco A.; Pascholati, Paulo R.

    2009-01-01

    In this work it is presented a computer based instrumentation system which was developed to perform data acquisition and integrate the control of different devices in an experimental study of electron transport dynamics in an avalanche mode resistive plate chamber detector in the Radiation Technology Center (CTR) at IPEN/CNEN-SP. System control and data acquisition was performed by a computer program called RPCLabOperator written in MatLab environment running on a LeCroy WavePro 7000 digital oscilloscope. (author)

  5. Mode I and mixed mode crack-tip fields in strain gradient plasticity

    DEFF Research Database (Denmark)

    Goutianos, Stergios

    2011-01-01

    Strain gradients develop near the crack-tip of Mode I or mixed mode cracks. A finite strain version of the phenomenological strain gradient plasticity theory of Fleck–Hutchinson (2001) is used here to quantify the effect of the material length scales on the crack-tip stress field for a sharp...... stationary crack under Mode I and mixed mode loading. It is found that for material length scales much smaller than the scale of the deformation gradients, the predictions converge to conventional elastic–plastic solutions. For length scales sufficiently large, the predictions converge to elastic solutions....... Thus, the range of length scales over which a strain gradient plasticity model is necessary is identified. The role of each of the three material length scales, incorporated in the multiple length scale theory, in altering the near-tip stress field is systematically studied in order to quantify...

  6. Unstable Mode Solutions to the Klein-Gordon Equation in Kerr-anti-de Sitter Spacetimes

    Science.gov (United States)

    Dold, Dominic

    2017-03-01

    For any cosmological constant {Λ = -3/ℓ2 r+2 > |a|ℓ}. We obtain an analogous result for Neumann boundary conditions if {5/4 < α < 9/4}. Moreover, in the Dirichlet case, one can prove that, for any Kerr-AdS spacetime violating the Hawking-Reall bound, there exists an open family of masses {α} such that the corresponding Klein-Gordon equation permits exponentially growing mode solutions. Our result adopts methods of Shlapentokh-Rothman developed in (Commun. Math. Phys. 329:859-891, 2014) and provides the first rigorous construction of a superradiant instability for negative cosmological constant.

  7. Small deformations of the Prasad-Sommerfield solution

    International Nuclear Information System (INIS)

    Adler, S.L.

    1979-01-01

    I study solutions of the static Euclidean anti-self-dual SU(2) Yang-Mills equations which differ by a small perturbation from the Prasad-Sommerfield solution. I find explicit expressions for two series of perturbation mode functions of angular momentum l and even and odd parity, and classify the modes according to several criteria. There are seven nondilatational modes which have singularities removable by gauge transformation: 3 translations (l = 1), 1 gauge mode (l = 0), and a family of 3 odd-parity gauge modes (l = 1). The translations and l = 0 gauge modes have nonvanishing, and normalizable, projections into the background gauge, while the odd-parity l = 1 modes have vanishing projection into the background gauge. Among the singular modes, there are an infinite number of modes, irregular at r = 0, which nonetheless satisfy the boundary conditions for finite-energy solutions on the sphere at infinity. I show, by discussing the analogous problem of the axially symmetric solutions of the stationary Einstein equations, that non-normalizable modes are relevant in determining whether a spherically symmetric solution of a nonlinear system has axially symmetric extensions. The analysis of perturbations around the Prasad-Sommerfield solution implies that if an axially symmetric extension exists, it cannot be reached by integration out along a tangent vector defined by a nonvanishing, nonsingular small-perturbation mode of the class explicitly constructed

  8. Observations of whistler mode waves in the Jovian system and their consequences for the onboard processing within the RPWI instrument for JUICE

    Science.gov (United States)

    Santolik, O.; Soucek, J.; Kolmasova, I.; Grison, B.; Wahlund, J.-E.; Bergmann, J.

    2013-09-01

    Evidence for a magnetosphere at Ganymede has been found in 1996 using measurements of plasma waves onboard the Galileo spacecraft (fig. 1). This discovery demonstrates the importance of measurements of waves in plasmas around Jovian moons [1]. Galileo also observed whistler-mode waves in the magnetosphere of Ganymede similar to important classes of waves in the Earth magnetosphere: chorus and hiss [2]. Data from the Galileo spacecraft have therefore shown the importance of measurements of waves in plasmas around Jovian moons, especially in the light of recent advances in analysis of whistler-mode waves in the Earth magnetosphere and their importance for acceleration of radiation belt electrons to relativistic energies. Multicomponent measurements of the fluctuating magnetic and electric fields are needed for localization and characterization of source regions of these waves. Radio & Plasma Waves Investigation (RPWI) experiment will be implemented on the JUICE (JUpiter ICy moon Explorer) spacecraft. RPWI is a highly integrated instrument package that provides a comprehensive set of plasma and fields measurements. Proposed measurement modes for the low frequency receiver subsystem of RPWI include onboard processing which will be suitable for analysis of whistler-mode waves: (1) Polarization and propagation analysis based on phase relations to identify wave modes and propagation directions (2) Poynting vector to determine source regions (3) Detailed frequency-time structure, polarization, wave vector directions to identify linear or nonlinear source mechanisms

  9. Fluxon modes in superconducting multilayers

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Madsen, Søren Peder

    2004-01-01

    We show how to construct fluxon modes from plasma modes in the inductively coupled stacked Josephson junctions, and consider some special cases of these fluxon modes analytically. In some cases we can find exact analytical solutions when we choose the bias current in a special way. We also consid...

  10. Modulation stability and dispersive optical soliton solutions of higher order nonlinear Schrödinger equation and its applications in mono-mode optical fibers

    Science.gov (United States)

    Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen

    2018-01-01

    In mono-mode optical fibers, the higher order non-linear Schrödinger equation (NLSE) describes the propagation of enormously short light pulses. We constructed optical solitons and, solitary wave solutions of higher order NLSE mono-mode optical fibers via employing modified extended mapping method which has important applications in Mathematics and physics. Furthermore, the formation conditions are also given on parameters in which optical bright and dark solitons can exist for this media. The moment of the obtained solutions are also given graphically, that helps to realize the physical phenomena's of this model. The modulation instability analysis is utilized to discuss the model stability, which verifies that all obtained solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method. The method can also be functional to other sorts of higher order nonlinear problems in contemporary areas of research.

  11. Commissioning Instrument for the GTC

    Science.gov (United States)

    Cuevas, S.; Sánchez, B.; Bringas, V.; Espejo, C.; Flores, R.; Chapa, O.; Lara, G.; Chavolla, A.; Anguiano, G.; Arciniega, S.; Dorantes, A.; González, J. L.; Montoya, J. M.; Toral, R.; Hernández, H.; Nava, R.; Devaney, N.; Castro, J.; Cavaller-Marqués, L.

    2005-12-01

    During the GTC integration phase, the Commissioning Instrument (CI) will be a diagnostic tool for performance verification. The CI features four operation modes: imaging, pupil imaging, Curvature WFS, and high resolution Shack-Hartmann WFS. This instrument was built by the Instituto de Astronomía UNAM and the Centro de Ingeniería y Desarrollo Industrial (CIDESI) under GRANTECAN contract after a public bid. In this paper we made a general instrument overview and we show some of the performance final results obtained when the Factory Acceptance tests previous to its transport to La Palma.

  12. Retention prediction of highly polar ionizable solutes under gradient conditions on a mixed-mode reversed-phase and weak anion-exchange stationary phase.

    Science.gov (United States)

    Balkatzopoulou, P; Fasoula, S; Gika, H; Nikitas, P; Pappa-Louisi, A

    2015-05-29

    In the present work the retention of three highly polar and ionizable solutes - uric acid, nicotinic acid and ascorbic acid - was investigated on a mixed-mode reversed-phase and weak anion-exchange (RP/WAX) stationary phase in buffered aqueous acetonitrile (ACN) mobile phases. A U-shaped retention behavior was observed for all solutes with respect to the eluent organic modifier content studied in a range of 5-95% (v/v). This retention behavior clearly demonstrates the presence of a HILIC-type retention mechanism at ACN-rich hydro-organic eluents and an RP-like retention at aqueous-rich hydro-organic eluents. Hence, this column should be promising for application under both RP and HILIC gradient elution modes. For this reason, a series of programmed elution runs were carried out with increasing (RP) and decreasing (HILIC) organic solvent concentration in the mobile phase. This dual gradient process was successfully modeled by two retention models exhibiting a quadratic or a cubic dependence of the logarithm of the solute retention factor (lnk) upon the organic modifier volume fraction (φ). It was found that both models produced by gradient retention data allow the prediction of solute retention times for both types of programmed elution on the mixed-mode column. Four, in the case of the quadratic model, or five, in the case of the cubic model, initial HILIC- and RP-type gradient runs gave satisfactory retention predictions of any similar kind elution program, even with different flow rate, with an overall error of only 2.5 or 1.7%, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Interferometric characterization of few-mode fibers (FMF) for mode-division multiplexing (MDM)

    OpenAIRE

    Muliar, Olena; Usuga Castaneda, Mario A.; Rottwitt, Karsten; Lægsgaard, Jesper

    2015-01-01

    The rapid growth of global data traffic demands the continuous search for new technologies and systems that could increase transmission capacity in optical links and recent experiments show that to do so, it is advantageous to explore new degrees of freedom such as polarization, wavelength or optical modes. Mode division multiplexing (MDM) appears in this context as a promising and viable solution for such capacity increase, since it utilizes multiple spatial modes of an optical fiber as indi...

  14. Mode regularization of the supersymmetric sphaleron and kink: Zero modes and discrete gauge symmetry

    International Nuclear Information System (INIS)

    Goldhaber, Alfred Scharff; Litvintsev, Andrei; Nieuwenhuizen, Peter van

    2001-01-01

    To obtain the one-loop corrections to the mass of a kink by mode regularization, one may take one-half the result for the mass of a widely separated kink-antikink (or sphaleron) system, where the two bosonic zero modes count as two degrees of freedom, but the two fermionic zero modes as only one degree of freedom in the sums over modes. For a single kink, there is one bosonic zero mode degree of freedom, but it is necessary to average over four sets of fermionic boundary conditions in order (i) to preserve the fermionic Z 2 gauge invariance ψ→-ψ, (ii) to satisfy the basic principle of mode regularization that the boundary conditions in the trivial and the kink sector should be the same, (iii) that the energy stored at the boundaries cancels and (iv) to avoid obtaining a finite, uniformly distributed energy which would violate cluster decomposition. The average number of fermionic zero-energy degrees of freedom in the presence of the kink is then indeed 1/2. For boundary conditions leading to only one fermionic zero-energy solution, the Z 2 gauge invariance identifies two seemingly distinct 'vacua' as the same physical ground state, and the single fermionic zero-energy solution does not correspond to a degree of freedom. Other boundary conditions lead to two spatially separated ω∼0 solutions, corresponding to one (spatially delocalized) degree of freedom. This nonlocality is consistent with the principle of cluster decomposition for correlators of observables

  15. Spectroelectrochemical Instrument Measures TOC

    Science.gov (United States)

    Kounaves, Sam

    2011-01-01

    A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.

  16. Operating Modes and Cooling Capabilities of the 3-Stage ADR Developed for the Soft-X-Ray Spectrometer Instrument on Astro-H

    Science.gov (United States)

    Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theo; DiPirro, Michael J.; Letmate, Richard V.; Sampson, Michael A.; Bialas, Tom G.; Sneiderman, Gary A.; Porter, Frederick S.; hide

    2015-01-01

    A 3-stage adiabatic demagnetization refrigerator (ADR) is used on the Soft X-ray Spectrometer instrument on Astro-H to cool a 6x6 array of x-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes

  17. Asymptotic Method of Solution for a Problem of Construction of Optimal Gas-Lift Process Modes

    Directory of Open Access Journals (Sweden)

    Fikrat A. Aliev

    2010-01-01

    Full Text Available Mathematical model in oil extraction by gas-lift method for the case when the reciprocal value of well's depth represents a small parameter is considered. Problem of optimal mode construction (i.e., construction of optimal program trajectories and controls is reduced to the linear-quadratic optimal control problem with a small parameter. Analytic formulae for determining the solutions at the first-order approximation with respect to the small parameter are obtained. Comparison of the obtained results with known ones on a specific example is provided, which makes it, in particular, possible to use obtained results in realizations of oil extraction problems by gas-lift method.

  18. Design and numerical optimization of a mode multiplexer based on few-mode fiber couplers

    International Nuclear Information System (INIS)

    Xie, Yiwei; Fu, Songnian; Liu, Hai; Zhang, Hailiang; Tang, Ming; Liu, Deming; Shum, P

    2013-01-01

    Mode division multiplexing (MDM) transmission based on few-mode fibers (FMFs) appears to be an alternative solution for overcoming the capacity limit of single-mode fibers (SMFs). A FMF coupler-based mode division multiplexer/demultiplexer (MMUX/DeMMUX) is proposed and theoretically investigated after the fabricated FMF is characterized. MMUXs/DeMMUXs with a mode contrast ratio (MCR) of more than 20 dB can be obtained for two-mode multiplexing and three-mode multiplexing over a wavelength span of 60 and 10 nm, respectively. We numerically verify the proposed MMUX/DeMMUX which has the advantages of high MCR, easy fabrication and maintenance, and low wavelength dependence. (paper)

  19. The instrument control unit of SPICA SAFARI: a macro-unit to host all the digital control functionalities of the spectrometer

    Science.gov (United States)

    Di Giorgio, Anna Maria; Biondi, David; Saggin, Bortolino; Shatalina, Irina; Viterbini, Maurizio; Giusi, Giovanni; Liu, Scige J.; Cerulli-Irelli, Paquale; Van Loon, Dennis; Cara, Christophe

    2012-09-01

    We present the preliminary design of the Instrument Control Unit (ICU) of the SpicA FAR infrared Instrument (SAFARI), an imaging Fourier Transform Spectrometer (FTS) designed to give continuous wavelength coverage in both photometric and spectroscopic modes from around 34 to 210 µm. Due to the stringent requirements in terms of mass and volume, the overall SAFARI warm electronics will be composed by only two main units: Detector Control Unit and ICU. ICU is therefore a macro-unit incorporating the four digital sub-units dedicated to the control of the overall instrument functionalities: the Cooler Control Unit, the Mechanism Control Unit, the Digital processing Unit and the Power Supply Unit. Both the mechanical solution adopted to host the four sub-units and the internal electrical architecture are presented as well as the adopted redundancy approach.

  20. Innovative research on the group teaching mode based on the LabVIEW virtual environment

    Science.gov (United States)

    Liang, Pei; Huang, Jie; Gong, Hua-ping; Dong, Qian-min; Dong, Yan-yan; Sun, Cai-xia

    2017-08-01

    This paper discusses the widely existing problems of increasing demand of professional engineer in electronic science major and the backward of the teaching mode at present. From one specialized course "Virtual Instrument technique and LABVIEW programming", we explore the new group-teaching mode based on the Virtual Instrument technique, and then the Specific measures and implementation procedures and effect of this teaching mode summarized in the end.

  1. Time-convolutionless mode-coupling theory near the glass transition: Numerical solutions for the Percus-Yevick model

    International Nuclear Information System (INIS)

    Kimura, Y.; Tokuyama, M.

    2016-01-01

    The full numerical solutions of the time-convolutionless modecoupling theory (TMCT) equation recently proposed by Tokuyama are compared with those of the ideal mode-coupling theory (MCT) equation based on the Percus- Yevick static structure factor for hard spheres qualitatively and quantitatively. The ergodic to non-ergodic transition at the critical volume fraction φ_c predicted by MCT is also shown to occur even for TMCT. Thus, φ_c of TMCT is shown to be much higher than that of MCT. The dynamics of coherent-intermediate scattering functions and their two-step relaxation process in a β stage are also discussed.

  2. Discrete-time nonlinear sliding mode controller

    African Journals Online (AJOL)

    user

    Keywords: Discrete-time delay system, Sliding mode control, nonlinear sliding ... of engineering systems such as chemical process control, delay in the actuator ...... instrumentation from Motilal Nehru National Institute of Technology (MNNIT),.

  3. A GC Instrument Simulator

    Science.gov (United States)

    Armitage, D. Bruce

    1999-02-01

    This simulator was developed to help students beginning the study of gas chromatographic instruments to understand their operation. It is not meant to teach chromatographic theory. The instrument simulator is divided into 5 sections. One is for sample preparation. Another is used to manage carrier gases and choose a detector and column. The third sets the conditions for either isothermal or programmed temperature operation. A fourth section models manual injections, and the fifth is the autosampler. The operator has a choice among 6 columns of differing diameters and packing polarities and a choice of either isothermal or simple one-stage temperature programming. The simulator can be operated in either single-sample mode or as a 10-sample autosampler. The integrator has two modes of operation, a "dumb" mode in which only the retention time, area of the peak, and percentage area are listed and a "smart" mode that also lists the components' identities. The identities are obtained from a list of names and retention times created by the operator. Without this list only the percentages and areas are listed. The percentages are based on the areas obtained from the chromatogram and not on the actual percentages assigned during sample preparation. The data files for the compounds used in the simulator are ASCII files and can be edited easily to add more compounds than the 11 included with the simulator. A maximum of 10 components can be used in any one sample. Sample mixtures can be made on a percent-by-volume basis, but not by mass of sample per volume of solvent. A maximum of 30 compounds can be present in any one file, but the number of files is limited only by the operating system. (I suggest that not more than 20 compounds be used in any one file, as scrolling through large numbers of compounds is annoying to say the least.) File construction and layout are discussed in detail in the User's Manual. Chromatograms are generated by calculating a retention time based on

  4. Viscous modes, isocurvature perturbations and CMB initial conditions

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    When the predecoupling plasma is thermodinamically reversible its fluctuations are classified in terms of the adiabatic and entropic modes. A different category of physical solutions, so far unexplored, arises when the inhomogeneities of the viscosity coefficients induce computable curvature perturbations. The viscous modes are explicitly illustrated and compared with the conventional isocurvature solutions.

  5. Solutions of two-mode Jaynes–Cummings models

    Indian Academy of Sciences (India)

    variety of problems [2–8] in quantum optics and it predicts many new features in the limit of strong coupling g of the ... mation in quantum mechanics by Sudha Singh and Roy [19,20] can be conveniently used to obtain the ... operators for modes 1 and 2, ˆσii = |i〉〈i| are the level occupation number and. ˆσij = |i〉〈j|(i = j) are the ...

  6. Low-frequency modes with high toroidal mode numbers. A general formulation

    International Nuclear Information System (INIS)

    Pegoraro, F.; Schep, T.J.

    1979-09-01

    Low-frequency waves with high toroidal mode numbers in an axisymmetric toroidal configuration are studied. In particular, the relationship between the periodicity constraints imposed by the geometry, magnetic shear and the spatial structure of eigenmodes is investigated. By exploiting the radial translational invariance and the poloidal periodicity of the gyrokinetic and Maxwell equations, the two-dimensional problem can be converted into a one-dimensional one and the mode structure can be expressed in terms of a single extended poloidal variable. This representation is used in the description of electromagnetic modes with phase velocities larger than the ion thermal velocity and with frequencies below the ion gyro-frequency. Trapped particle, curvature and compressional effects are retained. The dispersion equations for drift mode and Alfven-type modes are given in general geometry and simplified solutions are presented in the configuration of a double periodic plane slab. (Auth.)

  7. Analytical solutions of coupled-mode equations for microring ...

    Indian Academy of Sciences (India)

    equivalent to waveguide and single microring coupled system. The 3 × 3 coupled system is equivalent to waveguide and double microring coupled system. In this paper, we adopt a novel approach for obtaining coupled-mode equations for linearly distributed and circularly distributed multiwaveguide systems with different ...

  8. Spatial stability of jets - the nonaxisymmetric fundamental and reflection modes

    International Nuclear Information System (INIS)

    Hardee, P.E.

    1987-01-01

    A spatial stability analysis of the relativistic dispersion relation governing the growth and propagation of harmonic components comprising a perturbation to the surface of a cylindrical jet is performed. The spatial growth of harmonic components associated with the nonaxisymmetric fundamental solution and reflection solutions of several Fourier modes are analyzed. Approximate analytical expressions describing resonant frequencies and wavelengths, and maximum growth rates at resonance applicable to relativistic jets are found from the dispersion relation, and the nature of the resonances is explored. On transonic jets there is only a fundamental solution for each Fourier mode with no resonance or maximum growth rate. On supersonic jets there is a fundamental solution and reflection solutions for each Fourier mode, and each solution contains a resonance at which the growth rate is a maximum. A numerical analysis of the fundamental and first three reflection solutions of the axisymmetric and first three nonaxisymmetric Fourier modes is performed. The numerical analysis is restricted to nonrelativistic flows but otherwise covers a broad range of Mach numbers and jet densities. The numerical results are used along with the analytical results to obtain accurate expressions for resonant frequencies, wavelengths, and growth rates as a function of Mach numnber and jet density. In all cases the fastest spatial growth rate at a given frequency is of harmonic components associated with the fundamental solution of one of the nonaxisymmetric Fourier modes. The application of these results to jet structure and implication of these results for jet structure in extragalactic radio sources are considered. 23 references

  9. INSTRUMENTAL CONCEPTUALIZATION SUBJECT AREA SOCIOLOGY: SOME POSSIBLE SOLUTIONS

    Directory of Open Access Journals (Sweden)

    E. V. Maslennikov

    2016-01-01

    Full Text Available The article outlines some of the possible ways of integrating the deployment tool conceptualizing domains of sociology on the basis of the machine sets of steps3. Substantiates the urgency of the problem of application of structural constructs of mathematics as a structure-formalism domain of sociology as a combination of theoretical knowledge. Formulated understanding of the sociological dimension in a broad sense of the concept of research as a measurement based on the use of instrumental in conceptualizing the methodology of sociological research. Under instrumental conceptualization refers to the construction of complex conceptual (conceptual schema structurally interconnected relationships between their individual elements, which are the units of the consideration related conceptual integrity, derived from interpretation of the properties “Set” construct. The paper proposes a definition based on the properties set in the scale set by the structure of N. Bourbaki4 relations systems in the data sets under the structural dimension of social phenomena to understand the interpretation of the investigated properties of social phenomena in terms of a construct that lies at the basis of the theoretical model that reflects the diversity of these qualities with the help of conceptual schemes that determine the quality of each as a structure of relations systems (ie, property in these qualities. In conclusion, the article lists presented in a number of publications, some preliminary results of the application of the methodology of conceptualizing instrumental in related disciplines from sociology. These works can perform suggestive role in the knowledge and understanding of methods of problem fields and objectives of the work on the conceptualization of theoretical sociology, using the mathematical theory of forms. 

  10. Fundamental Solution For The Self-healing Fracture Pulse

    Science.gov (United States)

    Nielsen, S.; Madariaga, R.

    We find the analytical solution for a fundamental fracture mode in the form of a self- similar, self-healing pulse. The existence of such a fracture mode was strongly sug- gested by recent numerical findings but, to our knwledge, no formal proof had been proposed up to date. We present a two dimensional, anti-plane solution for fixed rup- ture and healing velocities, that satisfies both wave equation and stress conditions; we argue that such a solution is plausible even in the absence of rate-weakening in the friction, as an alternative to the classic crack solution. In practice, the impulsive mode rather than the expanding crack mode is selected depending on details of fracture initiation, and is therafter self-maintained. We discuss stress concentration, fracture energy, rupture velocity and compare them to the case of a crack. The analytical study is complemented by various numerical examples and comparisons. On more general grounds, we argue that an infinity of marginally stable fracture modes may exist other than the crack solution or the impulseive fracture described here.

  11. A portable optical emission spectroscopy-cavity ringdown spectroscopy dual-mode plasma spectrometer for measurements of environmentally important trace heavy metals: Initial test with elemental Hg

    Science.gov (United States)

    Sahay, Peeyush; Scherrer, Susan T.; Wang, Chuji

    2012-09-01

    A portable optical emission spectroscopy-cavity ringdown spectroscopy (OES-CRDS) dual-mode plasma spectrometer is described. A compact, low-power, atmospheric argon microwave plasma torch (MPT) is utilized as the emission source when the spectrometer is operating in the OES mode. The same MPT serves as the atomization source for ringdown measurements in the CRDS mode. Initial demonstration of the instrument is carried out by observing OES of multiple elements including mercury (Hg) in the OES mode and by measuring absolute concentrations of Hg in the metastable state 6s6p 3P0 in the CRDS mode, in which a palm-size diode laser operating at a single wavelength 405 nm is incorporated in the spectrometer as the light source. In the OES mode, the detection limit for Hg is determined to be 44 parts per 109 (ppb). A strong radiation trapping effect on emission measurements of Hg at 254 nm is observed when the Hg solution concentration is higher than 50 parts per 106 (ppm). The radiation trapping effect suggests that two different transition lines of Hg at 253.65 nm and 365.01 nm be selected for emission measurements in lower (50 ppm), respectively. In the CRDS mode, the detection limit of Hg in the metastable state 6s6p 3P0 is achieved to be 2.24 parts per 1012 (ppt) when the plasma is operating at 150 W with sample gas flow rate of 480 mL min-1; the detection limit corresponds to 50 ppm in Hg sample solution. Advantage of this novel spectrometer has two-fold, it has a large measurement dynamic range, from a few ppt to hundreds ppm and the CRDS mode can serve as calibration for the OES mode as well as high sensitivity measurements. Measurements of seven other elements, As, Cd, Mn, Ni, P, Pb, and Sr, using the OES mode are also carried out with detection limits of 1100, 33, 30, 144, 576, 94, and 2 ppb, respectively. Matrix effect in the presence of other elements on Hg measurements has been found to increase the detection limit to 131 ppb. These elements in lower

  12. Class-A mode-locked lasers: Fundamental solutions

    Science.gov (United States)

    Kovalev, Anton V.; Viktorov, Evgeny A.

    2017-11-01

    We consider a delay differential equation (DDE) model for mode-locked operation in class-A semiconductor lasers containing both gain and absorber sections. The material processes are adiabatically eliminated as these are considered fast in comparison to the delay time for a long cavity device. We determine the steady states and analyze their bifurcations using DDE-BIFTOOL [Engelborghs et al., ACM Trans. Math. Software 28, 1 (2002)]. Multiple forms of coexistence, transformation, and hysteretic behavior of stable steady states and fundamental periodic regimes are discussed in bifurcation diagrams.

  13. Boosting Majorana Zero Modes

    Directory of Open Access Journals (Sweden)

    Torsten Karzig

    2013-11-01

    Full Text Available One-dimensional topological superconductors are known to host Majorana zero modes at domain walls terminating the topological phase. Their non-Abelian nature allows for processing quantum information by braiding operations that are insensitive to local perturbations, making Majorana zero modes a promising platform for topological quantum computation. Motivated by the ultimate goal of executing quantum-information processing on a finite time scale, we study domain walls moving at a constant velocity. We exploit an effective Lorentz invariance of the Hamiltonian to obtain an exact solution of the associated quasiparticle spectrum and wave functions for arbitrary velocities. Essential features of the solution have a natural interpretation in terms of the familiar relativistic effects of Lorentz contraction and time dilation. We find that the Majorana zero modes remain stable as long as the domain wall moves at subluminal velocities with respect to the effective speed of light of the system. However, the Majorana bound state dissolves into a continuous quasiparticle spectrum after the domain wall propagates at luminal or even superluminal velocities. This relativistic catastrophe implies that there is an upper limit for possible braiding frequencies even in a perfectly clean system with an arbitrarily large topological gap. We also exploit our exact solution to consider domain walls moving past static impurities present in the system.

  14. Use of the reciprocity theorem for a closed form solution of scattering of the lowest axially symmetric torsional wave mode by a defect in a pipe.

    Science.gov (United States)

    Lee, Jaesun; Achenbach, Jan D; Cho, Younho

    2018-03-01

    Guided waves can effectively be used for inspection of large scale structures. Surface corrosion is often found as major defect type in large scale structures such as pipelines. Guided wave interaction with surface corrosion can provide useful information for sizing and classification. In this paper, the elastodynamic reciprocity theorem is used to formulate and solve complicated scattering problems in a simple manner. The approach has already been applied to scattering of Rayleigh and Lamb waves by defects to produce closed form solutions of amplitude of scattered waves. In this paper, the scattering of the lowest axially symmetric torsional mode, which is widely used in commercial applications, is analyzed by the reciprocity theorem. In the present paper, the theorem is used to determine the scattering of the lowest torsional mode by a tapered defect that was earlier considered experimentally and numerically by the finite element method. It is shown that by the presented method it is simple to obtain the ratio of amplitudes of scattered torsional modes for a tapered notch. The results show a good agreement with earlier numerical results. The wave field superposition technique in conjunction with the reciprocity theorem simplifies the solution of the scattering problem to yield a closed form solution which can play a significant role in quantitative signal interpretation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Independent Orbiter Assessment (IOA): Assessment of instrumental subsystem FMEA/CIL

    Science.gov (United States)

    Gardner, J. R.; Addis, A. W.

    1988-01-01

    The McDonnell Douglas Astronautics Company (MDAC) was selected in June 1986 to perform an Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL). The IOA effort first completed an analysis of the Instrumentation hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison for the Orbiter Instrumentation hardware are documented. The IOA product for Instrumentation analysis consisted of 107 failure mode worksheets that resulted in 22 critical items being identified. Comparison was made to the Pre 51-L NASA baseline with 14 Post 51-L FMEAs added, which consists of 96 FMEAs and 18 CIL items. This comparison produced agreement on all but 25 FMEAs which caused differences in 5 CIL items.

  16. Maintenance of scientific instruments

    International Nuclear Information System (INIS)

    Lucero, E.

    1986-01-01

    During the last years Colombia has increased the use of nuclear techniques, instruments and equipment in ambitious health programs, as well as in research centers, industry and education; this has resulted in numerous maintenance problems. As an alternative solution IAN has established a Central Maintenance Laboratory for nuclear instruments within an International Atomic Energy Agency program for eight Latin American and nine Asian Countries. Established strategies and some results are detailed in this writing

  17. Upgrading instrumentation and control in nuclear power plants. Design criteria

    International Nuclear Information System (INIS)

    Rodriguez Rodriguez, M.C.; Alvarez Menendez, A.

    1997-01-01

    The use of programmed digital technology in Protection, Control, Monitoring and Information Systems in new generation nuclear power plants, or the use of this technology to replace or upgrade existing systems based on wired analog instrumentation and electromechanical relays, has led to new international standards which establish new design requirements or adapt existing requirements to this technology. Additionally, both regulatory organisations and the industry are discussing the reliability of this technology, regarding common mode failures that may occur in redundant protection channels, due to the use of equipment and software with the same characteristics. The first part of this paper addresses the most important aspects of new international standards regarding classification criteria for I and C systems, equipment and functions, depending on their importance to safety and the design criteria applicable to each category. Special attention is drawn to requirements concerning software quality assurance and the design of new control rooms. The paper then goes on to discuss the different technical solutions being implemented, using equipment and software diversification, in order to prevent the possibility of common mode failures affecting the protection function. (Author)

  18. Neutronic control instrumentation of protection systems

    International Nuclear Information System (INIS)

    Furet, J.

    1977-01-01

    The aims of neutronic control instrumentation are briefly recalled and the present status of materials research and development is presented. As for the out-of-pile instrumentation, emphasis is put on the reliability and efficiency of the detectors and the new solutions of electric signal processing. The possible reactivity measurements at rest are examined. As for in-pile instrumentation results relating to mobile detectors of the type of miniaturized fission chambers are presented. The radiation tests on course of development for several years in the working conditions of neutron self-powdered detectors are analyzed so as to show that their use as built-in in-core instrumentation is to be envisaged at short term. Basic options inherent to the 'Nuclear Safety' philosophy that define the protection system are recalled. A definition and a justification of the performance testing of the instrumentation at rest and in-service are then derived. Some new solutions are envisaged for processing the digital data obtained from the various sensors . A quality control of the materials setting conditions (especially electric noise) ensures a high reliability and availability of the materials involved in the neutron control and the protection system in working conditions [fr

  19. Ordinary mode auroral kilometric radiation fine structure observed by DE 1

    International Nuclear Information System (INIS)

    Benson, R.F.; Mellott, M.M.; Huff, R.L.; Gurnett, D.A.

    1988-01-01

    The fine structure observed with intense right-hand extraordinary (R-X) mode auroral kilometric radiation (AKR) has received major theoretical attention. Data from the Dynamics Explorer 1 plasma wave instrument indicate that left-hand ordinary (L-O) mode AKR posses similar fine structure. Several theories have been proposed to explain the fine structure of the R-X mode AKR. In order to account for the L-O mode fine structure, these theories will have to be modified to produce the L-O mode directly or will have to rely on mode conversion processes from the R-X to the L-O mode

  20. Work group I: Measures of the food and physical activity environment: instruments.

    Science.gov (United States)

    Saelens, Brian E; Glanz, Karen

    2009-04-01

    A work group was convened to identify the core challenges, content gaps, and corresponding possible solutions for improving food- and physical activity-environment instrumentation. Identified challenges included instrument proliferation, the scaling or grain of instruments and appropriate aggregation to the neighborhood or community level, and unknown sensitivity to change of most instruments. Solutions for addressing these challenges included establishing an interactive and real-time instrument repository, developing and enforcing high standards for instrument reporting, increasing community-researcher collaborations, and implementing surveillance of food and physical activity environment. Solid instrumentation will accelerate a better understanding of food- and physical activity-environment effects on eating and physical activity behaviors.

  1. Can Reliability of Multiple Component Measuring Instruments Depend on Response Option Presentation Mode?

    Science.gov (United States)

    Menold, Natalja; Raykov, Tenko

    2016-01-01

    This article examines the possible dependency of composite reliability on presentation format of the elements of a multi-item measuring instrument. Using empirical data and a recent method for interval estimation of group differences in reliability, we demonstrate that the reliability of an instrument need not be the same when polarity of the…

  2. Cladding modes of optical fibers: properties and applications

    International Nuclear Information System (INIS)

    Ivanov, Oleg V; Nikitov, Sergei A; Gulyaev, Yurii V

    2006-01-01

    One of the new methods of fiber optics uses cladding modes for controlling propagation of radiation in optical fibers. This paper reviews the results of studies on the propagation, excitation, and interaction of cladding modes in optical fibers. The resonance between core and cladding modes excited by means of fiber Bragg gratings, including tilted ones, is analyzed. Propagation of cladding modes in microstructured fibers is considered. The most frequently used method of exciting cladding modes is described, based on the application of long-period fiber gratings. Examples are presented of long-period gratings used as sensors and gain equalizers for fiber amplifiers, as well as devices for coupling light into and out of optical fibers. (instruments and methods of investigation)

  3. Inhibitory effect and mode of action of chitosan solution against rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae RS-1.

    Science.gov (United States)

    Yang, Chunlan; Li, Bin; Ge, Mengyu; Zhou, Kaile; Wang, Yanli; Luo, Ju; Ibrahim, Muhammad; Xie, Guanlin; Sun, Guochang

    2014-06-04

    Inhibitory effect and mode of action of chitosan solution against rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa) strain RS-1 was examined in this study. Result from this study indicated that chitosan solutions at 0.10, 0.20, and 0.40mg/mL inhibited the in vitro growth of Aaa strain RS-1, and in general the inhibitory efficiency increased with the increase of both chitosan concentration and the incubation time. Antibacterial activity of chitosan in this study may be mainly due to the damage of cell membrane, which was evidenced by both the cell lysis observed by transmission electron microscopy, and the increased release of cell materials based on the measurement of cell membrane integrity. Furthermore, chitosan solutions at concentrations of 0.1, 0.2, and 0.4mg/mL markedly inhibited bacterial biofilm formation compared to the control, and the inhibitory effect increased with the increase of chitosan concentration. In addition, quantitative real-time PCR of the 10 secretion system related genes revealed the differential expression of genes in particular ompA/motB, emphasizing the importance of this gene in the response of Aaa strain RS-1 to chitosan stress. These results indicated that the antibacterial mode of action of chitosan may be mainly due to membrane disruption and lysis, reduction of biofilm formation, and gene expression change. Overall, the results clearly indicated that chitosan had the potential to control bacterial brown stripe of rice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Surface-Enhanced Raman Scattering Using Silica Whispering-Gallery Mode Resonators

    Science.gov (United States)

    Anderson, Mark S.

    2013-01-01

    The motivation of this work was to have robust spectroscopic sensors for sensitive detection and chemical analysis of organic and molecular compounds. The solution is to use silica sphere optical resonators to provide surface-enhanced spectroscopic signal. Whispering-gallery mode (WGM) resonators made from silica microspheres were used for surface-enhanced Raman scattering (SERS) without coupling to a plasmonic mechanism. Large Raman signal enhancement is observed by exclusively using 5.08-micron silica spheres with 785-nm laser excitation. The advantage of this non-plasmonic approach is that the active substrate is chemically inert silica, thermally stable, and relatively simple to fabricate. The Raman signal enhancement is broadly applicable to a wide range of molecular functional groups including aliphatic hydrocarbons, siloxanes, and esters. Applications include trace organic analysis, particularly for in situ planetary instruments that require robust sensors with consistent response.

  5. Normal-mode Magnetoseismology as a Virtual Instrument for the Plasma Mass Density in the Inner Magneotsphere: MMS Observations during Magnetic Storms

    Science.gov (United States)

    Chi, P. J.; Takahashi, K.; Denton, R. E.

    2017-12-01

    Previous studies have demonstrated that the electric and magnetic field measurements on closed field lines can detect harmonic frequencies of field line resonance (FLR) and infer the plasma mass density distribution in the inner magnetosphere. This normal-mode magnetoseismology technique can act as a virtual instrument for spacecraft with a magnetometer and/or an electric field instrument, and it can convert the electromagnetic measurements to knowledge about the plasma mass, of which the dominant low-energy core is difficult to detect directly due to the spacecraft potential. The additional measurement of the upper hybrid frequency by the plasma wave instrument can well constrain the oxygen content in the plasma. In this study, we use field line resonance (FLR) frequencies observed by the Magnetospheric Multiscale (MMS) satellites to estimate the plasma mass density during magnetic storms. At FLR frequencies, the phase difference between the azimuthal magnetic perturbation and the radial electric perturbation is approximately ±90°, which is consistent with the characteristic of standing waves. During the magnetic storm in October 2015, the FLR observations indicate a clear enhancement in the plasma mass density on the first day of the recovery phase, but the added plasma was quickly removed on the following day. We will compare with the FLR observations by other operating satellites such as the Van Allen Probes and GOES to examine the spatial variations of the plasma mass density in the magnetosphere. Also discussed are how the spacing in harmonic frequencies can infer the distribution of plasma mass density along the field line as well as its implications.

  6. Flute-like musical instruments: A toy model investigated through numerical continuation

    Science.gov (United States)

    Terrien, Soizic; Vergez, Christophe; Fabre, Benoît

    2013-07-01

    Self-sustained musical instruments (bowed string, woodwind and brass instruments) can be modelled by nonlinear lumped dynamical systems. Among these instruments, flutes and flue organ pipes present the particularity to be modelled as a delay dynamical system. In this paper, such a system, a toy model of flute-like instruments, is studied using numerical continuation. Equilibrium and periodic solutions are explored with respect to the blowing pressure, with focus on amplitude and frequency evolutions along the different solution branches, as well as "jumps" between periodic solution branches. The influence of a second model parameter (namely the inharmonicity) on the behaviour of the system is addressed. It is shown that harmonicity plays a key role in the presence of hysteresis or quasiperiodic regime. Throughout the paper, experimental results on a real instrument are presented to illustrate various phenomena, and allow some qualitative comparisons with numerical results.

  7. Ponderomotive modification of drift tearing modes

    International Nuclear Information System (INIS)

    Urquijo, G.; Singh, R.; Sen, A.

    1997-01-01

    The linear characteristics of drift tearing modes are investigated in the presence of a significant background of radio-frequency (RF) waves in the ion cyclotron range of frequencies. The ponderomotive force, arising from the radial gradients in the RF field energy, is found to significantly modify the inner layer solutions of the drift tearing modes. It can have a stabilizing influence, even at moderate RF powers, provided the field energy has a decreasing radial profile at the mode rational surface. (author)

  8. On the role of resonances in double-mode pulsation

    International Nuclear Information System (INIS)

    Dziembowski, W.; Kovacs, G.

    1984-01-01

    Simultaneous effects of resonant coupling and non-linear saturation of linear driving mechanism on the finite amplitude solution of multi-modal pulsation problem and on its stability are investigated. Both effects are calculated in the lowest order of approximation in terms of amplitudes. It is shown that the 2:1 resonance between one of the two linearly unstable modes and a higher frequency mode causes double-mode (fundamental and first overtone) pulsation. In a certain range of parameters, such as the frequency mismatch, the linear growth and damping rates, it is the only stable solution of the problem. (author)

  9. OBSERVATIONS OF SAUSAGE MODES IN MAGNETIC PORES

    International Nuclear Information System (INIS)

    Morton, R. J.; Erdelyi, R.; Jess, D. B.; Mathioudakis, M.

    2011-01-01

    We present here evidence for the observation of the magnetohydrodynamic (MHD) sausage modes in magnetic pores in the solar photosphere. Further evidence for the omnipresent nature of acoustic global modes is also found. The empirical decomposition method of wave analysis is used to identify the oscillations detected through a 4170 A 'blue continuum' filter observed with the Rapid Oscillations in the Solar Atmosphere (ROSA) instrument. Out of phase, periodic behavior in pore size and intensity is used as an indicator of the presence of magnetoacoustic sausage oscillations. Multiple signatures of the magnetoacoustic sausage mode are found in a number of pores. The periods range from as short as 30 s up to 450 s. A number of the magnetoacoustic sausage mode oscillations found have periods of 3 and 5 minutes, similar to the acoustic global modes of the solar interior. It is proposed that these global oscillations could be the driver of the sausage-type magnetoacoustic MHD wave modes in pores.

  10. Factorial Structure and Preliminary Validation of the Schema Mode Inventory for Eating Disorders (SMI-ED

    Directory of Open Access Journals (Sweden)

    Susan G. Simpson

    2018-04-01

    Full Text Available Objective: The aim of this study was to examine the psychometric properties and factorial structure of the Schema Mode Inventory for Eating Disorders (SMI-ED in a disordered eating population.Method: 573 participants with disordered eating patterns as measured by the Eating Disorder Examination Questionnaire (EDE-Q completed the 190-item adapted version of the Schema Mode Inventory (SMI. The new SMI-ED was developed by clinicians/researchers specializing in the treatment of eating disorders, through combining items from the original SMI with a set of additional questions specifically representative of the eating disorder population. Psychometric testing included Confirmatory Factor Analysis (CFA and internal consistency (Cronbach's α. Multivariate Analyses of Covariance (MANCOVA was also run to test statistical differences between the EDE-Q subscales on the SMI-ED modes, while controlling for possible confounding variables.Results: Factorial analysis confirmed an acceptable 16-related-factors solution for the SMI-ED, thus providing preliminary evidence for the adequate validity of the new measure based on internal structure. Concurrent validity was also established through moderate to high correlations on the modes most relevant to eating disorders with EDE-Q subscales. This study represents the first step in creating a psychometrically sound instrument for measuring schema modes in eating disorders, and provides greater insight into the relevant schema modes within this population.Conclusion: This research represents an important preliminary step toward understanding and labeling the schema mode model for this clinical group. Findings from the psychometric evaluation of SMI-ED suggest that this is a useful tool which may further assist in the measurement and conceptualization of schema modes in this population.

  11. Factorial Structure and Preliminary Validation of the Schema Mode Inventory for Eating Disorders (SMI-ED).

    Science.gov (United States)

    Simpson, Susan G; Pietrabissa, Giada; Rossi, Alessandro; Seychell, Tahnee; Manzoni, Gian Mauro; Munro, Calum; Nesci, Julian B; Castelnuovo, Gianluca

    2018-01-01

    Objective: The aim of this study was to examine the psychometric properties and factorial structure of the Schema Mode Inventory for Eating Disorders (SMI-ED) in a disordered eating population. Method: 573 participants with disordered eating patterns as measured by the Eating Disorder Examination Questionnaire (EDE-Q) completed the 190-item adapted version of the Schema Mode Inventory (SMI). The new SMI-ED was developed by clinicians/researchers specializing in the treatment of eating disorders, through combining items from the original SMI with a set of additional questions specifically representative of the eating disorder population. Psychometric testing included Confirmatory Factor Analysis (CFA) and internal consistency (Cronbach's α). Multivariate Analyses of Covariance (MANCOVA) was also run to test statistical differences between the EDE-Q subscales on the SMI-ED modes, while controlling for possible confounding variables. Results: Factorial analysis confirmed an acceptable 16-related-factors solution for the SMI-ED, thus providing preliminary evidence for the adequate validity of the new measure based on internal structure. Concurrent validity was also established through moderate to high correlations on the modes most relevant to eating disorders with EDE-Q subscales. This study represents the first step in creating a psychometrically sound instrument for measuring schema modes in eating disorders, and provides greater insight into the relevant schema modes within this population. Conclusion: This research represents an important preliminary step toward understanding and labeling the schema mode model for this clinical group. Findings from the psychometric evaluation of SMI-ED suggest that this is a useful tool which may further assist in the measurement and conceptualization of schema modes in this population.

  12. Factorial Structure and Preliminary Validation of the Schema Mode Inventory for Eating Disorders (SMI-ED)

    Science.gov (United States)

    Simpson, Susan G.; Pietrabissa, Giada; Rossi, Alessandro; Seychell, Tahnee; Manzoni, Gian Mauro; Munro, Calum; Nesci, Julian B.; Castelnuovo, Gianluca

    2018-01-01

    Objective: The aim of this study was to examine the psychometric properties and factorial structure of the Schema Mode Inventory for Eating Disorders (SMI-ED) in a disordered eating population. Method: 573 participants with disordered eating patterns as measured by the Eating Disorder Examination Questionnaire (EDE-Q) completed the 190-item adapted version of the Schema Mode Inventory (SMI). The new SMI-ED was developed by clinicians/researchers specializing in the treatment of eating disorders, through combining items from the original SMI with a set of additional questions specifically representative of the eating disorder population. Psychometric testing included Confirmatory Factor Analysis (CFA) and internal consistency (Cronbach's α). Multivariate Analyses of Covariance (MANCOVA) was also run to test statistical differences between the EDE-Q subscales on the SMI-ED modes, while controlling for possible confounding variables. Results: Factorial analysis confirmed an acceptable 16-related-factors solution for the SMI-ED, thus providing preliminary evidence for the adequate validity of the new measure based on internal structure. Concurrent validity was also established through moderate to high correlations on the modes most relevant to eating disorders with EDE-Q subscales. This study represents the first step in creating a psychometrically sound instrument for measuring schema modes in eating disorders, and provides greater insight into the relevant schema modes within this population. Conclusion: This research represents an important preliminary step toward understanding and labeling the schema mode model for this clinical group. Findings from the psychometric evaluation of SMI-ED suggest that this is a useful tool which may further assist in the measurement and conceptualization of schema modes in this population. PMID:29740379

  13. Mode structure and continuum damping of high-n toroidal Alfven eigenmodes

    International Nuclear Information System (INIS)

    Rosenbluth, M.N.; Berk, H.L.; Van Dam, J.W.; Lindberg, D.M.

    1992-02-01

    An asymptotic theory is described for calculating the mode structure and continuum damping of short wave-length toroidal Alfven eigenmodes (TAE). The formalism somewhat resembles the treatment used for describing low-frequency toroidal modes with singular structure at a rational surface, where an inner solution, which for the TAE mode has toroidal coupling, is matched to an outer toroidally uncoupled solution. A three-term recursion relation among coupled poloidal harmonic amplitudes is obtained, whose solution gives the structure of the global wavefunction and the complex eigenfrequency, including continuum damping. Both analytic and numerical solutions are presented. The magnitude of the damping is essential for determining the thresholds for instability driven by the spatial gradients of energetic particles (e.g., neutral beam-injected ions or fusion-product alpha particles) contained in a tokamak plasma

  14. HTGR Measurements and Instrumentation Systems

    International Nuclear Information System (INIS)

    Ball, Sydney J.; Holcomb, David Eugene; Cetiner, Mustafa Sacit

    2012-01-01

    This report provides an integrated overview of measurements and instrumentation for near-term future high-temperature gas-cooled reactors (HTGRs). Instrumentation technology has undergone revolutionary improvements since the last HTGR was constructed in the United States. This report briefly describes the measurement and communications needs of HTGRs for normal operations, maintenance and inspection, fuel fabrication, and accident response. The report includes a description of modern communications technologies and also provides a potential instrumentation communications architecture designed for deployment at an HTGR. A principal focus for the report is describing new and emerging measurement technologies with high potential to improve operations, maintenance, and accident response for the next generation of HTGRs, known as modular HTGRs, which are designed with passive safety features. Special focus is devoted toward describing the failure modes of the measurement technologies and assessing the technology maturity.

  15. Application of expert system in measurement instrument instrumentation's maintenance on a acquisition system

    International Nuclear Information System (INIS)

    Pinastiko, W.S.

    1997-01-01

    Expert system is a part of the artificial intelligence, a solution software for complicated problems, which solving the problems need experiences and knowledge. This paper discussed about the research's result, that is a design of expert system to help instrumentation's maintenance on a data acquisition system. By using application of expert system, the system can do health monitoring, automatic trouble trouble tracing ang gives advise toward the trouble. this instrumentation's maintenance system is a tool which has an analytic and inference ability toward th trouble. This smart system is a very useful tool to get a good data acquisition system quality. the model system also can be developed to be a specific application as a remote instrumentation's management system

  16. Solvent Front Position Extraction procedure with thin-layer chromatography as a mode of multicomponent sample preparation for quantitative analysis by instrumental technique.

    Science.gov (United States)

    Klimek-Turek, A; Sikora, E; Dzido, T H

    2017-12-29

    A concept of using thin-layer chromatography to multicomponent sample preparation for quantitative determination of solutes followed by instrumental technique is presented. Thin-layer chromatography (TLC) is used to separate chosen substances and their internal standard from other components (matrix) and to form a single spot/zone containing them at the solvent front position. The location of the analytes and internal standard in the solvent front zone allows their easy extraction followed by quantitation by HPLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Suppression of the dayside magnetopause surface modes

    Directory of Open Access Journals (Sweden)

    Pilipenko V.A.

    2017-12-01

    Full Text Available Magnetopause surface eigenmodes were suggested as a potential source of dayside high-latitude broadband pulsations in the Pc5-6 band (frequency about 1–2 mHz. However, the search for a ground signature of these modes has not provided encouraging results. The comparison of multi-instrument data from Svalbard with the latitudinal structure of Pc5-6 pulsations, recorded by magnetometers covering near-cusp latitudes, has shown that often the latitudinal maximum of pulsation power occurs about 2–3° deeper in the magnetosphere than the dayside open-closed field line boundary (OCB. The OCB proxy was determined from SuperDARN radar data as the equatorward boundary of enhanced width of a return radio signal. The OCB-ULF correspondence is further examined by comparing the latitudinal profile of the near-noon pulsation power with the equatorward edge of the auroral red emission from the meridian scanning photometer. In most analyzed events, the “epicenter” of Pc5-6 power is at 1–2° lower latitude than the optical OCB proxy. Therefore, the dayside Pc5-6 pulsations cannot be associated with the ground image of the magnetopause surface modes or with oscillations of the last field line. A lack of ground response to these modes beneath the ionospheric projection of OCB seems puzzling. As a possible explanation, we suggest that a high variability of the outer magnetosphere near the magnetopause region may suppress the excitation efficiency. To quantify this hypothesis, we consider a driven field line resonator terminated by conjugate ionospheres with stochastic fluctuations of its eigenfrequency. A solution of this problem predicts a substantial deterioration of resonant properties of MHD resonator even under a relatively low level of background fluctuations. This effect may explain why there is no ground response to magnetopause surface modes or oscillations of the last field line at the OCB latitude, but it can be seen at somewhat lower latitudes

  18. Sphalerons, deformed sphalerons and normal modes

    International Nuclear Information System (INIS)

    Brihaye, Y.; Kunz, J.; Oldenburg Univ.

    1992-01-01

    Topological arguments suggest that tha Weinberg-Salam model posses unstable solutions, sphalerons, representing the top of energy barriers between inequivalent vacua of the gauge theory. In the limit of vanishing Weinberg angle, such unstable solutions are known: the sphaleron of Klinkhamer and Manton and at large values of the Higgs mass in addition the deformed sphalerons. Here a systematic study of the discrete normal modes about these sphalerons for the full range Higgs mass is presented. The emergence of deformed sphalerons at critical values of the Higgs mass is seem to be related to the crossing of zero of the eigenvalue of the particular normal modes about the sphaleron. 6 figs., 1 tab., 19 refs. (author)

  19. Wave Propagation of Coupled Modes in the DNA Double Helix

    International Nuclear Information System (INIS)

    Tabi, Conrad B.; Mohamadou, Alidou; Kofane, Timoleon C.

    2010-06-01

    The dynamics of waves propagating along the DNA molecule is described by the coupled nonlinear Schroedinger equations. We consider both the single and the coupled nonlinear excitation modes, and we discuss their biological implications. Furthermore, the characteristics of the coupled mode solution are discussed and we show that such a solution can describe the local opening observed within the transcription and the replication phenomena. (author)

  20. Toroidal coupling and frequency spectrum of tearing modes

    International Nuclear Information System (INIS)

    Edery, D.; Samain, A.

    1989-05-01

    The frequency spectrum of tearing modes is analyzed with the help of a mode coupling model including toroidal effects in the MHD regions and various non linear effects in the resonant layers. In particular it is shown that the sudden damping of the mode rotation and the simultaneous enhancement of the growth rate observed in tokamak, could be explained as a bifurcating solution of the dispersion equation

  1. Ion-cyclotron modes in weakly relatavistic plasmas

    International Nuclear Information System (INIS)

    Venugopal, C.; Kurian, P.J.; Renuka, G.

    1994-01-01

    We derive a dispersion relation for the perpendicular propagation of ion-cyclotron waves around the ion gyrofrequency Ω + in a weakly relativistic, anisotropic Maxwellian plasma. Using an ordering parameter ε, we separated out two dispersion relations, one of which is independent of the relativistic terms, while the other depends sensitively on them. The solutions of the former dispersion relation yield two modes: a low-frequency (LF) mode with a frequency ω + and a high-frequency (HF) mode with ω > Ω + . The plasma is stable to the propagation of these modes. The latter dispersion relation yields a new LF mode in addition to the modes supported by the non-relativistic dispersion relation. The two LF modes can coalesce to make the plasma unstable. These results are also verified numerically using a standard root solver. (author)

  2. Influence of bio-solution pretreatment on the structure, reactivity and torrefaction of bamboo

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Chu, Yen-Shih; Lee, Wen-Jhy

    2017-01-01

    Highlights: • A bio-solution of natural organic enzyme-7F (NOE-7F) is used to pretreat bamboo. • The bio-solution removes hemicellulose in powdered bamboo significantly. • Bamboo powder pretreated by bio-solution may be feasible for producing bioethanol. • Penetration of bio-solution into block bamboo controls the pretreatment mechanism. • The homogeneity of bamboo is improved by the bio-solution pretreatment. - Abstract: A bio-solution of natural organic enzyme-7F (NOE-7F) is used to pretreat bamboo, with emphasis on the influence the pretreatment upon the structure, reactivity, and torrefaction of the biomass. Two different operating modes accompanied by five different soaking durations are considered. In Mode 1 the bamboo is ground followed by pretreated by the bio-solution, and an inverse procedure is used in Mode 2. The results indicate that, with the operation of Mode 1, NOE-7F removes hemicellulose in the bamboo significantly, thereby improving the homogeneity of the biomass. This pretreated bamboo may be feasible for enzymatic hydrolysis to produce bioethanol. The penetration of the bio-solution into block bamboo becomes the controlling mechanism under Mode 2 operation, and therefore relatively less hemicellulose is consumed from Mode 2. The ignition and burnout temperatures of the pretreated bamboo are higher than those of the raw bamboo, revealing the lower reactivity and higher storage safety of the former. The atomic H/C and O/C ratios as well as the calorific value of the bamboo are insensitive to the pretreatments, whereas the crystalline structure of cellulose is affected by the bio-solution to a certain extent, regardless of Mode 1 or Mode 2 operation. This suggests that torrefaction is required if the pretreated bamboo is employed as a fuel. The pretreated bamboo with Mode 2 is more suitable for torrefaction because of higher torrefaction severity.

  3. V4: The Small Angle Scattering Instrument (SANS at BER II

    Directory of Open Access Journals (Sweden)

    Uwe Keiderling

    2016-11-01

    Full Text Available V4 is a small-angle neutron scatting instrument with an accessible range of scattering vector 0.01 nm-1 < Q < 8.5 nm-1. Outstanding features of the instrument are the polarized neutron option and the list mode data acquisition, allowing for time-resolved measurements with µs time resolution.

  4. Activity modes selection for project crashing through deterministic simulation

    Directory of Open Access Journals (Sweden)

    Ashok Mohanty

    2011-12-01

    Full Text Available Purpose: The time-cost trade-off problem addressed by CPM-based analytical approaches, assume unlimited resources and the existence of a continuous time-cost function. However, given the discrete nature of most resources, the activities can often be crashed only stepwise. Activity crashing for discrete time-cost function is also known as the activity modes selection problem in the project management. This problem is known to be NP-hard. Sophisticated optimization techniques such as Dynamic Programming, Integer Programming, Genetic Algorithm, Ant Colony Optimization have been used for finding efficient solution to activity modes selection problem. The paper presents a simple method that can provide efficient solution to activity modes selection problem for project crashing.Design/methodology/approach: Simulation based method implemented on electronic spreadsheet to determine activity modes for project crashing. The method is illustrated with the help of an example.Findings: The paper shows that a simple approach based on simple heuristic and deterministic simulation can give good result comparable to sophisticated optimization techniques.Research limitations/implications: The simulation based crashing method presented in this paper is developed to return satisfactory solutions but not necessarily an optimal solution.Practical implications: The use of spreadsheets for solving the Management Science and Operations Research problems make the techniques more accessible to practitioners. Spreadsheets provide a natural interface for model building, are easy to use in terms of inputs, solutions and report generation, and allow users to perform what-if analysis.Originality/value: The paper presents the application of simulation implemented on a spreadsheet to determine efficient solution to discrete time cost tradeoff problem.

  5. Rotational modes of a simple Earth model

    Science.gov (United States)

    Seyed-Mahmoud, B.; Rochester, M. G.; Rogister, Y. J. G.

    2017-12-01

    We study the tilt-over mode (TOM), the spin-over mode (SOM), the free core nutation (FCN), and their relationships to each other using a simple Earth model with a homogeneous and incompressible liquid core and a rigid mantle. Analytical solutions for the periods of these modes as well as that of the Chandler wobble is found for the Earth model. We show that the FCN is the same mode as the SOM of a wobbling Earth. The reduced pressure, in terms of which the vector momentum equation is known to reduce to a scalar second order differential equation (the so called Poincaŕe equation), is used as the independent variable. Analytical solutions are then found for the displacement eigenfucntions in a meridional plane of the liquid core for the aforementioned modes. We show that the magnitude of motion in the mantle during the FCN is comparable to that in the liquid core, hence very small. The displacement eigenfunctions for these aforementioned modes as well as those for the free inner core nutation (FICN), computed numerically, are also given for a three layer Earth model which also includes a rigid but capable of wobbling inner core. We will discuss the slow convergence of the period of the FICN in terms of the characteristic surfaces of the Poincare equation.

  6. Data Quality Control: Challenges, Methods, and Solutions from an Eco-Hydrologic Instrumentation Network

    Science.gov (United States)

    Eiriksson, D.; Jones, A. S.; Horsburgh, J. S.; Cox, C.; Dastrup, D.

    2017-12-01

    Over the past few decades, advances in electronic dataloggers and in situ sensor technology have revolutionized our ability to monitor air, soil, and water to address questions in the environmental sciences. The increased spatial and temporal resolution of in situ data is alluring. However, an often overlooked aspect of these advances are the challenges data managers and technicians face in performing quality control on millions of data points collected every year. While there is general agreement that high quantities of data offer little value unless the data are of high quality, it is commonly understood that despite efforts toward quality assurance, environmental data collection occasionally goes wrong. After identifying erroneous data, data managers and technicians must determine whether to flag, delete, leave unaltered, or retroactively correct suspect data. While individual instrumentation networks often develop their own QA/QC procedures, there is a scarcity of consensus and literature regarding specific solutions and methods for correcting data. This may be because back correction efforts are time consuming, so suspect data are often simply abandoned. Correction techniques are also rarely reported in the literature, likely because corrections are often performed by technicians rather than the researchers who write the scientific papers. Details of correction procedures are often glossed over as a minor component of data collection and processing. To help address this disconnect, we present case studies of quality control challenges, solutions, and lessons learned from a large scale, multi-watershed environmental observatory in Northern Utah that monitors Gradients Along Mountain to Urban Transitions (GAMUT). The GAMUT network consists of over 40 individual climate, water quality, and storm drain monitoring stations that have collected more than 200 million unique data points in four years of operation. In all of our examples, we emphasize that scientists

  7. A Plasma Based OES-CRDS Dual-mode Portable Spectrometer for Trace Element Detection: Emission and Ringdown Measurements of Mercury

    Science.gov (United States)

    Sahay, Peeyush; Scherrer, Susan; Wang, Chuji

    2012-10-01

    Design and development of a plasma based optical emission spectroscopy-cavity ringdown spectroscopy (OES-CRDS) dual-mode portable spectrometer for in situ monitoring of trace elements is described. A microwave plasma torch (MPT) has been utilized, which serves both as an atomization and excitation source for the two modes, viz. OES and CRDS, of the spectrometer. Operation of both modes of the instrument is demonstrated with initial measurements of elemental mercury (Hg). A detection limit of 44 ng mL-1 for Hg at 253.65 nm was determined with the emission mode of the instrument. Severe radiation trapping of 253.65 nm line hampers the measurement of Hg in higher concentration region (> 50 μg ml-1). Therefore, a different wavelength, 365.01 nm, is suggested to measure Hg in that region. Ringdown measurements of the metastable 6s6p ^3P0 state of Hg in the plasma using a 404.65 nm palm size diode laser was conducted to demonstrate the CRDS mode of the instrument. Along with being portable, dual-mode, and self-calibrated, the instrument is capable of measuring a wide range of concentration ranging from sub ng mL-1 to several μg ml-1 for a number of elements.

  8. Stability analysis of resistive MHD modes via a new numerical matching technique

    International Nuclear Information System (INIS)

    Furukawa, M.; Tokuda, S.; Zheng, L.-J.

    2009-01-01

    Full text: Asymptotic matching technique is one of the principal methods for calculating linear stability of resistive magnetohydrodynamics (MHD) modes such as tearing modes. In applying the asymptotic method, the plasma region is divided into two regions: a thin inner layer around the mode-resonant surface and ideal MHD regions except for the layer. If we try to solve this asymptotic matching problem numerically, we meet practical difficulties. Firstly, the inertia-less ideal MHD equation or the Newcomb equation has a regular singular point at the mode-resonant surface, leading to the so-called big and small solutions. Since the big solution is not square-integrable, it needs sophisticated treatment. Even if such a treatment is applied, the matching data or the ratio of small solution to the big one, has been revealed to be sensitive to local MHD equilibrium accuracy and grid structure at the mode-resonant surface by numerical experiments. Secondly, one of the independent solutions in the inner layer, which should be matched onto the ideal MHD solution, is not square-integrable. The response formalism has been adopted to resolve this problem. In the present paper, we propose a new method for computing the linear stability of resistive MHD modes via matching technique, where the plasma region is divided into ideal MHD regions and an inner region with finite width. The matching technique using an inner region with finite width was recently developed for ideal MHD modes in cylindrical geometry, and good performance was shown. Our method extends this idea to resistive MHD modes. In the inner region, the low-beta reduced MHD equations are solved, and the solution is matched onto the solution of the Newcomb equation by using boundary conditions such that the parallel electric field vanishes properly as approaching the computational boundaries. If we use the inner region with finite width, the practical difficulties raised above can be avoided from the beginning. Figure

  9. Instrument reliability for high-level nuclear-waste-repository applications

    International Nuclear Information System (INIS)

    Rogue, F.; Binnall, E.P.; Armantrout, G.A.

    1983-01-01

    Reliable instrumentation will be needed to evaluate the characteristics of proposed high-level nuclear-wasted-repository sites and to monitor the performance of selected sites during the operational period and into repository closure. A study has been done to assess the reliability of instruments used in Department of Energy (DOE) waste repository related experiments and in other similar geological applications. The study included experiences with geotechnical, hydrological, geochemical, environmental, and radiological instrumentation and associated data acquisition equipment. Though this paper includes some findings on the reliability of instruments in each of these categories, the emphasis is on experiences with geotechnical instrumentation in hostile repository-type environments. We review the failure modes, rates, and mechanisms, along with manufacturers modifications and design changes to enhance and improve instrument performance; and include recommendations on areas where further improvements are needed

  10. Soliton solutions in a diatomic lattice system

    International Nuclear Information System (INIS)

    Yajima, Nobuo; Satsuma, Junkichi.

    1979-04-01

    A continuum limit is considered for a diatomic lattice system with a cubic nonlinearity. A long wave equation describing the interaction of acoustic and optical modes is obtained. It reduces, in certain approximations, to equations having coupled wave solutions. The solutions exhibit trapping of an optical mode by an acoustic soliton. The form of the trapped optical wave depends on the mass ratio of adjacent particles in the diatomic lattice. (author)

  11. Interferometric characterization of few-mode fibers (FMF) for mode-division multiplexing (MDM)

    DEFF Research Database (Denmark)

    Muliar, Olena; Usuga Castaneda, Mario A.; Rottwitt, Karsten

    2015-01-01

    ), commonly used in a MDM scenario. This experimental technique requires the use of a Mach-Zehnder interferometer, where the reference's path length is controlled by an optical delay line. The interference between the output beams of reference and fiber under test (FUT) is recorded on a CCD camera......The rapid growth of global data traffic demands the continuous search for new technologies and systems that could increase transmission capacity in optical links and recent experiments show that to do so, it is advantageous to explore new degrees of freedom such as polarization, wavelength...... or optical modes. Mode division multiplexing (MDM) appears in this context as a promising and viable solution for such capacity increase, since it utilizes multiple spatial modes of an optical fiber as individual communication channels for data transmission. In order to evaluate its performance, a MDM system...

  12. Jacobian elliptic wave solutions in an anharmonic molecular crystal model

    International Nuclear Information System (INIS)

    Teh, C.G.R.; Lee, B.S.; Koo, W.K.

    1997-07-01

    Explicit Jacobian elliptic wave solutions are found in the anharmonic molecular crystal model for both the continuum limit and discrete modes. This class of wave solutions include the famous pulse-like and kink-like solitary modes. We would also like to report on the existence of some highly discrete staggered solitary wave modes not found in the continuum limit. (author). 9 refs, 1 fig

  13. Hemagglutination detection for blood typing based on waveguide-mode sensors

    Directory of Open Access Journals (Sweden)

    Hiroki Ashiba

    2015-03-01

    Full Text Available ABO and Rh(D blood typing is one of the most important tests performed prior to blood transfusion. Although on-site blood testing is desirable for expedient blood transfusion procedure, most conventional methods and instruments lack the required usability or portability. Here, we describe a novel method, based on the detection of hemagglutination using an optical waveguide-mode sensor, for on-site use. The reflectance spectrum of blood alone and that of blood mixed with antibody reagents was measured using the waveguide-mode sensor. Differences in reflectance by agglutinated and non-agglutinated blood samples were observed at the bottom of the spectral dips; due to differences in the manner in which red blood cells interacted with the surface of the sensor chip. Following the addition of the antibody, blood types A, B, O, and AB were clearly distinguishable and Rh(D typing was also possible using the waveguide-mode sensor. Furthermore, the waveguide-mode-based measurement exhibited the potential to detect weak agglutination, which is difficult for human eyes to distinguish. Thus, this method holds great promise for application in novel on-site test instruments.

  14. Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode

    Directory of Open Access Journals (Sweden)

    R. Thalman

    2010-12-01

    Full Text Available The combination of Cavity Enhanced Absorption Spectroscopy (CEAS with broad-band light sources (e.g. Light-Emitting Diodes, LEDs lends itself to the application of cavity enhanced Differential Optical Absorption Spectroscopy (CE-DOAS to perform sensitive and selective point measurements of multiple trace gases and aerosol extinction with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e. does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0. We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420–490 nm to measure nitrogen dioxide (NO2, glyoxal (CHOCHO, methyl glyoxal (CH3COCHO, iodine oxide (IO, water vapour (H2O and oxygen dimers (O4. We demonstrate the first direct detection of methyl glyoxal, and the first CE-DOAS detection of CHOCHO and IO. The instrument is further inherently calibrated for light extinction from the cavity by observing O4 or H2O (at 477 nm and 443 nm and measuring the pressure, relative humidity and temperature independently. This approach is demonstrated by experiments where laboratory aerosols of known size and refractive index were generated and their extinction measured. The measured extinctions were then compared to the theoretical extinctions calculated using Mie theory (3–7 × 10−7cm−1. Excellent agreement is found from both the O4 and H2O retrievals. This enables the first inherently calibrated CEAS measurement at blue wavelengths in open cavity mode, and eliminates the need for sampling lines to supply air to the cavity, i.e., keep the cavity enclosed and/or aerosol free. Measurements in open cavity mode are demonstrated for CHOCHO, CH3COCHO, NO2, H2O and aerosol extinction. Our prototype

  15. Delay differential equations for mode-locked semiconductor lasers.

    Science.gov (United States)

    Vladimirov, Andrei G; Turaev, Dmitry; Kozyreff, Gregory

    2004-06-01

    We propose a new model for passive mode locking that is a set of ordinary delay differential equations. We assume a ring-cavity geometry and Lorentzian spectral filtering of the pulses but do not use small gain and loss and weak saturation approximations. By means of a continuation method, we study mode-locking solutions and their stability. We find that stable mode locking can exist even when the nonlasing state between pulses becomes unstable.

  16. On the stability of non-supersymmetric supergravity solutions

    Science.gov (United States)

    Imaanpur, Ali; Zameni, Razieh

    2017-09-01

    We examine the stability of some non-supersymmetric supergravity solutions that have been found recently. The first solution is AdS5 ×M6, for M6 an stretched CP3. We consider breathing and squashing mode deformations of the metric, and find that the solution is stable against small fluctuations of this kind. Next we consider type IIB solution of AdS2 ×M8, where the compact space is a U (1) bundle over N (1 , 1). We study its stability under the deformation of M8 and the 5-form flux. In this case we also find that the solution is stable under small fluctuation modes of the corresponding deformations.

  17. On the stability of non-supersymmetric supergravity solutions

    Directory of Open Access Journals (Sweden)

    Ali Imaanpur

    2017-09-01

    Full Text Available We examine the stability of some non-supersymmetric supergravity solutions that have been found recently. The first solution is AdS5×M6, for M6 an stretched CP3. We consider breathing and squashing mode deformations of the metric, and find that the solution is stable against small fluctuations of this kind. Next we consider type IIB solution of AdS2×M8, where the compact space is a U(1 bundle over N(1,1. We study its stability under the deformation of M8 and the 5-form flux. In this case we also find that the solution is stable under small fluctuation modes of the corresponding deformations.

  18. Design and Implementation of Dual-Mode Wireless Video Monitoring System

    Directory of Open Access Journals (Sweden)

    BAO Song-Jian

    2014-10-01

    Full Text Available Dual-mode wireless video transmission has two major problems. Firstly, one is time delay difference bringing about asynchronous reception decoding frame error phenomenon; secondly, dual-mode network bandwidth inconformity causes scheduling problem. In order to solve above two problems, a kind of TD-SCDMA/CDMA20001x dual-mode wireless video transmission design method is proposed. For the solution of decoding frame error phenomenon, the design puts forward adding frame identification and packet preprocessing at the sending and synchronizing combination at the receiving end. For the solution of scheduling problem, the wireless communication channel cooperative work and video data transmission scheduling management algorithm is proposed in the design.

  19. Designing communication and remote controlling of virtual instrument network system

    Science.gov (United States)

    Lei, Lin; Wang, Houjun; Zhou, Xue; Zhou, Wenjian

    2005-01-01

    In this paper, a virtual instrument network through the LAN and finally remote control of virtual instruments is realized based on virtual instrument and LabWindows/CVI software platform. The virtual instrument network system is made up of three subsystems. There are server subsystem, telnet client subsystem and local instrument control subsystem. This paper introduced virtual instrument network structure in detail based on LabWindows. Application procedure design of virtual instrument network communication, the Client/the programming mode of the server, remote PC and server communication far realizing, the control power of the workstation is transmitted, server program and so on essential technical were introduced. And virtual instruments network may connect to entire Internet on. Above-mentioned technology, through measuring the application in the electronic measurement virtual instrument network that is already built up, has verified the actual using value of the technology. Experiment and application validate that this design is resultful.

  20. Designing communication and remote controlling of virtual instrument network system

    International Nuclear Information System (INIS)

    Lei Lin; Wang Houjun; Zhou Xue; Zhou Wenjian

    2005-01-01

    In this paper, a virtual instrument network through the LAN and finally remote control of virtual instruments is realized based on virtual instrument and LabWindows/CVI software platform. The virtual instrument network system is made up of three subsystems. There are server subsystem, telnet client subsystem and local instrument control subsystem. This paper introduced virtual instrument network structure in detail based on LabWindows. Application procedure design of virtual instrument network communication, the Client/the programming mode of the server, remote PC and server communication far realizing, the control power of the workstation is transmitted, server program and so on essential technical were introduced. And virtual instruments network may connect to entire Internet on. Above-mentioned technology, through measuring the application in the electronic measurement virtual instrument network that is already built up, has verified the actual using value of the technology. Experiment and application validate that this design is resultful

  1. Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves

    Science.gov (United States)

    Elliott, S. S.; Gurnett, D. A.; Kurth, W. S.; Clark, G.; Mauk, B. H.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.

    2018-02-01

    The Juno spacecraft's Jupiter Energetic-particle Detector Instrument has observed field-aligned, unidirectional (upgoing) electron beams throughout most of Jupiter's entire polar cap region. The Waves instrument detected intense broadband whistler mode emissions occurring in the same region. In this paper, we investigate the pitch angle scattering of the upgoing electron beams due to interactions with the whistler mode waves. Profiles of intensity versus pitch angle for electron beams ranging from 2.53 to 7.22 Jovian radii show inconsistencies with the expected adiabatic invariant motion of the electrons. It is believed that the observed whistler mode waves perturb the electron motion and scatter them away from the magnetic field line. The diffusion equation has been solved by using diffusion coefficients which depend on the magnetic intensity of the whistler mode waves.

  2. Digital instrumentation for retrofit applications

    International Nuclear Information System (INIS)

    Dennis, U.E.

    1986-01-01

    There can be many reasons for applying retrofit designs to existing power plants. Whatever the reasons, care in planning and instrument design will be required in order to derive the full benefits afforded by today's technology. Specifically, the availability of microprocessors and their related integrated circuits make possible capabilities, accuracies, reliabilities, maintainability and user interfaces not achievable when original equipment was designed. Some of the motives for the replacement of current instrumentation are examined and the various benefits and pitfalls of applying present day microprocessor technology to new designs are discussed. From this, a set of design objectives can be formulated that can best take advantage of modern technology. General Electric's design solution, a family of instruments called NUMAC (Nuclear Measurement, Analysis and Control) is described, followed by descriptions of instruments currently in production and those contemplated for design in the near future

  3. Comparison of defects in ProTaper hand-operated and engine-driven instruments after clinical use.

    Science.gov (United States)

    Cheung, G S P; Bian, Z; Shen, Y; Peng, B; Darvell, B W

    2007-03-01

    To compare the type of defects and mode of material failure of engine-driven and hand-operated ProTaper instruments after clinical use. A total of 401 hand-operated and 325 engine-driven ProTaper instruments were discarded from an endodontic clinic over 17 months. Those that had fractured were examined for plastic deformation in lateral view and remounted for fractographical examination in scanning electron microscope. The mode of fracture was classified as 'fatigue' or 'shear' failure. The lengths of fractured segments in both instruments were recorded. Any distortion in hand instrument was noted. Data were analysed using chi-square, Fisher's exact or Student's t-test, where appropriate. Approximately 14% of all discarded hand-operated instruments and 14% of engine-driven instruments were fractured. About 62% of hand instruments failed because of shear fracture, compared with approximately 66% of engine-driven instruments as a result of fatigue (P hand instruments were affected by shear, and either remained intact or was fractured, compared with 5% of engine-driven instruments (P hand versus engine-driven group (P hand instruments were discarded intact but distorted (rarely for engine-driven instruments); all were in the form of unscrewing of the flutes. The location of defects in hand Finishing instruments was significantly closer to the tip than that for Shaping instruments (P ProTaper engine-driven and hand-operated instruments appeared to be different, with shear failure being more prevalent in the latter.

  4. Failure Modes Taxonomy for Reliability Assessment of Digital Instrumentation and Control Systems for Probabilistic Risk Analysis - Failure modes taxonomy for reliability assessment of digital I and C systems for PRA

    International Nuclear Information System (INIS)

    Amri, A.; Blundell, N.; ); Authen, S.; Betancourt, L.; Coyne, K.; Halverson, D.; Li, M.; Taylor, G.; Bjoerkman, K.; Brinkman, H.; Postma, W.; Bruneliere, H.; Chirila, M.; Gheorge, R.; Chu, L.; Yue, M.; Delache, J.; Georgescu, G.; Deleuze, G.; Quatrain, R.; Thuy, N.; Holmberg, J.-E.; Kim, M.C.; Kondo, K.; Mancini, F.; Piljugin, E.; Stiller, J.; Sedlak, J.; Smidts, C.; Sopira, V.

    2015-01-01

    Digital protection and control systems appear as upgrades in older nuclear power plants (NPP), and are commonplace in new NPPs. To assess the risk of NPP operation and to determine the risk impact of digital systems, there is a need to quantitatively assess the reliability of the digital systems in a justifiable manner. Due to the many unique attributes of digital systems (e.g., functions are implemented by software, units of the system interact in a communication network, faults can be identified and handled online), a number of modelling and data collection challenges exist, and international consensus on the reliability modelling has not yet been reached. The objective of the task group called DIGREL has been to develop a taxonomy of failure modes of digital components for the purposes of probabilistic risk analysis (PRA). An activity focused on the development of a common taxonomy of failure modes is seen as an important step towards standardised digital instrumentation and control (I and C) reliability assessment techniques for PRA. Needs from PRA has guided the work, meaning, e.g., that the I and C system and its failures are studied from the point of view of their functional significance point of view. The taxonomy will be the basis of future modelling and quantification efforts. It will also help to define a structure for data collection and to review PRA studies. The proposed failure modes taxonomy has been developed by first collecting examples of taxonomies provided by the task group organisations. This material showed some variety in the handling of I and C hardware failure modes, depending on the context where the failure modes have been defined. Regarding the software part of I and C, failure modes defined in NPP PRAs have been simple - typically a software CCF failing identical processing units. The DIGREL task group has defined a new failure modes taxonomy based on a hierarchical definition of five levels of abstraction: 1. system level (complete

  5. Modified Block Newton method for the lambda modes problem

    Energy Technology Data Exchange (ETDEWEB)

    González-Pintor, S., E-mail: segonpin@isirym.upv.es [Departamento de Ingeniería Química y Nuclear, Universidad Politécnica de Valencia, Camino de Vera 14, 46022 Valencia (Spain); Ginestar, D., E-mail: dginestar@mat.upv.es [Instituto de Matemática Multidisciplinar, Universidad Politécnica de Valencia, Camino de Vera 14, 46022 Valencia (Spain); Verdú, G., E-mail: gverdu@iqn.upv.es [Departamento de Ingeniería Química y Nuclear, Universidad Politécnica de Valencia, Camino de Vera 14, 46022 Valencia (Spain)

    2013-06-15

    Highlights: ► The Modal Method is based on expanding the solution in a set of dominant modes. ► Updating the set of dominant modes improve its performance. ► A Modified Block Newton Method, which use previous calculated modes, is proposed. ► The method exhibits a very good local convergence with few iterations. ► Good performance results are also obtained for heavy perturbations. -- Abstract: To study the behaviour of nuclear power reactors it is necessary to solve the time dependent neutron diffusion equation using either a rectangular mesh for PWR and BWR reactors or a hexagonal mesh for VVER reactors. This problem can be solved by means of a modal method, which uses a set of dominant modes to expand the neutron flux. For the transient calculations using the modal method with a moderate number of modes, these modes must be updated each time step to maintain the accuracy of the solution. The updating modes process is also interesting to study perturbed configurations of a reactor. A Modified Block Newton method is studied to update the modes. The performance of the Newton method has been tested for a steady state perturbation analysis of two 2D hexagonal reactors, a perturbed configuration of the IAEA PWR 3D reactor and two configurations associated with a boron dilution transient in a BWR reactor.

  6. Non-process instrumentation surveillance and test reduction

    International Nuclear Information System (INIS)

    Ferrell, R.; LeDonne, V.; Donat, T.; Thomson, I.; Sarlitto, M.

    1993-12-01

    Analysis of operating experience, instrument failure modes, and degraded instrument performance has led to a reduction in Technical Specification surveillance and test requirements for nuclear power plant process instrumentation. These changes have resulted in lower plant operations and maintenance (O ampersand M) labor costs. This report explores the possibility of realizing similar savings by reducing requirements for non-process instrumentation. The project team reviewed generic Technical Specifications for the four major US nuclear steam supply system (NSSS) vendors (Westinghouse, General Electric, Combustion Engineering, and Babcock ampersand Wilcox) to identify nonprocess instrumentation for which surveillance/test requirements could be reduced. The team surveyed 10 utilities to identify specific non-process instrumentation at their plants for which requirements could be reduced. The team evaluated utility analytic approaches used to justify changes in surveillance/test requirements for process equipment to determine their applicability to non-process instrumentation. The report presents a prioritized list of non-process instrumentation systems suitable for surveillance/test requirements reduction. The top three systems in the list are vibration monitors, leak detection monitors, and chemistry monitors. In general, most non-process instrumentation governed by Technical Specification requirements are candidates for requirements reduction. If statistical requirements are somewhat relaxed, the analytic approaches previously used to reduce requirements for process instrumentation can be applied to non-process instrumentation. The report identifies as viable the technical approaches developed and successfully used by Southern California Edison, Arizona Public Service, and Boston Edison

  7. Wide range local resistance imaging on fragile materials by conducting probe atomic force microscopy in intermittent contact mode

    Energy Technology Data Exchange (ETDEWEB)

    Vecchiola, Aymeric [Laboratoire de Génie électrique et électronique de Paris (GeePs), UMR 8507 CNRS-CentraleSupélec, Paris-Sud and UPMC Universities, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette (France); Concept Scientific Instruments, ZA de Courtaboeuf, 2 rue de la Terre de Feu, 91940 Les Ulis (France); Unité Mixte de Physique CNRS-Thales UMR 137, 1 avenue Augustin Fresnel, 91767 Palaiseau (France); Chrétien, Pascal; Schneegans, Olivier; Mencaraglia, Denis; Houzé, Frédéric, E-mail: frederic.houze@geeps.centralesupelec.fr [Laboratoire de Génie électrique et électronique de Paris (GeePs), UMR 8507 CNRS-CentraleSupélec, Paris-Sud and UPMC Universities, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette (France); Delprat, Sophie [Unité Mixte de Physique CNRS-Thales UMR 137, 1 avenue Augustin Fresnel, 91767 Palaiseau (France); UPMC, Université Paris 06, 4 place Jussieu, 75005 Paris (France); Bouzehouane, Karim; Seneor, Pierre; Mattana, Richard [Unité Mixte de Physique CNRS-Thales UMR 137, 1 avenue Augustin Fresnel, 91767 Palaiseau (France); Tatay, Sergio [Molecular Science Institute, University of Valencia, 46980 Paterna (Spain); Geffroy, Bernard [Lab. Physique des Interfaces et Couches minces (PICM), UMR 7647 CNRS-École polytechnique, 91128 Palaiseau (France); Lab. d' Innovation en Chimie des Surfaces et Nanosciences (LICSEN), NIMBE UMR 3685 CNRS-CEA Saclay, 91191 Gif-sur-Yvette (France); and others

    2016-06-13

    An imaging technique associating a slowly intermittent contact mode of atomic force microscopy (AFM) with a home-made multi-purpose resistance sensing device is presented. It aims at extending the widespread resistance measurements classically operated in contact mode AFM to broaden their application fields to soft materials (molecular electronics, biology) and fragile or weakly anchored nano-objects, for which nanoscale electrical characterization is highly demanded and often proves to be a challenging task in contact mode. Compared with the state of the art concerning less aggressive solutions for AFM electrical imaging, our technique brings a significantly wider range of resistance measurement (over 10 decades) without any manual switching, which is a major advantage for the characterization of materials with large on-sample resistance variations. After describing the basics of the set-up, we report on preliminary investigations focused on academic samples of self-assembled monolayers with various thicknesses as a demonstrator of the imaging capabilities of our instrument, from qualitative and semi-quantitative viewpoints. Then two application examples are presented, regarding an organic photovoltaic thin film and an array of individual vertical carbon nanotubes. Both attest the relevance of the technique for the control and optimization of technological processes.

  8. Digital Sliding Mode Control of Anti-Lock Braking System

    Directory of Open Access Journals (Sweden)

    MITIC, D. B.

    2013-02-01

    Full Text Available The control of anti-lock braking system is a great challenge, because of the nonlinear and complex characteristics of braking dynamics, unknown parameters of vehicle environment and system parameter variations. Using some of robust control methods, such as sliding mode control, can be a right solution for these problems. In this paper, we introduce a novel approach to design of ABS controllers, which is based on digital sliding mode control with only input/output measurements. The relay term of the proposed digital sliding mode control is filtered through digital integrator, reducing the chattering phenomenon in that way, and the additional signal of estimated modelling error is introduced into control algorithm to enhance the system steady-state accuracy. The given solution was verified in real experimental framework and the obtained results were compared with the results of implementation of two other digital sliding mode control algorithms. It is shown that it gives better system response, higher steady-state accuracy and smaller chattering.

  9. Mode choice endogeneity in value of travel time estimation

    DEFF Research Database (Denmark)

    Mabit, Stefan Lindhard; Fosgerau, Mogens

    The current way to estimate value of travel time is to use a mode-specific sample and hence to estimate mode-specific value of travel times. This approach raises certain questions concerning how to generalise the values to a population. A problem would be if there is an uncontrolled sample...... selection mechanism. This is the case if there is correlation between mode choice and the value of travel time that is not controlled for by explanatory variables. What could confuse the estimated values is the difficulty to separate mode effects from user effect. An example would be the effect of income...... of travel time we use a stated choice dataset. These data include binary choice within mode for car and bus. The first approach is to use a probit model to model mode choice using instruments and then use this in the estimation of the value of travel time. The second approach is based on the use of a very...

  10. Tearing modes in toroidal geometry

    International Nuclear Information System (INIS)

    Connor, J.W.; Cowley, S.C.; Hastie, R.J.; Hender, T.C.; Hood, A.; Martin, T.J.

    1988-01-01

    The separation of the cylindrical tearing mode stability problem into a resistive resonant layer calculation and an external marginal ideal magnetohydrodynamic (MHD) calculation (Δ' calculation) is generalized to axisymmetric toroidal geometry. The general structure of this separation is analyzed and the marginal ideal MHD information (the toroidal generalization of Δ') required to discuss stability is isolated. This can then, in principle, be combined with relevant resonant layer calculations to determine tearing mode growth rates in realistic situations. Two examples are given: the first is an analytic treatment of toroidally coupled (m = 1, n = 1) and (m = 2, n = 1) tearing modes in a large aspect ratio torus; the second, a numerical treatment of the toroidal coupling of three tearing modes through finite pressure effects in a large aspect ratio torus. In addition, the use of a coupling integral approach for determining the stability of coupled tearing modes is discussed. Finally, the possibility of using initial value resistive MHD codes in realistic toroidal geometry to determine the necessary information from the ideal MHD marginal solution is discussed

  11. Analysis of current diffusive ballooning mode

    International Nuclear Information System (INIS)

    Yagi, M.; Azumi, M.; Itoh, K.; Itoh, S.; Fukuyama, A.

    1993-04-01

    The current diffusive ballooning mode is analysed in the tokamak plasma. This mode is destabilized by the current diffusivity (i.e., the electron viscosity) and stabilized by the thermal conductivity and ion viscosity. By use of the ballooning transformation, the eigenmode equation is solved. Analytic solution is obtained by the strong ballooning limit. Numerical calculation is also performed to confirm the analytic theory. The growth rate of the mode and the mode structure are analysed. The stability boundary is derived in terms of the current diffusivity, thermal conductivity, ion viscosity and the pressure gradient for the given shear parameter. This result is applied to express the thermal conductivity in terms of the pressure gradient, magnetic configurational parameters (such as the safety factor, shear and aspect ratio) and the Prandtl numbers. (author)

  12. Evaluation of mode equivalence of the MSKCC Bowel Function Instrument, LASA Quality of Life, and Subjective Significance Questionnaire items administered by Web, interactive voice response system (IVRS), and paper.

    Science.gov (United States)

    Bennett, Antonia V; Keenoy, Kathleen; Shouery, Marwan; Basch, Ethan; Temple, Larissa K

    2016-05-01

    To assess the equivalence of patient-reported outcome (PRO) survey responses across Web, interactive voice response system (IVRS), and paper modes of administration. Postoperative colorectal cancer patients with home Web/e-mail and phone were randomly assigned to one of the eight study groups: Groups 1-6 completed the survey via Web, IVRS, and paper, in one of the six possible orders; Groups 7-8 completed the survey twice, either by Web or by IVRS. The 20-item survey, including the MSKCC Bowel Function Instrument (BFI), the LASA Quality of Life (QOL) scale, and the Subjective Significance Questionnaire (SSQ) adapted to bowel function, was completed from home on consecutive days. Mode equivalence was assessed by comparison of mean scores across modes and intraclass correlation coefficients (ICCs) and was compared to the test-retest reliability of Web and IVRS. Of 170 patients, 157 completed at least one survey and were included in analysis. Patients had mean age 56 (SD = 11), 53% were male, 81% white, 53% colon, and 47% rectal cancer; 78% completed all assigned surveys. Mean scores for BFI total score, BFI subscale scores, LASA QOL, and adapted SSQ varied by mode by less than one-third of a score point. ICCs across mode were: BFI total score (Web-paper = 0.96, Web-IVRS = 0.97, paper-IVRS = 0.97); BFI subscales (range = 0.88-0.98); LASA QOL (Web-paper = 0.98, Web-IVRS = 0.78, paper-IVRS = 0.80); and SSQ (Web-paper = 0.92, Web-IVRS = 0.86, paper-IVRS = 0.79). Mode equivalence was demonstrated for the BFI total score, BFI subscales, LASA QOL, and adapted SSQ, supporting the use of multiple modes of PRO data capture in clinical trials.

  13. New portable hand-held radiation instruments for measurements and monitoring

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1987-01-01

    Hand-held radiation monitors are often used to search pedestrians and motor vehicles for special nuclear material (SNM) as part of a physical protection plan for nuclear materials. Recently, the Los Alamos Advanced Nuclear Technology group has commercialized an improved hand-held monitor that can be used for both physical-protection monitoring and verification measurements in nuclear material control and waste management. The new monitoring instruments are smaller and lighter; operate much longer on a battery charge; are available with NaI(Tl) or neutron and gamma-ray sensitive plastic scintillation detectors; and are less expensive than other comparable instruments. They also have a second operating mode for making precise measurements over counting times as long as 99 s. This mode permits making basic verification measurements that may be needed before transporting nuclear material or waste outside protected areas. Improved verification measurements can be made with a second new hand-held instrument that has a stabilized detector and three separate gamma-ray energy windows to obtain spectral information for SNM quantity, enrichment, or material-type verification

  14. Enhancing our Understanding of Snowfall Modes with Ground-Based Observations

    Science.gov (United States)

    Pettersen, C.; Kulie, M.; Petersen, W. A.; Bliven, L. F.; Wood, N.

    2016-12-01

    Snowfall can be broadly categorized into deep and shallow events based on the vertical distribution of the precipitating ice. Remotely sensed data refine these precipitation categories and aid in discerning the underlying macro- and microphysical mechanisms. The unique patterns in the remotely sensed instruments observations can potentially connect distinct modes of snowfall to specific processes. Though satellites can observe and recognize these patterns in snowfall, these measurements are limited - particularly in cases of shallow and light precipitation, as the snow may be too close to the surface or below the detection limits of the instrumentation. By enhancing satellite measurements with ground-based instrumentation, whether with limited-term field campaigns or long-term strategic sites, we can further our understanding and assumptions about different snowfall modes and how they are measured from spaceborne instruments. Presented are three years of data from a ground-based instrument suite consisting of a MicroRain Radar (MRR; optimized for snow events) and a Precipitation Imaging Package (PIP). These instruments are located at the Marquette, Michigan National Weather Service Weather Forecast Office to: a) use coincident meteorological measurements and observations to enhance our understanding of the thermodynamic drivers and b) showcase these instruments in an operational setting to enhance forecasts of shallow snow events. Three winters of MRR and PIP measurements are partitioned, based on meteorological surface observations, into two-dimensional histograms of reflectivity and particle size distribution data. These statistics improve our interpretation of deep versus shallow precipitation. Additionally, these statistical techniques are applied to similar datasets from Global Precipitation Measurement field campaigns for further insight into cloud and precipitation macro- and microphysical processes.

  15. Recent development in analytical methodology on the ANL 300 kV instrument

    International Nuclear Information System (INIS)

    Zaluzec, N.J.

    2003-01-01

    Full text: The advantages of field emission gun (FEG) based medium voltage instruments has been described for many years in terms of the increased spatial and image 'resolution' that can be obtained. Many laboratories have pressed the instruments to reach their highest resolution capabilities, but in doing so at a sacrifice of other parameters and/or capabilities which are equally important to solving real world problems. We have instead chosen to use the ANL instrument as an electron-optical bench to explore novel imaging and analysis modes, which in a conventional machine are not always readily achievable. These include operation in Lorentz and Stem, Position Resolved Diffraction, Scanning Confocal, and most recently high count rate XEDS mode using a new design of SDD EDS system. The results from these studies will be presented and then extended to their application in typical materials problems. Copyright (2003) Australian Microbeam Analysis Society

  16. Solvent density mode instability in non-polar solutions

    Indian Academy of Sciences (India)

    and excited states of the solute with the compressibility and solvent structure is found to have .... The organization of the rest of the paper is as follows. ...... For the ground state term, as C2 is nearly flat at qσ = q0 = 2π, we can safely ignore.

  17. Spatial Fourier modes controlling Navier-Stokes flow

    International Nuclear Information System (INIS)

    Treve, Y.M.

    1982-01-01

    As shown by Foias and Prodi in the limit of infinite times the solutions of the two-dimensional Navier-Stokes equations depend only on a finite number of modes, a number for which rigorous estimates can be obtained. A survey of these results is given together with further developments, notably in connection with the numerical approximation to the exact solutions. (Auth.)

  18. Applications of sliding mode control in science and engineering

    CERN Document Server

    Lien, Chang-Hua

    2017-01-01

    Gathering 20 chapters contributed by respected experts, this book reports on the latest advances in and applications of sliding mode control in science and engineering. The respective chapters address applications of sliding mode control in the broad areas of chaos theory, robotics, electrical engineering, physics, chemical engineering, memristors, mechanical engineering, environmental engineering, finance, and biology. Special emphasis has been given to papers that offer practical solutions, and which examine design and modeling involving new types of sliding mode control such as higher order sliding mode control, terminal sliding mode control, super-twisting sliding mode control, and integral sliding mode control. This book serves as a unique reference guide to sliding mode control and its recent applications for graduate students and researchers with a basic knowledge of electrical and control systems engineering.

  19. Orbital angular momentum of general astigmatic modes

    International Nuclear Information System (INIS)

    Visser, Jorrit; Nienhuis, Gerard

    2004-01-01

    We present an operator method to obtain complete sets of astigmatic Gaussian solutions of the paraxial wave equation. In case of general astigmatism, the astigmatic intensity and phase distribution of the fundamental mode differ in orientation. As a consequence, the fundamental mode has a nonzero orbital angular momentum, which is not due to phase singularities. Analogous to the operator method for the quantum harmonic oscillator, the corresponding astigmatic higher-order modes are obtained by repeated application of raising operators on the fundamental mode. The nature of the higher-order modes is characterized by a point on a sphere, in analogy with the representation of polarization on the Poincare sphere. The north and south poles represent astigmatic Laguerre-Gaussian modes, similar to circular polarization on the Poincare sphere, while astigmatic Hermite-Gaussian modes are associated with points on the equator, analogous to linear polarization. We discuss the propagation properties of the modes and their orbital angular momentum, which depends on the degree of astigmatism and on the location of the point on the sphere

  20. The OCO-3 Mission: Science Objectives and Instrument Performance

    Science.gov (United States)

    Eldering, A.; Basilio, R. R.; Bennett, M. W.

    2017-12-01

    The Orbiting Carbon Observatory 3 (OCO-3) will continue global CO2 and solar-induced chlorophyll fluorescence (SIF) using the flight spare instrument from OCO-2. The instrument is currently being tested, and will be packaged for installation on the International Space Station (ISS) (launch readiness in early 2018.) This talk will focus on the science objectives, updated simulations of the science data products, and the outcome of recent instrument performance tests. The low-inclination ISS orbit lets OCO-3 sample the tropics and sub-tropics across the full range of daylight hours with dense observations at northern and southern mid-latitudes (+/- 52º). The combination of these dense CO2 and SIF measurements provides continuity of data for global flux estimates as well as a unique opportunity to address key deficiencies in our understanding of the global carbon cycle. The instrument utilizes an agile, 2-axis pointing mechanism (PMA), providing the capability to look towards the bright reflection from the ocean and validation targets. The PMA also allows for a snapshot mapping mode to collect dense datasets over 100km by 100km areas. Measurements over urban centers could aid in making estimates of fossil fuel CO2 emissions. Similarly, the snapshot mapping mode can be used to sample regions of interest for the terrestrial carbon cycle. In addition, there is potential to utilize data from ISS instruments ECOSTRESS (ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station) and GEDI (Global Ecosystem Dynamics Investigation), which measure other key variables of the control of carbon uptake by plants, to complement OCO-3 data in science analysis. In 2017, the OCO-2 instrument was transformed into the ISS-ready OCO-3 payload. The transformed instrument was thoroughly tested and characterized. Key characteristics, such as instrument ILS, spectral resolution, and radiometric performance will be described. Analysis of direct sun measurements taken during testing

  1. 21 CFR 880.6150 - Ultrasonic cleaner for medical instruments.

    Science.gov (United States)

    2010-04-01

    ... instruments by the emission of high frequency soundwaves. (b) Classification. Class I. The device, including any solutions intended for use with the device for cleaning and sanitizing the instruments, is exempt from the premarket notification procedures in subpart E of part 807 of this chapter, subject to the...

  2. The LUVOIR Ultraviolet Multi-Object Spectrograph (LUMOS): instrument definition and design

    Science.gov (United States)

    France, Kevin; Fleming, Brian; West, Garrett; McCandliss, Stephan R.; Bolcar, Matthew R.; Harris, Walter; Moustakas, Leonidas; O'Meara, John M.; Pascucci, Ilaria; Rigby, Jane; Schiminovich, David; Tumlinson, Jason

    2017-08-01

    The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) is one of four large mission concepts currently undergoing community study for consideration by the 2020 Astronomy and Astrophysics Decadal Survey. LUVOIR is being designed to pursue an ambitious program of exoplanetary discovery and characterization, cosmic origins astrophysics, and planetary science. The LUVOIR study team is investigating two large telescope apertures (9- and 15-meter primary mirror diameters) and a host of science instruments to carry out the primary mission goals. Many of the exoplanet, cosmic origins, and planetary science goals of LUVOIR require high-throughput, imaging spectroscopy at ultraviolet (100 - 400 nm) wavelengths. The LUVOIR Ultraviolet Multi-Object Spectrograph, LUMOS, is being designed to support all of the UV science requirements of LUVOIR, from exoplanet host star characterization to tomography of circumgalactic halos to water plumes on outer solar system satellites. LUMOS offers point source and multi-object spectroscopy across the UV bandpass, with multiple resolution modes to support different science goals. The instrument will provide low (R = 8,000 - 18,000) and medium (R = 30,000 - 65,000) resolution modes across the far-ultraviolet (FUV: 100 - 200 nm) and nearultraviolet (NUV: 200 - 400 nm) windows, and a very low resolution mode (R = 500) for spectroscopic investigations of extremely faint objects in the FUV. Imaging spectroscopy will be accomplished over a 3 × 1.6 arcminute field-of-view by employing holographically-ruled diffraction gratings to control optical aberrations, microshutter arrays (MSA) built on the heritage of the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST), advanced optical coatings for high-throughput in the FUV, and next generation large-format photon-counting detectors. The spectroscopic capabilities of LUMOS are augmented by an FUV imaging channel (100 - 200nm, 13 milliarcsecond angular resolution, 2 × 2

  3. Component mode synthesis in structural dynamics

    International Nuclear Information System (INIS)

    Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.

    1993-01-01

    In seismic analysis of Nuclear Reactor Structures and equipments eigen solution requires large computer time. Component mode synthesis is an efficient technique with which one can evaluate dynamic characteristics of a large structure with minimum computer time. Due to this reason it is possible to do a coupled analysis of structure and equipment which takes into account the interaction effects. Basically in this the method large size structure is divided into small substructures and dynamic characteristics of individual substructure are determined. The dynamic characteristics of entire structure are evaluated by synthesising the individual substructure characteristics. Component mode synthesis has been applied in this paper to the analysis of a tall heavy water upgrading tower. Use of fixed interface normal modes, constrained modes, attachment modes in the component mode synthesis using energy principle and using Ritz vectors have been discussed. The validity of this method is established by solving fixed-fixed beam and comparing the results obtained by conventional and classical method. The eigen value problem has been solved using simultaneous iteration method. (author)

  4. On the track of gravity modes: study of the dynamics of the solar core

    International Nuclear Information System (INIS)

    Mathur, Savita

    2007-01-01

    This thesis is dedicated to the study of the dynamics of the solar radiative zone through gravity modes. Though the core represents more than 50% of the solar mass, we still do not have an accurate vision of the rotation profile in the very inner part of the Sun. To understand the evolution of stars, we try to put constraints on dynamic processes. Several paths have been followed in this thesis to tackle this issue: solar modeling, the study of a new instrument, observations and inversions of the rotation. The necessity of the detection of gravity modes is driven by the will for a better comprehension of the solar dynamics. With a technological prototype built at the CEA (GOLF-NG), we want to validate a few technical points and prepare the scientific mission which aim will be to detect these gravity modes. We studied first the photodetector and then the whole instrument response. We show the feasibility of the instrument. The observation of the resonance in all the channels proves that it works the way we expected. However, before this mission takes place, the analysis of GOLF data enabled us to detect one gravity-mode candidate as well as the signature of dipole gravity modes. This work benefited from a more theoretical approach on the prediction of gravity-mode frequencies. We show the influence of several physical processes and quantities. Finally, as the dynamical processes in the Sun are not well constrained, we tried to understand the impact of the introduction of one and several gravity modes on the inferred rotation profiles. We also tried to give constraints on the observations so that we could obtain some information on the rotation profile in the core. (author) [fr

  5. Finite-Length Diocotron Modes in a Non-neutral Plasma Column

    Science.gov (United States)

    Walsh, Daniel; Dubin, Daniel

    2017-10-01

    Diocotron modes are 2D distortions of a non-neutral plasma column that propagate azimuthally via E × B drifts. While the infinite-length theory of diocotron modes is well-understood for arbitrary azimuthal mode number l, the finite-length mode frequency is less developed (with some exceptions), and is naturally of relevance to experiments. In this poster, we present an approach to address finite length effects, such as temperature dependence of the mode frequency. We use a bounce-averaged solution to the Vlasov Equation, in which the Vlasov Equation is solved using action-angle variables of the unperturbed Hamiltonian. We write the distribution function as a Fourier series in the bounce-angle variable ψ, keeping only the bounce-averaged term. We demonstrate a numerical solution to this equation for a realistic plasma with a finite Debye Length, compare to the existing l = 1 theory, and discuss possible extensions of the existing theory to l ≠ 1 . Supported by NSF/DOE Partnership Grants PHY1414570 and DESC0002451.

  6. Continuous monitoring of plutonium solution in a conversion plant

    International Nuclear Information System (INIS)

    Hassan, B.; Piana, M.; Mousalli, G.; Saukkonen, H.; Hosima, T.; Kawa, T.

    2000-01-01

    This paper describes the implementation of a safeguards Tank Monitoring System (TAMS) in a Plutonium Conversion Plant (PCP). TAMS main objective is to provide the International Atomic Energy Agency (IAEA) (the Agency) with continuous data for safeguards evaluation and review of inventories and flows of plutonium solutions. It has been designed to monitor, in unattended mode, the inventory of each tank and transactions of solutions between tanks, as well as to confirm the absence of borrowing plutonium solutions from and to a neighboring reprocessing plant. The instrumentation consists of one electronic scanner that collects pressure data from electromanometers connected to the tank dip tubes, one uninterruptable power supply and one personal computer operating in a Windows-NT environment. The pressure data transmitted to the acquisition system is saved and converted to volume and density values, coupled with a graph capability to display events in each tank at intervals of 15 seconds. The system operation has not only strengthened the safeguards measures in PCP but also reduced inspection effort while minimizing intrusion to normal plant activities and radiation exposure to personnel. TAMS is a powerful, reliable tool that has significantly improved the effectiveness of safeguards implementation at PCP. The future combined use of TAMS with remote monitoring (RM) will further enhance efficiency of the safeguards measures at PCP. (author)

  7. Burst mode trigger of STEREO in situ measurements

    Science.gov (United States)

    Jian, L. K.; Russell, C. T.; Luhmann, J. G.; Curtis, D.; Schroeder, P.

    2013-06-01

    Since the launch of the STEREO spacecraft, the in situ instrument suites have continued to modify their burst mode trigger in order to optimize the collection of high-cadence magnetic field, solar wind, and suprathermal electron data. This report reviews the criteria used for the burst mode trigger and their evolution with time. From 2007 to 2011, the twin STEREO spacecraft observed 236 interplanetary shocks, and 54% of them were captured by the burst mode trigger. The capture rate increased remarkably with time, from 30% in 2007 to 69% in 2011. We evaluate the performance of multiple trigger criteria and investigate why some of the shocks were missed by the trigger. Lessons learned from STEREO are useful for future missions, because the telemetry bandwidth needed to capture the waveforms of high frequency but infrequent events would be unaffordable without an effective burst mode trigger.

  8. Stationary localized modes of the quintic nonlinear Schroedinger equation with a periodic potential

    International Nuclear Information System (INIS)

    Alfimov, G. L.; Konotop, V. V.; Pacciani, P.

    2007-01-01

    We consider localized modes (bright solitons) of the one-dimensional quintic nonlinear Schroedinger equation with a periodic potential, describing several mean-field models of low-dimensional condensed gases. In the case of attractive nonlinearity we deduce sufficient conditions for collapse. We show that there exist spatially localized modes with arbitrarily large numbers of particles. We study such solutions in the semi-infinite gap (attractive case) and in the first gap (attractive and repulsive cases), and show that a nonzero minimum value of the number of particles is necessary for a localized mode to be created. In the limit of large negative frequencies (attractive case) we observe quantization of the number of particles of the stationary modes. Such solutions can be interpreted as coupled Townes solitons and appear to be stable. The modes in the first gap have numbers of particles infinitely growing with frequencies approaching one of the gap edges, which is explained by the power decay of the modes. Stability of the localized modes is discussed

  9. Analytical solution for a strained reinforcement layer bonded to lip-shaped crack under remote mode Ⅲ uniform load and concentrated load

    Institute of Scientific and Technical Information of China (English)

    You-wen LIU; Chao XIE; Chun-zhi JIANG; Qi-hong FANG

    2010-01-01

    In this paper,the analytical solution of stress field for a strained reinforcement layer bonded to a lip-shaped crack under a remote mode Ⅲ uniform load and a concentrated load is obtained explicitly in the series form by using the technical of conformal mapping and the method of analytic continuation.The effects of material combinations,bond of interface and geometric configurations on interfacial stresses generated by eigenstrain,remote load and concentrated load are studied.The results show that the stress concentration and interfacial stresses can be reduced by rational material combinations and geometric configurations designs for different load forms.

  10. Technical presentation - KEITHLEY Instruments - CANCELLED

    CERN Multimedia

    FI Department

    2009-01-01

    10 March 2009 13:30 – 15:30, Council Chamber, Bldg. 503 Keithley markets highly accurate instruments and data acquisition products, as well as complete system solutions for high-volume production and assembly testing. Keithley Instruments, Inc. designs, develops, manufactures and markets complex electronic instruments and systems geared to the specialized needs of electronics manufacturers for high-performance production testing, process monitoring, product development and research. Products and Services: Digital Multimeters and Data Acquisition Systems Current / Voltage Source and Measure Products Low Current / High Resistance Measurement Products Function/Pulse/Arbitrary/Pattern Generators Low Voltage/Low Resistance Measurement Products RF Spectrum Analyzer / RF Signal Generator / RF Switching Semiconductor Device Characterization Program: Topic 1: Welcome and short overview of new Products SMU 26XXA / ARB Generator 3390 / DMM 3706 / E-Meter 6517B Topic 2a: Te...

  11. Automatic creation of Markov models for reliability assessment of safety instrumented systems

    International Nuclear Information System (INIS)

    Guo Haitao; Yang Xianhui

    2008-01-01

    After the release of new international functional safety standards like IEC 61508, people care more for the safety and availability of safety instrumented systems. Markov analysis is a powerful and flexible technique to assess the reliability measurements of safety instrumented systems, but it is fallible and time-consuming to create Markov models manually. This paper presents a new technique to automatically create Markov models for reliability assessment of safety instrumented systems. Many safety related factors, such as failure modes, self-diagnostic, restorations, common cause and voting, are included in Markov models. A framework is generated first based on voting, failure modes and self-diagnostic. Then, repairs and common-cause failures are incorporated into the framework to build a complete Markov model. Eventual simplification of Markov models can be done by state merging. Examples given in this paper show how explosively the size of Markov model increases as the system becomes a little more complicated as well as the advancement of automatic creation of Markov models

  12. Localized solutions for a nonlocal discrete NLS equation

    International Nuclear Information System (INIS)

    Ben, Roberto I.; Cisneros Ake, Luís; Minzoni, A.A.; Panayotaros, Panayotis

    2015-01-01

    We study spatially localized time-periodic solutions of breather type for a cubic discrete NLS equation with a nonlocal nonlinearity that models light propagation in a liquid crystal waveguide array. We show the existence of breather solutions in the limit where both linear and nonlinear intersite couplings vanish, and in the limit where the linear coupling vanishes with arbitrary nonlinear intersite coupling. Breathers of this nonlocal regime exhibit some interesting features that depart from what is seen in the NLS breathers with power nonlinearity. One property we see theoretically is the presence of higher amplitude at interfaces between sites with zero and nonzero amplitude in the vanishing linear coupling limit. A numerical study also suggests the presence of internal modes of orbitally stable localized modes. - Highlights: • Show existence of spatially localized solutions in nonlocal discrete NLS model. • Study spatial properties of localized solutions for arbitrary nonlinear nonlocal coupling. • Present numerical evidence that nonlocality leads to internal modes around stable breathers. • Present theoretical and numerical evidence for amplitude maxima at interfaces

  13. Localized solutions for a nonlocal discrete NLS equation

    Energy Technology Data Exchange (ETDEWEB)

    Ben, Roberto I. [Instituto de Desarrollo Humano, Universidad Nacional de General Sarmiento, J.M. Gutiérrez 1150, 1613 Los Polvorines (Argentina); Cisneros Ake, Luís [Department of Mathematics, ESFM, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos Edificio 9, 07738 México D.F. (Mexico); Minzoni, A.A. [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico); Panayotaros, Panayotis, E-mail: panos@mym.iimas.unam.mx [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico)

    2015-09-04

    We study spatially localized time-periodic solutions of breather type for a cubic discrete NLS equation with a nonlocal nonlinearity that models light propagation in a liquid crystal waveguide array. We show the existence of breather solutions in the limit where both linear and nonlinear intersite couplings vanish, and in the limit where the linear coupling vanishes with arbitrary nonlinear intersite coupling. Breathers of this nonlocal regime exhibit some interesting features that depart from what is seen in the NLS breathers with power nonlinearity. One property we see theoretically is the presence of higher amplitude at interfaces between sites with zero and nonzero amplitude in the vanishing linear coupling limit. A numerical study also suggests the presence of internal modes of orbitally stable localized modes. - Highlights: • Show existence of spatially localized solutions in nonlocal discrete NLS model. • Study spatial properties of localized solutions for arbitrary nonlinear nonlocal coupling. • Present numerical evidence that nonlocality leads to internal modes around stable breathers. • Present theoretical and numerical evidence for amplitude maxima at interfaces.

  14. Failure Mode and Effect Analysis in Increasing the Revenue of Emergency Department

    Directory of Open Access Journals (Sweden)

    Farhad Rahmati

    2015-02-01

    Full Text Available Introduction: Successful performance of emergency department(ED is one of the important indications of increasing the satisfaction among referees. The insurance of such successful performance is fiscal discipline and avoiding from non-beneficial activities in this department. Therefore, the increasing revenue of emergency department is one of the interested goals of hospital management system. According to above-mentioned, the researchers assessed problems lead to loss the revenue of ED and eliminate them by using failure mode and effects analysis (FMEA.Methods: This was the prospective cohort study performed during 18 months, set in 6 phases. In the first phase, the failures were determined and some solutions suggested to eliminate them. During 2-5 phases, based on the prioritizing the problems, solutions were performed. In the sixth phase, final assessment of the study was done. Finally, the feedback of system’s revenue was evaluated and data analyzed using repeated measure ANOVA.Results: Lack of recording the consuming instrument and attribution of separate codes for emergency services of hospitalized patients were the most important failures that lead to decrease the revenue of ED. Such elimination caused to 75.9% increase in revenue within a month (df = 1.6; F = 84.0; p<0.0001.  Totally, 18 months following the eliminating of failures caused to 328.2% increase in the revenue of ED (df = 15.9; F = 215; p<0.0001.Conclusion: The findings of the present study shows that failure mode and effect analysis, can be used as a safe and effected method to reduce the expenses of ED and increase its revenue.

  15. Regularized quasinormal modes for plasmonic resonators and open cavities

    Science.gov (United States)

    Kamandar Dezfouli, Mohsen; Hughes, Stephen

    2018-03-01

    Optical mode theory and analysis of open cavities and plasmonic particles is an essential component of optical resonator physics, offering considerable insight and efficiency for connecting to classical and quantum optical properties such as the Purcell effect. However, obtaining the dissipative modes in normalized form for arbitrarily shaped open-cavity systems is notoriously difficult, often involving complex spatial integrations, even after performing the necessary full space solutions to Maxwell's equations. The formal solutions are termed quasinormal modes, which are known to diverge in space, and additional techniques are frequently required to obtain more accurate field representations in the far field. In this work, we introduce a finite-difference time-domain technique that can be used to obtain normalized quasinormal modes using a simple dipole-excitation source, and an inverse Green function technique, in real frequency space, without having to perform any spatial integrations. Moreover, we show how these modes are naturally regularized to ensure the correct field decay behavior in the far field, and thus can be used at any position within and outside the resonator. We term these modes "regularized quasinormal modes" and show the reliability and generality of the theory by studying the generalized Purcell factor of dipole emitters near metallic nanoresonators, hybrid devices with metal nanoparticles coupled to dielectric waveguides, as well as coupled cavity-waveguides in photonic crystals slabs. We also directly compare our results with full-dipole simulations of Maxwell's equations without any approximations, and show excellent agreement.

  16. Mode and climatic factors effect on energy losses in transient heat modes of transmission lines

    Science.gov (United States)

    Bigun, A. Ya; Sidorov, O. A.; Osipov, D. S.; Girshin, S. S.; Goryunov, V. N.; Petrova, E. V.

    2018-01-01

    Electrical energy losses increase in modern grids. The losses are connected with an increase in consumption. Existing models of electric power losses estimation considering climatic factors do not allow estimating the cable temperature in real time. Considering weather and mode factors in real time allows to meet effectively and safely the consumer’s needs to minimize energy losses during transmission, to use electric power equipment effectively. These factors increase an interest in the evaluation of the dynamic thermal mode of overhead transmission lines conductors. The article discusses an approximate analytic solution of the heat balance equation in the transient operation mode of overhead lines based on the least squares method. The accuracy of the results obtained is comparable with the results of solving the heat balance equation of transient thermal mode with the Runge-Kutt method. The analysis of mode and climatic factors effect on the cable temperature in a dynamic thermal mode is presented. The calculation of the maximum permissible current for variation of weather conditions is made. The average electric energy losses during the transient process are calculated with the change of wind, air temperature and solar radiation. The parameters having the greatest effect on the transmission capacity are identified.

  17. Fermionic quasinormal modes for two-dimensional Horava-Lifshitz black holes

    Energy Technology Data Exchange (ETDEWEB)

    Stetsko, M.M. [Ivan Franko National University of Lviv, Department for Theoretical Physics, Lviv (Ukraine)

    2017-06-15

    To obtain fermionic quasinormal modes, the Dirac equation for two types of black holes is investigated. It is shown that two different geometries lead to distinctive types of quasinormal modes, while the boundary conditions imposed on the solutions in both cases are identical. For the first type of black hole, the quasinormal modes have continuous spectrum with negative imaginary part that provides the stability of perturbations. For the second type of the black hole, the quasinormal modes have a discrete spectrum and are completely imaginary. (orig.)

  18. Neural Network Substorm Identification: Enabling TREx Sensor Web Modes

    Science.gov (United States)

    Chaddock, D.; Spanswick, E.; Arnason, K. M.; Donovan, E.; Liang, J.; Ahmad, S.; Jackel, B. J.

    2017-12-01

    Transition Region Explorer (TREx) is a ground-based sensor web of optical and radio instruments that is presently being deployed across central Canada. The project consists of an array of co-located blue-line, full-colour, and near-infrared all-sky imagers, imaging riometers, proton aurora spectrographs, and GNSS systems. A key goal of the TREx project is to create the world's first (artificial) intelligent sensor web for remote sensing space weather. The sensor web will autonomously control and coordinate instrument operations in real-time. To accomplish this, we will use real-time in-line analytics of TREx and other data to dynamically switch between operational modes. An operating mode could be, for example, to have a blue-line imager gather data at a one or two orders of magnitude higher cadence than it operates for its `baseline' mode. The software decision to increase the imaging cadence would be in response to an anticipated increase in auroral activity or other programmatic requirements. Our first test for TREx's sensor web technologies is to develop the capacity to autonomously alter the TREx operating mode prior to a substorm expansion phase onset. In this paper, we present our neural network analysis of historical optical and riometer data and our ability to predict an optical onset. We explore the preliminary insights into using a neural network to pick out trends and features which it deems are similar among substorms.

  19. Piezoelectric Energy Harvesting Solutions

    Science.gov (United States)

    Caliò, Renato; Rongala, Udaya Bhaskar; Camboni, Domenico; Milazzo, Mario; Stefanini, Cesare; de Petris, Gianluca; Oddo, Calogero Maria

    2014-01-01

    This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions. PMID:24618725

  20. Surface vibrational modes in disk-shaped resonators.

    Science.gov (United States)

    Dmitriev, A V; Gritsenko, D S; Mitrofanov, V P

    2014-03-01

    The natural frequencies and distributions of displacement components for the surface vibrational modes in thin isotropic elastic disks are calculated. In particular, the research is focused on even solutions for low-lying resonant vibrations with large angular wave numbers. Several families of modes are found which are interpreted as modified surface modes of an infinitely long cylinder and Lamb modes of a plate. The results of calculation are compared with the results of the experimental measurements of vibrational modes generated by means of resonant excitation in duraluminum disk with radius of ≈90 mm and thickness of 16 mm in the frequency range of 130-200 kHz. An excellent agreement between the calculated and measured frequencies is found. Measurements of the structure of the resonant peaks show splitting of some modes. About a half of the measured modes has splitting Δfsplit/fmode at the level of the order of 10(-5). The Q-factors of all modes measured in vacuum lie in the interval (2…3)×10(5). This value is typical for duraluminum mechanical resonators in the ultrasonic frequency range. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Fingering patterns in magnetic fluids: Perturbative solutions and the stability of exact stationary shapes

    Science.gov (United States)

    Anjos, Pedro H. A.; Lira, Sérgio A.; Miranda, José A.

    2018-04-01

    We examine the formation of interfacial patterns when a magnetic liquid droplet (ferrofluid, or a magnetorheological fluid), surrounded by a nonmagnetic fluid, is subjected to a radial magnetic field in a Hele-Shaw cell. By using a vortex-sheet formalism, we find exact stationary solutions for the fluid-fluid interface in the form of n -fold polygonal shapes. A weakly nonlinear, mode-coupling method is then utilized to find time-evolving perturbative solutions for the interfacial patterns. The stability of such nonzero surface tension exact solutions is checked and discussed, by trying to systematically approach the exact stationary shapes through perturbative solutions containing an increasingly larger number of participating Fourier modes. Our results indicate that the exact stationary solutions of the problem are stable, and that a good matching between exact and perturbative shape solutions is achieved just by using a few Fourier modes. The stability of such solutions is substantiated by a linearization process close to the stationary shape, where a system of mode-coupling equations is diagonalized, determining the eigenvalues which dictate the stability of a fixed point.

  2. Piezoelectric transducer parameter selection for exciting a single mode from multiple modes of Lamb waves

    International Nuclear Information System (INIS)

    Zhang Hai-Yan; Yu Jian-Bo

    2011-01-01

    Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface-bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for the two transducer shapes, giving the responses of these transducers in Lamb wave fields. The analytical study is supported by a numerical simulation using the finite element method. Symmetric and antisymmetric components in the wave propagation responses are inspected in detail with respect to test parameters such as the transducer geometry, the length and the excitation frequency. By placing only one piezoelectric transducer on the top or the bottom surface of the plate and weakening the strength of one mode while enhancing the strength of the other modes to find the centre frequency, with which the peak wave amplitude ratio between the S0 and A0 modes is maximum, a single mode excitation from the multiple modes of the Lamb waves can be achieved approximately. Experimental data are presented to show the validity of the analyses. The results are used to optimize the Lamb wave detection system. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. Acoustic modes in dense dusty plasmas

    International Nuclear Information System (INIS)

    Avinash, K.; Bhattacharjee, A.; Hu, S.

    2002-01-01

    Properties of acoustic modes in high dust density dusty plasmas are studied. The solutions of fluid equations for electrons, ions, and dust grains with collisional and ionization effects are solved along with an equation for grain charging. The high dust density effects on the acoustic modes are interpreted in terms of a change in the screening properties of the grain charge. At low dust density, the grain charge is screened due to electrons and ions. However, at high dust density, the screening of the grain charge due to other grains also becomes important. This leads to a reduction of the phase-velocity, which in turn is shown to make the plasma more unstable at high dust density. In this regime the role of the ion acoustic mode is replaced by the charging mode. The relevance of these results to earlier theoretical studies and experimental results are discussed

  4. ON THE SOLAR ORIGIN OF THE SIGNAL AT 220.7 μHz: A POSSIBLE COMPONENT OF A g-MODE?

    International Nuclear Information System (INIS)

    Jimenez, A.; Garcia, R. A.

    2009-01-01

    Gravity modes in the Sun have been the object of a long and difficult search in recent decades. Thanks to the data accumulated with the last generation of instruments (BiSON, GONG, and three helioseismic instruments aboard the Solar and Heliospheric Observatory (SOHO)), scientists have been able to find signatures of their presence. However, the individual detection of such modes remains evasive. In this article, we study the signal at 220.7 μHz which is a peak that is present in most of the helioseismic data of the last 10 years. This signal has already been identified as being a component of a g-mode candidate detected in the GOLF Doppler velocity signal. The nature of this peak is studied in particular using the VIRGO/SPM instrument aboard SOHO. First we analyze all the available instrumental data of VIRGO and SOHO (housekeeping) to reject any possible instrumental origin. No relation was found, implying that the signal has a solar origin. Using Monte Carlo simulations, we find, with more than 99% confidence level, that the signal found in VIRGO/SPM is very unlikely to be due to pure noise.

  5. Resonant MHD modes with toroidal coupling

    International Nuclear Information System (INIS)

    Connor, J.W.; Hastie, R.J.; Taylor, J.B.

    1990-07-01

    This is part 2 of a study of resonant perturbations, such as resistive tearing and ballooning modes, in a torus. These are described by marginal ideal mhd equations in the regions between resonant surfaces; matching across these surfaces provides the dispersion relation. In part 1 we described how all the necessary information from the ideal mhd calculations could be represented by a so-called E-matrix. We also described the calculation of this E-matrix for tearing modes (even parity in perturbed magnetic field) in a large aspect ratio torus. There the toroidal modes comprise coupled cylinder tearing modes and the E-matrix is a generalization of the familiar Δ' quantity in a cylinder. In the present paper we discuss resistive ballooning, or twisting-modes, which have odd-parity in perturbed magnetic field. We show that, unlike the tearing modes, these odd-parity modes are instrinsically toroidal and are not directly related to the odd-parity modes in a cylinder. This is evident from the analysis of the high-n limit in ballooning-space, where a transition from a stable Δ' to an unstable Δ' occurs for the twisting mode when the ballooning effect exceeds the interchange effect, which can occur even at large aspect ratio (as in a tokamak). Analysis of the high-n limit in coordinate space, rather than ballooning space, clarifies this singular behaviour and indicates how one may define twisting-mode Δ'. It also yields a prescription for treating low-n twisting modes and a method for calculating an E-matrix for resistive ballooning modes in a large aspect ratio tokamak. The elements of this matrix are given in terms of cylindrical tearing mode solutions

  6. Nonlinear dynamics of a driven mode near marginal stability

    International Nuclear Information System (INIS)

    Berk, H.L.; Breizman, B.N.; Pekker, M.

    1995-09-01

    The nonlinear dynamics of a linearly unstable mode in a driven kinetic system is investigated to determine scaling of the saturated fields near the instability threshold. To leading order, this problem reduces to solving an integral equation with a temporally nonlocal cubic term. This equation can exhibit a self-similar solution that blows up in a finite time. When the blow-up occurs, higher nonlinearities become important and the mode saturates due to plateau formation arising from particle trapping in the wave. Otherwise, the simplified equation gives a regular solution that leads to a different saturation scaling reflecting the closeness to the instability threshold

  7. Conception d'instrument pour une mission d'observation haute resolution et grand champ

    Science.gov (United States)

    Fayret, Jean-Philippe; Gaudin-Delrieu, Catherine; Lamard, Jean-Luc; Devilliers, Christophe; Costes, Vincent

    2017-11-01

    The future Earth observation missions aim at delivering images with a high resolution and a large field of view. The PLEIADES mission, coming after the SPOT satellites, lead to enhance the resolution to submetric values with a swath over 20km. Panchromatic and multispectral images will be proposed. Starting with the mission requirements elaborated by the CNES, Alcatel Space Industries has conducted a study to identify the instrument concepts most suited to comply with these performance. In addition, to minimise the development costs, a mini satellite approach has been selected, leading to a compact concept for the instrument design. During the study, various detection techniques and the associated detectors have been investigated from classical pushbroom to supermode acquisition modes. For each of these options, different optical lay-outs were proposed and evaluated with respect to performance as well as interfaces requirements. Optical performance, mechanical design constraints and manufacturing processes were taken into account to assess the performances of the various solutions. Eventually the most promising concept was selected and a preliminary design study performed. This concept, based on a Korsch optical scheme associated with TDI detectors, complies with the mission requirements and allows for a wide number of possibilities of accommodation with a minisatellite class platform.

  8. Quasinormal modes of Schwarzschild black holes: Defined and calculated via Laplace transformation

    International Nuclear Information System (INIS)

    Nollert, H.; Schmidt, B.G.

    1992-01-01

    Quasinormal modes play a prominent role in the literature when dealing with the propagation of linearized perturbations of the Schwarzschild geometry. We show that space-time properties of the solutions of the perturbation equation imply the existence of a unique Green's function of the Laplace-transformed wave equation. This Green's function may be constructed from solutions of the homogeneous time-independent equation, which are uniquely characterized by the boundary conditions they satisfy. These boundary conditions are identified as the boundary conditions usually imposed for quasinormal-mode solutions. It turns out that solutions of the homogeneous equation exist which satisfy these boundary conditions at the horizon and at spatial infinity simultaneously, leading to poles of the Green's function. We therefore propose to define quasinormal-mode frequencies as the poles of the Green's function for the Laplace-transformed equation. On the basis of this definition a new technique for the numerical calculation of quasinormal frequencies is developed. The results agree with computations of Leaver, but not with more recent results obtained by Guinn, Will, Kojima, and Schutz

  9. Feasibility of creating a specialized reactimeter based on the inverse solution to kinetics equation with a current-mode neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Koshelev, A. S., E-mail: alexsander.coshelev@yandex.ru; Arapov, A. V.; Ovchinnikov, M. A. [Russian Federal Nuclear Center–All-Russian Research Institute of Experimental Physics (Russian Federation)

    2016-12-15

    The file-evaluation results of a reactimeter based on the inverse solution to the kinetics equation (ISKE) are presented, which were obtained using an operating hardware-measuring complex with a KNK-4 neutron detector working in the current mode. The processing of power-recording files of the BR-1M, BR-K1, and VIR-2M reactors of the Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, which was performed with the use of Excel simulation of the ISKE formalism, demonstrated the feasibility of implementation of the reactivity monitoring (during the operation of these reactors at stationary power) beginning from the level of ~5 × 10{sup –4}β{sub eff}.

  10. Characterizations of sugar ball in solution by SANS and NSE

    International Nuclear Information System (INIS)

    Funayama, Katsuya; Imae, Toyoko; Aoi, Keigo; Tsutsumiuchi, Kaname; Okada, Masahiko; Seto, Hideki; Nagao, Michihiro

    2001-01-01

    Overall static and dynamic characterizations of the dendrimer are expected to be modified through changing the internal and terminal chemical structures of the dendrimer. In the present study, the aqueous solutions of the fifth generation glycopeptide-type sugar ball at 1 and 10 wt% dendrimer concentrations, which show different small-angle neutron scattering profiles, were measured by neutron spin echo. The diffusion behaviors were found to depend on dendrimer concentration, as well as for the solutions of fifth generation poly (amido amine) dendrimer with hydroxyl terminals. A slow relaxation mode was obtained at high concentration but the fast and slow modes were at low concentration. It was concluded that the slow mode is translational diffusion of dendrimer and the fast one due to segment motion in dendrimer. Since the fast mode was found for both dendrimer solutions, that will be specific dynamics originated by amido-amine unit in dendrimer, which is common in both dendrimers. (author)

  11. Characterization of the Goubau line for testing beam diagnostic instruments

    Science.gov (United States)

    Kim, S. Y.; Stulle, F.; Sung, C. K.; Yoo, K. H.; Seok, J.; Moon, K. J.; Choi, C. U.; Chung, Y.; Kim, G.; Woo, H. J.; Kwon, J.; Lee, I. G.; Choi, E. M.; Chung, M.

    2017-12-01

    One of the main characteristics of the Goubau line is that it supports a low-loss, non-radiated surface wave guided by a dielectric-coated metal wire. The dominant mode of the surface wave along the Goubau line is a TM01 mode, which resembles the pattern of the electromagnetic fields induced in the metallic beam pipe when the charged particle beam passes through it. Therefore, the Goubau line can be used for the preliminary bench test and performance optimization of the beam diagnostic instruments without requiring charged particle beams from the accelerators. In this paper, we discuss the basic properties of the Goubau line for testing beam diagnostic instruments and present the initial test results for button-type beam position monitors (BPMs). The experimental results are consistent with the theoretical estimations, which indicates that Goubau line allows effective testing of beam diagnostic equipment.

  12. Interpretation and further properties of general classical CPsup(n-1) solutions

    International Nuclear Information System (INIS)

    Din, A.M.

    1980-11-01

    We present arguments suggesting that non-(anti)selfdual classical solutions to the equations of motion of the euclidean CPsup(n-1) model can be interpreted as unstable non-interacting mixtures of instantons and anti-instantons. Fermionic modes in the background of these solutions are discussed. We determine the modes explicitly for the case of an embedded O(3) solution and point out that they give rise to a non-trivial illustration of the Atiyah-Singer index theorem

  13. Instrument for measuring fuel cladding strain

    International Nuclear Information System (INIS)

    Billeter, T.R.

    1976-01-01

    Development work to provide instrumentation for the continuous measurement of strain of material specimens such as nuclear fuel cladding has shown that a microwave sensor and associated instrumentation hold promise. The cylindrical sensor body enclosing the specimen results in a coaxial resonator absorbing microwave energy at frequencies dependent upon the diameter of the specimen. Diametral changes of a microinch can be resolved with use of the instrumentation. Very reasonable values of elastic strain were measured at 75 0 F and 1000 0 F for an internally pressurized 20 percent C.W. 316 stainless steel specimen simulating nuclear fuel cladding. The instrument also indicated the creep strain of the same specimen pressurized at 6500 psi and at a temperature of 1000 0 F for a period of 700 hours. Although the indicated strain appears greater than actual, the sensor/specimen unit experienced considerable oxidation even though an inert gas purge persisted throughout the test duration. By monitoring at least two modes of resonance, the measured strain was shown to be nearly independent of sensor temperature. To prevent oxidation, a second test was performed in which the specimen/sensor units were contained in an evacuated enclosure. The strain of the two prepressurized specimens as indicated by the microwave instrumentation agreed very closely with pre- and post-test measurements obtained with use of a laser interferometer

  14. Gearbox Instrumentation for the Investigation of Bearing Axial Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lambert, Scott R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-27

    Failures in gearbox bearings have been the primary source of reliability issues for wind turbine drivetrains, leading to costly downtime and unplanned maintenance. The most common failure mode is attributed to so-called axial cracks or white-etching cracks, which primarily affect the intermediate and high-speed-stage bearings. The high-speed-shaft and bearing loads and sliding will be measured with a specially instrumented gearbox installed in a 1.5-megawatt turbine at the National Wind Technology Center in an upcoming test campaign. Additional instrumentation will also measure the tribological environment of these bearings, including bearing temperatures, lubricant temperature and water content, air temperature and humidity, and stray electrical current across the bearings. This paper fully describes the instrumentation package and summarizes initial results.

  15. The use of ultrasonic instrumentation in liquid/liquid extraction plant

    International Nuclear Information System (INIS)

    Asher, R.C.; Bradshaw, L.; Tolchard, A.C.

    1984-01-01

    Ultrasonic instruments can be used to determine many of the parameters of interest in a liquid/liquid extraction plant, eg liquid levels, the position of interfaces between immiscible liquids and the concentration of solutions. The determinations can often be made non-invasively. A number of instruments developed for a liquid/liquid extraction plant used for nuclear fuel reprocessing is described. These instruments have a wider application in liquid/liquid extraction plant in general. (author)

  16. Operating modes of superconducting tunnel junction device

    Energy Technology Data Exchange (ETDEWEB)

    Maehata, Keisuke [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1998-07-01

    In the Electrotechnical Laboratory, an Nb type superconducting tunnel junction (STJ) device with 200 x 200 sq. micron in area and super high quality was manufactured. By using 55-fe source, response of this large area STJ to X-ray was measured. In this measurement, two action modes with different output wave height from front amplifier were observed. Then, in this study, current-voltage feature of the element in each action mode was analyzed to elucidate a mechanism to form such two action modes. The feature was analyzed by using first order approximate solution on cavity resonance mode of Sine-Gordon equation. From the analytical results, it could be supposed that direction and magnitude of effective magnetic field penetrating into jointed area changed by an induction current effect owing to impressing speed of the magnetic field, which brings two different current-voltage features to make possible to observe two action modes with different pulse wave height. (G.K.)

  17. Quasiadiabatic modes from viscous inhomogeneities

    CERN Document Server

    Giovannini, Massimo

    2016-04-20

    The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose amplitude must be sufficiently small since curvature perturbations are observed to be predominantly adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the problem in a gauge-invariant perturbative expansion, the same analysis is repeated at a non-perturbative level by investigating the nonlinear curvature inhomogeneities induced by the spatial variation of the viscous coefficients. It is demonstrated that the quasiadiabatic modes are suppressed in comparison with a bona fide adiabatic solution. Because of its anomalously large tensor to scalar ratio the quasiadiabatic mode cannot be a substitute for the conventional adiabatic paradigm so that, ultimately, the present findings seems to exclude the possibility of a successful accelerated dynamics solely...

  18. LUPIN, a new instrument for pulsed neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Caresana, M. [Politecnico di Milano, Department of Energy, Via Ponzio 34/3, 20133 Milan (Italy); Ferrarini, M. [Politecnico di Milano, Department of Energy, Via Ponzio 34/3, 20133 Milan (Italy); CNAO, Via Privata Campeggi, 27100 Pavia (Italy); Manessi, G.P., E-mail: giacomo.paolo.manessi@cern.ch [CERN, 1211 Geneva 23 (Switzerland); University of Liverpool, Department of Physics, L69 7ZE Liverpool (United Kingdom); Silari, M. [CERN, 1211 Geneva 23 (Switzerland); Varoli, V. [Politecnico di Milano, Department of Energy, Via Ponzio 34/3, 20133 Milan (Italy)

    2013-06-01

    A number of studies focused in the last decades on the development of survey meters to be used in pulsed radiation fields. This is a topic attracting widespread interest for applications such as radiation protection and beam diagnostics in accelerators. This paper describes a new instrument specifically conceived for applications in pulsed neutron fields (PNF). The detector, called LUPIN, is a rem counter type instrument consisting of a {sup 3}He proportional counter placed inside a spherical moderator. It works in current mode with a front-end electronics consisting of a current–voltage logarithmic amplifier, whose output signal is acquired with an ADC and processed on a PC. This alternative signal processing allows the instrument to be used in PNF without being affected by saturation effects. Moreover, it has a measurement capability ranging over many orders of burst intensity. Despite the fact that it works in current mode, it can measure a single neutron interaction. The LUPIN was first calibrated in CERN's calibration laboratory with a PuBe source. Measurements were carried out under various experimental conditions at the Helmholtz-Zentrum in Berlin, in the stray field at various locations of the CERN Proton Synchrotron complex and around a radiotherapy linear accelerator at the S. Raffaele hospital in Milan. The detector can withstand single bursts with values of H⁎(10) up to 16 nSv/burst without showing any saturation effect. It efficiently works in pulsed stray fields, where a conventional rem-counter underestimates by a factor of 2. It is also able to reject the very intense and pulsed photon contribution that often accompanies the neutron field with good reliability. -- Highlights: ► LUPIN is a new detector specifically conceived to work in neutron pulsed fields. ► The detector is a rem counter type instrument working in current mode. ► The performances of the detectors were studied under various experimental conditions. ► The detector

  19. PASSCAL Instrument Center Support for Cryoseismology: Methodologies, Challenges, Development and Instrumentation

    Science.gov (United States)

    Beaudoin, B. C.; Anderson, K. R.; Bilek, S. L.; Carpenter, P.; Childs, D.; Chung, P.; Huerta, A. D.; Lingutla, N.; Nikolaus, K.; Winberry, J. P.

    2017-12-01

    Remote portable seismic stations are, in most cases, constrained by logistics and cost. High latitude operations introduce environmental, technical and logistical challenges that require substantially more engineering work to ensure robust, high quality data return. Since 2006, IRIS PASSCAL has been funded by NSF to develop, deploy, and maintain a pool of polar specific seismic stations. At roughly the same time, PASSCAL began supporting experiments specifically targeting glacier dynamics such as the mechanisms of subglacial hydrology, basal shear stress, ice stream stick slip mechanisms, and glacier seismicity. Although much of the development for high-latitude deployments was directly applicable to cryoseismology, these new experiments introduced a unique series of challenges including high ablation, standing water, and moving stations. Our polar development objectives have focused on: Reducing station power requirements, size and weight; Extending the operational temperature of a station; Simplifying logistics; Engineering solutions that are cost effective, manufacturable, serviceable and reusable; And, developing high-latitude communications for both state-of-health and data transmission. To these ends, PASSCAL continues testing new power storage technology, refining established power systems for lighter and smaller power banks, and exploring telemetry solutions to increase high-bandwidth communication options and abilities for remote seismic stations. Further enhancing PASSCAL's ability to support cryoseismology is a recent NSF funded collaborative effort lead by Central Washing University joined by IRIS and New Mexico Tech to build a Geophysical Earth Observatory for Ice Covered Environments (GEOICE). The GEOICE instrument, power system and other integrated ancillary components are designed to require minimal installation time and logistical load (i.e., size and weight), while maximizing ease-of-use in the field and optimizing costs of instrumentation and

  20. Defense against common-mode failures in protection system design

    International Nuclear Information System (INIS)

    Wyman, R.H.; Johnson, G.L.

    1998-01-01

    The introduction of digital instrumentation and control into reactor safety systems creates a heightened concern about common-mode failure. This paper discusses the concern and methods of cope with the concern. Common-mode failures have been a 'fact-of-life' in existing systems. The informal introduction of defense-in-depth and diversity (D-in-D and D) - coupled with the fact that hardware common-mode failures are often distributed in time - has allowed systems to deal with past common-mode failures. However, identical software operating in identical redundant systems presents the potential for simultaneous failure. Consequently, the use of digital systems raises the concern about common-mode failure to a new level. A more methodical approach to mitigating common-mode failure is needed to address these concerns. Purposeful introduction of D-in-D and D has been used as a defense against common-mode failure in reactor protection systems. At least two diverse systems are provided to mitigate any potential initiating event. Additionally, diverse displays and controls are provided to allow the operator to monitor plant status and manually initiate engineered safety features. A special form of common-mode failure analysis called 'defense-in-depth and diversity analysis' has been developed to identify possible common-mode failure vulnerabilities in digital systems. An overview of this analysis technique is provided. (author)

  1. Defense against common-mode failures in protection system design

    International Nuclear Information System (INIS)

    Wyman, R.H.; Johnson, G.L.

    1997-01-01

    The introduction of digital instrumentation and control into reactor safety systems creates a heightened concern about common-mode failure. This paper discusses the concern and methods to cope with the concern. Common-mode failures have been a ''fact-of-life'' in existing systems. The informal introduction of defense-in-depth and diversity (D-in-D ampersand D)-coupled with the fact that hardware common-mode failures are often distributed in time-has allowed systems to deal with past common-mode failures. However, identical software operating in identical redundant systems presents the potential for simultaneous failure. Consequently, the use of digital systems raises the concern about common-mode failure to a new level. A more methodical approach to mitigating common-mode failure is needed to address these concerns. Purposeful introduction of D-in-D ampersand D has been used as a defense against common-mode failure in reactor protection systems. At least two diverse systems are provided to mitigate any potential initiating event. Additionally, diverse displays and controls are provided to allow the operator to monitor plant status and manually initiate engineered safety features. A special form of conimon-mode failure analysis called ''defense-in-depth and diversity analysis'' has been developed to identify possible conimon-mode failure vulnerabilities in digital systems. An overview of this analysis technique is provided

  2. WaveOne Rotary Instruments after Clinical Use.

    Science.gov (United States)

    Shen, Ya; Coil, Jeffrey M; Mo, Anthony John; Wang, Zhejun; Hieawy, Ahmed; Yang, Yan; Haapasalo, Markus

    2016-02-01

    The purpose of this study was to evaluate the incidence and mode of WaveOne (Dentsply Tulsa Dental Specialties, Tulsa, OK) instrument defects after single use at different endodontic clinics. A total of 438 WaveOne instruments were collected after clinical use from the 4 specialist clinics over a 12-month period and from 1 graduate program over a 20-month period. The incidence and type of instrument defects were analyzed. The lateral surfaces of part of the defective instruments and fracture surfaces of fractured files were examined using scanning electron microscopy. Unused and clinically used files were examined by a nanoindentation test. Of the 438 WaveOne instruments collected, 42 (9.6%) had defects: 40 (9.1%) were distorted and 2 (0.5%) files had fractured, 1 Small and 1 Primary file. Clear differences in the frequency of defects were found among the 3 file sizes; the occurrence of distortion and fracture were highest with the Small file (21.2% and 0.7%, respectively) followed by the Primary file (4.4% and 0.4%, respectively) (P Instruments from various clinics showed no significantly different occurrence of instrument deformation. Unwinding occurred at 1.2-3.1 mm from the tip. No significant difference in nanohardness was detected among unused and used instruments. The risk of WaveOne fracture is very low when files are singly used by endodontists and residents. Unwinding of the files occurred most frequently in the Small file. The frequency of defects of WaveOne instruments were not influenced by the operator. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Ion temperature gradient mode driven solitons and shocks

    Science.gov (United States)

    Zakir, U.; Adnan, Muhammad; Haque, Q.; Qamar, Anisa; Mirza, Arshad M.

    2016-04-01

    Ion temperature gradient (ITG) driven solitons and shocks are studied in a plasma having gradients in the equilibrium number density and equilibrium ion temperature. In the linear regime, it is found that the ion temperature and the ratio of the gradient scale lengths, ηi=Ln/LT , affect both the real frequency and the growth rate of the ITG driven wave instability. In the nonlinear regime, for the first time we derive a Korteweg de Vries-type equation for the ITG mode, which admits solitary wave solution. It is found that the ITG mode supports only compressive solitons. Further, it is noticed that the soliton amplitude and width are sensitive to the parameter ηi=Ln/LT . Second, in the presence of dissipation in the system, we obtain a Burger type equation, which admits the shock wave solution. This work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron-ion plasma having density and ion temperature gradients. For illustration, the model has been applied to tokamak plasma.

  4. Scaffolding Mathematical Modelling with a Solution Plan

    Science.gov (United States)

    Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner

    2015-01-01

    In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…

  5. Heterogeneous Silicon III-V Mode-Locked Lasers

    Science.gov (United States)

    Davenport, Michael Loehrlein

    Mode-locked lasers are useful for a variety of applications, such as sensing, telecommunication, and surgical instruments. This work focuses on integrated-circuit mode-locked lasers: those that combine multiple optical and electronic functions and are manufactured together on a single chip. While this allows production at high volume and lower cost, the true potential of integration is to open applications for mode-locked laser diodes where solid state lasers cannot fit, either due to size and power consumption constraints, or where small optical or electrical paths are needed for high bandwidth. Unfortunately, most high power and highly stable mode-locked laser diode demonstrations in scientific literature are based on the Fabry-Perot resonator design, with cleaved mirrors, and are unsuitable for use in integrated circuits because of the difficulty of producing integrated Fabry-Perot cavities. We use silicon photonics and heterogeneous integration with III-V gain material to produce the most powerful and lowest noise fully integrated mode-locked laser diode in the 20 GHz frequency range. If low noise and high peak power are required, it is arguably the best performing fully integrated mode-locked laser ever demonstrated. We present the design methodology and experimental pathway to realize a fully integrated mode-locked laser diode. The construction of the device, beginning with the selection of an integration platform, and proceeding through the fabrication process to final optimization, is presented in detail. The dependence of mode-locked laser performance on a wide variety of design parameters is presented. Applications for integrated circuit mode-locked lasers are also discussed, as well as proposed methods for using integration to improve mode-locking performance to beyond the current state of the art.

  6. Microspectrometers: an industry and instrumentation overview

    Science.gov (United States)

    Neece, Gregory A.

    2008-08-01

    Microspectrometers, miniature spectrometers, portable spectrometers, or Fiber Optic Spectrometers are some of the names typically given to the class small spectrometers that are derived from simple, fixed optics, and low cost detector arrays. The author will use these terms interchangeably. This class of instrument has been available for over 18 years, gaining industry acceptance with each year. From a very basic optical platform to sophisticated instrumentation for scientific investigation and process control, this class of instrument has evolved substantially since its introduction to the market. For instance it is now possible to cover the range from 200 - 2,500 nm utilizing only two channels of spectrometers with either synchronous or asynchronous channel control. On board processing and memory have enabled the instruments to become fully automated, stand alone sensors communicating with their environment via analog, digital, USB2 and even wireless protocols. New detectors have entered the market enabling solutions "tuned" to the demands of specific applications.

  7. Measurement and control in solution mining of copper and uranium

    International Nuclear Information System (INIS)

    Davidson, D.H.; Huff, R.V.; Sonstelie, W.E.

    1978-01-01

    The solution mining of deep-lying mineral deposits requires an integration of oilfield and extractive mineral technology. Although instrumentation is available to measure parameters relating to the oilfield components such as permeability, porosity and flow-logging, only limited services exist for monitoring leaching performance. This paper discusses the history of copper leaching, the need for solution mining development, and solution mining process descriptions. It discusses measurement requirements for deposit evaluation and the injection and production wellfields. It is concluded with a listing of desirable but unavailable instrumentation for further development of this technology

  8. Requirements and design reference mission for the WFIRST/AFTA coronagraph instrument

    Science.gov (United States)

    Demers, Richard T.; Dekens, Frank; Calvet, Rob; Chang, Zensheu; Effinger, Robert; Ek, Eric; Hovland, Larry; Jones, Laura; Loc, Anthony; Nemati, Bijan; Noecker, Charley; Neville, Timothy; Pham, Hung; Rud, Mike; Tang, Hong; Villalvazo, Juan

    2015-09-01

    The WFIRST-AFTA coronagraph instrument takes advantage of AFTAs 2.4-meter aperture to provide novel exoplanet imaging science at approximately the same instrument cost as an Explorer mission. The AFTA coronagraph also matures direct imaging technologies to high TRL for an Exo-Earth Imager in the next decade. The coronagraph Design Reference Mission (DRM) optical design is based on the highly successful High Contrast Imaging Testbed (HCIT), with modifications to accommodate the AFTA telescope design, service-ability, volume constraints, and the addition of an Integral Field Spectrograph (IFS). In order to optimally satisfy the three science objectives of planet imaging, planet spectral characterization and dust debris imaging, the coronagraph is designed to operate in two different modes: Hybrid Lyot Coronagraph or Shaped Pupil Coronagraph. Active mechanisms change pupil masks, focal plane masks, Lyot masks, and bandpass filters to shift between modes. A single optical beam train can thus operate alternatively as two different coronagraph architectures. Structural Thermal Optical Performance (STOP) analysis predicts the instrument contrast with the Low Order Wave Front Control loop closed. The STOP analysis was also used to verify that the optical/structural/thermal design provides the extreme stability required for planet characterization in the presence of thermal disturbances expected in a typical observing scenario. This paper describes the instrument design and the flow down from science requirements to high level engineering requirements.

  9. Requirements and Design Reference Mission for the WFIRST-AFTA Coronagraph Instrument

    Science.gov (United States)

    Demers, Richard T.; Dekens, Frank; Calvet, Rob; Chang, Zensheu; Effinger, Robert; Ek, Eric; Hovland, Larry; Jones, Laura; Loc, Anthony; Nemati, Bijan; hide

    2015-01-01

    The WFIRST-AFTA coronagraph instrument take s advantage of AFTA s 2.4 -meter aperture to provide novel exoplanet imaging science at approximately the same instrument cost as an Explorer mission. The AFTA coronagraph also matures direct imaging technologies to high TRL for an Exo-Earth Imager in the next decade. The coronagraph Design Reference Mission (DRM) optical design is based on the highly successful High Contrast Imaging Testbed (HCIT), with modifications to accommodate the AFTA telescope design, service-ability, volume constraints, and the addition of an Integral Field Spectrograph (IFS). In order to optimally satisfy the three science objectives of planet imaging, planet spectral characterization and dust debris imaging, the coronagraph is designed to operate in two different modes : Hybrid Lyot Coronagraph or Shaped Pupil Coronagraph. Active mechanisms change pupil masks, focal plane masks, yot masks, and bandpass filters to shift between modes. A single optical beam train can thus operate alternatively as two different coronagraph architecture s. Structural Thermal Optical Performance (STOP) analysis predict s the instrument contrast with the Low Order Wave Front Control loop closed. The STOP analysis was also used to verify that the optical/structural/thermal design provides the extreme stability required for planet characterization in the presence of thermal disturbances expected in a typical observing scenario. This paper describes the instrument design and the flow down from science requirements to high level engineering requirements.

  10. Wall compliance and violin cavity modes.

    Science.gov (United States)

    Bissinger, George

    2003-03-01

    Violin corpus wall compliance, which has a substantial effect on cavity mode frequencies, was added to Shaw's two-degree-of-freedom (2DOF) network model for A0 ("main air") and A1 (lowest length mode included in "main wood") cavity modes. The 2DOF model predicts a V(-0.25) volume dependence for A0 for rigid violin-shaped cavities, to which a semiempirical compliance correction term, V(-x(c)) (optimization parameter x(c)) consistent with cavity acoustical compliance and violin-based scaling was added. Optimizing x(c) over A0 and A1 frequencies measured for a Hutchins-Schelleng violin octet yielded x(c) approximately 0.08. This markedly improved A0 and A1 frequency predictions to within approximately +/- 10% of experiment over a range of about 4.5:1 in length, 10:1 in f-hole area, 3:1 in top plate thickness, and 128:1 in volume. Compliance is a plausible explanation for A1 falling close to the "main wood" resonance, not increasingly higher for the larger instruments, which were scaled successively shorter compared to the violin for ergonomic and practical reasons. Similarly incorporating compliance for A2 and A4 (lowest lower-/upper-bout modes, respectively) improves frequency predictions within +/-20% over the octet.

  11. Laser modes as an eigenfunction of an operator equation

    International Nuclear Information System (INIS)

    Ripper, J.E.; Campos, M.D.; Pudensi, M.A.A.

    A new method is proposed of arriving to an approximate solution into mode problems which cannot be treated by the traditional methods. Basically the idea is to treat the laser mode as an eigenfunction of an operator equation so that the mathematical methods developed to treat the wave equations in quantum mechanics can be used as tools to solve the equation. (L.C.) [pt

  12. Microprocessor-controlled data-acquisition instrument for neutron-activation measurements

    International Nuclear Information System (INIS)

    Jones, B.A.

    1981-01-01

    This paper describes a microprocessor controlled data acquisition instrument designed at Lawrence Livermore National Laboratory to provide experimenters with a diagnostic tool for measuring the performance of laser imploded fusion targets via neutron activation techniques. This instrument features the ability to count four independent inputs simultaneously while providing a front panel readout of these inputs, plus a time of day clock. A hardcopy printout of the data is also provided by a built-in thermal printer. All running modes and parameters are user selectable via a front panel keypad, and a complete set of internal self-testing diagnostics are available for debug

  13. Electron eigen-oscillations and ballistic modes of a stable plasma

    International Nuclear Information System (INIS)

    Jungwirth, K.

    1976-01-01

    The relation between plasma responses to singular and regular initial perturbations is established. Time scaling is introduced to separate time intervals for which eigen-oscillations (Landau solution) are dominant from such where ballistic modes prevail. The enhanced role is demonstrated of the ballistic modes for an initially perturbed field-free plasma including the phenomenon of plasma wave echoes. (author)

  14. System 80+ instrumentation and controls - certification of a reliable design

    International Nuclear Information System (INIS)

    Matzie, R.A.; Scarola, K.; Turk, R.S.

    1993-01-01

    ABB Combustion Engineering's (ABB) System 80+ advanced light water plant design includes a modern, fully digitized instrumentation and controls complex, Nuplex 80+. This complex incorporates an evolutionary advanced control room, replacing conventional analog instruments with more capable computer driven components. As a result, Nuplex 80+ results in significant improvements in operator information handling and control to enhance plant safety and availability. The design implements features which the U.S. NRC has determined to be acceptable for addressing the potential for common mode failure in software implemented for protective functions. (author)

  15. Voltage quality: solutions of desensitization; Qualite de la tension: les solutions de desensibilisation

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-10-01

    The occurrence of voltage drops and cuts can lead to major malfunctions in electrical installations with sometimes important economical impacts. Thus, the use of solutions of desensitization are needed to avoid such disturbances. This technical paper gives a summary of the basic solutions elaborated by Electricite de France (EdF) with the participation of electrical engineering associations in order to solve the problems encountered in existing installations and to provide specifications for the newly designed installations: the desensitization process (origin of voltage drops, solutions, costs), the diagnosis of industrial installations (identification, quantitative analysis and recording of disturbances, complementary informations, causes, economical impact, solutions, costs, remedial action), the general and specific solutions of desensitization (instrumentation and control systems, switches, relays, motors, speed regulators and variators), specific solutions for computerized and electronic systems, and the role of batteries. (J.S.)

  16. Destabilization of low-n peeling modes by trapped energetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Hao, G. Z.; Wang, A. K.; Mou, Z. Z.; Qiu, X. M. [Southwestern Institute of Physics, PO Box 432, Chengdu 610041 (China); Liu, Y. Q. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Matsunaga, G. [Japan Atomic Energy Agency, 801-1, Mukouyama, Naka, Ibaraki 311-0193 (Japan); Okabayashi, M. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543-0451 (United States)

    2013-06-15

    The kinetic effect of trapped energetic particles (EPs), arising from perpendicular neutral beam injection, on the stable low-n peeling modes in tokamak plasmas is investigated, through numerical solution of the mode's dispersion relation derived from an energy principle. A resistive-wall peeling mode with m/n=6/1, with m and n being the poloidal and toroidal mode numbers, respectively, is destabilized by trapped EPs as the EPs' pressure exceeds a critical value β{sub c}{sup *}, which is sensitive to the pitch angle of trapped EPs. The dependence of β{sub c}{sup *} on the particle pitch angle is eventually determined by the bounce average of the mode eigenfunction. Peeling modes with higher m and n numbers can also be destabilized by trapped EPs. Depending on the wall distance, either a resistive-wall peeling mode or an ideal-kink peeling mode can be destabilized by EPs.

  17. Nuclear instrumentation for the industrial measuring systems

    International Nuclear Information System (INIS)

    Normand, S.

    2010-01-01

    This work deals with nuclear instrumentation and its application to industry, power plant fuel reprocessing plant and finally with homeland security. The first part concerns the reactor instrumentation, in-core and ex-core measurement system. Ionization Uranium fission chamber will be introduced with their acquisition system especially Campbell mode system. Some progress have been done on regarding sensors failure foresee. The second part of this work deals with reprocessing plant and associated instrumentation for nuclear waste management. Proportional counters techniques will be discussed, especially Helium-3 counter, and new development on electronic concept for reprocessing nuclear waste plant (one electronic for multipurpose acquisition system). For nuclear safety and security for human and homeland will be introduce. First we will explain a new particular approach on operational dosimetric measurement and secondly, we will show new kind of organic scintillator material and associated electronics. Signal treatment with real time treatment is embedded, in order to make neutron gamma discrimination possible even in solid organic scintillator. Finally, the conclusion will point out future, with most trends in research and development on nuclear instrumentation for next years. (author) [fr

  18. Neutron spin echo spectroscopy. Its application to the study of the dynamics of polymers in solution

    International Nuclear Information System (INIS)

    Papoular, Robert

    1992-06-01

    This work focuses on Neutron Spin Echo (NSE) spectroscopy and on the NSE spectrometer MESS, which we have built at the L.L.B. (CE Saclay). After analyzing in detail the classical and quantum principles of this type of instrument, and illustrated them with optical analogies, we expound a simple formalism for the interpretation of polarized neutron experiments of the most general type. In a second part, we describe the MESS spectrometer extensively; its characteristics and performances as well as the first results obtained with this instrument. In particular, we include two papers showing how the neutron depolarization, spin rotation and echoes can be used to investigate high-Tc superconductors. The last part deals with the dynamics of Polymer-Polymer-Solvent ternary solutions and demonstrates how the Neutron Spin Echo technique becomes a privileged tool for such physico-chemical studies thanks to the joint use of NSE and contrast variation methods, coupled with the adequate ranges of time and scattering vectors accessible. Finally, we describe the specific case of partially deuterated polydimethyl-siloxane (PDMS) in semi-dilute solution in Toluene. We have experimentally and separately evidenced the cooperative and inter-diffusive diffusion modes predicted by the theory of Akcasu, Benoit, Benmouna et al. These results, obtained at the L.L.B. (CE Saclay) are the subject matter of the last paper included in this work. (author) [fr

  19. Multiresonance modes in sine–Gordon brane models

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, W.T., E-mail: wilamicruz@gmail.com [Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Campus Juazeiro do Norte, 63040-540 Juazeiro do Norte-Ceará (Brazil); Maluf, R.V., E-mail: r.v.maluf@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza - CE, C.P. 6030, 60455-760 (Brazil); Dantas, D.M., E-mail: davi@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza - CE, C.P. 6030, 60455-760 (Brazil); Almeida, C.A.S., E-mail: carlos@fisica.ufc.br [Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici, Fortaleza - CE, C.P. 6030, 60455-760 (Brazil)

    2016-12-15

    In this work, we study the localization of the vector gauge field in two five-dimensional braneworlds generated by scalar fields coupled to gravity. The sine–Gordon like potentials are employed to produce different thick brane setups. A zero mode localized is obtained, and we show the existence of reverberations with the wave solutions indicating a quasi-localized massive mode. More interesting results are achieved when we propose a double sine–Gordon potential to the scalar field. The resulting thick brane shows a more detailed topology with the presence of an internal structure composed by two kinks. The massive spectrum of the gauge field is revalued on this scenario revealing the existence of various resonant modes. Furthermore, we compute the corrections to Coulomb law coming from these massive KK vector modes in these thick scenarios, which is concluded that the dilaton parameter regulates these corrections.

  20. Multiresonance modes in sine–Gordon brane models

    International Nuclear Information System (INIS)

    Cruz, W.T.; Maluf, R.V.; Dantas, D.M.; Almeida, C.A.S.

    2016-01-01

    In this work, we study the localization of the vector gauge field in two five-dimensional braneworlds generated by scalar fields coupled to gravity. The sine–Gordon like potentials are employed to produce different thick brane setups. A zero mode localized is obtained, and we show the existence of reverberations with the wave solutions indicating a quasi-localized massive mode. More interesting results are achieved when we propose a double sine–Gordon potential to the scalar field. The resulting thick brane shows a more detailed topology with the presence of an internal structure composed by two kinks. The massive spectrum of the gauge field is revalued on this scenario revealing the existence of various resonant modes. Furthermore, we compute the corrections to Coulomb law coming from these massive KK vector modes in these thick scenarios, which is concluded that the dilaton parameter regulates these corrections.

  1. Robust output LQ optimal control via integral sliding modes

    CERN Document Server

    Fridman, Leonid; Bejarano, Francisco Javier

    2014-01-01

    Featuring original research from well-known experts in the field of sliding mode control, this monograph presents new design schemes for implementing LQ control solutions in situations where the output system is the only information provided about the state of the plant. This new design works under the restrictions of matched disturbances without losing its desirable features. On the cutting-edge of optimal control research, Robust Output LQ Optimal Control via Integral Sliding Modes is an excellent resource for both graduate students and professionals involved in linear systems, optimal control, observation of systems with unknown inputs, and automatization. In the theory of optimal control, the linear quadratic (LQ) optimal problem plays an important role due to its physical meaning, and its solution is easily given by an algebraic Riccati equation. This solution turns out to be restrictive, however, because of two assumptions: the system must be free from disturbances and the entire state vector must be kn...

  2. Examination of the 'web mode effect'

    DEFF Research Database (Denmark)

    Clement, Sanne Lund; Shamshiri-Petersen, Ditte

    Declining response rates is one of the most significant challenges for survey based research today. Seen in isolation, traditional interviewer based data collection methods are still the most effective but also the most expensive, especially the greater difficulty in gaining responses taken...... into account. As a solution, mixed-mode designs have been employed as a way to achieve higher response rates, while keeping the overall costs low. In particular, the use of web based surveys has expanded considerably during the last few years, both as a single data collection method and as a component in mixed...... with telephone surveys, not enabling determination of a “web mode effect”. In this case, differences might as well be due to differences between self-administered and interviewer-administered collection methods. Other parts of literature on mixed-mode design including a web option are using stratified sampling...

  3. Using XML and Java for Astronomical Instrumentation Control

    Science.gov (United States)

    Ames, Troy; Koons, Lisa; Sall, Ken; Warsaw, Craig

    2000-01-01

    Traditionally, instrument command and control systems have been highly specialized, consisting mostly of custom code that is difficult to develop, maintain, and extend. Such solutions are initially very costly and are inflexible to subsequent engineering change requests, increasing software maintenance costs. Instrument description is too tightly coupled with details of implementation. NASA Goddard Space Flight Center is developing a general and highly extensible framework that applies to any kind of instrument that can be controlled by a computer. The software architecture combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML), a human readable and machine understandable way to describe structured data. A key aspect of the object-oriented architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). ]ML is used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, and communication mechanisms. Although the current effort is targeted for the High-resolution Airborne Wideband Camera, a first-light instrument of the Stratospheric Observatory for Infrared Astronomy, the framework is designed to be generic and extensible so that it can be applied to any instrument.

  4. VINCI: the VLT Interferometer commissioning instrument

    Science.gov (United States)

    Kervella, Pierre; Coudé du Foresto, Vincent; Glindemann, Andreas; Hofmann, Reiner

    2000-07-01

    The Very Large Telescope Interferometer (VLTI) is a complex system, made of a large number of separated elements. To prepare an early successful operation, it will require a period of extensive testing and verification to ensure that the many devices involved work properly together, and can produce meaningful data. This paper describes the concept chosen for the VLTI commissioning instrument, LEONARDO da VINCI, and details its functionalities. It is a fiber based two-way beam combiner, associated with an artificial star and an alignment verification unit. The technical commissioning of the VLTI is foreseen as a stepwise process: fringes will first be obtained with the commissioning instrument in an autonomous mode (no other parts of the VLTI involved); then the VLTI telescopes and optical trains will be tested in autocollimation; finally fringes will be observed on the sky.

  5. Development of an analytical instrumentation for determining U, Np and Pu

    International Nuclear Information System (INIS)

    Wu Jizong; Guo Kuisheng; Liu Huanliang

    1995-01-01

    An analytical instrumentation for determining U, Np and Pu in the solution of reprocessing factory are made. The principle of the instrumentation is based on that of flow injection analysis and ion chromatography. The instrumentation is composed of controlling box and working box, the distance between the two boxes is 1.5 m. Important quantity of impurity is permitted. The determination limit is 1 mg/l. The relative standard deviation is better than 5%. The instrumentation can be used in 1AF, 1AP and other many controlling points for determining U, Np and Pu

  6. Thermodynamic Performance of the 3-Stage ADR for the Astro-H Soft X-Ray Spectrometer Instrument

    Science.gov (United States)

    Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Bialas, Thomas G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.

    2015-01-01

    The Soft X-ray Spectrometer (SXS) instrument[1] on Astro-H[2] will use a 3-stage ADR[3] to cool the microcalorimeter array to 50 mK. In the primary operating mode, two stages of the ADR cool the detectors using superfluid helium at =1.20 K as the heat sink[4]. In the secondary mode, which is activated when the liquid helium is depleted, the ADR uses a 4.5 K Joule-Thomson cooler as its heat sink. In this mode, all three stages operate together to continuously cool the (empty) helium tank and singleshot cool the detectors. The flight instrument - dewar, ADR, detectors and electronics - were integrated in 2014 and have since undergone extensive performance testing. This paper presents a thermodynamic analysis of the ADR's operation, including cooling capacity, heat rejection to the heat sinks, and various measures of efficiency.

  7. Meteorological Satellites (METSAT) and Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A) Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL)

    Science.gov (United States)

    1996-01-01

    This Failure Modes and Effects Analysis (FMEA) is for the Advanced Microwave Sounding Unit-A (AMSU-A) instruments that are being designed and manufactured for the Meteorological Satellites Project (METSAT) and the Earth Observing System (EOS) integrated programs. The FMEA analyzes the design of the METSAT and EOS instruments as they currently exist. This FMEA is intended to identify METSAT and EOS failure modes and their effect on spacecraft-instrument and instrument-component interfaces. The prime objective of this FMEA is to identify potential catastrophic and critical failures so that susceptibility to the failures and their effects can be eliminated from the METSAT/EOS instruments.

  8. Semiclassical Wigner distribution for a two-mode entangled state generated by an optical parametric oscillator

    International Nuclear Information System (INIS)

    Dechoum, K.; Hahn, M. D.; Khoury, A. Z.; Vallejos, R. O.

    2010-01-01

    We derive the steady-state solution of the Fokker-Planck equation that describes the dynamics of the nondegenerate optical parametric oscillator in the truncated Wigner representation of the density operator. We assume that the pump mode is strongly damped, which permits its adiabatic elimination. When the elimination is correctly executed, the resulting stochastic equations contain multiplicative noise terms and do not admit a potential solution. However, we develop a heuristic scheme leading to a satisfactory steady-state solution. This provides a clear view of the intracavity two-mode entangled state valid in all operating regimes of the optical parametric oscillator. A non-Gaussian distribution is obtained for the above threshold solution.

  9. On the completeness of the natural modes for quantum mechanical potential scattering

    NARCIS (Netherlands)

    Hoenders, B.J.

    1979-01-01

    The set of natural modes, associated with quantum mechanical scattering from a central potential of finite-range is shown to be complete. The natural modes satisfy a non-Hermitian homogeneous integral equation, or alternatively, are solutions of the time independent Schrödinger equation subject to a

  10. Metering instrument of quality factor Q of gravitational wave antenna

    International Nuclear Information System (INIS)

    Jia-yan, C.; Tong-ren, G.

    1982-01-01

    The quality factor, Q, of gravitational wave antenna depends on the material property as well as external conditions, such as temperature, residual pressure in vacuum tank, support type, additional loss from transducer on antenna, etc. In order to find out the relationship between the antenna Q and external conditions automatical operating in succession is required. The authors have designed and made a metering instrument for quality factor Q. The metering instrument of Q can measure Q of the metal cylinder and other bar of higher Q. It can give data of the measurement at regular intervals as desired. It can measure accurately the longitudinal fundamental mode frequency of the cylinder with a digital frequency meter record oscillating signal from metering instrument. Because the metering instrument excites free-vibration of the cylinder with free-running type and keep up the stationary amplitude for a long time. (Auth.)

  11. Optimising electron holography in the presence of partial coherence and instrument instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shery L.Y., E-mail: shery.chang@fz-juelich.de; Dwyer, Christian, E-mail: c.dwyer@fz-juelich.de; Boothroyd, Chris B.; Dunin-Borkowski, Rafal E.

    2015-04-15

    Off-axis electron holography provides a direct means of retrieving the phase of the wavefield in a transmission electron microscope, enabling measurement of electric and magnetic fields at length scales from microns to nanometers. To maximise the accuracy of the technique, it is important to acquire holograms using experimental conditions that optimise the phase resolution for a given spatial resolution. These conditions are determined by a number of competing parameters, especially the spatial coherence and the instrument instabilities. Here, we describe a simple, yet accurate, model for predicting the dose rate and exposure time that give the best phase resolution in a single hologram. Experimental studies were undertaken to verify the model of spatial coherence and instrument instabilities that are required for the optimisation. The model is applicable to electron holography in both standard mode and Lorentz mode, and it is relatively simple to apply. - Highlights: • We describe a simple, yet accurate, model for predicting the best phase resolution in off-axis electron holography. • Calibration of the model requires only two series of blank holograms; an intensity sequence and a time sequence. • The model can predict the optimum dose rate and exposure time for any given combination of biprism voltage and magnification. • The model is applicable in both standard mode and Lorentz mode, using either round or elliptical illumination.

  12. Instrument Psychometrics: Parental Satisfaction and Quality Indicators of Perinatal Palliative Care.

    Science.gov (United States)

    Wool, Charlotte

    2015-10-01

    Despite a life-limiting fetal diagnosis, prenatal attachment often occurs in varying degrees resulting in role identification by an individual as a parent. Parents recognize quality care and report their satisfaction when interfacing with health care providers. The aim was to test an instrument measuring parental satisfaction and quality indicators with parents electing to continue a pregnancy after learning of a life-limiting fetal diagnosis. A cross sectional survey design gathered data using a computer-mediated platform. Subjects were parents (n=405) who opted to continue a pregnancy affected by a life-limiting diagnosis. Factor analysis using principal component analysis with Varimax rotation was used to validate the instrument, evaluate components, and summarize the explained variance achieved among quality indicator items. The Prenatal Scale was reduced to 37 items with a three-component solution explaining 66.19% of the variance and internal consistency reliability of 0.98. The Intrapartum Scale included 37 items with a four-component solution explaining 66.93% of the variance and a Cronbach α of 0.977. The Postnatal Scale was reduced to 44 items with a six-component solution explaining 67.48% of the variance. Internal consistency reliability was 0.975. The Parental Satisfaction and Quality Indicators of Perinatal Palliative Care Instrument is a valid and reliable measure for parent-reported quality care and satisfaction. Use of this instrument will enable clinicians and researchers to measure quality indicators and parental satisfaction. The instrument is useful for assessing, analyzing, and reporting data on quality for care delivered during the prenatal, intrapartum, and postnatal periods.

  13. Imaging modes of atomic force microscopy for application in molecular and cell biology.

    Science.gov (United States)

    Dufrêne, Yves F; Ando, Toshio; Garcia, Ricardo; Alsteens, David; Martinez-Martin, David; Engel, Andreas; Gerber, Christoph; Müller, Daniel J

    2017-04-06

    Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.

  14. Second-order sliding mode control for DFIG-based wind turbines fault ride-through capability enhancement.

    Science.gov (United States)

    Benbouzid, Mohamed; Beltran, Brice; Amirat, Yassine; Yao, Gang; Han, Jingang; Mangel, Hervé

    2014-05-01

    This paper deals with the fault ride-through capability assessment of a doubly fed induction generator-based wind turbine using a high-order sliding mode control. Indeed, it has been recently suggested that sliding mode control is a solution of choice to the fault ride-through problem. In this context, this paper proposes a second-order sliding mode as an improved solution that handle the classical sliding mode chattering problem. Indeed, the main and attractive features of high-order sliding modes are robustness against external disturbances, the grids faults in particular, and chattering-free behavior (no extra mechanical stress on the wind turbine drive train). Simulations using the NREL FAST code on a 1.5-MW wind turbine are carried out to evaluate ride-through performance of the proposed high-order sliding mode control strategy in case of grid frequency variations and unbalanced voltage sags. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  15. 77 FR 65863 - Application(s) for Duty-Free Entry of Scientific Instruments

    Science.gov (United States)

    2012-10-31

    ... resolution and scanning mode will enable the investigation of the chemical structure, morphology and... study the crystal structure, defect characteristics, and elemental distribution/ segregation of single crystals, interfacial voids, polymers, and composites. The instrument will also be used for the...

  16. Inertial and viscous effects in the non linear growth of the tearing mode

    International Nuclear Information System (INIS)

    Edery, D.; Frey, M.; Tagger, M.; Soule, J.L.; Pellat, R.; Bussac, M.N.; Somon, J.P.

    1982-08-01

    The non linear self similar Tearing mode solution of Rutherford is revisited. We compute explicitly the stream function for the plasma flow including inertia, convection and viscosity. In all cases, Rutherford's solution is asymptotically valid

  17. OPERATION MODES AND CHARACTERISTICS OF PLASMA DIPOLE ANTENNA

    Directory of Open Access Journals (Sweden)

    Nikolay Nikolaevich Bogachev

    2014-02-01

    Full Text Available Existence modes of  surface electromagnetic wave on a plasma cylinder, operating modes and characteristics of the plasma antenna were studied in this paper. Solutions of the dispersion equation of surface wave were obtained for a plasma cylinder with finite radius for different plasma density values. Operation modes of the plasma asymmetric dipole antenna with finite length and radius were researched by numerical simulation. The electric field distributions of  the plasma antenna in near antenna field and the radiation pattern were obtained. These characteristics were compared to characteristics of the similar metal antenna. Numerical models verification was carried out by comparing of the counted and measured metal antenna radiation patterns.

  18. Resistive internal kink modes in a tokamak with high-pressure plasma

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Mikhajlovskij, A.B.; Tatarinov, E.G.

    1988-01-01

    Theory of resistive internal kink modes in a tokamak with high-pressure plasma is developed. Equation for Fourie-image of disturbed displacment in a resistive layer ie derived with regard to effects of the fourth order by plasma pressure within the framework of single-liquid approach. In its structure this equation coincides with a similar equation for resistive balloon modes and has an exact solution expressed by degenerated hypergeometric function. A general dispersion equation for resistive kink modes is derived with regard to the effects indicated. It is shown that plasma pressure finiteness leads to the reduction of reconnection and tyring-mode increments

  19. Simultaneous control of multiple instruments at the Advanced Technology Solar Telescope

    Science.gov (United States)

    Johansson, Erik M.; Goodrich, Bret

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) is a 4-meter solar observatory under construction at Haleakala, Hawaii. The simultaneous use of multiple instruments is one of the unique capabilities that makes the ATST a premier ground based solar observatory. Control of the instrument suite is accomplished by the Instrument Control System (ICS), a layer of software between the Observatory Control System (OCS) and the instruments. The ICS presents a single narrow interface to the OCS and provides a standard interface for the instruments to be controlled. It is built upon the ATST Common Services Framework (CSF), an infrastructure for the implementation of a distributed control system. The ICS responds to OCS commands and events, coordinating and distributing them to the various instruments while monitoring their progress and reporting the status back to the OCS. The ICS requires no specific knowledge about the instruments. All information about the instruments used in an experiment is passed by the OCS to the ICS, which extracts and forwards the parameters to the appropriate instrument controllers. The instruments participating in an experiment define the active instrument set. A subset of those instruments must complete their observing activities in order for the experiment to be considered complete and are referred to as the must-complete instrument set. In addition, instruments may participate in eavesdrop mode, outside of the control of the ICS. All instrument controllers use the same standard narrow interface, which allows new instruments to be added without having to modify the interface or any existing instrument controllers.

  20. CMB Polarization B-mode Delensing with SPTpol and Herschel

    Energy Technology Data Exchange (ETDEWEB)

    Manzotti, A.; et al.

    2017-01-16

    We present a demonstration of delensing the observed cosmic microwave background (CMB) B-mode polarization anisotropy. This process of reducing the gravitational-lensing generated B-mode component will become increasingly important for improving searches for the B modes produced by primordial gravitational waves. In this work, we delens B-mode maps constructed from multi-frequency SPTpol observations of a 90 deg$^2$ patch of sky by subtracting a B-mode template constructed from two inputs: SPTpol E-mode maps and a lensing potential map estimated from the $\\textit{Herschel}$ $500\\,\\mu m$ map of the CIB. We find that our delensing procedure reduces the measured B-mode power spectrum by 28% in the multipole range $300 < \\ell < 2300$; this is shown to be consistent with expectations from theory and simulations and to be robust against systematics. The null hypothesis of no delensing is rejected at $6.9 \\sigma$. Furthermore, we build and use a suite of realistic simulations to study the general properties of the delensing process and find that the delensing efficiency achieved in this work is limited primarily by the noise in the lensing potential map. We demonstrate the importance of including realistic experimental non-idealities in the delensing forecasts used to inform instrument and survey-strategy planning of upcoming lower-noise experiments, such as CMB-S4.

  1. Performance analysis and experimental study of heat-source tower solution regeneration

    International Nuclear Information System (INIS)

    Liang, Caihua; Wen, Xiantai; Liu, Chengxing; Zhang, Xiaosong

    2014-01-01

    Highlights: • Theoretical analysis is performed on the characteristics of heat-source tower. • Experimental study is performed on various rules of the solution regeneration rate. • The characteristics of solution regeneration vary widely with different demands. • Results are useful for optimizing the process of solution regeneration. - Abstract: By analyzing similarities and difference between the solution regeneration of a heat-source tower and desiccant solution regeneration, this paper points out that solution regeneration of a heat-source tower has the characteristics of small demands and that a regeneration rate is susceptible to outdoor ambient environments. A theoretical analysis is performed on the characteristics of a heat-source tower solution in different outdoor environments and different regeneration modes, and an experimental study is performed on variation rules of the solution regeneration rate of a cross-flow heat-source tower under different inlet parameters and operating parameters. The experimental results show that: in the operating regeneration mode, as the air volume was increased from 123 m 3 h −1 to 550 m 3 h −1 , the system heat transfer amount increased from 0.42 kW to 0.78 kW, and the regeneration rate increased from 0.03 g s −1 to 0.19 g s −1 . Increasing the solution flow may increase the system heat transfer amount; however, the regeneration rate decreased to a certain extent. In the regeneration mode when the system is idle, as the air volume was increased from 136 m 3 h −1 to 541 m 3 h −1 , the regeneration rate increased from 0.03 g s −1 to 0.1 g s −1 . The regeneration rate almost remained unchanged around 0.07 g s −1 as the solution flow is increased. In the regeneration mode with auxiliary heat when the system is idle, increasing the air volume and increasing the solution flow required more auxiliary heat, thereby improving the solution regeneration rate. As the auxiliary heat was increased from 0.33 k

  2. Analysis and Solution to the Crucial Problems during Brass Instrument Playing%铜管演奏把握性问题的分析与处理

    Institute of Scientific and Technical Information of China (English)

    张良; 史育松

    2015-01-01

    The paper lists and analyzes the crucial problems during brass instruments playing. And it also sums up three factors during brass instruments which can cause the problems:playing skill ,playing psychology and physical capacity as well, and offers specific solutions to the problems.%本文列举了以往铜管演奏者在演奏中出现的把握性问题,并对其进行了分析研究,认为至少有3个方面的原因:演奏技术的问题,演奏心理的问题,体力与体能的原因。针对这3个方面的原因文章提出了具体的解决办法。

  3. Microcontroller based, ore grade measuring portable instruments for uranium mining industry

    International Nuclear Information System (INIS)

    Dheeraj Reddy, J.; Narender Reddy, J.

    2004-01-01

    Ore Face Scanning and Bore Hole Logging are important essential activities which are required to be carried out in any Uranium mining industry. Microcontroller based, portable instruments with built-in powerful embedded code for data acquisition (of Radiation counts) and Ore Grade calculations will become a handy measuring tool for miners. Nucleonix Systems has recently developed and made these two portable instruments available to UCIL, which are under use at Jaduguda and Narvapahar mines. Some of the important features of these systems are compact, light weight, portable, hand held, battery powered. Modes of Data Acquisition: CPS, CPM and ORE GRADE. Detector: Sensitive GM Tube. Choice of Adj. TC (Time Constant) in 'ORE GRADE', acquisition mode. Built-in automatic BG (Background) recording and subtraction provided to indicate net CPS, CPM or ore GRADE in PPM. Can store 1000 readings at users choice. Built-in RS232 serial port facilitates data downloading into PC. This paper focuses on design concepts and technical details for the above two products. (author)

  4. Resistive effects on line-tied magnetohydrodynamic modes in cylindrical geometry

    International Nuclear Information System (INIS)

    Delzanno, Gian Luca; Evstatiev, E. G.; Finn, John M.

    2007-01-01

    An investigation of the effect of resistivity on the linear stability of line-tied magnetohydrodynamic (MHD) modes is presented in cylindrical geometry, based on the method recently developed in the paper by Evstatiev et al. [Phys. Plasmas 13, 072902 (2006)]. The method uses an expansion of the full solution of the problem in one-dimensional radial eigenfunctions. This method is applied to study sausage modes (m=0, m being the poloidal wavenumber), kink modes (m=1), and m=2 modes. All these modes can be resistively unstable. It is found that m≠0 modes can be unstable below the ideal MHD threshold due to resistive diffusion of the field lines, with growth rates proportional to resistivity. For these resistive modes, there is no indication of tearing, i.e., current sheets or boundary layers due to ideal MHD singularities. That is, resistivity acts globally on the whole plasma column and not in layers. Modes with m=0, on the other hand, can exist as tearing modes if the equilibrium axial magnetic field reverses sign within the plasma

  5. Curvature effects in the nonlinear growth of the cylindrical tearing mode

    International Nuclear Information System (INIS)

    Somon, J. P.

    1984-01-01

    The full set of the usual resistive massless equations is used to investigate the nonlinear growth of the helical perturbation to a cylindrical equilibrium with tokamak ordering. There is a curvature dependant critical magnetic island width xsub(T)sup(*) α set containing D/Δ' above which the Rutherford solution is recovered for the tearing mode as well as for the linear slow interchange modes with Δ' > 0. Non linearity stabilizes at this critical width the linearly unstable slow interchange modes with Δ' > 0

  6. Numerical Solution of the Electron Transport Equation in the Upper Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Mark Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Holmes, Mark [Rensselaer Polytechnic Inst., Troy, NY (United States); Sailor, William C [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.

  7. Theory of electrostatic fluid modes in a cold spheroidal non-neutral plasma

    International Nuclear Information System (INIS)

    Dubin, D.H.E.

    1991-01-01

    The normal modes of a magnetized spheroidally shaped pure ion plasma have recently been measured. Here the theory of these modes is presented. Although one might expect that a numerical solution is required (because the plasma dielectric is anisotropic and the plasma is inhomogeneous), the problem is actually separable in an unusual coordinate system. The result is a simple electrostatic fluid dispersion relation for modes in a cloud of any spheroidal shape

  8. Stability of plane wave solutions of the two-space-dimensional nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Martin, D.U.; Yuen, H.C.; Saffman, P.G.

    1980-01-01

    The stability of plane, periodic solutions of the two-dimensional nonlinear Schroedinger equation to infinitesimal, two-dimensional perturbation has been calculated and verified numerically. For standing wave disturbances, instability is found for both odd and even modes; as the period of the unperturbed solution increases, the instability associated with the odd modes remains but that associated with the even mode disappears, which is consistent with the results of Zakharov and Rubenchik, Saffman and Yuen and Ablowitz and Segur on the stability of solitons. In addition, we have identified travelling wave instabilities for the even mode perturbations which are absent in the long-wave limit. Extrapolation to the case of an unperturbed solution with infinite period suggests that these instabilities may also be present for the soliton. In other words, the soliton is unstable to odd, standing-wave perturbations, and very likely also to even, travelling-wave perturbations. (orig.)

  9. Zero modes in discretized light-front quantization

    International Nuclear Information System (INIS)

    Martinovic, E.

    1997-01-01

    The current understanding of the role of bosonic zero modes in field-theoretical models quantized at the equal light-front time is reviewed. After a brief discussion of the main features of the light-front field theories - in particular the simplicity of the physical vacuum - the light-front canonical formalism for the quantum electrodynamics and the Yukawa model is sketched. The zero mode of Maskawa and Yamawaki is reviewed. Reasons for the appearance of the constrained and/or dynamical zero modes are explained along with the subtleties of the gauge fixing in presence of boundary conditions. Perturbative treatment of the corresponding constraint equations in the Yukawa model and quantum electrodynamics (3+1) is outlined. The next topic is the manifestation of the symmetry breaking in the light-front field theory. A pattern of multiple solutions to the zero-mode constraint equations replacing physical picture of multiple vacua of the conventionally quantized field theories is illustrated on an example of 2-dimensional theory. The importance of a (regularized) constrained zero mode of the pion field for the consistency of the Nambu-Goldstone phase of the discretized light-front linear a/model is demonstrated. Finally, a non-trivial physical vacuum based on the dynamical zero mode is constructed for the two-dimensional light-front quantum electrodynamics. (authors)

  10. Velocity fields and transition densities in nuclear collective modes

    Energy Technology Data Exchange (ETDEWEB)

    Stringari, S [Dipartimento di Matematica e Fisica, Libera Universita di Trento, Italy

    1979-08-13

    The shape of the deformations occurring in nuclear collective modes is investigated by means of a microscopic approach. Analytical solutions of the equations of motion are obtained by using simplified nuclear potentials. It is found that the structure of the velocity field and of the transition density of low-lying modes is considerably different from the predictions of irrotational hydrodynamic models. The low-lying octupole state is studied in particular detail by using the Skyrme force.

  11. In-line measurement of plutonium and americium in mixed solutions

    International Nuclear Information System (INIS)

    Li, T.K.

    1981-01-01

    A solution assay instrument (SAI) has been developed at the Los Alamos National Laboratory and installed in the plutonium purification and americium recovery process area in the Los Alamos Plutonium Processing Facility. The instrument is designed for accurate, timely, and simultaneous nondestructive analysis of plutonium and americium in process solutions that have a wide range of concentrations and Am/Pu ratios. For a 25-mL sample, the assay precision is 5 g/L within a 2000-s count time

  12. Economic instruments for environmental policy making in Ontario

    International Nuclear Information System (INIS)

    Barg, S.; Duraiappah, A.; Van Exan, S.

    2000-01-01

    The conditions and approaches required for a successful implementation of economic instruments in Ontario are reviewed. The advantages and disadvantages of economic instruments are discussed, as are some design issues. Some best practices and practical experiences from Canada, the United States, and Europe are examined through the use of nine specific case studies. Each one highlights a different environmental challenge, such as energy efficiency, air pollution, water pollution, waste management along with the solutions that were implemented. The situations described were not all successful, but there is much to be learned from unsuccessful episodes. Lessons learned from the review of the case studies were presented. The points to ponder when using economic instruments in Ontario were highlighted. The command and control policy instrument must be kept in context when considering economic instruments. The reasons that underline the preference of the economic theory for economic instruments are discussed. The different types of economic instruments are described, and the considerations related to the design and comparison of economic instruments is briefly discussed. The authors concluded with several points to ponder: there are a number of options available, details must not be neglected, consultation with the interested parties is important, there is a need for frequent reassessment, and using a number of instruments is helpful. 55 refs., tabs., figs

  13. Propagation of Finite Amplitude Sound in Multiple Waveguide Modes.

    Science.gov (United States)

    van Doren, Thomas Walter

    1993-01-01

    This dissertation describes a theoretical and experimental investigation of the propagation of finite amplitude sound in multiple waveguide modes. Quasilinear analytical solutions of the full second order nonlinear wave equation, the Westervelt equation, and the KZK parabolic wave equation are obtained for the fundamental and second harmonic sound fields in a rectangular rigid-wall waveguide. It is shown that the Westervelt equation is an acceptable approximation of the full nonlinear wave equation for describing guided sound waves of finite amplitude. A system of first order equations based on both a modal and harmonic expansion of the Westervelt equation is developed for waveguides with locally reactive wall impedances. Fully nonlinear numerical solutions of the system of coupled equations are presented for waveguides formed by two parallel planes which are either both rigid, or one rigid and one pressure release. These numerical solutions are compared to finite -difference solutions of the KZK equation, and it is shown that solutions of the KZK equation are valid only at frequencies which are high compared to the cutoff frequencies of the most important modes of propagation (i.e., for which sound propagates at small grazing angles). Numerical solutions of both the Westervelt and KZK equations are compared to experiments performed in an air-filled, rigid-wall, rectangular waveguide. Solutions of the Westervelt equation are in good agreement with experiment for low source frequencies, at which sound propagates at large grazing angles, whereas solutions of the KZK equation are not valid for these cases. At higher frequencies, at which sound propagates at small grazing angles, agreement between numerical solutions of the Westervelt and KZK equations and experiment is only fair, because of problems in specifying the experimental source condition with sufficient accuracy.

  14. Finite Larmor radius stabilization of ballooning modes in tokamaks

    International Nuclear Information System (INIS)

    Tsang, K.T.

    1980-07-01

    A ballooning mode equation that includes full finite Larmor radius effects has been derived from the Vlasov equation for a circular tokamak equilibrium. Numerical solution of this equation shows that finite Larmor radius effects are stabilizing

  15. Coupled-Mode Theory for Complex-Index, Corrugated Multilayer Stacks

    DEFF Research Database (Denmark)

    Lüder, Hannes; Gerken, Martina; Adam, Jost

    , and by choosing a bi-orthogonal basis, obtained by solving the corresponding adjoint problem. With the once found modal solutions of the unperturbed waveguide, we can calculate the coupling coefficients, which describe the mode coupling caused by the introduced periodic corrugation. [1] C. Kluge et al., Opt......We present a coupled-mode theory (CMT) approach for modelling the modal behaviour of multi- layer thinfilm devices with complex material parameters and periodic corrugations. Our method provides fast computation and extended physical insight as compared to standard numerical methods...... to be non-Hermitian, introducing two major consequences. First, the eigenvalues (i. e. the mode neff) have to be found in the complex plane (Fig. 2). Second, the classical mode orthogonality is no longer valid. We address both challenges by a combination of three complex-root solving algorithms...

  16. Common-mode rejection in Martin-Puplett spectrometers for astronomical observations at millimeter wavelengths.

    Science.gov (United States)

    D'Alessandro, Giuseppe; de Bernardis, Paolo; Masi, Silvia; Schillaci, Alessandro

    2015-11-01

    The Martin-Puplett interferometer (MPI) is a differential Fourier transform spectrometer that measures the difference between spectral brightness at two input ports. This unique feature makes the MPI an optimal zero instrument, able to detect small brightness gradients embedded in a large common background. In this paper, we experimentally investigate the common-mode rejection achievable in the MPI at millimeter wavelengths, and discuss the use of the instrument to measure the spectrum of cosmic microwave background anisotropy.

  17. Simulation of operation modes of isochronous cyclotron by a new interactive method

    International Nuclear Information System (INIS)

    Taraszkiewicz, R.; Talach, M.; Sulikowski, J.; Doruch, H.; Norys, T.; Sroka, A.; Kiyan, I.N.; )

    2007-01-01

    Operation mode simulation methods are based on selection of trim coil currents in the isochronous cyclotron for formation of the required magnetic field at a certain level of the main coil current. The traditional current selection method is based on finding a solution for all trim coils simultaneously. After setting the calculated operation mode, it is usually necessary to perform a control measurement of the magnetic field map and to repeat the calculation for a more accurate solution. The new current selection method is based on successively finding solutions for each particular trim coil. The trim coils are taken one by one in reverse order from the edge to the center of the isochronous cyclotron. The new operation mode simulation method is based on the new current selection method. The new method, as against the traditional one, includes iterative calculation of the kinetic energy at the extraction radius. A series of experiments on proton beam formation within the range of working acceleration radii at extraction energies from 32 to 59 MeV, which were carried out at the AIC144 multipurpose isochronous cyclotron (designed mainly for the eye melanoma treatment and production of radioisotopes) at the INP PAS (Cracow), showed that the new method makes unnecessary any control measurements of magnetic fields for getting the desired operation mode, which indicates a high accuracy of the calculation. (authors)

  18. Standards for Instrument Migration When Implementing Paper Patient-Reported Outcome Instruments Electronically: Recommendations from a Qualitative Synthesis of Cognitive Interview and Usability Studies.

    Science.gov (United States)

    Muehlhausen, Willie; Byrom, Bill; Skerritt, Barbara; McCarthy, Marie; McDowell, Bryan; Sohn, Jeremy

    2018-01-01

    To synthesize the findings of cognitive interview and usability studies performed to assess the measurement equivalence of patient-reported outcome (PRO) instruments migrated from paper to electronic formats (ePRO), and make recommendations regarding future migration validation requirements and ePRO design best practice. We synthesized findings from all cognitive interview and usability studies performed by a contract research organization between 2012 and 2015: 53 studies comprising 68 unique instruments and 101 instrument evaluations. We summarized study findings to make recommendations for best practice and future validation requirements. Five studies (9%) identified minor findings during cognitive interview that may possibly affect instrument measurement properties. All findings could be addressed by application of ePRO best practice, such as eliminating scrolling, ensuring appropriate font size, ensuring suitable thickness of visual analogue scale lines, and providing suitable instructions. Similarly, regarding solution usability, 49 of the 53 studies (92%) recommended no changes in display clarity, navigation, operation, and completion without help. Reported usability findings could be eliminated by following good product design such as the size, location, and responsiveness of navigation buttons. With the benefit of accumulating evidence, it is possible to relax the need to routinely conduct cognitive interview and usability studies when implementing minor changes during instrument migration. Application of design best practice and selecting vendor solutions with good user interface and user experience properties that have been assessed in a representative group may enable many instrument migrations to be accepted without formal validation studies by instead conducting a structured expert screen review. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  19. Method of adiabatic modes in studying problems of smoothly irregular open waveguide structures

    Energy Technology Data Exchange (ETDEWEB)

    Sevastianov, L. A., E-mail: sevast@sci.pfu.edu.ru [Peoples' Friendship University of Russia (Russian Federation); Egorov, A. A. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Sevastyanov, A. L. [Peoples' Friendship University of Russia (Russian Federation)

    2013-02-15

    Basic steps in developing an original method of adiabatic modes that makes it possible to solve the direct and inverse problems of simulating and designing three-dimensional multilayered smoothly irregular open waveguide structures are described. A new element in the method is that an approximate solution of Maxwell's equations is made to obey 'inclined' boundary conditions at the interfaces between themedia being considered. These boundary conditions take into account the obliqueness of planes tangent to nonplanar boundaries between the media and lead to new equations for coupled vector quasiwaveguide hybrid adiabatic modes. Solutions of these equations describe the phenomenon of 'entanglement' of two linear polarizations of an irregular multilayered waveguide, the appearance of a new mode in an entangled state, and the effect of rotation of the polarization plane of quasiwaveguide modes. The efficiency of the method is demonstrated by considering the example of numerically simulating a thin-film generalized waveguide Lueneburg lens.

  20. Method of adiabatic modes in studying problems of smoothly irregular open waveguide structures

    International Nuclear Information System (INIS)

    Sevastianov, L. A.; Egorov, A. A.; Sevastyanov, A. L.

    2013-01-01

    Basic steps in developing an original method of adiabatic modes that makes it possible to solve the direct and inverse problems of simulating and designing three-dimensional multilayered smoothly irregular open waveguide structures are described. A new element in the method is that an approximate solution of Maxwell’s equations is made to obey “inclined” boundary conditions at the interfaces between themedia being considered. These boundary conditions take into account the obliqueness of planes tangent to nonplanar boundaries between the media and lead to new equations for coupled vector quasiwaveguide hybrid adiabatic modes. Solutions of these equations describe the phenomenon of “entanglement” of two linear polarizations of an irregular multilayered waveguide, the appearance of a new mode in an entangled state, and the effect of rotation of the polarization plane of quasiwaveguide modes. The efficiency of the method is demonstrated by considering the example of numerically simulating a thin-film generalized waveguide Lüneburg lens.

  1. Effect of sheared flows on neoclassical tearing modes

    Energy Technology Data Exchange (ETDEWEB)

    Sen, A [Institute for Plasma Research, Bhat, Gandhinagar (India); Chandra, D; Kaw, P [Institute for Plasma Research, Bhat, Gandhinagar (India); Bora, M P [Physics Dept., Gauhati University, Guwahati (India); Kruger, S [Tech-X, Boulder, CO (United States); Ramos, J [Plasma Science and Fusion Center, MIT, Cambridge, MA (United States)

    2005-01-01

    The influence of toroidal sheared equilibrium flows on the nonlinear evolution of classical and neoclassical tearing modes (NTMs) is studied through numerical solutions of a set of reduced generalized MHD equations that include viscous force effects based on neoclassical closures. In general, differential flow is found to have a strong stabilizing influence leading to lower saturated island widths for the classical (m/n = 2/1) mode and reduced growth rates for the (m/n = 3/1) neoclassical mode. Velocity shear on the other hand is seen to make a destabilizing contribution. An analytic model calculation, consisting of a generalized Rutherford island evolution equation that includes shear flow effects is also presented and the numerical results are discussed in the context of this model. (author)

  2. Dynamics of coupled mode solitons in bursting neural networks

    Science.gov (United States)

    Nfor, N. Oma; Ghomsi, P. Guemkam; Moukam Kakmeni, F. M.

    2018-02-01

    Using an electrically coupled chain of Hindmarsh-Rose neural models, we analytically derived the nonlinearly coupled complex Ginzburg-Landau equations. This is realized by superimposing the lower and upper cutoff modes of wave propagation and by employing the multiple scale expansions in the semidiscrete approximation. We explore the modified Hirota method to analytically obtain the bright-bright pulse soliton solutions of our nonlinearly coupled equations. With these bright solitons as initial conditions of our numerical scheme, and knowing that electrical signals are the basis of information transfer in the nervous system, it is found that prior to collisions at the boundaries of the network, neural information is purely conveyed by bisolitons at lower cutoff mode. After collision, the bisolitons are completely annihilated and neural information is now relayed by the upper cutoff mode via the propagation of plane waves. It is also shown that the linear gain of the system is inextricably linked to the complex physiological mechanisms of ion mobility, since the speeds and spatial profiles of the coupled nerve impulses vary with the gain. A linear stability analysis performed on the coupled system mainly confirms the instability of plane waves in the neural network, with a glaring example of the transition of weak plane waves into a dark soliton and then static kinks. Numerical simulations have confirmed the annihilation phenomenon subsequent to collision in neural systems. They equally showed that the symmetry breaking of the pulse solution of the system leaves in the network static internal modes, sometime referred to as Goldstone modes.

  3. Sliding mode control on electro-mechanical systems

    Directory of Open Access Journals (Sweden)

    Vadim I. Utkin

    2002-01-01

    Full Text Available The first sliding mode control application may be found in the papers back in the 1930s in Russia. With its versatile yet simple design procedure the methodology is proven to be one of the most powerful solutions for many practical control designs. For the sake of demonstration this paper is oriented towards application aspects of sliding mode control methodology. First the design approach based on the regularization is generalized for mechanical systems. It is shown that stability of zero dynamics should be taken into account when the regular form consists of blocks of second-order equations. Majority of applications in the paper are related to control and estimation methods of automotive industry. New theoretical methods are developed in the context of these studies: sliding made nonlinear observers, observers with binary measurements, parameter estimation in systems with sliding mode control.

  4. Exploring extra dimensions through inflationary tensor modes

    Science.gov (United States)

    Im, Sang Hui; Nilles, Hans Peter; Trautner, Andreas

    2018-03-01

    Predictions of inflationary schemes can be influenced by the presence of extra dimensions. This could be of particular relevance for the spectrum of gravitational waves in models where the extra dimensions provide a brane-world solution to the hierarchy problem. Apart from models of large as well as exponentially warped extra dimensions, we analyze the size of tensor modes in the Linear Dilaton scheme recently revived in the discussion of the "clockwork mechanism". The results are model dependent, significantly enhanced tensor modes on one side and a suppression on the other. In some cases we are led to a scheme of "remote inflation", where the expansion is driven by energies at a hidden brane. In all cases where tensor modes are enhanced, the requirement of perturbativity of gravity leads to a stringent upper limit on the allowed Hubble rate during inflation.

  5. Design automation of switching mode high voltage power supply for nuclear instruments

    International Nuclear Information System (INIS)

    El-araby, S.M.S.

    1999-01-01

    This paper presents an automation procedure for the design of switching mode high voltage power supplies, using Pc programming facility. The procedure permits the selection of a ready made or designed ferrite transformer. This selection could be achieved according to the designer desire; as the program includes complete information about ready made ferrite transformer through complete database. The procedure is based on suggested template circuit. Micro-Cap IV simulation package is used to verify the desired high voltage power supply design. Simulation results agree quite well with suggested procedure's results. Design aspects and development needed to increase automation capabilities are also discussed

  6. The Fermi-Pasta-Ulam Model Periodic Solutions

    CERN Document Server

    Arioli, G; Terracini, S

    2003-01-01

    We introduce two novel methods for studying periodic solutions of the FPU beta-model, both numerically and rigorously. One is a variational approach, based on the dual formulation of the problem, and the other involves computer-assisted proofs. These methods are used e.g. to construct a new type of solutions, whose energy is spread among several modes, associated with closely spaced resonances.

  7. On the spectral analysis of iterative solutions of the discretized one-group transport equation

    International Nuclear Information System (INIS)

    Sanchez, Richard

    2004-01-01

    We analyze the Fourier-mode technique used for the spectral analysis of iterative solutions of the one-group discretized transport equation. We introduce a direct spectral analysis for the iterative solution of finite difference approximations for finite slabs composed of identical layers, providing thus a complementary analysis that is more appropriate for reactor applications. Numerical calculations for the method of characteristics and with the diamond difference approximation show the appearance of antisymmetric modes generated by the iteration on boundary data. We have also utilized the discrete Fourier transform to compute the spectrum for a periodic slab containing N identical layers and shown that at the limit N → ∞ one obtains the familiar Fourier-mode solution

  8. An engineering approach to common mode failure analysis

    International Nuclear Information System (INIS)

    Gangloff, W.C.; Franke, T.H.

    1975-01-01

    Safety systems for nuclear reactors can be designed using standard reliability engineering techniques such that system failure due to random component faults is extremely unlikely. However, the common-mode failure where several components fail together from a common cause is not susceptible to prevention by the usual tactics. In systems where a high degree of redundancy has been employed, the actual reliability of the system in service may be limited by common-mode failures. A methodical and thorough procedure for evaluation of system vulnerability to common-mode failures is presented. This procedure was developed for use in nuclear reactor safety systems and has been applied specifically to reactor protection. The method offers a qualitative assessment of a system whereby weak points can be identified and the resistance to common-mode failure can be judged. It takes into account all factors influencing system performance including design, manufacturing, installation, operation, testing, and maintenance. It is not a guarantee or sure solution, but rather a practical tool which can provide good assurance that the probability of common-mode protection failure has been made acceptably low. (author)

  9. Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor

    Science.gov (United States)

    Hazarika, D.; Pegu, D. S.

    2013-03-01

    This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.

  10. Influence of Mixed Mode I-Mode II Loading on Fatigue Delamination Growth Characteristics of a Graphite Epoxy Tape Laminate

    Science.gov (United States)

    Ratcliffe, James G.; Johnston, William M., Jr.

    2014-01-01

    Mixed mode I-mode II interlaminar tests were conducted on IM7/8552 tape laminates using the mixed-mode bending test. Three mixed mode ratios, G(sub II)/G(sub T) = 0.2, 0.5, and 0.8, were considered. Tests were performed at all three mixed-mode ratios under quasi-static and cyclic loading conditions, where the former static tests were used to determine initial loading levels for the latter fatigue tests. Fatigue tests at each mixed-mode ratio were performed at four loading levels, Gmax, equal to 0.5G(sub c), 0.4G(sub c), 0.3G(sub c), and 0.2G(sub c), where G(sub c) is the interlaminar fracture toughness of the corresponding mixed-mode ratio at which a test was performed. All fatigue tests were performed using constant-amplitude load control and delamination growth was automatically documented using compliance solutions obtained from the corresponding quasi-static tests. Static fracture toughness data yielded a mixed-mode delamination criterion that exhibited monotonic increase in Gc with mixed-mode ratio, G(sub II)/G(sub T). Fatigue delamination onset parameters varied monotonically with G(sub II)/G(sub T), which was expected based on the fracture toughness data. Analysis of non-normalized data yielded a monotonic change in Paris law exponent with mode ratio. This was not the case when normalized data were analyzed. Fatigue data normalized by the static R-curve were most affected in specimens tested at G(sub II)/G(sub T)=0.2 (this process has little influence on the other data). In this case, the normalized data yielded a higher delamination growth rate compared to the raw data for a given loading level. Overall, fiber bridging appeared to be the dominant mechanism, affecting delamination growth rates in specimens tested at different load levels and differing mixed-mode ratios.

  11. Thermal processes identification using virtual instrumentation

    Directory of Open Access Journals (Sweden)

    Iosif OLAH

    2007-12-01

    Full Text Available In this paper the experimental identification problem of thermal processes is presented, in order to establish their mathematical models which permit the adoption of the automation solutions, respectively the specification of a suitable control law. With this aim in view, the authors resorted to use Virtual Instrumentation with the aid of the LabVIEW development medium. In order to solve the problem of acquisition and processing data from physical real processes, Virtual Instruments which provide at the end a mathematical model which is basis of choosing the automation equipment of the aim followed was designed and achieved. The achieved Virtual Instruments get the opportunity to be used either in student instruction field with the virtual processes identification techniques or to put the identification of some real processes to good use of diverse beneficiaries. The results of some experimental attempts which were achieved during different thermal processes, illustrate the utility of the demarches performed in this paper.

  12. Instrument employing a charge flow transistor

    International Nuclear Information System (INIS)

    1981-01-01

    The invention concerns instruments employing charge-flow transistors that operate to sense a property in the surrounding environment. It is based on a particular sensor principle, thin-film conduction. The instruments described include a charge-flow transistor with semiconductor substrate, a source region, a drain region, a gate insulator, and a gapped electrode structure with a thin-film sensor material in the gap. The sensor material has an electrical conductance that is sensitive to a property of the ambient environment and has a surface conductance that differs substantially from its bulk conductance. The main object is to provide a low-cost instrument for early-warning fire-detection devices: in this case the property detected would be the products of combustion. Other properties that can be sensed include gases or vapors, free radicals, vapor electromagnetic radiation, subatomic particles, atomic or molecular beams, changes in ambient pressure or temperature, the chemical composition and the electrochemical potential of a solution. (U.K.)

  13. Instrument employing a charge flow transistor

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-11

    The invention concerns instruments employing charge-flow transistors that operate to sense a property in the surrounding environment. It is based on a particular sensor principle, thin-film conduction. The instruments described include a charge-flow transistor with semiconductor substrate, a source region, a drain region, a gate insulator, and a gapped electrode structure with a thin-film sensor material in the gap. The sensor material has an electrical conductance that is sensitive to a property of the ambient environment and has a surface conductance that differs substantially from its bulk conductance. The main object is to provide a low-cost instrument for early-warning fire-detection devices: in this case the property detected would be the products of combustion. Other properties that can be sensed include gases or vapors, free radicals, vapor electromagnetic radiation, subatomic particles, atomic or molecular beams, changes in ambient pressure or temperature, the chemical composition and the electrochemical potential of a solution.

  14. Nonlinear Vibration and Mode Shapes of FG Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    Saeed Mahmoudkhani

    Full Text Available Abstract The nonlinear vibration and normal mode shapes of FG cylindrical shells are investigated using an efficient analytical method. The equations of motion of the shell are based on the Donnell’s non-linear shallow-shell, and the material is assumed to be gradually changed across the thickness according to the simple power law. The solution is provided by first discretizing the equations of motion using the multi-mode Galerkin’s method. The nonlinear normal mode of the system is then extracted using the invariant manifold approach and employed to decouple the discretized equations. The homotopy analysis method is finally used to determine the nonlinear frequency. Numerical results are presented for the backbone curves of FG cylindrical shells, nonlinear mode shapes and also the nonlinear invariant modal surfaces. The volume fraction index and the geometric properties of the shell are found to be effective on the type of nonlinear behavior and also the nonlinear mode shapes of the shell. The circumferential half-wave numbers of the nonlinear mode shapes are found to change with time especially in a thinner cylinder.

  15. Tearing mode dynamics and sawtooth oscillation in Hall-MHD

    Science.gov (United States)

    Ma, Zhiwei; Zhang, Wei; Wang, Sheng

    2017-10-01

    Tearing mode instability is one of the most important dynamic processes in space and laboratory plasmas. Hall effects, resulted from the decoupling of electron and ion motions, could cause the fast development and perturbation structure rotation of the tearing mode and become non-negligible. We independently developed high accuracy nonlinear MHD code (CLT) to study Hall effects on the dynamic evolution of tearing modes with Tokamak geometries. It is found that the rotation frequency of the mode in the electron diamagnetic direction is in a good agreement with analytical prediction. The linear growth rate increases with increase of the ion inertial length, which is contradictory to analytical solution in the slab geometry. We further find that the self-consistently generated rotation largely alters the dynamic behavior of the double tearing mode and the sawtooth oscillation. National Magnetic Confinement Fusion Science Program of China under Grant No. 2013GB104004 and 2013GB111004.

  16. Trials, tribulations, and pitfalls using commercial instruments for data acquisition

    International Nuclear Information System (INIS)

    Lee, R.C.; Olsen, R.H.; Unger, K.L.

    2009-01-01

    Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) uses many commercially available instruments - for example spectrum analyzers, oscilloscopes, digital volt meters, signal generators - as integral parts of instrumentation and control systems. Typically these systems are remotely controlled. Using commercial instruments has many benefits. Manufactures have the skill, knowledge, and experience to produce high quality products. The price performance ratio is hard to duplicate. There are also disadvantages. Proprietary interfaces, single platform drivers, and reliable operation provide challenges for implementation and unattended operation. Several of the systems used at RHIC will be described. Their issues and solutions will be presented.

  17. First Experience with the LHC Cryogenic Instrumentation

    CERN Document Server

    Vauthier, N; Balle, Ch; Casas-Cubillos, J; Ciechanowski, M; Fernandez-Penacoba, G; Fortescue-Beck, E; Gomes, P; Jeanmonod, N; Lopez-Lorente, A; Suraci, A

    2008-01-01

    The LHC under commissioning at CERN will be the world's largest superconducting accelerator and therefore makes extensive use of cryogenic instruments. These instruments are installed in the tunnel and therefore have to withstand the LHC environment that imposes radiation-tolerant design and construction. Most of the instruments require individual calibration; some of them exhibit several variants as concerns measuring span; all relevant data are therefore stored in an Oracle® database. Those data are used for the various quality assurance procedures defined for installation and commissioning, as well as for generating tables used by the control system to configure automatically the input/output channels. This paper describes the commissioning of the sensors and the corresponding electronics, the first measurement results during the cool-down of one machine sector; it discusses the different encountered problems and their corresponding solutions.

  18. Dark and bright modes manipulation for plasmon-triggered photonic devices

    KAUST Repository

    Panaro, S.

    2014-09-10

    In the last decade, several efforts have been spent in the study of near-field coupled systems, in order to induce hybridization of plasmonic modes. Within this context, particular attention has been recently paid on the possibility to couple conventional bright and dark modes. As a result of such phenomenon, a Fano resonance appears as a characteristic sharp dip in the scattering spectra. Here we show how, gradually coupling a single rod-like nanostructure to an aligned nanoantenna dimer, it is possible to induce the near-field activation of an anti-bonding dark mode. The high polarization sensitivity presented by the far-field response of T-shape trimer, combined with the sharp Fano resonance sustained by this plasmonic device, opens interesting perspectives towards a new era of photonic devices. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  19. Dark and bright modes manipulation for plasmon-triggered photonic devices

    KAUST Repository

    Panaro, S.; Nazir, A.; Liberale, Carlo; Wang, H.; De Angelis, F.; Proietti Zaccaria, R.; Di Fabrizio, Enzo M.; Toma, A.

    2014-01-01

    In the last decade, several efforts have been spent in the study of near-field coupled systems, in order to induce hybridization of plasmonic modes. Within this context, particular attention has been recently paid on the possibility to couple conventional bright and dark modes. As a result of such phenomenon, a Fano resonance appears as a characteristic sharp dip in the scattering spectra. Here we show how, gradually coupling a single rod-like nanostructure to an aligned nanoantenna dimer, it is possible to induce the near-field activation of an anti-bonding dark mode. The high polarization sensitivity presented by the far-field response of T-shape trimer, combined with the sharp Fano resonance sustained by this plasmonic device, opens interesting perspectives towards a new era of photonic devices. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  20. Explosive attractor solutions to a universal cubic delay equation

    Science.gov (United States)

    Sanz-Orozco, D.; Berk, H. L.

    2017-05-01

    New explosive attractor solutions have been found in a universal cubic delay equation that has been studied in both the plasma and the fluid mechanics literature. Through computational simulations and analytic approximations, it is found that the oscillatory component of the explosive mode amplitude solutions are described through multi-frequency Fourier expansions with respect to a pseudo-time variable. The spectral dependence of these solutions as a function of a system parameter, ϕ , is studied. The mode amplitude that is described in the explosive regime has two main features: a well-known envelope ( t 0 - t ) - 5 / 2 , with t0 the blow-up time of the amplitude, and a spectrum of discrete oscillations with ever-increasing frequencies, which may give experimental information about the properties of a system's equilibrium.

  1. Safety regulations concerning instrumentation and control systems for research reactors

    International Nuclear Information System (INIS)

    El-Shanshoury, A.I.

    2009-01-01

    A brief study on the safety and reliability issues related to instrumentation and control systems in nuclear reactor plants is performed. In response, technical and strategic issues are used to accomplish instrumentation and control systems safety. For technical issues there are ; systems aspects of digital I and C technology, software quality assurance, common-mode software, failure potential, safety and reliability assessment methods, and human factors and human machine interfaces. The strategic issues are the case-by-case licensing process and the adequacy of the technical infrastructure. The purpose of this work was to review the reliability of the safety systems related to these technical issues for research reactors

  2. Investigation of water and saline solution drops evaporation on a solid substrate

    Directory of Open Access Journals (Sweden)

    Orlova Evgenija G.

    2014-01-01

    Full Text Available Experimental investigation water and saline solution drops evaporation on a solid substrate made of anodized aluminum is presented in the paper. Parameters characterizing drop profile have been obtained (contact angle, contact diameter, height. The specific evaporation rate has been calculated from obtained values. It was found that water and saline solution drops with concentration up to 9.1% evaporate in the pinning mode. However, with increasing the salt concentration in the solution up to 16.7% spreading mode was observed. Two stages of drop evaporation depending on change of the evaporation rate have been separated.

  3. Mode cross coupling observations with a rotation sensor

    Science.gov (United States)

    Nader-Nieto, M. F.; Igel, H.; Ferreira, A. M.; Al-Attar, D.

    2013-12-01

    The Earth's free oscillations induced by large earthquakes have been one of the most important ways to measure the Earth's internal structure and processes. They provide important large scale constraints on a variety of elastic parameters, attenuation and density of the Earth's deep interior. The potential of rotational seismic records for long period seismology was proven useful as a complement to traditional measurements in the study of the Earth's free oscillations. Thanks to the high resolution of the G-ring laser located at Geodetic Observatory Wettzell, Germany, we are now able to study the spectral energy generated by rotations in the low frequency range. On a SNREI Earth, a vertical component rotational sensor is primarily excited by horizontally polarised shear motions (SH waves, Love waves) with theoretically no sensitivity to compressional waves and conversions (P-SV) and Rayleigh waves. Consequently, in the context of the Earth's normal modes, this instrument detects mostly toroidal modes. Here, we present observations of spectral energy of both toroidal and spheroidal normal modes in the G-ring Laser records of one of the largest magnitude events recently recorded: Tohoku-Oki, Japan, 2011. In an attempt to determine the mechanisms responsible for spheroidal energy in the vertical axes rotational spectra, we first rule out instrumental effects as well as the effect of local heterogeneity. Second, we carry out a simulation of an ideal rotational sensor taking into account the effects of the Earth's daily rotation, its hydrostatic ellipticity and structural heterogeneity, finding a good fit to the data. Simulations considering each effect separately are performed in order to evaluate the sensitivity of rotational motions to global effects with respect to traditional translation measurements.

  4. Circuit breaker operation and potential failure modes during an earthquake

    International Nuclear Information System (INIS)

    Lambert, H.E.; Budnitz, R.J.

    1987-01-01

    This study addresses the effect of a strong-motion earthquake on circuit breaker operation. It focuses on the loss of offsite power (LOSP) transient caused by a strong-motion earthquake at the Zion Nuclear Power Plant. This paper also describes the operator action necessary to prevent core melt if the above circuit breaker failure modes occur simultaneously on three 4.16 KV buses. Numerous circuit breakers important to plant safety, such as circuit breakers to diesel generators and engineered safety systems (ESS), must open and/or close during this transient while strong motion is occurring. Potential seismically-induced circuit-breaker failures modes were uncovered while the study was conducted. These failure modes include: circuit breaker fails to close; circuit breaker trips inadvertently; circuit breaker fails to reclose after trip. The causes of these failure modes include: Relay chatter causes the circuit breaker to trip; Relay chatter causes anti-pumping relays to seal-in which prevents automatic closure of circuit breakers; Load sequencer failures. The incorporation of these failure modes as well as other instrumentation and control failures into a limited scope seismic probabilistic risk assessment is also discussed in this paper

  5. On the ordinary mode instability for low beta plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hadi, F.; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar (Pakistan); Bashir, M. F. [Department of Physics, G. C. University, Lahore (Pakistan); Salam Chair in Physics, G. C. University, Lahore (Pakistan); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742-2431 (United States); School of Space Research, Kyung Hee University, Yongin (Korea, Republic of); Schlickeiser, R. [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- and Astrophysik, Ruhr-Universität, Bochum (Germany)

    2014-05-15

    The purely growing ordinary (O) mode instability, first discussed by Davidson and Wu [Phys. Fluids 13, 1407 (1970)], has recently received renewed attention owing to its potential applicability to the solar wind plasma. In a series of papers, Ibscher, Schlickeiser, and their colleagues [Phys. Plasmas 19, 072116 (2012); ibid. 20, 012103 (2013); ibid. 20, 042121 (2013); ibid. 21, 022110 (2014)] revisited the O mode instability and extended it to the low-beta plasma regime by considering a counter-streaming bi-Maxwellian model. However, the O-mode instability is, thus, far discussed only on the basis of the marginal stability condition rather than actual numerical solutions of the dispersion relation. The present paper revisits the O-mode instability by considering the actual complex roots. The marginal stability condition as a function of the (electron) temperature anisotropy and beta naturally emerges in such a scheme.

  6. Optimal Control of Micro Grid Operation Mode Seamless Switching Based on Radau Allocation Method

    Science.gov (United States)

    Chen, Xiaomin; Wang, Gang

    2017-05-01

    The seamless switching process of micro grid operation mode directly affects the safety and stability of its operation. According to the switching process from island mode to grid-connected mode of micro grid, we establish a dynamic optimization model based on two grid-connected inverters. We use Radau allocation method to discretize the model, and use Newton iteration method to obtain the optimal solution. Finally, we implement the optimization mode in MATLAB and get the optimal control trajectory of the inverters.

  7. Radioactive standards and calibration methods for contamination monitoring instruments

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-06-01

    Contamination monitoring in the facilities for handling unsealed radioactive materials is one of the most important procedures for radiation protection as well as radiation dose monitoring. For implementation of the proper contamination monitoring, radiation measuring instruments should not only be suitable to the purpose of monitoring, but also be well calibrated for the objective qualities of measurement. In the calibration of contamination monitoring instruments, quality reference activities need to be used. They are supplied in different such as extended sources, radioactive solutions or radioactive gases. These reference activities must be traceable to the national standards or equivalent standards. On the other hand, the appropriate calibration methods must be applied for each type of contamination monitoring instruments. In this paper, the concepts of calibration for contamination monitoring instruments, reference sources, determination methods of reference quantities and practical calibration methods of contamination monitoring instruments, including the procedures carried out in Japan Atomic Energy Research Institute and some relevant experimental data. (G.K.)

  8. Cost-effective design of economic instruments in nutrition policy

    Directory of Open Access Journals (Sweden)

    Smed Sinne

    2007-04-01

    Full Text Available Abstract This paper addresses the potential for using economic regulation, e.g. taxes or subsidies, as instruments to combat the increasing problems of inappropriate diets, leading to health problems such as obesity, diabetes 2, cardiovascular diseases etc. in most countries. Such policy measures may be considered as alternatives or supplements to other regulation instruments, including information campaigns, bans or enhancement of technological solutions to the problems of obesity or related diseases. 7 different food tax and subsidy instruments or combinations of instruments are analysed quantitatively. The analyses demonstrate that the average cost-effectiveness with regard to changing the intake of selected nutritional variables can be improved by 10–30 per cent if taxes/subsidies are targeted against these nutrients, compared with targeting selected food categories. Finally, the paper raises a range of issues, which need to be investigated further, before firm conclusions about the suitability of economic instruments in nutrition policy can be drawn.

  9. Nurse/physician conflict management mode choices: implications for improved collaborative practice.

    Science.gov (United States)

    Hendel, Tova; Fish, Miri; Berger, Ornit

    2007-01-01

    In today's complex healthcare organizations, conflicts between physicians and nurses occur daily. Consequently, organizational conflict has grown into a major subfield of organizational behavior. Researchers have claimed that conflict has a beneficial effect on work group function and identified collaboration as one of the intervening variables that may explain the relationship between magnet hospitals and positive patient outcomes. The purpose of this study was to identify and compare conflict mode choices of physicians and head nurses in acute care hospitals and examine the relationship of conflict mode choices with their background characteristics. In a cross-sectional correlational study, 75 physicians and 54 head nurses in 5 hospitals were surveyed, using the Thomas-Kilmann Conflict Mode Instrument. No difference was found between physicians and nurses in choice of the most frequently used mode in conflict management. The compromising mode was found to be the significantly most commonly chosen mode (P = .00) by both. Collaborating was chosen significantly more frequently among head nurses (P = .001) and least frequently among physicians (P = .00). Most of the respondents' characteristics were not found to be correlated with mode choices. The findings indicate a need to enhance partnerships in the clinical environment to ensure quality patient care and staff satisfaction.

  10. Study on Instrument Fault Detection using OLM Techniques for PHM Application in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hwan; Park, Gee Yong; Kim, Jung Taek; Hur, Seop [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The diagnosis system is relatively being mature owing to many research. Among the various models, this paper introduces some On-Line Monitoring (OLM) models for instrument health monitoring and review applicability on NPPs. In recent years, many researchers are being focused on the prognostics which is predicting the future failure of instruments or equipment by using the status monitoring data. By using the prognostic techniques, we can expect a lot of advantages such as ease of control, power optimization, or optimal use of maintenance resources. And we have performed the test for detecting fault of safety-critical instruments and analyzed the fault detection sensitivity for various instrument failure modes using OLM techniques. OLM techniques using data-driven based model such AAKR or AANN can be useful tools for securing integrity of safety-critical instrument that should always keep healthy conditions for the plant safety.

  11. Observation of slant column NO2 using the super-zoom mode of AURA-OMI

    Directory of Open Access Journals (Sweden)

    R. C. Cohen

    2011-09-01

    Full Text Available We retrieve slant column NO2 from the super-zoom mode of the Ozone Monitoring Instrument (OMI to explore its utility for understanding NOx emissions and variability. Slant column NO2 is operationally retrieved from OMI (Boersma et al., 2007; Bucsela et al., 2006 with a nadir footprint of 13 × 24 km2, the result of averaging eight detector elements on board the instrument. For 85 orbits in late 2004, OMI reported observations from individual "super-zoom" detector elements (spaced at 13 × 3 km2 at nadir. We assess the spatial response of these individual detector elements in-flight and determine an upper-bound on spatial resolution of 9 km, in good agreement with on-ground calibration (7 km FWHM. We determine the precision of the super-zoom mode to be 2.1 × 1015 molecules cm−2, approximately a factor of √8 lower than an identical retrieval at operational scale as expected if random noise dominates the uncertainty. We retrieve slant column NO2 over the Satpura power plant in India; Seoul, South Korea; Dubai, United Arab Emirates; and a set of large point sources on the Rihand Reservoir in India using differential optical absorption spectroscopy (DOAS. Over these sources, the super-zoom mode of OMI observes variation in slant column NO2 of up to 30 × the instrumental precision within one operational footprint.

  12. Self-Efficacy for Therapeutic Mode Use among Occupational Therapy Students in Norway

    Science.gov (United States)

    Opseth, Thea Moos; Carstensen, Tove; Yazdani, Farzaneh; Ellingham, Brian; Thørrisen, Mikkel Magnus; Bonsaksen, Tore

    2017-01-01

    Background: The intentional relationship model (IRM) proposes six distinct ways of relating to clients. A new instrument for measuring self-efficacy for using the therapeutic modes in occupational therapy practice was recently found to have good psychometric properties. To date, however, no research has investigated factors associated with…

  13. Optical Comb from a Whispering Gallery Mode Resonator for Spectroscopy and Astronomy Instruments Calibration

    Science.gov (United States)

    Strekalov, Dmitry V.; Yu, Nam; Thompson, Robert J.

    2012-01-01

    The most accurate astronomical data is available from space-based observations that are not impeded by the Earth's atmosphere. Such measurements may require spectral samples taken as long as decades apart, with the 1 cm/s velocity precision integrated over a broad wavelength range. This raises the requirements specifically for instruments used in astrophysics research missions -- their stringent wavelength resolution and accuracy must be maintained over years and possibly decades. Therefore, a stable and broadband optical calibration technique compatible with spaceflights becomes essential. The space-based spectroscopic instruments need to be calibrated in situ, which puts forth specific requirements to the calibration sources, mainly concerned with their mass, power consumption, and reliability. A high-precision, high-resolution reference wavelength comb source for astronomical and astrophysics spectroscopic observations has been developed that is deployable in space. The optical comb will be used for wavelength calibrations of spectrographs and will enable Doppler measurements to better than 10 cm/s precision, one hundred times better than the current state-of-the- art.

  14. Arbitrarily large numbers of kink internal modes in inhomogeneous sine-Gordon equations

    Energy Technology Data Exchange (ETDEWEB)

    González, J.A., E-mail: jalbertgonz@yahoo.es [Department of Physics, Florida International University, Miami, FL 33199 (United States); Department of Natural Sciences, Miami Dade College, 627 SW 27th Ave., Miami, FL 33135 (United States); Bellorín, A., E-mail: alberto.bellorin@ucv.ve [Escuela de Física, Facultad de Ciencias, Universidad Central de Venezuela, Apartado Postal 47586, Caracas 1041-A (Venezuela, Bolivarian Republic of); García-Ñustes, M.A., E-mail: monica.garcia@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059 (Chile); Guerrero, L.E., E-mail: lguerre@usb.ve [Departamento de Física, Universidad Simón Bolívar, Apartado Postal 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Jiménez, S., E-mail: s.jimenez@upm.es [Departamento de Matemática Aplicada a las TT.II., E.T.S.I. Telecomunicación, Universidad Politécnica de Madrid, 28040-Madrid (Spain); Vázquez, L., E-mail: lvazquez@fdi.ucm.es [Departamento de Matemática Aplicada, Facultad de Informática, Universidad Complutense de Madrid, 28040-Madrid (Spain)

    2017-06-28

    We prove analytically the existence of an infinite number of internal (shape) modes of sine-Gordon solitons in the presence of some inhomogeneous long-range forces, provided some conditions are satisfied. - Highlights: • We have found exact kink solutions to the perturbed sine-Gordon equation. • We have been able to study analytically the kink stability problem. • A kink equilibrated by an exponentially-localized perturbation has a finite number of oscillation modes. • A sufficiently broad equilibrating perturbation supports an infinite number of soliton internal modes.

  15. A MGy radiation-hardened sensor instrumentation link for nuclear reactor monitoring and remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Verbeeck, Jens; Cao, Ying [KU Leuven - KUL, Div. LRD-MAGyICS, Kasteelpark Arenberg 10, 3001 Heverlee (Belgium); Van Uffelen, Marco; Mont Casellas, Laura; Damiani, Carlo; Morales, Emilio Ruiz; Santana, Roberto Ranz [Fusion for Energy - F4E, c/Josep,n deg. 2, Torres Diagonal Litoral, Ed. B3, 08019 Barcelona (Spain); Meek, Richard; Haist, Bernhard [Oxford Technologies Ltd. OTL, 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom); De Cock, Wouter; Vermeeren, Ludo [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Steyaert, Michiel [KU Leuven, ESAT-MICAS, KasteelparkArenberg 10, 3001 Heverlee (Belgium); Leroux, Paul [KU Leuven, ESAT-MICAS, KasteelparkArenberg 10, 3001 Heverlee (Belgium)

    2015-07-01

    Decommissioning, dismantling and remote handling applications in nuclear facilities all require robotic solutions that are able to survive in radiation environments. Recently raised safety, radiation hardness and cost efficiency demands from both the nuclear regulatory and the society impose severe challenges in traditional methods. For example, in case of the dismantling of the Fukushima sites, solutions that survive accumulated doses higher than 1 MGy are mandatory. To allow remote operation of these tools in nuclear environments, electronics were used to be shielded with several centimeters of lead or even completely banned in these solutions. However, shielding electronics always leads to bulky and heavy solutions, which reduces the flexibility of robotic tools. It also requires longer repair time and produces extra waste further in a dismantling or decommissioning cycle. In addition, often in current reactor designs, due to size restrictions and the need to inspect very tight areas there are limitations to the use of shielding. A MGy radiation-hardened sensor instrumentation link developed by MAGyICS provides a solution to build a flexible, easy removable and small I and C module with MGy radiation tolerance without any shielding. Hereby it removes all these pains to implement electronics in robotic tools. The demonstrated solution in this poster is developed for ITER Remote Handling equipments operating in high radiation environments (>1 MGy) in and around the Tokamak. In order to obtain adequately accurate instrumentation and control information, as well as to ease the umbilical management, there is a need of front-end electronics that will have to be located close to those actuators and sensors on the remote handling tool. In particular, for diverter remote handling, it is estimated that these components will face gamma radiation up to 300 Gy/h (in-vessel) and a total dose of 1 MGy. The radiation-hardened sensor instrumentation link presented here, consists

  16. Impacts of operating conditions and solution chemistry on osmotic membrane structure and performance

    KAUST Repository

    Wong, Mavis C.Y.; Martinez, Kristina; Ramon, Guy Z.; Hoek, Eric M.V.

    2012-01-01

    Herein, we report on changes in the performance of a commercial cellulose triacetate (CTA) membrane, imparted by varied operating conditions and solution chemistries. Changes to feed and draw solution flow rate did not significantly alter the CTA membrane's water permeability, salt permeability, or membrane structural parameter when operated with the membrane skin layer facing the draw solution (PRO-mode). However, water and salt permeability increased with increasing feed or draw solution temperature, while the membrane structural parameter decreased with increasing draw solution, possibly due to changes in polymer intermolecular interactions. High ionic strength draw solutions may de-swell the CTA membrane via charge neutralization, which resulted in lower water permeability, higher salt permeability, and lower structural parameter. This observed trend was further exacerbated by the presence of divalent cations which tends to swell the polymer to a greater extent. Finally, the calculated CTA membrane's structural parameter was lower and less sensitive to external factors when operated in PRO-mode, but highly sensitive to the same factors when the skin layer faced the feed solution (FO-mode), presumably due to swelling/de-swelling of the saturated porous substructure by the draw solution. This is a first attempt aimed at systematically evaluating the changes in performance of the CTA membrane due to operating conditions and solution chemistry, shedding new insight into the possible advantages and disadvantages of this material in certain applications. © 2011 Elsevier B.V.

  17. Impacts of operating conditions and solution chemistry on osmotic membrane structure and performance

    KAUST Repository

    Wong, Mavis C.Y.

    2012-02-01

    Herein, we report on changes in the performance of a commercial cellulose triacetate (CTA) membrane, imparted by varied operating conditions and solution chemistries. Changes to feed and draw solution flow rate did not significantly alter the CTA membrane\\'s water permeability, salt permeability, or membrane structural parameter when operated with the membrane skin layer facing the draw solution (PRO-mode). However, water and salt permeability increased with increasing feed or draw solution temperature, while the membrane structural parameter decreased with increasing draw solution, possibly due to changes in polymer intermolecular interactions. High ionic strength draw solutions may de-swell the CTA membrane via charge neutralization, which resulted in lower water permeability, higher salt permeability, and lower structural parameter. This observed trend was further exacerbated by the presence of divalent cations which tends to swell the polymer to a greater extent. Finally, the calculated CTA membrane\\'s structural parameter was lower and less sensitive to external factors when operated in PRO-mode, but highly sensitive to the same factors when the skin layer faced the feed solution (FO-mode), presumably due to swelling/de-swelling of the saturated porous substructure by the draw solution. This is a first attempt aimed at systematically evaluating the changes in performance of the CTA membrane due to operating conditions and solution chemistry, shedding new insight into the possible advantages and disadvantages of this material in certain applications. © 2011 Elsevier B.V.

  18. Policy learning in the Eurozone crisis: modes, power and functionality.

    Science.gov (United States)

    Dunlop, Claire A; Radaelli, Claudio M

    In response to the attacks on the sovereign debt of some Eurozone countries, European Union (EU) leaders have created a set of preventive and corrective policy instruments to coordinate macro-economic policies and reforms. In this article, we deal with the European Semester, a cycle of information exchange, monitoring and surveillance. Countries that deviate from the targets are subjected to increasing monitoring and more severe 'corrective' interventions, in a pyramid of responsive exchanges between governments and EU institutions. This is supposed to generate coordination and convergence towards balanced economies via mechanisms of learning. But who is learning what? Can the EU learn in the 'wrong' mode? We contribute to the literature on theories of the policy process by showing how modes of learning can be operationalized and used in empirical analysis. We use policy learning as theoretical framework to establish empirically the prevalent mode of learning and its implications for both the power of the Commission and the normative question of whether the EU is learning in the 'correct' mode.

  19. CERCA's fuel elements instrumentation manufacturing

    International Nuclear Information System (INIS)

    Harbonnier, G.; Jarousse, C.; Pin, T.; Febvre, M.; Colomb, P.

    2005-01-01

    When research and test reactors wish to further understand the Fuel Elements behavior when operating as well as mastering their irradiation conditions, operators carry out neutron and thermo hydraulic analysis. For thermal calculation, the codes used have to be preliminary validated, at least in the range of the reactor safety operational limits. When some further investigations are requested either by safety authorities or for its own reactor needs, instrumented tools are the ultimate solution for providing representative measurements. Such measurements can be conducted for validating thermal calculation codes, at nominal operating condition as well as during transients ones, or for providing numerous and useful data in the frame of a new products qualification program. CERCA, with many years of experience for implanting thermocouples in various products design, states in this poster his manufacturing background on instrumented elements, plates or targets. (author)

  20. A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: Application and performance

    International Nuclear Information System (INIS)

    Kubicek, Markus; Holzlechner, Gerald; Opitz, Alexander K.; Larisegger, Silvia; Hutter, Herbert; Fleig, Jürgen

    2014-01-01

    A novel operation mode for time of flight-secondary ion mass spectrometry (ToF-SIMS) is described for a TOF.SIMS 5 instrument with a Bi-ion gun. It features sub 100 nm lateral resolution, adjustable primary ion currents and the possibility to measure with high lateral resolution as well as high mass resolution. The adjustment and performance of the novel operation mode are described and compared to established ToF-SIMS operation modes. Several examples of application featuring novel scientific results show the capabilities of the operation mode in terms of lateral resolution, accuracy of isotope analysis of oxygen, and combination of high lateral and mass resolution. The relationship between high lateral resolution and operation of SIMS in static mode is discussed.

  1. Identification of different magnetic modes in CsFeCl3 by polarisation analysis

    International Nuclear Information System (INIS)

    Dorner, B.; Toperverg, B.; Baehr, M.; Petitgrand, D.

    1996-01-01

    CsFeCl 3 is a quasi 1D magnetic system with a singlet groundstate. The Fe 2+ ion has an effective spin S=1. Experimental results in a magnetic field applied perpendicular to the anisotropy axis show that the excited states (doubly degenerate in zero field) split and shift to higher frequencies with increasing field. The split of the high frequency modes is very small compared to the instrumental resolution. Only polarisation analysis of inelastic neutron scattering made it possible to observe the splitting everywhere in reciprocal space. The frequency shift of the two modes with field is different such that a mode crossing appears for fields below about 4 Tesla. (author) 9 figs., 1 tab., 7 refs

  2. Guided-Mode-Leaky-Mode-Guided-Mode Fiber Interferometer and Its High Sensitivity Refractive Index Sensing Technology

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2016-06-01

    Full Text Available A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM. When the diameter of taper waist is 20 μm–30 μm, dual-taper length is 1 mm and taper distance is 4 cm–6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit can achieved in the RI range of 1.3333–1.3792 (0%~25% NaCl solution, when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10−5 RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability.

  3. Choosing Environmental Policy Instruments in the Real World

    International Nuclear Information System (INIS)

    Greenspan Bell, R.

    2003-01-01

    In their enthusiasm for efficiency over other values, the advocates for market-based instruments for environmental control have reversed the order in which environmental solutions are found. They have written their prescriptions without first doing a physical examination of the patient; in other words, they have first recommended environmental instruments and secondarily tried to bend institutions to support the already identified cure. The engine for environmental regulation consists of the institutions available country by country to carry out environmental policy. Institutional inadequacies such as low functioning legal systems, historical experience (or inexperience) with markets, distorting and often institutionalised corruption, and public acceptance certainly can be fixed. But changing these fundamentals can be a long and arduous process. Those who advise governments to adopt reforms for which the institutional basis does not yet exist put the cart before the horse, a costly mistake that directs weak countries in the direction of solutions they have little hope of implementing. Instead, the donors and advisors should be seeking alternative approaches, for example to encourage incremental improvements and pragmatic goals, by considering a transitional or tiered approach that will take into account existing capabilities and institutions, at the same time acknowledging that a long learning curve lies ahead with inevitably uneven implementation and slippage from time to time. Another approach would be to find examples of small, albeit imperfect, efforts that seem to be working and building on them. The long-term goal should be efficient solutions, but only the most developed countries should be encouraged to attempt difficult environmental policy instruments like taxation and emissions trading schemes

  4. Laser Mode Behavior of the Cassini CIRS Fourier Transform Spectrometer at Saturn

    Science.gov (United States)

    Brasunas, John C.

    2012-01-01

    The CIRS Fourier transform spectrometer aboard the NASA/ESA/ASI Cassini orbiter has been acquiring spectra of the Saturnian system since 2004. The CIRS reference interferometer employs a laser diode to trigger the interferogram sampling. Although the control of laser diode drive current and operating temperature are stringent enough to restrict laser wavelength variation to a small fraction of CIRS finest resolution element, the CIRS instrument does need to be restarted every year or two, at which time it may start in a new laser mode. By monitoring the Mylar absorption features in uncalibrated spectra due to the beam splitter Mylar substrate, it can be shown that these jumps are to adjacent modes and that most of the eight-year operation so far is restricted to three adjacent modes. For a given mode, the wavelength stability appears consistent with the stability of the laser diode drive curren.t and operating temperature.

  5. On the wing behaviour of the overtones of self-localized modes

    Science.gov (United States)

    Dusi, R.; Wagner, M.

    1998-08-01

    In this paper the solutions for self-localized modes in a nonlinear chain are investigated. We present a converging iteration procedure, which is based on analytical information of the wings and which takes into account higher overtones of the solitonic oscillations. The accuracy is controlled in a step by step manner by means of a Gaussian error analysis. Our numerical procedure allows for highly accurate solutions, in all anharmonicity regimes, and beyond the rotating-wave approximation (RWA). It is found that the overtone wings change their analytical behaviour at certain critical values of the energy of the self-localized mode: there is a turnover in the exponent of descent. The results are shown for a Fermi-Pasta-Ulam (FPU) chain with quartic anharmonicity.

  6. [French residents' training in instrumental deliveries: A national survey].

    Science.gov (United States)

    Saunier, C; Raimond, E; Dupont, A; Pelissier, A; Bonneau, S; Gabriel, R; Graesslin, O

    2016-11-01

    To evaluate French residents in Obstetrics and Gynaecology's training in instrumental deliveries in 2015. We conducted a national descriptive survey among 758 residents between December 2014 and January 2015. Respondents were invited by email to specify their University Hospital, their current university term, the number of instrumental deliveries performed by vacuum extractor, forceps or spatulas, and whether they made systematic ultrasound exams before performing the extraction. Response rate was 34.7 % (n=263). There were important differences between regions in terms of type of instruments used. Vacuum extractor was the most commonly used instrument for instrumental deliveries by French residents (56.9 %), more than forceps (25.2 %) and spatulas (17.9 %). At the end of the residency, all the residents had been trained in instrumental deliveries with at least two instruments. The training of difficult techniques as well as their perfect control is required for instrumental deliveries. Yet, we are forced to note that there are substantial differences in the French residents' training in instrumental deliveries depending on their region. So, teaching at least two techniques seems essential as well as improving the training capacities and standardizing practices. A greater systematization of the teaching of the mechanics and obstetric techniques might be a solution to be considered too. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Cyclic fatigue resistance of ProTaper Universal instruments when subjected to static and dynamic tests.

    Science.gov (United States)

    Lopes, Hélio P; Britto, Izabelle M O; Elias, Carlos N; Machado de Oliveira, Julio C; Neves, Mônica A S; Moreira, Edson J L; Siqueira, José F

    2010-09-01

    This study evaluated the number of cycles to fracture of ProTaper Universal S2 instruments when subjected to static and dynamic cyclic fatigue tests. ProTaper Universal S2 instruments were used until fracture in an artificial curved canal under rotational speed of 300 rpm in either a static or a dynamic test model. Afterward, the length of the fractured segments was measured and fractured surfaces and helical shafts analyzed by scanning electron microscopy (SEM). The number of cycles to fracture was significantly increased when instruments were tested in the dynamic model (Pductile mode. Plastic deformation was not observed in the helical shaft of fractured instruments. The number of cycles to fracture ProTaper Universal S2 instruments significantly increased with the use of instruments in a dynamic cyclic fatigue test compared with a static model. These findings reinforce the need for performing continuous pecking motions during rotary instrumentation of curved root canals. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  8. Distributed Framework for Dynamic Telescope and Instrument Control

    Science.gov (United States)

    Ames, Troy J.; Case, Lynne

    2002-01-01

    Traditionally, instrument command and control systems have been developed specifically for a single instrument. Such solutions are frequently expensive and are inflexible to support the next instrument development effort. NASA Goddard Space Flight Center is developing an extensible framework, known as Instrument Remote Control (IRC) that applies to any kind of instrument that can be controlled by a computer. IRC combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML). A key aspect of the architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). IML is an XML dialect used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, communication mechanisms, and data processing algorithms. The IRC framework provides the ability to communicate to components anywhere on a network using the JXTA protocol for dynamic discovery of distributed components. JXTA (see httD://www.jxta.org,) is a generalized protocol that allows any devices connected by a network to communicate in a peer-to-peer manner. IRC uses JXTA to advertise a device's IML and discover devices of interest on the network. Devices can join or leave the network and thus join or leave the instrument control environment of IRC. Currently, several astronomical instruments are working with the IRC development team to develop custom components for IRC to control their instruments. These instruments include: High resolution Airborne Wideband Camera (HAWC), a first light instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA); Submillimeter And Far Infrared Experiment (SAFIRE), a Principal Investigator instrument for SOFIA; and Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE), a prototype of the SAFIRE instrument, used at the Caltech Submillimeter Observatory (CSO). Most recently, we have

  9. Influence of the leaching mode on the durability of a glass for fission product containment

    International Nuclear Information System (INIS)

    Nogues, J.L.; Terki, A.

    1984-06-01

    The chemical durability of a glass containing wastes from light water reactor (LWR) has been studied with three different lixiviation modes: ''static'' leach test, ''soxhlet'' test and ''continuous flow'' test. After a description of these tests, the leaching mode influence on the glass durability is reported as obtained from weight loss measurements, analyses of the leaching solutions and surface analyses of the samples. Finally, the corrosion mechanisms of this type of glass are approached and a phenomenological explanation of attack from an aqueous solution is proposed [fr

  10. Elevator mode convection in flows with strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Li; Zikanov, Oleg, E-mail: zikanov@umich.edu [Department of Mechanical Engineering, University of Michigan-Dearborn, 48128-1491 Michigan (United States)

    2015-04-15

    Instability modes in the form of axially uniform vertical jets, also called “elevator modes,” are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that an analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.

  11. Comparison of nanoparticle measurement instruments for occupational health applications

    International Nuclear Information System (INIS)

    Leskinen, J.; Joutsensaari, J.; Lyyränen, J.; Koivisto, J.; Ruusunen, J.; Järvelä, M.; Tuomi, T.; Hämeri, K.; Auvinen, A.; Jokiniemi, J.

    2012-01-01

    Nanoparticles are used in many applications because of their novel properties compared to bulk material. A growing number of employees are working with nanomaterials and their exposure to nanoparticles trough inhalation must be evaluated and monitored continuously. However, there is an ongoing debate in the scientific literature about what are the relevant parameters to measure to evaluate exposure to level. In this study, three types of nanoparticles (ammonium sulphate, synthesised TiO 2 agglomerates and aerosolised TiO 2 powder, modes in a range of 30–140 nm mobility size) were measured with commonly used aerosol measurement instruments: scanning and fast mobility particle sizers (SMPS, FMPS), electrical low pressure impactor (ELPI), condensation particle counter (CPC) together with nanoparticle surface area monitor (NSAM) to achieve information about the interrelations of the outputs of the instruments. In addition, the ease of use of these instruments was evaluated. Differences between the results of different instruments can mainly be attributed to the nature of test particles. For spherical ammonium sulphate nanoparticles, the data from the instruments were in good agreement while larger differences were observed for particles with more complex morphology, the TiO 2 agglomerates and powder. For instance, the FMPS showed a smaller particle size, a higher number concentration and a narrower size distribution compared with the SMPS for TiO 2 particles. Thus, the type of the nanoparticle was observed to influence the data obtained from these different instruments. Therefore, care and expertise are essential when interpreting results from aerosol measurement instruments to estimate nanoparticle concentrations and properties.

  12. Maslahah’s Role as an Instrument for Revival of Ijtihad

    Directory of Open Access Journals (Sweden)

    HAYATULLAH LALUDDIN

    2015-12-01

    Full Text Available Islam presents a comprehensive system of life based on divine guidance. Its dynamism is due its general principles through which solutions for any conceivable situation could be sought. This is in line with the signification of the Quranic verse: “We have not neglected in the record a thing . . .” This necessitates the adoption of an adequate methodology for the derivation of rulings from revealed source. A strict literal approach in understanding of the revealed text would not facilitate solutions for new issues due to the limitation of the text. Thus, maslahah, as a method of interpretation of revealed guidance can play a crucial role in providing solutions for new issues of legal and civilizational nature. Therefore, this article attempts to examine the instrumental role of maslahah in revitalization of Islamic thought. It also highlights the necessity for reviving ijtihad through which stagnation from intellectual spheres of Muslim world could be removed. Maslahah in this context provides an effective instrument for the purpose, hence, can play significant role in restoring originality and dynamism to Islamic thought.

  13. Analytical solution for the mode conversion equations with steep exponential density profiles

    International Nuclear Information System (INIS)

    Alava, M.J.; Heikkinen, J.A.

    1992-01-01

    A general analytical solution for the converted power from the fast magnetosonic wave to an ion Bernstein wave in a magnetized plasma with an exponential steeply increasing density profile is given in the closed form. The solution covers both the conversion at the lower-hybrid resonance and the conversion through the density gradient for small parallel wave numbers. As an application, the conversion coefficients at the scrape-off layer plasma are estimated in the context of ion cyclotron heating of a tokamak plasma

  14. High-accuracy alignment based on atmospherical dispersion - technological approaches and solutions for the dual-wavelength transmitter

    International Nuclear Information System (INIS)

    Burkhard, Boeckem

    1999-01-01

    In the course of the progressive developments of sophisticated geodetic systems utilizing electromagnetic waves in the visible or near IR-range a more detailed knowledge of the propagation medium and coevally solutions of atmospherically induced limitations will become important. An alignment system based on atmospherical dispersion, called a dispersometer, is a metrological solution to the atmospherically induced limitations, in optical alignment and direction observations of high accuracy. In the dispersometer we are using the dual-wavelength method for dispersive air to obtain refraction compensated angle measurements, the detrimental impact of atmospheric turbulence notwithstanding. The principle of the dual-wavelength method utilizes atmospherical dispersion, i.e. the wavelength dependence of the refractive index. The difference angle between two light beams of different wavelengths, which is called the dispersion angle Δβ, is to first approximation proportional to the refraction angle: β IR ν(β blue - β IR ) = ν Δβ, this equation implies that the dispersion angle has to be measured at least 42 times more accurate than the desired accuracy of the refraction angle for the wavelengths used in the present dispersometer. This required accuracy constitutes one major difficulty for the instrumental performance in applying the dispersion effect. However, the dual-wavelength method can only be successfully used in an optimized transmitter-receiver combination. Beyond the above mentioned resolution requirement for the detector, major difficulties in instrumental realization arise in the availability of a suitable dual-wavelength laser light source, laser light modulation with a very high extinction ratio and coaxial emittance of mono-mode radiation at both wavelengths. Therefore, this paper focuses on the solutions of the dual-wavelength transmitter introducing a new hardware approach and a complete re-design of the in [1] proposed conception of the dual

  15. Non-equipotential magnetic surfaces and mode-transition in tokamaks

    International Nuclear Information System (INIS)

    Li Xingzhong

    1988-01-01

    The solution of the Fokker-Planck equation is used to describe a phase transition in velocity space. This transition is related to the mode-transition in tokamaks. After the transition the electrostatic potential on a magnetic surface cannot be considered as a constant. (orig.)

  16. Automated processing of endoscopic surgical instruments.

    Science.gov (United States)

    Roth, K; Sieber, J P; Schrimm, H; Heeg, P; Buess, G

    1994-10-01

    This paper deals with the requirements for automated processing of endoscopic surgical instruments. After a brief analysis of the current problems, solutions are discussed. Test-procedures have been developed to validate the automated processing, so that the cleaning results are guaranteed and reproducable. Also a device for testing and cleaning was designed together with Netzsch Newamatic and PCI, called TC-MIC, to automate processing and reduce manual work.

  17. Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach

    International Nuclear Information System (INIS)

    Kurihara, Kazuyoshi; Otomo, Akira; Syouji, Atsushi; Takahara, Junichi; Suzuki, Koji; Yokoyama, Shiyoshi

    2007-01-01

    Analytic solutions to the superfocusing modes of surface plasmon polaritons in a conical geometry are theoretically studied using an ingenious method called the quasi-separation of variables. This method can be used to look for fundamental solutions to the wave equation for a field that must satisfy boundary conditions at all points on the continuous surface of tapered geometries. The set of differential equations exclusively separated from the wave equation can be consistently solved in combination with perturbation methods. This paper presents the zeroth-order perturbation solution of conical superfocusing modes with azimuthal symmetry and graphically represents them in electric field-line patterns

  18. A comprehensive review of sensors and instrumentation methods in devices for musical expression.

    Science.gov (United States)

    Medeiros, Carolina Brum; Wanderley, Marcelo M

    2014-07-25

    Digital Musical Instruments (DMIs) are musical instruments typically composed of a control surface where user interaction is measured by sensors whose values are mapped to sound synthesis algorithms. These instruments have gained interest among skilled musicians and performers in the last decades leading to artistic practices including musical performance, interactive installations and dance. The creation of DMIs typically involves several areas, among them: arts, design and engineering. The balance between these areas is an essential task in DMI design so that the resulting instruments are aesthetically appealing, robust, and allow responsive, accurate and repeatable sensing. In this paper, we review the use of sensors in the DMI community as manifested in the proceedings of the International Conference on New Interfaces for Musical Expression (NIME 2009-2013). Focusing on the sensor technologies and signal conditioning techniques used by the NIME community. Although it has been claimed that specifications for artistic tools are harder than those for military applications, this study raises a paradox showing that in most of the cases, DMIs are based on a few basic sensors types and unsophisticated engineering solutions, not taking advantage of more advanced sensing, instrumentation and signal processing techniques that could dramatically improve their response. We aim to raise awareness of limitations of any engineering solution and to assert the benefits of advanced electronics instrumentation design in DMIs. For this, we propose the use of specialized sensors such as strain gages, advanced conditioning circuits and signal processing tools such as sensor fusion. We believe that careful electronic instrumentation design may lead to more responsive instruments.

  19. Accurately bi-orthogonal direct and adjoint lambda modes via two-sided Eigen-solvers

    International Nuclear Information System (INIS)

    Roman, J.E.; Vidal, V.; Verdu, G.

    2005-01-01

    This work is concerned with the accurate computation of the dominant l-modes (Lambda mode) of the reactor core in order to approximate the solution of the neutron diffusion equation in different situations such as the transient modal analysis. In a previous work, the problem was already addressed by implementing a parallel program based on SLEPc (Scalable Library for Eigenvalue Problem Computations), a public domain software for the solution of eigenvalue problems. Now, the proposed solution is extended by incorporating also the computation of the adjoint l-modes in such a way that the bi-orthogonality condition is enforced very accurately. This feature is very desirable in some types of analyses, and in the proposed scheme it is achieved by making use of two-sided eigenvalue solving software. Current implementations of some of these software, while still susceptible of improvement, show that they can be competitive in terms of response time and accuracy with respect to other types of eigenvalue solving software. The code developed by the authors has parallel capabilities in order to be able to analyze reactors with a great level of detail in a short time. (authors)

  20. Accurately bi-orthogonal direct and adjoint lambda modes via two-sided Eigen-solvers

    Energy Technology Data Exchange (ETDEWEB)

    Roman, J.E.; Vidal, V. [Valencia Univ. Politecnica, D. Sistemas Informaticos y Computacion (Spain); Verdu, G. [Valencia Univ. Politecnica, D. Ingenieria Quimica y Nuclear (Spain)

    2005-07-01

    This work is concerned with the accurate computation of the dominant l-modes (Lambda mode) of the reactor core in order to approximate the solution of the neutron diffusion equation in different situations such as the transient modal analysis. In a previous work, the problem was already addressed by implementing a parallel program based on SLEPc (Scalable Library for Eigenvalue Problem Computations), a public domain software for the solution of eigenvalue problems. Now, the proposed solution is extended by incorporating also the computation of the adjoint l-modes in such a way that the bi-orthogonality condition is enforced very accurately. This feature is very desirable in some types of analyses, and in the proposed scheme it is achieved by making use of two-sided eigenvalue solving software. Current implementations of some of these software, while still susceptible of improvement, show that they can be competitive in terms of response time and accuracy with respect to other types of eigenvalue solving software. The code developed by the authors has parallel capabilities in order to be able to analyze reactors with a great level of detail in a short time. (authors)

  1. Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission.

    Science.gov (United States)

    Hanzawa, Nobutomo; Saitoh, Kuimasa; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Koshiba, Masanori; Yamamoto, Fumihiko

    2013-11-04

    We proposed a PLC-based mode multi/demultiplexer (MUX/DEMUX) with an asymmetric parallel waveguide for mode division multiplexed (MDM) transmission. The mode MUX/DEMUX including a mode conversion function with an asymmetric parallel waveguide can be realized by matching the effective indices of the LP(01) and LP(11) modes of two waveguides. We report the design of a mode MUX/DEMUX that can support C-band WDM-MDM transmission. The fabricated mode MUX/DEMUX realized a low insertion loss of less than 1.3 dB and high a mode extinction ratio that exceeded 15 dB. We used the fabricated mode MUX/DEMUX to achieve a successful 2 mode x 4 wavelength x 10 Gbps transmission over a 9 km two-mode fiber with a penalty of less than 1 dB.

  2. The Karen instruments for measuring quality of nursing care: construct validity and internal consistency.

    Science.gov (United States)

    Lindgren, Margareta; Andersson, Inger S

    2011-06-01

    Valid and reliable instruments for measuring the quality of care are needed for evaluation and improvement of nursing care. Previously developed and evaluated instruments, the Karen-patient and the Karen-personnel based on Donabedian's Structure-Process-Outcome triad (S-P-O triad) had promising content validity, discriminative power and internal consistency. The objective of this study was to further develop the instruments with regard to construct validity and internal consistency. This prospective study was carried out in medical and surgical wards at a hospital in Sweden. A total of 95 patients and 120 personnel were included. The instruments were tested for construct validity by performing factor analyses in two steps and for internal consistency using Cronbach's alpha coefficient. The first confirmatory factor analyses, with a pre-determined three-factor solution did not load well according to the S-P-O triad, but the second exploratory factor analysis with a six-factor solution appeared to be more coherent and the distribution of variables seemed to be logical. The reliability, i.e. internal consistency, was good in both factor analyses. The Karen-patient and the Karen-personnel instruments have achieved acceptable levels of construct validity. The internal consistency of the instruments is good. This indicates that the instruments may be suitable to use in clinical practice for measuring the quality of nursing care.

  3. 3-D near-field imaging of guided modes in nanophotonic waveguides

    Directory of Open Access Journals (Sweden)

    Ziegler Jed I.

    2017-04-01

    Full Text Available Highly evanescent waveguides with a subwavelength core thickness present a promising lab-on-chip solution for generating nanovolume trapping sites using overlapping evanescent fields. In this work, we experimentally studied Si3N4 waveguides whose sub-wavelength cross-sections and high aspect ratios support fundamental and higher order modes at a single excitation wavelength. Due to differing modal effective indices, these co-propagating modes interfere and generate beating patterns with significant evanescent field intensity. Using near-field scanning optical microscopy (NSOM, we map the structure of these beating modes in three dimensions. Our results demonstrate the potential of NSOM to optimize waveguide design for complex field trapping devices. By reducing the in-plane width, the population of competing modes decreases, resulting in a simplified spectrum of beating modes, such that waveguides with a width of 650 nm support three modes with two observed beats. Our results demonstrate the potential of NSOM to optimize waveguide design for complex field trapping devices.

  4. Optical modelling of far-infrared astronomical instrumentation exploiting multimode horn antennas

    Science.gov (United States)

    O'Sullivan, Créidhe; Murphy, J. Anthony; Mc Auley, Ian; Wilson, Daniel; Gradziel, Marcin L.; Trappe, Neil; Cahill, Fiachra; Peacocke, T.; Savini, G.; Ganga, K.

    2014-07-01

    In this paper we describe the optical modelling of astronomical telescopes that exploit bolometric detectors fed by multimoded horn antennas. In cases where the horn shape is profiled rather than being a simple cone, we determine the beam at the horn aperture using an electromagnetic mode-matching technique. Bolometers, usually placed in an integrating cavity, can excite many hybrid modes in a corrugated horn; we usually assume they excite all modes equally. If the waveguide section feeding the horn is oversized these modes can propagate independently, thereby increasing the throughput of the system. We use an SVD analysis on the matrix that describes the scattering between waveguide (TE/TM) modes to recover the independent orthogonal fields (hybrid modes) and then propagate these to the sky independently where they are added in quadrature. Beam patterns at many frequencies across the band are then added with a weighting appropriate to the source spectrum. Here we describe simulations carried out on the highest-frequency (857-GHz) channel of the Planck HFI instrument. We concentrate in particular on the use of multimode feedhorns and consider the effects of possible manufacturing tolerances on the beam on the sky. We also investigate the feasibility of modelling far-out sidelobes across a wide band for electrically large structures and bolometers fed by multi-mode feedhorns. Our optical simulations are carried out using the industry-standard GRASP software package.

  5. NEW INSTRUMENTS IN CORPORATE GOVERNANCE OF EU BANK GROUPS

    OpenAIRE

    Nedelchev, Miroslav

    2013-01-01

    The corporate governance practices of EU bank group were based on the principle of self-regulation. The negative effects of adoptation of the principle were on stakeholders account – deposit insurance funds, government loans, depositors, and taxpayers. The international financial crisis gives reasons for new institutional framework. The taken measures on pan-European level defined new role for traditional actors in which key actors are shareholders and regulators. The newn instruments in mode...

  6. 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-10-01

    The U.S. marine energy industry is actively pursuing development of offshore wind and marine hydrokinetic (MHK) energy systems. Experience in the wind energy sector demonstrates that new technology development requires thorough measurement and characterization of the environmental conditions prevalent at installation sites and of technology operating in the field. Presently, there are no turn-key instrumentation system solutions that meet the measurement needs of the marine energy industry. The 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop brought together technical experts from government laboratories, academia, and industry representatives from marine energy, wind, offshore oil and gas, and instrumentation developers to present and discuss the instrumentation needs of the marine energy industry. The goals of the meeting were to: 1. Share the latest relevant knowledge among technical experts; 2. Review relevant state-of-the-art field measurement technologies and methods; 3. Review lessons learned from recent field deployments; 4. Identify synergies across different industries; 5. Identify gaps between existing and needed instrumentation capabilities; 6. Understand who are the leading experts; 7. Provide a forum where stakeholders from the marine energy industry could provide substantive input in the development of new marine energy field deployable instrumentation packages.

  7. Appearance of eigen modes for the linearized Vlasov-Poisson equation

    International Nuclear Information System (INIS)

    Degond, P.

    1983-01-01

    In order to determine the asymptotic behaviour, when the time goes to infinity, of the solution of the linearized Vlasov-Poisson equation, we use eigen modes, associated to continuous linear functionals on a Banach space of analytic functions [fr

  8. Preventive Methods for ATM Mode Control

    OpenAIRE

    Ivan Baronak; Robert Trska

    2004-01-01

    Broadband transfer mode ATM represent one of alternative solutions for growing requirements on transfer capabilities. Its advantage is an effort for provisions of guaranteed quality of transport services with preservations of high transfer rate. This property is covered by several mechanisms, which role is to control not only the traffic of existing connections, but also the admission of new ones and prevent the violation of requirements on transport quality of existing and new connections.

  9. A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: Application and performance.

    Science.gov (United States)

    Kubicek, Markus; Holzlechner, Gerald; Opitz, Alexander K; Larisegger, Silvia; Hutter, Herbert; Fleig, Jürgen

    2014-01-15

    A novel operation mode for time of flight-secondary ion mass spectrometry (ToF-SIMS) is described for a TOF.SIMS 5 instrument with a Bi-ion gun. It features sub 100 nm lateral resolution, adjustable primary ion currents and the possibility to measure with high lateral resolution as well as high mass resolution. The adjustment and performance of the novel operation mode are described and compared to established ToF-SIMS operation modes. Several examples of application featuring novel scientific results show the capabilities of the operation mode in terms of lateral resolution, accuracy of isotope analysis of oxygen, and combination of high lateral and mass resolution. The relationship between high lateral resolution and operation of SIMS in static mode is discussed.

  10. Oliver E. Buckley Condensed Matter Prize: Emergent gravity from interacting Majorana modes

    Science.gov (United States)

    Kitaev, Alexei

    I will describe a concrete many-body Hamiltonian that exhibits some features of a quantum black hole. The Sachdev-Ye-Kitaev model is a system of N >> 1 Majorana modes that are all coupled by random 4-th order terms. The problem admits an approximate dynamic mean field solution. At low temperatures, there is a fluctuating collective mode that corresponds to reparametrization of time. The effective action for this mode is equivalent to dilaton gravity in two space-time dimensions. Some important questions are how to quantize the reparametrization mode in Lorentzian time, include dissipative effects, and understand this system from the quantum information perspective. Supported by the Simons Foundation, Award Number 376205.

  11. CARMENES instrument control system and operational scheduler

    Science.gov (United States)

    Garcia-Piquer, Alvaro; Guàrdia, Josep; Colomé, Josep; Ribas, Ignasi; Gesa, Lluis; Morales, Juan Carlos; Pérez-Calpena, Ana; Seifert, Walter; Quirrenbach, Andreas; Amado, Pedro J.; Caballero, José A.; Reiners, Ansgar

    2014-07-01

    visibility, sky background, required time sampling coverage) and the dynamic change of the system conditions (i.e., weather, system conditions). Off-line and on-line strategies are integrated into a single tool for a suitable transfer of the target prioritization made by the science team to the real-time schedule that will be used by the instrument operators. A suitable solution will be expected to increase the efficiency of telescope operations, which will represent an important benefit in terms of scientific return and operational costs. We present the operational scheduling tool designed for CARMENES, which is based on two algorithms combining a global and a local search: Genetic Algorithms and Hill Climbing astronomy-based heuristics, respectively. The algorithm explores a large amount of potential solutions from the vast search space and is able to identify the most efficient ones. A planning solution is considered efficient when it optimizes the objectives defined, which, in our case, are related to the reduction of the time that the telescope is not in use and the maximization of the scientific return, measured in terms of the time coverage of each target in the survey. We present the results obtained using different test cases.

  12. A novel dual mode neutron-gamma imager

    International Nuclear Information System (INIS)

    Cooper, Robert Lee; Gerling, Mark; Brennan, James S.; Mascarenhas, Nicholas; Mrowka, Stanley; Marleau, Peter

    2010-01-01

    The Neutron Scatter Camera (NSC) can image fission sources and determine their energy spectra at distances of tens of meters and through significant thicknesses of intervening materials in relatively short times (1). We recently completed a 32 element scatter camera and will present recent advances made with this instrument. A novel capability for the scatter camera is dual mode imaging. In normal neutron imaging mode we identify and image neutron events using pulse shape discrimination (PSD) and time of flight in liquid scintillator. Similarly gamma rays are identified from Compton scatter in the front and rear planes for our segmented detector. Rather than reject these events, we show it is possible to construct a gamma-ray image by running the analysis in a 'Compton mode'. Instead of calculating the scattering angle by the kinematics of elastic scatters as is appropriate for neutron events, it can be found by the kinematics of Compton scatters. Our scatter camera has not been optimized as a Compton gamma-ray imager but is found to work reasonably. We studied imaging performance using a Cs137 source. We find that we are able to image the gamma source with reasonable fidelity. We are able to determine gamma energy after some reasonable assumptions. We will detail the various algorithms we have developed for gamma image reconstruction. We will outline areas for improvement, include additional results and compare neutron and gamma mode imaging.

  13. Instrumentation of the ESRF medical imaging facility

    CERN Document Server

    Elleaume, H; Berkvens, P; Berruyer, G; Brochard, T; Dabin, Y; Domínguez, M C; Draperi, A; Fiedler, S; Goujon, G; Le Duc, G; Mattenet, M; Nemoz, C; Pérez, M; Renier, M; Schulze, C; Spanne, P; Suortti, P; Thomlinson, W; Estève, F; Bertrand, B; Le Bas, J F

    1999-01-01

    At the European Synchrotron Radiation Facility (ESRF) a beamport has been instrumented for medical research programs. Two facilities have been constructed for alternative operation. The first one is devoted to medical imaging and is focused on intravenous coronary angiography and computed tomography (CT). The second facility is dedicated to pre-clinical microbeam radiotherapy (MRT). This paper describes the instrumentation for the imaging facility. Two monochromators have been designed, both are based on bent silicon crystals in the Laue geometry. A versatile scanning device has been built for pre-alignment and scanning of the patient through the X-ray beam in radiography or CT modes. An intrinsic germanium detector is used together with large dynamic range electronics (16 bits) to acquire the data. The beamline is now at the end of its commissioning phase; intravenous coronary angiography is intended to start in 1999 with patients and the CT pre-clinical program is underway on small animals. The first in viv...

  14. Membrane separation of ionic liquid solutions

    Science.gov (United States)

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  15. Numerical analysis of energetic particle stabilization of ballooning modes in finite-aspect-ratio tokamaks

    International Nuclear Information System (INIS)

    He Qibing; Peng Qiyang; Qu Wenxiao

    1993-09-01

    The effect of energetic trapped particles on the stabilization of ballooning modes in finite-aspect-ratio tokamaks is numerically analyzed. The numerical solution of boundary value problem of an integro-differential equation is successfully obtained by RKF integral method with variable step size. The results show that the instability domain of ballooning modes becomes small along with the increase of energetic particles pressure. The energetic trapped particles can partially or completely suppress the instability of ballooning modes

  16. Spatial mode structures of electrostatic drift waves in a collisional cylindrical helicon plasma

    DEFF Research Database (Denmark)

    Schröder, C.; Grulke, O.; Klinger, T.

    2004-01-01

    In a cylindrical helicon plasma, mode structures of coherent drift waves are studied in the poloidal plane, the plane perpendicular to the ambient magnetic field. The mode structures rotate with a constant angular velocity in the direction of the electron diamagnetic drift and show significant...... radial bending. The experimental observations are compared with numerical solutions of a linear nonlocal cylindrical model for drift waves [ Ellis , Plasma Phys. 22, 113 (1980) ]. In the numerical model, a transition to bended mode structures is found if the plasma collisionality is increased....... This finding proves that the experimentally observed bended mode structures are the result of high electron collisionality. (C) 2004 American Institute of Physics....

  17. Development and application of a novel crop stress and quality instrument

    Science.gov (United States)

    Huang, Wengjiang; Sun, Gang; Wang, Jihua; Liu, Liangyun; Zheng, Wengang

    2005-12-01

    In this paper, a portable diagnostic instrument for crop quality analysis was designed and tested, which can measure the normalized difference vegetation index (PRI) and structure insensitive pigment index (NRI) of crop canopy in the field. The instrument have a valid survey area of 1m×1m when the height between instrument and the ground was fixed to 1.3 meter. The crop quality can be assessed based on their PRI and NRI values, so it will be very important for crop management to get these values. The instrument uses sunlight as its light source. There are six special different photoelectrical detectors within red, blue and near infrared bands, which are used for detecting incidence sunlight and reflex light from the canopy of crop. This optical instrument includes photoelectric detector module, signal process and A/D convert module, the data storing and transmission module and human-machine interface module. The detector is the core of the instrument which measures the spectrums at special bands. The microprocessor calculates the NDVI and SIPI value based on the A/D value. And the value can be displayed on the instrument's LCD, stored in the flash memory of instrument and can also be uploaded to PC through the PC's RS232 serial interface. The prototype was tested in the crop field at different view directions. It reveals the on-site and non-sampling mode of crop growth monitoring by fixed on the agricultural machine traveling in the field. Such simple instruments can diagnose the plant growth status by the acquired spectral response.

  18. New applications of Boson's coherent states of double modes at regular product

    International Nuclear Information System (INIS)

    Zhang Yongde; Ren Yong

    1987-05-01

    This paper presents a series of new applications of boson's coherent states of double modes by means of the technique of regular products. They include non-coupled double oscillator solutions at two time dependent extra-sources; coupled double oscillator solutions at two time dependent extra-sources; some applications to regular momentum theory; an explicit expression for time-reversal operator. (author). 7 refs

  19. Study of the zero modes of the Faddeev–Popov operator in the maximal Abelian gauge

    International Nuclear Information System (INIS)

    Capri, M.A.L.; Guimaraes, M.S.; Lemes, V.E.R.; Sorella, S.P.; Tedesco, D.G.

    2014-01-01

    A study of the zero modes of the Faddeev–Popov operator in the maximal Abelian gauge is presented in the case of the gauge group SU(2) and for different Euclidean space–time dimensions. Explicit examples of classes of normalizable zero modes and corresponding gauge field configurations are constructed by taking into account two boundary conditions, namely: (i) the finite Euclidean Yang–Mills action, (ii) the finite Hilbert norm. -- Highlights: •We study the zero modes of the Faddeev–Popov operator in the maximal Abelian gauge. •For d=2 we obtain solutions with finite action but not finite Hilbert norm. •For d=3,4 we obtain solutions with finite action and finite Hilbert norm. •These results can be compared with those previously obtained in the Landau gauge

  20. PLC-based mode multi/demultiplexers for mode division multiplexing

    Science.gov (United States)

    Saitoh, Kunimasa; Hanzawa, Nobutomo; Sakamoto, Taiji; Fujisawa, Takeshi; Yamashita, Yoko; Matsui, Takashi; Tsujikawa, Kyozo; Nakajima, Kazuhide

    2017-02-01

    Recently developed PLC-based mode multi/demultiplexers (MUX/DEMUXs) for mode division multiplexing (MDM) transmission are reviewed. We firstly show the operation principle and basic characteristics of PLC-based MUX/DEMUXs with an asymmetric directional coupler (ADC). We then demonstrate the 3-mode (2LP-mode) multiplexing of the LP01, LP11a, and LP11b modes by using fabricated PLC-based mode MUX/DEMUX on one chip. In order to excite LP11b mode in the same plane, a PLC-based LP11 mode rotator is introduced. Finally, we show the PLC-based 6-mode (4LP-mode) MUX/DEMUX with a uniform height by using ADCs, LP11 mode rotators, and tapered waveguides. It is shown that the LP21a mode can be excited from the LP11b mode by using ADC, and the two nearly degenerated LP21b and LP02 modes can be (de)multiplexed separately by using tapered mode converter from E13 (E31) mode to LP21b (LP02) mode.

  1. Fundamental burn-up mode in a pebble-bed type reactor

    International Nuclear Information System (INIS)

    Chen, Xue-Nong; Kiefhaber, Edgar; Maschek, Werner

    2008-01-01

    This paper deals with a pebble-bed type reactor, in which the fuel is loaded from one side (top) and discharged from the other side (bottom). A boundary value problem of a single group diffusion equation coupled with simplified burn-up equations is studied, where the natural radioactive decay processes are neglected in the burn-up modelling. An asymptotic burning wave solution is found analytically in the one-dimensional case, which is called as fundamental burn-up mode. Among this solution family there are two particular cases, namely, a classic fundamental solution with a zero burn-up and a partial solitary burn-up wave solution with a highest burn-up. An example of Th-U conversion is considered and the solutions are presented in order to show the mechanism of the burning wave. (author)

  2. Thermal architecture design tests for the Planck/HFI instrument

    Energy Technology Data Exchange (ETDEWEB)

    Piat, M.; Leriche, B.; Torre, J.-P.; Lamarre, J.-M.; Benoit, A.; Crussaire, J.-P

    2000-04-07

    The ESA satellite project Planck is designed to survey the sky at sub-millimetre and millimetre wavelengths in a drift scan mode. The High-Frequency Instrument (HFI) will use 48 bolometers cooled to 100 mK by a dilution cooler. In this paper, we describe how the scan strategy leads to requirements on the 0.1 K stage temperature stability and how a combination of a passive and an active system can be used to approach this specification.

  3. Ultrasound Instrumentation for Beam Diagnostics and Accelerating Structures Control

    CERN Document Server

    Moiseev, V I

    2005-01-01

    Sensitive elements and electronics for ultrasound measurements at conducting walls of beam pipes and accelerating structures are described. Noise protected instrumentation provides ultrasound spectra analysis in a wide frequency range up to 5 MHz.In circular accelerators, ultrasound fields in conducting walls of beam pipe represent the space-time characteristics of circulating beams. In accelerating structures, real high power operation modes of structure can be studied by outer ultrasound monitors. The experimental results at KSRS accelerators are discussed.

  4. Conduction cooled compact laser for chemcam instrument

    Science.gov (United States)

    Faure, B.; Saccoccio, M.; Maurice, S.; Durand, E.; Derycke, C.

    2017-11-01

    A new conduction cooled compact laser for Laser Induced Breakdown Spectroscopy (LIBS) on Mars is presented. The laser provides pulses with energy higher than 30mJ at 1μm of wavelength with a good spatial quality. Three development prototypes of this laser have been built and functional and environmental tests have been done. Then, the Qualification and Flight models have been developed and delivered. A spare model is now developed. This laser will be mounted on the ChemCam Instrument of the NASA mission MSL 2009. ChemCam Instrument is developed in collaboration between France (CESR and CNES) and USA (LANL). The goal of this Instrument is to study the chemical composition of Martian rocks. A laser source (subject of this presentation) emits a pulse which is focused by a telescope. It creates a luminous plasma on the rock; the light of this plasma is then analysed by three spectrometers to obtain information on the composition of the rock. The laser source is developed by the French company Thales Laser, with a technical support from CNES and CESR. This development is funded by CNES. The laser is compact, designed to work in burst mode. It doesn't require any active cooling.

  5. Cryogenic instrumentation needs in the controlled thermonuclear research program

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1976-01-01

    The magnet development effort for the controlled thermonuclear research program will require extensive testing of superconducting coils at various sizes from small-scale models to full-size prototypes. Extensive use of diagnostic instrumentation will be required and to make detailed comparisons of predicted and actual performance in magnet tests and to monitor the test facility for incipient failure modes. At later stages of the program, cryogenic instrumentation will be required to monitor magnet system performance in fusion power reactors. Measured quantities may include temperature, strain, deflection, coil resistance, helium coolant pressure and flow, current, voltages, etc. The test environment, which includes high magnetic fields (up to 8-10 T) and low temperature, makes many commercial measuring devices inoperative or at least inaccurate. In order to ensure reliable measurements, careful screening of commercial devices for performance in the test environment will be required. A survey of potentially applicable instrumentation is presented along with available information on operation in the test environment based on experimental data or on analysis of the physical characteristics of the device. Areas where further development work is needed are delineated

  6. Elevator convection modes in vertical ducts with strong transverse magnetic fields

    Science.gov (United States)

    Zikanov, Oleg; Liu, Li

    2014-11-01

    Instability modes in the form of axially uniform vertical jets, also called ``elevator modes,'' are known to be solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to an actual flow state is limited, since they quickly break down to secondary instabilities. We consider a downward flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are likely to be not just relevant, but a dominant feature of the flow. Recent experiments indicate that counterparts of such modes may develop in vertically finite ducts leading to high-amplitude fluctuations of temperature. Potential implications for designs of liquid metal blankets for fusion reactors with poloidal ducts are discussed. Financial support was provided by the US NSF (Grant CBET 1232851).

  7. A Comprehensive Review of Sensors and Instrumentation Methods in Devices for Musical Expression

    Directory of Open Access Journals (Sweden)

    Carolina Brum Medeiros

    2014-07-01

    Full Text Available Digital Musical Instruments (DMIs are musical instruments typically composed of a control surface where user interaction is measured by sensors whose values are mapped to sound synthesis algorithms. These instruments have gained interest among skilled musicians and performers in the last decades leading to artistic practices including musical performance, interactive installations and dance. The creation of DMIs typically involves several areas, among them: arts, design and engineering. The balance between these areas is an essential task in DMI design so that the resulting instruments are aesthetically appealing, robust, and allow responsive, accurate and repeatable sensing. In this paper, we review the use of sensors in the DMI community as manifested in the proceedings of the International Conference on New Interfaces for Musical Expression (NIME 2009–2013. Focusing on the sensor technologies and signal conditioning techniques used by the NIME community. Although it has been claimed that specifications for artistic tools are harder than those for military applications, this study raises a paradox showing that in most of the cases, DMIs are based on a few basic sensors types and unsophisticated engineering solutions, not taking advantage of more advanced sensing, instrumentation and signal processing techniques that could dramatically improve their response. We aim to raise awareness of limitations of any engineering solution and to assert the benefits of advanced electronics instrumentation design in DMIs. For this, we propose the use of specialized sensors such as strain gages, advanced conditioning circuits and signal processing tools such as sensor fusion. We believe that careful electronic instrumentation design may lead to more responsive instruments.

  8. Effect of toroidicity during lower hybrid mode conversion

    International Nuclear Information System (INIS)

    Riyopoulos, S.; Mahajan, S.

    1985-11-01

    The effect of toroidicity during lower hybrid mode conversion is examined by treating the wave propagation in an inhomogeneous medium as an eigenvalue problem for ω 2 (m,n),m,n poloidal and toroidal wave numbers. Since the frequency regime near ω 2 = ω/sub LH/ 2 is an accumulation point for the eigenvalue spectrum, the degenerate perturbation technique must be applied. The toroidal eigenmodes are constructed by a zeroth order superposition of monochromatic solutions with different poloidal dependence m, thus they generically exhibit a wide spectrum in k/sub parallel/ for given fixed ω 2 even for small inverse aspect ratio epsilon. In case that the average is in the neighborhood of k/sub min/, the minimum wave number for accessibility of the mode conversion regime, it is expected that excitation of toroidal modes rather than geometric optics will determine the wave coupling to the plasma

  9. Using quasi-guided modes for modeling the transfer behavior of bent dielectric slab waveguides

    Directory of Open Access Journals (Sweden)

    M. Stallein

    2010-09-01

    Full Text Available The connection of two straight dielectric multimode slab waveguides by a circular bent waveguide is analyzed by means of quasi-guided modes. These modes correspond to the well known leaky modes, but own real eigenvalues, thus the mathematical description is simpler. Furthermore they are derived as approximate solutions of the exact theory. This work will first give a brief introduction to the basic theory, followed by a discussion of the properties of quasi-guided modes. After a validation by comparison with a numerical simulation using the Finite Integration Technique, results for the bending loss of multimode waveguides are presented.

  10. Linear stability analysis of collective neutrino oscillations without spurious modes

    Science.gov (United States)

    Morinaga, Taiki; Yamada, Shoichi

    2018-01-01

    Collective neutrino oscillations are induced by the presence of neutrinos themselves. As such, they are intrinsically nonlinear phenomena and are much more complex than linear counterparts such as the vacuum or Mikheyev-Smirnov-Wolfenstein oscillations. They obey integro-differential equations, for which it is also very challenging to obtain numerical solutions. If one focuses on the onset of collective oscillations, on the other hand, the equations can be linearized and the technique of linear analysis can be employed. Unfortunately, however, it is well known that such an analysis, when applied with discretizations of continuous angular distributions, suffers from the appearance of so-called spurious modes: unphysical eigenmodes of the discretized linear equations. In this paper, we analyze in detail the origin of these unphysical modes and present a simple solution to this annoying problem. We find that the spurious modes originate from the artificial production of pole singularities instead of a branch cut on the Riemann surface by the discretizations. The branching point singularities on the Riemann surface for the original nondiscretized equations can be recovered by approximating the angular distributions with polynomials and then performing the integrals analytically. We demonstrate for some examples that this simple prescription does remove the spurious modes. We also propose an even simpler method: a piecewise linear approximation to the angular distribution. It is shown that the same methodology is applicable to the multienergy case as well as to the dispersion relation approach that was proposed very recently.

  11. Monitoring Biological Modes in a Bioreactor Process by Computer Simulation

    Directory of Open Access Journals (Sweden)

    Samia Semcheddine

    2015-12-01

    Full Text Available This paper deals with the general framework of fermentation system modeling and monitoring, focusing on the fermentation of Escherichia coli. Our main objective is to develop an algorithm for the online detection of acetate production during the culture of recombinant proteins. The analysis the fermentation process shows that it behaves like a hybrid dynamic system with commutation (since it can be represented by 5 nonlinear models. We present a strategy of fault detection based on residual generation for detecting the different actual biological modes. The residual generation is based on nonlinear analytical redundancy relations. The simulation results show that the several modes that are occulted during the bacteria cultivation can be detected by residuals using a nonlinear dynamic model and a reduced instrumentation.

  12. The commissioning instrument for the Gran Telescopio Canarias: made in Mexico

    Science.gov (United States)

    Cuevas, Salvador; Sánchez, Beatriz; Bringas, Vicente; Espejo, Carlos; Flores, Rubén; Chapa, Oscar; Lara, Gerardo; Chavoya, Armando; Anguiano, Gustavo; Arciniega, Sadot; Dorantes, Ariel; Gonzalez, José L.; Montoya, Juan M.; Toral, Rafael; Hernández, Hugo; Nava, Roberto; Devaney, Nicolas; Castro, Javier; Cavaller, Luis; Farah, Alejandro; Godoy, Javier; Cobos, Francisco; Tejada, Carlos; Garfias, Fernando

    2006-02-01

    In March 2004 was accepted in the site of Gran Telescopio Canarias (GTC) in La Palma Island, Spain, the Commissioning Instrument (CI) for the GTC. During the GTC integration phase, the CI will be a diagnostic tool for performance verification. The CI features four operation modes-imaging, pupil imaging, Curvature Wave-front sensing (WFS), and high resolution Shack-Hartmann WFS. This instrument was built by the Instituto de Astronomia UNAM in Mexico City and the Centro de Ingenieria y Desarrollo Industrial (CIDESI) in Queretaro, Qro under a GRANTECAN contract after an international public bid. Some optical components were built by Centro de Investigaciones en Optica (CIO) in Leon Gto and the biggest mechanical parts were manufactured by Vatech in Morelia Mich. In this paper we made a general description of the CI and we relate how this instrument, build under international standards, was entirely made in Mexico.

  13. Sub-wavelength grating mode transformers in silicon slab waveguides.

    Science.gov (United States)

    Bock, Przemek J; Cheben, Pavel; Schmid, Jens H; Delâge, André; Xu, Dan-Xia; Janz, Siegfried; Hall, Trevor J

    2009-10-12

    We report on several new types of sub-wavelength grating (SWG) gradient index structures for efficient mode coupling in high index contrast slab waveguides. Using a SWG, an adiabatic transition is achieved at the interface between silicon-on-insulator waveguides of different geometries. The SWG transition region minimizes both fundamental mode mismatch loss and coupling to higher order modes. By creating the gradient effective index region in the direction of propagation, we demonstrate that efficient vertical mode transformation can be achieved between slab waveguides of different core thickness. The structures which we propose can be fabricated by a single etch step. Using 3D finite-difference time-domain simulations we study the loss, polarization dependence and the higher order mode excitation for two types (triangular and triangular-transverse) of SWG transition regions between silicon-on-insulator slab waveguides of different core thicknesses. We demonstrate two solutions to reduce the polarization dependent loss of these structures. Finally, we propose an implementation of SWG structures to reduce loss and higher order mode excitation between a slab waveguide and a phase array of an array waveguide grating (AWG). Compared to a conventional AWG, the loss is reduced from -1.4 dB to < -0.2 dB at the slab-array interface.

  14. Solute redistribution studies in oxidised zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Khera, S K; Kale, G B; Gadiyar, H S [Bhabha Atomic Research Centre, Bombay (India). Metallurgy Div.

    1977-01-01

    Electron microprobe studies on solute distribution in oxide layers and in the regions near oxide metal interface have been carried out in the case of zircaloy-2 and zirconium binary alloys containing niobium, tin, iron, copper, chromium and nickel and oxidised in steam at 550 deg C. In the case of alloys having higher oxidation rates, the oxide of solute element was found to dissolve in ZrO/sub 2/ without any composition variation. However, for solute addition with limited solubility like Cr, Cu and Fe, solute enrichment at metal/oxide interface and depletion of the same matrix has been observed. The intensity profiles for nickel distribution were also found to be identical to Fe or Cr distribution. The mode of solute distribution has been discussed in relation to oxidation behaviour of these alloys.

  15. Measurement of highly enriched uranium metal buttons with the high-level neutron coincidence counter operating in the active mode

    International Nuclear Information System (INIS)

    Foley, J.E.

    1980-10-01

    The portable High-Level Neutron Coincidence Counter is used in the active mode with the addition of AmLi neutron sources to assay the 235 U content of highly enriched metal pieces or buttons. It is concluded that the portable instrument is a practical instrument for assaying uranium metal buttons with masses in the range 1.5 to 4 kg

  16. Dynamics of temporally localized states in passively mode-locked semiconductor lasers

    Science.gov (United States)

    Schelte, C.; Javaloyes, J.; Gurevich, S. V.

    2018-05-01

    We study the emergence and the stability of temporally localized structures in the output of a semiconductor laser passively mode locked by a saturable absorber in the long-cavity regime. For large yet realistic values of the linewidth enhancement factor, we disclose the existence of secondary dynamical instabilities where the pulses develop regular and subsequent irregular temporal oscillations. By a detailed bifurcation analysis we show that additional solution branches that consist of multipulse (molecules) solutions exist. We demonstrate that the various solution curves for the single and multipeak pulses can splice and intersect each other via transcritical bifurcations, leading to a complex web of solutions. Our analysis is based on a generic model of mode locking that consists of a time-delayed dynamical system, but also on a much more numerically efficient, yet approximate, partial differential equation. We compare the results of the bifurcation analysis of both models in order to assess up to which point the two approaches are equivalent. We conclude our analysis by the study of the influence of group velocity dispersion, which is only possible in the framework of the partial differential equation model, and we show that it may have a profound impact on the dynamics of the localized states.

  17. Instruments of Inquiry: Understanding the Nature and Role of Design Tools

    DEFF Research Database (Denmark)

    Dalsgaard, Peter

    2017-01-01

    Designers employ a range of tools in most design projects, yet there are few frameworks for understanding how and why they work. On the basis of a well-established school of thought, pragmatism, this paper contributes with a coherent conceptualisation of tools in design, which I label instruments...... of inquiry. This perspective underscores the crucial role that instruments play in design, and the ways in which they scaffold design creativity and exploration. In particular, it highlights that instruments not only augment our capabilities for carrying out intended actions, they also guide our perception...... and understanding of design problems and solutions. I present and discuss a framework consisting of five qualities of instruments of inquiry, which make them valuable in designerly inquiry: perception, conception, externalisation, knowing-through-action, and mediation....

  18. Mode locking and spatiotemporal chaos in periodically driven Gunn diodes

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Feldberg, Rasmus; Knudsen, Carsten

    1990-01-01

    oscillation entrains with the external signal. This produces a devil’s staircase of frequency-locked solutions. At higher microwave amplitudes, period doubling and other forms of mode-converting bifurcations can be seen. In this interval the diode also exhibits spatiotemporal chaos. At still higher microwave...

  19. Controlling the stability of nonlinear optical modes via electromagnetically induced transparency

    Science.gov (United States)

    Zhang, Kun; Liang, Yi-zeng; Lin, Ji; Li, Hui-jun

    2018-02-01

    We propose a scheme to generate and stabilize the high-dimensional spatial solitons via electromagnetically induced transparency (EIT). The system we consider is a resonant atomic ensemble having Λ configuration. We illustrate that under EIT conditions the equation satisfied by the probe field envelope is reduced to a saturable nonlinear Schrödinger equation with the trapping potential, provided by a far-detuned laser field and a random magnetic field. We present high-dimensional soliton solutions exhibiting many interesting characteristics, including diversity (i.e., many different types of soliton solutions can be found, including bright, ring multipole bright, ring multipole defect mode, multiring bright, multiring defect mode, and vortices solitons), the phase transition between bright soliton and higher-order defect modes (i.e., the phase transition can be realized by controlling the nonlinear coefficient or the intensity of the trapping potential), and stability (i.e., various solitons can be stabilized by the Gaussian potential provided by the far detuned laser field, or the random potential provided by the magnetic field). We also find that some solitons are the extension of the linear eigenmode, whereas others entirely derive from the role of nonlinearity. Compared with previous studies, we not only show the diverse soliton solutions in the same system but also find the boundary of the phase transition for the type of solitons. In addition, we present the possibility of using the random potential to stabilize various solitons and vortices.

  20. Evaluation of ethylenediaminetetraacetic acid (EDTA) solution and gel for smear layer removal.

    Science.gov (United States)

    Dotto, Sidney Ricardo; Travassos, Rosana Maria Coelho; de Oliveira, Elias Pandonor Motcy; Machado, Manoel Eduardo de Lima; Martins, José Luiz

    2007-08-01

    The purpose of this in vitro study was to compare the efficacy of 24% ethylenediaminetetraacetic acid (EDTA) gel and 17% EDTA solution in cleaning dentine walls after root canal instrumentation. Thirty human canine teeth were divided into three groups of 10 teeth each. In Group 1, 1% sodium hypochlorite was used as the irrigating solution; in Group 2, 1% sodium hypochlorite was used with 17% EDTA solution; and in Group 3, 1% sodium hypochlorite was used with 24% EDTA gel. The presence of a smear layer was analysed after instrumentation using scanning electron microscopy. The Kruskal-Wallis test revealed a statistical difference (P 0.05). The results indicate that 1% sodium hypochlorite alone does not remove the smear layer and that there was no statistical difference between EDTA gel and EDTA solution in smear layer removal.

  1. Design and validation of portable optical instrument for crop diagnose

    Science.gov (United States)

    Sun, Gang; Zheng, Wengang; Huang, Wengjiang; Wan, Huawei; Liu, Liangyun

    2005-12-01

    In this paper, a portable diagnostic instrument was designed and tested, which can measure the normalized difference vegetation index (NDVI) and structure insensitive pigment index (SIPI) of crop canopy in field. The instrument have a valid survey area of 1 m*1 m when the height between instrument and the ground was fixed to 1.3 meter The crop growth condition can be assessed based on their NDVI and SIPI values, so it will be very important for crop management to get these values. The instrument uses sunlight as its light source. There are six special different photoelectrical detectors within red, blue and near infrared bands, which are used for detecting incidence sunlight and reflex light from the canopy of crop. This optical instrument includes photoelectric detector module, signal process and A/D convert module, the data storing and transmission module and human-machine interface module. The detector is the core of the instrument which measures the spectrums at special bands. The microprocessor calculates the NDVI and SIPI value based on the A/D value. And the value can be displayed on the instrument's LCD, stored in the flash memory of instrument and can also be uploaded to PC through the PC's RS232 serial interface. The prototype was tested in the crop field at different view directions. This paper also provided the method of calibration, the results showed that the average measurement error to SIPI value of instrument was 5.25% and the average measurement error to NDVI value in vegetation-covered region is 6.40%. It reveals the on-site and non-sampling mode of crop growth monitoring by fixed on the agricultural machine traveling in the field.

  2. Neutron spin echo spectroscopy. Its application to the study of the dynamics of polymers in solution; La spectrometrie par echos de spins de neutrons. Application a l'etude de la dynamique des polymeres en solution

    Energy Technology Data Exchange (ETDEWEB)

    Papoular, Robert

    1992-06-15

    This work focuses on Neutron Spin Echo (NSE) spectroscopy and on the NSE spectrometer MESS, which we have built at the L.L.B. (CE Saclay). After analyzing in detail the classical and quantum principles of this type of instrument, and illustrated them with optical analogies, we expound a simple formalism for the interpretation of polarized neutron experiments of the most general type. In a second part, we describe the MESS spectrometer extensively; its characteristics and performances as well as the first results obtained with this instrument. In particular, we include two papers showing how the neutron depolarization, spin rotation and echoes can be used to investigate high-Tc superconductors. The last part deals with the dynamics of Polymer-Polymer-Solvent ternary solutions and demonstrates how the Neutron Spin Echo technique becomes a privileged tool for such physico-chemical studies thanks to the joint use of NSE and contrast variation methods, coupled with the adequate ranges of time and scattering vectors accessible. Finally, we describe the specific case of partially deuterated polydimethyl-siloxane (PDMS) in semi-dilute solution in Toluene. We have experimentally and separately evidenced the cooperative and inter-diffusive diffusion modes predicted by the theory of Akcasu, Benoit, Benmouna et al. These results, obtained at the L.L.B. (CE Saclay) are the subject matter of the last paper included in this work. (author) [French] Ce memoire est centre sur la spectroscopie par echos de spins de neutrons, et plus particulierement, sur le spectrometre a echos de spins MESS que nous avons construit au L.L.B (CE/Saclay). Apres avoir detaille les principes classique et quantique de ce type d'instrument et les avoir illustres par des analogies optiques, nous detaillons un formalisme simple permettant d'interpreter les experiences utilisant les neutrons polarises dans le cas le plus general. Une seconde partie decrit de maniere approfondie le spectrometre MESS de Saclay

  3. Damping in nuclear collective modes in a semiclassical fluid-dynamical approximation

    International Nuclear Information System (INIS)

    Vignolo, C.E.; Hernandez, Susana

    1989-01-01

    A semiclassical fluiddynamical model based on an usual scaling approximation (SCA) was extended to investigate the role of one and two-body dissipation in the widths of nuclear collective modes. The competition between one and two-body viscosity in: i) the collisionless (elastic) limit; ii) the hydrodynamical case and iii) the general viscoelastic regime is examined over the whole range of nuclear collision time scales. Numerical solutions are investigated for the first magnetic 2 - twist mode in 208 Pb. (Author) [es

  4. Investigating Proenvironmental Behavior: The Case of Commuting Mode Choice

    Science.gov (United States)

    Trinh, Tu Anh; Phuong Linh Le, Thi

    2018-04-01

    The central aim of this article is to investigate mode choice behavior among commuters in Ho Chi Minh City using disaggregate mode choice model and norm activation theory. A better understanding of commuters’ choice of transport mode provide an opportunity to obtain valuable information on their travel behaviors which help to build a basic for proffering solutions stimulating commuters to switch to public transport, which in turn contribute to deal with traffic problems and environmental issues. Binary logistic regression was employed under disaggregate choice method. Key findings indicated that Demographic factors including Age (-0.308), Married (-9.089), Weather (-8.272); Trip factors including Travel cost (0.437), Travel distance (0.252), and Norm activation theory (Awareness of consequences: AC2 (-1.699), AC4 (2.951), AC6 (-3.523), AC7 (-2.092), AC9 (-3.045), AC11 (+ 2.939), and Personal norms: PN2 (-2.695)) had strong impact on the commuters’ mode choice. Although motorcycle was the major transport mode among commuters, they presented their willingness to switch to bus transport if it had less negative impacts on the environment and their daily living environment.

  5. Obstetric anal sphincter injury rates among primiparous women with different modes of vaginal delivery.

    Science.gov (United States)

    Ampt, Amanda J; Patterson, Jillian A; Roberts, Christine L; Ford, Jane B

    2015-12-01

    To determine whether rates of obstetric anal sphincter injuries (OASIS) are continuing to increase and whether risk of OASIS according to mode of delivery is constant over time. In a retrospective population-based study, data were obtained for vaginal singleton vertex deliveries at 37-41 weeks of pregnancy among primiparous women in New South Wales, Australia, between January 2001 and December 2011. Annual OASIS rates were determined among non-instrumental, forceps, and vacuum deliveries with and without episiotomy. Multivariable logistic regression was used to determine adjusted odds ratios for each delivery mode category by year. Trends in adjusted odds ratios over time for each delivery category were compared. OASIS occurred in 955 (4.1%) of 23 081 deliveries in 2001 and 1487 (5.9%) of 25 081 deliveries in 2011. After adjustment for known risk factors, the only delivery categories to show statistically significant increases in OASIS over the study period were non-instrumental deliveries without episiotomy (linear trend Pdeliveries with episiotomy (linear trend P=0.004). Overall, OASIS rates have continued to increase. Known risk factors do not fully explain the increase in OASIS rates in non-instrumental deliveries without an episiotomy and in forceps deliveries with an episiotomy. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Decay modes of two repulsively interacting bosons

    International Nuclear Information System (INIS)

    Kim, Sungyun; Brand, Joachim

    2011-01-01

    We study the decay of two repulsively interacting bosons tunnelling through a delta potential barrier by a direct numerical solution of the time-dependent Schroedinger equation. The solutions are analysed according to the regions of particle presence: both particles inside the trap (in-in), one particle in and one particle out (in-out) and both particles outside (out-out). It is shown that the in-in probability is dominated by the exponential decay, and its decay rate is predicted very well from outgoing boundary conditions. Up to a certain range of interaction strength, the decay of in-out probability is dominated by the single-particle decay mode. The decay mechanisms are adequately described by simple models.

  7. Spatial-mode switchable ring fiber laser based on low mode-crosstalk all-fiber mode MUX/DEMUX

    Science.gov (United States)

    Ren, Fang; Yu, Jinyi; Wang, Jianping

    2018-05-01

    We report an all-fiber ring laser that emits linearly polarized (LP) modes based on the intracavity all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). Multiple LP modes in ring fiber laser are generated by taking advantage of mode MUX/DEMUX. The all-fiber mode MUX/DEMUX are composed of cascaded mode-selective couplers (MSCs). The output lasing mode of the ring fiber laser can be switched among the three lowest-order LP modes by employing combination of a mode MUX and a simple N × 1 optical switch. The slope efficiencies, optical spectra and mode profiles are measured.

  8. Application of 1013 ohm Faraday cup current amplifiers for boron isotopic analyses by solution mode and laser ablation multicollector inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Lloyd, Nicholas S; Sadekov, Aleksey Yu; Misra, Sambuddha

    2018-01-15

    Boron isotope ratios (δ 11 B values) are used as a proxy for seawater paleo-pH, amongst several other applications. The analytical precision can be limited by the detection of low intensity ion beams from limited sample amounts. High-gain amplifiers offer improvements in signal/noise ratio and can be used to increase measurement precision and reduce sample amounts. 10 13 ohm amplifier technology has previously been applied to several radiogenic systems, but has thus far not been applied to non-traditional stable isotopes. Here we apply 10 13 ohm amplifier technology for the measurement of boron isotope ratios using solution mode MC-ICP-MS and laser ablation mode (LA-)MC-ICP-MS techniques. Precision is shown for reference materials as well as for low-volume foraminifera samples. The baseline uncertainty for a 0.1 pA 10 B + ion beam is reduced to ohm amplifier technology is demonstrated to offer advantages for the determination of δ 11 B values by both MC-ICP-MS and LA-MC-ICP-MS for small samples of biogenic carbonates, such as foraminifera shells. 10 13 ohm amplifier technology will also be of benefit to other non-traditional stable isotope measurements. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Quasi-normal modes from non-commutative matrix dynamics

    Science.gov (United States)

    Aprile, Francesco; Sanfilippo, Francesco

    2017-09-01

    We explore similarities between the process of relaxation in the BMN matrix model and the physics of black holes in AdS/CFT. Focusing on Dyson-fluid solutions of the matrix model, we perform numerical simulations of the real time dynamics of the system. By quenching the equilibrium distribution we study quasi-normal oscillations of scalar single trace observables, we isolate the lowest quasi-normal mode, and we determine its frequencies as function of the energy. Considering the BMN matrix model as a truncation of N=4 SYM, we also compute the frequencies of the quasi-normal modes of the dual scalar fields in the AdS5-Schwarzschild background. We compare the results, and we finda surprising similarity.

  10. Instrument setpoints and data gathering techniques

    International Nuclear Information System (INIS)

    Leong, J.L.; Ornellas, R.P.; Atkinson, J.L.; Gross, R.S.

    1994-01-01

    Setpoint calculation project sizes vary greatly depending upon the level of effort required and can generally be classified as small or large depending on the number of setpoint calculations required. Small projects usually consist of new system upgrades, power uprates, and the utility's response to industry wide issues and concerns, and require between 10 and 120 setpoint calculations. Large projects usually involve design basis reconstitutions and the complete recalculating of all setpoints prioritized on system or safety related bases. Both large and small project schedules are usually directly tied to Nuclear Regulatory Commission (NRC) commitment dates and it is not uncommon for a large project to take 2 to 3 years to complete. Setpoint calculation projects have historically been performed by the brute force technique employing a variety of methodologies. The brute force technique typically employed today involves putting together a project team large enough to perform all the scheduled setpoint calculations. Setpoint calculations vary in size and complexity and, therefore, may require a wide range of man-hours of a qualified instrument setpoint engineer's time to perform instrument input data retrieval, resolve conflicting input data values, and complete the calculation. The actual time to perform the setpoint calculation using a computer program to calculate results is relatively small in comparison with the time required for data collection and the preparation of supporting documentation. Three major issues have traditionally plagued setpoint calculation projects: data collection; methodology; and incomplete and inconsistent calculations. These traditional problems are addressed and an innovative solution to performing instrument setpoint calculation projects is presented. Through the use of the POWRTRAK database and powerful computer software programs, a new solution to an old and persistent industry challenge is established

  11. Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments.

    Science.gov (United States)

    Haïkel, Y; Serfaty, R; Bateman, G; Senger, B; Allemann, C

    1999-06-01

    The absence of adequate testing standards for engine-driven nickel-titanium (NiTi) instruments necessitates further study of these instruments in all areas. This study examined three groups of engine-driven rotary NiTi endodontic instruments (Profile, Hero, and Quantec) and assessed the times for dynamic fracture in relation to the radius of curvature to which the instruments were subjected during preparation, with the instrument diameter determined by size and taper and the mode by which the fracture occurred. Ten instruments were randomly selected representing each size and taper for each group and for each radius of curvature: 600 in total. The instruments were rotated at 350 rpm and introduced into a tempered steel curve that simulated a canal. Two radii of curvature of canals were used: 5 and 10 mm. Time at fracture was noted for all files, and the fracture faces of each file were analyzed with scanning electron microscopy. Radius of curvature was found to be the most significant factor in determining the fatigue resistance of the files. As radius of curvature decreased, fracture time decreased. Taper of files was found to be significant in determining fracture time. As diameter increased, fracture time decreased. In all cases, fracture was found to be of a ductile nature, thus implicating cyclic fatigue as a major cause of failure and necessitating further analyses and setting of standards in this area.

  12. Accretion-induced quasinormal mode excitation of a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Nagar, Alessandro; Zanotti, Olindo; Font, Jose A.; Rezzolla, Luciano

    2007-01-01

    By combining the numerical solution of the nonlinear hydrodynamics equations with the solution of the linear inhomogeneous Zerilli-Moncrief and Regge-Wheeler equations, we investigate the properties of the gravitational radiation emitted during the axisymmetric accretion of matter onto a Schwarzschild black hole. The matter models considered include quadrupolar dust shells and thick accretion disks, permitting us to simulate situations which may be encountered at the end stages of stellar gravitational collapse or binary neutron star merger. We focus on the interference pattern appearing in the energy spectra of the emitted gravitational waves and on the amount of excitation of the quasinormal modes of the accreting black hole. We show that, quite generically in the presence of accretion, the black-hole ringdown is not a simple superposition of quasinormal modes, although the fundamental mode is usually present and often dominates the gravitational-wave signal. We interpret this as due to backscattering of waves off the nonexponentially decaying part of the black-hole potential and to the finite spatial extension of the accreting matter. Our results suggest that the black-hole QNM contributions to the full gravitational-wave signal should be extremely small and possibly not detectable in generic astrophysical scenarios involving the accretion of extended distributions of matter

  13. An optical channel modeling of a single mode fiber

    Science.gov (United States)

    Nabavi, Neda; Liu, Peng; Hall, Trevor James

    2018-05-01

    The evaluation of the optical channel model that accurately describes the single mode fibre as a coherent transmission medium is reviewed through analytical, numerical and experimental analysis. We used the numerical modelling of the optical transmission medium and experimental measurements to determine the polarization drift as a function of time for a fixed length of fibre. The probability distribution of the birefringence vector was derived, which is associated to the 'Poole' equation. The theory and experimental evidence that has been disclosed in the literature in the context of polarization mode dispersion - Stokes & Jones formulations and solutions for key statistics by integration of stochastic differential equations has been investigated. Besides in-depth definition of the single-mode fibre-optic channel, the modelling which concerns an ensemble of fibres each with a different instance of environmental perturbation has been analysed.

  14. Core-SOL simulations of L-mode tokamak plasma discharges using BALDUR code

    Directory of Open Access Journals (Sweden)

    Yutthapong Pinanroj

    2014-04-01

    Full Text Available Core-SOL simulations were carried out of plasma in tokamak reactors operating in a low confinement mode (L-mode, for various conditions that match available experimental data. The simulation results were quantitatively compared against experimental data, showing that the average RMS errors for electron temperature, ion temperature, and electron density were lower than 16% or less for 14 L-mode discharges from two tokamaks named DIII-D and TFTR. In the simulations, the core plasma transport was described using a combination of neoclassical transport calculated by NCLASS module and anomalous transport by Multi-Mode-Model version 2001 (MMM2001. The scrape-off-layer (SOL is the small amount of residual plasma that interacts with the tokamak vessel, and was simulated by integrating the fluid equations, including sources, along open field lines. The SOL solution provided the boundary conditions of core plasma region on low confinement mode (L-mode. The experimental data were for 14 L-mode discharges and from two tokamaks, named DIII-D and TFTR.

  15. Identification of different magnetic modes in CsFeCl{sub 3} by polarisation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dorner, B [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Toperverg, B [St. Petersburg Nuclear Physics Inst., St. Petersburg (Russian Federation); Baehr, M [Hahn-Meitner-Institut Berlin GmbH (Germany); Petitgrand, D [Laboratoire Leon Brillouin (LLB) - Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1996-11-01

    CsFeCl{sub 3} is a quasi 1D magnetic system with a singlet groundstate. The Fe{sup 2+} ion has an effective spin S=1. Experimental results in a magnetic field applied perpendicular to the anisotropy axis show that the excited states (doubly degenerate in zero field) split and shift to higher frequencies with increasing field. The split of the high frequency modes is very small compared to the instrumental resolution. Only polarisation analysis of inelastic neutron scattering made it possible to observe the splitting everywhere in reciprocal space. The frequency shift of the two modes with field is different such that a mode crossing appears for fields below about 4 Tesla. (author) 9 figs., 1 tab., 7 refs.

  16. Non destructive testing of uranium in solution using a portable optical fiber photometer

    International Nuclear Information System (INIS)

    Boisde, Gilbert; Guillot, Philippe; Monier, Jean; Perez, J.J.

    1983-01-01

    The portable instrument, called TELEPHOT 3 N, has be following main characteristics: - regulated light source, - optical fibers used as a light vector, - an optical probe fitted with a mirror immersed in the solution, - optical system with interference filters to balance the three measurement channels, - analog and digital absorbance measurement electronic, - associated microcomputer for automatic data acquisition and processing. The parameters and computer programs were determined by a series of measurements taken on reference solutions covering the target ranges. A mathematical model showing uranium complexes in solution leads to the solution of second degree equation. A first degree equation is sufficient for low acidities. This unit -hardware and programs- has been qualified on different uranyl nitrate solutions subject to nuclear materials control. The small minimum quantities of product required, about 25 ml, and the short response time of around 1 minute, wake at a highly practical instrument for check measurements during inspection proceedings. Similar remote measurements is planned during inspection for the glove box control of plutonium solutions. This spectrophotometry technique can be adapted for the process control of industrial solutions [fr

  17. Interaction of the ATA beam with the TM030 mode of the accelerating cells

    International Nuclear Information System (INIS)

    Neil, V.K.

    1985-01-01

    The interaction of the electron beam in the Advanced Test Accelerator with an azimuthally symmetric mode of the accelerating cells is investigated theoretically. The interaction possibly could cause modulation of the beam current at the resonant frequency of the mode. Values of the shunt impedance and Q value of the mode were obtained from previous measurement and analysis. Lagranian hydrodynamics is employed and a WKB solution to the equation of motion is obtained. Results indicate that the interaction will not be a problem in the accelerator

  18. Exact bidirectional X -wave solutions in fiber Bragg gratings

    Science.gov (United States)

    Efremidis, Nikolaos K.; Nye, Nicholas S.; Christodoulides, Demetrios N.

    2017-10-01

    We find exact solutions describing bidirectional pulses propagating in fiber Bragg gratings. They are derived by solving the coupled-mode theory equations and are expressed in terms of products of modified Bessel functions with algebraic functions. Depending on the values of the two free parameters, the general bidirectional X -wave solution can also take the form of a unidirectional pulse. We analyze the symmetries and the asymptotic properties of the solutions and also discuss additional waveforms that are obtained by interference of more than one solution. Depending on their parameters, such pulses can create a sharp focus with high contrast.

  19. PANDA-A novel instrument for non-destructive sample analysis

    International Nuclear Information System (INIS)

    Turunen, Jani; Peraejaervi, Kari; Poellaenen, Roy; Toivonen, Harri

    2010-01-01

    An instrument known as PANDA (Particles And Non-Destructive Analysis) for non-destructive sample analysis has been designed and built at the Finnish Radiation and Nuclear Safety Authority (STUK). In PANDA the measurement techniques and instruments designed for the basic research are applied to the analysis of environmental samples. PANDA has two vacuum chambers, one for loading samples and the other for measurements. In the measurement chamber there are two individual measurement positions. Currently the first one hosts an HPGe gamma detector and a position-sensitive alpha detector. The second measurement position is intended for precise characterization of found particles. PANDA's data are recorded in event mode and events are timestamped. In the present article the technical design of PANDA is presented in detail. In addition, its performance using depleted uranium particles and an air filter is demonstrated.

  20. Effects of radial envelope modulations on the collisionless trapped-electron mode in tokamak plasmas

    Science.gov (United States)

    Chen, Hao-Tian; Chen, Liu

    2018-05-01

    Adopting the ballooning-mode representation and including the effects of radial envelope modulations, we have derived the corresponding linear eigenmode equation for the collisionless trapped-electron mode in tokamak plasmas. Numerical solutions of the eigenmode equation indicate that finite radial envelope modulations can affect the linear stability properties both quantitatively and qualitatively via the significant modifications in the corresponding eigenmode structures.

  1. A Wavefront Division Polarimeter for the Measurements of Solute Concentrations in Solutions

    Directory of Open Access Journals (Sweden)

    Sergio Calixto

    2017-12-01

    Full Text Available Polarimeters are useful instruments that measure concentrations of optically active substances in a given solution. The conventional polarimetric principle consists of measuring the rotation angle of linearly polarized light. Here, we present a novel polarimeter based on the study of interference patterns. A Mach–Zehnder interferometer with linearly polarized light at the input is used. One beam passes through the liquid sample and the other is a reference beam. As the linearly polarized sample beam propagates through the optically active solution the vibration plane of the electric field will rotate. As a result, the visibility of the interference pattern at the interferometer output will decrease. Fringe contrast will be maximum when both beams present a polarization perpendicular to the plane of incidence. However, minimum visibility is obtained when, after propagation through the sample the polarization of the sample beam is oriented parallel to the plane of incidence. By using different solute concentrations, a calibration plot is obtained showing the behavior of visibility.

  2. Thermodynamic Analysis of the 3-Stage ADR for the Astro-H Soft X-Ray Spectrometer Instrument

    Science.gov (United States)

    Shirron, Peter; Kimball, Mark; DiPirro, Michael; Bialas, Tom; Sneiderman, Gary; Porter, Scott; Kelley, Richard

    2015-01-01

    The Soft X-ray Spectrometer (SXS) instrument on Astro-H will use a 3-stage ADR to cool the microcalorimeter array to 50 mK. In the primary operating mode, two stages of the ADR cool the detectors using superfluid helium at 1.20 K as the heat sink. In the secondary mode, which is activated when the liquid helium is depleted, two of the stages continuously cool the (empty) helium tank using a 4.5 K Joule-Thomson cooler as the heat sink, and the third stage cools the detectors. In the design phase, a high-fidelity model of the ADR was developed in order to predict both the cooling capacity and heat rejection rates in both operating modes. The primary sources of heat flow are from the salt pills, hysteresis heat from the magnets and magnetic shields, and power dissipated by the heat switches. The flight instrument dewar, ADR, detectors and electronics were integrated in mid-2014 and have since undergone extensive performance testing, in part to validate the performance model. This paper will present the thermodynamic performance of the ADR, including cooling capacity, heat rejection to the heat sinks, and various measures of efficiency.

  3. Inspector-instrument interface in portable NDA instrumentation

    International Nuclear Information System (INIS)

    Halbig, J.K.; Klosterbuer, S.F.

    1981-01-01

    Recent electronics technology advances make it possible to design sophisticated instruments in small packages for convenient field implementation. An inspector-instrument interface design that allows communication of procedures, responses, and results between the instrument and user is presented. This capability has been incorporated into new spent-fuel instrumentation and a battery-powered multichannel analyzer

  4. Inspector-instrument interface in portable NDA instrumentation

    International Nuclear Information System (INIS)

    Halbig, J.K.; Klosterbuer, S.F.

    1981-01-01

    Recent electronics technology advances make it possible to design sophisticated instruments in small packages for convenient field implementation. This report describes an inspector-instrument interface design which allows communication of procedures, responses, and results between the instrument and user. The interface has been incorporated into new spent-fuel instrumentation and a battery-powered multichannel analyzer

  5. Computation of mode eigenfunctions in graded-index optical fibers by the propagating beam method

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.

    1980-01-01

    The propagating beam method utilizes discrete Fourier transforms for generating configuration-space solutions to optical waveguide problems without reference to modes. The propagating beam method can also give a complete description of the field in terms of modes by a Fourier analysis with respect to axial distance of the computed fields. Earlier work dealt with the accurate determination of mode propagation constants and group delays. In this paper the method is extended to the computation of mode eigenfunctions. The method is efficient, allowing generation of a large number of eigenfunctions from a single propagation run. Computations for parabolic-index profiles show excellent agreement between analytic and numerically generated eigenfunctions

  6. Using XML and Java Technologies for Astronomical Instrument Control

    Science.gov (United States)

    Ames, Troy; Case, Lynne; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Traditionally, instrument command and control systems have been highly specialized, consisting mostly of custom code that is difficult to develop, maintain, and extend. Such solutions are initially very costly and are inflexible to subsequent engineering change requests, increasing software maintenance costs. Instrument description is too tightly coupled with details of implementation. NASA Goddard Space Flight Center, under the Instrument Remote Control (IRC) project, is developing a general and highly extensible framework that applies to any kind of instrument that can be controlled by a computer. The software architecture combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML), a human readable and machine understandable way to describe structured data. A key aspect of the object-oriented architecture is that the software is driven by an instrument description, written using the Instrument Markup Language (IML), a dialect of XML. IML is used to describe the command sets and command formats of the instrument, communication mechanisms, format of the data coming from the instrument, and characteristics of the graphical user interface to control and monitor the instrument. The IRC framework allows the users to define a data analysis pipeline which converts data coming out of the instrument. The data can be used in visualizations in order for the user to assess the data in real-time, if necessary. The data analysis pipeline algorithms can be supplied by the user in a variety of forms or programming languages. Although the current integration effort is targeted for the High-resolution Airborne Wideband Camera (HAWC) and the Submillimeter and Far Infrared Experiment (SAFIRE), first-light instruments of the Stratospheric Observatory for Infrared Astronomy (SOFIA), the framework is designed to be generic and extensible so that it can be applied to any instrument. Plans are underway to test the framework

  7. Triple-channel portable capillary electrophoresis instrument with individual background electrolytes for the concurrent separations of anionic and cationic species

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Thanh Duc; Le, Minh Duc [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Sáiz, Jorge [Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona Km 33.6, Alcalá de Henares, Madrid (Spain); Duong, Hong Anh [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Koenka, Israel Joel [University of Basel, Department of Chemistry, Spitalstrasse 51, 4056 Basel (Switzerland); Pham, Hung Viet, E-mail: phamhungviet@hus.edu.vn [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Hauser, Peter C., E-mail: Peter.Hauser@unibas.ch [University of Basel, Department of Chemistry, Spitalstrasse 51, 4056 Basel (Switzerland)

    2016-03-10

    The portable capillary electrophoresis instrument is automated and features three independent channels with different background electrolytes to allow the concurrent optimized determination of three different categories of charged analytes. The fluidic system is based on a miniature manifold which is based on mechanically milled channels for injection of samples and buffers. The planar manifold pattern was designed to minimize the number of electronic valves required for each channel. The system utilizes pneumatic pressurization to transport solutions at the grounded as well as the high voltage side of the separation capillaries. The instrument has a compact design, with all components arranged in a briefcase with dimensions of 45 (w) × 35 (d) × 15 cm (h) and a weight of about 15 kg. It can operate continuously for 8 h in the battery-powered mode if only one electrophoresis channel is in use, or for about 2.5 h in the case of simultaneous employment of all three channels. The different operations, i.e. capillary flushing, rinsing of the interfaces at both capillary ends, sample injection and electrophoretic separation, are activated automatically with a control program featuring a graphical user interface. For demonstration, the system was employed successfully for the concurrent separation of different inorganic cations and anions, organic preservatives, additives and artificial sweeteners in various beverage and food matrices. - Highlights: • The use of parallel channels allows the concurrent separation of different classes of analytes. • Separate background electrolytes allow individual optimization. • The instrument is compact and field portable.

  8. Triple-channel portable capillary electrophoresis instrument with individual background electrolytes for the concurrent separations of anionic and cationic species

    International Nuclear Information System (INIS)

    Mai, Thanh Duc; Le, Minh Duc; Sáiz, Jorge; Duong, Hong Anh; Koenka, Israel Joel; Pham, Hung Viet; Hauser, Peter C.

    2016-01-01

    The portable capillary electrophoresis instrument is automated and features three independent channels with different background electrolytes to allow the concurrent optimized determination of three different categories of charged analytes. The fluidic system is based on a miniature manifold which is based on mechanically milled channels for injection of samples and buffers. The planar manifold pattern was designed to minimize the number of electronic valves required for each channel. The system utilizes pneumatic pressurization to transport solutions at the grounded as well as the high voltage side of the separation capillaries. The instrument has a compact design, with all components arranged in a briefcase with dimensions of 45 (w) × 35 (d) × 15 cm (h) and a weight of about 15 kg. It can operate continuously for 8 h in the battery-powered mode if only one electrophoresis channel is in use, or for about 2.5 h in the case of simultaneous employment of all three channels. The different operations, i.e. capillary flushing, rinsing of the interfaces at both capillary ends, sample injection and electrophoretic separation, are activated automatically with a control program featuring a graphical user interface. For demonstration, the system was employed successfully for the concurrent separation of different inorganic cations and anions, organic preservatives, additives and artificial sweeteners in various beverage and food matrices. - Highlights: • The use of parallel channels allows the concurrent separation of different classes of analytes. • Separate background electrolytes allow individual optimization. • The instrument is compact and field portable.

  9. INSTRUMENTAL PROVISION OF INDICATIVE MANAGEMENT FOOD INDUSTRY AND ITS IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    N. V. Sirotkina

    2013-01-01

    Full Text Available The article is devoted to instruments of indicative management of industrial enterprises, which represent a means of making objective and operational administration solutions, theoretical research, as well as the implementation of management actions on the basis of the analytical and forecasting estimates management indicator.

  10. MANU. Instrumentation of Buffer Demo. Preliminary Study

    International Nuclear Information System (INIS)

    Laaksonen, R.

    2010-01-01

    The purpose of this work is to describe feasible measuring and monitoring alternatives which can be used, if needed, in medium to full scale nuclear waste repository deposition hole mock-up tests. The focus of the work was to determine what variables can actually be measured, how to achieve the measurements and what kind of demands comes from the modelling, scientific, and technical points of view. This project includes a review of the previous waste repository mock-up tests carried out in several European countries such as Belgium, Czech Republic, Spain and Sweden. Also information was gathered by interviewing domestic and foreign scientists specialized in the fields of measurement instrumentation and related in-situ and laboratory work. On the basis of this review, recommendations were developed for the necessary actions needed to be done from the instrumentation point of view for future tests. It is possible to measure and monitor the processes going on in a deposition hole in-situ conditions. The data received during a test in real repository conditions enables to follow the processes and to verify the hypothesis made on the behaviour of various components of the repository: buffer, canister, rock and backfill. Because full scale testing is expensive, the objectives and hypothesis must be carefully set and the test itself with its instrumentation must serve very specific objectives. The main purpose of mock-up tests is to verify that the conditions surrounding the canister are according to the design requirements. A whole mock-up test and demonstration process requires a lot of time and effort. The instrumentation part of the work must also start at early stages to ensure that the instrumentation itself will not become bottlenecked nor suffer from low quality solutions. The planning of the instrumentation work could be done in collaboration with foreign scientists which have participated to previous instrumentation projects. (orig.)

  11. Penetration of internal gravity waveguide modes into the upper atmosphere

    Directory of Open Access Journals (Sweden)

    Rudenko G.V.

    2016-03-01

    Full Text Available The paper describes internal gravity waveguide modes, using dissipative solutions above the source. We compare such a description with an accurate approach and a WKB approximation for dissipationless equations. For waveguide disturbances, dispersion relations calculated by any method are shown to be close to each other and to be in good agreement with observed characteristics of traveling ionospheric disturbances. Unlike other methods, dissipative solutions above the source allow us to adequately describe the spatial structure of disturbances in the upper atmosphere.

  12. Quality of Work: Validation of a New Instrument in Three Languages.

    Science.gov (United States)

    Steffgen, Georges; Kohl, Diane; Reese, Gerhard; Happ, Christian; Sischka, Philipp

    2015-11-26

    A new instrument to measure quality of work was developed in three languages (German, French and Luxembourgish) and validated in a study of employees working in Luxembourg. A representative sample (n = 1529) was taken and exploratory factor analysis revealed a six-factor solution for the 21-item instrument (satisfaction and respect, mobbing, mental strain at work, cooperation, communication and feedback, and appraisal). Reliability analysis showed satisfying reliability for all six factors and the total questionnaire. In order to examine the construct validity of the new instrument, regression analyses were conducted to test whether the instrument predicted work characteristics’ influence on three components of well-being -- burnout, psychological stress and maladaptive coping behaviors. The present validation offers a trilingual inventory for measuring quality of work that may be used, for example, as an assessment tool or for testing the effectiveness of interventions.

  13. ASTEROSEISMOLOGY OF EVOLVED STARS WITH KEPLER: A NEW WAY TO CONSTRAIN STELLAR INTERIORS USING MODE INERTIAS

    Energy Technology Data Exchange (ETDEWEB)

    Benomar, O.; Bedding, T. R.; Stello, D. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Belkacem, K. [LESIA, Observatoire de Paris, CNRS UMR 8109, Université Paris Diderot, 5 place J. Janssen, F-92195 Meudon (France); Di Mauro, M. P. [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Ventura, R. [INAF-Astrophyscial Observatory of Catania, Via S. Sofia 78, I-95123 Catania (Italy); Mosser, B.; Goupil, M. J.; Samadi, R. [Department of Astronomy, The University of Tokyo, Tokyo 113-0033 (Japan); Garcia, R. A. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France)

    2014-02-01

    The asteroseismology of evolved solar-like stars is experiencing growing interest due to the wealth of observational data from space-borne instruments such as the CoRoT and Kepler spacecraft. In particular, the recent detection of mixed modes, which probe both the innermost and uppermost layers of stars, paves the way for inferring the internal structure of stars along their evolution through the subgiant and red giant phases. Mixed modes can also place stringent constraints on the physics of such stars and on their global properties (mass, age, etc.). Here, using two Kepler stars (KIC 4351319 and KIC 6442183), we demonstrate that measurements of mixed mode characteristics allow us to estimate the mode inertias, providing a new and additional diagnostics on the mode trapping and subsequently on the internal structure of evolved stars. We however stress that the accuracy may be sensitive to non-adiabatic effects.

  14. Study of the mode of angular velocity damping for a spacecraft at non-standard situation

    Science.gov (United States)

    Davydov, A. A.; Sazonov, V. V.

    2012-07-01

    Non-standard situation on a spacecraft (Earth's satellite) is considered, when there are no measurements of the spacecraft's angular velocity component relative to one of its body axes. Angular velocity measurements are used in controlling spacecraft's attitude motion by means of flywheels. The arising problem is to study the operation of standard control algorithms in the absence of some necessary measurements. In this work this problem is solved for the algorithm ensuring the damping of spacecraft's angular velocity. Such a damping is shown to be possible not for all initial conditions of motion. In the general case one of two possible final modes is realized, each described by stable steady-state solutions of the equations of motion. In one of them, the spacecraft's angular velocity component relative to the axis, for which the measurements are absent, is nonzero. The estimates of the regions of attraction are obtained for these steady-state solutions by numerical calculations. A simple technique is suggested that allows one to eliminate the initial conditions of the angular velocity damping mode from the attraction region of an undesirable solution. Several realizations of this mode that have taken place are reconstructed. This reconstruction was carried out using approximations of telemetry values of the angular velocity components and the total angular momentum of flywheels, obtained at the non-standard situation, by solutions of the equations of spacecraft's rotational motion.

  15. SHARK-NIR: from K-band to a key instrument, a status update

    Science.gov (United States)

    Farinato, Jacopo; Bacciotti, Francesca; Baffa, Carlo; Baruffolo, Andrea; Bergomi, Maria; Bongiorno, Angela; Carbonaro, Luca; Carolo, Elena; Carlotti, Alexis; Centrone, Mauro; Close, Laird; De Pascale, Marco; Dima, Marco; D'Orazi, Valentina; Esposito, Simone; Fantinel, Daniela; Farisato, Giancarlo; Gaessler, Wolfgang; Giallongo, Emanuele; Greggio, Davide; Guyon, Olivier; Hinz, Philip; Lisi, Franco; Magrin, Demetrio; Marafatto, Luca; Mohr, Lars; Montoya, Manny; Pedichini, Fernando; Pinna, Enrico; Puglisi, Alfio; Ragazzoni, Roberto; Salasnich, Bernardo; Stangalini, Marco; Vassallo, Daniele; Verinaud, Christophe; Viotto, Valentina

    2016-07-01

    SHARK-NIR channel is one of the two coronagraphic instruments proposed for the Large Binocular Telescope, in the framework of the call for second generation instruments, issued in 2014. Together with the SHARK-VIS channel, it will offer a few observing modes (direct imaging, coronagraphic imaging and coronagraphic low resolution spectroscopy) covering a wide wavelength domain, going from 0.5μm to 1.7μm. Initially proposed as an instrument covering also the K-band, the current design foresees a camera working from Y to H bands, exploiting in this way the synergy with other LBT instruments such as LBTI, which is actually covering wavelengths greater than L' band, and it will be soon upgraded to work also in K band. SHARK-NIR has been undergoing the conceptual design review at the end of 2015 and it has been approved to proceed to the final design phase, receiving the green light for successive construction and installation at LBT. The current design is significantly more flexible than the previous one, having an additional intermediate pupil plane that will allow the usage of coronagraphic techniques very efficient in term of contrast and vicinity to the star, increasing the instrument coronagraphic performance. The latter is necessary to properly exploit the search of giant exo-planets, which is the main science case and the driver for the technical choices of SHARK-NIR. We also emphasize that the LBT AO SOUL upgrade will further improve the AO performance, making possible to extend the exo-planet search to target fainter than normally achieved by other 8-m class telescopes, and opening in this way to other very interesting scientific scenarios, such as the characterization of AGN and Quasars (normally too faint to be observed) and increasing considerably the sample of disks and jets to be studied. Finally, we emphasize that SHARK-NIR will offer XAO direct imaging capability on a FoV of about 15"x15", and a simple coronagraphic spectroscopic mode offering spectral

  16. Real-time measurement system for tracking birefringence, weight, thickness, and surface temperature during drying of solution cast coatings and films

    Science.gov (United States)

    Unsal, E.; Drum, J.; Yucel, O.; Nugay, I. I.; Yalcin, B.; Cakmak, M.

    2012-02-01

    This paper describes the design and performance of a new instrument to track temporal changes in physical parameters during the drying behavior of solutions, as well as curing of monomers. This real-time instrument follows in-plane and out-of-plane birefringence, weight, thickness, and surface temperature during the course of solidification of coatings and films through solvent evaporation and thermal or photocuring in a controlled atmosphere. It is specifically designed to simulate behavior of polymer solutions inside an industrial size, continuous roll-to-roll solution casting line and other coating operations where resins are subjected to ultraviolet (UV) curing from monomer precursors. Controlled processing parameters include air speed, temperature, initial cast thickness, and solute concentration, while measured parameters are thickness, weight, film temperature, in-plane and out-of-plane birefringence. In this paper, we illustrate the utility of this instrument with solution cast and dried poly (amide-imide)/DMAc (Dimethylacetamide) solution, water based black paint, and organo-modified clay/NMP (N-Methylpyrrolidone) solution. In addition, the physical changes that take place during UV photo polymerization of a monomer are tracked. This instrument is designed to be generic and it can be used for tracking any drying/swelling/solidification systems including paper, foodstuffs such as; grains, milk as well as pharmaceutical thin paste and slurries.

  17. Evaporation of a non-ideal solution and its application to writing ink aging.

    Science.gov (United States)

    Cantú, Antonio A

    2015-02-01

    The evaporation of a solution consisting of a non-volatile solute dissolved in a volatile solvent has been previously treated using a simple model called the beaker model. This model considers the solution to be in a non-porous container that has vertical walls like a glass beaker and assumes the solution is an ideal solution so that Raoult's law is obeyed. A particular novel finding was that under a certain condition, the evaporation or aging curve of the solution has a point of maximum acceleration. Prior to this point, the solution is in its fast drying mode and after this point, it is in its slow drying mode. This phenomenon is observed in the drying of many writing inks. In this work this model is modified to consider the evaporation of (a) a non-ideal solution, (b) a solution that become saturated, (c) a solution on a glass slide, and (d) a solution on a porous substrate. In each of these cases, the existence and location of the point of maximum acceleration of the drying process are examined. These modifications lead to a description of the dying process of a solution that is remarkably similar to that of writing inks but obtained via an entirely different physical model. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Sound-like collective mode excitation with pion absorption in nuclear matter

    International Nuclear Information System (INIS)

    Qiu Xijiun; Shen Jianguo; Huang Lingfang

    1985-01-01

    The relativistic mean field theory consistent with bulk properties of nuclear matter is extended to study the excitations of the sound-like collective modes in nuclear matter. Corresponding relativistic mean field equations are solved numerically and self-consistently. The effective mass of nucleon, the speed of the sound and the amplitude of the sound-like solution are calculated. When the nuclear density is near or greater than the saturation density, the sound-like non-trivial solution could be found

  19. Deformation and fracture of K3 rotary nickel-titanium endodontic instruments after clinical use.

    Science.gov (United States)

    Shen, S M; Deng, M; Wang, P P; Chen, X M; Zheng, L W; Li, H L

    2016-11-01

    The aim was to evaluate the incidence and type of defects that occurred with K3 rotary nickel-titanium instruments during routine clinical use. A total of 2397 K3 (G-PACKS, SybronEndo, West Collins, Orange, CA, USA) instruments were collected from a graduate endodontic clinic over 21 months. All the instruments were limited to a maximum use of 30 canal preparations. The collected instruments were measured by a digital caliper to determine whether any fractures had occurred and then were visually inspected for deformation and fracture under a stereomicroscope. The surfaces of fractured instruments were further evaluated under a scanning electron microscope. Data were analysed using chi-square test and Kruskal-Wallis test. The incidence of instrument defect was 5.63%, consisting of 3.59% fractures and 2.05% deformations. The defect rates of 0.04 and 0.06 files were statistically higher than the other taper groups (P  0.05). For the fractured instruments, 63.95% failed from flexural fatigue, whilst 36.05% failed from torsion. Flexural fracture was the major mode of fracture for instruments with larger taper. A routine check for instrument integrity particularly for 0.04 and 0.06 files at high magnification is recommended after each clinical use. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  20. Development of a web based instrument on higher education structures of industrial engineering

    OpenAIRE

    Tarba Ioan-Cristian

    2017-01-01

    The research and development of assisted operational instruments on higher education structures of industrial engineering represent a continuous and complex process. The present paper contributes to the building up of support elements and an assisted operational instrument on higher education structures of industrial engineering, with focus on the specific curricula. The use of tested and validated constructive solutions from other projects, as base for the new design, reduces the design time.

  1. Instrumentation Needs for Integral Primary System Reactors (IPSRs) - Task 1 Final Report

    International Nuclear Information System (INIS)

    Gary D Storrick; Bojan Petrovic; Luca Oriani; Lawrence E Conway; Diego Conti

    2005-01-01

    This report presents the results of the Westinghouse work performed under Task 1 of this Financial Assistance Award and satisfies a Level 2 Milestone for the project. While most of the signals required for control of IPSRs are typical of other PWRs, the integral configuration poses some new challenges in the design or deployment of the sensors/instrumentation and, in some cases, requires completely new approaches. In response to this consideration, the overall objective of Task 1 was to establish the instrumentation needs for integral reactors, provide a review of the existing solutions where available, and, identify research and development needs to be addressed to enable successful deployment of IPSRs. The starting point for this study was to review and synthesize general characteristics of integral reactors, and then to focus on a specific design. Due to the maturity of its design and availability of design information to Westinghouse, IRIS (International Reactor Innovative and Secure) was selected for this purpose. The report is organized as follows. Section 1 is an overview. Section 2 provides background information on several representative IPSRs, including IRIS. A review of the IRIS safety features and its protection and control systems is used as a mechanism to ensure that all critical safety-related instrumentation needs are addressed in this study. Additionally, IRIS systems are compared against those of current advanced PWRs. The scope of this study is then limited to those systems where differences exist, since, otherwise, the current technology already provides an acceptable solution. Section 3 provides a detailed discussion on instrumentation needs for the representative IPSR (IRIS) with detailed qualitative and quantitative requirements summarized in the exhaustive table included as Appendix A. Section 3 also provides an evaluation of the current technology and the instrumentation used for measurement of required parameters in current PWRs. Section 4

  2. Impact of mixed modes on measurement errors and estimates of change in panel data

    Directory of Open Access Journals (Sweden)

    Alexandru Cernat

    2015-07-01

    Full Text Available Mixed mode designs are receiving increased interest as a possible solution for saving costs in panel surveys, although the lasting effects on data quality are unknown. To better understand the effects of mixed mode designs on panel data we will examine its impact on random and systematic error and on estimates of change. The SF12, a health scale, in the Understanding Society Innovation Panel is used for the analysis. Results indicate that only one variable out of 12 has systematic differences due to the mixed mode design. Also, four of the 12 items overestimate variance of change in time in the mixed mode design. We conclude that using a mixed mode approach leads to minor measurement differences but it can result in the overestimation of individual change compared to a single mode design.

  3. RHEED transmission mode and pole figures thin film and nanostructure texture analysis

    CERN Document Server

    Wang, Gwo-Ching

    2014-01-01

    This unique book covers the fundamental principle of electron diffraction, basic instrumentation of RHEED, definitions of textures in thin films and nanostructures, mechanisms and control of texture formation, and examples of RHEED transmission mode measurements of texture and texture evolution of thin films and nanostructures. Also presented is a new application of RHEED in the transmission mode called RHEED pole figure technique that can be used to monitor the texture evolution in thin film growth and nanostructures and is not limited to single crystal epitaxial film growth. Details of the construction of RHEED pole figures and the interpretation of observed pole figures are presented.  Materials covered include metals, semiconductors, and thin insulators. This book also: Presents a new application of RHEED in the transmission mode Introduces a variety of textures from metals, semiconductors, compound semiconductors, and their characteristics in RHEED pole figures Provides examples of RHEED measurements o...

  4. Surveillance of instrumentation channels at nuclear power plants

    International Nuclear Information System (INIS)

    Thie, J.A.

    1989-06-01

    Surveillance activities at nuclear plants, involving-calibrations, functional tests, and simple checks, have many associated problems. These problems are of the following four types: administrative, equipment, human, and systemic. An extensive search of the literature has led to 63 generic classes of problems falling within these types and involving instrumentation department activities. The classification system is that which writers of incidents are essentially using, based on historical traditions, in naming their problems' causes. An interesting finding in the search was the strong correlation of this project to many aspects of industrial safety; technology transfer opportunities from the latter are identified. A survey of plant instrumentation experts was conducted to obtain a ranking of the most important problems. Classes of solutions to these problems are listed and discussed. Outlined is a possible methodology of matching these solutions to problems. Finally applications of this study are listed, and include extensions to training, operations, and maintenance departments of power plants. Appendices give several general examples for each problem class and many specific suggestions from experts on addressing the problems felt to be more important. 15 refs., 2 figs., 6 tabs

  5. A model for a scrape-off-layer low-high (L-H) mode transition

    International Nuclear Information System (INIS)

    Cohen, R.H.; Xu, X.

    1995-01-01

    Increasing the radial mode number has a stabilizing effect on the conducting-wall and curvature-driven interchange modes in a tokamak scrape-off layer (SOL), arising from the increased polarization response. Such an effect is naturally imposed as the SOL width is decreased, and for a narrow-enough SOL, the stabilizing effect is stronger than the increase in the instability drives. By combining a mixing-length estimate for the thermal diffusivity with energy conservation and heat conduction equations and the condition of continuity of the heat flux at the separatrix, it is found that the resultant turbulence-transport system admits two solutions, one stable and one unstable, at different SOL widths; the inclusion of additional physics can add a second stable root at lower width. These roots are plausibly identified with SOL behavior in low (L) and high (H) modes. Particularly when a model is introduced for finite-β, finite-k parallel effects on the modes, a power threshold for transition to the narrower root is obtained, suggesting a possible L-H transition mechanism. The non-monotonic dependence of the turbulent heat flux vs SOL width and the possibility of multiple solutions for the equilibrium SOL width are verified with nonlinear simulations. copyright 1995 American Institute of Physics

  6. Fermion zero modes and the black-hole hypermultiplet with rigid supersymmetry

    International Nuclear Information System (INIS)

    Brooks, R.; Kallosh, R.; Ortin, T.

    1995-01-01

    The gravitini zero modes riding on top of the extreme Reissner-Nordstroem black-hole solution of N=2 supergravity are shown to be normalizable. The gravitini and dilatini zero modes of axion-dilaton extreme black-hole solutions of N=4 supergravity are also given and found to have finite norms. These norms are duality invariant. The finiteness and positivity of the norms in both cases are found to be correlated with the Witten-Israel-Nester construction; however, we have replaced the Witten condition by the pure-spin-3/2 constraint on the gravitini. We compare our calculation of the norms with the calculations which provide the moduli space metric for extreme black holes. The action of the N=2 hypermultiplet with an off-shell central charge describes the solitons of N=2 supergravity. This action, in the Majumdar-Papapetrou multi-black-hole background, is shown to be N=2 rigidly supersymmetric

  7. Kovasznay modes in the linear stability analysis of self-similar ablation flows

    International Nuclear Information System (INIS)

    Lombard, V.

    2008-12-01

    Exact self-similar solutions of gas dynamics equations with nonlinear heat conduction for semi-infinite slabs of perfect gases are used for studying the stability of ablative flows in inertial confinement fusion, when a shock wave propagates in front of a thermal front. Both the similarity solutions and their linear perturbations are numerically computed with a dynamical multi-domain Chebyshev pseudo-spectral method. Laser-imprint results, showing that maximum amplification occurs for a laser-intensity modulation of zero transverse wavenumber have thus been obtained (Abeguile et al. (2006); Clarisse et al. (2008)). Here we pursue this approach by proceeding for the first time to an analysis of perturbations in terms of Kovasznay modes. Based on the analysis of two compressible and incompressible flows, evolution equations of vorticity, acoustic and entropy modes are proposed for each flow region and mode couplings are assessed. For short times, perturbations are transferred from the external surface to the ablation front by diffusion and propagate as acoustic waves up to the shock wave. For long times, the shock region is governed by the free propagation of acoustic waves. A study of perturbations and associated sources allows us to identify strong mode couplings in the conduction and ablation regions. Moreover, the maximum instability depends on compressibility. Finally, a comparison with experiments of flows subjected to initial surface defects is initiated. (author)

  8. Observation of slant column NO2 using the super-zoom mode of AURA-OMI

    NARCIS (Netherlands)

    Valin, L.C.; Russell, A.R.; Bucsela, E.J.; Veefkind, J.P.; Cohen, R.C.

    2011-01-01

    We retrieve slant column NO2 from the superzoom mode of the Ozone Monitoring Instrument (OMI) to explore its utility for understanding NOx emissions and variability. Slant column NO2 is operationally retrieved from OMI (Boersma et al., 2007; Bucsela et al., 2006) with a nadir footprint of 13×24 km2,

  9. Mode of administration does matter: comparability study using IPAQ

    Directory of Open Access Journals (Sweden)

    Felipe de Magalhães Bandeira

    2015-12-01

    Full Text Available Abstract This study compared all-domains and domain-specific physical activity scores assessed through four variations of the IPAQ long version: (a typical week, administered by an interviewer; (b typical week, self-administered; (c past seven days, interviewer-administered; (d past seven days, self-administered. The sample included 38 physical education college students. Self-reported scores were in general twice higher than interview-administered scores, regardless the recall period used. In terms of domain-specific scores, occupational physical activity scores generated by self-report were 6-7 times greater than those originated from interviews. The same trend was observed for household physical activity. Transport physical activity scores did not change according to the mode of administration. In terms of leisure-time physical activity, scores were similar except for the interviewer-administered past seven days, whose scores were lower than the other three versions of IPAQ. In conclusion, the mode of administration of IPAQ does matter; higher scores are obtained through self-report as compared to interviews, probably by misinterpretation of the instrument in self-report mode. The recall period had little effect on physical activity estimates.

  10. Linear and nonlinear dynamics of electron temperature gradient mode in non-Maxwellian plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zakir, U.; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar (Pakistan); Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, Islamabad (Pakistan); National Centre for Physics, Islamabad (Pakistan)

    2013-05-15

    The effect of non-Maxwellian distributed ions on electron temperature gradient mode is investigated. The linear dispersion relation of η{sub e}−mode is obtained which shows that the behavior of this mode changes in the presence of superthermal ions. The growth rate of η{sub e}−mode driven linear instability is found and is observed to modify due to nonthermal ions. However, it is found that this leaves the electron energy transport coefficient unchanged. In the nonlinear regime, a dipolar vortex solution is derived which indicates that the dynamic behavior of the vortices changes with the inclusion of kappa distributed ions. The importance of present study with respect to space and laboratory plasmas is also pointed out.

  11. CARMENES instrument overview

    Science.gov (United States)

    Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Mundt, R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona Jiménez, R.; Anwand-Heerwart, H.; Azzaro, M.; Bauer, F.; Barrado, D.; Becerril, S.; Béjar, V. J. S.; Benítez, D.; Berdiñas, Z. M.; Cárdenas, M. C.; Casal, E.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Doellinger, M.; Dreizler, S.; Feiz, C.; Fernández, M.; Galadí, D.; Gálvez-Ortiz, M. C.; García-Piquer, A.; García-Vargas, M. L.; Garrido, R.; Gesa, L.; Gómez Galera, V.; González Álvarez, E.; González Hernández, J. I.; Grözinger, U.; Guàrdia, J.; Guenther, E. W.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H.-J.; Hatzes, A. P.; Hauschildt, P. H.; Helmling, J.; Henning, T.; Hermann, D.; Hernández Castaño, L.; Herrero, E.; Hidalgo, D.; Holgado, G.; Huber, A.; Huber, K. F.; Jeffers, S.; Joergens, V.; de Juan, E.; Kehr, M.; Klein, R.; Kürster, M.; Lamert, A.; Lalitha, S.; Laun, W.; Lemke, U.; Lenzen, R.; López del Fresno, Mauro; López Martí, B.; López-Santiago, J.; Mall, U.; Mandel, H.; Martín, E. L.; Martín-Ruiz, S.; Martínez-Rodríguez, H.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Montes, D.; Morales Muñoz, R.; Moya, A.; Naranjo, V.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Passegger, V.-M.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Pluto, M.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.; Rodríguez-Pérez, E.; Rohloff, R.-R.; Rosich, A.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sanz-Forcada, J.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schmidt, C.; Schmitt, J. H. M. M.; Solano, E.; Stahl, O.; Storz, C.; Stürmer, J.; Suárez, J. C.; Ulbrich, R. G.; Veredas, G.; Wagner, K.; Winkler, J.; Zapatero Osorio, M. R.; Zechmeister, M.; Abellán de Paco, F. J.; Anglada-Escudé, G.; del Burgo, C.; Klutsch, A.; Lizon, J. L.; López-Morales, M.; Morales, J. C.; Perryman, M. A. C.; Tulloch, S. M.; Xu, W.

    2014-07-01

    This paper gives an overview of the CARMENES instrument and of the survey that will be carried out with it during the first years of operation. CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) is a next-generation radial-velocity instrument under construction for the 3.5m telescope at the Calar Alto Observatory by a consortium of eleven Spanish and German institutions. The scientific goal of the project is conducting a 600-night exoplanet survey targeting ~ 300 M dwarfs with the completed instrument. The CARMENES instrument consists of two separate echelle spectrographs covering the wavelength range from 0.55 to 1.7 μm at a spectral resolution of R = 82,000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in vacuum tanks providing the temperature-stabilized environments necessary to enable a 1 m/s radial velocity precision employing a simultaneous calibration with an emission-line lamp or with a Fabry-Perot etalon. For mid-M to late-M spectral types, the wavelength range around 1.0 μm (Y band) is the most important wavelength region for radial velocity work. Therefore, the efficiency of CARMENES has been optimized in this range. The CARMENES instrument consists of two spectrographs, one equipped with a 4k x 4k pixel CCD for the range 0.55 - 1.05 μm, and one with two 2k x 2k pixel HgCdTe detectors for the range from 0.95 - 1.7μm. Each spectrograph will be coupled to the 3.5m telescope with two optical fibers, one for the target, and one for calibration light. The front end contains a dichroic beam splitter and an atmospheric dispersion corrector, to feed the light into the fibers leading to the spectrographs. Guiding is performed with a separate camera; on-axis as well as off-axis guiding modes are implemented. Fibers with octagonal cross-section are employed to ensure good stability of the output in the presence of residual guiding errors. The

  12. Instrumentation for electromagnetic field generation in biological measurements

    International Nuclear Information System (INIS)

    Malaric, K.; Malaric, R.; Tkalec, M.; Lenicek, I.; Sala, A.

    2005-01-01

    Electromagnetic fields (EMFs) are part of everyday life in modern world. Extremely low-frequency EMFs (50 Hz) are produced by most electric home appliance, electric power transmission and distribution lines. For the last ten years mobile phones have been widely used all around the world. They operate on the EMF frequencies from 400 MHz to 1900 MHz. The effects of EMFs on living organisms have been the subject of debate and research for the last thirty years. The instrumentation for generation of EMFs have been designed at the Faculty of Electrical Engineering and Computing, Zagreb, and can be used for controlled exposure to different EMFs. To study the effect of extremely low-frequency EMF, duckweed (Lemna minor) - the model plant in biological measurement, test setup was made for magnetic field in Helmholtz coil and for electric field between two parallel circle electrodes. For the effect of mobile phones frequencies, test setup with exposition to the electromagnetic field was done with Gigahertz Transversal Electromagnetic Mode (GTEM) cell. The research confirmed that instrumentation used in these experiments is suitable for evaluation of biological effects of EMFs. The effect of different field strengths, exposure times and modulation can be tested with these instrumentation.(author)

  13. The design of an instrumented rebar for assessment of corrosion in cracked reinforced concrete

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Geiker, Mette Rica; Stang, Henrik

    2011-01-01

    rebar with 17 electronically isolated corrosion sensors. Instrumented and standard rebars were cast into concrete beams and bending cracks were induced and held open using steel frames. Epoxy impregnation was used to assess and compare cracks in the concrete around the instrumented and standard rebar...... between the steel and concrete. Cracked beams with cast-in instrumented and standard rebars were ponded with a 10\\% chloride solution and the open circuit corrosion potential (OCP) of the 17 sensors was measured for up to 62 days. Measurements from the individual sensors indicate when and where active...

  14. Building Your Instrumental Music Program in an Urban School

    Science.gov (United States)

    Mixon, Kevin

    2005-01-01

    MENC has recently, recapitulated its vision of "Music for All" in its strategic plan, which warns that "30 to 50 per cent of new teachers who work in urban areas leave the field in their first three years of service.'' This undoubtedly affects instrumental music instruction for urban children. Collegial sharing is one solution to problems…

  15. The Fresnel mode of Lorentz microscopy using a scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Chapman, J.N.; Waddell, E.M.; Batson, P.E.; Ferrier, R.P.

    1979-01-01

    The most widely used method of investigating ferromagnetic films in the transmission electron microscope is the Fresnel or defocus mode of Lorentz microscopy. This may be implemented either in a fixed beam or a scanning instrument. Despite a rather inefficient utilization of electrons, several advantages accrue if the latter is used, and provided it is equipped with a field emission gun, low noise images may be obtained in acceptable recording times. To extract quantitative estimates of domain wall widths from such images it is necessary to measure accurately both instrumental and specimen parameters. Methods for this are discussed and an example of an analysis using a polycrystalline permalloy film is given. (Auth.)

  16. Tin Dioxide Electrolyte-Gated Transistors Working in Depletion and Enhancement Modes.

    Science.gov (United States)

    Valitova, Irina; Natile, Marta Maria; Soavi, Francesca; Santato, Clara; Cicoira, Fabio

    2017-10-25

    Metal oxide semiconductors are interesting for next-generation flexible and transparent electronics because of their performance and reliability. Tin dioxide (SnO 2 ) is a very promising material that has already found applications in sensing, photovoltaics, optoelectronics, and batteries. In this work, we report on electrolyte-gated, solution-processed polycrystalline SnO 2 transistors on both rigid and flexible substrates. For the transistor channel, we used both unpatterned and patterned SnO 2 films. Since decreasing the SnO 2  area in contact with the electrolyte increases the charge-carrier density, patterned transistors operate in the depletion mode, whereas unpatterned ones operate in the enhancement mode. We also fabricated flexible SnO 2 transistors that operate in the enhancement mode that can withstand moderate mechanical bending.

  17. CFRP solutions for the innovative telescopes design

    Science.gov (United States)

    Rampini, Francesco; Marchiori, Gianpietro

    2006-02-01

    The new frontiers of the research in the astronomic field require the use of more and more advanced high-performance structures. Only an adequate technological innovation of conventional telescopes and radio-telescopes allow to obtain structures able to meet the new specification of the projects. Besides, technological innovation is founded not only on the identification of more and more sophisticated mechanisms and optical instruments, but also on the development of new materials and manufacturing processes for the entire structure that constitute an instrument such as a telescope or a radio-telescope. Among these materials, the use of the carbon fibre is highly important. This material, which is already widely used in the aerospace and automotive fields, shall join also the astronomic field for ground instruments. Thanks to the experience acquired with instruments like ALMA, the industry of composites is now able to guarantee different solutions at relatively low costs that allow the instruments of new generation to move extremely important steps in the development of scientific research. Not just materials, but also processes, through which the materials are worked and manufactured, are extremely important. The use of technologies, such as hand lay-up vacuum bag, compression moulding, table rolling of composite tubes, filament winding, poltrusion and Resin Transfer Moulding (RTM), allow to identify the ideal solution both for big dimension objects, such as backup structure, main mirror structure of quadripod legs, and relatively small objects, such as actuators, adjusters system, etc. The wide choice, concerning the use of composite materials, and their techniques of production, allow the technicians to satisfy the exigencies of astronomers be they addressed to simple control of the weights or of the stiffness of the structures, or to specific thermal behaviour of the piece itself.

  18. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

    International Nuclear Information System (INIS)

    Klein, Steven Karl; Determan, John C.

    2015-01-01

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument's LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

  19. Numerical solution of the resistive magnetohydrodynamic boundary-layer equations

    International Nuclear Information System (INIS)

    Glasser, A.H.; Jardin, S.C.; Tesauro, G.

    1983-10-01

    Three different techniques are presented for numerical solution of the equations governing the boundary layer of resistive magnetohydrodynamic tearing and interchange instabilities in toroidal geometry. Excellent agreement among these methods and with analytical results provides confidence in the correctness of the results. Solutions obtained in regimes where analytical medthods fail indicate a new scaling for the tearing mode as well as the existence of a new regime of stability

  20. WATCH: Warwick Assessment insTrument for Clinical teacHing: Development and testing.

    Science.gov (United States)

    Haider, Sonia Ijaz; Johnson, Neil; Thistlethwaite, Jill Elizabeth; Fagan, Gay; Bari, Muhammad Furqan

    2015-03-01

    Medical education and teaching skills are core competencies included in the generic curriculum for specialty training. To support the development of these skills, there is need for a validated instrument. This study aims to develop and test an instrument to measure the attributes of specialty trainees as effective teachers. The study was conducted in two phases. In first phase, the content of the instrument was generated from the literature and tested using the Delphi technique. In second phase, the instrument was field tested for validity and reliability using factor analysis and generalizability study. Feasibility was calculated by the time taken to complete the instrument. Acceptability and educational impact were determined by qualitative analysis of written feedback. Attributes of specialty trainees were assessed by clinical supervisors, peers, and students. The Delphi study produced consensus on 15 statements which formed the basis of the instrument. In field study, a total of 415 instruments were completed. Factor analysis demonstrated a three-factor solution ('learning-teaching milieu', 'teaching skills', and 'learner-orientated'). A generalizability coefficient was 0.92. Mean time to complete the instrument was five minutes. Feedback indicated that it was an acceptable and useful method of assessment. This new instrument provides valid, reliable, feasible, and acceptable assessment of clinical teaching.

  1. Instrumentation

    International Nuclear Information System (INIS)

    Prieur, G.; Nadi, M.; Hedjiedj, A.; Weber, S.

    1995-01-01

    This second chapter on instrumentation gives little general consideration on history and classification of instrumentation, and two specific states of the art. The first one concerns NMR (block diagram of instrumentation chain with details on the magnets, gradients, probes, reception unit). The first one concerns precision instrumentation (optical fiber gyro-meter and scanning electron microscope), and its data processing tools (programmability, VXI standard and its history). The chapter ends with future trends on smart sensors and Field Emission Displays. (D.L.). Refs., figs

  2. Automation of processing and photometric data analysis for transiting exoplanets observed with ESO NIR instrument HAWK-I

    Science.gov (United States)

    Blažek, M.; Kabáth, P.; Klocová, T.; Skarka, M.

    2018-04-01

    Nowadays, when amount of data still increases, it is necessary to automatise their processing. State-of-the-art instruments are capable to produce even tens of thousands of images during a single night. One of them is HAWK-I that is a part of Very Large Telescope of European Southern Observatory. This instrument works in near-infrared band. In my Master thesis, I dealt with developing a pipeline to process data obtained by the instrument. It is written in Python programming language using commands of IRAF astronomical software and it is developed directly for "Fast Photometry Mode" of HAWK-I. In this mode, a large number of data has been obtained during secondary eclipses of exoplanets by their host star. The pipeline was tested by a data set from sorting of the images to making a light curve. The data of WASP-18 system contained almost 40 000 images observed by using a filter centered at 2.09 μm wavelength and there is a plan to process other data sets. A goal of processing of WASP-18 and the other data sets is consecutive analysis of exoplanetary atmospheres of the observed systems.

  3. Realism, instrumentalism, and scientific symbiosis: psychological theory as a search for truth and the discovery of solutions.

    Science.gov (United States)

    Cacioppo, John T; Semin, Gün R; Berntson, Gary G

    2004-01-01

    Scientific realism holds that scientific theories are approximations of universal truths about reality, whereas scientific instrumentalism posits that scientific theories are intellectual structures that provide adequate predictions of what is observed and useful frameworks for answering questions and solving problems in a given domain. These philosophical perspectives have different strengths and weaknesses and have been regarded as incommensurate: Scientific realism fosters theoretical rigor, verifiability, parsimony, and debate, whereas scientific instrumentalism fosters theoretical innovation, synthesis, generativeness, and scope. The authors review the evolution of scientific realism and instrumentalism in psychology and propose that the categorical distinction between the 2 is overstated as a prescription for scientific practice. The authors propose that the iterative deployment of these 2 perspectives, just as the iterative application of inductive and deductive reasoning in science, may promote more rigorous, integrative, cumulative, and useful scientific theories.

  4. SMAP Instrument Mechanical System Engineering

    Science.gov (United States)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  5. Unified instrumentation for determining fissile and radioactive materials

    International Nuclear Information System (INIS)

    Voronov, V.L.; Gorokhov, V.A.; Drozdov, V.Yu.; Morozov, O.S.; Novikov, V.M.

    1999-01-01

    The instrumentation is aimed to equip various facilities: nuclear facilities (including radioactive plant and nuclear material storages), border check stations at the customs, transport junctions, administrative buildings and other facilities. The monitor under design are based on the gamma-spectrometric method of radiation monitoring which consists in recording and analyzing characteristics of X-ray and gamma-sources power spectra within the range of 40-3000 keV at the background level whose value is measured and taken into account during the signal analysis. The designed universal set of instrumentation based on common technical solutions and metrological support plus its small dimensions allows to install it actually in any check point without any significant changes in the room lay-out to facilitate its maintenance [ru

  6. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiawei; Huang, Wenhua [Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027 (China); Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Zhu, Qi [Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027 (China)

    2015-03-16

    A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.

  7. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    International Nuclear Information System (INIS)

    Li, Jiawei; Huang, Wenhua; Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua; Zhu, Qi

    2015-01-01

    A dual-cavity TM 02 –TM 01 mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM 01 mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM 01 mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM 01 mode feedback

  8. Evolution of the VLT instrument control system toward industry standards

    Science.gov (United States)

    Kiekebusch, Mario J.; Chiozzi, Gianluca; Knudstrup, Jens; Popovic, Dan; Zins, Gerard

    2010-07-01

    The VLT control system is a large distributed system consisting of Linux Workstations providing the high level coordination and interfaces to the users, and VME-based Local Control Units (LCU's) running the VxWorks real-time operating system with commercial and proprietary boards acting as the interface to the instrument functions. After more than 10 years of VLT operations, some of the applied technologies used by the astronomical instruments are being discontinued making it difficult to find adequate hardware for future projects. In order to deal with this obsolescence, the VLT Instrumentation Framework is being extended to adopt well established Commercial Off The Shelf (COTS) components connected through industry standard fieldbuses. This ensures a flexible state of the art hardware configuration for the next generation VLT instruments allowing the access to instrument devices via more compact and simpler control units like PC-based Programmable Logical Controllers (PLC's). It also makes it possible to control devices directly from the Instrument Workstation through a normal Ethernet connection. This paper outlines the requirements that motivated this work, as well as the architecture and the design of the framework extension. In addition, it describes the preliminary results on a use case which is a VLTI visitor instrument used as a pilot project to validate the concepts and the suitability of some COTS products like a PC-based PLCs, EtherCAT8 and OPC UA6 as solutions for instrument control.

  9. Quality of Work: Validation of a New Instrument in Three Languages

    Directory of Open Access Journals (Sweden)

    Georges Steffgen

    2015-11-01

    Full Text Available Introduction and objective: A new instrument to measure quality of work was developed in three languages (German, French and Luxembourgish and validated in a study of employees working in Luxembourg. Methods and results: A representative sample (n = 1529 was taken and exploratory factor analysis revealed a six-factor solution for the 21-item instrument (satisfaction and respect, mobbing, mental strain at work, cooperation, communication and feedback, and appraisal. Reliability analysis showed satisfying reliability for all six factors and the total questionnaire. In order to examine the construct validity of the new instrument, regression analyses were conducted to test whether the instrument predicted work characteristics’ influence on three components of well-being—burnout, psychological stress and maladaptive coping behaviors. Conclusion: The present validation offers a trilingual inventory for measuring quality of work that may be used, for example, as an assessment tool or for testing the effectiveness of interventions.

  10. Quality of Work: Validation of a New Instrument in Three Languages

    Science.gov (United States)

    Steffgen, Georges; Kohl, Diane; Reese, Gerhard; Happ, Christian; Sischka, Philipp

    2015-01-01

    Introduction and objective: A new instrument to measure quality of work was developed in three languages (German, French and Luxembourgish) and validated in a study of employees working in Luxembourg. Methods and results: A representative sample (n = 1529) was taken and exploratory factor analysis revealed a six-factor solution for the 21-item instrument (satisfaction and respect, mobbing, mental strain at work, cooperation, communication and feedback, and appraisal). Reliability analysis showed satisfying reliability for all six factors and the total questionnaire. In order to examine the construct validity of the new instrument, regression analyses were conducted to test whether the instrument predicted work characteristics’ influence on three components of well-being—burnout, psychological stress and maladaptive coping behaviors. Conclusion: The present validation offers a trilingual inventory for measuring quality of work that may be used, for example, as an assessment tool or for testing the effectiveness of interventions. PMID:26703634

  11. On-fiber 3D printing of photonic crystal fiber tapers for mode field diameter conversion

    KAUST Repository

    Bertoncini, Andrea; Rajamanickam, Vijayakumar Palanisamy; Liberale, Carlo

    2017-01-01

    The large mismatch between the Mode Field Diameter (MFD) of conventional single-mode fibers (SMFs) and the MFD of highly nonlinear Photonic Crystal Fibers (PCFs), that can be down to 1.5 μm, or Large Mode Area PCF, that can be up to 25 μm, would require a substantial fiber mode size rescaling in order to allow an efficient direct coupling between PCFs and SMFs. Over the years different solutions have been proposed, as fiber splicing of SMF to PCF. However these procedures are not straightforward, as they involve developing special splicing recipes, and can affect PCF optical properties at the splice interface [1].

  12. On-fiber 3D printing of photonic crystal fiber tapers for mode field diameter conversion

    KAUST Repository

    Bertoncini, Andrea

    2017-11-02

    The large mismatch between the Mode Field Diameter (MFD) of conventional single-mode fibers (SMFs) and the MFD of highly nonlinear Photonic Crystal Fibers (PCFs), that can be down to 1.5 μm, or Large Mode Area PCF, that can be up to 25 μm, would require a substantial fiber mode size rescaling in order to allow an efficient direct coupling between PCFs and SMFs. Over the years different solutions have been proposed, as fiber splicing of SMF to PCF. However these procedures are not straightforward, as they involve developing special splicing recipes, and can affect PCF optical properties at the splice interface [1].

  13. Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Collins, Liam; Belianinov, Alex; Somnath, Suhas; Balke, Nina; Kalinin, Sergei V; Jesse, Stephen; Rodriguez, Brian J

    2016-01-01

    Since its inception over two decades ago, Kelvin probe force microscopy (KPFM) has become the standard technique for characterizing electrostatic, electrochemical and electronic properties at the nanoscale. In this work, we present a purely digital, software-based approach to KPFM utilizing big data acquisition and analysis methods. General mode (G-Mode) KPFM works by capturing the entire photodetector data stream, typically at the sampling rate limit, followed by subsequent de-noising, analysis and compression of the cantilever response. We demonstrate that the G-Mode approach allows simultaneous multi-harmonic detection, combined with on-the-fly transfer function correction—required for quantitative CPD mapping. The KPFM approach outlined in this work significantly simplifies the technique by avoiding cumbersome instrumentation optimization steps (i.e. lock in parameters, feedback gains etc), while also retaining the flexibility to be implemented on any atomic force microscopy platform. We demonstrate the added advantages of G-Mode KPFM by allowing simultaneous mapping of CPD and capacitance gradient (C′) channels as well as increased flexibility in data exploration across frequency, time, space, and noise domains. G-Mode KPFM is particularly suitable for characterizing voltage sensitive materials or for operation in conductive electrolytes, and will be useful for probing electrodynamics in photovoltaics, liquids and ionic conductors. (paper)

  14. Single-mode fiber laser based on core-cladding mode conversion.

    Science.gov (United States)

    Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N

    2008-02-15

    A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.

  15. Effect of modes interaction on the resistive wall mode stability

    International Nuclear Information System (INIS)

    Chen Longxi; Wu Bin

    2013-01-01

    Effects of modes interaction on the resistive wall mode (RWM) stability are studied. When considering the modes interaction effects, the linear growth rate of the most unstable (3, 1) mode decreases. After linear evolution, the RWM saturates at the nonlinear phase. The saturation can be attributed to flux piling up on the resistive wall. When some modes exist, the (3, 1) mode saturates at lower level compared with single mode evolution. Meanwhile, the magnetic energy of the (5, 2) mode increases correspondingly, but the magnetic energy saturation level of the (2, 1) mode changes weakly. (authors)

  16. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber.

    Science.gov (United States)

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.

  17. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  18. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  19. Harmonics Suppression for Single-Phase Grid-Connected Photovoltaic Systems in Different Operation Modes

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2013-01-01

    -connected PV inverters may be severely affected in different operation modes. In this paper, a detailed analysis is conducted to reveal the relationship between the harmonics level with the power factor and the current level in the PV systems. A current control solution which employs an Internal Model...... Principle (IMP) is proposed to suppress the harmonic currents injected into the grid. Experiments are carried out to verify the analysis and the performance of the proposed control method. It is demonstrated that the proposed method presents an effective solution to harmonics suppression for single......-phase grid-connected PV systems in different operation modes. Especially, it can remove higher order harmonics effectively leading to a better power quality compared to the Proportional plus Multi-Resonant Controller, and it has less computational burden....

  20. Celiac disease biodetection using lossy-mode resonances generated in tapered single-mode optical fibers

    Science.gov (United States)

    Socorro, A. B.; Corres, J. M.; Del Villar, I.; Matias, I. R.; Arregui, F. J.

    2014-05-01

    This work presents the development and test of an anti-gliadin antibodies biosensor based on lossy mode resonances (LMRs) to detect celiac disease. Several polyelectrolites were used to perform layer-by-layer assembly processes in order to generate the LMR and to fabricate a gliadin-embedded thin-film. The LMR shifted 20 nm when immersed in a 5 ppm anti-gliadin antibodies-PBS solution, what makes this bioprobe suitable for detecting celiac disease. This is the first time, to our knowledge, that LMRs are used to detect celiac disease and these results suppose promising prospects on the use of such phenomena as biological detectors.

  1. TELICS—A Telescope Instrument Control System for Small/Medium Sized Astronomical Observatories

    Science.gov (United States)

    Srivastava, Mudit K.; Ramaprakash, A. N.; Burse, Mahesh P.; Chordia, Pravin A.; Chillal, Kalpesh S.; Mestry, Vilas B.; Das, Hillol K.; Kohok, Abhay A.

    2009-10-01

    For any modern astronomical observatory, it is essential to have an efficient interface between the telescope and its back-end instruments. However, for small and medium-sized observatories, this requirement is often limited by tight financial constraints. Therefore a simple yet versatile and low-cost control system is required for such observatories to minimize cost and effort. Here we report the development of a modern, multipurpose instrument control system TELICS (Telescope Instrument Control System) to integrate the controls of various instruments and devices mounted on the telescope. TELICS consists of an embedded hardware unit known as a common control unit (CCU) in combination with Linux-based data acquisition and user interface. The hardware of the CCU is built around the ATmega 128 microcontroller (Atmel Corp.) and is designed with a backplane, master-slave architecture. A Qt-based graphical user interface (GUI) has been developed and the back-end application software is based on C/C++. TELICS provides feedback mechanisms that give the operator good visibility and a quick-look display of the status and modes of instruments as well as data. TELICS has been used for regular science observations since 2008 March on the 2 m, f/10 IUCAA Telescope located at Girawali in Pune, India.

  2. Current state and prospects of the IBR-2M instrument control software

    International Nuclear Information System (INIS)

    Kirilov, A.S.

    2011-01-01

    The article is devoted to the main features and plans of future improvements of the Sonix + instrumental complex, which is used now to control experimental hardware at the IBR-2M spectrometers. The Sonix + software inherited basic solutions from the older Sonix system. In particular, those are the modular organization using special database for device control and reflection of the current system state, using script programming for the measured procedure. At the same time, some basic features were revised to make the system more unified, flexible and comfortable for the user. Main changes can be grouped as follows: structural enhancements, using the Python as a script language, GUI redesign and unification, remote supervision and instrument control via network. During the last years, this complex has been tested at some IBR-2 instruments (REMUR, NERA-PR) and on some instruments at other centers. We are planning to install it at the other instruments of IBR-2M as well

  3. Bragg grating induced cladding mode coupling due to asymmetrical index modulation in depressed cladding fibers

    DEFF Research Database (Denmark)

    Berendt, Martin Ole; Grüne-Nielsen, Lars; Soccolich, C.F.

    1998-01-01

    to reduce this problem. None of these designs seems to give complete solutions. In particular, the otherwise promising depressed cladding design gives a pronounced coupling to one LP01 mode, this has been referred to as a Ghost grating. To find the modes of the fiber we have established a numerical mode......UV-written Bragg gratings find wide spread use as wavelength selective components. In reflection high extinction ratios are routinely obtained. However, coupling to cladding modes gives excess loss on the short wavelength side of the main reflection. Different fiber-designs have been proposed......-solver based on the staircase-approximation method. The Bragg grating causes coupling between the fundamental LP01 mode and higher order LP1p modes that satisfy phase-matching. The coupling strength is determined by the overlap integral of the LP01, the LP1p mode, and the UV-induced index perturbation. For LP0...

  4. Impedance Eduction in Large Ducts Containing Higher-Order Modes and Grazing Flow

    Science.gov (United States)

    Watson, Willie R.; Jones, Michael G.

    2017-01-01

    Impedance eduction test data are acquired in ducts with small and large cross-sectional areas at the NASA Langley Research Center. An improved data acquisition system in the large duct has resulted in increased control of the acoustic energy in source modes and more accurate resolution of higher-order duct modes compared to previous tests. Two impedance eduction methods that take advantage of the improved data acquisition to educe the liner impedance in grazing flow are presented. One method measures the axial propagation constant of a dominant mode in the liner test section (by implementing the Kumarsean and Tufts algorithm) and educes the impedance from an exact analytical expression. The second method solves numerically the convected Helmholtz equation and minimizes an objective function to obtain the liner impedance. The two methods are tested first on data synthesized from an exact mode solution and then on measured data. Results show that when the methods are applied to data acquired in the larger duct with a dominant higher-order mode, the same impedance spectra are educed as that obtained in the small duct where only the plane wave mode propagates. This result holds for each higher-order mode in the large duct provided that the higher-order mode is sufficiently attenuated by the liner.

  5. Implementation and flight-test of a multi-mode rotorcraft flight-control system for single-pilot use in poor visibility

    Science.gov (United States)

    Hindson, William S.

    1987-01-01

    A flight investigation was conducted to evaluate a multi-mode flight control system designed according to the most recent recommendations for handling qualities criteria for new military helicopters. The modes and capabilities that were included in the system are those considered necessary to permit divided-attention (single-pilot) lowspeed and hover operations near the ground in poor visibility conditions. Design features included mode-selection and mode-blending logic, the use of an automatic position-hold mode that employed precision measurements of aircraft position, and a hover display which permitted manually-controlled hover flight tasks in simulated instrument conditions. Pilot evaluations of the system were conducted using a multi-segment evaluation task. Pilot comments concerning the use of the system are provided, and flight-test data are presented to show system performance.

  6. Multi-mode optical fibers for connecting space-based spectrometers

    Science.gov (United States)

    Roberts, W. T.; Lindenmisth, C. A.; Bender, S.; Miller, E. A.; Motts, E.; Ott, M.; LaRocca, F.; Thomes, J.

    2017-11-01

    significantly smaller, less massive and less robust. Large core multi-mode optical fibers are often used to accommodate the optical connection of the two separated portions of such instrumentation. In some cases, significant throughput efficiency improvement can be realized by judiciously orienting the strands of multi-fiber cable, close-bunching them to accommodate a tight focus of the optical system on the optical side of the connection, and splaying them out linearly along a spectrometer slit on the other end. For such instrumentation to work effectively in identifying elements and molecules, and especially to produce accurate quantitative results, the spectral throughput of the optical fiber connection must be consistent over varying temperatures, over the range of motion of the optical head (and it's implied optical cable stresses), and over angle-aperture invariant of the total system. While the first two of these conditions have been demonstrated[4], spectral observations of the latter present a cause for concern, and may have an impact on future design of fiber-connected LIBS and Raman spectroscopy instruments. In short, we have observed that the shape of the spectral efficiency curve of a large multi-mode core optical fiber changes as a function of input angle.

  7. ATM security via "Stargate" solution

    OpenAIRE

    Hensley, Katrina; Ludden, Fredrick

    1999-01-01

    Approved for public release, distribution unlimited. In today's world of integrating voice, video and data into a single network, Asynchronous Transfer Mode (ATM) networks have become prevalent in the Department of Defense. The Department of Defense's critical data will have to pass through public networks, which causes concern for security. This study presents an efficient solution aimed at authenticating communications over public ATM networks. The authenticating device, Stargate, utiliz...

  8. A survey on the VXIbus and validity analyses for instrumentation and control in NPPs

    International Nuclear Information System (INIS)

    Kwon, Kee Choon; Park, Won Man

    1997-06-01

    This document presents the technical status of the VXIbus system and its interface. VMEbus, while developed as a backplane for Motorola processors, can be used for data acquisition, control and other instrumentation applications. The VXIbus and its associated standard for form, fit, and electrical interface have simplified the process of putting together automated instrumentation systems. The VXIplug and play system alliance was founded in 1993, the alliance's charter to improve the effectiveness of VXI-based solutions by increasing ease-of-use and improving the interoperability of mainframes, computers, instrumentations, and software through open, multivendor standards and practices. This technical report surveys surveys the instrumentation and control in NPPs apply to the VXI-based instruments which are studied expendability, interoperability, maintainability and other features. (author). 10 refs., 4 tabs., 25 figs

  9. The Combinatorial Multi-Mode Resource Constrained Multi-Project Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Denis Pinha

    2016-11-01

    Full Text Available This paper presents the formulation and solution of the Combinatorial Multi-Mode Resource Constrained Multi-Project Scheduling Problem. The focus of the proposed method is not on finding a single optimal solution, instead on presenting multiple feasible solutions, with cost and duration information to the project manager. The motivation for developing such an approach is due in part to practical situations where the definition of optimal changes on a regular basis. The proposed approach empowers the project manager to determine what is optimal, on a given day, under the current constraints, such as, change of priorities, lack of skilled worker. The proposed method utilizes a simulation approach to determine feasible solutions, under the current constraints. Resources can be non-consumable, consumable, or doubly constrained. The paper also presents a real-life case study dealing with scheduling of ship repair activities.

  10. Sonochemical cleaning efficiencies in dental instruments

    Science.gov (United States)

    Tiong, T. Joyce; Walmsley, A. Damien; Price, Gareth J.

    2012-05-01

    Ultrasound has been widely used for cleaning purposes in a variety of situations, including in dental practice. Cleaning is achieved through a combination of acoustically driven streaming effects and sonochemical effects arising from the production of inertial cavitation in a liquid. In our work, various dental instruments used for endodontic (root canal) treatment have been evaluated for their efficiency in producing sonochemical effects in an in-vitro cleaning environment. The areas where cavitation was produced were mapped by monitoring chemiluminescence from luminol solutions and this was correlated with their cleaning efficiencies - assessed by the ability to bleach a dye, to form an emulsion by mixing immiscible components and also to remove ink from a glass surface. The results showed good correlation (Pearson's coefficient > 0.9) between the cavitation and cleaning efficiencies, suggesting that the former plays an important role in cleaning. The methods developed and the results will be beneficial in endodontics research in order to optimise future root canal instruments and treatments.

  11. Analytical solution for a linearly graded-index-profile planar waveguide.

    Science.gov (United States)

    Touam, T; Yergeau, F

    1993-01-20

    An analytical solution is presented for the TE modes of a planar waveguide structure comprising a high-index guiding layer and a buried layer with a profile such that the square of the index varies linearly and matches the substrate and high-index guiding layer. The electric-field profiles and the dispersion relation are obtained and discussed, and a solution by the WKB method is compared.

  12. ProFile Vortex and Vortex Blue Nickel-Titanium Rotary Instruments after Clinical Use.

    Science.gov (United States)

    Shen, Ya; Zhou, Huimin; Coil, Jeffrey M; Aljazaeri, Bassim; Buttar, Rene; Wang, Zhejun; Zheng, Yu-feng; Haapasalo, Markus

    2015-06-01

    The aim of this study was to analyze the incidence and mode of ProFile Vortex and Vortex Blue instrument defects after clinical use in a graduate endodontic program and to examine the impact of clinical use on the instruments' metallurgical properties. A total of 330 ProFile Vortex and 1136 Vortex Blue instruments from the graduate program were collected after each had been used in 3 teeth. The incidence and type of instrument defects were analyzed. The lateral surfaces and fracture surfaces of the fractured files were examined by using scanning electron microscopy. Unused and used instruments were examined by full and partial differential scanning calorimetry. No fractures were observed in the 330 ProFile Vortex instruments, whereas 20 (6.1%) revealed bent or blunt defects. Only 2 of the 1136 Vortex Blue files fractured during clinical use. The cause of fracture was shear stress. The fractures occurred at the tip end of the spirals. Only 1.8% (21 of 1136) of the Vortex Blue files had blunt tips. Austenite-finish temperatures were very similar for unused and used ProFile Vortex files and were all greater than 50°C. The austenite-finish temperatures of used and unused Vortex Blue files (38.5°C) were lower than those in ProFile Vortex instruments (P Vortex Blue files had an obvious 2-stage transformation, martensite-to-R phase and R-to-austenite phase. The trends of differential scanning calorimetry plots of unused Vortex Blue instruments and clinically used instruments were very similar. The risk of ProFile Vortex and Vortex Blue instrument fracture is very low when instruments are discarded after clinical use in the graduate endodontic program. The Vortex Blue files have metallurgical behavior different from ProFile Vortex instruments. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Bushes of vibrational modes for Fermi-Pasta-Ulam chains

    Science.gov (United States)

    Chechin, G. M.; Novikova, N. V.; Abramenko, A. A.

    2002-06-01

    Some exact solutions and multimode invariant submanifolds were found for the Fermi-Pasta-Ulam (FPU)- β model by Poggi and Ruffo [Physica D 103 (1997) 251]. In the present paper we demonstrate how results of such a type can be obtained for an arbitraryN-particle chain with periodic boundary conditions with the aid of our group-theoretical approach [Physica D 117 (1998) 43] based on the concept of bushes of normal modes in mechanical systems with discrete symmetry. The integro-differential equation describing the FPU- α dynamics in the modal space is derived. The loss of stability of the bushes of modes for the FPU- α model, in particular, for the limiting case N→∞ for the dynamical regime with displacement pattern having period twice the lattice spacing ( π-mode) is studied. Our results for the FPU- α chain are compared with those by Poggi and Ruffo for the FPU- β chain.

  14. Two-fluid hydrodynamic modes in a trapped superfluid gas

    International Nuclear Information System (INIS)

    Taylor, E.; Griffin, A.

    2005-01-01

    In the collisional region at finite temperatures, the collective modes of superfluids are described by the Landau two-fluid hydrodynamic equations. This region can now be probed over the entire BCS-Bose-Einstein-condensate crossover in trapped Fermi superfluids with a Feshbach resonance, including the unitarity region. Building on the approach initiated by Zaremba, Nikuni, and Griffin in 1999 for trapped atomic Bose gases, we present a variational formulation of two-fluid hydrodynamic collective modes based on the work of Zilsel in 1950 developed for superfluid helium. Assuming a simple variational Ansatz for the superfluid and normal fluid velocities, the frequencies of the hydrodynamic modes are given by solutions of coupled algebraic equations, with constants only involving spatial integrals over various equilibrium thermodynamic derivatives. This variational approach is both simpler and more physical than a direct attempt to solve the Landau two-fluid differential equations. Our two-fluid results are shown to reduce to those of Pitaevskii and Stringari for a pure superfluid at T=0

  15. Saddle point solutions in Yang-Mills-dilaton theory

    International Nuclear Information System (INIS)

    Bizon, P.

    1992-01-01

    The coupling of a dilaton to the SU(2)-Yang-Mills field leads to interesting non-perturbative static spherically symmetric solutions which are studied by mixed analytical and numerical methods. In the abelian sector of the theory there are finite-energy magnetic and electric monopole solutions which saturate the Bogomol'nyi bound. In the nonabelian sector there exist a countable family of globally regular solutions which are purely magnetic but have zero Yang-Mills magnetic charge. Their discrete spectrum of energies is bounded from above by the energy of the abelian magnetic monopole with unit magnetic charge. The stability analysis demonstrates that the solutions are saddle points of the energy functional with increasing number of unstable modes. The existence and instability of these solutions are 'explained' by the Morse-theory argument recently proposed by Sudarsky and Wald. (author)

  16. Diode-pumped Kerr-lens mode-locked femtosecond Yb:YAG ceramic laser

    Science.gov (United States)

    Zi-Ye, Gao; Jiang-Feng, Zhu; Ke, Wang; Jun-Li, Wang; Zhao-Hua, Wang; Zhi-Yi, Wei

    2016-02-01

    We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser based on an Yb:YAG ceramic. Stable laser pulses with 97-fs duration, 2.8-nJ pulse energy, and 320-mW average power were obtained. The femtosecond oscillator operated at a central wavelength of 1049 nm and a repetition rate of 115 MHz. To the best of our knowledge, this is the first demonstration of a Kerr-lens mode-locked operation in a diode-pumped Yb:YAG ceramic laser with sub-100 fs pulse duration. Project supported by the National Major Scientific Instrument Development Project of China (Grant No. 2012YQ120047), the National Natural Science Foundation of China (Grant No. 61205130), and the Fundamental Research Funds for the Central Universities, China (Grant No. JB140502).

  17. Stability analysis of internal ideal modes in low-shear tokamaks

    International Nuclear Information System (INIS)

    Wahlberg, C.; Graves, J. P.

    2007-01-01

    The stability of internal, ideal modes in tokamaks with low magnetic shear in the plasma core is analyzed. For equilibria with large aspect ratio, a parabolic pressure profile and a flat q profile in the core, an exact solution of the ideal magnetohydrodynamic (MHD) stability equations is found. The solution includes the eigenfunctions and the complete spectra of two distinctly different MHD phenomena: A family of fast-growing, Mercier-unstable global eigenmodes localized in a low-shear region with q 1 in the core. In the latter case the solution in addition includes one unstable eigenmode, if beta is larger than a critical value depending on the width of the low-shear region and on the q-profile in the edge region

  18. Radiative type-III ELMy H-mode in all-tungsten ASDEX Upgrade

    NARCIS (Netherlands)

    Rapp, J.; Kallenbach, A.; Neu, R.; Eich, T.; Fischer, R.; Herrmann, A.; Potzel, S.; van Rooij, G. J.; Zielinski, J. J.; ASDEX Upgrade team,

    2012-01-01

    The type-III ELMy H-mode might be the solution for an integrated ITER operation scenario fulfilling the fusion power amplification factor (output fusion power to input heating power) of Q = 10 with simultaneous acceptable steady-state and transient power loads to the plasma-facing components. This

  19. Mixed-mode loading of the structural elements with defect

    Directory of Open Access Journals (Sweden)

    Larisa V. Stepanova

    2015-06-01

    Full Text Available In the article the problem of determining the stress-strain state near the mixed-mode crack tip in a power-law material under plane stress conditions is considered. The eigenfunction method is used for the mixed-mode crack tip problem. It is shown that the eigenfunction expansion method results in the nonlinear eigenvalue problem. The numeric solution of the nonlinear eigenvalue problem formulated is obtained. The power of the distance from the crack tip is the eigenvalue of the nonlinear eigenvalue problem considered whereas the angular distributions of the stress components are the eigenfunctions. The new eigenvalues different from the eigenvalues of the Hutchinson–Rice–Rosengren are found. It is shown that the new asymptotic solution can be interpreted as the self-similar intermediate asymptotics of the stress field in the vicinity of the crack tip at distances which are very small compared to the crack length or the size of the specimen and at distances which are large compared to the length of the completely damaged zone. The developed method allows us to construct the geometry of the completely damaged zone in vicinity of the crack tip.

  20. In-the-Ear Spiral Monopole Antenna for Hearing Instruments

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper

    2014-01-01

    A novel in-the-ear (ITE) antenna solution for hearing instruments that operates at 2.45 GHz is presented. The antenna consists of a quarter wave monopole and a ground plane that are placed in the ear. The simulated path gain | S 21 |is − 86 dB and the measured path gain is − 80 dB. Simulations an...... and measurements show that the antenna covers the entire 2.40 – 2.48 GHz industrial, scientific and medical (ISM) band. It is the first ever ITE-antenna solution that demonstrates the possibility of establishing an ear-to-ear link by using a standard Bluetooth chip...

  1. Operation of automated NDA instruments for in-line HEU accounting at Y-12

    International Nuclear Information System (INIS)

    Russo, P.A.; Strittmatter, R.B.; Sandford, E.L.; Jeter, I.W.; McCullough, E.; Bowers, G.L.

    1983-01-01

    Two automated nondestructive assay instruments developed at Los Alamos in support of nuclear materials accounting needs are currently operating in-line at the Y-12 Plant for recovery of highly enriched uranium. One instrument provides the HEU inventory in the secondary solvent extraction system, and the other monitors HEU concentration in the secondary intermediate evaporator. Both instruments were installed in December 1982. Operational evaluation of these instruments has been a joint effort of Y-12 and Los Alamos. This has included comparison of the solvent extraction system inventories with direct measurement performed on the dumped solution components of the solvent extraction system, as well as comparisons of concentration assay results with the external assays of samples withdrawn from the process. The function, design, and preliminary results of the operational evaluation are reported

  2. New "Field" of Vocal Music Teaching and Research: Research on the Construction of a Novel Interaction Mode

    Science.gov (United States)

    Li, Donglan

    2015-01-01

    This paper, as an attempt to find a solution to the problem of "Identity Crisis" brought about by the traditional spoon-feeding Education Mode, explores to construct a new mode of vocal music teaching characterized by an interaction on an equal and democratic footing between learners and the teacher in light of Habermas' Communicative…

  3. An overview of instrumentation for the Large Binocular Telescope

    Science.gov (United States)

    Wagner, R. Mark

    2012-09-01

    An overview of instrumentation for the Large Binocular Telescope (LBT) is presented. Optical instrumentation includes the Large Binocular Camera (LBC), a pair of wide-field (27' x 27') mosaic CCD imagers at the prime focus, and the Multi-Object Double Spectrograph (MODS), a pair of dual-beam blue-red optimized long-slit spectrographs mounted at the left and right direct F/15 Gregorian foci incorporating multiple slit masks for multi-object spectroscopy over a 6' field and spectral resolutions of up to 2000. Infrared instrumentation includes the LBT Near-IR Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research (LUCI), a modular near-infrared (0.9-2.5 μm) imager and spectrograph pair mounted at the left and right front bent F/15 Gregorian foci and designed for seeing-limited (FOV: 4' × 4') imaging, long-slit spectroscopy, and multiobject spectroscopy utilizing cooled slit masks and diffraction limited (FOV: 0'.5 × 0'.5) imaging and long-slit spectroscopy. Strategic instruments under development that can utilize the full 23-m baseline of the LBT include an interferometric cryogenic beam combiner with near-infrared and thermal-infrared instruments for Fizeau imaging and nulling interferometry (LBTI) and an optical bench near-infrared beam combiner utilizing multi-conjugate adaptive optics for high angular resolution and sensitivity (LINC-NIRVANA). LBTI is currently undergoing commissioning on the LBT and utilizing the installed adaptive secondary mirrors in both single- sided and two-sided beam combination modes. In addition, a fiber-fed bench spectrograph (PEPSI) capable of ultra high resolution spectroscopy and spectropolarimetry (R = 40,000-300,000) will be available as a principal investigator instrument. Over the past four years the LBC pair, LUCI1, and MODS1 have been commissioned and are now scheduled for routine partner science observations. The delivery of both LUCI2 and MODS2 is anticipated before the end of 2012. The

  4. 77 FR 5768 - Application(s) for Duty-Free Entry of Scientific Instruments

    Science.gov (United States)

    2012-02-06

    ... California, Davis, NEAT ORU, One Shields Ave. Davis, CA 95616. Instrument: Alexsys 1000 Calorimeter... where such solvents are molten. Conventional differential scanning calorimeters, made by other companies... sensitive detector that is essential for solution calorimetry. Justification for Duty-Free Entry: There are...

  5. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry I.

    2017-12-08

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  6. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry; Kasimov, Aslan R.

    2018-01-01

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  7. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry

    2018-03-20

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  8. Fair value hierarchy in financial instrument disclosure. Is there transparency for investors? Evidence from the banking industry

    Directory of Open Access Journals (Sweden)

    Enrico Laghi

    2012-11-01

    Full Text Available The debate on fair value accounting is still open although the last 20 years have been spent in looking for solutions by academics, practitioners and institutions. After long and continuous discussion both on the basic concepts and the information level contained in fair value measurements and on the different solutions that are possible to adopt in mark to market measurements, IASB and FASB have recently issued new standards on fair value measurements applying some principles not only to financial instruments but also to property and other investments. To verify if the solutions adopted in these Standards really improve the disclosure level and the “usefulness of data for investors”, this paper analyzes the actual level of transparency and the “usefulness” of the “fair value hierarchy” (which from some points of view synthesized the Board’s way of thinking regarding to fair value which has already been introduced for financial instruments by IFRS 7, Financial Instruments: Disclosure. The paper presents results of an empirical investigation on a sample of domestic and foreign listed banks that adopted fair value hierarchy in line with SFAS 157 and IFRS 7 recommendations. Research questions can be summarized as follows: (i does fair value hierarchy improve transparency in financial instrument evaluation in bank annual reports, or can it be considered as a tool for earnings management?

  9. Bifurcations in the theory of current transfer to cathodes of DC discharges and observations of transitions between different modes

    Science.gov (United States)

    Bieniek, M. S.; Santos, D. F. N.; Almeida, P. G. C.; Benilov, M. S.

    2018-04-01

    General scenarios of transitions between different spot patterns on electrodes of DC gas discharges and their relation to bifurcations of steady-state solutions are analyzed. In the case of cathodes of arc discharges, it is shown that any transition between different modes of current transfer is related to a bifurcation of steady-state solutions. In particular, transitions between diffuse and spot modes on axially symmetric cathodes, frequently observed in the experiment, represent an indication of the presence of pitchfork or fold bifurcations of steady-state solutions. Experimental observations of transitions on cathodes of DC glow microdischarges are analyzed and those potentially related to bifurcations of steady-state solutions are identified. The relevant bifurcations are investigated numerically and the computed patterns are found to conform to those observed in the course of the corresponding transitions in the experiment.

  10. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  11. Effect of nonlinear energy transport on neoclassical tearing mode stability in tokamak plasmas

    Science.gov (United States)

    Fitzpatrick, Richard

    2017-05-01

    An investigation is made into the effect of the reduction in anomalous perpendicular electron heat transport inside the separatrix of a magnetic island chain associated with a neoclassical tearing mode in a tokamak plasma, due to the flattening of the electron temperature profile in this region, on the overall stability of the mode. The onset of the neoclassical tearing mode is governed by the ratio of the divergences of the parallel and perpendicular electron heat fluxes in the vicinity of the island chain. By increasing the degree of transport reduction, the onset of the mode, as the divergence ratio is gradually increased, can be made more and more abrupt. Eventually, when the degree of transport reduction passes a certain critical value, the onset of the neoclassical tearing mode becomes discontinuous. In other words, when some critical value of the divergence ratio is reached, there is a sudden bifurcation to a branch of neoclassical tearing mode solutions. Moreover, once this bifurcation has been triggered, the divergence ratio must be reduced by a substantial factor to trigger the inverse bifurcation.

  12. Single-Phase Full-Wave Rectifier as an Effective Example to Teach Normalization, Conduction Modes, and Circuit Analysis Methods

    Directory of Open Access Journals (Sweden)

    Predrag Pejovic

    2013-12-01

    Full Text Available Application of a single phase rectifier as an example in teaching circuit modeling, normalization, operating modes of nonlinear circuits, and circuit analysis methods is proposed.The rectifier supplied from a voltage source by an inductive impedance is analyzed in the discontinuous as well as in the continuous conduction mode. Completely analytical solution for the continuous conduction mode is derived. Appropriate numerical methods are proposed to obtain the circuit waveforms in both of the operating modes, and to compute the performance parameters. Source code of the program that performs such computation is provided.

  13. New diffusion-like solutions of one-speed transport equations in spherical geometry

    International Nuclear Information System (INIS)

    Sahni, D.C.

    1988-01-01

    Stationary, one-speed, spherically symmetric transport equations are considered in a conservative medium. Closed-form expressions are obtained for the angular flux ψ(r, μ) that yield a total flux varying as 1/r by using Sonine transforms. Properties of this solution are studied and it is shown that the solution can not be identified as a diffusion mode solution of the transport equation. Limitations of the Sonine transform technique are noted. (author)

  14. Full-Band Quasi-Harmonic Analysis and Synthesis of Musical Instrument Sounds with Adaptive Sinusoids

    Directory of Open Access Journals (Sweden)

    Marcelo Caetano

    2016-05-01

    Full Text Available Sinusoids are widely used to represent the oscillatory modes of musical instrument sounds in both analysis and synthesis. However, musical instrument sounds feature transients and instrumental noise that are poorly modeled with quasi-stationary sinusoids, requiring spectral decomposition and further dedicated modeling. In this work, we propose a full-band representation that fits sinusoids across the entire spectrum. We use the extended adaptive Quasi-Harmonic Model (eaQHM to iteratively estimate amplitude- and frequency-modulated (AM–FM sinusoids able to capture challenging features such as sharp attacks, transients, and instrumental noise. We use the signal-to-reconstruction-error ratio (SRER as the objective measure for the analysis and synthesis of 89 musical instrument sounds from different instrumental families. We compare against quasi-stationary sinusoids and exponentially damped sinusoids. First, we show that the SRER increases with adaptation in eaQHM. Then, we show that full-band modeling with eaQHM captures partials at the higher frequency end of the spectrum that are neglected by spectral decomposition. Finally, we demonstrate that a frame size equal to three periods of the fundamental frequency results in the highest SRER with AM–FM sinusoids from eaQHM. A listening test confirmed that the musical instrument sounds resynthesized from full-band analysis with eaQHM are virtually perceptually indistinguishable from the original recordings.

  15. Knotted solutions for linear and nonlinear theories: Electromagnetism and fluid dynamics

    Directory of Open Access Journals (Sweden)

    Daniel W.F. Alves

    2017-10-01

    Full Text Available We examine knotted solutions, the most simple of which is the “Hopfion”, from the point of view of relations between electromagnetism and ideal fluid dynamics. A map between fluid dynamics and electromagnetism works for initial conditions or for linear perturbations, allowing us to find new knotted fluid solutions. Knotted solutions are also found to be solutions of nonlinear generalizations of electromagnetism, and of quantum-corrected actions for electromagnetism coupled to other modes. For null configurations, electromagnetism can be described as a null pressureless fluid, for which we can find solutions from the knotted solutions of electromagnetism. We also map them to solutions of Euler's equations, obtained from a type of nonrelativistic reduction of the relativistic fluid equations.

  16. Measurement techniques and instruments suitable for life-prediction testing of photovoltaic arrays. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Noel, G.T.; Sliemers, F.A.; Deringer, G.C.; Wood, V.E.; Wilkes, K.E.; Gaines, G.B.; Carmichael, D.C.

    1978-01-15

    The validation of a service life of 20 years for low-cost photovoltaic arrays must be accomplished through accelerated life-prediction tests. A methodology for such tests has been developed in a preceding study. The results discussed consist of the initial identification and assessment of all known measurement techniques and instruments that might be used in these life-prediction tests. Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Candidate techniques and instruments are identified on the basis of extensive reviews of published and unpublished information. These methods are organized in six measurement categories--chemical, electrical, optical, thermal, mechanical, and ''other physicals''. Using specified evaluation criteria, the most promising techniques and instruments for use in life-prediction tests of arrays are then selected. These recommended techniques and their characteristics are described. Recommendations are made regarding establishment of the adequacy, particularly with respect to precision, of the more fully developed techniques for this application, and regarding the experimental evaluation of promising developmental techniques. Measurement needs not satisfied by presently available techniques/instruments are also identified.

  17. Root finding in the complex plane for seismo-acoustic propagation scenarios with Green's function solutions.

    Science.gov (United States)

    McCollom, Brittany A; Collis, Jon M

    2014-09-01

    A normal mode solution to the ocean acoustic problem of the Pekeris waveguide with an elastic bottom using a Green's function formulation for a compressional wave point source is considered. Analytic solutions to these types of waveguide propagation problems are strongly dependent on the eigenvalues of the problem; these eigenvalues represent horizontal wavenumbers, corresponding to propagating modes of energy. The eigenvalues arise as singularities in the inverse Hankel transform integral and are specified by roots to a characteristic equation. These roots manifest themselves as poles in the inverse transform integral and can be both subtle and difficult to determine. Following methods previously developed [S. Ivansson et al., J. Sound Vib. 161 (1993)], a root finding routine has been implemented using the argument principle. Using the roots to the characteristic equation in the Green's function formulation, full-field solutions are calculated for scenarios where an acoustic source lies in either the water column or elastic half space. Solutions are benchmarked against laboratory data and existing numerical solutions.

  18. Proceedings: Electromagnetic interference control in modern digital instrumentation and control upgrades

    International Nuclear Information System (INIS)

    1993-06-01

    A workshop on Electro-Magnetic Interference (EMI) Control in Modern Digital Instrumentation ampersand Control System Upgrade was held in Baltimore on September 10-11, 1992 to provide a forum for technology transfer, technical information exchange, and education. The workshop was attended by more than 70 representatives of electric utilities, equipment manufacturers, engineering consulting organizations, and government agencies. The workshop consists of four sessions: (1) Organizational EMC Perspectives, (2) EMI Environment, Case Histories ampersand Solutions, (3) EMC in Digital Instrumentation ampersand Control Systems, and (4) EMI Utility Needs. A group discussion followed the presentations to identify utility needs. Individual papers have been cataloged separately

  19. Development of SAR Altimetry Mode Studies and Applications over Ocean, Coastal Zones and Inland Water (SAMOSA)

    DEFF Research Database (Denmark)

    Stenseng, Lars

    The aim of the work presented in this technical note is to study and clarify the properties of data collected over the ocean with the ASIRAS instrument. Data acquired in high altitude mode over the Fram Strait, between Greenland and Svalbard, has been re-processed and is presented and analyzed us...

  20. Influence of different manufacturing methods on the cyclic fatigue of rotary nickel-titanium endodontic instruments.

    Science.gov (United States)

    Rodrigues, Renata C V; Lopes, Hélio P; Elias, Carlos N; Amaral, Georgiana; Vieira, Victor T L; De Martin, Alexandre S

    2011-11-01

    The aim of this study was to evaluate, by static and dynamic cyclic fatigue tests, the number of cycles to fracture (NCF) 2 types of rotary NiTi instruments: Twisted File (SybronEndo, Orange, CA), which is manufactured by a proprietary twisting process, and RaCe files (FKG Dentaire, La Chaux-de-Fonds, Switzerland), which are manufactured by grinding. Twenty Twisted Files (TFs) and 20 RaCe files #25/.006 taper instruments were allowed to rotate freely in an artificial curved canal at 310 rpm in a static or a dynamic model until fracture occurred. Measurements of the fractured fragments showed that fracture occurred at the point of maximum flexure in the midpoint of the curved segment. The NCF was significantly lower for RaCe instruments compared with TFs. The NCF was also lower for instruments subjected to the static test compared with the dynamic model in both groups. Scanning electron microscopic analysis revealed ductile morphologic characteristics on the fractured surfaces of all instruments and no plastic deformation in their helical shafts. Rotary NiTi endodontic instruments manufactured by twisting present greater resistance to cyclic fatigue compared with instruments manufactured by grinding. The fracture mode observed in all instruments was of the ductile type. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Jovian seismology: preliminary results of the SYMPA instrument

    Science.gov (United States)

    Gaulme, P.; Schmider, F. X.; Gay, J.; Jacob, C.; Jeanneaux, F.; Alvarez, M.; Reyes, M.; Valtier, J. C.; Fossat, E.; Palle, P. L.; Belmonte, J. C.; Gelly, B.

    2006-06-01

    Jupiter's internal structure is poorly known (Guillot et al. 2004). Seismology is a powerful tool to investigate the internal structure of planets and stars, by analyzing how acoustic waves propagate. Mosser (1997) and Gudkova & Zarkhov (1999) showed that the detection and the identification of non-radial modes up to degree ℓ=25 can constrain strongly the internal structure. SYMPA is a ground-based network project dedicated to the Jovian oscillations (Schmider et al. 2002). The instrument is composed of a Mach-Zehnder interferometer producing four interferograms of the planetary spectrum. The combination of the four images in phase quadrature allows the reconstruction of the incident light phase, which is related to the Doppler shift generated by the oscillations. Two SYMPA instruments were built at the Nice university and were used simultaneously during two observation campaigns, in 2004 and 2005, at the San Pedro Martir observatory (Mexico) and the Teide observatory (Las Canarias). We will present for the first time the data processing and the preliminary results of the experiment.

  2. Synchrony-induced modes of oscillation of a neural field model

    Science.gov (United States)

    Esnaola-Acebes, Jose M.; Roxin, Alex; Avitabile, Daniele; Montbrió, Ernest

    2017-11-01

    We investigate the modes of oscillation of heterogeneous ring networks of quadratic integrate-and-fire (QIF) neurons with nonlocal, space-dependent coupling. Perturbations of the equilibrium state with a particular wave number produce transient standing waves with a specific temporal frequency, analogously to those in a tense string. In the neuronal network, the equilibrium corresponds to a spatially homogeneous, asynchronous state. Perturbations of this state excite the network's oscillatory modes, which reflect the interplay of episodes of synchronous spiking with the excitatory-inhibitory spatial interactions. In the thermodynamic limit, an exact low-dimensional neural field model describing the macroscopic dynamics of the network is derived. This allows us to obtain formulas for the Turing eigenvalues of the spatially homogeneous state and hence to obtain its stability boundary. We find that the frequency of each Turing mode depends on the corresponding Fourier coefficient of the synaptic pattern of connectivity. The decay rate instead is identical for all oscillation modes as a consequence of the heterogeneity-induced desynchronization of the neurons. Finally, we numerically compute the spectrum of spatially inhomogeneous solutions branching from the Turing bifurcation, showing that similar oscillatory modes operate in neural bump states and are maintained away from onset.

  3. Instrument Remote Control via the Astronomical Instrument Markup Language

    Science.gov (United States)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  4. Simple Instrumental and Visual Tests for Nonlaboratory Environmental Control

    Directory of Open Access Journals (Sweden)

    L. P. Eksperiandova

    2016-01-01

    Full Text Available Proposed are simple and available techniques that can be used for rapid and reliable environmental control specifically of natural water by means of instrumental and visual tests in outdoor conditions. Developed are the chemical colorimetric modes for fast detection of socially dangerous trace impurities in water such as Co(II, Pd(II, and Rh(III as well as NO2--ions and Fe(III serving as model impurities. Application of portable digital devices and scanner allows estimating the color coordinates and increasing the accuracy and sensitivity of the tests. The combination of complex formation with preconcentration of colored complexes replaces the sensitive but time-consuming and capricious kinetic method that is usually used for this purpose at the more convenient and reliable colorimetric method. As the test tools, the following ones are worked out: polyurethane foam tablets with sorbed colored complexes, the two-layer paper sandwich packaged in slide adapter and saturated by reagents, and polyethylene terephthalate blister with dried reagents. Fast analysis of polyurethane foam tablets is realized using a pocket digital RGB-colorimeter or portable photometer. Express analysis of two-layer paper sandwich or polyethylene terephthalate blister is realized by visual and instrumental tests. The metrological characteristics of the developed visual and instrumental express analysis techniques are estimated.

  5. Forward osmosis for oily wastewater reclamation: Multi-charged oxalic acid complexes as draw solutes

    KAUST Repository

    Ge, Qingchun; Amy, Gary L.; Chung, Neal Tai-Shung

    2017-01-01

    Cl and other recently synthesized draw solutes, the OA complexes show superior FO performance in terms of high water fluxes up to 27.5 and 89.1 LMH under the respective FO and PRO (pressure retarded osmosis) modes, both with negligible reverse solute fluxes

  6. The EGSE science software of the IBIS instrument on-board INTEGRAL satellite

    International Nuclear Information System (INIS)

    La Rosa, Giovanni; Fazio, Giacomo; Segreto, Alberto; Gianotti, Fulvio; Stephen, John; Trifoglio, Massimo

    2000-01-01

    IBIS (Imager on Board INTEGRAL Satellite) is one of the key instrument on-board the INTEGRAL satellite, the follow up mission of the high energy missions CGRO and Granat. The EGSE of IBIS is composed by a Satellite Interface Simulator, a Control Station and a Science Station. Here are described the solutions adopted for the architectural design of the software running on the Science Station. Some preliminary results are used to show the science functionality, that allowed to understand the instrument behavior, all along the test and calibration campaigns of the Engineering Model of IBIS

  7. Influence of acoustic dominant mode propagation in a trifurcated lined duct with different impedances

    International Nuclear Information System (INIS)

    Ayub, M; Tiwana, M H; Mann, A B

    2010-01-01

    In this study, we analyzed the diffraction of the acoustic dominant mode in a parallel-plate trifurcated waveguide with normal impedance boundary conditions in the case where surface impedances of the upper and lower infinite plates are different from each other. The acoustic dominant mode is incident in a soft/hard semi-infinite duct located symmetrically in the infinite lined duct. The solution of the boundary value problem using Fourier transform leads to two simultaneous modified Wiener-Hopf equations that are uncoupled using the pole removal technique. Two infinite sets of unknown coefficients are involved in the solution, which satisfy two infinite systems of linear algebraic equations. These systems are solved numerically. The new kernel functions are factorized. Some graphical results showing the influence of sundry parameters of interest on the reflection coefficient are presented.

  8. Exotic distributions of rigid unit modes in the reciprocal spaces of framework aluminosilicates

    International Nuclear Information System (INIS)

    Dove, Martin T; Pryde, Alexandra K A; Heine, Volker; Hammonds, Kenton D

    2007-01-01

    Until recently it was assumed that rigid unit modes, defined as the zero-frequency solutions to the dynamical equations for an infinite framework of rigid corner-linked tetrahedra, were confined to a small set of normal modes with wavevectors on lines or planes of special symmetry in reciprocal space. Using a search method that explores the full three-dimensional reciprocal space, we have located rigid unit modes with wavevectors on exotic curved surfaces in reciprocal space for a range of silicate minerals. This has led to the realization that the crystal structures of these minerals contain rather more topological floppiness than had previously been realized. The origin of the exotic RUM surfaces remains to be understood

  9. Slow relaxation mode in concentrated oil-in-water microemulsions consisting of repulsive droplets

    Science.gov (United States)

    Hattori, Y.; Ushiki, H.; Courbin, L.; Panizza, P.

    2007-02-01

    The present contribution reports on the observation of two diffusive relaxation modes in a concentrated microemulsion made of repulsive droplets. These two modes can be interpreted in the frame of Weissman’s and Pusey’s theoretical pioneering works. The fast mode is associated to the collective diffusion of droplets whereas the slow one corresponds to the relaxation of droplet concentration fluctuations associated with composition and/or size. We show that (i) repulsive interactions considerably slow down the latter and (ii) a generalized Stokes Einstein relationship between its coefficient of diffusion and the Newtonian viscosity of the solutions, similar to the Walden’s rule for electrolytes, holds for concentrated microemulsion systems made of repulsive droplets.

  10. Collective modes in CuxTiSe2 measured with meV-resolution EELS

    Science.gov (United States)

    Rak, Melinda; Vig, Sean; Husain, Ali; Mitrano, Matteo; Rubeck, Samantha; Kogar, Anshul; Karapetrov, Goran; Morosan, Emilia; Abbamonte, Peter

    The charge density wave (CDW) in 1 T-TiSe2 has been widely thought to be the result of an excitonic insulator transition. We recently observed a soft electronic mode in TiSe2 using a new, momentum-resolved electron energy loss spectroscopy (M-EELS) technique, demonstrating a condensation of electron-hole pairs in this material. As TiSe2 is doped with Cu to produce CuxTiSe2, a superconducting dome emerges above x ˜ 0.04. In this talk, I describe how the electronic collective mode evolves with Cu doping. We find that the temperature dependence of the electronic mode reverses as Cu is introduced and that the mode is much broader at low temperature as compared to the undoped material. Additionally, the electronic mode no longer has a positive dispersion at 300 K as described by the Lindhard function, but has a slightly negative dispersion for small momentum transfers. We will discuss the implications of these results for the excitonic insulator transition in TiSe2. This work was supported by the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF4542. An early prototype of the M-EELS instrument was supported by the DOE Center for Emergent Superconductivity under Award No. DE-AC02-98CH10886.

  11. On fluttering modes for aircraft wing model in subsonic air flow.

    Science.gov (United States)

    Shubov, Marianna A

    2014-12-08

    The paper deals with unstable aeroelastic modes for aircraft wing model in subsonic, incompressible, inviscid air flow. In recent author's papers asymptotic, spectral and stability analysis of the model has been carried out. The model is governed by a system of two coupled integrodifferential equations and a two-parameter family of boundary conditions modelling action of self-straining actuators. The Laplace transform of the solution is given in terms of the 'generalized resolvent operator', which is a meromorphic operator-valued function of the spectral parameter λ, whose poles are called the aeroelastic modes. The residues at these poles are constructed from the corresponding mode shapes. The spectral characteristics of the model are asymptotically close to the ones of a simpler system, which is called the reduced model. For the reduced model, the following result is shown: for each value of subsonic speed, there exists a radius such that all aeroelastic modes located outside the circle of this radius centred at zero are stable. Unstable modes, whose number is always finite, can occur only inside this 'circle of instability'. Explicit estimate of the 'instability radius' in terms of model parameters is given.

  12. Mode of delivery after successful external cephalic version: a systematic review and meta-analysis.

    Science.gov (United States)

    de Hundt, Marcella; Velzel, Joost; de Groot, Christianne J; Mol, Ben W; Kok, Marjolein

    2014-06-01

    To assess the mode of delivery in women after a successful external cephalic version by performing a systematic review and meta-analysis. We searched MEDLINE, Embase, ClinicalTrials.gov, Cumulative Index to Nursing and Allied Health Literature, and the Cochrane Library for studies reporting on the mode of delivery in women after successful external cephalic version at term and women with a spontaneous cephalic-presenting fetus. Two reviewers independently selected studies, extracted data, and assessed study quality. The association between mode of delivery and successful external cephalic version was expressed as a common odds ratio with a 95% confidence interval (CI). We identified three cohort studies and eight case-control studies, reporting on 46,641 women. The average cesarean delivery rate for women with a successful external cephalic version was 21%. Women after successful external cephalic version were at increased risk for cesarean delivery for dystocia (odds ratio [OR] 2.2, 95% CI 1.6-3.0), cesarean delivery for fetal distress (OR 2.2, 95% CI 1.6-2.9), and instrumental vaginal delivery (OR 1.4, 95% CI 1.1-1.7). Women who have had a successful external cephalic version for breech presentation are at increased risk for cesarean delivery and instrumental vaginal delivery as compared with women with a spontaneous cephalic presentation. Nevertheless, with a number needed to treat of three, external cephalic version still remains a very efficient procedure to prevent a cesarean delivery.

  13. A study of common-mode failures

    International Nuclear Information System (INIS)

    Edwards, G.T.; Watson, I.A.

    1979-07-01

    The purpose of the report is to investigate problems of the identification of the common failure mode (CFM) the reliability models used and the data required for their solution, particularly with regard to automatic protection systems for nuclear reactors. The available literature which was surveyed during the study is quoted and used as a basis for the main work of the study. The type of redundancy system under consideration is initially described and the types of CFM to which these systems are prone are identified before a general definition of the term 'common mode failure' is proposed. The definition and proposed classification system for CMF are based on the common cause of failure, so identifying the primary events. Defences against CFM are included and proposals for an overall strategy and detailed recommendations for design and operation are made. Common mode failures in US nuclear reactor systems, aircraft systems, and other sources including chemical plant systems are surveyed. The data indicates the importance of the human error problem in the causes of CMF in design, maintenance and operation. From a study of the collected data a redundancy sub-system model for CMF is developed which identifies three main categories of failure, non-recurrent engineering design errors, maintenance and test errors, and random interest events. The model proposed allows for the improvement in sub-system reliability where appropriate defences are applied. (author)

  14. Dilute-solution Structure of Charged Arborescent Graft Polymer

    International Nuclear Information System (INIS)

    Yun, Seok; Briber, R.M.; Kee, R. Andrew; Gauthier, Mario

    2006-01-01

    The solutions of charged G1 arborescent polystyrene-graft-poly(2-vinylpyridine) copolymers in methanol-d4 and D 2 O were investigated over a dilute concentration range φ = 0.005-0.05 (φ: mass fraction) using small-angle neutron scattering (SANS). Upon addition of acid (HCl) arborescent graft polymers became charged and a peak appeared in SANS data. The interparticle distance (d exp ) calculated from a peak position corresponded to the expected value (d uni ) for a uniform particle distribution. This indicates the formation of liquid-like ordering due to long-range Coulombic repulsions. The smaller dielectric constant of methanol-d4 resulted in long-range electrostatic repulsions persisting to lower polymer concentration than in D 2 O. The slow mode scattering was observed by dynamic light scattering measurements for the same polymer solutions, indicating the presence of structural inhomogeneity in the solutions. Both the peak and slow mode disappeared by addition of NaCl or excess HCl into the solutions due to the screening of electrostatic interactions. The G1 polymer grafted with longer P2VP chains (M w ∼ 30,000 versus 5000 g mol) formed a gel on addition of HCl. This result reveals that molecular expansion is more significant for arborescent polymers with longer (M w ∼ 30,000) linear polyelectrolyte branches, resulting in gelation for φ > 0.01. Upon addition of NaCl or excess HCl a gel transformed back to a liquid resulted from the screening of electrostatic interactions.

  15. Properties of solutions of Bloch-type equations for the paraelectric phase of KDP

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, M; Paszkiewicz, T [Wroclaw Univ. (Poland). Inst. Fyziki Teoretycznej

    1979-10-01

    Exact solutions for two sets of Bloch-like equations describing the paraelectric phase of the model of KDP were studied. The general properties of both solutions are the same. However, in numerical calculations they differ significantly. A modification of the decay law connected with the soft mode frequency fluctuations is considered.

  16. Transverse multibunch modes for non-rigid bunches, including mode coupling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J S; Ruth, R D [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    A method for computing transverse multibunch growth rates and frequency shifts in rings, which has been described previously, is applied to the PEP-II B factory. The method allows multibunch modes with different internal-bunch oscillation modes to couple to one another, similar to single-bunch mode coupling. Including coupling between the multibunch modes gives effects similar to those seen in single-bunch mode coupling. These effects occur at currents that are lower than the single-bunch mode coupling threshold. (author)

  17. Developing a TPACK measurement instrument for 21st century pre-service teachers

    Directory of Open Access Journals (Sweden)

    Teemu Valtonen

    2015-11-01

    Full Text Available  Future skills, so-called 21st century skills, emphasise collaboration, creativity, critical thinking, problem-solving and especially ICT skills (Voogt & Roblin, 2012. Teachers have to be able to use various pedagogical approaches and ICT in order to support the development of their students’ 21st century skills (Voogt & Roblin, 2012. These skills, particularly ICT skills, pose challenges for teachers and teacher education. This paper focuses on developing an instrument for measuring pre-service teachers’ knowledge related to ICT in the context of 21st century skills.Technological Pedagogical Content Knowledge (TPACK; Mishra & Kohler, 2006 was used as a theoretical framework for designing the instrument. While the TPACK framework is actively used, the instruments used to measure it have proven challenging. This paper outlines the results of the development process of the TPACK-21 instrument. A new assessment instrument was compiled and tested on pre-service teachers in Study1 (N=94. Based on these results, the instrument was further developed and tested in Study2 (N=267. The data of both studies were analysed using multiple quantitative methods in order to evaluate the psychometric properties of the instruments. The results provide insight into the challenges of the development process itself and also suggest new solutions to overcome these difficulties.

  18. H-mode physics

    International Nuclear Information System (INIS)

    Itoh, Sanae.

    1991-06-01

    After the discovery of the H-mode in ASDEX ( a tokamak in Germany ) the transition between the L-mode ( Low confinement mode ) and H-mode ( High confinement mode ) has been observed in many tokamaks in the world. The H-mode has made a breakthrough in improving the plasma parameters and has been recognized to be a universal phenomena. Since its discovery, the extensive studies both in experiments and in theory have been made. The research on H-mode has been casting new problems of an anomalous transport across the magnetic surface. This series of lectures will provide a brief review of experiments for explaining H-mode and a model theory of H-mode transition based on the electric field bifurcation. If the time is available, a new theoretical model of the temporal evolution of the H-mode will be given. (author)

  19. Does Wind Discourage Sustainable Transportation Mode Choice? Findings from San Francisco, California, USA

    Directory of Open Access Journals (Sweden)

    Hyungkyoo Kim

    2016-03-01

    Full Text Available This paper explores whether and to what extent wind discourages sustainable transportation mode choice, which includes riding public transportation, bicycling, and walking. A six month-long field study was carried out at four locations in San Francisco, a city that has been promoting sustainable transportation mode choice but that experiences high wind levels. It involved surveying pedestrians and on-site recording of microclimate data using various instruments. The survey adopted a mixed-method approach to collect both quantitative and qualitative data. Statistical analyses using Kruskal Wallis tests and ordinal logistic regression models identified the significant effect of wind speed on San Francisco’s residents in estimating their discouragement for waiting at transit stop without shelter, bicycling, and walking. Qualitative data revealed a deeper understanding of how wind influences their sustainable transportation mode choice. This research argues for the need to adopt climate-based efforts in urban planning and policy and sheds light on the climate resilience of cities

  20. Analysis of current-bidirectional buck-boost based switch-mode audio amplifier

    DEFF Research Database (Denmark)

    Bolten Maizonave, Gert; Andersen, Michael A. E.; Kjærgaard, Claus

    2011-01-01

    The following studdy was carried out in order to assses quantitatively the performannce of the buck--boost converter whhen used as swiitch-mode audio amplifier. It comprises of, to beggin with, the de limitation of design criteria bassed on the state of-the-art solution, which is based...... in a differential mode buckbased amplifier with a boost converter as power supply. The averaged switch modelling of the differential mode current bidirectional topology is also used, in order to analyze the steady state and frequency-wise behaviour of this converter and parameterize it to meet the design criteria....... Next, several piecewise-linear siimulation resultss are shown with detail enough to emphasize the features of the converter. A simple prototype is implemented to verify the main predicted features. Presently no previous publicat ion could be found containing a thorough analysis of this topology...