WorldWideScience

Sample records for instrumental methods lab

  1. A novel single-step, multipoint calibration method for instrumented Lab-on-Chip systems

    DEFF Research Database (Denmark)

    Pfreundt, Andrea; Patou, François; Zulfiqar, Azeem

    2014-01-01

    for instrument-based PoC blood biomarker analysis systems. Motivated by the complexity of associating high-accuracy biosensing using silicon nanowire field effect transistors with ease of use for the PoC system user, we propose a novel one-step, multipoint calibration method for LoC-based systems. Our approach...... specifically addresses the important interfaces between a novel microfluidic unit to integrate the sensor array and a mobile-device hardware accessory. A multi-point calibration curve is obtained by generating a defined set of reference concentrations from a single input. By consecutively splitting the flow...

  2. Constructing a LabVIEW-Controlled High-Performance Liquid Chromatography (HPLC) System: An Undergraduate Instrumental Methods Exercise

    Science.gov (United States)

    Smith, Eugene T.; Hill, Marc

    2011-01-01

    In this laboratory exercise, students develop a LabVIEW-controlled high-performance liquid chromatography system utilizing a data acquisition device, two pumps, a detector, and fraction collector. The programming experience involves a variety of methods for interface communication, including serial control, analog-to-digital conversion, and…

  3. The software developing method for multichannel computer-aided system for physical experiments control, realized by resources of national instruments LabVIEW instrumental package

    International Nuclear Information System (INIS)

    Gorskaya, E.A.; Samojlov, V.N.

    1999-01-01

    This work is describing the method of developing the computer-aided control system in integrated environment of LabVIEW. Using the object-oriented design of complex systems, the hypothetical model for methods of developing the software for computer-aided system for physical experiments control was constructed. Within the framework of that model architecture solutions and implementations of suggested method were described. (author)

  4. Measuring Instruments Control Methodology Performance for Analog Electronics Remote Labs

    Directory of Open Access Journals (Sweden)

    Unai Hernandez-Jayo

    2012-12-01

    Full Text Available This paper presents the work that has been developed in parallel to the VISIR project. The objective of this paper is to present the results of the validations processes that have been carried out to check the control methodology. This method has been developed with the aim of being independent of the instruments of the labs.

  5. Lab-on-a-Chip Instrument Development for Titan Exploration

    Science.gov (United States)

    Willis, P. A.; Greer, F.; Fisher, A.; Hodyss, R. P.; Grunthaner, F.; Jiao, H.; Mair, D.; Harrison, J.

    2009-12-01

    This contribution will describe the initial stages of a new ASTID-funded research program initiated in Fall 2009 aimed at lab-on-a-chip system development for astrobiological investigations on Titan. This technology development builds off related work at JPL and Berkeley [1-3] on the ultrasensitive compositional and chiral analysis of amino acids on Mars in order to search for signatures of past or present life. The Mars-focused instrument system utilizes a microcapillary electrophoresis (μCE) system integrated with on-chip perfluoropolyether (PFPE) membrane valves and pumps for automated liquid sample handling, on-chip derivitization of samples with fluorescent tags, dilution, and mixing with standards for data calibration. It utilizes a four-layer wafer stack design with CE channels patterned in glass, along with a PFPE membrane, a pneumatic manifold layer, and a fluidic bus layer. Three pneumatically driven on-chip diaphragm valves placed in series are used to peristaltically pump reagents, buffers, and samples to and from capillary electrophoresis electrode well positions. Electrophoretic separation occurs in the all-glass channels near the base of the structure. The Titan specific lab-on-a-chip system under development here focuses its attention on the unique organic chemistry of Titan. In order to chromatographically separate mixtures of neutral organics such as polycyclic aromatic hydrocarbons (PAHs), the Titan-specific microfluidic platform utilizes the related technique of microcapillary electrochromatography (μCEC). This technique differs from conventional μCE in that microchannels are filled with a porous stationary phase that presents surfaces upon which analyte species can adsorb/desorb. It is this additional surface interaction that enables separations of species critical to the understanding of the astrobiological potential of Titan that are not readily separated by the μCE technique. We have developed two different approaches for the integration

  6. Artificial intelligence programming with LabVIEW: genetic algorithms for instrumentation control and optimization.

    Science.gov (United States)

    Moore, J H

    1995-06-01

    A genetic algorithm for instrumentation control and optimization was developed using the LabVIEW graphical programming environment. The usefulness of this methodology for the optimization of a closed loop control instrument is demonstrated with minimal complexity and the programming is presented in detail to facilitate its adaptation to other LabVIEW applications. Closed loop control instruments have variety of applications in the biomedical sciences including the regulation of physiological processes such as blood pressure. The program presented here should provide a useful starting point for those wishing to incorporate genetic algorithm approaches to LabVIEW mediated optimization of closed loop control instruments.

  7. Study on the communication technology of instrument based on LabVIEW

    International Nuclear Information System (INIS)

    Jiang Wei; Lai Qinggui; Zhang Xiaobo

    2012-01-01

    The hardware and software structure of communication of universal instrument is discussed based on LabVIEW, the several realization of remote communication is compared too. In the control and measure system of LIA, using LabVIEW, the communication is realized among the plenty of instruments which have the various interfaces, in this paper the frame of hardware and software about instrument communication is showed. (authors)

  8. The Study on Virtual Medical Instrument based on LabVIEW.

    Science.gov (United States)

    Chengwei, Li; Limei, Zhang; Xiaoming, Hu

    2005-01-01

    With the increasing performance of computer, the virtual instrument technology has greatly advanced over the years, and then virtual medical instrument technology becomes available. This paper presents the virtual medical instrument, and then as an example, an application of a signal acquisition, processing and analysis system using LabVIEW is also given.

  9. LabNotes: A Mobile App for Instrument Control and Data Collection

    Data.gov (United States)

    National Aeronautics and Space Administration — LabNotes is an IPad/IPod software application (app) and low-cost USB connector harness that can be used to operate and collect data from scientific instruments,...

  10. Interfacing LabVIEW With Instrumentation for Electronic Failure Analysis and Beyond

    Science.gov (United States)

    Buchanan, Randy K.; Bryan, Coleman; Ludwig, Larry

    1996-01-01

    The Laboratory Virtual Instrumentation Engineering Workstation (LabVIEW) software is designed such that equipment and processes related to control systems can be operationally lined and controlled by the use of a computer. Various processes within the failure analysis laboratories of NASA's Kennedy Space Center (KSC) demonstrate the need for modernization and, in some cases, automation, using LabVIEW. An examination of procedures and practices with the Failure Analaysis Laboratory resulted in the conclusion that some device was necessary to elevate the potential users of LabVIEW to an operational level in minimum time. This paper outlines the process involved in creating a tutorial application to enable personnel to apply LabVIEW to their specific projects. Suggestions for furthering the extent to which LabVIEW is used are provided in the areas of data acquisition and process control.

  11. Advanced LabVIEW Labs

    International Nuclear Information System (INIS)

    Jones, Eric D.

    1999-01-01

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW to create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in ''G'' a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn ''G''. Without going into details here, ''G'' incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the ''perfect environment in which to

  12. LabVIEW: a software system for data acquisition, data analysis, and instrument control.

    Science.gov (United States)

    Kalkman, C J

    1995-01-01

    Computer-based data acquisition systems play an important role in clinical monitoring and in the development of new monitoring tools. LabVIEW (National Instruments, Austin, TX) is a data acquisition and programming environment that allows flexible acquisition and processing of analog and digital data. The main feature that distinguishes LabVIEW from other data acquisition programs is its highly modular graphical programming language, "G," and a large library of mathematical and statistical functions. The advantage of graphical programming is that the code is flexible, reusable, and self-documenting. Subroutines can be saved in a library and reused without modification in other programs. This dramatically reduces development time and enables researchers to develop or modify their own programs. LabVIEW uses a large amount of processing power and computer memory, thus requiring a powerful computer. A large-screen monitor is desirable when developing larger applications. LabVIEW is excellently suited for testing new monitoring paradigms, analysis algorithms, or user interfaces. The typical LabVIEW user is the researcher who wants to develop a new monitoring technique, a set of new (derived) variables by integrating signals from several existing patient monitors, closed-loop control of a physiological variable, or a physiological simulator.

  13. Development and design of a late-model fitness test instrument based on LabView

    Science.gov (United States)

    Xie, Ying; Wu, Feiqing

    2010-12-01

    Undergraduates are pioneers of China's modernization program and undertake the historic mission of rejuvenating our nation in the 21st century, whose physical fitness is vital. A smart fitness test system can well help them understand their fitness and health conditions, thus they can choose more suitable approaches and make practical plans for exercising according to their own situation. following the future trends, a Late-model fitness test Instrument based on LabView has been designed to remedy defects of today's instruments. The system hardware consists of fives types of sensors with their peripheral circuits, an acquisition card of NI USB-6251 and a computer, while the system software, on the basis of LabView, includes modules of user register, data acquisition, data process and display, and data storage. The system, featured by modularization and an open structure, is able to be revised according to actual needs. Tests results have verified the system's stability and reliability.

  14. Are Statistics Labs Worth the Effort?--Comparison of Introductory Statistics Courses Using Different Teaching Methods

    Directory of Open Access Journals (Sweden)

    Jose H. Guardiola

    2010-01-01

    Full Text Available This paper compares the academic performance of students in three similar elementary statistics courses taught by the same instructor, but with the lab component differing among the three. One course is traditionally taught without a lab component; the second with a lab component using scenarios and an extensive use of technology, but without explicit coordination between lab and lecture; and the third using a lab component with an extensive use of technology that carefully coordinates the lab with the lecture. Extensive use of technology means, in this context, using Minitab software in the lab section, doing homework and quizzes using MyMathlab ©, and emphasizing interpretation of computer output during lectures. Initially, an online instrument based on Gardner’s multiple intelligences theory, is given to students to try to identify students’ learning styles and intelligence types as covariates. An analysis of covariance is performed in order to compare differences in achievement. In this study there is no attempt to measure difference in student performance across the different treatments. The purpose of this study is to find indications of associations among variables that support the claim that statistics labs could be associated with superior academic achievement in one of these three instructional environments. Also, this study tries to identify individual student characteristics that could be associated with superior academic performance. This study did not find evidence of any individual student characteristics that could be associated with superior achievement. The response variable was computed as percentage of correct answers for the three exams during the semester added together. The results of this study indicate a significant difference across these three different instructional methods, showing significantly higher mean scores for the response variable on students taking the lab component that was carefully coordinated with

  15. Development of a Computer-Assisted Instrumentation Curriculum for Physics Students: Using LabVIEW and Arduino Platform

    Science.gov (United States)

    Kuan, Wen-Hsuan; Tseng, Chi-Hung; Chen, Sufen; Wong, Ching-Chang

    2016-01-01

    We propose an integrated curriculum to establish essential abilities of computer programming for the freshmen of a physics department. The implementation of the graphical-based interfaces from Scratch to LabVIEW then to LabVIEW for Arduino in the curriculum "Computer-Assisted Instrumentation in the Design of Physics Laboratories" brings…

  16. ExoGeoLab Pilot Project for Landers, Rovers and Instruments

    Science.gov (United States)

    Foing, Bernard

    2010-05-01

    We have developed a pilot facility with a Robotic Test Bench (ExoGeoLab) and a Mobile Lab Habitat (ExoHab). They can be used to validate concepts and external instruments from partner institutes. The ExoGeoLab research incubator project, has started in the frame of a collaboration between ILEWG (International Lunar Exploration working Group http://sci.esa.int/ilewg), ESTEC, NASA and academic partners, supported by a design and control desk in the European Space Incubator (ESI), as well as infrastructure. ExoGeoLab includes a sequence of technology and research pilot project activities: - Data analysis and interpretation of remote sensing and in-situ data, and merging of multi-scale data sets - Procurement and integration of geophysical, geo-chemical and astrobiological breadboard instruments on a surface station and rovers - Integration of cameras, environment and solar sensors, Visible and near IR spectrometer, Raman spectrometer, sample handling, cooperative rovers - Delivery of a generic small planetary lander demonstrator (ExoGeoLab lander, Sept 2009) as a platform for multi-instruments tests - Research operations and exploitation of ExoGeoLab test bench for various conceptual configurations, and support for definition and design of science surface packages (Moon, Mars, NEOs, outer moons) - Field tests of lander, rovers and instruments in analogue sites (Utah MDRS 2009 & 2010, Eifel volcanic park in Sept 2009, and future campaigns). Co-authors, ILEWG ExoGeoLab & ExoHab Team: B.H. Foing(1,11)*#, C. Stoker(2,11)*, P. Ehrenfreund(10,11), L. Boche-Sauvan(1,11)*, L. Wendt(8)*, C. Gross(8, 11)*, C. Thiel(9)*, S. Peters(1,6)*, A. Borst(1,6)*, J. Zavaleta(2)*, P. Sarrazin(2)*, D. Blake(2), J. Page(1,4,11), V. Pletser(5,11)*, E. Monaghan(1)*, P. Mahapatra(1)#, A. Noroozi(3), P. Giannopoulos(1,11) , A. Calzada(1,6,11), R. Walker(7), T. Zegers(1, 15) #, G. Groemer(12)# , W. Stumptner(12)#, B. Foing(2,5), J. K. Blom(3)#, A. Perrin(14)#, M. Mikolajczak(14)#, S. Chevrier(14

  17. Data acquisition and control using National Instruments' ''LabVIEW'' software

    International Nuclear Information System (INIS)

    Kirkman, I.W.; Buksh, P.A.

    1992-01-01

    Using conventional programming techniques for the production of data acquisition and control software can be a time-consuming procedure, and the code subsequently produced can often be inflexible and rather difficult to modify in the light of changing experimental requirements. A new generation of commercial software products have recently appeared which it is claimed can significantly reduce development times and give rise to more flexible code and improved user interfaces. An example of such a product is National Instruments' ''LabVIEW,'' which presents a novel graphical approach based on Apple Macintosh computer platforms. Extensive use of LabVIEW has been made by the Soft X-ray Group at Daresbury Laboratory over the past two years, and its performance is reported on here. Several examples of experimental arrangements for which it has been used are described, and an evaluation of the product is made

  18. LabVIEW-based control software for para-hydrogen induced polarization instrumentation

    International Nuclear Information System (INIS)

    Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-01-01

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10 000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ( 13 C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (B o ), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of 13 C based endogenous contrast agents used in molecular imaging

  19. LabVIEW-based control software for para-hydrogen induced polarization instrumentation.

    Science.gov (United States)

    Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-04-01

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ((13)C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (Bo), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of (13)C based endogenous contrast agents used in molecular imaging.

  20. [System design of small intellectualized ultrasound hyperthermia instrument in the LabVIEW environment].

    Science.gov (United States)

    Jiang, Feng; Bai, Jingfeng; Chen, Yazhu

    2005-08-01

    Small-scale intellectualized medical instrument has attracted great attention in the field of biomedical engineering, and LabVIEW (Laboratory Virtual Instrument Engineering Workbench) provides a convenient environment for this application due to its inherent advantages. The principle and system structure of the hyperthermia instrument are presented. Type T thermocouples are employed as thermotransducers, whose amplifier consists of two stages, providing built-in ice point compensation and thus improving work stability over temperature. Control signals produced by specially designed circuit drive the programmable counter/timer 8254 chip to generate PWM (Pulse width modulation) wave, which is used as ultrasound radiation energy control signal. Subroutine design topics such as inner-tissue real time feedback temperature control algorithm, water temperature control in the ultrasound applicator are also described. In the cancer tissue temperature control subroutine, the authors exert new improvments to PID (Proportional Integral Differential) algorithm according to the specific demands of the system and achieve strict temperature control to the target tissue region. The system design and PID algorithm improvement have experimentally proved to be reliable and excellent, meeting the requirements of the hyperthermia system.

  1. A LabVIEW-Based Virtual Instrument System for Laser-Induced Fluorescence Spectroscopy.

    Science.gov (United States)

    Wu, Qijun; Wang, Lufei; Zu, Lily

    2011-01-01

    We report the design and operation of a Virtual Instrument (VI) system based on LabVIEW 2009 for laser-induced fluorescence experiments. This system achieves synchronous control of equipment and acquisition of real-time fluorescence data communicating with a single computer via GPIB, USB, RS232, and parallel ports. The reported VI system can also accomplish data display, saving, and analysis, and printing the results. The VI system performs sequences of operations automatically, and this system has been successfully applied to obtain the excitation and dispersion spectra of α-methylnaphthalene. The reported VI system opens up new possibilities for researchers and increases the efficiency and precision of experiments. The design and operation of the VI system are described in detail in this paper, and the advantages that this system can provide are highlighted.

  2. Governing Methods: Policy Innovation Labs, Design and Data Science in the Digital Governance of Education

    Science.gov (United States)

    Williamson, Ben

    2015-01-01

    Policy innovation labs are emerging knowledge actors and technical experts in the governing of education. The article offers a historical and conceptual account of the organisational form of the policy innovation lab. Policy innovation labs are characterised by specific methods and techniques of design, data science, and digitisation in public…

  3. Instrumental methods of analysis, 7th edition

    International Nuclear Information System (INIS)

    Willard, H.H.; Merritt, L.L. Jr.; Dean, J.A.; Settle, F.A. Jr.

    1988-01-01

    The authors have prepared an organized and generally polished product. The book is fashioned to be used as a textbook for an undergraduate instrumental analysis course, a supporting textbook for graduate-level courses, and a general reference work on analytical instrumentation and techniques for professional chemists. Four major areas are emphasized: data collection and processing, spectroscopic instrumentation and methods, liquid and gas chromatographic methods, and electrochemical methods. Analytical instrumentation and methods have been updated, and a thorough citation of pertinent recent literature is included

  4. Pixe method as microanalytical instrument

    International Nuclear Information System (INIS)

    Tabacniks, M.H.

    1986-02-01

    The PIXE method (Particle Induced X-Ray Emission) as analytical method presenting the evolution, the theoretical fundaments, the detection limit, the optimization for operational conditions is evaluated. The applications of the method to air pollution control and aerosol studies in regions such as Antartic, Amazon and other regions are analysed. (M.C.K.) [pt

  5. Developing automated analytical methods for scientific environments using LabVIEW.

    Science.gov (United States)

    Wagner, Christoph; Armenta, Sergio; Lendl, Bernhard

    2010-01-15

    The development of new analytical techniques often requires the building of specially designed devices, each requiring its own dedicated control software. Especially in the research and development phase, LabVIEW has proven to be one highly useful tool for developing this software. Yet, it is still common practice to develop individual solutions for different instruments. In contrast to this, we present here a single LabVIEW-based program that can be directly applied to various analytical tasks without having to change the program code. Driven by a set of simple script commands, it can control a whole range of instruments, from valves and pumps to full-scale spectrometers. Fluid sample (pre-)treatment and separation procedures can thus be flexibly coupled to a wide range of analytical detection methods. Here, the capabilities of the program have been demonstrated by using it for the control of both a sequential injection analysis - capillary electrophoresis (SIA-CE) system with UV detection, and an analytical setup for studying the inhibition of enzymatic reactions using a SIA system with FTIR detection.

  6. Virtual instrumentation of a laboratory synchronous generator with LabVIEW; Instrumentacion virtual de un generador sincrono de laboratorio con LabVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Uribe Fernandez, Uriel

    2003-07-01

    On this work measurement algorithms for variables from a synchronous generator are developed and implemented, in open architecture by means of virtual instrument in real time with the Laboratory Virtual Instrument Engineering Workbench (LabBIEW) that it is a development atmosphere based on the graphic programming. The main program menu of the virtual instrumentation has three options of measurement: The first option is a program that carries out the three phase measurement of: tension RMS, current RMS, magnitude, phase angle, power factor, apparent, active and reactive power and the graphic of these signals. The second option is a program that carries out the measurement of load angle from the synchronous generator. This measurement is made through the Fast Fourier Transformed (FFT), obtaining the voltage terminal, magnitude and phase angle with respect to the rotor position reference. This measurement varies from synchronous generator, operation conditions. The speed angle measurement is obtained from the load angle changes. These measurements are presented in graphic form in the time, with a virtual instrument type needle and in digital form. The range of load angle is +/- 180 degrees. The third option is a program that carries out the measurement of the load angle against active power (curve d-W), from the synchronous machine. [Spanish] En este trabajo se desarrollan e implementan algoritmos de medicion para variables de un generador sincrono, en arquitectura abierta, por medio de la instrumentacion virtual en tiempo real con el uso del Laboratory Virtual Instrument Engineering Workbench (LabVIEW) que es un ambiente de desarrollo basado en la programacion grafica. El programa principal menu de la instrumentacion virtual tiene tres opciones de medicion: La primera opcion es un programa que realiza la medicion trifasica de tension RMS, corriente RMS, magnitud, angulo de fase, factor de potencia, potencia aparente, activa y reactiva, y la graficacion de estas

  7. VolcLab: A balloon-borne instrument package to measure ash, gas, electrical, and turbulence properties of volcanic plumes

    Science.gov (United States)

    Airey, Martin; Harrison, Giles; Nicoll, Keri; Williams, Paul; Marlton, Graeme

    2017-04-01

    Release of volcanic ash into the atmosphere poses a significant hazard to air traffic. Exposure to appreciable concentrations (≥4 mg m-3) of ash can result in engine shutdown, air data system loss, and airframe damage, with sustained lower concentrations potentially causing other long-term detrimental effects [1]. Disruption to flights also has a societal impact. For example, the closure of European airspace following the 2010 eruption of Eyjafjallajökull resulted in global airline industry losses of order £1100 million daily and disruption to 10 million passengers. Accurate and effective measurement of the mass of ash in a volcanic plume along with in situ characterisation of other plume properties such as charge, turbulence, and SO2 concentration can be used in combination with plume dispersion modelling, remote sensing, and more sophisticated flight ban thresholds to mitigate the impact of future events. VolcLab is a disposable instrument package that may be attached to a standard commercial radiosonde, for rapid emergency deployment on a weather balloon platform. The payload includes a newly developed gravimetric sensor using the oscillating microbalance principle to measure mass directly without assumptions about particles' optical properties. The package also includes an SO2 gas detector, an optical sensor to detect ash and cloud backscatter from an LED source [2], a charge sensor to characterise electrical properties of the plume [3], and an accelerometer to measure in-plume turbulence [4]. VolcLab uses the established PANDORA interface [5], to provide data exchange and power from the radiosonde. In addition to the VolcLab measurements, the radiosonde provides standard meteorological data of temperature, pressure, and relative humidity, and GPS location. There are several benefits of using this instrument suite in this design and of using this method of deployment. Firstly, this is an all-in-one device requiring minimal expertise on the part of the end

  8. Virtual Instrument for Determining Rate Constant of Second-Order Reaction by pX Based on LabVIEW 8.0.

    Science.gov (United States)

    Meng, Hu; Li, Jiang-Yuan; Tang, Yong-Huai

    2009-01-01

    The virtual instrument system based on LabVIEW 8.0 for ion analyzer which can measure and analyze ion concentrations in solution is developed and comprises homemade conditioning circuit, data acquiring board, and computer. It can calibrate slope, temperature, and positioning automatically. When applied to determine the reaction rate constant by pX, it achieved live acquiring, real-time displaying, automatical processing of testing data, generating the report of results; and other functions. This method simplifies the experimental operation greatly, avoids complicated procedures of manual processing data and personal error, and improves veracity and repeatability of the experiment results.

  9. Domain Adaptation Methods for Improving Lab-to-field Generalization of Cocaine Detection using Wearable ECG

    Science.gov (United States)

    Natarajan, Annamalai; Angarita, Gustavo; Gaiser, Edward; Malison, Robert; Ganesan, Deepak; Marlin, Benjamin M.

    2016-01-01

    Mobile health research on illicit drug use detection typically involves a two-stage study design where data to learn detectors is first collected in lab-based trials, followed by a deployment to subjects in a free-living environment to assess detector performance. While recent work has demonstrated the feasibility of wearable sensors for illicit drug use detection in the lab setting, several key problems can limit lab-to-field generalization performance. For example, lab-based data collection often has low ecological validity, the ground-truth event labels collected in the lab may not be available at the same level of temporal granularity in the field, and there can be significant variability between subjects. In this paper, we present domain adaptation methods for assessing and mitigating potential sources of performance loss in lab-to-field generalization and apply them to the problem of cocaine use detection from wearable electrocardiogram sensor data. PMID:28090605

  10. Using National Instruments LabVIEW[TM] Education Edition in Schools

    Science.gov (United States)

    Butlin, Chris A.

    2011-01-01

    With the development of LabVIEW[TM] Education Edition schools can now provide experience of using this widely used software. Here, a few of the many applications that students aged around 11 years and over could develop are outlined in the resulting front panel screen displays and block diagrams showing the associated graphical programmes, plus a…

  11. Highly stable single-crystal LaB6 cathode for conventional electron microprobe instruments

    International Nuclear Information System (INIS)

    Shimizu, R.; Shinike, T.; Ichimura, S.; Kawaii, S.; Tanaka, T.

    1978-01-01

    The performance of single-crystal LaB 6 cathode was examined by measuring the brightness and current stability under the same conditions as for the conventional W hairpin cathode. The LaB 6 cathode was mounted in Vogel-type electron gun assembly of an electron probe microanalyser JAX-3 specifically modified for this purpose. The result shows that the present LaB 6 cathode provides not only high brightness of 2 x 10 5 A/cm 2 str. at 20 kV, but also high-current stability better than 1 x 10 - 3 Ah - 1 in standard operation without any specific aid for current stabilization. Thus an order of magnitude increase in both the brightness and service lifetime can easily be obtained provided that the vacuum of the system is adequate, namely better than 1 x 10 - 5 Torr (1.33 x 10 - 3 Pa). This substantial improvement of the present single-crystal LaB 6 cathode over the conventional W hairpin was also confirmed in a practical way by use in a commercial-type scanning Auger electron microscope, JAMP III

  12. CSIR Nyendaweb: embedded measuring instrument of the CSIR ITS Lab® collaboratory

    CSIR Research Space (South Africa)

    Labuschangne, FJJ

    2009-05-01

    Full Text Available The paper describes the NyendaWeb technical development concept, the role of NyendaWeb within the ITS Lab collaboratory® as an international ITS R&D platform, and how the inherent, unobtrusive and 24/7 measurement functionality of NyendaWeb...

  13. Computational and instrumental methods in EPR

    CERN Document Server

    Bender, Christopher J

    2006-01-01

    Computational and Instrumental Methods in EPR Prof. Bender, Fordham University Prof. Lawrence J. Berliner, University of Denver Electron magnetic resonance has been greatly facilitated by the introduction of advances in instrumentation and better computational tools, such as the increasingly widespread use of the density matrix formalism. This volume is devoted to both instrumentation and computation aspects of EPR, while addressing applications such as spin relaxation time measurements, the measurement of hyperfine interaction parameters, and the recovery of Mn(II) spin Hamiltonian parameters via spectral simulation. Key features: Microwave Amplitude Modulation Technique to Measure Spin-Lattice (T1) and Spin-Spin (T2) Relaxation Times Improvement in the Measurement of Spin-Lattice Relaxation Time in Electron Paramagnetic Resonance Quantitative Measurement of Magnetic Hyperfine Parameters and the Physical Organic Chemistry of Supramolecular Systems New Methods of Simulation of Mn(II) EPR Spectra: Single Cryst...

  14. Instrument design optimization with computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Michael H. [Old Dominion Univ., Norfolk, VA (United States)

    2017-08-01

    Using Finite Element Analysis to approximate the solution of differential equations, two different instruments in experimental Hall C at the Thomas Jefferson National Accelerator Facility are analyzed. The time dependence of density uctuations from the liquid hydrogen (LH2) target used in the Qweak experiment (2011-2012) are studied with Computational Fluid Dynamics (CFD) and the simulation results compared to data from the experiment. The 2.5 kW liquid hydrogen target was the highest power LH2 target in the world and the first to be designed with CFD at Jefferson Lab. The first complete magnetic field simulation of the Super High Momentum Spectrometer (SHMS) is presented with a focus on primary electron beam deflection downstream of the target. The SHMS consists of a superconducting horizontal bending magnet (HB) and three superconducting quadrupole magnets. The HB allows particles scattered at an angle of 5:5 deg to the beam line to be steered into the quadrupole magnets which make up the optics of the spectrometer. Without mitigation, remnant fields from the SHMS may steer the unscattered beam outside of the acceptable envelope on the beam dump and limit beam operations at small scattering angles. A solution is proposed using optimal placement of a minimal amount of shielding iron around the beam line.

  15. Data Acquisition Programming (LabVIEW): An Aid to Teaching Instrumental Analytical Chemistry.

    Science.gov (United States)

    Gostowski, Rudy

    A course was developed at Austin Peay State University (Tennessee) which offered an opportunity for hands-on experience with the essential components of modern analytical instruments. The course aimed to provide college students with the skills necessary to construct a simple model instrument, including the design and fabrication of electronic…

  16. A Method for Modeling the Virtual Instrument Automatic Test System Based on the Petri Net

    Institute of Scientific and Technical Information of China (English)

    MA Min; CHEN Guang-ju

    2005-01-01

    Virtual instrument is playing the important role in automatic test system. This paper introduces a composition of a virtual instrument automatic test system and takes the VXIbus based a test software platform which is developed by CAT lab of the UESTC as an example. Then a method to model this system based on Petri net is proposed. Through this method, we can analyze the test task scheduling to prevent the deadlock or resources conflict. At last, this paper analyzes the feasibility of this method.

  17. Instrumentation and quantitative methods of evaluation

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.D.

    1991-01-01

    This report summarizes goals and accomplishments of the research program entitled Instrumentation and Quantitative Methods of Evaluation, during the period January 15, 1989 through July 15, 1991. This program is very closely integrated with the radiopharmaceutical program entitled Quantitative Studies in Radiopharmaceutical Science. Together, they constitute the PROGRAM OF NUCLEAR MEDICINE AND QUANTITATIVE IMAGING RESEARCH within The Franklin McLean Memorial Research Institute (FMI). The program addresses problems involving the basic science and technology that underlie the physical and conceptual tools of radiotracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 234 refs., 11 figs., 2 tabs

  18. Design of LabVIEW®-based software for the control of sequential injection analysis instrumentation for the determination of morphine

    Science.gov (United States)

    Lenehan, Claire E.; Lewis, Simon W.

    2002-01-01

    LabVIEW®-based software for the automation of a sequential injection analysis instrument for the determination of morphine is presented. Detection was based on its chemiluminescence reaction with acidic potassium permanganate in the presence of sodium polyphosphate. The calibration function approximated linearity (range 5 × 10-10 to 5 × 10-6 M) with a line of best fit of y=1.05x+8.9164 (R2 =0.9959), where y is the log10 signal (mV) and x is the log10 morphine concentration (M). Precision, as measured by relative standard deviation, was 0.7% for five replicate analyses of morphine standard (5 × 10-8 M). The limit of detection (3σ) was determined as 5 × 10-11 M morphine. PMID:18924729

  19. LabVIEW 2010 Computer Vision Platform Based Virtual Instrument and Its Application for Pitting Corrosion Study.

    Science.gov (United States)

    Ramos, Rogelio; Zlatev, Roumen; Valdez, Benjamin; Stoytcheva, Margarita; Carrillo, Mónica; García, Juan-Francisco

    2013-01-01

    A virtual instrumentation (VI) system called VI localized corrosion image analyzer (LCIA) based on LabVIEW 2010 was developed allowing rapid automatic and subjective error-free determination of the pits number on large sized corroded specimens. The VI LCIA controls synchronously the digital microscope image taking and its analysis, finally resulting in a map file containing the coordinates of the detected probable pits containing zones on the investigated specimen. The pits area, traverse length, and density are also determined by the VI using binary large objects (blobs) analysis. The resulting map file can be used further by a scanning vibrating electrode technique (SVET) system for rapid (one pass) "true/false" SVET check of the probable zones only passing through the pit's centers avoiding thus the entire specimen scan. A complete SVET scan over the already proved "true" zones could determine the corrosion rate in any of the zones.

  20. Design of LabVIEW-based software for the control of sequential injection analysis instrumentation for the determination of morphine.

    Science.gov (United States)

    Lenehan, Claire E; Barnett, Neil W; Lewis, Simon W

    2002-01-01

    LabVIEW-based software for the automation of a sequential injection analysis instrument for the determination of morphine is presented. Detection was based on its chemiluminescence reaction with acidic potassium permanganate in the presence of sodium polyphosphate. The calibration function approximated linearity (range 5 x 10(-10) to 5 x 10(-6) M) with a line of best fit of y=1.05(x)+8.9164 (R(2) =0.9959), where y is the log10 signal (mV) and x is the log10 morphine concentration (M). Precision, as measured by relative standard deviation, was 0.7% for five replicate analyses of morphine standard (5 x 10(-8) M). The limit of detection (3sigma) was determined as 5 x 10(-11) M morphine.

  1. Analytical chromatography. Methods, instrumentation and applications

    International Nuclear Information System (INIS)

    Yashin, Ya I; Yashin, A Ya

    2006-01-01

    The state-of-the-art and the prospects in the development of main methods of analytical chromatography, viz., gas, high performance liquid and ion chromatographic techniques, are characterised. Achievements of the past 10-15 years in the theory and general methodology of chromatography and also in the development of new sorbents, columns and chromatographic instruments are outlined. The use of chromatography in the environmental control, biology, medicine, pharmaceutics, and also for monitoring the quality of foodstuffs and products of chemical, petrochemical and gas industries, etc. is considered.

  2. Catalytic arylation methods from the academic lab to industrial processes

    CERN Document Server

    Burke, Anthony J

    2014-01-01

    This "hands-on" approach to the topic of arylation consolidates the body of key research over the last ten years (and up to around 2014) on various catalytic methods which involve an arylation process. Clearly structured, the chapters in this one-stop resource are arranged according to the reaction type, and focus on novel, efficient and sustainable processes, rather than the well-known and established cross-coupling methods. The entire contents are written by two authors with academic and industrial expertise to ensure consistent coverage of the latest developments in the field, as well as industrial applications, such as C-H activation, iron and gold-catalyzed coupling reactions, cycloadditions or novel methodologies using arylboron reagents. A cross-section of relevant tried-and-tested experimental protocols is included at the end of each chapter for putting into immediate practice, along with patent literature. Due to its emphasis on efficient, "green" methods and industrial applications of the products c...

  3. Method of decontaminating radioactive-contaminated instruments

    International Nuclear Information System (INIS)

    Urata, Megumu; Fujii, Masaaki; Kitaguchi, Hiroshi.

    1982-01-01

    Purpose: To enable safety processing of liquid wastes by recovering radioactive metal ions remaining in the electrolytes after the decontamination procedure thereby decreasing the radioactivity. Method: In a decontamination tank containing electrolytes consisting of diluted hydrochloric acid and diluted sulfuric acid, are provided a radioactive contaminated instrument connected to an anode and a collector electrode made of stainless steel connected to a cathode respectively. Upon applying electrical current, the portion of the mother material to be decontaminated is polished electrolytically into metal ions and they are deposited as metal on the collection electrode. After completion of the decontamination, an ultrasonic wave generator is operated to strip and remove the oxide films. Thereafter, the anode is replaced with the carbon electrode and electrical current is supplied continuously, whereby the remaining metal ions are deposited and recovered as the metal on the collection electrode. (Yoshino, Y.)

  4. Method of decontaminating radioactive-contaminated instruments

    Energy Technology Data Exchange (ETDEWEB)

    Urata, M; Fujii, M; Kitaguchi, H

    1982-03-29

    Purpose: To enable safety processing of liquid wastes by recovering radioactive metal ions remaining in the electrolytes after the decontamination procedure thereby decreasing the radioactivity. Method: In a decontamination tank containing electrolytes consisting of diluted hydrochloric acid and diluted sulfuric acid, are provided a radioactive contaminated instrument connected to an anode and a collector electrode made of stainless steel connected to a cathode respectively. Upon applying electrical current, the portion of the mother material to be decontaminated is polished electrolytically into metal ions and they are deposited as metal on the collection electrode. After completion of the decontamination, an ultrasonic wave generator is operated to strip and remove the oxide films. Thereafter, the anode is replaced with the carbon electrode and electrical current is supplied continuously, whereby the remaining metal ions are deposited and recovered as the metal on the collection electrode.

  5. BioLab: Using Yeast Fermentation as a Model for the Scientific Method.

    Science.gov (United States)

    Pigage, Helen K.; Neilson, Milton C.; Greeder, Michele M.

    This document presents a science experiment demonstrating the scientific method. The experiment consists of testing the fermentation capabilities of yeasts under different circumstances. The experiment is supported with computer software called BioLab which demonstrates yeast's response to different environments. (YDS)

  6. Online Statistics Labs in MSW Research Methods Courses: Reducing Reluctance toward Statistics

    Science.gov (United States)

    Elliott, William; Choi, Eunhee; Friedline, Terri

    2013-01-01

    This article presents results from an evaluation of an online statistics lab as part of a foundations research methods course for master's-level social work students. The article discusses factors that contribute to an environment in social work that fosters attitudes of reluctance toward learning and teaching statistics in research methods…

  7. Of Mice and Meth: A New Media-Based Neuropsychopharmacology Lab to Teach Research Methods

    Science.gov (United States)

    Hatch, Daniel L.; Zschau, Tony; Hays, Arthur; McAllister, Kristin; Harrison, Michelle; Cate, Kelly L.; Shanks, Ryan A.; Lloyd, Steven A.

    2014-01-01

    This article describes an innovative neuropsychopharmacology laboratory that can be incorporated into any research methods class. The lab consists of a set of interconnected modules centered on observations of methamphetamine-induced behavioral changes in mice and is designed to provide students with an opportunity to acquire basic skills…

  8. Research on distributed optical fiber sensing data processing method based on LabVIEW

    Science.gov (United States)

    Li, Zhonghu; Yang, Meifang; Wang, Luling; Wang, Jinming; Yan, Junhong; Zuo, Jing

    2018-01-01

    The pipeline leak detection and leak location problem have gotten extensive attention in the industry. In this paper, the distributed optical fiber sensing system is designed based on the heat supply pipeline. The data processing method of distributed optical fiber sensing based on LabVIEW is studied emphatically. The hardware system includes laser, sensing optical fiber, wavelength division multiplexer, photoelectric detector, data acquisition card and computer etc. The software system is developed using LabVIEW. The software system adopts wavelet denoising method to deal with the temperature information, which improved the SNR. By extracting the characteristic value of the fiber temperature information, the system can realize the functions of temperature measurement, leak location and measurement signal storage and inquiry etc. Compared with traditional negative pressure wave method or acoustic signal method, the distributed optical fiber temperature measuring system can measure several temperatures in one measurement and locate the leak point accurately. It has a broad application prospect.

  9. Instrumental neutron activation analysis - a routine method

    International Nuclear Information System (INIS)

    Bruin, M. de.

    1983-01-01

    This thesis describes the way in which at IRI instrumental neutron activation analysis (INAA) has been developed into an automated system for routine analysis. The basis of this work are 20 publications describing the development of INAA since 1968. (Auth.)

  10. Cleaning and shaping curved root canals: Mtwo® vs ProTaper® instruments, a lab comparison

    Directory of Open Access Journals (Sweden)

    Kuzekanani Maryam

    2009-01-01

    Full Text Available Objectives: The purpose of this study was to compare root canal preparation in curved canals in molar teeth with the rotary NiTi Mtwo and ProTaper systems in terms of canal shape and smear layer. Materials and Methods: Mesiobuccal canals of 60 molar teeth with angles of curvature between 25 and 35 degrees were prepared with a torque controlled low speed engine; 30 canals for each system. Each individual instrument was used to prepare four root canals and the time required for preparation was recorded. Standardized radiographs were taken before and following instrumentation and used to determine changes in canal curvature. Results: There was no significant difference in preparation time between the two systems. No instruments separated during use. The Mtwo system gave a statistically smaller change in canal curvature and thus was better for maintaining the original shape of the root canal, with less transportation (P less than 0.05. The greatest difference was seen for maxillary molar teeth. When prepared root canals were examined by SEM there was no difference between the two systems at the coronal, middle or apical thirds. Conclusion: Overall, the results of this study suggest that Mtwo instruments are preferable for situations where canals are curved, particularly for maxillary molars.

  11. Pre-bent instruments used in single-port laparoscopic surgery versus conventional laparoscopic surgery: comparative study of performance in a dry lab.

    Science.gov (United States)

    Miernik, Arkadiusz; Schoenthaler, Martin; Lilienthal, Kerstin; Frankenschmidt, Alexander; Karcz, Wojciech Konrad; Kuesters, Simon

    2012-07-01

    Different types of single-incision laparoscopic surgery (SILS) have become increasingly popular. Although SILS is technically even more challenging than conventional laparoscopy, published data of first clinical series seem to demonstrate the feasibility of these approaches. Various attempts have been made to overcome restrictions due to loss of triangulation in SILS by specially designed SILS-specific instruments. This study involving novices in a dry lab compared task performances between conventional laparoscopic surgery (CLS) and single-port laparoscopic surgery (SPLS) using newly designed pre-bent instruments. In this study, 90 medical students without previous experience in laparoscopic techniques were randomly assigned to undergo one of three procedures: CLS, SPLS using two pre-bent instruments (SPLS-pp), or SPLS using one pre-bent and one straight laparoscopic instrument (SPLS-ps). In the dry lab, the participants performed four typical laparoscopic tasks of increasing difficulty. Evaluation included performance times or number of completed tasks within a given time frame. All performances were videotaped and evaluated for unsuccessful attempts and unwanted interactions of instruments. Using subjective questionnaires, the participants rated difficulties with two-dimensional vision and coordination of instruments. Task performances were significantly better in the CLS group than in either SPLS group. The SPLS-ps group showed a tendency toward better performances than the SPLS-pp group, but the difference was not significant. Video sequences and participants` questionnaires showed instrument interaction as the major problem in the single-incision surgery groups. Although SILS is feasible, as shown in clinical series published by laparoscopically experienced experts, SILS techniques are demanding due to restrictions that come with the loss of triangulation. These can be compensated only partially by currently available SILS-designed instruments. The future of

  12. Modern Instrumental Methods in Forensic Toxicology*

    Science.gov (United States)

    Smith, Michael L.; Vorce, Shawn P.; Holler, Justin M.; Shimomura, Eric; Magluilo, Joe; Jacobs, Aaron J.; Huestis, Marilyn A.

    2009-01-01

    This article reviews modern analytical instrumentation in forensic toxicology for identification and quantification of drugs and toxins in biological fluids and tissues. A brief description of the theory and inherent strengths and limitations of each methodology is included. The focus is on new technologies that address current analytical limitations. A goal of this review is to encourage innovations to improve our technological capabilities and to encourage use of these analytical techniques in forensic toxicology practice. PMID:17579968

  13. Improved GLR method to instrument failure detection

    International Nuclear Information System (INIS)

    Jeong, Hak Yeoung; Chang, Soon Heung

    1985-01-01

    The generalized likehood radio(GLR) method performs statistical tests on the innovations sequence of a Kalman-Buchy filter state estimator for system failure detection and its identification. However, the major drawback of the convensional GLR is to hypothesize particular failure type in each case. In this paper, a method to solve this drawback is proposed. The improved GLR method is applied to a PWR pressurizer and gives successful results in detection and identification of any failure. Furthmore, some benefit on the processing time per each cycle of failure detection and its identification can be accompanied. (Author)

  14. Domain Adaptation Methods for Improving Lab-to-field Generalization of Cocaine Detection using Wearable ECG

    OpenAIRE

    Natarajan, Annamalai; Angarita, Gustavo; Gaiser, Edward; Malison, Robert; Ganesan, Deepak; Marlin, Benjamin M.

    2016-01-01

    Mobile health research on illicit drug use detection typically involves a two-stage study design where data to learn detectors is first collected in lab-based trials, followed by a deployment to subjects in a free-living environment to assess detector performance. While recent work has demonstrated the feasibility of wearable sensors for illicit drug use detection in the lab setting, several key problems can limit lab-to-field generalization performance. For example, lab-based data collection...

  15. Radioactive standards and calibration methods for contamination monitoring instruments

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-06-01

    Contamination monitoring in the facilities for handling unsealed radioactive materials is one of the most important procedures for radiation protection as well as radiation dose monitoring. For implementation of the proper contamination monitoring, radiation measuring instruments should not only be suitable to the purpose of monitoring, but also be well calibrated for the objective qualities of measurement. In the calibration of contamination monitoring instruments, quality reference activities need to be used. They are supplied in different such as extended sources, radioactive solutions or radioactive gases. These reference activities must be traceable to the national standards or equivalent standards. On the other hand, the appropriate calibration methods must be applied for each type of contamination monitoring instruments. In this paper, the concepts of calibration for contamination monitoring instruments, reference sources, determination methods of reference quantities and practical calibration methods of contamination monitoring instruments, including the procedures carried out in Japan Atomic Energy Research Institute and some relevant experimental data. (G.K.)

  16. Application of Instrumented Charpy Method in Characterisation of Materials

    OpenAIRE

    Alar, Željko; Mandić, Davor; Dugorepec, Andrija; Sakoman, Matija

    2015-01-01

    Testing of absorbed impact energy according to the Charpy method is carried out to determine the behaviour of a material under the impact load. Instrumented Charpy method allows getting the force displacement curve through the entire test, That curve can be related to force-displacement curve which is obtained by the static tensile test. The purpose of this study was to compare the results of forces obtained by the static tensile test with the forces obtained by the instrumented Charpy method...

  17. Desarrollo de un controlador para motores DC brushless basado en CompactRIO y LabVIEW de National Instruments para el estudio de nuevos algoritmos de control

    OpenAIRE

    García Haro, Juan Miguel

    2011-01-01

    Este proyecto que el CAR inició hace pocos años tiene como objetivo principal el estudio y desarrollo de nuevas tecnologías en el campo de actuación y control automático, que servirá de base para otras futuras investigaciones dentro del centro. La tecnología a la que se hace mención se refiere al control de actuadores basados en motores DC brushless (BLDC Motors) empleando el sistema de hardware embebido CompactRIO y programación LabVIEW de National Instruments. Tradicionalmente se emplea en ...

  18. Turbidity threshold sampling: Methods and instrumentation

    Science.gov (United States)

    Rand Eads; Jack Lewis

    2001-01-01

    Traditional methods for determining the frequency of suspended sediment sample collection often rely on measurements, such as water discharge, that are not well correlated to sediment concentration. Stream power is generally not a good predictor of sediment concentration for rivers that transport the bulk of their load as fines, due to the highly variable routing of...

  19. Analytical techniques for instrument design - matrix methods

    International Nuclear Information System (INIS)

    Robinson, R.A.

    1997-01-01

    We take the traditional Cooper-Nathans approach, as has been applied for many years for steady-state triple-axis spectrometers, and consider its generalisation to other inelastic scattering spectrometers. This involves a number of simple manipulations of exponentials of quadratic forms. In particular, we discuss a toolbox of matrix manipulations that can be performed on the 6- dimensional Cooper-Nathans matrix: diagonalisation (Moller-Nielsen method), coordinate changes e.g. from (Δk I ,Δk F to ΔE, ΔQ ampersand 2 dummy variables), integration of one or more variables (e.g. over such dummy variables), integration subject to linear constraints (e.g. Bragg's Law for analysers), inversion to give the variance-covariance matrix, and so on. We show how these tools can be combined to solve a number of important problems, within the narrow-band limit and the gaussian approximation. We will argue that a generalised program that can handle multiple different spectrometers could (and should) be written in parallel to the Monte-Carlo packages that are becoming available. We will also discuss the complementarity between detailed Monte-Carlo calculations and the approach presented here. In particular, Monte-Carlo methods traditionally simulate the real experiment as performed in practice, given a model scattering law, while the Cooper-Nathans method asks the inverse question: given that a neutron turns up in a particular spectrometer configuration (e.g. angle and time of flight), what is the probability distribution of possible scattering events at the sample? The Monte-Carlo approach could be applied in the same spirit to this question

  20. Methods and instrumentation for positron emission tomography

    International Nuclear Information System (INIS)

    Mandelkern, M.A.; Phelps, M.E.

    1988-01-01

    This paper reports on positron emission tomography (PET), a technique for the noninvasive measurement of local tissue concentrations of injected radioactive tracers. Tracer kinetics techniques can be applied to this information to quantify physiologic function in human tissue. In the tracer method, a pharmaceutical is labeled by a radioactive atom. When introduced into the subject that molecule follows a physiologic pathway. The space- and time-dependent distribution of the radionuclide is obtained via an imaging technique. If the radiopharmaceutical is sufficiently analogous to a natural substrate or other substance of interest, a quantitative image can be translated into a physiologic measurement

  1. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  2. Analytical techniques for instrument design - Matrix methods

    International Nuclear Information System (INIS)

    Robinson, R.A.

    1997-01-01

    The authors take the traditional Cooper-Nathans approach, as has been applied for many years for steady-state triple-axis spectrometers, and consider its generalization to other inelastic scattering spectrometers. This involves a number of simple manipulations of exponentials of quadratic forms. In particular, they discuss a toolbox of matrix manipulations that can be performed on the 6-dimensional Cooper-Nathans matrix. They show how these tools can be combined to solve a number of important problems, within the narrow-band limit and the gaussian approximation. They will argue that a generalized program that can handle multiple different spectrometers could (and should) be written in parallel to the Monte-Carlo packages that are becoming available. They also discuss the complementarity between detailed Monte-Carlo calculations and the approach presented here. In particular, Monte-Carlo methods traditionally simulate the real experiment as performed in practice, given a model scattering law, while the Cooper-Nathans method asks the inverse question: given that a neutron turns up in a particular spectrometer configuration (e.g. angle and time of flight), what is the probability distribution of possible scattering events at the sample? The Monte-Carlo approach could be applied in the same spirit to this question

  3. Method to deterministically study photonic nanostructures in different experimental instruments

    NARCIS (Netherlands)

    Husken, B.H.; Woldering, L.A.; Blum, Christian; Tjerkstra, R.W.; Vos, Willem L.

    2009-01-01

    We describe an experimental method to recover a single, deterministically fabricated nanostructure in various experimental instruments without the use of artificially fabricated markers, with the aim to study photonic structures. Therefore, a detailed map of the spatial surroundings of the

  4. Method and apparatus for continuous fluid leak monitoring and detection in analytical instruments and instrument systems

    Science.gov (United States)

    Weitz, Karl K [Pasco, WA; Moore, Ronald J [West Richland, WA

    2010-07-13

    A method and device are disclosed that provide for detection of fluid leaks in analytical instruments and instrument systems. The leak detection device includes a collection tube, a fluid absorbing material, and a circuit that electrically couples to an indicator device. When assembled, the leak detection device detects and monitors for fluid leaks, providing a preselected response in conjunction with the indicator device when contacted by a fluid.

  5. Advanced Measuring (Instrumentation Methods for Nuclear Installations: A Review

    Directory of Open Access Journals (Sweden)

    Wang Qiu-kuan

    2012-01-01

    Full Text Available The nuclear technology has been widely used in the world. The research of measurement in nuclear installations involves many aspects, such as nuclear reactors, nuclear fuel cycle, safety and security, nuclear accident, after action, analysis, and environmental applications. In last decades, many advanced measuring devices and techniques have been widely applied in nuclear installations. This paper mainly introduces the development of the measuring (instrumentation methods for nuclear installations and the applications of these instruments and methods.

  6. Falsification Testing of Instrumental Variables Methods for Comparative Effectiveness Research.

    Science.gov (United States)

    Pizer, Steven D

    2016-04-01

    To demonstrate how falsification tests can be used to evaluate instrumental variables methods applicable to a wide variety of comparative effectiveness research questions. Brief conceptual review of instrumental variables and falsification testing principles and techniques accompanied by an empirical application. Sample STATA code related to the empirical application is provided in the Appendix. Comparative long-term risks of sulfonylureas and thiazolidinediones for management of type 2 diabetes. Outcomes include mortality and hospitalization for an ambulatory care-sensitive condition. Prescribing pattern variations are used as instrumental variables. Falsification testing is an easily computed and powerful way to evaluate the validity of the key assumption underlying instrumental variables analysis. If falsification tests are used, instrumental variables techniques can help answer a multitude of important clinical questions. © Health Research and Educational Trust.

  7. Repairing method of color TV with measuring instrument

    International Nuclear Information System (INIS)

    1996-01-01

    This book concentrates on repairing method of color TV with measuring instrument, which deals with direction and sorts of measuring instrument for service, application and basic technique of an oscilloscope and a synchroscope, constituent of TV and wave reading, everything for test skill for service man, service technique by electronic voltmeter, service technique by sweep generator and maker generator, dot-bar generator and support skill for color TV and color bar generator and application technology of color circuit.

  8. Instrumentation

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.G.

    1982-01-01

    This chapter reviews the parameters which are important to positron-imaging instruments. It summarizes the options which various groups have explored in designing tomographs and the methods which have been developed to overcome some of the limitations inherent in the technique as well as in present instruments. The chapter is not presented as a defense of positron imaging versus single-photon or other imaging modality, neither does it contain a description of various existing instruments, but rather stresses their common properties and problems. Design parameters which are considered are resolution, sampling requirements, sensitivity, methods of eliminating scattered radiation, random coincidences and attenuation. The implementation of these parameters is considered, with special reference to sampling, choice of detector material, detector ring diameter and shielding and variations in point spread function. Quantitation problems discussed are normalization, and attenuation and random corrections. Present developments mentioned are noise reduction through time-of-flight-assisted tomography and signal to noise improvements through high intrinsic resolution. Extensive bibliography. (U.K.)

  9. A Mixed Methods Portrait of Urban Instrumental Music Teaching

    Science.gov (United States)

    Fitzpatrick, Kate R.

    2011-01-01

    The purpose of this mixed methods study was to learn about the ways that instrumental music teachers in Chicago navigated the urban landscape. The design of the study most closely resembles Creswell and Plano Clark's (2007) two-part Triangulation Convergence Mixed Methods Design, with the addition of an initial exploratory focus group component.…

  10. Application of Instrumented Charpy Method in Characterisation of Materials

    Directory of Open Access Journals (Sweden)

    Željko Alar

    2015-07-01

    Full Text Available Testing of absorbed impact energy according to the Charpy method is carried out to determine the behaviour of a material under the impact load. Instrumented Charpy method allows getting the force displacement curve through the entire test, That curve can be related to force-displacement curve which is obtained by the static tensile test. The purpose of this study was to compare the results of forces obtained by the static tensile test with the forces obtained by the instrumented Charpy method. Experimental part of the work contains testing of the mechanical properties of S275J0 steel by the static tensile test and Impact test on instrumented Charpy pendulum.

  11. Vision Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Vision Lab personnel perform research, development, testing and evaluation of eye protection and vision performance. The lab maintains and continues to develop...

  12. A lab-on-phone instrument with varifocal microscope via a liquid-actuated aspheric lens (LAL)

    Science.gov (United States)

    Fuh, Yiin-Kuen; Lai, Zheng-Hong; Kau, Li-Han; Huang, Hung-Jui

    2017-01-01

    In this paper, we introduce a novel concept of liquid-actuated aspheric lens (LAL) with a built-in aspheric polydimethylsiloxane lens (APL) to enable the design of compact optical systems with varifocal microscopic imaging. The varifocal lens module consists of a sandwiched structures such as 3d printed syringe pump functionally serves as liquid controller. Other key components include two acrylic cylinders, a rigid separator, a APL/membrane composite (APLMC) embedded PDMS membrane. In functional operation, the fluidic controller was driven to control the pressure difference and ALPMC deformation. The focal length can be changed through the pressure difference. This is achieved by the adjustment of volume change of injected liquid such that a widely tunable focal length. The proposed LAL can transform to 3 modes: microscopic mode (APLMC only), convex-concave mode and biconcave mode. It is noticeable that LAL in the operation of microscopic mode is tunable in focus via the actuation of APLMC (focal length is from 4.3 to 2.3 mm and magnification 50X) and can rival the images quality of commercial microscopes. A new lab-on-phone device is economically feasible and functionally versatile to offer a great potential in the point of care applications. PMID:28650971

  13. Revisiting "No Easy Answers": Application of Sally Smith's Methods in the Lab School of Washington High School Program

    Science.gov (United States)

    Reynolds, Meredith

    2010-01-01

    The first edition of "No Easy Answers" (Smith, 1995) was published in 1979, thirty years ago. That seminal work is as relevant today as it was when the book first appeared. This article provides a description of how Sally Smith's Academic Club Method is implemented in the High School program of The Lab School of Washington.

  14. Feature selection and data sampling methods for learning reputation dimensions: The University of Amsterdam at RepLab 2014

    NARCIS (Netherlands)

    Gârbacea, C.; Tsagkias, M.; de Rijke, M.

    2014-01-01

    We report on our participation in the reputation dimension task of the CLEF RepLab 2014 evaluation initiative, i.e., to classify social media updates into eight predefined categories. We address the task by using corpus-based methods to extract textual features from the labeled training data to

  15. Performance evaluation methods and instrumentation for mine ventilation fans

    Institute of Scientific and Technical Information of China (English)

    LI Man; WANG Xue-rong

    2009-01-01

    Ventilation fans are one of the most important pieces of equipment in coal mines. Their performance plays an important role in the safety of staff and production. Given the actual requirements of coal mine production, we instituted a research project on the measurement methods of key performance parameters such as wind pressure, amount of ventilation and power. At the end a virtual instrument for mine ventilation fans performance evaluation was developed using a USB interface. The practical perform-ance and analytical results of our experiments show that it is feasible, reliable and effective to use the proposed instrumentation for mine ventilation performance evaluation.

  16. Instrumentation and measurement method for the ATLAS test facility

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Byong Jo; Chu, In Chul; Eu, Dong Jin; Kang, Kyong Ho; Kim, Yeon Sik; Song, Chul Hwa; Baek, Won Pil

    2007-03-15

    An integral effect test loop for pressurized water reactors (PWRs), the ATLAS is constructed by thermal-hydraulic safety research division in KAERI. The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400 which is a Korean evolution type nuclear reactors. A total 1300 instrumentations is equipped in the ATLAS test facility. In this report, the instrumentation of ATLAS test facility and related measurement methods were introduced.

  17. Instrumental variable methods in comparative safety and effectiveness research.

    Science.gov (United States)

    Brookhart, M Alan; Rassen, Jeremy A; Schneeweiss, Sebastian

    2010-06-01

    Instrumental variable (IV) methods have been proposed as a potential approach to the common problem of uncontrolled confounding in comparative studies of medical interventions, but IV methods are unfamiliar to many researchers. The goal of this article is to provide a non-technical, practical introduction to IV methods for comparative safety and effectiveness research. We outline the principles and basic assumptions necessary for valid IV estimation, discuss how to interpret the results of an IV study, provide a review of instruments that have been used in comparative effectiveness research, and suggest some minimal reporting standards for an IV analysis. Finally, we offer our perspective of the role of IV estimation vis-à-vis more traditional approaches based on statistical modeling of the exposure or outcome. We anticipate that IV methods will be often underpowered for drug safety studies of very rare outcomes, but may be potentially useful in studies of intended effects where uncontrolled confounding may be substantial.

  18. Instrumental variable methods in comparative safety and effectiveness research†

    Science.gov (United States)

    Brookhart, M. Alan; Rassen, Jeremy A.; Schneeweiss, Sebastian

    2010-01-01

    Summary Instrumental variable (IV) methods have been proposed as a potential approach to the common problem of uncontrolled confounding in comparative studies of medical interventions, but IV methods are unfamiliar to many researchers. The goal of this article is to provide a non-technical, practical introduction to IV methods for comparative safety and effectiveness research. We outline the principles and basic assumptions necessary for valid IV estimation, discuss how to interpret the results of an IV study, provide a review of instruments that have been used in comparative effectiveness research, and suggest some minimal reporting standards for an IV analysis. Finally, we offer our perspective of the role of IV estimation vis-à-vis more traditional approaches based on statistical modeling of the exposure or outcome. We anticipate that IV methods will be often underpowered for drug safety studies of very rare outcomes, but may be potentially useful in studies of intended effects where uncontrolled confounding may be substantial. PMID:20354968

  19. Hybrid Instruments and the Indirect Credit Method - Does it work?

    OpenAIRE

    Wiedermann-Ondrej, Nadine

    2007-01-01

    This paper analyses the possibility of double non-taxation of hybrid instruments in cross border transactions where the country of the investor has implemented the indirect credit method for mitigation or elimination of double taxation. From an isolated perspective a double non-taxation cannot be obtained because typically no taxes are paid in the foreign country due to the classification as debt and therefore even in the case of a classification as a dividend in the country of the investor n...

  20. Instrumentation

    International Nuclear Information System (INIS)

    Prieur, G.; Nadi, M.; Hedjiedj, A.; Weber, S.

    1995-01-01

    This second chapter on instrumentation gives little general consideration on history and classification of instrumentation, and two specific states of the art. The first one concerns NMR (block diagram of instrumentation chain with details on the magnets, gradients, probes, reception unit). The first one concerns precision instrumentation (optical fiber gyro-meter and scanning electron microscope), and its data processing tools (programmability, VXI standard and its history). The chapter ends with future trends on smart sensors and Field Emission Displays. (D.L.). Refs., figs

  1. Guided-Inquiry Labs Using Bean Beetles for Teaching the Scientific Method & Experimental Design

    Science.gov (United States)

    Schlueter, Mark A.; D'Costa, Allison R.

    2013-01-01

    Guided-inquiry lab activities with bean beetles ("Callosobruchus maculatus") teach students how to develop hypotheses, design experiments, identify experimental variables, collect and interpret data, and formulate conclusions. These activities provide students with real hands-on experiences and skills that reinforce their understanding of the…

  2. Study of a novel cell lysis method with titanium dioxide for Lab-on-a-Chip devices.

    Science.gov (United States)

    Wan, Weijie; Yeow, John T W

    2011-06-01

    In this paper, a novel method is proposed and demonstrated to be able to lyse gram-negative (E. coli) bacteria cells for Lab-on-a-Chip applications. The proposed method incorporates using titanium dioxide particles as photocatalysts and a miniaturized UV LED array as an excitation light source to perform cell lysis on microchips. The experimental result demonstrates the feasibility of the proposed prototype device. The working device suggests an inexpensive, easy to be fabricated and effective way for microchip cell lysis. The miniaturized UV LED array and the microchip with a reaction chamber can be easily integrated with other functional components to form a customized whole Lab-on-a-Chip system.

  3. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised

  4. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  5. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  6. A Medipix3 readout system based on the National Instruments FlexRIO card and using the LabVIEW programming environment

    Science.gov (United States)

    Horswell, I.; Gimenez, E. N.; Marchal, J.; Tartoni, N.

    2011-01-01

    Hybrid silicon photon-counting detectors are becoming standard equipment for many synchrotron applications. The latest in the Medipix family of read-out chips designed as part of the Medipix Collaboration at CERN is the Medipix3, which while maintaining the same pixel size as its predecessor, offers increased functionality and operating modes. The active area of the Medipix3 chip is approx 14mm × 14mm (containing 256 × 256 pixels) which is not large enough for many detector applications, this results in the need to tile many sensors and chips. As a first step on the road to develop such a detector, it was decided to build a prototype single chip readout system to gain the necessary experience in operating a Medipix3 chip. To provide a flexible learning and development tool it was decided to build an interface based on the recently released FlexRIOTM system from National Instruments and to use the LabVIEWTM graphical programming environment. This system and the achieved performance are described in this paper.

  7. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described

  8. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  9. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised.

  10. Extending the frontiers of mass spectrometric instrumentation and methods

    Energy Technology Data Exchange (ETDEWEB)

    Schieffer, Gregg Martin [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The focus of this dissertation is two-fold: developing novel analysis methods using mass spectrometry and the implementation and characterization of a novel ion mobility mass spectrometry instrumentation. The novel mass spectrometry combines ion trap for ion/ion reactions coupled to an ion mobility cell. The long term goal of this instrumentation is to use ion/ion reactions to probe the structure of gas phase biomolecule ions. The three ion source - ion trap - ion mobility - qTOF mass spectrometer (IT - IM - TOF MS) instrument is described. The analysis of the degradation products in coal (Chapter 2) and the imaging plant metabolites (Appendix III) fall under the methods development category. These projects use existing commercial instrumentation (JEOL AccuTOF MS and Thermo Finnigan LCQ IT, respectively) for the mass analysis of the degraded coal products and the plant metabolites, respectively. The coal degradation paper discusses the use of the DART ion source for fast and easy sample analysis. The sample preparation consisted of a simple 50 fold dilution of the soluble coal products in water and placing the liquid in front of the heated gas stream. This is the first time the DART ion source has been used for analysis of coal. Steven Raders under the guidance of John Verkade came up with the coal degradation projects. Raders performed the coal degradation reactions, worked up the products, and sent them to me. Gregg Schieffer developed the method and wrote the paper demonstrating the use of the DART ion source for the fast and easy sample analysis. The plant metabolite imaging project extends the use of colloidal graphite as a sample coating for atmospheric pressure LDI. DC Perdian and I closely worked together to make this project work. Perdian focused on building the LDI setup whereas Schieffer focused on the MSn analysis of the metabolites. Both Perdian and I took the data featured in the paper. Perdian was the primary writer of the paper and used it as a

  11. New methods of magnet-based instrumentation for NOTES.

    Science.gov (United States)

    Magdeburg, Richard; Hauth, Daniel; Kaehler, Georg

    2013-12-01

    Laparoscopic surgery has displaced open surgery as the standard of care for many clinical conditions. NOTES has been described as the next surgical frontier with the objective of incision-free abdominal surgery. The principal challenge of NOTES procedures is the loss of triangulation and instrument rigidity, which is one of the fundamental concepts of laparoscopic surgery. To overcome these problems necessitates the development of new instrumentation. material and methods: We aimed to assess the use of a very simple combination of internal and external magnets that might allow the vigorous multiaxial traction/counter-traction required in NOTES procedures. The magnet retraction system consisted of an external magnetic assembly and either small internal magnets attached by endoscopic clips to the designated tissue (magnet-clip-approach) or an endoscopic grasping forceps in a magnetic deflector roll (magnet-trocar-approach). We compared both methods regarding precision, time and efficacy by performing transgastric partial uterus resections with better results for the magnet-trocar-approach. This proof-of-principle animal study showed that the combination of external and internal magnets generates sufficient coupling forces at clinically relevant abdominal wall thicknesses, making them suitable for use and evaluation in NOTES procedures, and provides the vigorous multiaxial traction/counter-traction required by the lack of additional abdominal trocars.

  12. Microalgae based biorefinery: evaluation of oil extraction methods in terms of efficiency, costs, toxicity and energy in lab-scale

    Directory of Open Access Journals (Sweden)

    Ángel Darío González-Delgado

    2013-06-01

    Full Text Available Several alternatives of microalgal metabolites extraction and transformation are being studied for achieving the total utilization of this energy crop of great interest worldwide. Microalgae oil extraction is a key stage in microalgal biodiesel production chains and their efficiency affects significantly the global process efficiency. In this study, a comparison of five oil extraction methods in lab-scale was made taking as additional parameters, besides extraction efficiency, the costs of method performing, energy requirements, and toxicity of solvents used, in order to elucidate the convenience of their incorporation to a microalgae-based topology of biorefinery. Methods analyzed were Solvent extraction assisted with high speed homogenization (SHE, Continuous reflux solvent extraction (CSE, Hexane based extraction (HBE, Cyclohexane based extraction (CBE and Ethanol-hexane extraction (EHE, for this evaluation were used the microalgae strains Nannochloropsis sp., Guinardia sp., Closterium sp., Amphiprora sp. and Navicula sp., obtained from a Colombian microalgae bioprospecting. In addition, morphological response of strains to oil extraction methods was also evaluated by optic microscopy. Results shows that although there is not a unique oil extraction method which excels in all parameters evaluated, CSE, SHE and HBE appears as promising alternatives, while HBE method is shown as the more convenient for using in lab-scale and potentially scalable for implementation in a microalgae based biorefinery

  13. LabVIEW 8 student edition

    CERN Document Server

    Bishop, Robert H

    2007-01-01

    For courses in Measurement and Instrumentation, Electrical Engineering lab, and Physics and Chemistry lab. This revised printing has been updated to include new LabVIEW 8.2 Student Edition. National Instruments' LabVIEW is the defacto industry standard for test, measurement, and automation software solutions. With the Student Edition of LabVIEW, students can design graphical programming solutions to their classroom problems and laboratory experiments with software that delivers the graphical programming capabilites of the LabVIEW professional version. . The Student Edition is also compatible with all National Instruments data acquisition and instrument control hardware. Note: The LabVIEW Student Edition is available to students, faculty, and staff for personal educational use only. It is not intended for research, institutional, or commercial use. For more information about these licensing options, please visit the National Instruments website at (http:www.ni.com/academic/)

  14. Methods and instrumentation for quantitative microchip capillary electrophoresis

    NARCIS (Netherlands)

    Revermann, T.

    2007-01-01

    The development of novel instrumentation and analytical methodology for quantitative microchip capillary electrophoresis (MCE) is described in this thesis. Demanding only small quantities of reagents and samples, microfluidic instrumentation is highly advantageous. Fast separations at high voltages

  15. Instruments

    International Nuclear Information System (INIS)

    Buehrer, W.

    1996-01-01

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs

  16. Altitude Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Altitude Lab evaluates the performance of complete oxygen systems operated in individually controlled hypobaric chambers, which duplicate pressures that would be...

  17. Using RSpec in an introductory bright star spectroscopy lab activity

    Science.gov (United States)

    Howe, James; Sitar, David J.

    2018-01-01

    After presenting at the North Carolina Section of the American Association of Physics Teachers during the fall 2016 meeting, we were encouraged to turn our poster into a paper. This article describes the strengthening of a bright star spectroscopy lab activity for introductory astronomy lab students (AST1002) at Appalachian State University. Explanations of the tools and methods used in the activity are included, particularly the preparation of additional materials using RSpec and calibrated instrument response curves.

  18. LabVIEW: what is it and why is it used?

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    LabVIEW is a complicated acronym for Lab Virtual Instrument Engineering Workbench. Something catchy would have been better, because it is a programming language that lets you define your code graphically. From low level data acquisition to high level result presentation, you can perform everything with the same programming method and it makes programming fun.

  19. PD Lab

    NARCIS (Netherlands)

    Bilow, Marcel; Entrop, Alexis Gerardus; Lichtenberg, Jos; Stoutjesdijk, Pieter

    2015-01-01

    PD Lab explores the applications of building sector related product development. PD lab investigates and tests digital production technologies like CNC milled wood connections. It will also act as a platform in its wider meaning to investigate the effects and influences of file to factory

  20. Method to deterministically study photonic nanostructures in different experimental instruments.

    Science.gov (United States)

    Husken, B H; Woldering, L A; Blum, C; Vos, W L

    2009-01-01

    We describe an experimental method to recover a single, deterministically fabricated nanostructure in various experimental instruments without the use of artificially fabricated markers, with the aim to study photonic structures. Therefore, a detailed map of the spatial surroundings of the nanostructure is made during the fabrication of the structure. These maps are made using a series of micrographs with successively decreasing magnifications. The graphs reveal intrinsic and characteristic geometric features that can subsequently be used in different setups to act as markers. As an illustration, we probe surface cavities with radii of 65 nm on a silica opal photonic crystal with various setups: a focused ion beam workstation; a scanning electron microscope (SEM); a wide field optical microscope and a confocal microscope. We use cross-correlation techniques to recover a small area imaged with the SEM in a large area photographed with the optical microscope, which provides a possible avenue to automatic searching. We show how both structural and optical reflectivity data can be obtained from one and the same nanostructure. Since our approach does not use artificial grids or markers, it is of particular interest for samples whose structure is not known a priori, like samples created solely by self-assembly. In addition, our method is not restricted to conducting samples.

  1. PD Lab

    Directory of Open Access Journals (Sweden)

    Marcel Bilow

    2015-08-01

    Full Text Available PD Lab explores the applications of building sector related product development.  PD lab investigates and tests digital production technologies like CNC milled wood connections. It will also act as a platform in its wider meaning to investigate the effects and influences of file to factory production, to explore the potential in the field of sustainability, material use, logistics and the interaction of stakeholders within the chain of the building process.

  2. A fully automated and scalable timing probe-based method for time alignment of the LabPET II scanners

    Science.gov (United States)

    Samson, Arnaud; Thibaudeau, Christian; Bouchard, Jonathan; Gaudin, Émilie; Paulin, Caroline; Lecomte, Roger; Fontaine, Réjean

    2018-05-01

    A fully automated time alignment method based on a positron timing probe was developed to correct the channel-to-channel coincidence time dispersion of the LabPET II avalanche photodiode-based positron emission tomography (PET) scanners. The timing probe was designed to directly detect positrons and generate an absolute time reference. The probe-to-channel coincidences are recorded and processed using firmware embedded in the scanner hardware to compute the time differences between detector channels. The time corrections are then applied in real-time to each event in every channel during PET data acquisition to align all coincidence time spectra, thus enhancing the scanner time resolution. When applied to the mouse version of the LabPET II scanner, the calibration of 6 144 channels was performed in less than 15 min and showed a 47% improvement on the overall time resolution of the scanner, decreasing from 7 ns to 3.7 ns full width at half maximum (FWHM).

  3. Benefits and Limitations of Lab-on-a-Chip Method over Reversed-Phase High-Performance Liquid Chromatography Method in Gluten Proteins Evaluation

    Directory of Open Access Journals (Sweden)

    Dragan Živančev

    2015-01-01

    Full Text Available RP-HPLC (reversed-phase high-performance liquid chromatography is widely used to determine the amounts of the different gluten protein types. However, this method is time-consuming, especially at early stages of wheat breeding, when large number of samples needs to be analyzed. On the other hand, LoaC (Lab-on-a-Chip technique has the potential for a fast, reliable, and automatable analysis of proteins. In the present study, benefits and limitations of Lab-on-a-Chip method over RP-HPLC method in gluten proteins evaluation were explored in order to determine in which way LoaC method should be improved in order to make its results more compliant with the results of RP-HPLC method. Strong correlation (P≤0.001 was found between numbers of HMW glutenin peaks determined by LoaC and RP-HPLC methods. Significant correlations (P≤0.05 were obtained between percentages of HMW and LMW glutenin subunits calculated with regard to total HMW + LMW area. Even more significant correlation (P≤0.001 was found when percentages of individual HMW areas were calculated with regard to total HMW. RP-HPLC method showed superiority in determination of gliadins since larger number and better resolution of gliadin peaks were obtained by this method.

  4. Instrumental performance of an etude after three methods of practice.

    Science.gov (United States)

    Vanden Ark, S

    1997-12-01

    For 80 fifth-grade students three practice conditions (mental, mental with physical simulation, and physical with singing) produced significant mean differences in instrumental performance of an etude. No significant differences were found for traditional, physical practice.

  5. Spectrometric methods used in the calibration of radiodiagnostic measuring instruments

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, W [Rijksuniversiteit Utrecht (Netherlands)

    1995-12-01

    Recently a set of parameters for checking the quality of radiation for use in diagnostic radiology was established at the calibration facility of Nederlands Meetinstituut (NMI). The establishment of the radiation quality required re-evaluation of the correction factors for the primary air-kerma standards. Free-air ionisation chambers require several correction factors to measure air-kerma according to its definition. These correction factors were calculated for the NMi free-air chamber by Monte Carlo simulations for monoenergetic photons in the energy range from 10 keV to 320 keV. The actual correction factors follow from weighting these mono-energetic correction factors with the air-kerma spectrum of the photon beam. This paper describes the determination of the photon spectra of the X-ray qualities used for the calibration of dosimetric instruments used in radiodiagnostics. The detector used for these measurements is a planar HPGe-detector, placed in the direct beam of the X-ray machine. To convert the measured pulse height spectrum to the actual photon spectrum corrections must be made for fluorescent photon escape, single and multiple compton scattering inside the detector, and detector efficiency. From the calculated photon spectra a number of parameters of the X-ray beam can be calculated. The calculated first and second half value layer in aluminum and copper are compared with the measured values of these parameters to validate the method of spectrum reconstruction. Moreover the spectrum measurements offer the possibility to calibrate the X-ray generator in terms of maximum high voltage. The maximum photon energy in the spectrum is used as a standard for calibration of kVp-meters.

  6. Uma interface lab-made para aquisição de sinais analógicos instrumentais via porta paralela do microcomputador A lab-made interface for acquisition of instrumental analog signals at the parallel port of a microcomputer

    Directory of Open Access Journals (Sweden)

    Edvaldo da Nóbrega Gaião

    2004-10-01

    Full Text Available A lab-made interface for acquisition of instrumental analog signals between 0 and 5 V at a frequency up to 670 kHz at the parallel port of a microcomputer is described. Since it uses few and small components, it was built into the connector of a printer parallel cable. Its performance was evaluated by monitoring the signals of four different instruments and similar analytical curves were obtained with the interface and from readings from the instrument' displays. Because the components are cheap (~U$35,00 and easy to get, the proposed interface is a simple and economical alternative for data acquisition in small laboratories for routine work, research and teaching.

  7. PRESERVATIVE TREATMENT OF Mimosa scabrella BENTH. AND Eucalyptus viminalis LAB. FENCE POSTS BY DIP-DIFFUSION METHOD

    Directory of Open Access Journals (Sweden)

    Juarez Benigno Paes

    2001-01-01

    Full Text Available This work aimed to compare the diffusion of CCB preservative in bracatinga (Mimosa scabrella Benth. and Eucalyptus viminalis Lab. round fence posts when exposed to dip-diffusion method. The pieces were submitted to the concentration of 2; 3.5 and 5% of active ingredients of “Osmose CCB” commercial preservative, during 2, 5 and 8 days. The penetration was analyzed in six positions in the pieces and the retention in three positions in the disks taken in ground contact area in the fence posts fitted out. The increase of treatment time and preservative concentration provided significant gains on penetration and retention of CCB for both tree species. In the work conditions, the eucalypt fence posts showed better response to the treatment.

  8. Authentication method for safeguards instruments securing data transmission

    International Nuclear Information System (INIS)

    Richter, B.; Stein, G.; Neumann, G.; Gartner, K.J.

    1986-01-01

    Because of the worldwide increase in nuclear fuel cycle activities, the need arises to reduce inspection effort by increasing the inspection efficiency per facility. Therefore, more and more advanced safeguards instruments will be designed for automatic operation. In addition, sensoring and recording devices may be well separated from each other within the facility, while the data transmission medium is a cable. The basic problem is the authenticity of the transmitted information. It has to be ensured that no potential adversary is able to falsify the transmitted safeguards data, i.e. the data transmission is secured. At present, predominantly C/S-devices are designed for automatic and remote interrogation. Also in other areas of safeguards instrumentation authentication will become a major issue, in particular, where the facility operator may offer his process instrumentation to be used also for safeguards purposes. In this paper possibilities to solve the problem of authentication are analysed

  9. TELECOM LAB

    CERN Multimedia

    IT-CS-TEL Section

    2001-01-01

    The Telecom Lab is moving from Building 104 to Building 31 S-026, with its entrance via the ramp on the side facing Restaurant n°2. The help desk will thus be closed to users on Tuesday 8 May. On May 9, the Lab will only be able to deal with problems of a technical nature at the new address and it will not be able to process any new subscription requests throughout the week from 7 to 11 May. We apologise for any inconvenience this may cause and thank you for your understanding.

  10. ERLN Technical Support for Labs

    Science.gov (United States)

    The Environmental Response Laboratory Network provides policies and guidance on lab and data requirements, Standardized Analytical Methods, and technical support for water and radiological sampling and analysis

  11. New developments in radiation protection instrumentation via active electronic methods

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1981-01-01

    New developments in electronics and radiation detectors are improving on real-time data acquisition of radiation exposure and contamination conditions. Recent developments in low power circuit designs, hybrid and integrated circuits, and microcomputers have all contributed to smaller and lighter radiation detection instruments that are, at the same time, more sensitive and provide more information (e.g., radioisotope identification) than previous devices. New developments in radiation detectors, such as cadmium telluride, gas scintillation proportional counters, and imaging counters (both charged particle and photon) promise higher sensitivities and expanded uses over present instruments. These developments are being applied in such areas as health physics, waste management, environmental monitoring, in vivo measurements, and nuclear safeguards

  12. Optical Methods and Instrumentation in Brain Imaging and Therapy

    CERN Document Server

    2013-01-01

    This book provides a comprehensive up-to-date review of optical approaches used in brain imaging and therapy. It covers a variety of imaging techniques including diffuse optical imaging, laser speckle imaging, photoacoustic imaging and optical coherence tomography. A number of laser-based therapeutic approaches are reviewed, including photodynamic therapy, fluorescence guided resection and photothermal therapy. Fundamental principles and instrumentation are discussed for each imaging and therapeutic technique. Represents the first publication dedicated solely to optical diagnostics and therapeutics in the brain Provides a comprehensive review of the principles of each imaging/therapeutic modality Reviews the latest advances in instrumentation for optical diagnostics in the brain Discusses new optical-based therapeutic approaches for brain diseases

  13. The "Frankenplasmid" Lab: An Investigative Exercise for Teaching Recombinant DNA Methods

    Science.gov (United States)

    Dean, Derek M.; Wilder, Jason A.

    2011-01-01

    We describe an investigative laboratory module designed to give college undergraduates strong practical and theoretical experience with recombinant DNA methods within 3 weeks. After deducing restriction enzyme maps for two different plasmids, students ligate the plasmids together in the same reaction, transform "E. coli" with this mixture of…

  14. Study of methods for platelet function testing in the perspective of lab-on-chip applications

    NARCIS (Netherlands)

    Zijp, van H.M.

    2013-01-01

    Research goals Platelets are reactive cells with the main function to maintain blood vessel integrity. Altered platelet function can lead to cardiovascular diseases such as thrombosis or bleeding disorders and platelets can also play a role in atherosclerosis. Current methods to quantify platelet

  15. Guide on Economic Instruments & Non-market Valuation Methods

    DEFF Research Database (Denmark)

    Zandersen, Marianne; Bartczak, Anna; Czajkowski, Mikołaj

    The aim of this guidance document is to provide forest practitioners, decision makers and forest owners insights into the various economic instruments available to enhance the non-market ecosystem provision of forests such as a high quality biodiversity; enhanced carbon sequestration; improved...... with ecosystem degradation and iii) by recognising the substantial economic and welfare benefits of better management of ecosystems in forests. Ecosystem services contribute to economic welfare in two ways: • by contributing to the generation of income and wellbeing; and • by preventing damages that inflict...... initiatives it is therefore essential to consider trade offs and synergies between the complex interplay between ecosystem goods and services within an ecosystem,...

  16. Integration of the BSCS 5E instructional method and technology in an anatomy and physiology lab

    Science.gov (United States)

    Gopal, Tamilselvi

    This research provides an understanding of how the 5E instructional method combined with educational technology tools can be used in teaching undergraduate college level anatomy and physiology laboratory classes. The 5E instructional model is the exemplary instructional model in teaching biology for high school students. The phases in the 5E learning cycle are Engage, Explore, Explain, Elaborate, and Evaluate. In every step of the learning cycle, the researcher used appropriate technology tools to enhance the teaching and learning processes. The researcher used the Dynamic Instructional Design model to identify the appropriate technology tools for instruction. The topics selected for modification were 'The Heart' and 'The Vascular System.' The researcher chose these two topics based on results of the preliminary survey that the researcher conducted during summer 2008. The existing topics identified on the syllabus were followed but the teaching method was changed. In order to accomplish this, the researcher created a class Website and included tools including pronunciation, spelling, an Interactive Tool, and Web links. In addition, the researcher also created teacher resources for the Pronunciation Corner and Spelling Bee, so that any teacher can customize and use these tools for their classes. The results indicated that the students took advantage of the technology provided.

  17. A Geometrical Method for Sound-Hole Size and Location Enhancement in Lute Family Musical Instruments: The Golden Method

    Directory of Open Access Journals (Sweden)

    Soheil Jafari

    2017-11-01

    Full Text Available This paper presents a new analytical approach, the Golden Method, to enhance sound-hole size and location in musical instruments of the lute family in order to obtain better sound damping characteristics based on the concept of the golden ratio and the instrument geometry. The main objective of the paper is to increase the capability of lute family musical instruments in keeping a note for a certain time at a certain level to enhance the instruments’ orchestral characteristics. For this purpose, a geometry-based analytical method, the Golden Method is first described in detail in an itemized feature. A new musical instrument is then developed and tested to confirm the ability of the Golden Method in optimizing the acoustical characteristics of musical instruments from a damping point of view by designing the modified sound-hole. Finally, the new-developed instrument is tested, and the obtained results are compared with those of two well-known instruments to confirm the effectiveness of the proposed method. The experimental results show that the suggested method is able to increase the sound damping time by at least 2.4% without affecting the frequency response function and other acoustic characteristics of the instrument. This methodology could be used as the first step in future studies on design, optimization and evaluation of musical instruments of the lute family (e.g., lute, oud, barbat, mandolin, setar, and etc..

  18. Instrumental and statistical methods for the comparison of class evidence

    Science.gov (United States)

    Liszewski, Elisa Anne

    Trace evidence is a major field within forensic science. Association of trace evidence samples can be problematic due to sample heterogeneity and a lack of quantitative criteria for comparing spectra or chromatograms. The aim of this study is to evaluate different types of instrumentation for their ability to discriminate among samples of various types of trace evidence. Chemometric analysis, including techniques such as Agglomerative Hierarchical Clustering, Principal Components Analysis, and Discriminant Analysis, was employed to evaluate instrumental data. First, automotive clear coats were analyzed by using microspectrophotometry to collect UV absorption data. In total, 71 samples were analyzed with classification accuracy of 91.61%. An external validation was performed, resulting in a prediction accuracy of 81.11%. Next, fiber dyes were analyzed using UV-Visible microspectrophotometry. While several physical characteristics of cotton fiber can be identified and compared, fiber color is considered to be an excellent source of variation, and thus was examined in this study. Twelve dyes were employed, some being visually indistinguishable. Several different analyses and comparisons were done, including an inter-laboratory comparison and external validations. Lastly, common plastic samples and other polymers were analyzed using pyrolysis-gas chromatography/mass spectrometry, and their pyrolysis products were then analyzed using multivariate statistics. The classification accuracy varied dependent upon the number of classes chosen, but the plastics were grouped based on composition. The polymers were used as an external validation and misclassifications occurred with chlorinated samples all being placed into the category containing PVC.

  19. Lab architecture

    Science.gov (United States)

    Crease, Robert P.

    2008-04-01

    There are few more dramatic illustrations of the vicissitudes of laboratory architecturethan the contrast between Building 20 at the Massachusetts Institute of Technology (MIT) and its replacement, the Ray and Maria Stata Center. Building 20 was built hurriedly in 1943 as temporary housing for MIT's famous Rad Lab, the site of wartime radar research, and it remained a productive laboratory space for over half a century. A decade ago it was demolished to make way for the Stata Center, an architecturally striking building designed by Frank Gehry to house MIT's computer science and artificial intelligence labs (above). But in 2004 - just two years after the Stata Center officially opened - the building was criticized for being unsuitable for research and became the subject of still ongoing lawsuits alleging design and construction failures.

  20. Laboratory for Calibration of Gamma Radiation Measurement Instruments (LabCal) of Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN) from Brazilian Army Technology Center (CTEx)

    International Nuclear Information System (INIS)

    Amorim, Aneuri de; Balthar, Mario Cesar V.; Santos, Avelino; Vilela, Paulo Ricardo T. de; Oliveira, Luciano Santa Rita; Penha, Paulo Eduardo C. de Oliveira; Gonzaga, Roberto Neves; Andrade, Edson Ramos de; Oliveira, Celio Jorge Vasques de; Fagundes, Luiz Cesar S.

    2016-01-01

    This paper describes the calibration laboratory deployment steps (LABCAL) gamma ionizing radiation measuring instruments in the Army Technology Center, CTEx. Initially the calibration of radiation monitors will be held in the dosimetric quantity air kerma and operational quantity ambient dose equivalent H*(d). The LABCAL / CTEx has not yet authorized by CASEC / CNEN. This laboratory aims to calibrate the ionizing radiation instruments used by the Brazilian Army. (author)

  1. Establishment of a new in vitro test method for evaluation of eye irritancy using a reconstructed human corneal epithelial model, LabCyte CORNEA-MODEL.

    Science.gov (United States)

    Katoh, Masakazu; Hamajima, Fumiyasu; Ogasawara, Takahiro; Hata, Ken-ichiro

    2013-12-01

    Finding in vitro eye irritation testing alternatives to animal testing such as the Draize eye test, which uses rabbits, is essential from the standpoint of animal welfare. It has been developed a reconstructed human corneal epithelial model, the LabCyte CORNEA-MODEL, which has a representative corneal epithelium-like structure. Protocol optimization (pre-validation study) was examined in order to establish a new alternative method for eye irritancy evaluation with this model. From the results of the optimization experiments, the application periods for chemicals were set at 1min for liquid chemicals or 24h for solid chemicals, and the post-exposure incubation periods were set at 24h for liquids or zero for solids. If the viability was less than 50%, the chemical was judged to be an eye irritant. Sixty-one chemicals were applied in the optimized protocol using the LabCyte CORNEA-MODEL and these results were evaluated in correlation with in vivo results. The predictions of the optimized LabCyte CORNEA-MODEL eye irritation test methods were highly correlated with in vivo eye irritation (sensitivity 100%, specificity 80.0%, and accuracy 91.8%). These results suggest that the LabCyte CORNEA-MODEL eye irritation test could be useful as an alternative method to the Draize eye test. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Instrumental methods for analysis of some elements in flour

    International Nuclear Information System (INIS)

    Zagrodzki, P.; Dutkiewicz, E.M.; Malec, P.; Krosniak, M.; Knap, W.

    1993-10-01

    For ten various brands of flour contents of chosen (heavy) elements were determined by means of ICP, GF-AAS, PIXE and ASV/CSV methods. General performance of participating laboratories as well as pros and cons of different analytical methods were compared and discussed. (author). 6 refs, 6 figs, 7 tabs

  3. Validation of method in instrumental NAA for food products sample

    International Nuclear Information System (INIS)

    Alfian; Siti Suprapti; Setyo Purwanto

    2010-01-01

    NAA is a method of testing that has not been standardized. To affirm and confirm that this method is valid. it must be done validation of the method with various sample standard reference materials. In this work. the validation is carried for food product samples using NIST SRM 1567a (wheat flour) and NIST SRM 1568a (rice flour). The results show that the validation method for testing nine elements (Al, K, Mg, Mn, Na, Ca, Fe, Se and Zn) in SRM 1567a and eight elements (Al, K, Mg, Mn, Na, Ca, Se and Zn ) in SRM 1568a pass the test of accuracy and precision. It can be conclude that this method has power to give valid result in determination element of the food products samples. (author)

  4. The virtual MCA design based on LabVIEW6i

    International Nuclear Information System (INIS)

    Ni Jianping; Liu Yinong; Wang Yuemin; Du Yancong

    2003-01-01

    Virtual Instrument is a new concept of measurement technology. The electronics measurement platform based on virtual instrument is the trend of future instrument design. In this article, the basic principle, system structure, development and application of virtual instrument are introduced; the methods to use LabVIEW6i to develop virtual instrument, especially data acquisition instrument are described; a new design of the virtual multi-channel pulse analyzer using a PC-DAQ board (AT-MIO-16E-1) is also given in this paper

  5. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers.

    Science.gov (United States)

    Cui, Yang; Hanley, Luke

    2015-06-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.

  6. A Workshop on Methods for Neutron Scattering Instrument Design. Introduction and Summary

    International Nuclear Information System (INIS)

    Hjelm, Rex P.

    1996-09-01

    The future of neutron and x-ray scattering instrument development and international cooperation was the focus of the workshop on ''Methods for Neutron Scattering Instrument Design'' September 23-25 at the E.O. Lawrence Berkeley National Laboratory. These proceedings are a collection of a portion of the invited and contributed presentations

  7. Instrumentation and quantitative methods of evaluation. Progress report, January 15-September 14, 1986

    International Nuclear Information System (INIS)

    Beck, R.N.

    1986-09-01

    This document reports progress under grant entitled ''Instrumentation and Quantitative Methods of Evaluation.'' Individual reports are presented on projects entitled the physical aspects of radionuclide imaging, image reconstruction and quantitative evaluation, PET-related instrumentation for improved quantitation, improvements in the FMI cyclotron for increased utilization, and methodology for quantitative evaluation of diagnostic performance

  8. THE REGULATION OF MONEY CIRCULATION ON THE BASIS OF USING METHODS AND INSTRUMENTS OF MONETARY POLICY

    OpenAIRE

    S. Mishchenko; S. Naumenkova

    2013-01-01

    In the article it was researched the instruments and mechanism of safeguarding stability of money market on the basis of implementing the optimal monetary policy regime. It was determined the main directions of appliance the monetary policy methods and instruments to guiding money market stability and it was also investigated the influence of transmission mechanism on providing the soundness of money circulations.

  9. Ultrasonic partial discharge monitoring method on instrument transformers

    Directory of Open Access Journals (Sweden)

    Kartalović Nenad

    2012-01-01

    Full Text Available Sonic and ultrasonic partial discharge monitoring have been applied since the early days of these phenomena monitoring. Modern measurement and partial discharge acoustic (ultrasonic and sonic monitoring method has been rapidly evolving as a result of new electronic component design, information technology and updated software solutions as well as the development of knowledge in the partial discharge diagnosis. Electrical discharges in the insulation system generate voltage-current pulses in the network and ultrasonic waves that propagate through the insulation system and structure. Amplitude-phase-frequency analysis of these signals reveals information about the intensity, type and location of partial discharges. The paper discusses the possibility of ultrasonic method selectivity improvement and the increase of diagnosis reliability in the field. Measurements were performed in the laboratory and in the field while a number of transformers were analysed for dissolved gases in the oil. A comparative review of methods for the partial discharge detection is also presented in this paper.

  10. Radon/radon-daughter measurement methods and instrumentation

    International Nuclear Information System (INIS)

    Rock, R.L.

    1977-01-01

    Radon-daughter measurement equipment and techniques have been continuously improved over the last 25 years. Improvements have been in the areas of accuracy, time and convenience. We now have miniaturized scalers and detectors available for measuring the alpha particle count rates from aerosol samples collected on filter papers. We also have small lightweight efficient pumps for conveniently collecting samples and we have various counting methods which allow us to choose between making very precise measurements or nominal measurements. Radon-daughter measurement methods used in uranium mines and mills are discussed including a personal radon-daughter-exposure integrating device which can be worn by miners

  11. Magnetic characterisation of recording materials: design, instrumentation and experimental methods

    NARCIS (Netherlands)

    Samwel, E.O.

    1995-01-01

    The progress being made in the field of magnetic recording is extremely fast. The need to keep this progress going, leads to new types of recording materials which require advanced measurement systems and measurement procedures. Furthermore, the existing measurement methods need to be reviewed as

  12. Acoustic sensors for fission gas characterization: R and D skills devoted to innovative instrumentation in MTR, non-destructive devices in hot lab facilities and specific transducers for measurements of LWR rods in nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Ferrandis, J.Y.; Leveque, G.; Rosenkrantz, E.; Augereau, F.; Combette, P. [University Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France)

    2015-07-01

    First of all, we will present the main principle of the method. A piezoelectric transducer, driven by a pulse generator, generates the acoustic waves in a cavity that may be the fuel rod or a chamber connected to an instrumented rod. The composition determination consists in measuring the time of flight of the acoustic signal emitted. The pressure can be estimated by a calibration process, above the measurement of the amplitude of the signal. Two projects will then be detailed. The first project consists in the development of advanced instrumentation for in-pile experiments in Material Testing Reactor. It constitutes a main goal for the improvement of the nuclear fuel behavior knowledge. This acoustic method was tested with success during a first experiment called REMORA 3, and the results were used to differentiate helium and fission gas release kinetics under transient operating conditions. This experiment was lead at OSIRIS reactor (CEA Saclay, France). As a first step of the development program, we performed in-pile tests on the most sensitive component, i.e., the piezoelectric transducer. For this purpose, the active part of this sensor has been qualified on gamma and neutron radiations and at high temperature. Various industrial piezo-ceramics were exposed to a high activity Cobalt source for few days. The cumulated dose was ranged from 50 kGy up to 2 MGy. Next, these devices were placed inside a Material Test Reactor to investigate their reliability towards neutron fluence. The final fluence after 150 days of irradiation was up to 1.6.10{sup 21}n/cm{sup 2} (for thermal neutron). Irreversible variations have been measured. Next, a specific sensor has been implemented on an instrumented fuel rod and tested in the frame of a REMORA 3 Irradiation test. It was the first experiment under high mixed, temperature neutron and gamma flux. A first irradiation phase took place in March 2010 in the OSIRIS reactor and in November 2010 for the second step of the

  13. New teaching methods in use at UC Irvine's optical engineering and instrument design programs

    Science.gov (United States)

    Silberman, Donn M.; Rowe, T. Scott; Jo, Joshua; Dimas, David

    2012-10-01

    New teaching methods reach geographically dispersed students with advances in Distance Education. Capabilities include a new "Hybrid" teaching method with an instructor in a classroom and a live WebEx simulcast for remote students. Our Distance Education Geometric and Physical Optics courses include Hands-On Optics experiments. Low cost laboratory kits have been developed and YouTube type video recordings of the instructor using these tools guide the students through their labs. A weekly "Office Hour" has been developed using WebEx and a Live Webcam the instructor uses to display his live writings from his notebook for answering students' questions.

  14. Method of charging instruments into liquid metal coolant

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi

    1980-01-01

    Purpose: To alleviate the thermal shock of a reactor charging machine when charging the machine into liquid metal coolant after the machine is preheated in cover gas. Method: When a reactor fueling machine reaches at the lowermost portion the position immediately above liquid metal coolant surface level, the machine is stopped moving down. The reactor fueling machine is heated at the lowermost portion by thermal radiation from the surface of the liquid metal coolant. After the machine is thus preheated in cover gas, it is again steadily moved down by a winch and charged into the liquid metal coolant. Therefore, the thermal shock of the machine becomes low when charging the machine into the liquid metal coolant to eliminate the damage and deformation at the machine. (Yoshihara, H.)

  15. Fatigue resistance of engine-driven rotary nickel-titanium instruments produced by new manufacturing methods.

    Science.gov (United States)

    Gambarini, Gianluca; Grande, Nicola Maria; Plotino, Gianluca; Somma, Francesco; Garala, Manish; De Luca, Massimo; Testarelli, Luca

    2008-08-01

    The aim of the present study was to investigate whether cyclic fatigue resistance is increased for nickel-titanium instruments manufactured by using new processes. This was evaluated by comparing instruments produced by using the twisted method (TF; SybronEndo, Orange, CA) and those using the M-wire alloy (GTX; Dentsply Tulsa-Dental Specialties, Tulsa, OK) with instruments produced by a traditional NiTi grinding process (K3, SybronEndo). Tests were performed with a specific cyclic fatigue device that evaluated cycles to failure of rotary instruments inside curved artificial canals. Results indicated that size 06-25 TF instruments showed a significant increase (p 0.05) in the mean number of cycles to failure when compared with size 06-20 GT series X instruments. The new manufacturing process produced nickel-titanium rotary files (TF) significantly more resistant to fatigue than instruments produced with the traditional NiTi grinding process. Instruments produced with M-wire (GTX) were not found to be more resistant to fatigue than instruments produced with the traditional NiTi grinding process.

  16. Evaluation of surface characteristics of rotary nickel-titanium instruments produced by different manufacturing methods.

    Science.gov (United States)

    Inan, U; Gurel, M

    2017-02-01

    Instrument fracture is a serious concern in endodontic practice. The aim of this study was to investigate the surface quality of new and used rotary nickel-titanium (NiTi) instruments manufactured by the traditional grinding process and twisting methods. Total 16 instruments of two rotary NiTi systems were used in this study. Eight Twisted Files (TF) (SybronEndo, Orange, CA, USA) and 8 Mtwo (VDW, Munich, Germany) instruments were evaluated. New and used of 4 experimental groups were evaluated using an atomic force microscopy (AFM). New and used instruments were analyzed on 3 points along a 3 mm. section at the tip of the instrument. Quantitative measurements according to the topographical deviations were recorded. The data were statistically analyzed with paired samples t-test and independent samples t-test. Mean root mean square (RMS) values for new and used TF 25.06 files were 10.70 ± 2.80 nm and 21.58 ± 6.42 nm, respectively, and the difference between them was statistically significant (P instruments produced by twisting method (TF 25.06) had better surface quality than the instruments produced by traditional grinding process (Mtwo 25.06 files).

  17. Nuclear medicine and imaging research (instrumentation and quantitative methods of evaluation)

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.; Chen, C.T.

    1992-07-01

    This document is the annual progress report for project entitled ''Instrumentation and Quantitative Methods of Evaluation.'' Progress is reported in separate sections individually abstracted and indexed for the database. Subject areas reported include theoretical studies of imaging systems and methods, hardware developments, quantitative methods of evaluation, and knowledge transfer: education in quantitative nuclear medicine imaging

  18. A method for the deliberate and deliberative selection of policy instrument mixes for climate change adaptation

    Directory of Open Access Journals (Sweden)

    Heleen L. P. Mees

    2014-06-01

    Full Text Available Policy instruments can help put climate adaptation plans into action. Here, we propose a method for the systematic assessment and selection of policy instruments for stimulating adaptation action. The multi-disciplinary set of six assessment criteria is derived from economics, policy, and legal studies. These criteria are specified for the purpose of climate adaptation by taking into account four challenges to the governance of climate adaptation: uncertainty, spatial diversity, controversy, and social complexity. The six criteria and four challenges are integrated into a step-wise method that enables the selection of instruments starting from a generic assessment and ending with a specific assessment of policy instrument mixes for the stimulation of a specific adaptation measure. We then apply the method to three examples of adaptation measures. The method's merits lie in enabling deliberate choices through a holistic and comprehensive set of adaptation specific criteria, as well as deliberative choices by offering a stepwise method that structures an informed dialog on instrument selection. Although the method was created and applied by scientific experts, policy-makers can also use the method.

  19. Tundish Cover Flux Thickness Measurement Method and Instrumentation Based on Computer Vision in Continuous Casting Tundish

    Directory of Open Access Journals (Sweden)

    Meng Lu

    2013-01-01

    Full Text Available Thickness of tundish cover flux (TCF plays an important role in continuous casting (CC steelmaking process. Traditional measurement method of TCF thickness is single/double wire methods, which have several problems such as personal security, easily affected by operators, and poor repeatability. To solve all these problems, in this paper, we specifically designed and built an instrumentation and presented a novel method to measure the TCF thickness. The instrumentation was composed of a measurement bar, a mechanical device, a high-definition industrial camera, a Siemens S7-200 programmable logic controller (PLC, and a computer. Our measurement method was based on the computer vision algorithms, including image denoising method, monocular range measurement method, scale invariant feature transform (SIFT, and image gray gradient detection method. Using the present instrumentation and method, images in the CC tundish can be collected by camera and transferred to computer to do imaging processing. Experiments showed that our instrumentation and method worked well at scene of steel plants, can accurately measure the thickness of TCF, and overcome the disadvantages of traditional measurement methods, or even replace the traditional ones.

  20. THE REGULATION OF MONEY CIRCULATION ON THE BASIS OF USING METHODS AND INSTRUMENTS OF MONETARY POLICY

    Directory of Open Access Journals (Sweden)

    S. Mishchenko

    2013-05-01

    Full Text Available In the article it was researched the instruments and mechanism of safeguarding stability of money market on the basis of implementing the optimal monetary policy regime. It was determined the main directions of appliance the monetary policy methods and instruments to guiding money market stability and it was also investigated the influence of transmission mechanism on providing the soundness of money circulations.

  1. Nuclear spectrometry data acquisition system based on LabVIEW

    International Nuclear Information System (INIS)

    Zhao Dan; Shen Li; Deng Lili; Zhou Sichun

    2006-01-01

    The whole process of designing nuclear spectrometry data acquisition system was particularized with LabVIEW and data acquisition board, based on virtual instrument technology. It can analyze the output of the radiation detector and give the height spectrum by the method of the continuous real-time data acquisition and the abstraction of pulse signal amplitude. The simple test shows that this system can meet the demand, and it can be easily expanded according to the situation. (authors)

  2. 30 CFR 75.1719-3 - Methods of measurement; light measuring instruments.

    Science.gov (United States)

    2010-07-01

    ... being measured and a sufficient distance from the surface to allow the light sensing element in the... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methods of measurement; light measuring... § 75.1719-3 Methods of measurement; light measuring instruments. (a) Compliance with § 75.1719-1(d...

  3. Method of case hardening depth testing by using multifunctional ultrasonic testing instrument

    International Nuclear Information System (INIS)

    Salchak, Y A; Sednev, D A; Ardashkin, I B; Kroening, M

    2015-01-01

    The paper describes usability of ultrasonic case hardening depth control applying standard instrument of ultrasonic inspections. The ultrasonic method of measuring the depth of the hardened layer is proposed. Experimental series within the specified and multifunctional ultrasonic equipment are performed. The obtained results are compared with the results of a referent method of analysis. (paper)

  4. Experiential Learning of Digital Communication Using LabVIEW

    Science.gov (United States)

    Zhan, Wei; Porter, Jay R.; Morgan, Joseph A.

    2014-01-01

    This paper discusses the design and implementation of laboratories and course projects using LabVIEW in an instrumentation course. The pedagogical challenge is to enhance students' learning of digital communication using LabVIEW. LabVIEW was extensively used in the laboratory sessions, which better prepared students for the course projects. Two…

  5. The Value of the “Lab-Score” Method in Identifying Febrile Infants at Risk for Serious Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Moldovan Diana Aniela

    2015-03-01

    Full Text Available Introduction: Most children with fever without source will have a self limited viral infection though a small percent will develop a serious bacterial infection (SBI like urinary tract infection, pneumonia, bacteraemia, meningitis or sepsis. The challenge facing practitioners is to distinguish between these two groups and currently biomarkers, like C-reactive protein (CRP and Procalcitonin (PCT, are available for this purpose. The aim of the current study was to identify SBI in infants with fever without an identifiable cause using the recently introduced “Lab-score” combining C-reactive protein, procalcitonin and urine dipstick results.

  6. Calibration method based on direct radioactivity measurement for radioactive gas monitoring instruments

    International Nuclear Information System (INIS)

    Yoshida, Makoto; Ohi, Yoshihiro; Chida, Tohru; Wu, Youyang.

    1993-01-01

    A calibration method for radioactive gas monitoring instruments was studied. In the method, gaseous radioactivity standards were provided on the basis of the direct radioactivity measurement by the diffusion-in long proportional counter method (DLPC method). The radioactivity concentration of the gas mixture through a monitoring instrument was determined by sampling the known volume of the gas mixture into the proportional counter used for the DLPC method. Since oxygen in the gas mixture decreased the counting efficiency in a proportional counter, the influence on calibration was experimentally estimated. It was not serious and able to be easily corrected. By the present method, the relation between radioactivity concentration and ionization current was determined for a gas-flow ionization chamber with 1.5 l effective volume. It showed good agreement with the results in other works. (author)

  7. Pre-validation methods for developing a patient reported outcome instrument

    Directory of Open Access Journals (Sweden)

    Castillo Mayret M

    2011-08-01

    Full Text Available Abstract Background Measures that reflect patients' assessment of their health are of increasing importance as outcome measures in randomised controlled trials. The methodological approach used in the pre-validation development of new instruments (item generation, item reduction and question formatting should be robust and transparent. The totality of the content of existing PRO instruments for a specific condition provides a valuable resource (pool of items that can be utilised to develop new instruments. Such 'top down' approaches are common, but the explicit pre-validation methods are often poorly reported. This paper presents a systematic and generalisable 5-step pre-validation PRO instrument methodology. Methods The method is illustrated using the example of the Aberdeen Glaucoma Questionnaire (AGQ. The five steps are: 1 Generation of a pool of items; 2 Item de-duplication (three phases; 3 Item reduction (two phases; 4 Assessment of the remaining items' content coverage against a pre-existing theoretical framework appropriate to the objectives of the instrument and the target population (e.g. ICF; and 5 qualitative exploration of the target populations' views of the new instrument and the items it contains. Results The AGQ 'item pool' contained 725 items. Three de-duplication phases resulted in reduction of 91, 225 and 48 items respectively. The item reduction phases discarded 70 items and 208 items respectively. The draft AGQ contained 83 items with good content coverage. The qualitative exploration ('think aloud' study resulted in removal of a further 15 items and refinement to the wording of others. The resultant draft AGQ contained 68 items. Conclusions This study presents a novel methodology for developing a PRO instrument, based on three sources: literature reporting what is important to patient; theoretically coherent framework; and patients' experience of completing the instrument. By systematically accounting for all items dropped

  8. A new method for the radiation representation of musical instruments in auralizations

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Otondo, Felipe

    2005-01-01

    A new method for the representation of sound sources that vary their directivity in time in auralizations is introduced. A recording method with multi-channel anechoic recordings is proposed in connection with the use of a multiple virtual source reproduction system in auralizations. Listening ex...... to be significant. Further applications of the method are considered for ensembles within room auralizations as well as in the field of studio recording techniques for large instruments....

  9. FJ-2207 measuring instrument detection pipe surface a level of pollution method

    International Nuclear Information System (INIS)

    Wang Jiangong

    2010-01-01

    On the pipe surface contamination were detected α level of pollution is a frequently encountered dose-detection work. Because the pipeline surface arc, while the measuring probe for the plane, which for accurate measurement difficult. In this paper, on the FJ-2207-type pipe surface contamination measuring instrument measuring pollution levels in the α method was studied. Introduced the FJ-2207 measuring instrument detection pipe surface α pollution levels. Studied this measuring instrument on the same sources of surface, plane α level of radioactivity measured differences in the results obtained control of the apparatus when the direct measurement of the surface correction factor, and gives 32-216 specifications commonly used pipe direct measurement of the amendment factor. Convenient method, test results are reliable for the accurate measurement of pipe pollution levels in the surface of α as a reference and learning. (authors)

  10. USAGE OF PICTOGRAMS TO INTRODUCE MUSICAL INSTRUMENTS TO EDUCABLE MENTALLY RETARDED CHILDREN AS AN ALTERNATIVE METHOD

    Directory of Open Access Journals (Sweden)

    Gunsu YILMA

    2014-01-01

    Full Text Available The purpose of this research is to examine and investigate the perception ability of musical instruments of educable mentally retarded children with the support of visual elements. The research is conducted for every children individually in a special education and rehabilitation centre. The problematic of this research is the level of perception ability of musical instruments with visual support on mild mentally retarded children. In this research, perception ability of defining pictograms by music is introduced as an alternative method. It is researched that how educable mentally retarded children perceive pictograms by music tools. In this case, it is aimed to introduce musical instruments to educable mentally retarded children by pictograms with music. The research is applied with a qualitative approach. Data were obtained with the recorder, then they were turned into texts and analyzed with content analysis method.

  11. A new method for the assessment of the surface topography of NiTi rotary instruments.

    Science.gov (United States)

    Ferreira, F; Barbosa, I; Scelza, P; Russano, D; Neff, J; Montagnana, M; Zaccaro Scelza, M

    2017-09-01

    To describe a new method for the assessment of nanoscale alterations in the surface topography of nickel-titanium endodontic instruments using a high-resolution optical method and to verify the accuracy of the technique. Noncontact three-dimensional optical profilometry was used to evaluate defects on a size 25, .08 taper reciprocating instrument (WaveOne ® ), which was subjected to a cyclic fatigue test in a simulated root canal in a clear resin block. For the investigation, an original procedure was established for the analysis of similar areas located 3 mm from the tip of the instrument before and after canal preparation to enable the repeatability and reproducibility of the measurements with precision. All observations and analysis were taken in areas measuring 210 × 210 μm provided by the software of the equipment. The three-dimensional high-resolution image analysis showed clear alterations in the surface topography of the examined cutting blade and flute of the instrument, before and after use, with the presence of surface irregularities such as deformations, debris, grooves, cracks, steps and microcavities. Optical profilometry provided accurate qualitative nanoscale evaluation of similar surfaces before and after the fatigue test. The stability and repeatability of the technique enables a more comprehensive understanding of the effects of wear on the surface of endodontic instruments. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Applying the Mixed Methods Instrument Development and Construct Validation Process: the Transformative Experience Questionnaire

    Science.gov (United States)

    Koskey, Kristin L. K.; Sondergeld, Toni A.; Stewart, Victoria C.; Pugh, Kevin J.

    2018-01-01

    Onwuegbuzie and colleagues proposed the Instrument Development and Construct Validation (IDCV) process as a mixed methods framework for creating and validating measures. Examples applying IDCV are lacking. We provide an illustrative case integrating the Rasch model and cognitive interviews applied to the development of the Transformative…

  13. Bayesian methods for meta-analysis of causal relationships estimated using genetic instrumental variables

    DEFF Research Database (Denmark)

    Burgess, Stephen; Thompson, Simon G; Thompson, Grahame

    2010-01-01

    Genetic markers can be used as instrumental variables, in an analogous way to randomization in a clinical trial, to estimate the causal relationship between a phenotype and an outcome variable. Our purpose is to extend the existing methods for such Mendelian randomization studies to the context o...

  14. Field astrobiology research instruments and methods in moon-mars analogue site.

    NARCIS (Netherlands)

    Foing, B.H.; Stoker, C.; Zavaleta, J.; Ehrenfreund, P.; Sarrazin, P.; Blake, D.; Page, J.; Pletser, V.; Hendrikse, J.; Oliveira Lebre Direito, M.S.; Kotler, M.; Martins, Z.; Orzechowska, G.; Thiel, C.S.; Clarke, J.; Gross, J.; Wendt, L.; Borst, A.; Peters, S.; Wilhelm, M.-B.; Davies, G.R.; EuroGeoMars 2009 Team, ILEWG

    2011-01-01

    We describe the field demonstration of astrobiology instruments and research methods conducted in and from the Mars Desert Research Station (MDRS) in Utah during the EuroGeoMars campaign 2009 coordinated by ILEWG, ESA/ESTEC and NASA Ames, with the contribution of academic partners. We discuss the

  15. A review of modern instrumental methods of elemental analysis of petroleum related material. Part 2

    International Nuclear Information System (INIS)

    Nadkarni, R.A.

    1991-01-01

    In this paper a review is presented of the state of the art in elemental analysis of petroleum-related materials (crude oil, gasoline, additives, and lubricants) using modern instrumental analysis techniques. The major instrumental techniques used for elemental analysis of petroleum products include atomic absorption spectrometry (both with flame and with graphite furnace atomizer), inductively coupled plasma atomic emission spectrometry, ion chromatography, microelemental methods, neutron activation, spark source mass spectrometry, and x-ray fluorescence. Each of these techniques is compared for its advantages, disadvantages, and typical applications in the petroleum field

  16. New highly sensitive method of simultaneous instrumental neutron activation determination of 12 microelements in vine

    International Nuclear Information System (INIS)

    Shoniya, N.I.

    1977-01-01

    The main principles and methods of simultaneous multi-element instrumental neutron activation determination of microelements in vine seeds are presented. The methods permit to carry out quantitative evaluation for every single corn of the seeds. It is shown that the method of instrumental neutron activation analysis with the utilization of a semiconductor spectrometer of high resolution and mini electronic computer permit to carry out serial determinations of 12 microelements in the individual corns of vine seeds of different sorts. This method will permit to determine the missing or excess content of this or that biologically important microelement in soils, plants, fruit and genetic material - seeds, and so to determine the optimum conditions of growing plants by applying microelement fertilizers as extra nutrient means

  17. Design and operation of dust measuring instrumentation based on the beta-radiation method

    International Nuclear Information System (INIS)

    Lilienfeld, P.

    1975-01-01

    The theory, instrument design aspects and applications of beta-radiation attenuation for the measurement of the mass concentration of airborne particulates are reviewed. Applicable methods of particle collection, beta sensing configurations, source ( 63 Ni, 14 C, 147 Pr, 85 Kr) and detector design criteria, electronic signal processing, digital control and instrument programming techniques are treated. Advantages, limitations and error sources of beta-attenuation instrumentation are analyzed. Applications to industrial dust measurements, source testing, ambient monitoring, and particle size analysis are the major areas of practical utilization of this technique, and its inherent capability for automated and unattended operation provides compatibility with process control synchronization and alarm, telemetry, and incorporation into pollution monitoring network sensing stations. (orig.) [de

  18. Experimental innovations in surface science a guide to practical laboratory methods and instruments

    CERN Document Server

    Yates, John T

    2015-01-01

    This book is a new edition of a classic text on experimental methods and instruments in surface science. It offers practical insight useful to chemists, physicists, and materials scientists working in experimental surface science. This enlarged second edition contains almost 300 descriptions of experimental methods. The more than 50 active areas with individual scientific and measurement concepts and activities relevant to each area are presented in this book. The key areas covered are: Vacuum System Technology, Mechanical Fabrication Techniques, Measurement Methods, Thermal Control, Delivery of Adsorbates to Surfaces, UHV Windows, Surface Preparation Methods, High Area Solids, Safety. The book is written for researchers and graduate students.

  19. Rare earths analysis of rock samples by instrumental neutron activation analysis, internal standard method

    International Nuclear Information System (INIS)

    Silachyov, I.

    2016-01-01

    The application of instrumental neutron activation analysis for the determination of long-lived rare earth elements (REE) in rock samples is considered in this work. Two different methods are statistically compared: the well established external standard method carried out using standard reference materials, and the internal standard method (ISM), using Fe, determined through X-ray fluorescence analysis, as an element-comparator. The ISM proved to be the more precise method for a wide range of REE contents and can be recommended for routine practice. (author)

  20. Evaluation of two disinfection/sterilization methods on silicon rubber-based composite finishing instruments.

    Science.gov (United States)

    Lacerda, Vánia A; Pereira, Leandro O; Hirata JUNIOR, Raphael; Perez, Cesar R

    2015-12-01

    To evaluate the effectiveness of disinfection/sterilization methods and their effects on polishing capacity, micomorphology, and composition of two different composite fiishing and polishing instruments. Two brands of finishing and polishing instruments (Jiffy and Optimize), were analyzed. For the antimicrobial test, 60 points (30 of each brand) were used for polishing composite restorations and submitted to three different groups of disinfection/sterilization methods: none (control), autoclaving, and immersion in peracetic acid for 60 minutes. The in vitro tests were performed to evaluate the polishing performance on resin composite disks (Amelogen) using a 3D scanner (Talyscan) and to evaluate the effects on the points' surface composition (XRF) and micromorphology (MEV) after completing a polishing and sterilizing routine five times. Both sterilization/disinfection methods were efficient against oral cultivable organisms and no deleterious modification was observed to point surface.

  1. An ergonomics based design research method for the arrangement of helicopter flight instrument panels.

    Science.gov (United States)

    Alppay, Cem; Bayazit, Nigan

    2015-11-01

    In this paper, we study the arrangement of displays in flight instrument panels of multi-purpose civil helicopters following a user-centered design method based on ergonomics principles. Our methodology can also be described as a user-interface arrangement methodology based on user opinions and preferences. This study can be outlined as gathering user-centered data using two different research methods and then analyzing and integrating the collected data to come up with an optimal instrument panel design. An interview with helicopter pilots formed the first step of our research. In that interview, pilots were asked to provide a quantitative evaluation of basic interface arrangement principles. In the second phase of the research, a paper prototyping study was conducted with same pilots. The final phase of the study entailed synthesizing the findings from interviews and observational studies to formulate an optimal flight instrument arrangement methodology. The primary results that we present in our paper are the methodology that we developed and three new interface arrangement concepts, namely relationship of inseparability, integrated value and locational value. An optimum instrument panel arrangement is also proposed by the researchers. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  2. Intercomparison of two comparative reactivity method instruments inf the Mediterranean basin during summer 2013

    Science.gov (United States)

    Zannoni, N.; Dusanter, S.; Gros, V.; Sarda Esteve, R.; Michoud, V.; Sinha, V.; Locoge, N.; Bonsang, B.

    2015-09-01

    The hydroxyl radical (OH) plays a key role in the atmosphere, as it initiates most of the oxidation processes of volatile organic compounds (VOCs), and can ultimately lead to the formation of ozone and secondary organic aerosols (SOAs). There are still uncertainties associated with the OH budget assessed using current models of atmospheric chemistry and direct measurements of OH sources and sinks have proved to be valuable tools to improve our understanding of the OH chemistry. The total first order loss rate of OH, or total OH reactivity, can be directly measured using three different methods, such as the following: total OH loss rate measurement, laser-induced pump and probe technique and comparative reactivity method. Observations of total OH reactivity are usually coupled to individual measurements of reactive compounds in the gas phase, which are used to calculate the OH reactivity. Studies using the three methods have highlighted that a significant fraction of OH reactivity is often not explained by individually measured reactive compounds and could be associated to unmeasured or unknown chemical species. Therefore accurate and reproducible measurements of OH reactivity are required. The comparative reactivity method (CRM) has demonstrated to be an advantageous technique with an extensive range of applications, and for this reason it has been adopted by several research groups since its development. However, this method also requires careful corrections to derive ambient OH reactivity. Herein we present an intercomparison exercise of two CRM instruments, CRM-LSCE (Laboratoire des Sciences du Climat et de l'Environnement) and CRM-MD (Mines Douai), conducted during July 2013 at the Mediterranean site of Ersa, Cape Corsica, France. The intercomparison exercise included tests to assess the corrections needed by the two instruments to process the raw data sets as well as OH reactivity observations. The observation was divided in three parts: 2 days of plant

  3. A multi-criteria evaluation method for climate change mitigation policy instruments

    International Nuclear Information System (INIS)

    Konidari, Popi; Mavrakis, Dimitrios

    2007-01-01

    This paper presents an integrated multi-criteria analysis method for the quantitative evaluation of climate change mitigation policy instruments. The method consists of: (i) a set of criteria supported by sub-criteria, all of which describe the complex framework under which these instruments are selected by policy makers and implemented, (ii) an Analytical Hierarchy Process (AHP) process for defining weight coefficients for criteria and sub-criteria according to the preferences of three stakeholders groups and (iii) a Multi-Attribute Theory (MAUT)/Simple Multi-Attribute Ranking Technique (SMART) process for assigning grades to each instrument that is evaluated for its performance under a specific sub-criterion. Arguments for the selected combination of these standard methods and definitions for criteria/sub-criteria are quoted. Consistency and robustness tests are performed. The functionality of the proposed method is tested by assessing the aggregate performances of the EU emission trading scheme at Denmark, Germany, Greece, Italy, Netherlands, Portugal, Sweden and United Kingdom. Conclusions are discussed

  4. Sparse feature learning for instrument identification: Effects of sampling and pooling methods.

    Science.gov (United States)

    Han, Yoonchang; Lee, Subin; Nam, Juhan; Lee, Kyogu

    2016-05-01

    Feature learning for music applications has recently received considerable attention from many researchers. This paper reports on the sparse feature learning algorithm for musical instrument identification, and in particular, focuses on the effects of the frame sampling techniques for dictionary learning and the pooling methods for feature aggregation. To this end, two frame sampling techniques are examined that are fixed and proportional random sampling. Furthermore, the effect of using onset frame was analyzed for both of proposed sampling methods. Regarding summarization of the feature activation, a standard deviation pooling method is used and compared with the commonly used max- and average-pooling techniques. Using more than 47 000 recordings of 24 instruments from various performers, playing styles, and dynamics, a number of tuning parameters are experimented including the analysis frame size, the dictionary size, and the type of frequency scaling as well as the different sampling and pooling methods. The results show that the combination of proportional sampling and standard deviation pooling achieve the best overall performance of 95.62% while the optimal parameter set varies among the instrument classes.

  5. Validation parameters of instrumental method for determination of total bacterial count in milk

    Directory of Open Access Journals (Sweden)

    Nataša Mikulec

    2004-10-01

    Full Text Available The method of flow citometry as rapid, instrumental and routine microbiological method is used for determination of total bacterial count in milk. The results of flow citometry are expressed as individual bacterial cells count. Problems regarding the interpretation of the results of total bacterial count can be avoided by transformation of the results of flow citometry method onto the scale of reference method (HRN ISO 6610:2001.. The method of flow citometry, like any analitycal method, according to the HRN EN ISO/IEC 17025:2000 standard, requires validation and verification. This paper describes parameters of validation: accuracy, precision, specificity, range, robustness and measuring uncertainty for the method of flow citometry.

  6. Reference Proteome Extracts for Mass Spec Instrument Performance Validation and Method Development

    Science.gov (United States)

    Rosenblatt, Mike; Urh, Marjeta; Saveliev, Sergei

    2014-01-01

    Biological samples of high complexity are required to test protein mass spec sample preparation procedures and validate mass spec instrument performance. Total cell protein extracts provide the needed sample complexity. However, to be compatible with mass spec applications, such extracts should meet a number of design requirements: compatibility with LC/MS (free of detergents, etc.)high protein integrity (minimal level of protein degradation and non-biological PTMs)compatibility with common sample preparation methods such as proteolysis, PTM enrichment and mass-tag labelingLot-to-lot reproducibility Here we describe total protein extracts from yeast and human cells that meet the above criteria. Two extract formats have been developed: Intact protein extracts with primary use for sample preparation method development and optimizationPre-digested extracts (peptides) with primary use for instrument validation and performance monitoring

  7. Virtual Reality Lab Assistant

    Science.gov (United States)

    Saha, Hrishikesh; Palmer, Timothy A.

    1996-01-01

    Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.

  8. Precision of GNSS instruments by static method comparing in real time

    Directory of Open Access Journals (Sweden)

    Slavomír Labant

    2009-09-01

    Full Text Available Tablet paper describes comparison of measuring accuracy two apparatus from the firm Leica. One of them recieve signals onlyfrom GPS satelites and another instrument is working with GPS and also with GLONASS satelites. Measuring is carry out by RTK staticmethod with 2 minutes observations. Measurement processing is separated to X, Y (position and h (heigh. Adjustment of directobservations is used as a adjusting method.

  9. Instruments and methods of scintillation spectra processing for radiation control tasks

    International Nuclear Information System (INIS)

    Antropov, S.Yu.; Ermilov, A.P.; Ermilov, S.A.; Komarov, N.A.; Krokhin, I.I.

    2005-01-01

    On gamma-spectrometer the response function could be calculated on the base of sensitivity data, energy resolution and form of Compton spectrum part. On the scintillation gamma-spectrometer with Na-I(Tl) crystal 63x63 mm the method allows to divide the 5-10 components mixtures, and on the beta-spectrometer of 2-3 component mixtures. The approach is realized in the 'Progress' program-instrumental complexes

  10. Método para avaliação do Risco Potencial no âmbito dos Laboratórios Oficiais – Método ARP-LAB / Evaluation Method of Potential Risk under the Official Laboratories: EPR-LAB Method

    Directory of Open Access Journals (Sweden)

    Elizabeth Valverde Macedo

    2015-08-01

    Full Text Available O homem encontra-se exposto a inúmeros produtos tecnológicos, e dentre eles os medicamentos, que geram riscos cada vez mais próximos do imponderável. Duas áreas, com ampla inclusão em vários campos do conhecimento, permeiam o ambiente dos laboratórios envolvidos no monitoramento da qualidade destes produtos. Estas são a metrologia e o risco. O objetivo deste trabalho foi elaborar um Método para Avaliação do Risco Potencial dos laboratórios onde são realizados ensaios em medicamentos (Método ARP-LAB, minimizando assim os resultados com confiabilidade analítica duvidosa. A metodologia utilizada foi baseada no Modelo de Avaliação de Risco Potencial. A referência técnica foi a RDC 11/12 – ANVISA/MS que, após análise crítica, resultou na elaboração de Indicadores de Controle do Risco (ICR que foram planificados no software Excel®. Como resultado, o Método ARP-LAB apresentou 167 ICR que, apesar do grande número de indicadores, mostrou-se bastante útil, aplicável e de fácil utilização ao ambiente laboratorial. Através dele é possível identificar as categorias das causas associadas ao desvio de cada ICR. ----------------------------------------------------------------------------------------------- Humans are exposed to numerous technological products, among them are drugs with increasingly varied risks. Two areas of investigation permeate the environment of laboratories involved in monitoring drug quality. These are metrology and risk. The objective of this study was to elaborate an Evaluation Method of Potential Risk (EPR-LAB Method for drug testing laboratories, minimizing analytical results with questionable reliability. The methodology used was based on the Model of Potential Risk Evaluation. The technical reference was the RDC 11/12 - ANVISA / MS. After critical analysis this study resulted in the development of Risk Control Indicators (RCI that were planned in the Excel software. The EPR-LAB Method developed

  11. Enhancing Communication Skills of Pre-service Physics Teacher through HOT Lab Related to Electric Circuit

    Science.gov (United States)

    Malik, A.; Setiawan, A.; Suhandi, A.; Permanasari, A.; Dirgantara, Y.; Yuniarti, H.; Sapriadil, S.; Hermita, N.

    2018-01-01

    This study aimed to investigate the improvement to pre-service teacher’s communication skills through Higher Order Thinking Laboratory (HOT Lab) on electric circuit topic. This research used the quasi-experiment method with pretest-posttest control group design. Research subjects were 60 students of Physics Education in UIN Sunan Gunung Djati Bandung. The sample was chosen by random sampling technique. Students’ communication skill data collected using a communication skills test instruments-essays form and observations sheets. The results showed that pre-service teacher communication skills using HOT Lab were higher than verification lab. Student’s communication skills in groups using HOT Lab were not influenced by gender. Communication skills could increase due to HOT Lab based on problems solving that can develop communication through hands-on activities. Therefore, the conclusion of this research shows the application of HOT Lab is more effective than the verification lab to improve communication skills of pre-service teachers in electric circuit topic and gender is not related to a person’s communication skills.

  12. Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics.

    Science.gov (United States)

    Cho, Yunju; Ahmed, Arif; Islam, Annana; Kim, Sunghwan

    2015-01-01

    Because of the increasing importance of heavy and unconventional crude oil as an energy source, there is a growing need for petroleomics: the pursuit of more complete and detailed knowledge of the chemical compositions of crude oil. Crude oil has an extremely complex nature; hence, techniques with ultra-high resolving capabilities, such as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), are necessary. FT-ICR MS has been successfully applied to the study of heavy and unconventional crude oils such as bitumen and shale oil. However, the analysis of crude oil with FT-ICR MS is not trivial, and it has pushed analysis to the limits of instrumental and methodological capabilities. For example, high-resolution mass spectra of crude oils may contain over 100,000 peaks that require interpretation. To visualize large data sets more effectively, data processing methods such as Kendrick mass defect analysis and statistical analyses have been developed. The successful application of FT-ICR MS to the study of crude oil has been critically dependent on key developments in FT-ICR MS instrumentation and data processing methods. This review offers an introduction to the basic principles, FT-ICR MS instrumentation development, ionization techniques, and data interpretation methods for petroleomics and is intended for readers having no prior experience in this field of study. © 2014 Wiley Periodicals, Inc.

  13. Unexpected but Most Welcome: Mixed Methods for the Validation and Revision of the Participatory Evaluation Measurement Instrument

    Science.gov (United States)

    Daigneault, Pierre-Marc; Jacob, Steve

    2014-01-01

    Although combining methods is nothing new, more contributions about why and how to mix methods for validation purposes are needed. This article presents a case of validating the inferences drawn from the Participatory Evaluation Measurement Instrument, an instrument that purports to measure stakeholder participation in evaluation. Although the…

  14. Instrumentation to Measure the Capacitance of Biosensors by Sinusoidal Wave Method

    Directory of Open Access Journals (Sweden)

    Pavan Kumar KATHUROJU

    2009-09-01

    Full Text Available Micro Controller based instrumentation to measure the capacitance of biosensors is developed. It is based on frequency domain technique with sinusoidal wave input. Changes in the capacitance of biosensor because of the analyte specific reaction are calculated by knowing the current flowing through the sample. A dedicated 8-bit microcontroller (AT89C52 and its associated peripherals are employed for the hardware and application specific software is developed in ‘C’ language. The paper describes the methodology, instrumentation details along with a specific application to glucose sensing. The measurements are conducted with glucose oxidase based capacitance biosensor and the obtained results are compared with the conventional method of sugar measurements using the UV-Visible spectroscopy (Phenol-Sulphuric acid assay method. Measurement accuracy of the instrument is found to be ± 5 %. Experiments are conducted on glucose sensor with different bias voltages. It is found that for bias voltages varying from 0.5 to 0.7 Volt, the measurements are good for this application.

  15. Studies on the instrumental neutron activation analysis by cadmium ratio method and pair comparator method

    Energy Technology Data Exchange (ETDEWEB)

    Chao, H E; Lu, W D; Wu, S C

    1977-12-01

    The cadmium ratio method and pair comparator method provide a solution for the effects on the effective activation factors resulting from the variation of neutron spectrum at different irradiation positions as usually encountered in the single comparator method. The relations between the activation factors and neutron spectrum in terms of cadmium ratio of the comparator Au or of the activation factor of Co-Au pair for the elements, Sc, Cr, Mn, Co, La, Ce, Sm, and Th have been determined. The activation factors of the elements at any irradiation position can then be obtained from the cadmium ratio of the comparator and/or the activation factor of the comparator pair. The relations determined should be able to apply to different reactors and/or different positions of a reactor. It is shown that, for the isotopes /sup 46/Sc, /sup 51/Cr, /sup 56/Mn, /sup 60/Co, /sup 140/La, /sup 141/Ce, /sup 153/Sm and /sup 233/Pa, the thermal neutron activation factors determined by these two methods were generally in agreement with theoretical values. Their I/sub 0//sigma/sub th/ values appeared to agree with literature values also. The methods were applied to determine the contents of elements Sc, Cr, Mn, La, Ce, Sm, and Th in U.S.G.S. Standard Rock G-2, and the results were also in agreement with literature values. The cadmium ratio method and pair comparator method improved the single comparator method, and they are more suitable to analysis for multi-elements of a large number of samples.

  16. A method for automating calibration and records management for instrumentation and dosimetry

    International Nuclear Information System (INIS)

    O'Brien, J.M. Jr.; Rushton, R.O.; Burns, R.E. Jr.

    1993-01-01

    Current industry requirements are becoming more stringent on quality assurance records and documentation for calibration of instruments and dosimetry. A novel method is presented here that will allow a progressive automation scheme to be used in pursuit of that goal. This concept is based on computer-controlled irradiators that can act as stand-alone devices or be interfaced to other components via a computer local area network. In this way, complete systems can be built with modules to create a records management system to meet the needs of small laboratories or large multi-building calibration groups. Different database engines or formats can be used simply by replacing a module. Modules for temperature and pressure monitoring or shipping and receiving can be added, as well as equipment modules for direct IEEE-488 interface to electrometers and other instrumentation

  17. A method for automating calibration and records management for instrumentation and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, J.M. Jr.; Rushton, R.O.; Burns, R.E. Jr. [Atlan-Tech, Inc., Roswell, GA (United States)

    1993-12-31

    Current industry requirements are becoming more stringent on quality assurance records and documentation for calibration of instruments and dosimetry. A novel method is presented here that will allow a progressive automation scheme to be used in pursuit of that goal. This concept is based on computer-controlled irradiators that can act as stand-alone devices or be interfaced to other components via a computer local area network. In this way, complete systems can be built with modules to create a records management system to meet the needs of small laboratories or large multi-building calibration groups. Different database engines or formats can be used simply by replacing a module. Modules for temperature and pressure monitoring or shipping and receiving can be added, as well as equipment modules for direct IEEE-488 interface to electrometers and other instrumentation.

  18. Personal and environmental dosimetric measurements using TLD method in Cardiac Catheterization Laboratory (CathLab) at the Rzeszow's Regional Hospital No 2, Poland

    International Nuclear Information System (INIS)

    Kisielewicz, K.; Truszkiewicz, A.; Wach, S.; Budzanowski, M.

    2007-01-01

    Complete test of publication follows. One of the basic problem in CathLab is the monitoring of ionizing radiation, calculations of doses for workers and finally to build a system to prevent workers from X-ray radiation. To measure doses from X-rays a passive method with thermoluminescent dosemeters (TLD) were applied. Experimental part was based on creating 3D grid of Tl environmental dosemeters with 2 high sensitive TL detectors based on MCP-N (LiF:Mg,Cu,P). Dosemeters were placed evenly (as far as staff's work conditions allowed such positioning) in operating room and a control room. Grid of about 100 dosemeters was designed to measure X-ray dose distribution present during interventional cardiology procedures. That part of the project was especially important for hospital's employee, because it has brought an information about most radiative dangerous areas of each room. Patient dosimetry measurements have been also made using TLD method just during the interventional cardiology procedures. Every patient got a few dosemeters dor different parts of body. Experimental part consists of measurements of absorbed dose equivalent, mean dose rate of absorbed dose equivalent, and mean dose of effective dose per each body part. That last measurements were accomplished by placing TLD's near patient's head, chest and gonads. Personal dosimetry for employees, has been made using TLD's during hemodynamics procedures. Every employee (medical doctors, nurses, technicians and charwoman) has received few dosemeters also based on high sensitive MCP-N detectors. The main dosimetry was done for whole body covered by led gown and additionally for unprotected parts: (hands, arm, eyes and protected by gown: chest, gonads). For individual dosimetry Hp(10) in mSv was calculated, while using environmental dosemeters KERMA in air in mGy. This work will present results obtained from ca. 100 environmental placed in CathLab room. Additionally personal doses for whole body and for parts of

  19. Reliability of the input admittance of bowed-string instruments measured by the hammer method.

    Science.gov (United States)

    Zhang, Ailin; Woodhouse, Jim

    2014-12-01

    The input admittance at the bridge, measured by hammer testing, is often regarded as the most useful and convenient measurement of the vibrational behavior of a bowed string instrument. However, this method has been questioned, due especially to differences between human bowing and hammer impact. The goal of the research presented here is to investigate the reliability and accuracy of this classic hammer method. Experimental studies were carried out on cellos, with three different driving conditions and three different boundary conditions. Results suggest that there is nothing fundamentally different about the hammer method, compared to other kinds of excitation. The third series of experiments offers an opportunity to explore the difference between the input admittance measuring from one bridge corner to another and that of single strings. The classic measurement is found to give a reasonable approximation to that of all four strings. Some possible differences between the hammer method and normal bowing and implications of the acoustical results are also discussed.

  20. A postprocessing method in the HMC framework for predicting gene function based on biological instrumental data

    Science.gov (United States)

    Feng, Shou; Fu, Ping; Zheng, Wenbin

    2018-03-01

    Predicting gene function based on biological instrumental data is a complicated and challenging hierarchical multi-label classification (HMC) problem. When using local approach methods to solve this problem, a preliminary results processing method is usually needed. This paper proposed a novel preliminary results processing method called the nodes interaction method. The nodes interaction method revises the preliminary results and guarantees that the predictions are consistent with the hierarchy constraint. This method exploits the label dependency and considers the hierarchical interaction between nodes when making decisions based on the Bayesian network in its first phase. In the second phase, this method further adjusts the results according to the hierarchy constraint. Implementing the nodes interaction method in the HMC framework also enhances the HMC performance for solving the gene function prediction problem based on the Gene Ontology (GO), the hierarchy of which is a directed acyclic graph that is more difficult to tackle. The experimental results validate the promising performance of the proposed method compared to state-of-the-art methods on eight benchmark yeast data sets annotated by the GO.

  1. Improved retrieval of cloud base heights from ceilometer using a non-standard instrument method

    Science.gov (United States)

    Wang, Yang; Zhao, Chuanfeng; Dong, Zipeng; Li, Zhanqing; Hu, Shuzhen; Chen, Tianmeng; Tao, Fa; Wang, Yuzhao

    2018-04-01

    Cloud-base height (CBH) is a basic cloud parameter but has not been measured accurately, especially under polluted conditions due to the interference of aerosol. Taking advantage of a comprehensive field experiment in northern China in which a variety of advanced cloud probing instruments were operated, different methods of detecting CBH are assessed. The Micro-Pulse Lidar (MPL) and the Vaisala ceilometer (CL51) provided two types of backscattered profiles. The latter has been employed widely as a standard means of measuring CBH using the manufacturer's operational algorithm to generate standard CBH products (CL51 MAN) whose quality is rigorously assessed here, in comparison with a research algorithm that we developed named value distribution equalization (VDE) algorithm. It was applied to both the profiles of lidar backscattering data from the two instruments. The VDE algorithm is found to produce more accurate estimates of CBH for both instruments and can cope with heavy aerosol loading conditions well. By contrast, CL51 MAN overestimates CBH by 400 m and misses many low level clouds under such conditions. These findings are important given that CL51 has been adopted operationally by many meteorological stations in China.

  2. Effect of freezing method and frozen storage duration on instrumental quality of lamb throughout display.

    Science.gov (United States)

    Muela, E; Sañudo, C; Campo, M M; Medel, I; Beltrán, J A

    2010-04-01

    This study evaluated the effect of freezing method (FM) (air blast freezer, freezing tunnel, or nitrogen chamber) and frozen storage duration (FSD) (1, 3, or 6 months) on the instrumental measurements of quality of thawed lamb, aged for a total of 72 h, throughout a 10-d display period, compared to the quality of fresh meat. pH, colour, lipid oxidation, thawing, and cooking losses in Longissimus thoracis and lumborum muscle, were determined following standard methods. FM affected yellowness, FSD redness and thawing losses, and both affected oxidation (increased as freezing rate decreased and/or as storage duration increased). When compared with fresh meat, the main differences appeared on oxidation (where a significant interaction between treatment (3FM x 3FSD + fresh meat) with display duration was detected), and on total losses (thaw + cook losses). Oxidation was lower in fresh meat, but values were not significantly different from those stored frozen for 1 month. Fresh meat had smaller total losses than did thawed meat, but losses were not significantly different from meat frozen in the freezing tunnel and stored frozen for 1 month. Display duration had a greater effect on instrumental quality parameters than did FM or FSD. pH, b*, and oxidation increased, and L* and a* decreased with an increase in the number of days on display. In conclusion, neither freezing method nor frozen storage up to 6 months influenced extensively the properties of lamb when instrumental measurements of quality were measured in meat that had been displayed for 1d after thawing. The small deterioration shown in this study should not give consumers concerns about frozen meat. 2009 Elsevier Ltd. All rights reserved.

  3. Application of instrumental neutron activation analysis and multivariate statistical methods to archaeological Syrian ceramics

    International Nuclear Information System (INIS)

    Bakraji, E. H.; Othman, I.; Sarhil, A.; Al-Somel, N.

    2002-01-01

    Instrumental neutron activation analysis (INAA) has been utilized in the analysis of thirty-seven archaeological ceramics fragment samples collected from Tal AI-Wardiate site, Missiaf town, Hamma city, Syria. 36 chemical elements were determined. These elemental concentrations have been processed using two multivariate statistical methods, cluster and factor analysis in order to determine similarities and correlation between the various samples. Factor analysis confirms that samples were correctly classified by cluster analysis. The results showed that samples can be considered to be manufactured using three different sources of raw material. (author)

  4. Trace elements in cigarette tobacco by a method of instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Noordin Ibrahim

    1986-01-01

    A total of ten cigarette brands were investigated for determining the trace elemental concentrations in tobacco so as to assess their role in the induction of related diseases through smoking. A method instrumental Neutron Activation analysis was employed due to high sensitivity, speed and ability to analyse sample for a wide spectrum of elements simultaneously. A total of 18 elements were detected of which the majority are toxic elements. A full result and conclusion will be reported in the forthcoming paper. (A.J.)

  5. A Method of Separation Assurance for Instrument Flight Procedures at Non-Radar Airports

    Science.gov (United States)

    Conway, Sheila R.; Consiglio, Maria

    2002-01-01

    A method to provide automated air traffic separation assurance services during approach to or departure from a non-radar, non-towered airport environment is described. The method is constrained by provision of these services without radical changes or ambitious investments in current ground-based technologies. The proposed procedures are designed to grant access to a large number of airfields that currently have no or very limited access under Instrument Flight Rules (IFR), thus increasing mobility with minimal infrastructure investment. This paper primarily addresses a low-cost option for airport and instrument approach infrastructure, but is designed to be an architecture from which a more efficient, albeit more complex, system may be developed. A functional description of the capabilities in the current NAS infrastructure is provided. Automated terminal operations and procedures are introduced. Rules of engagement and the operations are defined. Results of preliminary simulation testing are presented. Finally, application of the method to more terminal-like operations, and major research areas, including necessary piloted studies, are discussed.

  6. Instrumental neutron activation analysis as a routine method for rock analysis

    International Nuclear Information System (INIS)

    Rosenberg, R.J.

    1977-06-01

    Instrumental neutron activation methods for the analysis of geological samples have been developed. Special emphasis has been laid on the improvement of sensitivity and accuracy in order to maximize tha quality of the analyses. Furthermore, the procedures have been automated as far as possible in order to minimize the cost of the analysis. A short review of the basic literature is given followed by a description of the principles of the method. All aspects concerning the sensitivity are discussed thoroughly in view of the analyst's possibility of influencing them. Experimentally determined detection limits for Na, Al, K, Ca, Sc, Cr, Ti, V, Mn, Fe, Ni, Co, Rb, Zr, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Yb, Lu, Hf, Ta, Th and U are given. The errors of the method are discussed followed by actions taken to avoid them. The most significant error was caused by flux deviation, but this was avoided by building a rotating sample holder for rotating the samples during irradiation. A scheme for the INAA of 32 elements is proposed. The method has been automated as far as possible and an automatic γ-spectrometer and a computer program for the automatic calculation of the results are described. Furthermore, a completely automated uranium analyzer based on delayed neutron counting is described. The methods are discussed in view of their applicability to rock analysis. It is stated that the sensitivity varies considerably from element to element and instrumental activation analysis is an excellent method for the analysis of some specific elements like lanthanides, thorium and uranium but less so for many other elements. The accuracy is good varying from 2% to 10% for most elements. Instrumental activation analysis for most elements is rather an expensive method there being, however, a few exceptions. The most important of these is uranium. The analysis of uranium by delayed neutron counting is an inexpensive means for the analysis of large numbers of samples needed for

  7. Assessing Mucoadhesion in Polymer Gels: The Effect of Method Type and Instrument Variables

    Directory of Open Access Journals (Sweden)

    Jéssica Bassi da Silva

    2018-03-01

    Full Text Available The process of mucoadhesion has been widely studied using a wide variety of methods, which are influenced by instrumental variables and experiment design, making the comparison between the results of different studies difficult. The aim of this work was to standardize the conditions of the detachment test and the rheological methods of mucoadhesion assessment for semisolids, and introduce a texture profile analysis (TPA method. A factorial design was developed to suggest standard conditions for performing the detachment force method. To evaluate the method, binary polymeric systems were prepared containing poloxamer 407 and Carbopol 971P®, Carbopol 974P®, or Noveon® Polycarbophil. The mucoadhesion of systems was evaluated, and the reproducibility of these measurements investigated. This detachment force method was demonstrated to be reproduceable, and gave different adhesion when mucin disk or ex vivo oral mucosa was used. The factorial design demonstrated that all evaluated parameters had an effect on measurements of mucoadhesive force, but the same was not observed for the work of adhesion. It was suggested that the work of adhesion is a more appropriate metric for evaluating mucoadhesion. Oscillatory rheology was more capable of investigating adhesive interactions than flow rheology. TPA method was demonstrated to be reproducible and can evaluate the adhesiveness interaction parameter. This investigation demonstrates the need for standardized methods to evaluate mucoadhesion and makes suggestions for a standard study design.

  8. LXI Technologies for Remote Labs: An Extension of the VISIR Project

    OpenAIRE

    Jaime Irurzun; Olga Dziabenko; Pablo Orduña; Diego Lopez-de-Ipiña; Ignacio Angulo; Javier García-Zubia; Unai Hernandez-Jayo

    2010-01-01

    Several remote labs to support analog circuits are presented in this work. They are analyzed from the software and the hardware point of view. VISIR remote lab is one of these labs. After this analysis, a new VISIR remote lab approach is presented. This extension of the VISIR project is based on LXI technologies with the aim of becoming it in a remote lab easily interchangeable with other instruments. The addition of new components and experiments is also easier and cheaper.

  9. Two Methods of Determining Total Phenolic Content of Foods and Juices in a General, Organic, and Biological (GOB) Chemistry Lab

    Science.gov (United States)

    Shaver, Lee Alan; Leung, Sam H.; Puderbaugh, Amy; Angel, Stephen A.

    2011-01-01

    The determination of total phenolics in foods and fruit juices was used successfully as a laboratory experiment in our undergraduate general, organic, and biological (GOB) chemistry course. Two different colorimetric methods were used over three years and comparative student results indicate that a ferrous ammonium sulfate (FAS) indicator…

  10. A method for retrieving endodontic or atypical nonendodontic separated instruments from the root canal: a report of two cases.

    Science.gov (United States)

    Monteiro, Jardel Camilo do Carmo; Kuga, Milton Carlos; Dantas, Andrea Abi Rached; Jordão-Basso, Keren Cristina Fagundes; Keine, Katia Cristina; Ruchaya, Prashant Jay; Faria, Gisele; Leonardo, Renato de Toledo

    2014-11-01

    This clinical report presents a new method for retrieving separated instruments from the root canal with minimally invasive procedures. The presence of separated instrument in root canal may interfere in the endodontic treatment prognosis. There are several recommended methods to retrieve separated instruments, but some are difficult in clinically practice. This study describes two cases of separated instrument removal from the root canal using a stainless-steel prepared needle associated with a K-file. Case 1 presented a fractured gutta-percha condenser within the mandibular second premolar, it was separated during incorrect intracanal medication calcium hydroxide placement. Case 2 had a fractured sewing needle within the upper central incisor that the patient used to remove food debris from the root canal. After cervical preparation, the fractured instruments were fitted inside a prepared needle and then an endodontic instrument (#25 K-file) was adapted with clockwise turning motion between the needle inner wall and the fragment. The endodontic or atypical nonendodontic separated instrument may be easily pull on of the root canal using a single and low cost device. The methods for retrieving separated instruments from root canal are difficult and destructive procedures. The present case describes a simple method to solve this problem.

  11. Magnetic Media Lab

    Data.gov (United States)

    Federal Laboratory Consortium — This lab specializes in tape certification and performance characterization of high density digital tape and isprepared to support the certification of standard size...

  12. Fabrication and Prototyping Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Fabrication and Prototyping Lab for composite structures provides a wide variety of fabrication capabilities critical to enabling hands-on research and...

  13. Crystallization Formulation Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Crystallization Formulation Lab fills a critical need in the process development and optimization of current and new explosives and energetic formulations. The...

  14. USNA DIGITAL FORENSICS LAB

    Data.gov (United States)

    Federal Laboratory Consortium — To enable Digital Forensics and Computer Security research and educational opportunities across majors and departments. Lab MissionEstablish and maintain a Digital...

  15. A method of estimating GPS instrumental biases with a convolution algorithm

    Science.gov (United States)

    Li, Qi; Ma, Guanyi; Lu, Weijun; Wan, Qingtao; Fan, Jiangtao; Wang, Xiaolan; Li, Jinghua; Li, Changhua

    2018-03-01

    This paper presents a method of deriving the instrumental differential code biases (DCBs) of GPS satellites and dual frequency receivers. Considering that the total electron content (TEC) varies smoothly over a small area, one ionospheric pierce point (IPP) and four more nearby IPPs were selected to build an equation with a convolution algorithm. In addition, unknown DCB parameters were arranged into a set of equations with GPS observations in a day unit by assuming that DCBs do not vary within a day. Then, the DCBs of satellites and receivers were determined by solving the equation set with the least-squares fitting technique. The performance of this method is examined by applying it to 361 days in 2014 using the observation data from 1311 GPS Earth Observation Network (GEONET) receivers. The result was crosswise-compared with the DCB estimated by the mesh method and the IONEX products from the Center for Orbit Determination in Europe (CODE). The DCB values derived by this method agree with those of the mesh method and the CODE products, with biases of 0.091 ns and 0.321 ns, respectively. The convolution method's accuracy and stability were quite good and showed improvements over the mesh method.

  16. Automatic Recognition Method for Optical Measuring Instruments Based on Machine Vision

    Institute of Scientific and Technical Information of China (English)

    SONG Le; LIN Yuchi; HAO Liguo

    2008-01-01

    Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope (UTM) lens view image as an example, a 2-layer automatic recognition model for data reading is established after adopting a series of pre-processing algorithms. This model is an optimal combination of the correlation-based template matching method and a concurrent back propagation (BP) neural network. Multiple complementary feature extraction is used in generating the eigenvectors of the concurrent network. In order to improve fault-tolerance capacity, rotation invariant features based on Zernike moments are extracted from digit characters and a 4-dimensional group of the outline features is also obtained. Moreover, the operating time and reading accuracy can be adjusted dynamically by setting the threshold value. The experimental result indicates that the newly developed algorithm has optimal recognition precision and working speed. The average reading ratio can achieve 97.23%. The recognition method can automatically obtain the results of optical measuring instruments rapidly and stably without modifying their original structure, which meets the application requirements.

  17. The potential of soft computing methods in NPP instrumentation and control

    International Nuclear Information System (INIS)

    Hampel, R.; Chaker, N.; Kaestner, W.; Traichel, A.; Wagenknecht, M.; Gocht, U.

    2002-01-01

    The method of signal processing by soft computing include the application of fuzzy logic, synthetic neural networks, and evolutionary algorithms. The article contains an outline of the objectives and results of the application of fuzzy logic and methods of synthetic neural networks in nuclear measurement and control. The special requirements to be met by the software in safety-related areas with respect to reliability, evaluation, and validation are described. Possible uses may be in off-line applications in modeling, simulation, and reliability analysis as well as in on-line applications (real-time systems) for instrumentation and control. Safety-related aspects of signal processing are described and analyzed for the fuzzy logic and synthetic neural network concepts. Application are covered in selected examples. (orig.)

  18. Comparison of methods and instruments for 222Rn/220Rn progeny measurement

    International Nuclear Information System (INIS)

    Liu Yanyang; Shang Bing; Wu Yunyun; Zhou Qingzhi

    2012-01-01

    In this paper, comparisons were made among three methods of measurement (grab measurement, continuous measurement and integrating measurement) and also measurement of different instruments for a radon/thoron mixed chamber. Taking the optimized five-segment method as a comparison criterion, for the equilibrium-equivalent concentration of 222 Rn, measured results of Balm and 24 h integrating detectors are 31% and 29% higher than the criterion, the results of Wl x, however, is 20% lower; and for 220 Rn progeny, the results of Fiji-142, Kf-602D, BWLM and 24 h integrating detector are 86%, 18%, 28% and 36% higher than the criterion respectively, except that of WLx, which is 5% lower. For the differences shown, further research is needed. (authors)

  19. Comparison of neutron activation analysis with other instrumental methods for elemental analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    Regge, P. de; Lievens, F.; Delespaul, I.; Monsecour, M.

    1976-01-01

    A comparison of instrumental methods, including neutron activation analysis, X-ray fluorescence spectrometry, atomic absorption spectrometry and emission spectrometry, for the analysis of heavy metals in airborne particulate matter is described. The merits and drawbacks of each method for the routine analysis of a large number of samples are discussed. The sample preparation technique, calibration and statistical data relevant to each method are given. Concordant results are obtained by the different methods for Co, Cu, Ni, Pb and Zn. Less good agreement is obtained for Fe, Mn and V. The results are not in agreement for the elements Cd and Cr. Using data obtained on the dust sample distributed by Euratom-ISPRA within the framework of an interlaboratory comparison, the accuracy of each method for the various elements is estimated. Neutron activation analysis was found to be the most sensitive and accurate of the non-destructive analysis methods. Only atomic absorption spectrometry has a comparable sensitivity, but requires considerable preparation work. X-ray fluorescence spectrometry is less sensitive and shows biases for Cr and V. Automatic emission spectrometry with simultaneous measurement of the beam intensities by photomultipliers is the fastest and most economical technique, though at the expense of some precision and sensitivity. (author)

  20. Reforming Cookbook Labs

    Science.gov (United States)

    Peters, Erin

    2005-01-01

    Deconstructing cookbook labs to require the students to be more thoughtful could break down perceived teacher barriers to inquiry learning. Simple steps that remove or disrupt the direct transfer of step-by-step procedures in cookbook labs make students think more critically about their process. Through trials in the author's middle school…

  1. Payments to the Lab

    Science.gov (United States)

    Goals Recycling Green Purchasing Pollution Prevention Reusing Water Resources Environmental Management the Lab Make payments for event registrations, sponsorships, insurance, travel, other fees. Contact Treasury Team (505) 667-4090 Email If you need to make a payment to the Lab for an event registration

  2. Guidelines for Urban Labs

    DEFF Research Database (Denmark)

    Scholl, Christian; Agger Eriksen, Mette; Baerten, Nik

    2017-01-01

    urban lab initiatives from five different European cities: Antwerp (B), Graz and Leoben (A), Maastricht (NL) and Malmö (S). We do not pretend that these guidelines touch upon all possible challenges an urban lab may be confronted with, but we have incorporated all those we encountered in our...

  3. Detailed characterizations of a Comparative Reactivity Method (CRM) instrument: experiments vs. modelling

    Science.gov (United States)

    Michoud, V.; Hansen, R. F.; Locoge, N.; Stevens, P. S.; Dusanter, S.

    2015-04-01

    The Hydroxyl radical (OH) is an important oxidant in the daytime troposphere that controls the lifetime of most trace gases, whose oxidation leads to the formation of harmful secondary pollutants such as ozone (O3) and Secondary Organic Aerosols (SOA). In spite of the importance of OH, uncertainties remain concerning its atmospheric budget and integrated measurements of the total sink of OH can help reducing these uncertainties. In this context, several methods have been developed to measure the first-order loss rate of ambient OH, called total OH reactivity. Among these techniques, the Comparative Reactivity Method (CRM) is promising and has already been widely used in the field and in atmospheric simulation chambers. This technique relies on monitoring competitive OH reactions between a reference molecule (pyrrole) and compounds present in ambient air inside a sampling reactor. However, artefacts and interferences exist for this method and a thorough characterization of the CRM technique is needed. In this study, we present a detailed characterization of a CRM instrument, assessing the corrections that need to be applied on ambient measurements. The main corrections are, in the order of their integration in the data processing: (1) a correction for a change in relative humidity between zero air and ambient air, (2) a correction for the formation of spurious OH when artificially produced HO2 react with NO in the sampling reactor, and (3) a correction for a deviation from pseudo first-order kinetics. The dependences of these artefacts to various measurable parameters, such as the pyrrole-to-OH ratio or the bimolecular reaction rate constants of ambient trace gases with OH are also studied. From these dependences, parameterizations are proposed to correct the OH reactivity measurements from the abovementioned artefacts. A comparison of experimental and simulation results is then discussed. The simulations were performed using a 0-D box model including either (1) a

  4. Using method triangulation to validate a new instrument (CPWQ-com) assessing cancer patients' satisfaction with communication

    DEFF Research Database (Denmark)

    Ross, Lone; Lundstrøm, Louise Hyldborg; Petersen, Morten Aagaard

    2012-01-01

    Patients' perceptions of care including the communication with health care staff is recognized as an important aspect of the quality of cancer care. Using mixed methods, we developed and validated a short instrument assessing this communication.......Patients' perceptions of care including the communication with health care staff is recognized as an important aspect of the quality of cancer care. Using mixed methods, we developed and validated a short instrument assessing this communication....

  5. Evaluation of the applicability of an energy method to calculate the damping in a lab-scale structure: 10th International Conference on Structural Dynamics, EURODYN 2017. 10 September 2017 through 13 September 2017

    NARCIS (Netherlands)

    Gómez, S.S.; Metrekine, A.

    2017-01-01

    The aim of this paper is to identify the local energy dissipation in a lab-scale structure by means of the energy flow analysis. In most of the existing approaches the damping is identified either in terms of the modal damping factors or at the material scale. In this paper, an alternative method to

  6. Methods and instrumentation for investigating Hall sensors during their irradiation in nuclear research reactors

    International Nuclear Information System (INIS)

    Bolshakova, I.; Holyaka, R.; Makido, E.; Marusenkov, A.; Shurygin, F.; Yerashok, V.; Moreau, P. J.; Vayakis, G.; Duran, I.; Stockel, J.; Chekanov, V.; Konopleva, R.; Nazarkin, I.; Kulikov, S.; Leroy, C.

    2009-01-01

    Present work discusses the issues of creating the instrumentation for testing the semiconductor magnetic field sensors during their irradiation with neutrons in nuclear reactors up to fluences similar to neutron fluences in steady-state sensor locations in ITER. The novelty of the work consists in Hall sensor parameters being investigated: first, directly during the irradiation (in real time), and, second, at high irradiation levels (fast neutron fluence > 10 18 n/cm 2 ). Developed instrumentation has been successfully tested and applied in the research experiments on radiation stability of magnetic sensors in IBR-2 (JINR, Dubna) and VVR-M (PNPI, Saint-Petersburg) reactors. The 'Remote-Rad' bench consists of 2 heads (head 1 and head 2) bearing investigated sensors put in a ceramic setting, of electronic unit, of personal computer and of signal lines. Each head contains 6 Hall sensors and a coil for generating test magnetic field. Moreover head 1 contains thermocouples for temperature measurement while the temperature of head 2 is measured by thermo-resistive method. The heads are placed in the reactor channel

  7. A fully Bayesian method for jointly fitting instrumental calibration and X-ray spectral models

    International Nuclear Information System (INIS)

    Xu, Jin; Yu, Yaming; Van Dyk, David A.; Kashyap, Vinay L.; Siemiginowska, Aneta; Drake, Jeremy; Ratzlaff, Pete; Connors, Alanna; Meng, Xiao-Li

    2014-01-01

    Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is 'pragmatic' in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use a principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.

  8. MODERN INSTRUMENTAL METHODS TO CONTROL THE SEED QUALITY IN ROOT VEGETABLES

    Directory of Open Access Journals (Sweden)

    F. B. Musaev

    2017-01-01

    Full Text Available The standard methods of analysis don’t meet all modern requirements to determine the seed a quality. These methods can’t unveil inner deficiencies that are very important to control seed viability. The capabilities of new instrumental method to analyze the seed quality of root vegetables were regarded in the article. The method of micro-focus radiography is distinguished from other existing methods by more sensitivity, rapidity and easiness to be performed. Based on practical importance the visualization of inner seed structure, it allows determining far before seed germination the degree of endosperm development and embryo; the presence of inner damages and infections, occupation and damage caused by pests. The use of micro-focus radiography enables to detect the degree of seed quality difference for some traits such as monogermity and self-fertilization that are economically valuable for breeding program in red beet. With the aid of the method the level of seed development, damage and inner deficiencies in carrot and parsnip can be revealed. In X-ray projection seeds of inbred lines of radish significantly differed from variety population ones for their underdevelopment in the inner structure. The advantage of the method is that seeds rest undamaged after quality analyzing and both can be used for further examination with the use of other methods or be sown; that is quite important for breeders, when handling with small quantity or collectable plant breeding material. The results radiography analyses can be saved and archived that enables to watch for seed qualities in dynamic; this data can be also used at possible arbitration cases. 

  9. Quality evaluation of fish and other seafood by traditional and nondestructive instrumental methods: Advantages and limitations.

    Science.gov (United States)

    Hassoun, Abdo; Karoui, Romdhane

    2017-06-13

    Although being one of the most vulnerable and perishable products, fish and other seafoods provide a wide range of health-promoting compounds. Recently, the growing interest of consumers in food quality and safety issues has contributed to the increasing demand for sensitive and rapid analytical technologies. Several traditional physicochemical, textural, sensory, and electrical methods have been used to evaluate freshness and authentication of fish and other seafood products. Despite the importance of these standard methods, they are expensive and time-consuming, and often susceptible to large sources of variation. Recently, spectroscopic methods and other emerging techniques have shown great potential due to speed of analysis, minimal sample preparation, high repeatability, low cost, and, most of all, the fact that these techniques are noninvasive and nondestructive and, therefore, could be applied to any online monitoring system. This review describes firstly and briefly the basic principles of multivariate data analysis, followed by the most commonly traditional methods used for the determination of the freshness and authenticity of fish and other seafood products. A special focus is put on the use of rapid and nondestructive techniques (spectroscopic techniques and instrumental sensors) to address several issues related to the quality of these products. Moreover, the advantages and limitations of each technique are reviewed and some perspectives are also given.

  10. Can smartphones be used to bring computer-based tasks from the lab to the field? A mobile experience-sampling method study about the pace of life.

    Science.gov (United States)

    Stieger, Stefan; Lewetz, David; Reips, Ulf-Dietrich

    2017-12-06

    Researchers are increasingly using smartphones to collect scientific data. To date, most smartphone studies have collected questionnaire data or data from the built-in sensors. So far, few studies have analyzed whether smartphones can also be used to conduct computer-based tasks (CBTs). Using a mobile experience-sampling method study and a computer-based tapping task as examples (N = 246; twice a day for three weeks, 6,000+ measurements), we analyzed how well smartphones can be used to conduct a CBT. We assessed methodological aspects such as potential technologically induced problems, dropout, task noncompliance, and the accuracy of millisecond measurements. Overall, we found few problems: Dropout rate was low, and the time measurements were very accurate. Nevertheless, particularly at the beginning of the study, some participants did not comply with the task instructions, probably because they did not read the instructions before beginning the task. To summarize, the results suggest that smartphones can be used to transfer CBTs from the lab to the field, and that real-world variations across device manufacturers, OS types, and CPU load conditions did not substantially distort the results.

  11. Microwave measurement of electrical fields in different media – principles, methods and instrumentation

    International Nuclear Information System (INIS)

    St. Kliment Ohridski, Faculty of Physics, James Bourchier blvd., Sofia 1164 (Bulgaria))" data-affiliation=" (Sofia University St. Kliment Ohridski, Faculty of Physics, James Bourchier blvd., Sofia 1164 (Bulgaria))" >Dankov, Plamen I

    2014-01-01

    This paper, presented in the frame of 4th International Workshop and Summer School on Plasma Physics (IWSSPP'2010, Kiten, Bulgaria), is a brief review of the principles, methods and instrumentation of the microwave measurements of electrical fields in different media. The main part of the paper is connected with the description of the basic features of many field sensors and antennas – narrow-, broadband and ultra-wide band, miniaturized, reconfigurable and active sensors, etc. The main features and applicability of these sensors for determination of electric fields in different media is discussed. The last part of the paper presents the basic principles for utilization of electromagnetic 3-D simulators for E-field measurement purposes. Two illustrative examples have been given – the determination of the dielectric anisotropy of multi-layer materials and discussion of the selectivity of hairpin-probe for determination of the electron density in dense gaseous plasmas.

  12. [Research on fractal tones generating method for tinnitus rehabilitation based on musical instrument digital interface technology].

    Science.gov (United States)

    Wang, Lu; He, Peiyu; Pan, Fan

    2014-08-01

    Tinnitus is a subjective sensation of sound without external stimulation. It has become ubiquitous and has therefore aroused much attention in recent years. According to the survey, ameliorating tinnitus based on special music and reducing pressure have good effects on the treatment of it. Meantime, vicious cycle chains between tinnitus and bad feelings have been broken. However, tinnitus therapy has been restricted by using looping music. Therefore, a method of generating fractal tones based on musical instrument digital interface (MIDI) technology and pink noise has been proposed in this paper. The experimental results showed that the fractal fragments were self-similar, incompletely reduplicate, and no sudden changes in pitches and would have a referential significance for tinnitus therapy.

  13. LabVIEW Support at CERN

    CERN Multimedia

    HR Department

    2010-01-01

    Since the beginning of 2009, due to the CERN restructuring, LabVIEW support moved from the IT to the EN department, joining the Industrial Controls and Electronics Group (ICE). LabVIEW support has been merged with the Measurement, Test and Analysis (MTA) section which, using LabVIEW, has developed most of the measurement systems to qualify the LHC magnets and components over the past 10 years. The post mortem analysis for the LHC hardware commissioning has also been fully implemented using LabVIEW, customised into a framework, called RADE, for CERN needs. The MTA section has started with a proactive approach sharing its tools and experience with the CERN LabVIEW community. Its framework (RADE) for CERN integrated application development has been made available to the users. Courses on RADE have been integrated into the standard National Instruments training program at CERN. RADE and LabVIEW support were merged together in 2010 on a single email address:labview.support@cern.ch For more information please...

  14. Comparison of fine particle measurements from a direct-reading instrument and a gravimetric sampling method.

    Science.gov (United States)

    Kim, Jee Young; Magari, Shannon R; Herrick, Robert F; Smith, Thomas J; Christiani, David C

    2004-11-01

    Particulate air pollution, specifically the fine particle fraction (PM2.5), has been associated with increased cardiopulmonary morbidity and mortality in general population studies. Occupational exposure to fine particulate matter can exceed ambient levels by a large factor. Due to increased interest in the health effects of particulate matter, many particle sampling methods have been developed In this study, two such measurement methods were used simultaneously and compared. PM2.5 was sampled using a filter-based gravimetric sampling method and a direct-reading instrument, the TSI Inc. model 8520 DUSTTRAK aerosol monitor. Both sampling methods were used to determine the PM2.5 exposure in a group of boilermakers exposed to welding fumes and residual fuel oil ash. The geometric mean PM2.5 concentration was 0.30 mg/m3 (GSD 3.25) and 0.31 mg/m3 (GSD 2.90)from the DUSTTRAK and gravimetric method, respectively. The Spearman rank correlation coefficient for the gravimetric and DUSTTRAK PM2.5 concentrations was 0.68. Linear regression models indicated that log, DUSTTRAK PM2.5 concentrations significantly predicted loge gravimetric PM2.5 concentrations (p gravimetric PM2.5 concentrations was found to be modified by surrogate measures for seasonal variation and type of aerosol. PM2.5 measurements from the DUSTTRAK are well correlated and highly predictive of measurements from the gravimetric sampling method for the aerosols in these work environments. However, results from this study suggest that aerosol particle characteristics may affect the relationship between the gravimetric and DUSTTRAK PM2.5 measurements. Recalibration of the DUSTTRAK for the specific aerosol, as recommended by the manufacturer, may be necessary to produce valid measures of airborne particulate matter.

  15. Eddy Covariance Method for CO2 Emission Measurements: CCS Applications, Principles, Instrumentation and Software

    Science.gov (United States)

    Burba, George; Madsen, Rod; Feese, Kristin

    2013-04-01

    The Eddy Covariance method is a micrometeorological technique for direct high-speed measurements of the transport of gases, heat, and momentum between the earth's surface and the atmosphere. Gas fluxes, emission and exchange rates are carefully characterized from single-point in-situ measurements using permanent or mobile towers, or moving platforms such as automobiles, helicopters, airplanes, etc. Since the early 1990s, this technique has been widely used by micrometeorologists across the globe for quantifying CO2 emission rates from various natural, urban and agricultural ecosystems [1,2], including areas of agricultural carbon sequestration. Presently, over 600 eddy covariance stations are in operation in over 120 countries. In the last 3-5 years, advancements in instrumentation and software have reached the point when they can be effectively used outside the area of micrometeorology, and can prove valuable for geological carbon capture and sequestration, landfill emission measurements, high-precision agriculture and other non-micrometeorological industrial and regulatory applications. In the field of geological carbon capture and sequestration, the magnitude of CO2 seepage fluxes depends on a variety of factors. Emerging projects utilize eddy covariance measurement to monitor large areas where CO2 may escape from the subsurface, to detect and quantify CO2 leakage, and to assure the efficiency of CO2 geological storage [3,4,5,6,7,8]. Although Eddy Covariance is one of the most direct and defensible ways to measure and calculate turbulent fluxes, the method is mathematically complex, and requires careful setup, execution and data processing tailor-fit to a specific site and a project. With this in mind, step-by-step instructions were created to introduce a novice to the conventional Eddy Covariance technique [9], and to assist in further understanding the method through more advanced references such as graduate-level textbooks, flux networks guidelines, journals

  16. Instrumentation and methods evaluations for shallow land burial of waste materials: water erosion

    International Nuclear Information System (INIS)

    Hostetler, D.D.; Murphy, E.M.; Childs, S.W.

    1981-08-01

    The erosion of geologic materials by water at shallow-land hazardous waste disposal sites can compromise waste containment. Erosion of protective soil from these sites may enhance waste transport to the biosphere through water, air, and biologic pathways. The purpose of this study was to review current methods of evaluating soil erosion and to recommend methods for use at shallow-land, hazardous waste burial sites. The basic principles of erosion control are: minimize raindrop impact on the soil surface; minimize runoff quantity; minimize runoff velocity; and maximize the soil's resistance to erosion. Generally soil erosion can be controlled when these principles are successfully applied at waste disposal sites. However, these erosion control practices may jeopardize waste containment. Typical erosion control practices may enhance waste transport by increasing subsurface moisture movement and biologic uptake of hazardous wastes. A two part monitoring program is recommended for US Department of Energy (DOE) hazardous waste disposal sites. The monitoring programs and associated measurement methods are designed to provide baseline data permitting analysis and prediction of long term erosion hazards at disposal sites. These two monitoring programs are: (1) site reconnaissance and tracking; and (2) site instrumentation. Some potential waste transport problems arising from erosion control practices are identified. This report summarizes current literature regarding water erosion prediction and control

  17. PCI bus data transmission system based on LabVIEW language

    International Nuclear Information System (INIS)

    Li Jingwei; Wu Jie

    2013-01-01

    Background: The traditional FPGA program is developed with HDL code, which will cost a lot of time and energy in writing and debugging the underlying code. Purpose: We want to use a new approach to develop FPGA program, which will greatly accelerate the FPGA development. And our system can also be compatible with NI (American National Instrument Company) CRIO case. Methods: We also choose FPGA as the core of hardware and use LabVIEW language (a graphical language) to develop FPGA program. Results: We realized a universal data interface platform by LabVIEW, which is different from the traditional FPGA development process using HDL. This system can provide many functions such as data processing, data IO and implementation of the PCI interface communication. Conclusions: FPGA program can also be developed by LabVIEW language, and it can achieve the corresponding data interface functions, and greatly reduce development time. (authors)

  18. Kinematic Labs with Mobile Devices

    Science.gov (United States)

    Kinser, Jason M.

    2015-07-01

    This book provides 13 labs spanning the common topics in the first semester of university-level physics. Each lab is designed to use only the student's smartphone, laptop and items easily found in big-box stores or a hobby shop. Each lab contains theory, set-up instructions and basic analysis techniques. All of these labs can be performed outside of the traditional university lab setting and initial costs averaging less than 8 per student, per lab.

  19. Acceptance of an assistive robot in older adults: a mixed-method study of human–robot interaction over a 1-month period in the Living Lab setting

    Science.gov (United States)

    Wu, Ya-Huei; Wrobel, Jérémy; Cornuet, Mélanie; Kerhervé, Hélène; Damnée, Souad; Rigaud, Anne-Sophie

    2014-01-01

    Background There is growing interest in investigating acceptance of robots, which are increasingly being proposed as one form of assistive technology to support older adults, maintain their independence, and enhance their well-being. In the present study, we aimed to observe robot-acceptance in older adults, particularly subsequent to a 1-month direct experience with a robot. Subjects and methods Six older adults with mild cognitive impairment (MCI) and five cognitively intact healthy (CIH) older adults were recruited. Participants interacted with an assistive robot in the Living Lab once a week for 4 weeks. After being shown how to use the robot, participants performed tasks to simulate robot use in everyday life. Mixed methods, comprising a robot-acceptance questionnaire, semistructured interviews, usability-performance measures, and a focus group, were used. Results Both CIH and MCI subjects were able to learn how to use the robot. However, MCI subjects needed more time to perform tasks after a 1-week period of not using the robot. Both groups rated similarly on the robot-acceptance questionnaire. They showed low intention to use the robot, as well as negative attitudes toward and negative images of this device. They did not perceive it as useful in their daily life. However, they found it easy to use, amusing, and not threatening. In addition, social influence was perceived as powerful on robot adoption. Direct experience with the robot did not change the way the participants rated robots in their acceptance questionnaire. We identified several barriers to robot-acceptance, including older adults’ uneasiness with technology, feeling of stigmatization, and ethical/societal issues associated with robot use. Conclusion It is important to destigmatize images of assistive robots to facilitate their acceptance. Universal design aiming to increase the market for and production of products that are usable by everyone (to the greatest extent possible) might help to

  20. Emission quantification using the tracer gas dispersion method: The influence of instrument, tracer gas species and source simulation

    DEFF Research Database (Denmark)

    Delre, Antonio; Mønster, Jacob; Samuelsson, Jerker

    2018-01-01

    The tracer gas dispersion method (TDM) is a remote sensing method used for quantifying fugitive emissions by relying on the controlled release of a tracer gas at the source, combined with concentration measurements of the tracer and target gas plumes. The TDM was tested at a wastewater treatment...... plant for plant-integrated methane emission quantification, using four analytical instruments simultaneously and four different tracer gases. Measurements performed using a combination of an analytical instrument and a tracer gas, with a high ratio between the tracer gas release rate and instrument...... precision (a high release-precision ratio), resulted in well-defined plumes with a high signal-to-noise ratio and a high methane-to-tracer gas correlation factor. Measured methane emission rates differed by up to 18% from the mean value when measurements were performed using seven different instrument...

  1. Military Medical Leadership in Uniformed Medical Students: Creating a New Assessment Instrument Using the Delphi Method

    Science.gov (United States)

    2015-12-17

    gratitude to Erin Barry, who is the lynchpin, foundation, and soul of the Grunberg lab. There is little doubt in my mind that you are an integral part of...focus on charisma in TLT inspires Khoo (101) and others to warn against the “ dark -side” of charisma using examples of charismatic, yet nefarious...Khoo H, Burch G. 2008. The ‘ dark side’of leadership personality and transformational leadership: An exploratory study. Personality and Individual

  2. Awakening interest in the natural sciences - BASF's Kids' Labs.

    Science.gov (United States)

    Lang, Cinthia

    2012-01-01

    At BASF's Ludwigshafen headquarters, kids and young adults in grades 1-13 can learn about chemistry in the Kids' Labs. Different programs exist for different levels of knowledge. In the two 'Hands-on Lab H(2)O & Co.' Kids' Labs, students from grades 1-6 explore the secrets of chemistry. BASF Kids' Labs have now been set up in over 30 countries. In Switzerland alone, almost 2,000 students have taken part in the 'Water Loves Chemistry' Kids' Lab since it was started in 2011. In Alsace, 600 students have participated to date. In the Teens' Lab 'Xplore Middle School', middle school students explore five different programs with the themes 'substance labyrinth', 'nutrition', 'coffee, caffeine & co.', 'cosmetics' and 'energy'. Biotechnological methods are the focus of the Teens' Lab 'Xplore Biotech' for students taking basic and advanced biology courses. In the 'Xplore High School' Teens' Lab, chemistry teachers present their own experimental lab instruction for students in basic and advanced chemistry courses. The Virtual Lab has been expanding the offerings of the BASF Kids' Labs since 2011. The online lab was developed by the company for the International Year Of Chemistry and gives kids and young adults the opportunity to do interactive experiments outside of the lab.

  3. Nuclear spectrometry signal acquisition and processing system based on LabVIEW and C

    International Nuclear Information System (INIS)

    Chen Xiaojun; Fang Fang; Chen Mingchi; Jiang Zancheng; Wang Min

    2008-01-01

    The process of designing nuclear spectrometry signal acquisition and processing system based on virtual instrument technology is showed in this article. For the deficiency of LabVIEW in big data analyzing and processing, a method is presented in which C programmer is inserted and applied in signal smoothing, peak searching and area of the peak calculating. A complete nuclear spectrometry signal acquisition, processing and document management system is implemented. (authors)

  4. Proceedings of a workshop on methods for neutron scattering instrumentation design

    International Nuclear Information System (INIS)

    Hjelm, R.P.

    1997-09-01

    The future of neutron and x-ray scattering instrument development and international cooperation was the focus of the workshop. The international gathering of about 50 participants representing 15 national facilities, universities and corporations featured oral presentations, posters, discussions and demonstrations. Participants looked at a number of issues concerning neutron scattering instruments and the tools used in instrument design. Objectives included: (1) determining the needs of the neutron scattering community in instrument design computer code and information sharing to aid future instrument development, (2) providing for a means of training scientists in neutron scattering and neutron instrument techniques, and (3) facilitating the involvement of other scientists in determining the characteristics of new instruments that meet future scientific objectives, and (4) fostering international cooperation in meeting these needs. The scope of the meeting included: (1) a review of x-ray scattering instrument design tools, (2) a look at the present status of neutron scattering instrument design tools and models of neutron optical elements, and (3) discussions of the present and future needs of the neutron scattering community. Selected papers were abstracted separately for inclusion to the Energy Science and Technology Database

  5. Proceedings of a workshop on methods for neutron scattering instrumentation design

    Energy Technology Data Exchange (ETDEWEB)

    Hjelm, R.P. [ed.] [Los Alamos National Lab., NM (United States)

    1997-09-01

    The future of neutron and x-ray scattering instrument development and international cooperation was the focus of the workshop. The international gathering of about 50 participants representing 15 national facilities, universities and corporations featured oral presentations, posters, discussions and demonstrations. Participants looked at a number of issues concerning neutron scattering instruments and the tools used in instrument design. Objectives included: (1) determining the needs of the neutron scattering community in instrument design computer code and information sharing to aid future instrument development, (2) providing for a means of training scientists in neutron scattering and neutron instrument techniques, and (3) facilitating the involvement of other scientists in determining the characteristics of new instruments that meet future scientific objectives, and (4) fostering international cooperation in meeting these needs. The scope of the meeting included: (1) a review of x-ray scattering instrument design tools, (2) a look at the present status of neutron scattering instrument design tools and models of neutron optical elements, and (3) discussions of the present and future needs of the neutron scattering community. Selected papers were abstracted separately for inclusion to the Energy Science and Technology Database.

  6. Laser Research Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Laser Research lab is thecenter for the development of new laser sources, nonlinear optical materials, frequency conversion processes and laser-based sensors for...

  7. Clothing Systems Design Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Clothing Systems Design Lab houses facilities for the design and rapid prototyping of military protective apparel.Other focuses include: creation of patterns and...

  8. The Udall Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Udall lab is interested in genome evolution and cotton genomics.The cotton genus ( Gossypium) is an extraordinarily diverse group with approximately 50 species...

  9. OpenLabNotes

    DEFF Research Database (Denmark)

    List, Markus; Franz, Michael; Tan, Qihua

    2015-01-01

    be advantageous if an ELN was Integrated with a laboratory information management system to allow for a comprehensive documentation of experimental work including the location of samples that were used in a particular experiment. Here, we present OpenLabNotes, which adds state-of-the-art ELN capabilities to Open......LabFramework, a powerful and flexible laboratory information management system. In contrast to comparable solutions, it allows to protect the intellectual property of its users by offering data protection with digital signatures. OpenLabNotes effectively Closes the gap between research documentation and sample management......, thus making Open-Lab Framework more attractive for laboratories that seek to increase productivity through electronic data management....

  10. LIDAR Research & Development Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The LIDAR Research and Development labs are used to investigate and improve LIDAR components such as laser sources, optical signal detectors and optical filters. The...

  11. CDC Lab Values

    Centers for Disease Control (CDC) Podcasts

    More than fifteen hundred scientists fill the lab benches at CDC, logging more than four million hours each year. CDC’s laboratories play a critical role in the agency’s ability to find, stop, and prevent disease outbreaks. This podcast provides a brief overview of what goes on inside CDC’s labs, and why this work makes a difference in American’s health.

  12. Field estimation of soil water content. A practical guide to methods, instrumentation and sensor technology

    International Nuclear Information System (INIS)

    2008-01-01

    During a period of five years, an international group of soil water instrumentation experts were contracted by the International Atomic Energy Agency to carry out a range of comparative assessments of soil water sensing methods under laboratory and field conditions. The detailed results of those studies are published elsewhere. Most of the devices examined worked well some of the time, but most also performed poorly in some circumstances. The group was also aware that the choice of a water measurement technology is often made for economic, convenience and other reasons, and that there was a need to be able to obtain the best results from any device used. The choice of a technology is sometimes not made by the ultimate user, or even if it is, the main constraint may be financial rather than technical. Thus, this guide is presented in a way that allows the user to obtain the best performance from any instrument, while also providing guidance as to which instruments perform best under given circumstances. That said, this expert group of the IAEA reached several important conclusions: (1) the field calibrated neutron moisture meter (NMM) remains the most accurate and precise method for soil profile water content determination in the field, and is the only indirect method capable of providing accurate soil water balance data for studies of crop water use, water use efficiency, irrigation efficiency and irrigation water use efficiency, with a minimum number of access tubes; (2) those electromagnetic sensors known as capacitance sensors exhibit much more variability in the field than either the NMM or direct soil water measurements, and they are not recommended for soil water balance studies for this reason (impractically large numbers of access tubes and sensors are required) and because they are rendered inaccurate by changes in soil bulk electrical conductivity (including temperature effects) that often occur in irrigated soils, particularly those containing

  13. Cluster cosmological analysis with X ray instrumental observables: introduction and testing of AsPIX method

    International Nuclear Information System (INIS)

    Valotti, Andrea

    2016-01-01

    Cosmology is one of the fundamental pillars of astrophysics, as such it contains many unsolved puzzles. To investigate some of those puzzles, we analyze X-ray surveys of galaxy clusters. These surveys are possible thanks to the bremsstrahlung emission of the intra-cluster medium. The simultaneous fit of cluster counts as a function of mass and distance provides an independent measure of cosmological parameters such as Ω m , σ s , and the dark energy equation of state w0. A novel approach to cosmological analysis using galaxy cluster data, called top-down, was developed in N. Clerc et al. (2012). This top-down approach is based purely on instrumental observables that are considered in a two-dimensional X-ray color-magnitude diagram. The method self-consistently includes selection effects and scaling relationships. It also provides a means of bypassing the computation of individual cluster masses. My work presents an extension of the top-down method by introducing the apparent size of the cluster, creating a three-dimensional X-ray cluster diagram. The size of a cluster is sensitive to both the cluster mass and its angular diameter, so it must also be included in the assessment of selection effects. The performance of this new method is investigated using a Fisher analysis. In parallel, I have studied the effects of the intrinsic scatter in the cluster size scaling relation on the sample selection as well as on the obtained cosmological parameters. To validate the method, I estimate uncertainties of cosmological parameters with MCMC method Amoeba minimization routine and using two simulated XMM surveys that have an increasing level of complexity. The first simulated survey is a set of toy catalogues of 100 and 10000 deg 2 , whereas the second is a 1000 deg 2 catalogue that was generated using an Aardvark semi-analytical N-body simulation. This comparison corroborates the conclusions of the Fisher analysis. In conclusion, I find that a cluster diagram that accounts

  14. Acceptance of an assistive robot in older adults: a mixed-method study of human-robot interaction over a 1-month period in the Living Lab setting.

    Science.gov (United States)

    Wu, Ya-Huei; Wrobel, Jérémy; Cornuet, Mélanie; Kerhervé, Hélène; Damnée, Souad; Rigaud, Anne-Sophie

    2014-01-01

    There is growing interest in investigating acceptance of robots, which are increasingly being proposed as one form of assistive technology to support older adults, maintain their independence, and enhance their well-being. In the present study, we aimed to observe robot-acceptance in older adults, particularly subsequent to a 1-month direct experience with a robot. Six older adults with mild cognitive impairment (MCI) and five cognitively intact healthy (CIH) older adults were recruited. Participants interacted with an assistive robot in the Living Lab once a week for 4 weeks. After being shown how to use the robot, participants performed tasks to simulate robot use in everyday life. Mixed methods, comprising a robot-acceptance questionnaire, semistructured interviews, usability-performance measures, and a focus group, were used. Both CIH and MCI subjects were able to learn how to use the robot. However, MCI subjects needed more time to perform tasks after a 1-week period of not using the robot. Both groups rated similarly on the robot-acceptance questionnaire. They showed low intention to use the robot, as well as negative attitudes toward and negative images of this device. They did not perceive it as useful in their daily life. However, they found it easy to use, amusing, and not threatening. In addition, social influence was perceived as powerful on robot adoption. Direct experience with the robot did not change the way the participants rated robots in their acceptance questionnaire. We identified several barriers to robot-acceptance, including older adults' uneasiness with technology, feeling of stigmatization, and ethical/societal issues associated with robot use. It is important to destigmatize images of assistive robots to facilitate their acceptance. Universal design aiming to increase the market for and production of products that are usable by everyone (to the greatest extent possible) might help to destigmatize assistive devices.

  15. Influence of different manufacturing methods on the cyclic fatigue of rotary nickel-titanium endodontic instruments.

    Science.gov (United States)

    Rodrigues, Renata C V; Lopes, Hélio P; Elias, Carlos N; Amaral, Georgiana; Vieira, Victor T L; De Martin, Alexandre S

    2011-11-01

    The aim of this study was to evaluate, by static and dynamic cyclic fatigue tests, the number of cycles to fracture (NCF) 2 types of rotary NiTi instruments: Twisted File (SybronEndo, Orange, CA), which is manufactured by a proprietary twisting process, and RaCe files (FKG Dentaire, La Chaux-de-Fonds, Switzerland), which are manufactured by grinding. Twenty Twisted Files (TFs) and 20 RaCe files #25/.006 taper instruments were allowed to rotate freely in an artificial curved canal at 310 rpm in a static or a dynamic model until fracture occurred. Measurements of the fractured fragments showed that fracture occurred at the point of maximum flexure in the midpoint of the curved segment. The NCF was significantly lower for RaCe instruments compared with TFs. The NCF was also lower for instruments subjected to the static test compared with the dynamic model in both groups. Scanning electron microscopic analysis revealed ductile morphologic characteristics on the fractured surfaces of all instruments and no plastic deformation in their helical shafts. Rotary NiTi endodontic instruments manufactured by twisting present greater resistance to cyclic fatigue compared with instruments manufactured by grinding. The fracture mode observed in all instruments was of the ductile type. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector

    Directory of Open Access Journals (Sweden)

    Adak Tridibesh

    2009-05-01

    Full Text Available Abstract Background Mosquitoes are intermediate hosts for numerous disease causing organisms. Vector control is one of the most investigated strategy for the suppression of mosquito-borne diseases. Anopheles stephensi is one of the vectors of malaria parasite Plasmodium vivax. The parasite undergoes major developmental and maturation steps within the mosquito midgut and little is known about Anopheles-associated midgut microbiota. Identification and characterization of the mosquito midgut flora is likely to contribute towards better understanding of mosquito biology including longevity, reproduction and mosquito-pathogen interactions that are important to evolve strategies for vector control mechanisms. Results Lab-reared and field-collected A. stephensi male, female and larvae were screened by "culture-dependent and culture-independent" methods. Five 16S rRNA gene library were constructed form lab and field-caught A. stephensi mosquitoes and a total of 115 culturable isolates from both samples were analyzed further. Altogether, 68 genera were identified from midgut of adult and larval A. stephensi, 53 from field-caught and 15 from lab-reared mosquitoes. A total of 171 and 44 distinct phylotypes having 85 to 99% similarity with the closest database matches were detected among field and lab-reared A. stephensi midgut, respectively. These OTUs had a Shannon diversity index value of 1.74–2.14 for lab-reared and in the range of 2.75–3.49 for field-caught A. stephensi mosquitoes. The high species evenness values of 0.93 to 0.99 in field-collected adult and larvae midgut flora indicated the vastness of microbial diversity retrieved by these approaches. The dominant bacteria in field-caught adult male A. stephensi were uncultured Paenibacillaceae while in female and in larvae it was Serratia marcescens, on the other hand in lab-reared mosquitoes, Serratia marcescens and Cryseobacterium meninqosepticum bacteria were found to be abundant. Conclusion

  17. Instrumental neutron activation analysis of river habitants by the k(0)-standardization method

    International Nuclear Information System (INIS)

    Momoshima, N.; Toyoshima, T.; Matsushita, R.; Fukuda, A.; Hibino, K.

    2005-01-01

    Analysis of metal concentrations in samples use reference materials for determination, which means elements out of the references are not possible to be determined. The instrumental neutron activation analysis (INAA) with k(O)-standardization method makes possible to determine metals without use of reference materials, which is very attractive for environmental sample analysis, River habitants would be available as a bio-indicator from which river water quality or metal contamination level could be evaluated. We analyzed river fishes and river insects by INAA with k(O)-standardization to examine the possibility of these habitants as a bio-indicator of water system. Small fishes, Oryzias latipes and Gambusia affinis were collected at 3 different rivers every month and river insects, families of Heptageniidae, Baetidae, Perlidae, Hydropsychidae, Psephenidae were collected at a fixed point of the river. The dried samples were irradiated at the research reactor, JRR-4 (3.5MW), JAERI for 10 min and 3 h. 17 elements (Na, K, Ca, Sc, Cr, Mn, Fe, Co, Zn, As, Se, Br, Rb, Sr, Ba, Ce and Sm) were determined by the NAA-k(0) method, showing effectiveness of the present method for environmental sample analysis. The metals observed in the fishes were the highest in Ca and the lowest in Sc, ranging from 10 5 mg/kg-dry weigh in Ca to 10 -2 mg/kg-dry weight in Sc. The differences in metal concentrations were examined by statistical analysis with t-test. Ca, Na and Br concentrations differ between species, Oryzias latipes and Gambusia, and Fe, Sc, Co, Zn and Se concentrations differ among rivers. No difference was observed on K, Rb and Sr concentrations.

  18. Injection Methods and Instrumentation for Serial X-ray Free Electron Laser Experiments

    Science.gov (United States)

    James, Daniel

    Scientists have used X-rays to study biological molecules for nearly a century. Now with the X-ray free electron laser (XFEL), new methods have been developed to advance structural biology. These new methods include serial femtosecond crystallography, single particle imaging, solution scattering, and time resolved techniques. The XFEL is characterized by high intensity pulses, which are only about 50 femtoseconds in duration. The intensity allows for scattering from microscopic particles, while the short pulses offer a way to outrun radiation damage. XFELs are powerful enough to obliterate most samples in a single pulse. While this allows for a "diffract and destroy" methodology, it also requires instrumentation that can position microscopic particles into the X-ray beam (which may also be microscopic), continuously renew the sample after each pulse, and maintain sample viability during data collection. Typically these experiments have used liquid microjets to continuously renew sample. The high flow rate associated with liquid microjets requires large amounts of sample, most of which runs to waste between pulses. An injector designed to stream a viscous gel-like material called lipidic cubic phase (LCP) was developed to address this problem. LCP, commonly used as a growth medium for membrane protein crystals, lends itself to low flow rate jetting and so reduces the amount of sample wasted significantly. This work discusses sample delivery and injection for XFEL experiments. It reviews the liquid microjet method extensively, and presents the LCP injector as a novel device for serial crystallography, including detailed protocols for the LCP injector and anti-settler operation.

  19. Clinical, laboratory and instrumental methods of pre-surgical diagnosis of the parathyroid glands cancer

    Directory of Open Access Journals (Sweden)

    Natalia G. Mokrysheva

    2017-12-01

    Full Text Available Backgraund. When defining symptomatic primary hyperparathyroidism (PHPT, differential diagnosis between a benign and malignant neoplasm of parathyroid glands (PG may be challenging. The diagnosis of carcinoma or a benign tumor determines the extent of the surgical intervention and further observation tactics. Aims. The purpose of the study is to determine the clinical and laboratory and instrumental predictors of PG cancer. Materials and methods. A retrospective study included 385 patients with PHPT (273 with adenomas of the PG, 66 with hyperplasia, and 19 patients with cancer of the PG, who had been examined and operated from 2000 to 2014. The primary goal of the study was to define the level of ionized calcium (Ca++, parathyroid hormone (PTH, and the volume of the tumor PG specific for cancer of the PG. The level of parathyroid hormone (PTH was determined by electrochemoluminescent method on the Roche analyzer Cobas 6000; ionized calcium (Ca++ ion-selective method. The size of the PG was determined by the ellipse formula: V(cm3 = (A × B × C × 0.49 by ultrasound investigation using the Valuson E8 device from General Electric. Results. The group of patients with PG carcinoma showed the increased level of Ca++ of more than 1.60 mmol/l (p = 0.004 and increased level of PTH of more than 600 pg/ml (p = 0.03. The size of tumors of more than 6 cm3 is more typical to malignant neoplasm compared to the adenoma of the PG (p = 0.01. Conclusions. The group of patients with PHPT that are at risk of having PG carcinoma include individuals that have a combination of the following indicators: PTH levels of more than 600 pg/ml, an increase in ionized calcium of more than 1.60 mmol/l, the tumor size of more than 6 cm3.

  20. A damage detection method for instrumented civil structures using prerecorded Green’s functions and cross-correlation

    OpenAIRE

    Heckman, Vanessa; Kohler, Monica; Heaton, Thomas

    2011-01-01

    Automated damage detection methods have application to instrumented structures that are susceptible to types of damage that are difficult or costly to detect. The presented method has application to the detection of brittle fracture of welded beam-column connections in steel moment-resisting frames (MRFs), where locations of potential structural damage are known a priori. The method makes use of a prerecorded catalog of Green’s function templates and a cross-correlation method ...

  1. LabVIEW Real-Time

    CERN Multimedia

    CERN. Geneva; Flockhart, Ronald Bruce; Seppey, P

    2003-01-01

    With LabVIEW Real-Time, you can choose from a variety of RT Series hardware. Add a real-time data acquisition component into a larger measurement and automation system or create a single stand-alone real-time solution with data acquisition, signal conditioning, motion control, RS-232, GPIB instrumentation, and Ethernet connectivity. With the various hardware options, you can create a system to meet your precise needs today, while the modularity of the system means you can add to the solution as your system requirements grow. If you are interested in Reliable and Deterministic systems for Measurement and Automation, you will profit from this seminar. Agenda: Real-Time Overview LabVIEW RT Hardware Platforms - Linux on PXI Programming with LabVIEW RT Real-Time Operating Systems concepts Timing Applications Data Transfer

  2. Assessing learning outcomes in middle-division classical mechanics: The Colorado Classical Mechanics and Math Methods Instrument

    Science.gov (United States)

    Caballero, Marcos D.; Doughty, Leanne; Turnbull, Anna M.; Pepper, Rachel E.; Pollock, Steven J.

    2017-06-01

    Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level classical mechanics and math methods course (CM 1) at CU Boulder, we have developed a tool to assess student learning of CM 1 concepts in the upper division. The Colorado Classical Mechanics and Math Methods Instrument (CCMI) builds on faculty consensus learning goals and systematic observations of student difficulties. The result is a 9-question open-ended post test that probes student learning in the first half of a two-semester classical mechanics and math methods sequence. In this paper, we describe the design and development of this instrument, its validation, and measurements made in classes at CU Boulder and elsewhere.

  3. Assessing learning outcomes in middle-division classical mechanics: The Colorado Classical Mechanics and Math Methods Instrument

    Directory of Open Access Journals (Sweden)

    Marcos D. Caballero

    2017-04-01

    Full Text Available Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level classical mechanics and math methods course (CM 1 at CU Boulder, we have developed a tool to assess student learning of CM 1 concepts in the upper division. The Colorado Classical Mechanics and Math Methods Instrument (CCMI builds on faculty consensus learning goals and systematic observations of student difficulties. The result is a 9-question open-ended post test that probes student learning in the first half of a two-semester classical mechanics and math methods sequence. In this paper, we describe the design and development of this instrument, its validation, and measurements made in classes at CU Boulder and elsewhere.

  4. Trace elements determination in silicon and ferrosilicon reference materials by instrumental neutron activation analysis method

    International Nuclear Information System (INIS)

    Moreira, Edson Goncalves; Vasconcellos, Marina Beatriz Agostini; Saiki, Mitiko; Iamashita, Celia Omine

    2002-01-01

    The use of certified reference materials, CRM, is of uppermost importance in the rastreability realization of the measurement process. At times, CRM use is restricted by the non existence of a suitable CRM with similarity to the sample in respect to matrix composition or with element levels in different orders of magnitude. IPT Chemical Division launched a project to prepare a metallic silicon CRM, due to the requirements of the industries in this field. To characterize this new CRM, IPEN Nuclear Reactor Center is able to perform instrumental neutron activation analysis, INAA, a very suitable method for silicon matrix samples because they produce basically the short lived radionuclide 3 1 Si under thermal neutrons flux, which after radioactive decay, does not interfere in the determination of other elements. In this paper, it is presented the determination of As, Br, Co, Cr, K, Eu, Fe, La, Mn, Na Nb, Sb, Sm, Sc, Th, Tb, U, V, W and Yb in silicon CRM NBS SRM 57; ferrosilicon CRM IPT 56; IPT 70; NBS SRM 58a; NBS SRM 59a and silicon RM under preparation IPT 132. From the results, the accuracy and the precision of the process were assessed. (author)

  5. Waste minimization methods for treating analytical instrumentation effluents at the source

    International Nuclear Information System (INIS)

    Ritter, J.A.; Barnhart, C.

    1995-01-01

    The primary goal of this project was to reduce the amount of hazardous waste being generated by the Savannah River Siste Defense Waste Processing Technology-analytical Laboratory (DWPT-AL). A detailed characterization study was performed on 12 of the liquid effluent streams generated within the DWPT-AL. Two of the streams were not hazardous, and are now being collected separately from the 10 hazardous streams. A secondary goal of the project was to develop in-line methods using primarily adsorption/ion exchange columns to treat liquid effluent as it emerges from the analytical instrument as a slow, dripping flow. Samples from the 10 hazardous streams were treated by adsorption in an experimental apparatus that resembled an in-line or at source column apparatus. The layered adsorbent bed contained activated carbon and ion exchange resin. The column technique did not work on the first three samples of the spectroscopy waste stream, but worked well on the next three samples which were treated in a different column. It was determined that an unusual form of mercury was present in the first three samples. Similarly, two samples of a combined waste stream were rendered nonhazardous, but the last two samples contained acetylnitrile that prevented analysis. The characteristics of these streams changed from the initial characterization study; therefore, continual, in-deptch stream characterization is the key to making this project successful

  6. The alignment of the LHC low beta triplets. Review of instrumentation and methods

    International Nuclear Information System (INIS)

    Coosemans, W.; Mainaud Durand, H.; Marin, A.; Quesnel, J-P.

    2003-01-01

    Alignment tolerances for the LHC insertions are particularly stringent regarding the low beta quadrupoles, which induce strict positioning tolerances, in a severe environment (high radiation fluxes and magnetic fields): positioning of one inner triplet with respect to the other (left/right side): ±0.5 mm (3σ), stability of the positioning of one quadrupole inside its triplet: a few microns. We propose to continuously monitor the relative position of the quadrupoles of one inner triplet with respect to a reference frame materialized by a wire and a water surface, and to use common references to link a triplet on one side to the triplet on the other side of the experiment. When the offset between real and reference position becomes too great, the quadrupole will be moved using remote motorized jacks. Instrumentation (HLS, WPS, radial measuring system, etc.) and methods will be detailed as well as the first results obtained on a cryo-magnet prototype named TAP used as test facility. The TAP is equipped with HLS linked by two types of hydraulic networks (two pipes with air and water separated, one pipe half filled), WPS and one inclinometer. It is installed on three polyurethane motorized jacks in order to study and compare servo positioning using the different sensors. (author)

  7. Fifteen years experience: Egyptian metabolic lab

    Directory of Open Access Journals (Sweden)

    Ekram M. Fateen

    2014-10-01

    Conclusion: This study illustrates the experience of the reference metabolic lab in Egypt over 15 years. The lab began metabolic disorder screening by using simple diagnostic techniques like thin layer chromatography and colored tests in urine which by time updated and upgraded the methods to diagnose a wide range of disorders. This study shows the most common diagnosed inherited inborn errors of metabolism among the Egyptian population.

  8. A LabVIEWTM-based scanning and control system for proton beam micromachining

    International Nuclear Information System (INIS)

    Bettiol, Andrew A.; Kan, J.A. van; Sum, T.C.; Watt, F.

    2001-01-01

    LabVIEW TM is steadily gaining in popularity as the programming language of choice for scientific data acquisition and control. This is due to the vast array of measurement instruments and data acquisition cards supported by the LabVIEW TM environment, and the relative ease with which advanced software can be programmed. Furthermore, virtual instruments that are designed for a given system can be easily ported to other LabVIEW TM platforms and hardware. This paper describes the new LabVIEW TM based scanning and control system developed specifically for proton beam micromachining (PBM) applications. The new system is capable of scanning figures at 16-bit resolution with improved sub-microsecond scan rates. Support for electrostatic beam blanking and external dose normalization using a TTL signal have been implemented. The new software incorporates a semi-automated dose calibration system, and a number of novel dose normalization methods. Limitations of the current beam scanning hardware are discussed in light of new results obtained from micromachining experiments performed in SU-8 photoresist

  9. Race to improve student understanding of uncertainty: Using LEGO race cars in the physics lab

    Science.gov (United States)

    Parappilly, Maria; Hassam, Christopher; Woodman, Richard J.

    2018-01-01

    Laboratories using LEGO race cars were developed for students in an introductory physics topic with a high early drop-out rate. In a 2014 pilot study, the labs were offered to improve students' confidence with experiments and laboratory skills, especially uncertainty propagation. This intervention was extended into the intro level physics topic the next year, for comparison and evaluation. Considering the pilot study, we subsequently adapted the delivery of the LEGO labs for a large Engineering Mechanics cohort. A qualitative survey of the students was taken to gain insight into their perception of the incorporation of LEGO race cars into physics labs. For Engineering, the findings show that LEGO physics was instrumental in teaching students the measurement and uncertainty, improving their lab reporting skills, and was a key factor in reducing the early attrition rate. This paper briefly recalls the results of the pilot study, and how variations in the delivery yielded better learning outcomes. A novel method is proposed for how LEGO race cars in a physics lab can help students increase their understanding of uncertainty and motivate them towards physics practicals.

  10. Acceptance of an assistive robot in older adults: a mixed-method study of human–robot interaction over a 1-month period in the Living Lab setting

    Directory of Open Access Journals (Sweden)

    Wu YH

    2014-05-01

    Full Text Available Ya-Huei Wu,1,2 Jérémy Wrobel,1,2 Mélanie Cornuet,1,2 Hélène Kerhervé,1,2 Souad Damnée,1,2 Anne-Sophie Rigaud1,21Hôpital Broca, Assistance Publique – Hôpitaux de Paris, 2Research Team 4468, Faculté de Médecine, Université Paris Descartes, Paris, FranceBackground: There is growing interest in investigating acceptance of robots, which are increasingly being proposed as one form of assistive technology to support older adults, maintain their independence, and enhance their well-being. In the present study, we aimed to observe robot-acceptance in older adults, particularly subsequent to a 1-month direct experience with a robot.Subjects and methods: Six older adults with mild cognitive impairment (MCI and five cognitively intact healthy (CIH older adults were recruited. Participants interacted with an assistive robot in the Living Lab once a week for 4 weeks. After being shown how to use the robot, participants performed tasks to simulate robot use in everyday life. Mixed methods, comprising a robot-acceptance questionnaire, semistructured interviews, usability-performance measures, and a focus group, were used.Results: Both CIH and MCI subjects were able to learn how to use the robot. However, MCI subjects needed more time to perform tasks after a 1-week period of not using the robot. Both groups rated similarly on the robot-acceptance questionnaire. They showed low intention to use the robot, as well as negative attitudes toward and negative images of this device. They did not perceive it as useful in their daily life. However, they found it easy to use, amusing, and not threatening. In addition, social influence was perceived as powerful on robot adoption. Direct experience with the robot did not change the way the participants rated robots in their acceptance questionnaire. We identified several barriers to robot-acceptance, including older adults’ uneasiness with technology, feeling of stigmatization, and ethical

  11. Use of the mathematical modelling method for the investigation of dynamic characteristics of acoustical measuring instruments

    Science.gov (United States)

    Vasilyev, Y. M.; Lagunov, L. F.

    1973-01-01

    The schematic diagram of a noise measuring device is presented that uses pulse expansion modeling according to the peak or any other measured values, to obtain instrument readings at a very low noise error.

  12. A comprehensive review of sensors and instrumentation methods in devices for musical expression.

    Science.gov (United States)

    Medeiros, Carolina Brum; Wanderley, Marcelo M

    2014-07-25

    Digital Musical Instruments (DMIs) are musical instruments typically composed of a control surface where user interaction is measured by sensors whose values are mapped to sound synthesis algorithms. These instruments have gained interest among skilled musicians and performers in the last decades leading to artistic practices including musical performance, interactive installations and dance. The creation of DMIs typically involves several areas, among them: arts, design and engineering. The balance between these areas is an essential task in DMI design so that the resulting instruments are aesthetically appealing, robust, and allow responsive, accurate and repeatable sensing. In this paper, we review the use of sensors in the DMI community as manifested in the proceedings of the International Conference on New Interfaces for Musical Expression (NIME 2009-2013). Focusing on the sensor technologies and signal conditioning techniques used by the NIME community. Although it has been claimed that specifications for artistic tools are harder than those for military applications, this study raises a paradox showing that in most of the cases, DMIs are based on a few basic sensors types and unsophisticated engineering solutions, not taking advantage of more advanced sensing, instrumentation and signal processing techniques that could dramatically improve their response. We aim to raise awareness of limitations of any engineering solution and to assert the benefits of advanced electronics instrumentation design in DMIs. For this, we propose the use of specialized sensors such as strain gages, advanced conditioning circuits and signal processing tools such as sensor fusion. We believe that careful electronic instrumentation design may lead to more responsive instruments.

  13. A Comprehensive Review of Sensors and Instrumentation Methods in Devices for Musical Expression

    Directory of Open Access Journals (Sweden)

    Carolina Brum Medeiros

    2014-07-01

    Full Text Available Digital Musical Instruments (DMIs are musical instruments typically composed of a control surface where user interaction is measured by sensors whose values are mapped to sound synthesis algorithms. These instruments have gained interest among skilled musicians and performers in the last decades leading to artistic practices including musical performance, interactive installations and dance. The creation of DMIs typically involves several areas, among them: arts, design and engineering. The balance between these areas is an essential task in DMI design so that the resulting instruments are aesthetically appealing, robust, and allow responsive, accurate and repeatable sensing. In this paper, we review the use of sensors in the DMI community as manifested in the proceedings of the International Conference on New Interfaces for Musical Expression (NIME 2009–2013. Focusing on the sensor technologies and signal conditioning techniques used by the NIME community. Although it has been claimed that specifications for artistic tools are harder than those for military applications, this study raises a paradox showing that in most of the cases, DMIs are based on a few basic sensors types and unsophisticated engineering solutions, not taking advantage of more advanced sensing, instrumentation and signal processing techniques that could dramatically improve their response. We aim to raise awareness of limitations of any engineering solution and to assert the benefits of advanced electronics instrumentation design in DMIs. For this, we propose the use of specialized sensors such as strain gages, advanced conditioning circuits and signal processing tools such as sensor fusion. We believe that careful electronic instrumentation design may lead to more responsive instruments.

  14. The instruments in the first psychological laboratory in Mexico: antecedents, influence, and methods.

    Science.gov (United States)

    Escobar, Rogelio

    2014-11-01

    Enrique O. Aragón established the first psychological laboratory in Mexico in 1916. This laboratory was inspired by Wundt's laboratory and by those created afterward in Germany and the United States. It was equipped with state-of-the art instruments imported from Germany in 1902 from Ernst Zimmermann who supplied instruments for Wundt's laboratory. Although previous authors have described the social events leading to the creation of the laboratory, there are limited descriptions of the instruments, their use, and their influence. With the aid of archival resources, the initial location of the laboratory was determined. The analysis of instruments revealed a previously overlooked relation with a previous laboratory of experimental physiology. The influence of the laboratory was traced by describing the careers of 4 students, 3 of them women, who worked with the instruments during the first 2 decades of the 20th century, each becoming accomplished scholars. In addition, this article, by identifying and analyzing the instruments shown in photographs of the psychological laboratory and in 1 motion film, provides information of the class demonstrations and the experiments conducted in this laboratory.

  15. An Intelligent Lighting Control System (ILCS) using LabVIEW ...

    African Journals Online (AJOL)

    An Intelligent Lighting Control System (ILCS) was proposed and designed by considering ergonomic setting and energy efficiency. The integration of CompactRIO as a main hardware and National Instrument Laboratory Virtual Instrument Engineering Workbench (NI LabVIEW) 2012 as a platform to design an interactive ...

  16. Laboratory for Calibration of Gamma Radiation Measurement Instruments (LabCal) of Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN) from Brazilian Army Technology Center (CTEx); Laboratorio de Calibracao de Instrumentode Medicao de Radiacao Gama (LabCal) do IDQBRN do CTEx

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Aneuri de; Balthar, Mario Cesar V.; Santos, Avelino; Vilela, Paulo Ricardo T. de; Oliveira, Luciano Santa Rita; Penha, Paulo Eduardo C. de Oliveira; Gonzaga, Roberto Neves; Andrade, Edson Ramos de; Oliveira, Celio Jorge Vasques de; Fagundes, Luiz Cesar S., E-mail: aneurideamorim@gmail.com [Centro Tecnologico do Exercito (DQBRN/CTEx), Rio de Janeiro, RJ (Brazil). Instituto de Defesa Quimica, Biologica, Radiologica e Nuclear

    2016-07-01

    This paper describes the calibration laboratory deployment steps (LABCAL) gamma ionizing radiation measuring instruments in the Army Technology Center, CTEx. Initially the calibration of radiation monitors will be held in the dosimetric quantity air kerma and operational quantity ambient dose equivalent H*(d). The LABCAL / CTEx has not yet authorized by CASEC / CNEN. This laboratory aims to calibrate the ionizing radiation instruments used by the Brazilian Army. (author)

  17. Data Quality Control: Challenges, Methods, and Solutions from an Eco-Hydrologic Instrumentation Network

    Science.gov (United States)

    Eiriksson, D.; Jones, A. S.; Horsburgh, J. S.; Cox, C.; Dastrup, D.

    2017-12-01

    Over the past few decades, advances in electronic dataloggers and in situ sensor technology have revolutionized our ability to monitor air, soil, and water to address questions in the environmental sciences. The increased spatial and temporal resolution of in situ data is alluring. However, an often overlooked aspect of these advances are the challenges data managers and technicians face in performing quality control on millions of data points collected every year. While there is general agreement that high quantities of data offer little value unless the data are of high quality, it is commonly understood that despite efforts toward quality assurance, environmental data collection occasionally goes wrong. After identifying erroneous data, data managers and technicians must determine whether to flag, delete, leave unaltered, or retroactively correct suspect data. While individual instrumentation networks often develop their own QA/QC procedures, there is a scarcity of consensus and literature regarding specific solutions and methods for correcting data. This may be because back correction efforts are time consuming, so suspect data are often simply abandoned. Correction techniques are also rarely reported in the literature, likely because corrections are often performed by technicians rather than the researchers who write the scientific papers. Details of correction procedures are often glossed over as a minor component of data collection and processing. To help address this disconnect, we present case studies of quality control challenges, solutions, and lessons learned from a large scale, multi-watershed environmental observatory in Northern Utah that monitors Gradients Along Mountain to Urban Transitions (GAMUT). The GAMUT network consists of over 40 individual climate, water quality, and storm drain monitoring stations that have collected more than 200 million unique data points in four years of operation. In all of our examples, we emphasize that scientists

  18. The Signal Validation method of Digital Process Instrumentation System on signal conditioner for SMART

    International Nuclear Information System (INIS)

    Moon, Hee Gun; Park, Sang Min; Kim, Jung Seon; Shon, Chang Ho; Park, Heui Youn; Koo, In Soo

    2005-01-01

    The function of PIS(Process Instrumentation System) for SMART is to acquire the process data from sensor or transmitter. The PIS consists of signal conditioner, A/D converter, DSP(Digital Signal Process) and NIC(Network Interface Card). So, It is fully digital system after A/D converter. The PI cabinet and PDAS(Plant Data Acquisition System) in commercial plant is responsible for data acquisition of the sensor or transmitter include RTD, TC, level, flow, pressure and so on. The PDAS has the software that processes each sensor data and PI cabinet has the signal conditioner, which is need for maintenance and test. The signal conditioner has the potentiometer to adjust the span and zero for test and maintenance. The PIS of SMART also has the signal conditioner which has the span and zero adjust same as the commercial plant because the signal conditioner perform the signal condition for AD converter such as 0∼10Vdc. But, To adjust span and zero is manual test and calibration. So, This paper presents the method of signal validation and calibration, which is used by digital feature in SMART. There are I/E(current to voltage), R/E(resistor to voltage), F/E(frequency to voltage), V/V(voltage to voltage). Etc. In this paper show only the signal validation and calibration about I/E converter that convert level, pressure, flow such as 4∼20mA into signal for AD conversion such as 0∼10Vdc

  19. CDC Lab Values

    Centers for Disease Control (CDC) Podcasts

    2015-02-02

    More than fifteen hundred scientists fill the lab benches at CDC, logging more than four million hours each year. CDC’s laboratories play a critical role in the agency’s ability to find, stop, and prevent disease outbreaks. This podcast provides a brief overview of what goes on inside CDC’s labs, and why this work makes a difference in American’s health.  Created: 2/2/2015 by Office of the Associate Director for Communication (OADC).   Date Released: 2/2/2015.

  20. Development of a quality instrument for assessing the spontaneous reports of ADR/ADE using Delphi method in China.

    Science.gov (United States)

    Chen, Lixun; Jiang, Ling; Shen, Aizong; Wei, Wei

    2016-09-01

    The frequently low quality of submitted spontaneous reports is of an increasing concern; to our knowledge, no validated instrument exists for assessing case reports' quality comprehensively enough. This work was conducted to develop such a quality instrument for assessing the spontaneous reports of adverse drug reaction (ADR)/adverse drug event (ADE) in China. Initial evaluation indicators were generated using systematic and literature data analysis. Final indicators and their weights were identified using Delphi method. The final quality instrument was developed by adopting the synthetic scoring method. A consensus was reached after four rounds of Delphi survey. The developed quality instrument consisted of 6 first-rank indicators, 18 second-rank indicators, and 115 third-rank indicators, and each rank indicator has been weighted. It evaluates the quality of spontaneous reports of ADR/ADE comprehensively and quantitatively on six parameters: authenticity, duplication, regulatory, completeness, vigilance level, and reporting time frame. The developed instrument was tested with good reliability and validity, which can be used to comprehensively and quantitatively assess the submitted spontaneous reports of ADR/ADE in China.

  1. Lab on a Chip

    Science.gov (United States)

    Puget, P.

    The reliable and fast detection of chemical or biological molecules, or the measurement of their concentrations in a sample, are key problems in many fields such as environmental analysis, medical diagnosis, or the food industry. There are traditionally two approaches to this problem. The first aims to carry out a measurement in situ in the sample using chemical and biological sensors. The constraints imposed by detection limits, specificity, and in some cases stability are entirely imputed to the sensor. The second approach uses so-called total analysis systems to process the sample according to a protocol made up of different steps, such as extractions, purifications, concentrations, and a final detection stage. The latter is made in better conditions than with the first approach, which may justify the greater complexity of the process. It is this approach that is implemented in most methods for identifying pathogens, whether they be in biological samples (especially for in vitro diagnosis) or samples taken from the environment. The instrumentation traditionally used to carry out these protocols comprises a set of bulky benchtop apparatus, which needs to be plugged into the mains in order to function. However, there are many specific applications (to be discussed in this chapter) for which analysis instruments with the following characteristics are needed: Possibility of use outside the laboratory, i.e., instruments as small as possible, consuming little energy, and largely insensitive to external conditions of temperature, humidity, vibrations, and so on. Possibility of use by non-specialised agents, or even unmanned operation. Possibility of handling a large number of samples in a limited time, typically for high-throughput screening applications. Possibility of handling small samples. At the same time, a high level of performance is required, in particular in terms of (1) the detection limit, which must be as low as possible, (2) specificity, i.e., the ability

  2. Qualitative to Quantitative and Spectrum to Report: An Instrument-Focused Research Methods Course for First-Year Students

    Science.gov (United States)

    Thomas, Alyssa C.; Boucher, Michelle A.; Pulliam, Curtis R.

    2015-01-01

    Our Introduction to Research Methods course is a first-year majors course built around the idea of helping students learn to work like chemists, write like chemists, and think like chemists. We have developed this course as a hybrid hands-on/ lecture experience built around instrumentation use and report preparation. We take the product from one…

  3. GeoLab: A Geological Workstation for Future Missions

    Science.gov (United States)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi

    2014-01-01

    The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample

  4. Physics lab in spin

    CERN Multimedia

    Hawkes, N

    1999-01-01

    RAL is fostering commerical exploitation of its research and facilities in two main ways : spin-out companies exploit work done at the lab, spin-in companies work on site taking advantage of the facilities and the expertise available (1/2 page).

  5. Modifying Cookbook Labs.

    Science.gov (United States)

    Clark, Robert, L.; Clough, Michael P.; Berg, Craig A.

    2000-01-01

    Modifies an extended lab activity from a cookbook approach for determining the percent mass of water in copper sulfate pentahydrate crystals to one which incorporates students' prior knowledge, engenders active mental struggling with prior knowledge and new experiences, and encourages metacognition. (Contains 12 references.) (ASK)

  6. A Big Bang Lab

    Science.gov (United States)

    Scheider, Walter

    2005-01-01

    The February 2005 issue of The Science Teacher (TST) reminded everyone that by learning how scientists study stars, students gain an understanding of how science measures things that can not be set up in lab, either because they are too big, too far away, or happened in a very distant past. The authors of "How Far are the Stars?" show how the…

  7. A New PC and LabVIEW Package Based System for Electrochemical Investigations.

    Science.gov (United States)

    Stević, Zoran; Andjelković, Zoran; Antić, Dejan

    2008-03-15

    The paper describes a new PC and LabVIEW software package based system forelectrochemical research. An overview of well known electrochemical methods, such aspotential measurements, galvanostatic and potentiostatic method, cyclic voltammetry andEIS is given. Electrochemical impedance spectroscopy has been adapted for systemscontaining large capacitances. For signal generation and recording of the response ofinvestigated electrochemical cell, a measurement and control system was developed, basedon a PC P4. The rest of the hardware consists of a commercially available AD-DA converterand an external interface for analog signal processing. The interface is a result of authorsown research. The software platform for desired measurement methods is LabVIEW 8.2package, which is regarded as a high standard in the area of modern virtual instruments. Thedeveloped system was adjusted, tested and compared with commercially available systemand ORCAD simulation.

  8. [Ablation on the undersurface of a LASIK flap. Instrument and method for continuous eye tracking].

    Science.gov (United States)

    Taneri, S; Azar, D T

    2007-02-01

    The risk of iatrogenic keratectasia after laser in situ keratomileusis (LASIK) increases with thinner posterior stromal beds. Ablations on the undersurface of a LASIK flap could only be performed without the guidance of an eye tracker, which may lead to decentration. A new method for laser ablation with flying spot lasers on the undersurface of a LASIK flap was developed that enables the use of an active eye tracker by utilizing a novel instrument. The first clinical results are reported. Patients wishing an enhancement procedure were eligible for a modified repeat LASIK procedure if the flaps cut in the initial procedure were thick enough to perform the intended additional ablation on the undersurface leaving at least 90 microm of flap thickness behind. (1) The horizontal axis and the center of the entrance pupil were marked on the epithelial side of the flap using gentian violet dye. (2) The flap was reflected on a newly designed flap holder which had a donut-shaped black marking. (3) The eye tracker was centered on the mark visible in transparency on the flap. (4) Ablation with a flying spot Bausch & Lomb Technolas 217z laser was performed on the undersurface of the flap with a superior hinge taking into account that in astigmatic ablations the cylinder axis had to be mirrored according to the formula: axis on the undersurface=180 degrees -axis on the stromal bed. (5) The flap was repositioned. Detection of the marking on the modified flap holder and continuous tracking instead of the real pupil was possible in all of the 12 eyes treated with this technique. It may be necessary to cover the real pupil during ablation in order not to confuse the eye tracker. Ablation could be performed without decentration or loss of best spectacle-corrected visual acuity. Refractive results in minor corrections were good without nomogram adjustment. Using this novel flap holder with a marking that is tracked instead of the real pupil, centered ablations with a flying spot laser

  9. Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    J. Wesley Hines; Belle R. Upadhyaya; J. Michael Doster; Robert M. Edwards; Kenneth D. Lewis; Paul Turinsky; Jamie Coble

    2011-05-31

    Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topical areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus

  10. Factor analysis methods and validity evidence: A systematic review of instrument development across the continuum of medical education

    Science.gov (United States)

    Wetzel, Angela Payne

    Previous systematic reviews indicate a lack of reporting of reliability and validity evidence in subsets of the medical education literature. Psychology and general education reviews of factor analysis also indicate gaps between current and best practices; yet, a comprehensive review of exploratory factor analysis in instrument development across the continuum of medical education had not been previously identified. Therefore, the purpose for this study was critical review of instrument development articles employing exploratory factor or principal component analysis published in medical education (2006--2010) to describe and assess the reporting of methods and validity evidence based on the Standards for Educational and Psychological Testing and factor analysis best practices. Data extraction of 64 articles measuring a variety of constructs that have been published throughout the peer-reviewed medical education literature indicate significant errors in the translation of exploratory factor analysis best practices to current practice. Further, techniques for establishing validity evidence tend to derive from a limited scope of methods including reliability statistics to support internal structure and support for test content. Instruments reviewed for this study lacked supporting evidence based on relationships with other variables and response process, and evidence based on consequences of testing was not evident. Findings suggest a need for further professional development within the medical education researcher community related to (1) appropriate factor analysis methodology and reporting and (2) the importance of pursuing multiple sources of reliability and validity evidence to construct a well-supported argument for the inferences made from the instrument. Medical education researchers and educators should be cautious in adopting instruments from the literature and carefully review available evidence. Finally, editors and reviewers are encouraged to recognize

  11. Lab, Field, Gallery and Beyond

    DEFF Research Database (Denmark)

    Binder, Thomas; Koskinen, Ilpo; Redström, Johan

    2009-01-01

    Over the last ten years we have seen a growing number of researchers integrating design experiments in their research inquiries. Initially, this work borrowed heavily from neighboring fields, employing a dual strategy in which design experiments and their evaluation were largely treated as separate...... processes that were often carried out by different people. More recently, design researchers have developed several approaches that integrate design-specific work methods to research. This paper takes a methodological look at three such established approaches that we call Lab, Field, and Gallery. We...

  12. Advanced HVAC modeling with FemLab/Simulink/MatLab

    NARCIS (Netherlands)

    Schijndel, van A.W.M.

    2003-01-01

    The combined MatLab toolboxes FemLab and Simulink are evaluated as solvers for HVAC problems based on partial differential equations (PDEs). The FemLab software is designed to simulate systems of coupled PDEs, 1-D, 2-D or 3-D, nonlinear and time dependent. In order to show how the program works, a

  13. Application of DICOM Standard in LabVIEW Environment

    Directory of Open Access Journals (Sweden)

    Dušan KONIAR

    2008-01-01

    Full Text Available DICOM is the world standard for picture archiving and communication in medicine. Development system LabVIEW based on graphical programming is primary designed for virtual instrumentation, it offers many tools and operators for image processing and analysis, but it does not directly support the work with DICOM standard. The article deals with possibility of importing native DICOM files to LabVIEW and work with them.

  14. A LabVIEWTM-based detector testing system

    International Nuclear Information System (INIS)

    Yang Haori; Li Yuanjing; Wang Yi; Li Yulan; Li Jin

    2003-01-01

    The construction of a LabVIEW-based detector testing system is described in this paper. In this system, the signal of detector is magnified and digitized, so amplitude or time spectrum can be obtained. The Analog-to-Digital Converter is a peak-sensitive ADC based on VME bus. The virtual instrument constructed by LabVIEW can be used to acquire data, draw spectrum and save testing results

  15. Methods and Models of Market Risk Stress-Testing of the Portfolio of Financial Instruments

    Directory of Open Access Journals (Sweden)

    Alexander M. Karminsky

    2015-01-01

    Full Text Available Amid instability of financial markets and macroeconomic situation the necessity of improving bank risk-management instrument arises. New economic reality defines the need for searching for more advanced approaches of estimating banks vulnerability to exceptional, but plausible events. Stress-testing belongs to such instruments. The paper reviews and compares the models of market risk stress-testing of the portfolio of different financial instruments. These days the topic of the paper is highly acute due to the fact that now stress-testing is becoming an integral part of anticrisis risk-management amid macroeconomic instability and appearance of new risks together with close interest to the problem of risk-aggregation. The paper outlines the notion of stress-testing and gives coverage of goals, functions of stress-tests and main criteria for market risk stress-testing classification. The paper also stresses special aspects of scenario analysis. Novelty of the research is explained by elaborating the programme of aggregated complex multifactor stress-testing of the portfolio risk based on scenario analysis. The paper highlights modern Russian and foreign models of stress-testing both on solo-basis and complex. The paper lays emphasis on the results of stress-testing and revaluations of positions for all three complex models: methodology of the Central Bank of stress-testing portfolio risk, model relying on correlations analysis and copula model. The models of stress-testing on solo-basis are different for each financial instrument. Parametric StressVaR model is applicable to shares and options stress-testing;model based on "Grek" indicators is used for options; for euroobligation regional factor model is used. Finally some theoretical recommendations about managing market risk of the portfolio are given.

  16. Hydro-ball in-core instrumentation system and method of operation

    International Nuclear Information System (INIS)

    Tower, S.N.; Veronesi, L.; Braun, H.E.

    1990-01-01

    This patent describes an instrumentation system. It is for a pressure vessel of nuclear reactor, the vessel having an outer enclosure defined by a generally cylindrical sidewall with a generally vertical central axis and upper and lower edges, and top and bottom heads secured in sealed relationship to the upper and lower edges, respectively, of the cylindrical sidewall, and the vessel enclosing therein a core including elongated fuel element assemblies mounted in parallel axial relationship

  17. Frame, methods and instruments for energy planning in the new economic order of electricity economics

    International Nuclear Information System (INIS)

    Stigler, H.

    1999-01-01

    The introduction of the new economic order of the electricity economy causes new focal tasks for the individual market participants and therefore new requirements for planning. As a precondition for energy planning, the Internal Market Electricity Directive and the ElWOG are examined and the tasks for the market participants are derived. Liberalization raises the risks for the enterprises. Increasing competition sets up higher requirements for planning. The planning instruments have no longer the destination of minimum costs but have to maximize the results of the enterprise. Price fixing requires a raised alignment to marginal costs considerations. Increasing electricity trade requires the introduction of new planning instruments. Further new tasks refer to electricity transfer via other networks and especially to congestion management. New chances but also new risks arise for the renewable energy sources. From the market result new requirements for the planning instruments. The basics in this respect are prepared and concrete examples from practice are submitted. Models of enterprises are developed, which consist of a technical and a business part. Central importance has the modeling of competition in the liberalized market. A model of competition between enterprises in the electricity market is developed. (author)

  18. The method to Certify Performance of Long-Lived In-Core Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Kyung-ho; Cha, Kyoon-ho; Moon, Sang-rae [KHNP CRI, Daejeon (Korea, Republic of)

    2015-10-15

    Rh ICI (In-Core Instrumentation) used in OPR1000 generates the relatively large signal but its lifetime is below 6 years. Rh ICI consists of 5 detectors which is a type of SPND (Self Powered Neutron Detector), a couple of thermo-couple, one background wire and several fillers. The short lifetime of Rh detector causes increase of procurement price and space shortage of spent fuel pool. Also, it makes operators be exposed by more radiations. KHNP (Korea Hydro and Nuclear Power Co., Ltd.) CRI (Central Research Institute) is developing the LLICI (Long-Lived In-Core Instrumentation) based on vanadium to solve these problems. LLICI is the detector which is a type of SPND based on Vanadium and has the lifetime of about 10 years. The short lifetime of OPR1000's Rh ICI and long cycle operation strategy cause increase of procurement price, space shortage of spent fuel pool and more radiation exposed to operators. KHNP (Korea Hydro and Nuclear Power Co., Ltd.) CRI (Central Research Institute) is developing the LLICI (Long-Lived In-Core Instrumentation) to solve these problems.

  19. Method for controlling a coolant liquid surface of cooling system instruments in an atomic power plant

    International Nuclear Information System (INIS)

    Monta, Kazuo.

    1974-01-01

    Object: To prevent coolant inventory within a cooling system loop in an atomic power plant from being varied depending on loads thereby relieving restriction of varied speed of coolant flow rate to lowering of a liquid surface due to short in coolant. Structure: Instruments such as a superheater, an evaporator, and the like, which constitute a cooling system loop in an atomic power plant, have a plurality of free liquid surface of coolant. Portions whose liquid surface is controlled and portions whose liquid surface is varied are adjusted in cross-sectional area so that the sum total of variation in coolant inventory in an instrument such as a superheater provided with an annulus portion in the center thereof and an inner cylindrical portion and a down-comer in the side thereof comes equal to that of variation in coolant inventory in an instrument such as an evaporator similar to the superheater. which is provided with an overflow pipe in its inner cylindrical portion or down-comer, thereby minimizing variation in coolant inventory of the entire coolant due to loads thus minimizing variation in varied speed of the coolant. (Kamimura, M.)

  20. Digital Social Science Lab

    DEFF Research Database (Denmark)

    Svendsen, Michael; Lauersen, Christian Ulrich

    2015-01-01

    At the Faculty Library of Social Sciences (part of Copenhagen University Library) we are currently working intensely towards the establishment of a Digital Social Science Lab (DSSL). The purpose of the lab is to connect research, education and learning processes with the use of digital tools...... at the Faculty of Social Sciences. DSSL will host and facilitate an 80 m2 large mobile and intelligent study- and learning environment with a focus on academic events, teaching and collaboration. Besides the physical settings DSSL has two primary functions: 1. To implement relevant social scientific software...... and hardware at the disposal for students and staff at The Faculty of Social Sciences along with instruction and teaching in the different types of software, e.g. Stata, Nvivo, Atlas.ti, R Studio, Zotero and GIS-software. 2. To facilitate academic events focusing on use of digital tools and analytic software...

  1. Guidelines for Urban Labs

    DEFF Research Database (Denmark)

    Scholl, Christian; Agger Eriksen, Mette; Baerten, Nik

    2017-01-01

    These guidelines are intended for team members and managers of urban labs and, more generally, for civil servants and facilitators in cities working with experimental processes to tackle complex challenges. They aim to support the everyday practice of collaboratively experimenting and learning ho...... the result is inspiring and instructive for all those who want to wrap their minds around experimental co-creative approaches to urban governance and city development....

  2. System for electrochemical investigations based on a PC and the Lab VIEW package

    Directory of Open Access Journals (Sweden)

    Stević Zoran

    2007-01-01

    Full Text Available This paper describes an electrochemical research system based on the Lab VIEW computer software package. An overview of well known electrochemical methods, such as potential measurements, chronopotentiometry, chronoamperometry, cyclic voltammetry and EIS is given. Electrochemical impedance spectroscopy has been adapted for systems containing large capacitances. For signal generation and recording of the response of the investigated electrochemical cell, a measurement and control system was developed, based on a PC P4 computer. The rest of the hardware consists of a commercially available AD-DA converter and an external interface for analog signal processing. The interface is a result of the authors own research. The software platform for the desired measurement methods is Lab VIEW package, which is regarded as a high standard in the area of modern virtual instruments. The developed system was adjusted, tested and compared with other commercially available systems. One such system is in constant use at the Technical Faculty in Bor.

  3. Size effect of added LaB6 particles on optical properties of LaB6/Polymer composites

    International Nuclear Information System (INIS)

    Yuan Yifei; Zhang Lin; Hu Lijie; Wang Wei; Min Guanghui

    2011-01-01

    Modified LaB 6 particles with sizes ranging from 50 nm to 400 nm were added into polymethyl methacrylate (PMMA) matrix in order to investigate the effect of added LaB 6 particles on optical properties of LaB 6 /PMMA composites. Method of in-situ polymerization was applied to prepare PMMA from raw material—methyl methacrylate (MMA), a process during which LaB 6 particles were dispersed in MMA. Ultraviolet–visible–near infrared (UV–vis–NIR) absorption spectrum was used to study optical properties of the as-prepared materials. The difference in particle size could apparently affect the composites' absorption of visible light around wavelength of 600 nm. Added LaB 6 particles with size of about 70 nm resulted in the best optical properties among these groups of composites. - Graphical abstract: 70 nm LaB 6 particles resulted in the best performance on absorption of VIS and NIR, which could not be apparently achieved by LaB 6 particles beyond nano-scale. Highlights: ► LaB 6 /PMMA composites were prepared using the method of in-situ polymerization. ► LaB 6 particles added in MMA prolonged the time needed for its pre-polymerization. ► Nanosized LaB 6 particles could obviously absorb much NIR but little VIS.

  4. Comparison of real-time instruments and gravimetric method when measuring particulate matter in a residential building.

    Science.gov (United States)

    Wang, Zuocheng; Calderón, Leonardo; Patton, Allison P; Sorensen Allacci, MaryAnn; Senick, Jennifer; Wener, Richard; Andrews, Clinton J; Mainelis, Gediminas

    2016-11-01

    This study used several real-time and filter-based aerosol instruments to measure PM 2.5 levels in a high-rise residential green building in the Northeastern US and compared performance of those instruments. PM 2.5 24-hr average concentrations were determined using a Personal Modular Impactor (PMI) with 2.5 µm cut (SKC Inc., Eighty Four, PA) and a direct reading pDR-1500 (Thermo Scientific, Franklin, MA) as well as its filter. 1-hr average PM 2.5 concentrations were measured in the same apartments with an Aerotrak Optical Particle Counter (OPC) (model 8220, TSI, Inc., Shoreview, MN) and a DustTrak DRX mass monitor (model 8534, TSI, Inc., Shoreview, MN). OPC and DRX measurements were compared with concurrent 1-hr mass concentration from the pDR-1500. The pDR-1500 direct reading showed approximately 40% higher particle mass concentration compared to its own filter (n = 41), and 25% higher PM 2.5 mass concentration compared to the PMI 2.5 filter. The pDR-1500 direct reading and PMI 2.5 in non-smoking homes (self-reported) were not significantly different (n = 10, R 2 = 0.937), while the difference between measurements for smoking homes was 44% (n = 31, R 2 = 0.773). Both OPC and DRX data had substantial and significant systematic and proportional biases compared with pDR-1500 readings. However, these methods were highly correlated: R 2 = 0.936 for OPC versus pDR-1500 reading and R 2 = 0.863 for DRX versus pDR-1500 reading. The data suggest that accuracy of aerosol mass concentrations from direct-reading instruments in indoor environments depends on the instrument, and that correction factors can be used to reduce biases of these real-time monitors in residential green buildings with similar aerosol properties. This study used several real-time and filter-based aerosol instruments to measure PM 2.5 levels in a high-rise residential green building in the northeastern United States and compared performance of those instruments. The data show that while the use of real

  5. Using collaborative technologies in remote lab delivery systems for topics in automation

    Science.gov (United States)

    Ashby, Joe E.

    Lab exercises are a pedagogically essential component of engineering and technology education. Distance education remote labs are being developed which enable students to access lab facilities via the Internet. Collaboration, students working in teams, enhances learning activity through the development of communication skills, sharing observations and problem solving. Web meeting communication tools are currently used in remote labs. The problem identified for investigation was that no standards of practice or paradigms exist to guide remote lab designers in the selection of collaboration tools that best support learning achievement. The goal of this work was to add to the body of knowledge involving the selection and use of remote lab collaboration tools. Experimental research was conducted where the participants were randomly assigned to three communication treatments and learning achievement was measured via assessments at the completion of each of six remote lab based lessons. Quantitative instruments used for assessing learning achievement were implemented, along with a survey to correlate user preference with collaboration treatments. A total of 53 undergraduate technology students worked in two-person teams, where each team was assigned one of the treatments, namely (a) text messaging chat, (b) voice chat, or (c) webcam video with voice chat. Each had little experience with the subject matter involving automation, but possessed the necessary technical background. Analysis of the assessment score data included mean and standard deviation, confirmation of the homogeneity of variance, a one-way ANOVA test and post hoc comparisons. The quantitative and qualitative data indicated that text messaging chat negatively impacted learning achievement and that text messaging chat was not preferred. The data also suggested that the subjects were equally divided on preference to voice chat verses webcam video with voice chat. To the end of designing collaborative

  6. A Systematic Review of Statistical Methods Used to Test for Reliability of Medical Instruments Measuring Continuous Variables

    Directory of Open Access Journals (Sweden)

    Rafdzah Zaki

    2013-06-01

    Full Text Available   Objective(s: Reliability measures precision or the extent to which test results can be replicated. This is the first ever systematic review to identify statistical methods used to measure reliability of equipment measuring continuous variables. This studyalso aims to highlight the inappropriate statistical method used in the reliability analysis and its implication in the medical practice.   Materials and Methods: In 2010, five electronic databases were searched between 2007 and 2009 to look for reliability studies. A total of 5,795 titles were initially identified. Only 282 titles were potentially related, and finally 42 fitted the inclusion criteria. Results: The Intra-class Correlation Coefficient (ICC is the most popular method with 25 (60% studies having used this method followed by the comparing means (8 or 19%. Out of 25 studies using the ICC, only 7 (28% reported the confidence intervals and types of ICC used. Most studies (71% also tested the agreement of instruments. Conclusion: This study finds that the Intra-class Correlation Coefficient is the most popular method used to assess the reliability of medical instruments measuring continuous outcomes. There are also inappropriate applications and interpretations of statistical methods in some studies. It is important for medical researchers to be aware of this issue, and be able to correctly perform analysis in reliability studies.

  7. Standard test method for verifying the alignment of X-Ray diffraction instrumentation for residual stress measurement

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the preparation and use of a flat stress-free test specimen for the purpose of checking the systematic error caused by instrument misalignment or sample positioning in X-ray diffraction residual stress measurement, or both. 1.2 This test method is applicable to apparatus intended for X-ray diffraction macroscopic residual stress measurement in polycrystalline samples employing measurement of a diffraction peak position in the high-back reflection region, and in which the θ, 2θ, and ψ rotation axes can be made to coincide (see Fig. 1). 1.3 This test method describes the use of iron powder which has been investigated in round-robin studies for the purpose of verifying the alignment of instrumentation intended for stress measurement in ferritic or martensitic steels. To verify instrument alignment prior to stress measurement in other metallic alloys and ceramics, powder having the same or lower diffraction angle as the material to be measured should be prepared in similar fashion...

  8. Improved methods for signal processing in measurements of mercury by Tekran® 2537A and 2537B instruments

    Science.gov (United States)

    Ambrose, Jesse L.

    2017-12-01

    Atmospheric Hg measurements are commonly carried out using Tekran® Instruments Corporation's model 2537 Hg vapor analyzers, which employ gold amalgamation preconcentration sampling and detection by thermal desorption (TD) and atomic fluorescence spectrometry (AFS). A generally overlooked and poorly characterized source of analytical uncertainty in those measurements is the method by which the raw Hg atomic fluorescence (AF) signal is processed. Here I describe new software-based methods for processing the raw signal from the Tekran® 2537 instruments, and I evaluate the performances of those methods together with the standard Tekran® internal signal processing method. For test datasets from two Tekran® instruments (one 2537A and one 2537B), I estimate that signal processing uncertainties in Hg loadings determined with the Tekran® method are within ±[1 % + 1.2 pg] and ±[6 % + 0.21 pg], respectively. I demonstrate that the Tekran® method can produce significant low biases (≥ 5 %) not only at low Hg sample loadings (< 5 pg) but also at tropospheric background concentrations of gaseous elemental mercury (GEM) and total mercury (THg) (˜ 1 to 2 ng m-3) under typical operating conditions (sample loadings of 5-10 pg). Signal processing uncertainties associated with the Tekran® method can therefore represent a significant unaccounted for addition to the overall ˜ 10 to 15 % uncertainty previously estimated for Tekran®-based GEM and THg measurements. Signal processing bias can also add significantly to uncertainties in Tekran®-based gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) measurements, which often derive from Hg sample loadings < 5 pg. In comparison, estimated signal processing uncertainties associated with the new methods described herein are low, ranging from within ±0.053 pg, when the Hg thermal desorption peaks are defined manually, to within ±[2 % + 0.080 pg] when peak definition is automated. Mercury limits of detection (LODs

  9. LXI Technologies for Remote Labs: An Extension of the VISIR Project

    Directory of Open Access Journals (Sweden)

    Jaime Irurzun

    2010-09-01

    Full Text Available Several remote labs to support analog circuits are presented in this work. They are analyzed from the software and the hardware point of view. VISIR remote lab is one of these labs. After this analysis, a new VISIR remote lab approach is presented. This extension of the VISIR project is based on LXI technologies with the aim of becoming it in a remote lab easily interchangeable with other instruments. The addition of new components and experiments is also easier and cheaper.

  10. Heat transfer virtual lab for students and engineers theory and guide for setting up

    CERN Document Server

    Fridman, Ella

    2014-01-01

    Laboratory experiments are a vital part of engineering education,which historically were considered impractical for distance learning.This book presents a guide for the practical employment of a heattransfer virtual lab for students and engineers.Inside, the authors have detailed this virtual lab which is designedand can implement a real-time, robust, and scalable software systemthat provides easy access to lab equipment anytime and anywhereover the Internet. They introduce and explain LabVIEW ineasy-to-understand language. LabVIEW is a proprietary softwaretool by National Instruments, and can

  11. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    Science.gov (United States)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  12. Cultural Heritage Digitalization on Traditional Sundanese Music Instrument Using Augmented Reality Markerless Marker Method

    Directory of Open Access Journals (Sweden)

    Budi Arifitama

    2017-07-01

    Full Text Available Research into cultural heritage which implements augmented reality technology is limited. Most recent research on cultural heritage are limited on storing data and information in the form of databases, this creates a disadvantage for people who wants to see and feel at the same moment on actual cultural heritage objects. This paper, proposes a solution which could merge the existing cultural object with people using augmented reality technology. This technology would preserve traditional instrument in the form of 3D object which can be digitally protected. The result showed that the use of augmented reality on preserving cultural heritage would benefit people who try to protect their culture.

  13. Instrument and method for focusing X-rays, gamma rays and neutrons

    International Nuclear Information System (INIS)

    1982-01-01

    A crystal diffraction instrument is described with an improved crystalline structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg angle and thereby increasing the usable area and acceptance angle. The increased planar spacing is provided by the use of a temperature differential across the crystalline structure, by assembling a plurality of crystalline structure with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. (Auth.)

  14. Laminate for use in instrument dials or hands and method of making laminate

    International Nuclear Information System (INIS)

    Westland, J.M.; Crowther, A.

    1981-01-01

    A translucent sheet of PVC has a coating e.g. of black ink or luminous material, with apertures and optionally luminous or non-luminous indicia. Behind the apertures there are tritium-activated luminous indicia or markings which are covered by an opaque white sheet. A self-adhesive protective film may be temporarily applied to the coating. The laminated structure may be used for faces or hands in time-pieces or other instruments. The use of the white sheet and protective film prevents operatives coming into contact with luminous materials. (author)

  15. An improved method for determining the purity of jet fuels in a POZ-TU instrument

    Energy Technology Data Exchange (ETDEWEB)

    Zrelov, V N; Fedotkin, B I; Krasnaya, L V; Nikitin, L V; Postinkova, N G

    1983-01-01

    The possibility is studied of real time testing for the content of mechanical impurities (Cm.t.) in jet fuels (RT) in a POZ-TU instrument. Based on the obtained data, a four point scale of gray standards is developed for determining the mechanical impurity content, which is four rounded, gray stamps of different intensity, which corresponds to a mechanical impurity content of 0.5; 1.0; 2.0 and 3.0 milligrams per liter. A white indicator filtering element is built into the POZ-TU for determining the mechanical impurity content, and 50 cubic centimeters of the jet fuel are pumped through it over the course of several seconds. The mechanical impurities are placed on the indicator element, forming an imprint, the intensity of the color of which corresponds to the content of mechanical impurities in the jet fuel. The indicator element is extracted from the instrument and the prints are compared with the scale of gray standards, from which the content of the mechanical impurities is determined.

  16. Nuclear medicine and imaging research. Instrumentation and quantitative methods of evaluation. Progress report, January 15, 1984-January 14, 1985

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.D.

    1984-09-01

    This program addresses problems involving the basic science and technology of radioactive tracer methods as they relate to nuclear medicine and imaging. The broad goal is to develop new instruments and methods for image formation, processing, quantitation and display, so as to maximize the diagnostic information per unit of absorbed radiation dose to the patient. Project I addresses problems associated with the quantitative imaging of single-photon emitters; Project II addresses similar problems associated with the quantitative imaging of positron emitters; Project III addresses methodological problems associated with the quantitative evaluation of the efficacy of diagnostic imaging procedures

  17. A development and integration of the concentration database for relative method, k0 method and absolute method in instrumental neutron activation analysis using Microsoft Access

    International Nuclear Information System (INIS)

    Hoh Siew Sin

    2012-01-01

    Instrumental Neutron Activation Analysis (INAA) is offen used to determine and calculate the concentration of an element in the sample by the National University of Malaysia, especially students of Nuclear Science Program. The lack of a database service leads consumers to take longer time to calculate the concentration of an element in the sample. This is because we are more dependent on software that is developed by foreign researchers which are costly. To overcome this problem, a study has been carried out to build an INAA database software. The objective of this study is to build a database software that help the users of INAA in Relative Method and Absolute Method for calculating the element concentration in the sample using Microsoft Excel 2010 and Microsoft Access 2010. The study also integrates k 0 data, k 0 Concent and k 0 -Westcott to execute and complete the system. After the integration, a study was conducted to test the effectiveness of the database software by comparing the concentrations between the experiments and in the database. Triple Bare Monitor Zr-Au and Cr-Mo-Au were used in Abs-INAA as monitor to determine the thermal to epithermal neutron flux ratio (f). Calculations involved in determining the concentration are the net peak area (N p ), the measurement time (t m ), the irradiation time (t irr ), k-factor (k), thermal to epithermal neutron flux ratio (f), the parameters of the neutron flux distribution epithermal (α) and detection efficiency (ε p ). For Com-INAA databases, reference material IAEA-375 Soil was used to calculate the concentration of elements in the sample. CRM, SRM are also used in this database. After the INAA database integration, a verification process was to examine the effectiveness of the Abs-INAA was carried out by comparing the sample concentration between the in database and the experiment. The result of the experimental concentration value of INAA database software performed with high accuracy and precision. ICC

  18. VALIDATION OF ANALYTICAL METHODS AND INSTRUMENTATION FOR BERYLLIUM MEASUREMENT: REVIEW AND SUMMARY OF AVAILABLE GUIDES, PROCEDURES, AND PROTOCOLS

    Energy Technology Data Exchange (ETDEWEB)

    Ekechukwu, A.

    2008-12-17

    This document proposes to provide a listing of available sources which can be used to validate analytical methods and/or instrumentation for beryllium determination. A literature review was conducted of available standard methods and publications used for method validation and/or quality control. A comprehensive listing of the articles, papers, and books reviewed is given in Appendix 1. Available validation documents and guides are listed in the appendix; each has a brief description of application and use. In the referenced sources, there are varying approaches to validation and varying descriptions of validation at different stages in method development. This discussion focuses on validation and verification of fully developed methods and instrumentation that have been offered up for use or approval by other laboratories or official consensus bodies such as ASTM International, the International Standards Organization (ISO) and the Association of Official Analytical Chemists (AOAC). This review was conducted as part of a collaborative effort to investigate and improve the state of validation for measuring beryllium in the workplace and the environment. Documents and publications from the United States and Europe are included. Unless otherwise specified, all documents were published in English.

  19. Online calibration method for condition monitoring of nuclear reactor instrumentations based on electrical signature analysis

    International Nuclear Information System (INIS)

    Syaiful Bakhri

    2013-01-01

    Electrical signature analysis currently becomes an alternative in condition monitoring in nuclear power plants not only for stationary components such as sensors, measurement and instrumentation channels, and other components but also for dynamic components such as electric motors, pumps, generator or actuators. In order to guarantee the accuracy, the calibration of monitoring system is a necessary which practically is performed offline, under limited schedules and certain tight procedures. This research aims to introduce online calibration technique for electrical signature condition monitoring in order that the accuracy can be maintained continuously which in turn increases the reactor safety as a whole. The research was performed step by stepin detail from the conventional technique, online calibration using baseline information and online calibration using differential gain adjustment. Online calibration based on differential gain adjustment provides better results than other techniques even tough under extreme gain insertion as well as external disturbances such as supply voltages. (author)

  20. Microcontroller based instrumentation for the fuel pin preparation facility by sol-gel method

    International Nuclear Information System (INIS)

    Suhasini, B.; Prabhakar Rao, J.; Srinivas, K.C.

    2009-01-01

    The fuel pin preparation facility by Sol-Gel route has been set up at Chemistry Group at Indira Gandhi Centre for Atomic Research, Kalpakkam. Sol-Gel, a solution-gelation process involves conversion of solutions of nitrates of uranium-plutonium (at 0 deg C) into gel microspheres. To measure the exact quantities of the above solutions and to ensure their temperatures, a variety of sensors have been used at various stages in the plant. To monitor and acquire the data of process parameters used in the production and for an automated operation of the plant, a PC (master)-microcontroller (slave) based instrumentation has been developed along with acquisition software and a GU interface developed in Visual Basic. (author)

  1. New instruments and methods for high precision thermocouple and platinum resistance thermometry

    International Nuclear Information System (INIS)

    Corradi, F.

    1977-01-01

    The paper describes the development of measuring instruments for the following purposes: 1) Measurement of the super-heated steam temperature, close to 550 0 C, in a tube at approximately 200 Kg/cm 2 , with a total accuracy of +-0.1 0 C. 2) Measurement of the super-heated water temperature, close to 350 0 C, still with a total accuracy of +-0.1 0 C. 3) Measurement of temperature differences between the inlet and the outlet of the water in the supply channel. The mean temperature was close to 15 0 C and the differential span was required to be 0.5 0 C with a total accuracy of +-0.005 0 C. (orig./RW) [de

  2. Neutron and synchrotron radiation for condensed matter studies. Volume 1: theory, instruments and methods

    International Nuclear Information System (INIS)

    Baruchel, J.; Hodeau, J.L.; Lehmann, M.S.; Regnard, J.R.; Schlenker, C.

    1993-01-01

    This book provides the basic information required by a research scientist wishing to undertake studies using neutrons or synchrotron radiation at a Large Facility. These lecture notes result from 'HERCULES', a course that has been held in Grenoble since 1991 to train young scientists in these fields. They cover the production of neutrons and synchrotron radiation and describe all aspects of instrumentation. In addition, this work outlines the basics of the various fields of research pursued at these Large Facilities. It consists of a series of chapters written by experts in the particular fields. While following a progression and constituting a lecture course on neutron and x-ray scattering, these chapters can also be read independently. This first volume will be followed by two further volumes concerned with the applications to solid state physics and chemistry, and to biology and soft condensed matter properties

  3. Comparation of instrumental and sensory methods in fermented milk beverages texture quality analysis

    Directory of Open Access Journals (Sweden)

    Jovica Hardi

    2001-04-01

    Full Text Available The texture of the curd of fermented dairy products is one of the primary factors of their overall quality. The flow properties of fermented dairy products have characteristic of thixotropic (pseudoplastic type of liquids. At the same time, these products are viscoelastic systems, i.e. they are capable of texture renewal after applied deformation. Complex analysis of some of the properties is essentional for the system description . The aim of the present work was to completely describe the texture of fermented milk beverages . Three basic parameters were taken into consideration: structure, hardness (consistency and stability of the curd. The description model of these three parameters was applied on the basis of the experimental results obteined. Results obtained by present model were compared with the results of sensory analysis. Influence of milk fat content and skimmed milk powder addition on acidophilus milk texture quality was also examined using this model. It was shawn that, by using this model – on the basis of instrumental and sensory analyses, a complete and objective determination of texture quality of the fermented milk beverages can be obtained. High degree of correlation between instrumental and sensory results (r =0.8975 is obtained results of this work indicated that both factors (milk fat content and skimmed milk powder addition had an influence on texture quality. Samples with higher milk fat content had a better texture properties in comparsion with low fat content samples. Texture of all examined samples was improved by increasing skimmed milk powder content. Optimal amounts of skimmed milk powder addition with regard to milk fat content, in milk, is determined using the proposed model.

  4. Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument

    Science.gov (United States)

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.

    2004-01-01

    A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.

  5. Preference-based disease-specific health-related quality of life instrument for glaucoma: a mixed methods study protocol

    Science.gov (United States)

    Muratov, Sergei; Podbielski, Dominik W; Jack, Susan M; Ahmed, Iqbal Ike K; Mitchell, Levine A H; Baltaziak, Monika; Xie, Feng

    2016-01-01

    Introduction A primary objective of healthcare services is to improve patients' health and health-related quality of life (HRQoL). Glaucoma, which affects a substantial proportion of the world population, has a significant detrimental impact on HRQoL. Although there are a number of glaucoma-specific questionnaires to measure HRQoL, none is preference-based which prevent them from being used in health economic evaluation. The proposed study is aimed to develop a preference-based instrument that is capable of capturing important effects specific to glaucoma and treatments on HRQoL and is scored based on the patients' preferences. Methods A sequential, exploratory mixed methods design will be used to guide the development and evaluation of the HRQoL instrument. The study consists of several stages to be implemented sequentially: item identification, item selection, validation and valuation. The instrument items will be identified and selected through a literature review and the conduct of a qualitative study. Validation will be conducted to establish psychometric properties of the instrument followed by a valuation exercise to derive utility scores for the health states described. Ethics and dissemination This study has been approved by the Trillium Health Partners Research Ethics Board (ID number 753). All personal information will be de-identified with the identification code kept in a secured location including the rest of the study data. Only qualified and study-related personnel will be allowed to access the data. The results of the study will be distributed widely through peer-reviewed journals, conferences and internal meetings. PMID:28186941

  6. Image-based fingerprint verification system using LabVIEW

    Directory of Open Access Journals (Sweden)

    Sunil K. Singla

    2008-09-01

    Full Text Available Biometric-based identification/verification systems provide a solution to the security concerns in the modern world where machine is replacing human in every aspect of life. Fingerprints, because of their uniqueness, are the most widely used and highly accepted biometrics. Fingerprint biometric systems are either minutiae-based or pattern learning (image based. The minutiae-based algorithm depends upon the local discontinuities in the ridge flow pattern and are used when template size is important while image-based matching algorithm uses both the micro and macro feature of a fingerprint and is used if fast response is required. In the present paper an image-based fingerprint verification system is discussed. The proposed method uses a learning phase, which is not present in conventional image-based systems. The learning phase uses pseudo random sub-sampling, which reduces the number of comparisons needed in the matching stage. This system has been developed using LabVIEW (Laboratory Virtual Instrument Engineering Workbench toolbox version 6i. The availability of datalog files in LabVIEW makes it one of the most promising candidates for its usage as a database. Datalog files can access and manipulate data and complex data structures quickly and easily. It makes writing and reading much faster. After extensive experimentation involving a large number of samples and different learning sizes, high accuracy with learning image size of 100 100 and a threshold value of 700 (1000 being the perfect match has been achieved.

  7. VALIDATION OF ANALYTICAL METHODS AND INSTRUMENTATION FOR BERYLLIUM MEASUREMENT: REVIEW AND SUMMARY OF AVAILABLE GUIDES, PROCEDURES, AND PROTOCOLS

    Energy Technology Data Exchange (ETDEWEB)

    Ekechukwu, A

    2009-05-27

    Method validation is the process of evaluating whether an analytical method is acceptable for its intended purpose. For pharmaceutical methods, guidelines from the United States Pharmacopeia (USP), International Conference on Harmonisation (ICH), and the United States Food and Drug Administration (USFDA) provide a framework for performing such valications. In general, methods for regulatory compliance must include studies on specificity, linearity, accuracy, precision, range, detection limit, quantitation limit, and robustness. Elements of these guidelines are readily adapted to the issue of validation for beryllium sampling and analysis. This document provides a listing of available sources which can be used to validate analytical methods and/or instrumentation for beryllium determination. A literature review was conducted of available standard methods and publications used for method validation and/or quality control. A comprehensive listing of the articles, papers and books reviewed is given in the Appendix. Available validation documents and guides are listed therein; each has a brief description of application and use. In the referenced sources, there are varying approches to validation and varying descriptions of the valication process at different stages in method development. This discussion focuses on valication and verification of fully developed methods and instrumentation that have been offered up for use or approval by other laboratories or official consensus bodies such as ASTM International, the International Standards Organization (ISO) and the Association of Official Analytical Chemists (AOAC). This review was conducted as part of a collaborative effort to investigate and improve the state of validation for measuring beryllium in the workplace and the environment. Documents and publications from the United States and Europe are included. Unless otherwise specified, all referenced documents were published in English.

  8. Map Your Way to a Better Lab.

    Science.gov (United States)

    Roth, Wolff-Michael

    1990-01-01

    The use of concept maps, Vee diagrams, flow charts, and productive questions to increase student understanding of laboratory exercises and to improve student attitudes toward lab classes is discussed. Examples of each are provided. Student responses to these teaching methods are described. (CW)

  9. A "Language Lab" for Architectural Design.

    Science.gov (United States)

    Mackenzie, Arch; And Others

    This paper discusses a "language lab" strategy in which traditional studio learning may be supplemented by language lessons using computer graphics techniques to teach architectural grammar, a body of elements and principles that govern the design of buildings belonging to a particular architectural theory or style. Two methods of…

  10. Semiparametric methods for estimation of a nonlinear exposure‐outcome relationship using instrumental variables with application to Mendelian randomization

    Science.gov (United States)

    Staley, James R.

    2017-01-01

    ABSTRACT Mendelian randomization, the use of genetic variants as instrumental variables (IV), can test for and estimate the causal effect of an exposure on an outcome. Most IV methods assume that the function relating the exposure to the expected value of the outcome (the exposure‐outcome relationship) is linear. However, in practice, this assumption may not hold. Indeed, often the primary question of interest is to assess the shape of this relationship. We present two novel IV methods for investigating the shape of the exposure‐outcome relationship: a fractional polynomial method and a piecewise linear method. We divide the population into strata using the exposure distribution, and estimate a causal effect, referred to as a localized average causal effect (LACE), in each stratum of population. The fractional polynomial method performs metaregression on these LACE estimates. The piecewise linear method estimates a continuous piecewise linear function, the gradient of which is the LACE estimate in each stratum. Both methods were demonstrated in a simulation study to estimate the true exposure‐outcome relationship well, particularly when the relationship was a fractional polynomial (for the fractional polynomial method) or was piecewise linear (for the piecewise linear method). The methods were used to investigate the shape of relationship of body mass index with systolic blood pressure and diastolic blood pressure. PMID:28317167

  11. A Remote Direct Sequence Spread Spectrum Communications Lab Utilising the Emona DATEx

    Directory of Open Access Journals (Sweden)

    Cosmas Mwikirize

    2012-12-01

    Full Text Available Remote labs have become popular learning aids due to their versatility and considerable ease of utilisation as compared to their physical counterparts. At Makerere University, the remote labs are based on the standard Massachusetts Institute of Technology (MIT iLabs Shared Architecture (ISA - a scalable and generic platform. Presented in this paper is such a lab, addressing the key practical aspects of Direct Sequence Spread Spectrum (DSSS communication. The lab is built on the National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS with the Emona Digital and Analog Telecommunications Experimenter (DATEx add-on board. It also incorporates switching hardware. The lab facilitates real-time control of the equipment, with users able to set, manipulate and observe signal parameters in both the frequency and the time domains. Simulation and data Acquisition modes of the experiment are supported to provide a richer learning experience.

  12. On use of ZPR research reactors and associated instrumentation and measurement methods for reactor physics studies

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, J.P. [CEA,DEN, DER, SPEX, Experimental Physics Service, Cadarache, F-13108 St-Paul-Lez-Durance (France); Blaise, P. [CEA, DEN, DER, SPEX Experimental Programs Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France)

    2015-07-01

    The French atomic and alternative energies -CEA- is strongly involved in research and development programs concerning the use of nuclear energy as a clean and reliable source of energy and consequently is working on the present and future generation of reactors on various topics such as ageing plant management, optimization of the plutonium stockpile, waste management and innovative systems exploration. Core physics studies are an essential part of this comprehensive R and D effort. In particular, the Zero Power Reactor (ZPR) of CEA: EOLE, MINERVE and MASURCA play an important role in the validation of neutron (as well photon) physics calculation tools (codes and nuclear data). The experimental programs defined in the CEA's ZPR facilities aim at improving the calculation routes by reducing the uncertainties of the experimental databases. They also provide accurate data on innovative systems in terms of new materials (moderating and decoupling materials) and new concepts (ADS, ABWR, new MTR (e.g. JHR), GENIV) involving new fuels, absorbers and coolant materials. Conducting such interesting experimental R and D programs is based on determining and measuring main parameters of phenomena of interest to qualify calculation tools and nuclear data 'libraries'. Determining these parameters relies on the use of numerous and different experimental techniques using specific and appropriate instrumentation and detection tools. Main ZPR experimental programs at CEA, their objectives and challenges will be presented and discussed. Future development and perspectives regarding ZPR reactors and associated programs will be also presented. (authors)

  13. Portable dynamic light scattering instrument and method for the measurement of blood platelet suspensions

    International Nuclear Information System (INIS)

    Maurer-Spurej, Elisabeth; Brown, Keddie; Labrie, Audrey; Marziali, Andre; Glatter, Otto

    2006-01-01

    No routine test exists to determine the quality of blood platelet transfusions although every year millions of patients require platelet transfusions to survive cancer chemotherapy, surgery or trauma. A new, portable dynamic light scattering instrument is described that is suitable for the measurement of turbid solutions of large particles under temperature-controlled conditions. The challenges of small sample size, short light path through the sample and accurate temperature control have been solved with a specially designed temperature-controlled sample holder for small diameter, disposable capillaries. Efficient heating and cooling is achieved with Peltier elements in direct contact with the sample capillary. Focusing optical fibres are used for light delivery and collection of scattered light. The practical use of this new technique was shown by the reproducible measurement of latex microspheres and the temperature-induced morphological changes of human blood platelets. The measured parameters for platelet transfusions are platelet size, number of platelet-derived microparticles and the response of platelets to temperature changes. This three-dimensional analysis provides a high degree of confidence for the determination of platelet quality. The experimental data are compared to a matrix and facilitate automated, unbiased quality testing

  14. Method of exchanging cables of neutron monitoring instrumentation tube and folding device of the cable

    International Nuclear Information System (INIS)

    Sakamaki, Kazuo.

    1990-01-01

    In a BWR type reactor, a wide range monitor (WRNM) is used instead of a conventional neutron source range monitor (SRM) or an intermediate range monitor (IRM). The WRNM is always fixed to a predetermined position in a reactor core while containing a detection section in a dry tube, different from a conventional monitor. Accordingly, driving devices for the conventional detection section such as in SRM and IRM are not necessary but, when the reactor is operated for a long period of time, it is sometimes necessary to be replaced with new WRNM. According to the present invention, the cable of the detector placed in a neutron instrumentation tube is connected to a cable take-up drum in a take-up device passing through a cask. Then, the cable is taken-up by driving the take-up drum by a driving motor and the WRNM detection section attached to the top end of the cable is contained in the cask. With this constitution, replacing and processing operation for the detection section can be facilitated and operator's exposure dose can be reduced. (I.S.)

  15. Instrumentation device at the outside of reactor and method of using the same

    International Nuclear Information System (INIS)

    Ichige, Masayuki.

    1997-01-01

    The present invention provides instrumentation device at the outside of a reactor capable of measuring conditions of inside of a reactor, such as the power of the reactor, distribution of voids or water level while considering hysteresis of neutrons or γ-rays from the inside to the outside of the reactor. Namely, a plurality of radiation detectors are disposed being elongated in vertical direction at a predetermined distance on the outer circumference of a reactor pressure vessel. The detectors detect intensity of radiation rays and the detection time at a plurality of positions of the outer side of the reactor. An amplifier amplifies the detected signals. A signal processing device determines the positions and the time of the emitted radiation rays based on the amplified detected signals. An analysis device analyzes spacial distribution and time distribution of the energy and the intensity of the radiation rays (neutron or γ-rays) based on the signals of predetermined radiation rays at the outer side of the reactor. Then, spacial and time variation components and the power distribution, water level, change of the water level, void distribution are calculated while considering decay of the radiation rays based on the distribution of material densities of incore structures. (I.S.)

  16. Application of instrumented microhardness method to follow the thermal ageing of cast duplex stainless steel

    International Nuclear Information System (INIS)

    Rezakhanlou, R.; Massoud, J.P.

    1993-03-01

    During the thermal ageing of cast duplex stainless steel the ferrite hardness largely increases. The measurement of the ferrite phase hardness can give us an indication of the level of the ageing process. But in order to have a representative value of the ferrite hardness, the applied load must be low enough. For this reason, we have used the instrumented microhardness (IMH) test which consists to measure continuously the applied load and the indentation depth during the operation. The mechanical analysis of the so called indentation curve allows us to calculate the hardness and the young modulus of the indented material for loads as low as 2 g. The results confirm the Vickers microhardness measurement under 50 g loads i.e. a sharp increase of the ferrite hardness (x 2.3 as compared to the as received state) for the highly aged sample. It should be noted that the results obtained with the IMH are completely independent of the operator. (authors). 18 refs., 7 figs., 6 tabs

  17. Methods and Instruments for the Estimation of Production Changes in Economic Evaluations

    NARCIS (Netherlands)

    Hassink, W.H.J.; van der Berg, B.

    2017-01-01

    This chapter focuses on the indirect costs of paid work that result from mental illness. It provides an overview of monetary valuation methods and approaches to measure and value production gains and losses. The methods are applied to mental illness, although they have also been applied to other

  18. DOSAR/CalLab Operations Manual

    International Nuclear Information System (INIS)

    Bogard, J.S.

    2000-01-01

    The Life Sciences Division (LSD) of Oak Ridge National Laboratory (ORNL) has a long record of radiation dosimetry research, primarily using the Health Physics Research Reactor (HPRR) and the Dosimetry Applications Research (DOSAR) Program Calibration Laboratory (CalLab), referred to formerly as the Radiation Calibration Laboratory. These facilities have been used by a broad segment of the research community to perform a variety of experiments in areas including, but not limited to, radiobiology, radiation dosimeter and instrumentation development and calibration, and the testing of materials in a variety of radiation environments

  19. Instrumental charged-particle activation analysis of several selected elements in biological materials using the internal standard method

    International Nuclear Information System (INIS)

    Yagi, M.; Masumoto, K.

    1987-01-01

    In order to study instrumental charged-particle activation analysis using the internal standard method, simultaneous determinations of several selected elements such as Ca, Ti, V, Fe, Zn, As, Sr, Zr and Mo, in oyster tissue, brewer's yeast and mussel were carried out by using the respective (p, n) reactions and a personal computer-based gamma-ray spectrometer equipped with a micro-robot for sample changing. In the determination constant amounts of Y and La were added to the sample and comparative standard as exotic internal standards. As a result, it was demonstrated that concentrations of the above elements could be determined accurately and precisely. (author)

  20. Using cognitive pre-testing methods in the development of a new evidenced-based pressure ulcer risk assessment instrument

    Directory of Open Access Journals (Sweden)

    S. Coleman

    2016-11-01

    Full Text Available Abstract Background Variation in development methods of Pressure Ulcer Risk Assessment Instruments has led to inconsistent inclusion of risk factors and concerns about content validity. A new evidenced-based Risk Assessment Instrument, the Pressure Ulcer Risk Primary Or Secondary Evaluation Tool - PURPOSE-T was developed as part of a National Institute for Health Research (NIHR funded Pressure Ulcer Research Programme (PURPOSE: RP-PG-0407-10056. This paper reports the pre-test phase to assess and improve PURPOSE-T acceptability, usability and confirm content validity. Methods A descriptive study incorporating cognitive pre-testing methods and integration of service user views was undertaken over 3 cycles comprising PURPOSE-T training, a focus group and one-to-one think-aloud interviews. Clinical nurses from 2 acute and 2 community NHS Trusts, were grouped according to job role. Focus group participants used 3 vignettes to complete PURPOSE-T assessments and then participated in the focus group. Think-aloud participants were interviewed during their completion of PURPOSE-T. After each pre-test cycle analysis was undertaken and adjustment/improvements made to PURPOSE-T in an iterative process. This incorporated the use of descriptive statistics for data completeness and decision rule compliance and directed content analysis for interview and focus group data. Data were collected April 2012-June 2012. Results Thirty-four nurses participated in 3 pre-test cycles. Data from 3 focus groups, 12 think-aloud interviews incorporating 101 PURPOSE-T assessments led to changes to improve instrument content and design, flow and format, decision support and item-specific wording. Acceptability and usability were demonstrated by improved data completion and appropriate risk pathway allocation. The pre-test also confirmed content validity with clinical nurses. Conclusions The pre-test was an important step in the development of the preliminary PURPOSE-T and the

  1. Aircraft Lighting and Transparency Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Lighting and Transparencies with Night Combat Lab performs radiometric and photometric measurements of cockpit lighting and displays. Evaluates the day,...

  2. Characteristic and Competency Measurement Instrument Development for Maintenance Staff of Mechanical Expertise with SECI Method: A Case of Manufacturing Company

    Science.gov (United States)

    Mahatmavidya, P. A.; Soesanto, R. P.; Kurniawati, A.; Andrawina, L.

    2018-03-01

    Human resource is an important factor for a company to gain competitiveness, therefore competencies of each individual in a company is a basic characteristic that is taken into account. The increasing employee’s competency will affect directly to the company's performance. The purpose of this research is to improve the quality of human resources of maintenance staff in manufacturing company by designing competency measurement instrument that aims to assess the competency of employees. The focus of this research is the mechanical expertise of maintenance staff. SECI method is used in this research for managing knowledge that is held by senior employees regarding employee competence of mechanical expertise. The SECI method converts the knowledge of a person's tacit knowledge into an explicit knowledge so that the knowledge can be used by others. The knowledge that is gathered from SECI method is converted into a list of competence and break down into the detailed competency. Based on the results of this research, it is known that 11 general competencies, 17 distinctive competencies, 20 indicators, and 20 item list for assessing the competencies are developed. From the result of competency breakdown, the five-level instrument of measurement is designed which can assist in assessing employee’s competency for mechanical expertise.

  3. Instrumentation and method for measuring NIR light absorbed in tissue during MR imaging in medical NIRS measurements

    Science.gov (United States)

    Myllylä, Teemu S.; Sorvoja, Hannu S. S.; Nikkinen, Juha; Tervonen, Osmo; Kiviniemi, Vesa; Myllylä, Risto A.

    2011-07-01

    Our goal is to provide a cost-effective method for examining human tissue, particularly the brain, by the simultaneous use of functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). Due to its compatibility requirements, MRI poses a demanding challenge for NIRS measurements. This paper focuses particularly on presenting the instrumentation and a method for the non-invasive measurement of NIR light absorbed in human tissue during MR imaging. One practical method to avoid disturbances in MR imaging involves using long fibre bundles to enable conducting the measurements at some distance from the MRI scanner. This setup serves in fact a dual purpose, since also the NIRS device will be less disturbed by the MRI scanner. However, measurements based on long fibre bundles suffer from light attenuation. Furthermore, because one of our primary goals was to make the measuring method as cost-effective as possible, we used high-power light emitting diodes instead of more expensive lasers. The use of LEDs, however, limits the maximum output power which can be extracted to illuminate the tissue. To meet these requirements, we improved methods of emitting light sufficiently deep into tissue. We also show how to measure NIR light of a very small power level that scatters from the tissue in the MRI environment, which is characterized by strong electromagnetic interference. In this paper, we present the implemented instrumentation and measuring method and report on test measurements conducted during MRI scanning. These measurements were performed in MRI operating rooms housing 1.5 Tesla-strength closed MRI scanners (manufactured by GE) in the Dept. of Diagnostic Radiology at the Oulu University Hospital.

  4. Lab at Home: Hardware Kits for a Digital Design Lab

    Science.gov (United States)

    Oliver, J. P.; Haim, F.

    2009-01-01

    An innovative laboratory methodology for an introductory digital design course is presented. Instead of having traditional lab experiences, where students have to come to school classrooms, a "lab at home" concept is proposed. Students perform real experiments in their own homes, using hardware kits specially developed for this purpose. They…

  5. RemoteLabs Platform

    Directory of Open Access Journals (Sweden)

    Nils Crabeel

    2012-03-01

    Full Text Available This paper reports on a first step towards the implementation of a framework for remote experimentation of electric machines – the RemoteLabs platform. This project was focused on the development of two main modules: the user Web-based and the electric machines interfaces. The Web application provides the user with a front-end and interacts with the back-end – the user and experiment persistent data. The electric machines interface is implemented as a distributed client server application where the clients, launched by the Web application, interact with the server modules located in platforms physically connected the electric machines drives. Users can register and authenticate, schedule, specify and run experiments and obtain results in the form of CSV, XML and PDF files. These functionalities were successfully tested with real data, but still without including the electric machines. This inclusion is part of another project scheduled to start soon.

  6. The lab of fame

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    For a third time, CERN is organising the Swiss heat of Famelab, the world’s leading science communication competition that has already gathered over 5,000 young and talented scientists and engineers from all across the planet.   Besides their degrees, the scientists who participate in Famelab have another thing in common: their passion for communicating science. Coming from a variety of scientific fields, from medicine to particle physics and microbiology, the contestants have three minutes to present a science, technology, mathematics or engineering-based talk using only the props he or she can carry onto the stage; PowerPoint presentations are not permitted. The contestants are then judged by a panel of three judges who evaluate the content, clarity and charisma of their talks. What's unique about FameLab is the fact that content is an important aspect of the performance. At the end of their presentation, contestants are often questioned about the scientific relevance of...

  7. Reconstructing the Surface Permittivity Distribution from Data Measured by the CONSERT Instrument aboard Rosetta: Method and Simulations

    Science.gov (United States)

    Plettemeier, D.; Statz, C.; Hegler, S.; Herique, A.; Kofman, W. W.

    2014-12-01

    One of the main scientific objectives of the Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) aboard Rosetta is to perform a dielectric characterization of comet 67P/Chuyurmov-Gerasimenko's nucleus by means of a bi-static sounding between the lander Philae launched onto the comet's surface and the orbiter Rosetta. For the sounding, the lander part of CONSERT will receive and process the radio signal emitted by the orbiter part of the instrument and transmit a signal to the orbiter to be received by CONSERT. CONSERT will also be operated as bi-static RADAR during the descent of the lander Philae onto the comet's surface. From data measured during the descent, we aim at reconstructing a surface permittivity map of the comet at the landing site and along the path below the descent trajectory. This surface permittivity map will give information on the bulk material right below and around the landing site and the surface roughness in areas covered by the instrument along the descent. The proposed method to estimate the surface permittivity distribution is based on a least-squares based inversion approach in frequency domain. The direct problem of simulating the wave-propagation between lander and orbiter at line-of-sight and the signal reflected on the comet's surface is modelled using a dielectric physical optics approximation. Restrictions on the measurement positions by the descent orbitography and limitations on the instrument dynamic range will be dealt with by application of a regularization technique where the surface permittivity distribution and the gradient with regard to the permittivity is projected in a domain defined by a viable model of the spatial material and roughness distribution. The least-squares optimization step of the reconstruction is performed in such domain on a reduced set of parameters yielding stable results. The viability of the proposed method is demonstrated by reconstruction results based on simulated data.

  8. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  9. Aespoe Hard Rock Laboratory. Characterisation methods and instruments. Experiences from the construction phase

    International Nuclear Information System (INIS)

    Almen, Karl-Erik; Stenberg, Leif

    2005-12-01

    This report describes the different investigation methods used during the Aespoe HRL construction phase which commenced 1990 and ended 1995. The investigation methods are described with respect to performance, errors, uncertainty and usefulness in determined, analysed and/or calculated parameter values or other kind of geoscientific information. Moreover, other comments of the different methods, like those related to the practical performance of the measurements or tests are given. The practical performance is a major task as most of the investigations were conducted in parallel with the construction work. Much of the wide range of investigations carried out during the tunnelling work required special efforts of the personnel involved. Experiences and comments on these operations are presented in the report. The pre-investigation methods have been evaluated by comparing predictions based on pre-investigation models with data and results from the construction phase and updated geoscientific models. In 1997 a package of reports describe the general results of the pre-investigations. The investigation methods are in this report evaluated with respect to usefulness for underground characterisation of a rock volume, concerning geological, geohydrological, hydrochemical and rock mechanical properties. The report describes out opinion of the methods after the construction phase, i.e. the same platform of knowledge as for the package of reports of 1997. The evaluation of usefulness of the underground investigation methods are structured according to the key issues used for the preinvestigation modelling and predictions, i.e. Geological-structural model, Groundwater flow (hydrogeology), Groundwater chemistry (hydrochemistry), Transport of solutes and Mechanical stability models (or rock mechanics). The investigation methods selected for the different subjects for which the predictions were made are presented. Some of the subjects were slightly modified or adjusted during

  10. An instrument for small-animal imaging using time-resolved diffuse and fluorescence optical methods

    International Nuclear Information System (INIS)

    Montcel, Bruno; Poulet, Patrick

    2006-01-01

    We describe time-resolved optical methods that use diffuse near-infrared photons to image the optical properties of tissues and their inner fluorescent probe distribution. The assembled scanner uses picosecond laser diodes at 4 wavelengths, an 8-anode photo-multiplier tube and time-correlated single photon counting. Optical absorption and reduced scattering images as well as fluorescence emission images are computed from temporal profiles of diffuse photons. This method should improve the spatial resolution and the quantification of fluorescence signals. We used the diffusion approximation of the radiation transport equation and the finite element method to solve the forward problem. The inverse problem is solved with an optimization algorithm such as ART or conjugate gradient. The scanner and its performances are presented, together with absorption, scattering and fluorescent images obtained with it

  11. Aespoe Hard Rock Laboratory. Characterisation methods and instruments. Experiences from the construction phase

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    This report describes the different investigation methods used during the Aespoe HRL construction phase which commenced 1990 and ended 1995. The investigation methods are described with respect to performance, errors, uncertainty and usefulness in determined, analysed and/or calculated parameter values or other kind of geoscientific information. Moreover, other comments of the different methods, like those related to the practical performance of the measurements or tests are given. The practical performance is a major task as most of the investigations were conducted in parallel with the construction work. Much of the wide range of investigations carried out during the tunnelling work required special efforts of the personnel involved. Experiences and comments on these operations are presented in the report. The pre-investigation methods have been evaluated by comparing predictions based on pre-investigation models with data and results from the construction phase and updated geoscientific models. In 1997 a package of reports describe the general results of the pre-investigations. The investigation methods are in this report evaluated with respect to usefulness for underground characterisation of a rock volume, concerning geological, geohydrological, hydrochemical and rock mechanical properties. The report describes out opinion of the methods after the construction phase, i.e. the same platform of knowledge as for the package of reports of 1997. The evaluation of usefulness of the underground investigation methods are structured according to the key issues used for the preinvestigation modelling and predictions, i.e. Geological-structural model, Groundwater flow (hydrogeology), Groundwater chemistry (hydrochemistry), Transport of solutes and Mechanical stability models (or rock mechanics). The investigation methods selected for the different subjects for which the predictions were made are presented. Some of the subjects were slightly modified or adjusted during

  12. A new method for the precise absolute calibration of polarization effects in spin-1/2-spin-0 scattering applied to p-. alpha. scattering at 25. 68 MeV and. theta. sub lab =117. 5 sup 0

    Energy Technology Data Exchange (ETDEWEB)

    Clajus, M.; Egun, P.; Grueebler, W.; Hautle, P.; Weber, A. (Eidgenoessische Technische Hochschule, Zurich (Switzerland). Inst. fuer Mittelenergiephysik); Schmelzbach, P.A. (Paul Scherrer Inst., Villigen (Switzerland)); Kretschmer, W.; Haller, M.; Prenzel, C.J.; Rauscher, A.; Schuster, W.; Weidmann, R. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Physikalisches Inst.)

    1989-08-20

    A new general method for the precise calibration of beam polarization or analyzing power in spin-1/2-spin-0 elastic scattering has been developed. This absolute calibration method uses the double scattering technique in connection with modern polarized ion source technology. It is based on an incident beam with at least two different polarization states and its independent of beam energy and scattering angle. The application to p-{alpha} elastic scattering at 25.68 MeV and a lab. angle of 117.5{sup 0} is described. The result is a new determination of the analyzing power to an accuracy of better than 1%, i.e. A{sub y}=0.8119+-0.0076. Systematic errors are extensively discussed. (orig.).

  13. Connect high speed analog-digital converter with EPICS based on LabVIEW

    International Nuclear Information System (INIS)

    Wang Wei; Chi Yunlong

    2008-01-01

    This paper introduce a method to connect high speed analog-digital converter (ADC212/100) with EPICS on Windows platform using LabVIEW. We use labVIEW to communicate with the converter, then use interface sub-VIs between LabVIEW and EPICS to access the EPICS IOC by Channel Access (CA). For the easy use graph programming language of LabVIEW, this method could shorten the develop period and reduce manpower cost. (authors)

  14. Three pedagogical approaches to introductory physics labs and their effects on student learning outcomes

    Science.gov (United States)

    Chambers, Timothy

    the novel nature of this research and the large number of item-level results we produced, we recommend additional research to determine the reproducibility of our results. Analyzing the data with item response theory yields additional information about the performance of our students on both conceptual questions and quantitative problems. We find that performing lab activities on a topic does lead to better-than-expected performance on some conceptual questions regardless of pedagogical approach, but that this acquired conceptual understanding is strongly context-dependent. The results also suggest that a single "Newtonian reasoning ability" is inadequate to explain student response patterns to items from the Force Concept Inventory. We develop a framework for applying polytomous item response theory to the analysis of quantitative free-response problems and for analyzing how features of student solutions are influenced by problem-solving ability. Patterns in how students at different abilities approach our post-test problems are revealed, and we find hints as to how features of a free-response problem influence its item parameters. The item-response theory framework we develop provides a foundation for future development of quantitative free-response research instruments. Chapter 1 of the dissertation presents a brief history of physics education research and motivates the present study. Chapter 2 describes our experimental methodology and discusses the treatments applied to students and the instruments used to measure their learning. Chapter 3 provides an introduction to the statistical and analytical methods used in our data analysis. Chapter 4 presents the full data set, analyzed using both classical test theory and item response theory. Chapter 5 contains a discussion of the implications of our results and a data-driven analysis of our experimental methods. Chapter 6 describes the importance of this work to the field and discusses the relevance of our research to

  15. Using hot lab to increase pre-service physics teacher’s critical thinking skills related to the topic of RLC circuit

    Science.gov (United States)

    Malik, A.; Setiawan, A.; Suhandi, A.; Permanasari, A.; Samsudin, A.; Safitri, D.; Lisdiani, S. A. S.; Sapriadil, S.; Hermita, N.

    2018-05-01

    This research purposes to explore the used of Higher Order Thinking Laboratory (HOT-Lab) in enhancing the critical thinking skills of pre-service teachers related to the topic of Resistors, Inductors, Capacitor (RLC circuit). This study utilised a quasi-experiment method with Pretest-Posttest Control Group design. The sample of the study was 60 students that were divided into two groups covering in experiment and control group, consists of 30 students. The instrument for measuring critical thinking skills is essay test. Data has been analyzed using normalized gain average, effect size, and t-test. The results show that students’ critical thinking skills using the HOT Lab are higher than the verification lab. Using HOT-lab was implemented in the form of activity in the laboratory can improve high-order thinking skills. Hence, it was concluded that the use of HOT Lab had a greater impact on improving students’ critical thinking skills on RLC topic. Finally, HOT Lab can be used for other physics topics.

  16. Use of instrumental nuclear activation methods in the study of particles from major air pollution sources

    International Nuclear Information System (INIS)

    Gordon, G.E.; Zoller, W.H.; Gladney, E.S.; Greenberg, R.R.

    1974-01-01

    Nuclear methods have been used effectively in the study of particles emitted by a coal-fired power plant and a municipal incinerator. In the coal-fired plant there is appreciable fractionation of only five of the observed elements. By contrast, particles from the incinerator are highly enriched in several trace elements

  17. Nuclear medicine and imaging research. Instrumentation and quantitative methods of evaluation. Progress report, January 15, 1985-January 14, 1986

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.D.

    1985-09-01

    This program of research addresses problems involving the basic science and technology of radioactive tracer methods as they relate to nuclear medicine and imaging. The broad goal is to develop new instruments and methods for image formation, processing, quantitation, and display, so as to maximize the diagnostic information per unit of absorbed radiation dose to the patient. These developments are designed to meet the needs imposed by new radiopharmaceuticals developed to solve specific biomedical problems, as well as to meet the instrumentation needs associated with radiopharmaceutical production and quantitative clinical feasibility studies of the brain with PET VI. Project I addresses problems associated with the quantitative imaging of single-photon emitters; Project II addresses similar problems associated with the quantitative imaging of positron emitters; Project III addresses methodological problems associated with the quantitative evaluation of the efficacy of diagnostic imaging procedures. The original proposal covered work to be carried out over the three-year contract period. This report covers progress made during Year Three. 36 refs., 1 tab

  18. Micron2 Lab: Microfluidic Microbiology Lab Project

    Science.gov (United States)

    Burton, Aaron; Botkin, Douglas; Castro, Sarah; Crucian, Brian

    2015-01-01

    Microbial monitoring during spaceflight is crucial to maintain crew health and ensure water purifications systems are functioning properly. Current protocols for in-flight enumeration of bacteria in potable water systems require culture based methods. In this project, we aim to develop a flight- and microgravity-compatible flow cytometer capable of counting total microbial counts in the water supply and differentiating live from dead bacteria.

  19. Higuchi’s Method applied to detection of changes in timbre of digital sound synthesis of string instruments with the functional transformation method

    Science.gov (United States)

    Kanjanapen, Manorth; Kunsombat, Cherdsak; Chiangga, Surasak

    2017-09-01

    The functional transformation method (FTM) is a powerful tool for detailed investigation of digital sound synthesis by the physical modeling method, the resulting sound or measured vibrational characteristics at discretized points on real instruments directly solves the underlying physical effect of partial differential equation (PDE). In this paper, we present the Higuchi’s method to examine the difference between the timbre of tone and estimate fractal dimension of musical signals which contains information about their geometrical structure that synthesizes by FTM. With the Higuchi’s method we obtain the whole process is not complicated, fast processing, with the ease of analysis without expertise in the physics or virtuoso musicians and the easiest way for the common people can judge that sounds similarly presented.

  20. A new instrumental method for the analysis of rare earth elements

    International Nuclear Information System (INIS)

    Santos, A.N. dos.

    1975-01-01

    A method for the simultaneous elemental analysis of the rare earths is proposed and empirically verified. It is based on the analysis of the escape peaks, generated by the characteristic X-rays of these elements in a xenon proportional counter. The peaks are well resolved and intense, in contrast to the photopeak which is lost in the background. The spectra are generated by a radioisotope such as Co 57 , and the equipment is simple, portable and low cost, although resolution challenges that of the best solid state detectors. Since X-rays are utilized, matrix, granulometric or mineralogical effects are minimal, and the method is rapid, sensitive, non-destructive and requires little or no sample preparation. The results are preliminary and an improvement in resolution of up to fourfold seems possible; precision is better than 0,1% in concentrated samples and sensitivity is about 20 μg

  1. INSTRUMENTS AND METHODS OF INVESTIGATION: Positron annihilation spectroscopy in materials structure studies

    Science.gov (United States)

    Grafutin, Viktor I.; Prokop'ev, Evgenii P.

    2002-01-01

    A relatively new method of materials structure analysis — positron annihilation spectroscopy (PAS) — is reviewed. Measurements of positron lifetimes, the determination of positron 3γ- and 2γ-annihilation probabilities, and an investigation of the effects of different external factors on the fundamental characteristics of annihilation constitute the basis for this promising method. The ways in which the positron annihilation process operates in ionic crystals, semiconductors, metals and some condensed matter systems are analyzed. The scope of PAS is described and its prospects for the study of the electronic and defect structures are discussed. The applications of positron annihilation spectroscopy in radiation physics and chemistry of various substances as well as in physics and chemistry of solutions are exemplified.

  2. GitLab repository management

    CERN Document Server

    Hethey, Jonathan

    2013-01-01

    A simple, easy to understand tutorial guide on how to build teams and efficiently use version control, using GitLab.If you are a system administrator in a company that writes software or are in charge of an infrastructure, this book will show you the most important features of GitLab, including how to speed up the overall process

  3. Report from the banding lab

    Science.gov (United States)

    Tautin, J.

    1995-01-01

    Mr. Tautin reported on the seemingly everchanging structure of biological science units within the Interior Department. Current Congressional proposals would either change the name of the Bird Banding Lab's parent agency or make it part of the Geological Survey. The current Congress has not looked favorably on science budgets within the Interior Department, and the Banding Lab's budget is being squeezed ever tighter.

  4. Ntal/Lab/Lat2

    DEFF Research Database (Denmark)

    Iwaki, Shoko; Jensen, Bettina M; Gilfillan, Alasdair M

    2007-01-01

    T cells. As demonstrated in monocytes and B cells, phosphorylated NTAL/LAB/LAT2 recruits signaling molecules such as Grb2, Gab1 and c-Cbl into receptor-signaling complexes. Although gene knock out and knock down studies have indicated that NTAL/LAB/LAT2 may function as both a positive and negative...

  5. The Place of Nailfold Capillaroscopy Among Instrumental Methods for Assessment of Some Peripheral Ischaemic Syndromes in Rheumatology.

    Science.gov (United States)

    Lambova, Sevdalina N

    2016-01-01

    Micro- and macrovascular pathology is a frequent finding in a number of common rheumatic diseases. Secondary Raynaud's phenomenon (RP) is among the most common symptoms in systemic sclerosis and several other systemic autoimmune diseases including a broad differential diagnosis. It should be also differential from other peripheral vascular syndromes such as embolism, thrombosis, etc., some of which lead to clinical manifestation of the blue toe syndrome. The current review discusses the instrumental methods for vascular assessments. Nailfold capillaroscopy is the only method among the imaging techniques that can be used for morphological assessment of the nutritive capillaries in the nailfold area. Laser-Doppler flowmetry and laser-Doppler imaging are methods for functional assessment of microcirculation, while thermography and plethysmography reflect both blood flow in peripheral arteries and microcirculation. Doppler ultrasound and angiography visualize peripheral arteries. The choice of the appropriate instrumental method is guided by the clinical presentation. The main role of capillaroscopy is to provide differential diagnosis between primary and secondary RP. In rheumatology, capillaroscopic changes in systemic sclerosis have been recently defined as diagnostic. The appearance of abnormal capillaroscopic pattern inherits high positive predictive value for the development of a connective tissue disease that is higher than the predictive value of antinuclear antibodies. In cases of abrupt onset of peripheral ischaemia, clinical signs of critical ischaemia, unilateral or lower limb involvement, Doppler ultrasound and angiography are indicated. The most common causes for such clinical picture that may be referred to rheumatologic consultation are the antiphospholipid syndrome, mimickers of vasculitides such as atherosclerosis with cholesterol emboli, and neoplasms.

  6. The use of instrumental neutron activation analysis method in bio-sorption determination

    International Nuclear Information System (INIS)

    Khamidova, Kh.M.; Mutavalieva, Z.S.; Muchamedshina, N.M.; Mirzagatova, A.A.

    2005-01-01

    Full text: Recently, much attention is paid to the research and development of effective metal remediation methods. In industry, for the removal of metals from the industrial solutions and wastes, the expensive ion-exchange resin method of metal sorption is used today. The microbiological methods are much less expensive, are available and provide its application in natural conditions. The search for molybdenum bio sorbent was performed amongst Actinomyces strains. The 18 of Streptomyces strains were used. The data showed that all investigated strains uptake the molybdenum from the solution in various degrees. The molybdenum determination was performed using neutron activation analysis technique. In a nuclear reactor, the samples were treated with a steady flow of neutrons (5.1·10 13 ) n·cm -2 sec -1 in 20 hours. The samples were stored for 6-7 days before analysis. The Actinomyces biomass uptake capacity was up to 94.5 %. The 8 cultures have the most high uptake capacity that varied from 87.4 to 94.5 %. Streptomyces sp. 39 and Streptomyces sp.32 have the lowest bio-sorption capacity amongst studied strains, which was 46.6% and 40 % respectively, whereas the bio sorption capacity of other cultures varied from 55.8 to 64.1%. The influence of some physical and chemical parameters (culture age, pH, temperature) on molybdenum bio-sorption was studied. Data showed that the change in pH, temperature and cultivation period lead to the increase of bio-sorption capacity

  7. Development of software in LabVIEW for measurement of transport properties of high Tc superconductors

    International Nuclear Information System (INIS)

    Reilly, D.; Savvides, N.

    1996-01-01

    Full text: The gathering of data and their analysis are vital processes in experiments. We have used LabVIEW (National Instruments) to develop programs to measure transport properties of high - T c superconductors, eg. resistivity, ac susceptibility, I-V characteristics. Our systems make use of GPIB (IEEE - 488.2) programmable instruments and a personal computer. LabVIEW is a graphical programming system for instrument control and data acquisition, data analysis and presentation. A key feature of LabVIEW is the ability to graphically assemble software modules or virtual instruments (VIs) and 'wire' them together. In this paper we describe the development of several programs and will offer advice to colleagues wanting to explore LabVIEW

  8. Reducing unnecessary lab testing in the ICU with artificial intelligence.

    Science.gov (United States)

    Cismondi, F; Celi, L A; Fialho, A S; Vieira, S M; Reti, S R; Sousa, J M C; Finkelstein, S N

    2013-05-01

    To reduce unnecessary lab testing by predicting when a proposed future lab test is likely to contribute information gain and thereby influence clinical management in patients with gastrointestinal bleeding. Recent studies have demonstrated that frequent laboratory testing does not necessarily relate to better outcomes. Data preprocessing, feature selection, and classification were performed and an artificial intelligence tool, fuzzy modeling, was used to identify lab tests that do not contribute an information gain. There were 11 input variables in total. Ten of these were derived from bedside monitor trends heart rate, oxygen saturation, respiratory rate, temperature, blood pressure, and urine collections, as well as infusion products and transfusions. The final input variable was a previous value from one of the eight lab tests being predicted: calcium, PTT, hematocrit, fibrinogen, lactate, platelets, INR and hemoglobin. The outcome for each test was a binary framework defining whether a test result contributed information gain or not. Predictive modeling was applied to recognize unnecessary lab tests in a real world ICU database extract comprising 746 patients with gastrointestinal bleeding. Classification accuracy of necessary and unnecessary lab tests of greater than 80% was achieved for all eight lab tests. Sensitivity and specificity were satisfactory for all the outcomes. An average reduction of 50% of the lab tests was obtained. This is an improvement from previously reported similar studies with average performance 37% by [1-3]. Reducing frequent lab testing and the potential clinical and financial implications are an important issue in intensive care. In this work we present an artificial intelligence method to predict the benefit of proposed future laboratory tests. Using ICU data from 746 patients with gastrointestinal bleeding, and eleven measurements, we demonstrate high accuracy in predicting the likely information to be gained from proposed future

  9. Reducing unnecessary lab testing in the ICU with artificial intelligence

    Science.gov (United States)

    Cismondi, F.; Celi, L.A.; Fialho, A.S.; Vieira, S.M.; Reti, S.R.; Sousa, J.M.C.; Finkelstein, S.N.

    2017-01-01

    Objectives To reduce unnecessary lab testing by predicting when a proposed future lab test is likely to contribute information gain and thereby influence clinical management in patients with gastrointestinal bleeding. Recent studies have demonstrated that frequent laboratory testing does not necessarily relate to better outcomes. Design Data preprocessing, feature selection, and classification were performed and an artificial intelligence tool, fuzzy modeling, was used to identify lab tests that do not contribute an information gain. There were 11 input variables in total. Ten of these were derived from bedside monitor trends heart rate, oxygen saturation, respiratory rate, temperature, blood pressure, and urine collections, as well as infusion products and transfusions. The final input variable was a previous value from one of the eight lab tests being predicted: calcium, PTT, hematocrit, fibrinogen, lactate, platelets, INR and hemoglobin. The outcome for each test was a binary framework defining whether a test result contributed information gain or not. Patients Predictive modeling was applied to recognize unnecessary lab tests in a real world ICU database extract comprising 746 patients with gastrointestinal bleeding. Main results Classification accuracy of necessary and unnecessary lab tests of greater than 80% was achieved for all eight lab tests. Sensitivity and specificity were satisfactory for all the outcomes. An average reduction of 50% of the lab tests was obtained. This is an improvement from previously reported similar studies with average performance 37% by [1–3]. Conclusions Reducing frequent lab testing and the potential clinical and financial implications are an important issue in intensive care. In this work we present an artificial intelligence method to predict the benefit of proposed future laboratory tests. Using ICU data from 746 patients with gastrointestinal bleeding, and eleven measurements, we demonstrate high accuracy in predicting the

  10. A direct method for calculating instrument noise levels in side-by-side seismometer evaluations

    Science.gov (United States)

    Holcomb, L. Gary

    1989-01-01

    The subject of determining the inherent system noise levels present in modem broadband closed loop seismic sensors has been an evolving topic ever since closed loop systems became available. Closed loop systems are unique in that the system noise can not be determined via a blocked mass test as in older conventional open loop seismic sensors. Instead, most investigators have resorted to performing measurements on two or more systems operating in close proximity to one another and to analyzing the outputs of these systems with respect to one another to ascertain their relative noise levels.The analysis of side-by-side relative performance is inherently dependent on the accuracy of the mathematical modeling of the test configuration. This report presents a direct approach to extracting the system noise levels of two linear systems with a common coherent input signal. The mathematical solution to the problem is incredibly simple; however the practical application of the method encounters some difficulties. Examples of expected accuracies are presented as derived by simulating real systems performance using computer generated random noise. In addition, examples of the performance of the method when applied to real experimental test data are shown.

  11. Rapid instrumental and separation methods for monitoring radionuclides in food and environmental samples. Progress report

    International Nuclear Information System (INIS)

    Bhat, I.S.; Shukla, V.K.; Singh, A.N.; Nair, C.K.G.; Hingorani, S.B.; Dey, N.N.; Jha, S.K.; Rao, D.D.

    1995-01-01

    When activity levels are low, the direct gamma counting of milk and water samples take very long time, initial concentration step increases the sensitivity. 131 I in aqueous samples can be concentrated by absorption on AgCI in acidic condition. In case of milk, initial treatment with TCA, separation of precipitated casin and stirring the acidified (dil. HNO 3 ) clear solution with about 500 mg AgCI gives all the 131 I (more than 95%) picked up by AgCI which can be counted in a well crystal gamma spectrometer. In case of water samples acidification and direct stirring with AgCI all 131 I gets absorbed on to AgCI. About half an hour stirring has been found sufficient to give reproducible result. The total time required will be about 3 hrs. In case of 137 Cs, the aqueous solution should be stirred with ammonium phosphomolybdate (AMP) after acidification with HNO 3 . After an hour of AMP settling time, decantation, filtration and centrifuging one can get the AMP ready for counting in a gamma spectrometer having a well type detector. The analysis can be completed within 2 hrs. AgCI concentration of 131 I and AMP concentration of 137 Cs reduces the counting time significantly. These methods have been used for sea water and milk samples analysis. Methods are being standardised for solvent extraction separation of Pu, Am and Cm from preconcentrated environmental samples and direct counting of organic extract by liquid scintillation counting. For Pu determination, solvent extraction by TTA, back extraction and reextraction to 5% D2EHPA and direct liquid scintillation counting of Pu-alphas is planned. This will reduce the time required for Pu analysis to a significant extent. After bringing the sample to solution, this separation step can be carried out within 1 1/2 to 2 hrs. With Instagel scintillator cocktail in the packard 1550 LSS, Pu-239 counting had 70% efficiency with 5.3 cpm background. Pu-239 estimated in a few sediment sample gave results by both LSS method and Si

  12. Method of production of a diaphragm for instruments in particle optics and diaphragm fabricated by this method

    International Nuclear Information System (INIS)

    Sandrik, J.; Krohne, P.

    1975-01-01

    The production method of, e.g., a circular diaphragm for an electron microscope is based on copper plate as supporting material. A light-sensitive, electrically insulating layer is coated on this. After exposing and freeing the positions of this layer, e.g., the circular interior as well as the cross-piece to the exterior of the diaghragm, a galvanic building-up of a noble metal layer follows, e.g. gold, on these now free positions. After freeing the remaining non-exposed material, an etching-protective lacquer is coated on the positions of the supporting material which are to be maintained. The remaining parts of the supporting material are then removed by positive etching. (DG/LH) [de

  13. Optimization and development of the instrumental parameters for a method of multielemental analysis through atomic spectroscopy emission, for the determination of My, Fe Mn and Cr

    International Nuclear Information System (INIS)

    Lanzoni Vindas, E.

    1998-01-01

    This study optimized the instrumental parameters of a method of multielemental (sequential) analysis, through atomic emission, for the determination of My, Fe,Mn and Cr. It used the factorial design at two levels and the method of Simplex optimization, that permitted the determination of the four cations under the same instrumental conditions. The author studied an analytic system, in which the conditions were not lineal between instrumental answers and the concentration, having to make adjustment of the calibration curves in homocedastic and heterocedastic conditions. (S. Grainger)

  14. Quantitative assessment of probability of failing safely for the safety instrumented system using reliability block diagram method

    International Nuclear Information System (INIS)

    Jin, Jianghong; Pang, Lei; Zhao, Shoutang; Hu, Bin

    2015-01-01

    Highlights: • Models of PFS for SIS were established by using the reliability block diagram. • The more accurate calculation of PFS for SIS can be acquired by using SL. • Degraded operation of complex SIS does not affect the availability of SIS. • The safe undetected failure is the largest contribution to the PFS of SIS. - Abstract: The spurious trip of safety instrumented system (SIS) brings great economic losses to production. How to ensure the safety instrumented system is reliable and available has been put on the schedule. But the existing models on spurious trip rate (STR) or probability of failing safely (PFS) are too simplified and not accurate, in-depth studies of availability to obtain more accurate PFS for SIS are required. Based on the analysis of factors that influence the PFS for the SIS, using reliability block diagram method (RBD), the quantitative study of PFS for the SIS is carried out, and gives some application examples. The results show that, the common cause failure will increase the PFS; degraded operation does not affect the availability of the SIS; if the equipment was tested and repaired one by one, the unavailability of the SIS can be ignored; the corresponding occurrence time of independent safe undetected failure should be the system lifecycle (SL) rather than the proof test interval and the independent safe undetected failure is the largest contribution to the PFS for the SIS

  15. CERN Technical Training 2006: LabVIEW Course Sessions (September-December 2006)

    CERN Multimedia

    2006-01-01

    The following LabVIEW course sessions are currently scheduled in the framework of the CERN Technical Training Programme 2006, and in collaboration with National Instruments (CH): LabVIEW Basics 1 (course in English): 11-13.9.2006 (3 days, only 3 places available) LabVIEW Basics 2 (course in English): 14-15.9.2006 (2 days) LabVIEW: Working efficiently with LabVIEW 8 (course in English): 18.9.2006 (1 day) **NEW COURSE** LabVIEW Application Development (course in English): 13-15.11.2006 (3 days. Pre-requisite: LabVIEW Basics I ans II, or equivalent experience) LabVIEW Advanced Programming (course in English): 16-17.11.2006 (2 days. Pre-requisite: LabVIEW Application Development, or equivalent experience) LabVIEW Base 1 (course in French): 4-6.12.2006 (3 days, only 1 place available) LabVIEW Base 2 (course in French): 7-8.12.2006 (2 days) If you are interested in attending any of the above course sessions, please discuss with your supervisor and/or your DTO, and apply electronically via EDH from the cour...

  16. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 3, Inorganic instrumental methods

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The methods cover: C in solutions, F (electrode), elements by atomic emission spectrometry, inorganic anions by ion chromatography, Hg in water/solids/sludges, As, Se, Bi, Pb, data calculations for SST (single shell tank?) samples, Sb, Tl, Ag, Pu, O/M ratio, ignition weight loss, pH value, ammonia (N), Cr(VI), alkalinity, U, C sepn. from soil/sediment/sludge, Pu purif., total N, water, C and S, surface Cl/F, leachable Cl/F, outgassing of Ge detector dewars, gas mixing, gas isotopic analysis, XRF of metals/alloys/compounds, H in Zircaloy, H/O in metals, inpurity extraction, reduced/total Fe in glass, free acid in U/Pu solns, density of solns, Kr/Xe isotopes in FFTF cover gas, H by combustion, MS of Li and Cs isotopes, MS of lanthanide isotopes, GC operation, total Na on filters, XRF spectroscopy QC, multichannel analyzer operation, total cyanide in water/solid/sludge, free cyanide in water/leachate, hydrazine conc., ICP-MS, {sup 99}Tc, U conc./isotopes, microprobe analysis of solids, gas analysis, total cyanide, H/N{sub 2}O in air, and pH in soil.

  17. In-core Instrument Subcritical Verification (INCISV) - Core Design Verification Method - 358

    International Nuclear Information System (INIS)

    Prible, M.C.; Heibel, M.D.; Conner, S.L.; Sebastiani, P.J.; Kistler, D.P.

    2010-01-01

    According to the standard on reload startup physics testing, ANSI/ANS 19.6.1, a plant must verify that the constructed core behaves sufficiently close to the designed core to confirm that the various safety analyses bound the actual behavior of the plant. A large portion of this verification must occur before the reactor operates at power. The INCISV Core Design Verification Method uses the unique characteristics of a Westinghouse Electric Company fixed in-core self powered detector design to perform core design verification after a core reload before power operation. A Vanadium self powered detector that spans the length of the active fuel region is capable of confirming the required core characteristics prior to power ascension; reactivity balance, shutdown margin, temperature coefficient and power distribution. Using a detector element that spans the length of the active fuel region inside the core provides a signal of total integrated flux. Measuring the integrated flux distributions and changes at various rodded conditions and plant temperatures, and comparing them to predicted flux levels, validates all core necessary core design characteristics. INCISV eliminates the dependence on various corrections and assumptions between the ex-core detectors and the core for traditional physics testing programs. This program also eliminates the need for special rod maneuvers which are infrequently performed by plant operators during typical core design verification testing and allows for safer startup activities. (authors)

  18. Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography

    International Nuclear Information System (INIS)

    Nissilae, Ilkka; Noponen, Tommi; Kotilahti, Kalle; Katila, Toivo; Lipiaeinen, Lauri; Tarvainen, Tanja; Schweiger, Martin; Arridge, Simon

    2005-01-01

    In this article, we describe the multichannel implementation of an intensity modulated optical tomography system developed at Helsinki University of Technology. The system has two time-multiplexed wavelengths, 16 time-multiplexed source fibers and 16 parallel detection channels. The gain of the photomultiplier tubes (PMTs) is individually adjusted during the measurement sequence to increase the dynamic range of the system by 10 4 . The PMT used has a high quantum efficiency in the near infrared (8% at 800 nm), a fast settling time, and low hysteresis. The gain of the PMT is set so that the dc anode current is below 80 nA, which allows the measurement of phase independently of the intensity. The system allows measurements of amplitude at detected intensities down to 1 fW, which is sufficient for transmittance measurements of the female breast, the forearm, and the brain of early pre-term infants. The mean repeatability of phase and the logarithm of amplitude (ln A) at 100 MHz were found to be 0.08 deg. and 0.004, respectively, in a measurement of a 7 cm phantom with an imaging time of 5 s per source and source optical power of 8 mW. We describe a three-step method of calibrating the phase and amplitude measurements so that the absolute absorption and scatter in tissue may be measured. A phantom with two small cylindrical targets and a second phantom with three rods are measured and reconstructions made from the calibrated data are shown and compared with reconstructions from simulated data

  19. D.P.M. METHOD - A PERFORMANCE ANALYSIS INSTRUMENT OF A STRATEGIC BUSINESS UNIT

    Directory of Open Access Journals (Sweden)

    Ionescu Florin Tudor

    2012-12-01

    Full Text Available Considering the uncertain economic conditions, the market dynamics, the fundamental changes in the attitudes and aspirations of the consumers along with the strong growth of the political role and interventions in the economy, currently characterizing both Romania and other countries of the world, it can be said that the need for strategic planning was never so acute as now. The strategic planning process is an ongoing organizational activity by which managers can make decisions about their present and future position. A number of analytical portfolio tools exist to aid managers in the formulation of the strategy. The use of these tools within the broader context of the overall strategic planning process allows managers to determine the obstacles and opportunities existing in the company’s environment and to define and pursue appropriate strategies for growth and profitability. The present paper aims to highlight from a theoretical standpoint the D.P.M. method, its strategic consequences, advantages and disadvantages. After conducting this analysis I have found that restricting the business portfolio analysis to the D.P.M. matrix is not a very wise decision. The D.P.M. matrix among with other marketing tools of business portfolio analysis have some advantages and disadvantages and is trying to provide, at a time, a specific diagnosis of a company’s business portfolio. Therefore, the recommendation for the Romanian managers consists in a combined use of a wide range of tools and techniques for business portfolio analysis. This leads to a better understanding of the whole mix of product markets, included in portfolio analysis, the strategic position held by each business within a market, the performance potential of business portfolio and the financial aspects related to the resource allocation process for the businesses within the portfolio. It should also be noted that the tools and techniques specific to business portfolio

  20. Multielement analysis of human hair and kidney stones by instrumental neutron activation analysis with the k0-standardization method

    International Nuclear Information System (INIS)

    Abugassa, I.; Sarmani, S.B.; Samat, S.B.

    1999-01-01

    This paper focuses on the evaluation of the k 0 method of instrumental neutron activation analysis in biological materials. The method has been applied in multielement analysis of human hair standard reference materials from IAEA, No. 085, No. 086 and from NIES (National Institute for Environmental Sciences) No. 5. Hair samples from people resident in different parts of Malaysia, in addition to a sample from Japan, were analyzed. In addition, human kidney stones from members of the Malaysian population have been analyzed for minor and trace elements. More than 25 elements have been determined. The samples were irradiated in the rotary rack (Lazy Susan) at the TRIGA Mark II reactor of the Malaysian Institute for Nuclear Technology and Research (MINT). The accuracy of the method was ascertained by analysis of other reference materials, including 1573 tomato leaves and 1572 citrus leaves. In this method the deviation of the 1/E 1+α epithermal neutron flux distribution from the 1/E law (P/T ratio) for true coincidence effects of the γ-ray cascade and the HPGe detector efficiency were determined and corrected for

  1. Overview: Field instrumentation - A Mikado's dream

    International Nuclear Information System (INIS)

    Spittler, T.M.

    1992-01-01

    The Mikado of Gilbert ampersand Sullivan fame held out as an open-quotes object all sublimeclose quotes which he hoped to open-quotes achieve in timeclose quotes the fitting of the punishment to the crime. Like that potentate, I too have long held the hope of finding instrumentation which is ideally suited to measurement of environmental contaminants in the field. Today, at least one of us has had that dream fulfilled. For years, those of us interested in field analysis have had to apply time consuming and cumbersome methods to relatively simple and often short-term environmental measurement problems. Meanwhile, we watched the literature and perused the product blurbs in hopes of finding the ideal tools for on-site, real time analysis. Of course, that search will always go forward as better instruments are developed. Today we can finally point to many pieces of equipment that are on the market and which provide high quality data in real time for a number of the most important environmental contaminants. Furthermore, the sensitivity of some of these field instruments exceeds that of conventional lab instrumentation. Coupled with innovative techniques for sample preparation and proper quality control, field instrumentation can often go a long way to solving problems in rapid detection, quantitation, and positive identification

  2. Reviews in Modern Astronomy 12, Astronomical Instruments and Methods at the turn of the 21st Century

    Science.gov (United States)

    Schielicke, Reinhard E.

    The yearbook series Reviews in Modern Astronomy of the Astronomische Gesellschaft (AG) was established in 1988 in order to bring the scientific events of the meetings of the society to the attention of the worldwide astronomical community. Reviews in Modern Astronomy is devoted exclusively to the invited Reviews, the Karl Schwarzschild Lectures, the Ludwig Biermann Award Lectures, and the highlight contributions from leading scientists reporting on recent progress and scientific achievements at their respective research institutes. Volume 12 continues the yearbook series with 16 contributions which were presented during the International Scientific Conference of the AG on ``Astronomical Instruments and Methods at the Turn of the 21st Century'' at Heidelberg from September 14 to 19, 1998

  3. Element distribution study of drinking water and well sediments using the method of instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Vircavs, M.; Taure, I.; Eglite, G.; Brike, Z.

    1996-01-01

    The method of instrumental activation analysis was used to estimate the distribution of major, minor and trace elements in well sediments, Riga tap water and well water used for drinking and for preparation of food. The chemical composition of drinking water (tap and well water) varies considerably in different districts of Riga and in different wells. The greatest concentration differences for Zn, Fe and Al are observed in tap water. Median concentrations of determined elements are smaller than maximum permissible concentrations (MPC). However, in some cases the concentration of Al and Fe higher than their MPC for tap water. The highest concentration ratios were observed for Ti, Cr and Zn in well sediments. (author). 19 refs, 2 tabs

  4. Study of Material Moisture Measurement Method and Instrument by the Combination of Fast Neutron Absorption and γ Absorption

    International Nuclear Information System (INIS)

    Hou Chaoqin; Gong Yalin; Zhang Wei; Shang Qingmin; Li Yanfeng; Gou Qiangyuan; Yin Deyou

    2010-01-01

    To solve the problem of on-line sinter moisture measurement in the iron making plant, we developed material moisture measurement method and instrument by the combination of fast neutron absorption and y-absorption. It overcomes the present existed problems of other moisture meters for the sinter. Compare with microwave moisture meter, the measurement dose not affected by conductance and magnetism of material; to infrared moisture meter, the measurement result dose not influenced by colour and light-reflect performance of material surface, dose not influenced by changes of material kind; to slow neutron scatter moisture meter, the measurement dose not affected by density of material and thickness of hopper wall; to the moisture measurement meter which combined by slow neutron penetrate through and y-absorption, there are definite math model and good linear relation between the measurement values, and the measurement dose not affected by material thickness, changes of material form and component. (authors)

  5. Method for evaluating the system instrumentation for loose part detection in the primary cooling circuit of French PWRs

    International Nuclear Information System (INIS)

    Gerardin, J.P.; Donnette, J.E.

    1995-05-01

    The purpose of the loose part detection system is to trigger an alarm whenever it is warranted, to localize, and to provide information on the type of loose part involved and the damages it may provoke. It is therefore indispensable to have efficient instrumentation, beginning with the sensors which must provide us with a response to all mechanical impacts in natural trapping areas (reactor vessel and steam generator water box). A series of mass- and energy-calibrated impacts have been generated on 45 points in the primary cooling system of a nuclear plant unit in the startup phase. This test provided insights into the relationship between sensor signals and various impact parameters such as velocity of impact or loose part mass. Once these parameters were known, it was possible to define a method for evaluating the detection threshold of sensors depending on the way they are mounted. (author)

  6. The extended wedge method: atomic force microscope friction calibration for improved tolerance to instrument misalignments, tip offset, and blunt probes.

    Science.gov (United States)

    Khare, H S; Burris, D L

    2013-05-01

    One of the major challenges in understanding and controlling friction is the difficulty in bridging the length and time scales of macroscale contacts and those of the single asperity interactions they comprise. While the atomic force microscope (AFM) offers a unique ability to probe tribological surfaces in a wear-free single-asperity contact, instrument calibration challenges have limited the usefulness of this technique for quantitative nanotribological studies. A number of lateral force calibration techniques have been proposed and used, but none has gained universal acceptance due to practical considerations, configuration limitations, or sensitivities to unknowable error sources. This paper describes a simple extension of the classic wedge method of AFM lateral force calibration which: (1) allows simultaneous calibration and measurement on any substrate, thus eliminating prior tip damage and confounding effects of instrument setup adjustments; (2) is insensitive to adhesion, PSD cross-talk, transducer/piezo-tube axis misalignment, and shear-center offset; (3) is applicable to integrated tips and colloidal probes; and (4) is generally applicable to any reciprocating friction coefficient measurement. The method was applied to AFM measurements of polished carbon (99.999% graphite) and single crystal MoS2 to demonstrate the technique. Carbon and single crystal MoS2 had friction coefficients of μ = 0.20 ± 0.04 and μ = 0.006 ± 0.001, respectively, against an integrated Si probe. Against a glass colloidal sphere, MoS2 had a friction coefficient of μ = 0.005 ± 0.001. Generally, the measurement uncertainties ranged from 10%-20% and were driven by the effect of actual frictional variation on the calibration rather than calibration error itself (i.e., due to misalignment, tip-offset, or probe radius).

  7. A Contribution To The Development And Analysis Of A Combined Current-Voltage Instrument Transformer By Using Modern CAD Methods

    International Nuclear Information System (INIS)

    Chundeva-Blajer, Marija M.

    2004-01-01

    The principle aim and task of the thesis is the analysis and development of 20 kV combined current-voltage instrument transformer (CCVIT) by using modern CAD techniques. CCVIT is a complex electromagnetic system comprising of four windings and two magnetic cores in one insulation housing for simultaneous transformation of high voltages and currents to measurable signal values by standard instruments. The analytical design methods can be applied on simple electromagnetic configurations, which is not the case with the CCVIT. There is mutual electromagnetic influence between the voltage measurement core (VMC) and the current measurement core (CMC). After the analytical CCVIT design had been done, exact determination of its metrological characteristics has been accomplished by using the numerical finite element method implemented in the FEM-3D program package. The FEM-3D calculation is made in 19 cross-sectional layers of the z-axis of the CCVIT three-dimensional domain. By FEM-3D application the three-dimensional CCVIT magnetic field distribution is derived. This is the basis for calculation of the initial metrological characteristics of the CCVIT (VMC is accuracy class 3 and CMC is accuracy class 1). By using the stochastic optimization technique based on genetic algorithm the CCVIT optimal design is achieved. The objective function is the minimum of the metrological parameters (VIM voltage error and CMC current error). There are I I independent input variables during the optimization process by which the optimal project is derived. The optimal project is adapted for realization of a prototype and the optimized project is derived. Full comparative analysis of the metrological and the electromagnetic characteristics of the three projects is accomplished. By application of the program package MATLAB/SIMULINK the CCVIT transient phenomena is analyzed for different regimes in the three design projects. In the Instrument Transformer Factory of EMO A. D.-Ohrid a CCVIT

  8. Instrumentation development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Areas being investigated for instrumentation improvement during low-level pollution monitoring include laser opto-acoustic spectroscopy, x-ray fluorescence spectroscopy, optical fluorescence spectroscopy, liquid crystal gas detectors, advanced forms of atomic absorption spectroscopy, electro-analytical chemistry, and mass spectroscopy. Emphasis is also directed toward development of physical methods, as opposed to conventional chemical analysis techniques for monitoring these trace amounts of pollution related to energy development and utilization

  9. A Nuclear Scale System Based on LabVIEW

    International Nuclear Information System (INIS)

    Liu Shixing; Gu Qindong

    2009-01-01

    Nuclear mass scales measure the weight of materials which absorb and attenuate the nuclear radiation when the low energy γ-ray through it and is a non-contact continuous measurement device with simple structure and reliable operation. LabVIEW as a graphical programming language is a standard data acquisition and instrument control software. Based on the principle of nuclear mass scale measuring system, monitoring software for nuclear scale system is designed using LabVIEW programming environment. Software architecture mainly composed of three basic modules which include the monitoring software, databases and Web services. It achieves measurement data acquisition, status monitoring, and data management and has networking functions. (authors)

  10. Method for the Analysis of Temporal Change of Physical Structure in the Instrumentation and Control Life-Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Goering, Markus [Vattenfall Europe Nuclear Energy GmbH, Hamburg, (Germany); Fay, Alexander [Helmut Schmidt Univ., Hamburg (Germany)

    2013-10-15

    The design of computer-based instrumentation and control (I and C) systems is determined by the allocation of I and C functions to I and C systems and components. Due to the characteristics of computer-based technology, component failures can negatively affect several I and C functions, so that the reliability proof of the I and C systems requires the accomplishment of I and C system design analyses throughout the I and C life-cycle. On one hand, this paper proposes the restructuring of the sequential IEC 61513 I and C life-cycle according to the V-model, so as to adequately integrate the concept of verification and validation. On the other hand, based on a meta model for the modeling of I and C systems, this paper introduces a method for the modeling and analysis of the effects with respect to the superposition of failure combinations and event sequences on the I and C system design, i.e. the temporal change of physical structure is analyzed. In the first step, the method is concerned with the modeling of the I and C systems. In the second step, the method considers the analysis of temporal change of physical structure, which integrates the concepts of the diversity and defense-in-depth analysis, fault tree analysis, event tree analysis, and failure mode and effects analysis.

  11. Application of instrumental neutron activation analysis of uranium in burn-up measurements using. gamma. -ray spectrometric method

    Energy Technology Data Exchange (ETDEWEB)

    Chao, H E; Lu, W D

    1975-12-01

    In uranium burnup measurements, the amount of uranium in the irradiated sample needs to be determined, and the application of instrumental neutron activation analysis for this purpose is investigated. The method uses the gamma-ray activities of /sup 239/Np and some short-lived fission products of half-lives no longer than a few days to determine the quantities of /sup 238/U and /sup 235/U respectively. The advantages of the method include: (1) the amounts of both /sup 235/U and /sup 238/U of the sample can be simultaneously determined with good accuracy, (2) the same sample may be used to determine both the fission numbers and the amount of uranium remaining simultaneously or one after another, thus the exact amount of the sample is not necessarily known, (3) since the amount of the sample needed for the determination is usually small, i.e., about 10 ..mu..g, it should be easily handled even for high-level burnup samples. The error of the method is about 3 percent for a single measurement. The burnup values measured for an irradiated natural uranium sample from three aliquots using several fission products are in good agreement. The effective cross section for /sup 235/U deduced from the burnup and the integrated flux from a cobalt monitor is found to be 589 +- 19 barn which is in agreement with the literature value of 577 +- 1 barn.

  12. Method for the Analysis of Temporal Change of Physical Structure in the Instrumentation and Control Life-Cycle

    International Nuclear Information System (INIS)

    Goering, Markus; Fay, Alexander

    2013-01-01

    The design of computer-based instrumentation and control (I and C) systems is determined by the allocation of I and C functions to I and C systems and components. Due to the characteristics of computer-based technology, component failures can negatively affect several I and C functions, so that the reliability proof of the I and C systems requires the accomplishment of I and C system design analyses throughout the I and C life-cycle. On one hand, this paper proposes the restructuring of the sequential IEC 61513 I and C life-cycle according to the V-model, so as to adequately integrate the concept of verification and validation. On the other hand, based on a meta model for the modeling of I and C systems, this paper introduces a method for the modeling and analysis of the effects with respect to the superposition of failure combinations and event sequences on the I and C system design, i.e. the temporal change of physical structure is analyzed. In the first step, the method is concerned with the modeling of the I and C systems. In the second step, the method considers the analysis of temporal change of physical structure, which integrates the concepts of the diversity and defense-in-depth analysis, fault tree analysis, event tree analysis, and failure mode and effects analysis

  13. Validation of an analytical method for determining halothane in urine as an instrument for evaluating occupational exposure

    International Nuclear Information System (INIS)

    Gonzalez Chamorro, Rita Maria; Jaime Novas, Arelis; Diaz Padron, Heliodora

    2010-01-01

    The occupational exposure to harmful substances may impose the apparition of determined significative changes in the normal physiology of the organism when the adequate security measures are not taken in time in a working place where the risk may be present. Among the chemical risks that may affect the workers' health are the inhalable anesthetic agents. With the objective to take the first steps for the introduction of an epidemiological surveillance system to this personnel, an analytical method for determining this anesthetic in urine was validated with the instrumental conditions created in our laboratory. To carry out this validation the following parameters were taken into account: specificity, lineament, precision, accuracy, detection limit and quantification limit, and the uncertainty of the method was calculated. In the validation procedure it was found that the technique is specific and precise, the detection limit was of 0,118 μg/L, and of the quantification limit of 0,354 μg/L. The global uncertainty was of 0,243, and the expanded of 0,486. The validated method, together with the posterior introduction of the biological exposure limits, will serve as an auxiliary means of diagnosis which will allow us a periodical control of the personnel exposure

  14. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  15. An Annotated Math Lab Inventory.

    Science.gov (United States)

    Schussheim, Joan Yares

    1980-01-01

    A listing of mathematics laboratory material is organized as follows: learning kits, tape programs, manipulative learning materials, publications, math games, math lab library, and an alphabetized listing of publishers and/or companies offering materials. (MP)

  16. Pollution hazard closes neutrino lab

    CERN Multimedia

    Jones, Nicola

    2003-01-01

    "A leading astrophysics laboratory in Italy has closed down all but one of its experiments over concerns that toxic polluants could leak form the underground lab into the local water supply" (0.5 page)

  17. Common Systems Integration Lab (CSIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Common Systems Integration Lab (CSIL)supports the PMA-209 Air Combat Electronics Program Office. CSIL also supports development, test, integration and life cycle...

  18. Instrumental methods in electrochemistry

    CERN Document Server

    Pletcher, D; Peat, R

    2010-01-01

    Using 372 references and 211 illustrations, this book underlines the fundamentals of electrochemistry essential to the understanding of laboratory experiments. It treats not only the fundamental concepts of electrode reactions, but also covers the methodology and practical application of the many versatile electrochemical techniques available.Underlines the fundamentals of electrochemistry essential to the understanding of laboratory experimentsTreats the fundamental concepts of electrode reactionsCovers the methodology and practical application of the many ve

  19. Indicators for the use of robotic labs in basic biomedical research: a literature analysis

    Directory of Open Access Journals (Sweden)

    Paul Groth

    2017-11-01

    Full Text Available Robotic labs, in which experiments are carried out entirely by robots, have the potential to provide a reproducible and transparent foundation for performing basic biomedical laboratory experiments. In this article, we investigate whether these labs could be applicable in current experimental practice. We do this by text mining 1,628 papers for occurrences of methods that are supported by commercial robotic labs. Using two different concept recognition tools, we find that 86%–89% of the papers have at least one of these methods. This and our other results provide indications that robotic labs can serve as the foundation for performing many lab-based experiments.

  20. Development of method for experimental determination of wheel–rail contact forces and contact point position by using instrumented wheelset

    International Nuclear Information System (INIS)

    Bižić, Milan B; Petrović, Dragan Z; Tomić, Miloš C; Djinović, Zoran V

    2017-01-01

    This paper presents the development of a unique method for experimental determination of wheel–rail contact forces and contact point position by using the instrumented wheelset (IWS). Solutions of key problems in the development of IWS are proposed, such as the determination of optimal locations, layout, number and way of connecting strain gauges as well as the development of an inverse identification algorithm (IIA). The base for the solution of these problems is the wheel model and results of FEM calculations, while IIA is based on the method of blind source separation using independent component analysis. In the first phase, the developed method was tested on a wheel model and a high accuracy was obtained (deviations of parameters obtained with IIA and really applied parameters in the model are less than 2%). In the second phase, experimental tests on the real object or IWS were carried out. The signal-to-noise ratio was identified as the main influential parameter on the measurement accuracy. Тhе obtained results have shown that the developed method enables measurement of vertical and lateral wheel–rail contact forces Q and Y and their ratio Y / Q with estimated errors of less than 10%, while the estimated measurement error of contact point position is less than 15%. At flange contact and higher values of ratio Y / Q or Y force, the measurement errors are reduced, which is extremely important for the reliability and quality of experimental tests of safety against derailment of railway vehicles according to the standards UIC 518 and EN 14363. The obtained results have shown that the proposed method can be successfully applied in solving the problem of high accuracy measurement of wheel–rail contact forces and contact point position using IWS. (paper)

  1. Turn-key Applications for Accelerators with LabVIEW-RADE

    CERN Document Server

    Andreassen, O O; Charrondiere, C; Feniet, T; Kuczerowski, J; Nybo, M; Rijllart, A

    2011-01-01

    In the accelerator domain there is a need of integrating industrial devices and creating control and monitoring applications in an easy and yet structured way. The LabVIEW-RADE framework provides the method and tools to implement these requirements and also provides the essential integration of these applications into the CERN controls infrastructure. We present three examples of applications of different nature to show that the framework provides solutions at all three tiers of the control system, data access, process and supervision. The first example is a remotely controlled alignment system for the LHC collimators. The collimator alignment will need to be checked periodically. Due to limited access for personnel, the instruments are mounted on a small train. The system is composed of a PXI crate housing the instrument interfaces and a PLC for the motor control. We report on the design, development and commissioning of the system. The second application is the renovation of the PS beam spectrum analyzer wh...

  2. Inter-lab comparison of precision and recommended methods for age estimation of Florida manatee (Trichechus manatus latirostris using growth layer groups in earbones

    Directory of Open Access Journals (Sweden)

    Katherine Brill

    2016-06-01

    Full Text Available Manatees are routinely aged by counting Growth Layer Groups (GLGs in periotic bones (earbones. Manatee carcasses recovered in Florida between 1974 and 2010 provided age-estimation material for three readers and formed the base for a retrospective analysis of aging precision (repeatability. All readers were in good agreement (high precision with the greatest apparent source of variation being the result of earbone remodelling with increasing manatee age. Over the same period, methods of sample preparation and of determining a final age estimate changed. We examined the effects of altering methods on ease of reading GLGs and found no statistical differences. Accurate age estimates are an important component for effective management of the species and for better models of population trends and we summarize the currently recommended methods for estimating manatee ages using earbones.

  3. Tracking-by-detection of surgical instruments in minimally invasive surgery via the convolutional neural network deep learning-based method.

    Science.gov (United States)

    Zhao, Zijian; Voros, Sandrine; Weng, Ying; Chang, Faliang; Li, Ruijian

    2017-12-01

    Worldwide propagation of minimally invasive surgeries (MIS) is hindered by their drawback of indirect observation and manipulation, while monitoring of surgical instruments moving in the operated body required by surgeons is a challenging problem. Tracking of surgical instruments by vision-based methods is quite lucrative, due to its flexible implementation via software-based control with no need to modify instruments or surgical workflow. A MIS instrument is conventionally split into a shaft and end-effector portions, while a 2D/3D tracking-by-detection framework is proposed, which performs the shaft tracking followed by the end-effector one. The former portion is described by line features via the RANSAC scheme, while the latter is depicted by special image features based on deep learning through a well-trained convolutional neural network. The method verification in 2D and 3D formulation is performed through the experiments on ex-vivo video sequences, while qualitative validation on in-vivo video sequences is obtained. The proposed method provides robust and accurate tracking, which is confirmed by the experimental results: its 3D performance in ex-vivo video sequences exceeds those of the available state-of -the-art methods. Moreover, the experiments on in-vivo sequences demonstrate that the proposed method can tackle the difficult condition of tracking with unknown camera parameters. Further refinements of the method will refer to the occlusion and multi-instrumental MIS applications.

  4. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT.

    Science.gov (United States)

    Badea, Cristian T; Hedlund, Laurence W; Johnson, G Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging.

  5. Inter-lab testing of Hyalella azteca water and sediment methods: 1 background and overview of the 42-d survival, growth and reproduction test

    Science.gov (United States)

    Over the past four years, USEPA-Duluth, USGS-Columbia, the Illinois Natural History Survey, and Environment Canada have been conducting studies to refine the USEPA and ASTM International methods for conducting 10- to 42-d water or sediment toxicity exposures with the amphipod Hya...

  6. Comparative Assessment of the Heart's Functioning by Using the Akabane Test and Classical Methods of Instrumental Examination

    Directory of Open Access Journals (Sweden)

    Valery Muzhikov

    2017-06-01

    Full Text Available Acupuncture physicians have studied the application of reflexotherapy to cardiology. However, no one has investigated the connection of ancient Chinese diagnostic methods with modern tools. A total of 102 patients (54 men and 48 women with heart pathology, namely, sick-sinus syndrome, Wolff–Parkinson–White syndrome, and atrioventricular blockade, were studied using the usual instrumental methods (transesophageal electrophysiological study of the heart, echocardiography, after which they underwent Akabane thermopuncture testing as in traditional Chinese medicine. The results of cardio examination from one side of the Akabane test with that from the other side were compared by means of a multiple stepwise regression analysis. We revealed the effects on the characteristic pattern of acupuncture channel lesions inherent in a definite heart pathology, i.e., the most vulnerable acupuncture channel (AC, of such factors as disturbances of the contractile, conductive, or automatic heart functions, and changes in the chambers' size or circulation volume. Сhanges in the indices of the left and the right branches of these channels usually reflect the opposing natures of the changes in these indicators, which should be considered in reflexotherapy. The main value of the Akabane test along with the use of mathematical analysis lies in early, quick, and inexpensive detection of the above-mentioned heart disturbances.

  7. CERN Technical Training 2006: LabVIEW Course Sessions (September-December 2006)

    CERN Multimedia

    2006-01-01

    The following LabVIEW course sessions are currently scheduled in the framework of the CERN Technical Training Programme 2006, and in collaboration with National Instruments (CH): LabVIEW Basics 1 (course in English): 11-13.9.2006 (3 days, only 3 places available) (course in English): 14-15.9.2006 (2 days) LabVIEW: Working efficiently with LabVIEW 8 (course in English): 18.9.2006 (1 day) **NEW COURSE** LabVIEW Application Development (course in English): 13-15.11.2006 (3 days. Pre-requisite: LabVIEW Basics I ans II, or equivalent experience) LabVIEW Advanced Programming (course in English): 16-17.11.2006 (2 days. Pre-requisite: LabVIEW Application Development, or equivalent experience) LabVIEW Base 1 (course in French): 4-6.12.2006 (3 days, only 1 place available) LabVIEW Base 2 (course in French): 7-8.12.2006 (2 days) If you are interested in attending any of the above course sessions, please discuss with your supervisor and/or your DTO,...

  8. Inter-lab comparison of precision and recommended methods for age estimation of Florida manatee (Trichechus manatus latirostris) using growth layer groups in earbones

    OpenAIRE

    Brill, Katherine; Marmontel, Miriam; Bolen-Richardson, Meghan; Stewart, Robert EA

    2016-01-01

    Manatees are routinely aged by counting Growth Layer Groups (GLGs) in periotic bones (earbones). Manatee carcasses recovered in Florida between 1974 and 2010 provided age-estimation material for three readers and formed the base for a retrospective analysis of aging precision (repeatability). All readers were in good agreement (high precision) with the greatest apparent source of variation being the result of earbone remodelling with increasing manatee age. Over the same period, methods of sa...

  9. Calculation of radiative corrections to virtual compton scattering - absolute measurement of the energy of Jefferson Lab. electron beam (hall A) by a magnetic method: arc project

    International Nuclear Information System (INIS)

    Marchand, D.

    1998-11-01

    This thesis presents the radiative corrections to the virtual compton scattering and the magnetic method adopted in the Hall A at Jefferson Laboratory, to measure the electrons beam energy with an accuracy of 10 4 . The virtual compton scattering experiments allow the access to the generalised polarizabilities of the protons. The extraction of these polarizabilities is obtained by the experimental and theoretical cross sections comparison. That's why the systematic errors and the radiative effects of the experiments have to be controlled very seriously. In this scope, a whole calculation of the internal radiative corrections has been realised in the framework of the quantum electrodynamic. The method of the dimensional regularisation has been used to the treatment of the ultraviolet and infra-red divergences. The absolute measure method of the energy, takes into account the magnetic deviation, made up of eight identical dipoles. The energy is determined from the deviation angle calculation of the beam and the measure of the magnetic field integral along the deviation

  10. From Lab to Lake - Evaluation of Current Molecular Methods for the Detection of Infectious Enteric Viruses in Complex Water Matrices in an Urban Area.

    Directory of Open Access Journals (Sweden)

    Mats Leifels

    Full Text Available Quantitative PCR methods are commonly used to monitor enteric viruses in the aquatic environment because of their high sensitivity, short reaction times and relatively low operational cost. However, conclusions for public health drawn from results of such molecular techniques are limited due to their inability to determine viral infectivity. Ethidium monoazide (EMA and propidium monoazide (PMA are capable to penetrate the damaged or compromised capsid of the inactivated viruses and bind to the viral nucleic acids. We assessed whether dye treatment is a suitable approach to improve the ability of qPCR to distinguish between infectious and non-infectious human adenovirus, enterovirus and rotavirus A in surface water of an urban river and sewage before and after UV disinfection. Like the gold standard of cell culture assays, pretreatment EMA-/PMA-qPCR succeeded in removing false positive results which would lead to an overestimation of the viral load if only qPCR of the environmental samples was considered. A dye pretreatment could therefore provide a rapid and relatively inexpensive tool to improve the efficacy of molecular quantification methods in regards to viral infectivity.

  11. Instrumentation for tomograph positioning

    International Nuclear Information System (INIS)

    Frenkel, A.D.B.; Castello Branco, L.M.; Reznik, D.S.; Santos, C.A.C.; Borges, J.C.

    1986-01-01

    The COPPE's Nuclear Instrumentation Lab. has been developing researches directed towards the implementation of a Computer-Based Tomography System. Basically, the system reported in this paper can be divided into three major parts: the mechanical part, responsible for the physical movement (Stepper-Motors, table, etc.); the electronic part, which controls the mechanical part and handles the data-acquisition process (microcomputer, interfaces, etc.); and finally, the support of a software-oriented system, including control programs and information processing routines. (Author) [pt

  12. Transitioning from ATLAS to LabWindows/CVI overcoming the obstacles

    CERN Document Server

    Timcho, T J

    1999-01-01

    As the DoD eyes a move toward the use of Commercial off the Shelf (COTS) software development environments, such as National instruments LabWindowsTM/CVI, for the generation of Test Program Sets (TPS), a few obstacles still remain. In particular the need to handle resource and path allocation, the ability to describe UUT behavior in terms of signals, and the use of simple, multi-action verbs are at a minimum, necessary. By design, LabWindows/CVI, a test-oriented superset of the ANSI C specification, grants the test engineer full control of all aspects of the TPS design process, including full instrument and path control. However, this methodology also has ifs drawbacks; the engineer is forced to define and control all actions, assets and paths explicitly. As the complexity of today's test programs increase, the need to simplify implementation is imperative to reduce TPS cost and complexity. This paper describes a method to simplify the implementation of CVI and how it is currently used with commercially avail...

  13. Virtual experiment instrument of nuclear pulse measuring

    International Nuclear Information System (INIS)

    Shan Jian; Zhao Xiuliang; Yu Hong; Zhang Meiqin

    2009-01-01

    Study on the scheme of application of virtual instrument(VI) technique in measuring of nuclear pulse. The system of Counter based on technology of LabVIEW and NI company's products USB-6009-DAQ is developed. Virtual nuclear instrument-Virtual Counter is realized. This system extends the application of technology of virtual instrument. The experimental results indicate that the system of Counter had the good counting measuring function of Nuclear Pulse. (authors)

  14. Boosting Big National Lab Data

    Energy Technology Data Exchange (ETDEWEB)

    Kleese van Dam, Kerstin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-02-21

    Introduction: Big data. Love it or hate it, solving the world’s most intractable problems requires the ability to make sense of huge and complex sets of data and do it quickly. Speeding up the process – from hours to minutes or from weeks to days – is key to our success. One major source of such big data are physical experiments. As many will know, these physical experiments are commonly used to solve challenges in fields such as energy security, manufacturing, medicine, pharmacology, environmental protection and national security. Experiments use different instruments and sensor types to research for example the validity of new drugs, the base cause for diseases, more efficient energy sources, new materials for every day goods, effective methods for environmental cleanup, the optimal ingredients composition for chocolate or determine how to preserve valuable antics. This is done by experimentally determining the structure, properties and processes that govern biological systems, chemical processes and materials. The speed and quality at which we can acquire new insights from experiments directly influences the rate of scientific progress, industrial innovation and competitiveness. And gaining new groundbreaking insights, faster, is key to the economic success of our nations. Recent years have seen incredible advances in sensor technologies, from house size detector systems in large experiments such as the Large Hadron Collider and the ‘Eye of Gaia’ billion pixel camera detector to high throughput genome sequencing. These developments have led to an exponential increase in data volumes, rates and variety produced by instruments used for experimental work. This increase is coinciding with a need to analyze the experimental results at the time they are collected. This speed is required to optimize the data taking and quality, and also to enable new adaptive experiments, where the sample is manipulated as it is observed, e.g. a substance is injected into a

  15. U.S./Russian lab-to-lab materials protection, control and accounting program efforts at the Institute of Inorganic Materials

    International Nuclear Information System (INIS)

    Ruhter, W.D.; Kositsyn, V.; Rudenko, V.; Siskind, B.; Bieber, A.; Hoida, H.; Augustson; Ehinger, M.; Smith, B.W.

    1996-01-01

    The All-Russian Scientific Research Institute of Inorganic Materials (VNIINM) performs research in nuclear power reactor fuel,m spent fuel reprocessing and waste management, materials science of fissionable and reactor structural materials, metallurgy, superconducting materials, and analytical sciences. VNIINM supports the Ministry of Atomic Energy of the Russian Federation (MINATOM) in technologies for fabrication and processing of nuclear fuel. As a participant in the U. S./Russian Lab-to-Lab nuclear materials protection, control and accounting (MPC ampersand A) program, VNIINM is providing evaluation, certification, and implementation of measurement methods for such materials. In 1966, VNIINM will be working with Brookhaven staff in developing and documenting material control and accounting requirements for nuclear materials in bulk form, Livermore and Los Alamos staff in testing and evaluating gamma-ray spectrometry methods for bulk materials, Los Alamos staff in test and evaluation of neutron-coincidence counting techniques, Oak Ridge staff in accounting of bulk materials with process instrumentation, and Pacific Northwest staff on automating VNIINM's coulometric titration system. In addition, VNIINM will develop a computerized accounting system for nuclear material within VNIINM and heir storage facility. This paper describes the status of this work and anticipated progress in 1996

  16. U.S./Russian lab-to-lab materials protection, control and accounting program efforts at the Institute of Inorganic Materials. Revision 1

    International Nuclear Information System (INIS)

    Ruhter, W.D.; Kositsyn, V.; Rudenko, V.; Siskind, B.; Bieber, A.; Hoida, Hiroshi; Augustson, R.; Ehinger, M.; Smith, B.W.

    1996-01-01

    The All-Russian Scientific Research Institute of Inorganic Materials (VNIINM) performs research in nuclear power reactor fuel, spent fuel reprocessing and waste management, materials science of fissionable and reactor structural materials, metallurgy, superconducting materials, and analytical sciences. VNIINM supports the Ministry of Atomic Energy of the Russian Federation (MINATOM) in technologies for fabrication and processing of nuclear fuel. As a participant in the US/Russian Lab-to-Lab nuclear materials protection, control and accounting (MPC and A) program, VNIINM is providing support for measurements of nuclear materials in bulk forms by developing specifications, test and evaluation, certification, and implementation of measurement methods for such materials. In 1996, VNIINM will be working with Brookhaven staff in developing and documenting material control and accounting requirements for nuclear materials in bulk form, Livermore and Los Alamos staff in testing and evaluating gamma-ray spectrometry methods for bulk materials, Los Alamos staff in test and evaluation of neutron-coincidence counting techniques, Oak Ridge staff in accounting of bulk materials with process instrumentation, and Pacific Northwest staff on automating VNIINM's coulometric titration system. In addition, VNIINM will develop a computerized accounting system for nuclear material within VNIINM and their storage facility. The paper will describe the status of this work and anticipated progress in 1996

  17. Macintosh/LabVIEW based control and data acquisition system for a single photon counting fluorometer

    Science.gov (United States)

    Stryjewski, Wieslaw J.

    1991-08-01

    A flexible software system has been developed for controlling fluorescence decay measurements using the virtual instrument approach offered by LabVIEW. The time-correlated single photon counting instrument operates under computer control in both manual and automatic mode. Implementation time was short and the equipment is now easier to use, reducing the training time required for new investigators. It is not difficult to customize the front panel or adapt the program to a different instrument. We found LabVIEW much more convenient to use for this application than traditional, textual computer languages.

  18. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  19. Lab-on-fiber technology

    CERN Document Server

    Cusano, Andrea; Crescitelli, Alessio; Ricciardi, Armando

    2014-01-01

    This book focuses on a research field that is rapidly emerging as one of the most promising ones for the global optics and photonics community: the "lab-on-fiber" technology. Inspired by the well-established 'lab on-a-chip' concept, this new technology essentially envisages novel and highly functionalized devices completely integrated into a single optical fiber for both communication and sensing applications.Based on the R&D experience of some of the world's leading authorities in the fields of optics, photonics, nanotechnology, and material science, this book provides a broad and accurate de

  20. Research about an automatic timing count system based on LabView

    International Nuclear Information System (INIS)

    Yan Jie; Liu Rong; Jian Li; Lu Xinxin; Zhu Tonghua; Wang Mei; Wen Zhongwei; Lin Jufang; Li Cheng

    2009-01-01

    Based on the LabView Virtual Instrument Development Platform and the GPIB instrument control and data transmission bus protocol, the design and research of a virtual instrument about an automatic timing count system using ORTEC 974 Counter/Timer is introduced in this paper. Comparing with the real instrument, the virtual instrument system enriched the timing count function and carried out the remote control of the real instrument. The counts and measured time can be recorded automatically during the measurement process for the further analysis and processing. (authors)

  1. 3D Reconstruction of NMR Images by LabVIEW

    Directory of Open Access Journals (Sweden)

    Peter IZAK

    2007-01-01

    Full Text Available This paper introduces the experiment of 3D reconstruction NMR images via virtual instrumentation - LabVIEW. The main idea is based on marching cubes algorithm and image processing implemented by module of Vision assistant. The two dimensional images shot by the magnetic resonance device provide information about the surface properties of human body. There is implemented algorithm which can be used for 3D reconstruction of magnetic resonance images in biomedical application.

  2. Living lab: Format for rehearsing a new (service) practice

    DEFF Research Database (Denmark)

    Yndigegn, Signe; Aakjær, Marie Kirstejn

    Citizen engagement and the citizens as a resource are key concepts in rethinking the Danish welfare system to meet the challenges of delivering better services for the elderly, while simultaneously reducing the cost of healthcare. In this method paper, we address how the co-design of new digital...... service platforms takes place in the format of living labs. We characterize living labs as the design of experiential spaces where ‘what is’ and ‘what could be’ are explored over a longer period of engagement. The labs are staged to integrate multiple stakeholders’ issues and resources and to create new...... technologies, concepts, or service designs. This paper unpacks the practices of living labs with questions of what is being produced, not only in terms of products, but also in terms of changes in practices, roles, and relations. To analyze and discuss this question the authors report about their engagement...

  3. The use of a combination of instrumental methods to assess change in sensory crispness during storage of a "Honeycrisp" apple breeding family.

    Science.gov (United States)

    Chang, Hsueh-Yuan; Vickers, Zata M; Tong, Cindy B S

    2018-04-01

    Loss of crispness in apple fruit during storage reduces the fruit's fresh sensation and consumer acceptance. Apple varieties that maintain crispness thus have higher potential for longer-term consumer appeal. To efficiently phenotype crispness, several instrumental methods have been tested, but variable results were obtained when different apple varieties were assayed. To extend these studies, we assessed the extent to which instrumental measurements correlate to and predict sensory crispness, with a focus on crispness maintenance. We used an apple breeding family derived from a cross between "Honeycrisp" and "MN1764," which segregates for crispness maintenance. Three types of instrumental measurements (puncture, snapping, and mechanical-acoustic tests) and sensory evaluation were performed on fruit at harvest and after 8 weeks of cold storage. Overall, 20 genotypes from the family and the 2 parents were characterized by 19 force and acoustic measures. In general, crispness was more related to force than to acoustic measures. Force linear distance and maximum force as measured by the mechanical-acoustic test were best correlated with sensory crispness and change in crispness, respectively. The correlations varied by apple genotype. The best multiple linear regression model to predict change in sensory crispness between harvest and storage of fruit of this breeding family incorporated both force and acoustic measures. This work compared the abilities of instrumental tests to predict sensory crispness maintenance of apple fruit. The use of an instrumental method that is highly correlated to sensory crispness evaluation can enhance the efficiency and reduce the cost of measuring crispness for breeding purposes. This study showed that sensory crispness and change in crispness after storage of an apple breeding family were reliably predicted with a combination of instrumental measurements and multiple variable analyses. The strategy potentially can be applied to other

  4. The Science Teaching Self-Efficacy of Prospective Elementary Education Majors Enrolled in Introductory Geology Lab Sections

    Science.gov (United States)

    Baldwin, Kathryn A.

    2014-01-01

    This study examined prospective elementary education majors' science teaching self-efficacy while they were enrolled in an introductory geology lab course for elementary education majors. The Science Teaching Efficacy Belief Instrument Form B (STEBI-B) was administered during the first and last lab class sessions. Additionally, students were…

  5. A Simple, Successful Capacitor Lab

    Science.gov (United States)

    Ennis, William

    2011-01-01

    Capacitors are a fundamental component of modern electronics. They appear in myriad devices and in an enormous range of sizes. Although our students are taught the function and analysis of capacitors, few have the opportunity to use them in our labs.

  6. The Telecom Lab is moving

    CERN Multimedia

    IT Department

    2009-01-01

    As of 2nd March 2009, the Telecom Lab will move to Building 58 R-017. The Telecom Lab is the central point for all support questions regarding CERN mobile phone services (provision of SIM cards, requests for modifications of subscriptions, diagnostics for mobile phone problems, etc.). The opening hours as well as the contact details for the Telecom Lab remain unchanged: New location: Building 58 R-017 Opening hours: Every week day, from 11 a.m. to 12 a.m. Phone number: 72480 Email address: labo.telecom@cern.ch This change has no impact on support requests for mobile services. Users can still submit their requests concerning mobile phone subscriptions using the usual EDH form (https://edh.cern.ch/Document/GSM). The automatic message sent to inform users of their SIM card availability will be updated to indicate the new Telecom Lab location. You can find all information related to CERN mobile phone services at the following link: http://cern.ch/gsm CS Section - IT/CS group

  7. Sulfur Dioxide Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-01

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. Brookhaven National Laboratory (BNL) has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.

  8. Beam diagnostics based on virtual instrument technology for HLS

    International Nuclear Information System (INIS)

    Sun Baogen; Lu Ping; Wang Xiaohui; Wang Baoyun; Wang Junhua; Gu Liming; Fang Jia; Ma Tianji

    2009-01-01

    The paper introduce the beam diagnostics system using virtual instrument technology for Hefei Light Source (HLS), which includes a GPIB bus-based DCCT measurement system to measure the beam DC current and beam life, a VXIbus-based closed orbit measurement system to measure the beam position, a PCIbus-based beam profile measurement system to measure the beam profile and emittance, a GPIB-LAN based bunch length system using photoelectric method, and a Ethernet-based photon beam position measurement system. The software is programmed by LabVIEW, which reduces much developing work. (authors)

  9. Non-destructive determination of nitrogen in malting barleys by instrumental photon activation analysis and its comparison with the Dumas method

    Czech Academy of Sciences Publication Activity Database

    Krausová, Ivana; Mizera, Jiří; Dostálek, P.; Řanda, Zdeněk

    2018-01-01

    Roč. 124, č. 1 (2018), s. 4-8 ISSN 0046-9750 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : nitrogen * instrumental photon activation analysis * Dumas method * malting barley Subject RIV: GM - Food Processing OBOR OECD: Food and beverages Impact factor: 0.859, year: 2016

  10. Scale Marking Method on the Circumference of Circle Elements for Astronomical Instruments in the Early Joseon Dynasty

    Science.gov (United States)

    Mihn, Byeong-Hee; Lee, Ki-Won; Ahn, Young Sook; Lee, Yong Sam

    2015-03-01

    During the reign of King Sejong (世宗, 1418-1450) in the Joseon Dynasty, there were lots of astronomical instruments, including miniaturized ones. Those instruments utilized the technical know-how acquired through building contemporary astronomical instruments previously developed in the Song(宋), Jin(金), and Yuan(元) dynasties of China. In those days, many astronomical instruments had circles, rings, and spheres carved with a scale of 365.25, 100, and 24 parts, respectively, on their circumference. These were called the celestial-circumference degree, hundred-interval (Baekgak), and 24 direction, respectively. These scales are marked by the angular distance, not by the angle. Therefore, these circles, rings, and spheres had to be optimized in size to accomodate proper scales. Assuming that the scale system is composed of integer multiples of unit length, we studied the sizes of circles by referring to old articles and investigating existing artifacts. We discovered that the star chart of Cheonsang yeolcha bunyajido was drawn with a royal standard ruler (周尺) based on the unit length of 207 mm. Interestingly, its circumference was marked by the unit scale of 3 puns per 1 du (or degree) like Honsang (a celestial globe). We also found that Hyeonju ilgu (a equatorial sundial) has a Baekgak disk on a scale of 1 pun per 1 gak (that is an interval of time similar to a quarter). This study contributes to the analysis of specifications of numerous circular elements from old Korean astronomical instruments.

  11. Developing Guided Inquiry-Based Student Lab Worksheet for Laboratory Knowledge Course

    Science.gov (United States)

    Rahmi, Y. L.; Novriyanti, E.; Ardi, A.; Rifandi, R.

    2018-04-01

    The course of laboratory knowledge is an introductory course for biology students to follow various lectures practicing in the biology laboratory. Learning activities of laboratory knowledge course at this time in the Biology Department, Universitas Negeri Padang has not been completed by supporting learning media such as student lab worksheet. Guided inquiry learning model is one of the learning models that can be integrated into laboratory activity. The study aimed to produce student lab worksheet based on guided inquiry for laboratory knowledge course and to determine the validity of lab worksheet. The research was conducted using research and developmet (R&D) model. The instruments used in data collection in this research were questionnaire for student needed analysis and questionnaire to measure the student lab worksheet validity. The data obtained was quantitative from several validators. The validators consist of three lecturers. The percentage of a student lab worksheet validity was 94.18 which can be categorized was very good.

  12. Intercomparison and intercalibration of passive/active radon and active radon progeny instruments and methods in North America

    International Nuclear Information System (INIS)

    George, A.C.; Tu, Keng W.

    1993-06-01

    An intercomparison and intercalibration exercise for radon and radon progeny measurements made with active and passive instruments was held at EML from October 22--30,1992. Twenty-five participants submitted 96 passive integrating devices, eight active devices for radon, and seven integrating devices for potential alpha energy concentration (PAEC). In addition, 40 grab samples for radon progeny analysis were taken by five groups that participated in person during the intercomparison. The results reported to EML indicate that the majority of the participants (70%) obtained mean results within 10% of the EML reference value. Although the instruments used in this exercise are based on different principles of collection and detection, they all appear reliable. However, in some instances there seemed to be some minor problems with quality control and calibration bias. Also, the large counting errors for the PAEC experienced by some of the participants can be minimized by using higher sampling air flow rates without sacrificing instrument portability

  13. Cavity Attenuated Phase Shift (CAPS) Method for Airborne Aerosol Light Extinction Measurement: Instrument Validation and First Results from Field Deployment

    Science.gov (United States)

    Petzold, A.; Perim de Faria, J.; Berg, M.; Bundke, U.; Freedman, A.

    2015-12-01

    Monitoring the direct impact of aerosol particles on climate requires the continuous measurement of aerosol optical parameters like the aerosol extinction coefficient on a regular basis. Remote sensing and ground-based networks are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. In this work, the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, the results from subsequent laboratory tests for evaluating the modified instrument prototype, and first results from a field deployment aboard a research aircraft will be covered. In laboratory studies, the instrument showed excellent agreement (deviation CAPS PMex instrument response within 10% deviation. During the field deployment, aerosol extinction coefficients and associated aerosol size distributions have been measured and will be presented as comparison studies between measured and calculated data.

  14. Recent skyshine calculations at Jefferson Lab

    International Nuclear Information System (INIS)

    Degtyarenko, P.

    1997-01-01

    New calculations of the skyshine dose distribution of neutrons and secondary photons have been performed at Jefferson Lab using the Monte Carlo method. The dose dependence on neutron energy, distance to the neutron source, polar angle of a source neutron, and azimuthal angle between the observation point and the momentum direction of a source neutron have been studied. The azimuthally asymmetric term in the skyshine dose distribution is shown to be important in the dose calculations around high-energy accelerator facilities. A parameterization formula and corresponding computer code have been developed which can be used for detailed calculations of the skyshine dose maps

  15. Results of evaluation of quality control measurement instrument of x-ray diagnostic equipment by non-invasive method

    International Nuclear Information System (INIS)

    Laan, Flavio T. van der; Elbern, Alvin W.

    1996-01-01

    This work shows the results of the tests realized on Santa Rita Hospital (Porto Alegre), using a non invasive quality control measurement instrument, developed in this University for fast measurement of essential parameters of X-rays diagnostic equipment. In the tests we used a diagnostics Siemens X ray, model Heliofos 4E as our standard equipment. The linearity test of sensor probe and the exposure rate calibration was performed, with a Palmer Dosimeter. For the kVp and exposure time we used a RTI commercial instrument. (author)

  16. Instrumental interaction

    OpenAIRE

    Luciani , Annie

    2007-01-01

    International audience; The expression instrumental interaction as been introduced by Claude Cadoz to identify a human-object interaction during which a human manipulates a physical object - an instrument - in order to perform a manual task. Classical examples of instrumental interaction are all the professional manual tasks: playing violin, cutting fabrics by hand, moulding a paste, etc.... Instrumental interaction differs from other types of interaction (called symbolic or iconic interactio...

  17. Robotic, MEMS-based Multi Utility Sample Preparation Instrument for ISS Biological Workstation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a multi-functional, automated sample preparation instrument for biological wet-lab workstations on the ISS. The instrument is based on a...

  18. A comparison of nickel-titanium rotary instruments manufactured using different methods and cross-sectional areas: ability to resist cyclic fatigue.

    Science.gov (United States)

    Oh, So-Ram; Chang, Seok-Woo; Lee, Yoon; Gu, Yu; Son, Won-Jun; Lee, Woocheol; Baek, Seung-Ho; Bae, Kwang-Shik; Choi, Gi-Woon; Lim, Sang-Min; Kum, Kee-Yeon

    2010-04-01

    This study examined the effect of the manufacturing methods (ground, electropolished, and twisted) and the cross-sectional area (CSA) of nickel-titanium (NiTi) rotary instruments on their cyclic fatigue resistance. A total of 80 NiTi rotary instruments (ISO 25/.06 taper) from 4 brands (K3, ProFile, RaCe, and TF) were rotated in a simulated root canal with pecking motion until fracture. The number of cycles to failure (NCF) was calculated. The CSA at 3 mm from the tip of new instruments of each brand was calculated. The correlation between the CSA and NCF was evaluated. All fractured surfaces were analyzed using a scanning electron microscope to determine the fracture mode. The TF instruments were the most resistant to fatigue failure. The resistance to cyclic failure increased with decreasing CSA. All fractured surfaces showed the coexistence of ductile and brittle properties. The CSA had a significant effect on the fatigue resistance of NiTi rotary instruments. Copyright 2010 Mosby, Inc. All rights reserved.

  19. Detailed characterization of a Comparative Reactivity Method (CRM) instrument for ambient OH reactivity measurements: experiments vs. modeling

    Science.gov (United States)

    Michoud, Vincent; Locoge, Nadine; Dusanter, Sébastien

    2015-04-01

    The Hydroxyl radical (OH) is the main daytime oxidant in the troposphere, leading to the oxidation of Volatile Organic Compounds (VOCs) and the formation of harmful pollutants such as ozone (O3) and Secondary Organic Aerosols (SOA). While OH plays a key role in tropospheric chemistry, recent studies have highlighted that there are still uncertainties associated with the OH budget, i.e the identification of sources and sinks and the quantification of production and loss rates of this radical. It has been demonstrated that ambient measurements of the total OH loss rate (also called total OH reactivity) can be used to identify and reduce these uncertainties. In this context, the Comparative Reactivity Method (CRM), developed by Sinha et al. (ACP, 2008), is a promising technique to measure total OH reactivity in ambient air and has already been used during several field campaigns. This technique relies on monitoring competitive reactions of OH with ambient trace gases and a reference compound (pyrrole) in a sampling reactor to derive ambient OH reactivity. However, this technique requires a complex data processing chain that has yet to be carefully investigated in the laboratory. In this study, we present a detailed characterization of a CRM instrument developed at Mines Douai, France. Experiments have been performed to investigate the dependence of the CRM response on humidity, ambient NOx levels, and the pyrrole-to-OH ratio inside the sampling reactor. Box modelling of the chemistry occurring in the reactor has also been performed to assess our theoretical understanding of the CRM measurement. This work shows that the CRM response is sensitive to both humidity and NOx, which can be accounted for during data processing using parameterizations depending on the pyrrole-to-OH ratio. The agreement observed between laboratory studies and model results suggests a good understanding of the chemistry occurring in the sampling reactor and gives confidence in the CRM

  20. Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration. Final Report. Volume 1

    International Nuclear Information System (INIS)

    Hines, J. Wesley; Upadhyaya, Belle R.; Doster, J. Michael; Edwards, Robert M.; Lewis, Kenneth D.; Turinsky, Paul; Coble, Jamie

    2011-01-01

    Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topical areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus

  1. Flexible HVAC System for Lab or Classroom.

    Science.gov (United States)

    Friedan, Jonathan

    2001-01-01

    Discusses an effort to design a heating, ventilation, and air conditioning system flexible enough to accommodate an easy conversion of classrooms to laboratories and dry labs to wet labs. The design's energy efficiency and operations and maintenance are examined. (GR)

  2. Designing communication and remote controlling of virtual instrument network system

    Science.gov (United States)

    Lei, Lin; Wang, Houjun; Zhou, Xue; Zhou, Wenjian

    2005-01-01

    In this paper, a virtual instrument network through the LAN and finally remote control of virtual instruments is realized based on virtual instrument and LabWindows/CVI software platform. The virtual instrument network system is made up of three subsystems. There are server subsystem, telnet client subsystem and local instrument control subsystem. This paper introduced virtual instrument network structure in detail based on LabWindows. Application procedure design of virtual instrument network communication, the Client/the programming mode of the server, remote PC and server communication far realizing, the control power of the workstation is transmitted, server program and so on essential technical were introduced. And virtual instruments network may connect to entire Internet on. Above-mentioned technology, through measuring the application in the electronic measurement virtual instrument network that is already built up, has verified the actual using value of the technology. Experiment and application validate that this design is resultful.

  3. Designing communication and remote controlling of virtual instrument network system

    International Nuclear Information System (INIS)

    Lei Lin; Wang Houjun; Zhou Xue; Zhou Wenjian

    2005-01-01

    In this paper, a virtual instrument network through the LAN and finally remote control of virtual instruments is realized based on virtual instrument and LabWindows/CVI software platform. The virtual instrument network system is made up of three subsystems. There are server subsystem, telnet client subsystem and local instrument control subsystem. This paper introduced virtual instrument network structure in detail based on LabWindows. Application procedure design of virtual instrument network communication, the Client/the programming mode of the server, remote PC and server communication far realizing, the control power of the workstation is transmitted, server program and so on essential technical were introduced. And virtual instruments network may connect to entire Internet on. Above-mentioned technology, through measuring the application in the electronic measurement virtual instrument network that is already built up, has verified the actual using value of the technology. Experiment and application validate that this design is resultful

  4. ANIMMA 2009 - International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications - Compilation of slides

    International Nuclear Information System (INIS)

    Chabre, A.; Lyoussi, A.; Martin-Deidier, L.; Caverni, J.P.; Deconinck, F.; Cesarsky, C.; Kjems, J.; Spiro, M.; Abdallah, J.; Mandic, I.; Cindro, V.; Gorisek, A.; Kramberger, G.; Mikuz, M.; Hartert, J.; Bronner, J.; Franz, S.; Minano, M.; Fleta, C.; Garcia, C.; Lacasta, C.; Lozano, M.; Marco, R.; Marti, I.; Garcia, S.; Pellegrini, G.; Soldevila, U.; Ullan, M.; Larsen, R.; Downing, R.; Saunders, C.; Pavlicek, V.; Jezynski, T.; Rehlich, K.; An Liu, Z.; Nomachi, M.; Le Du, P.; Benekos, N.; Cortes Gonzales, A.; Coggeshall, J.; Liss, A.M.; Baudot, J.; Barbier, R.; Brogna, A.; Chabanat, E.; Claus, G.; Colledani, C.; Depasse, P.; Degerli, Y.; De Masi, R.; Deveaux, M.; Dorokhov, A.; Doziere, G.; Dritsa, C.; Dulinski, W.; Estre, N.; Fang, X.C.; Fontaine, J.C.; Gelin, M.; Goffe, M.; Himmi, A.; Hu-Guo, C.; Jaaskelainen, K.; Minano, M.; Bruynseraede, Y.; Benekos, N.; Collazuol, G.M.; Baudot, J.; Hoffmann, D.; Alami, R.; Marie, F.; Fontana, A.; Duval, P.Y.; Rosca, A.; Copic, K.; Iracane, D.; Rempe, J.; Shippen, D.; Choo, K.N.; Breitkreutz, H.; Petry, W.; Itagaki, W.; Zaristkiy, S.; Jammes, C.; Imel, G.; Ritter, G.; Casoli, P.; Blaise, P.; Lecouey, J.L.; Rohrmoser, A.; Bignan, G.; Bruynseraede, Y.; March, R.; Janulyte, A.; Morichi, M.; Adams, J.; Popov, V.; Costley, A.; Moreau, P.; Sabot, R.; Leyrat, J.P.; Angelone, M.; Flament, O.; Thfoin, I.; Boullis, B.; Rouquerol, J.; Nonell, A.; Simon, A.C.; Lyoussi, A.; De Bruycker, A.; Ducros, G.; Katsuyama, K.; Barat, E.; Swinhoe, M.; Dogny, S.; Carrel, F.; Granier, G.; Raoux, A.C.; Pluquet, A.; Ahlen, S.; Butchins, L.; Porta, A.; Valkovic, V.; Dazeley, S.; Furuta, H.; Quiter, B.; Piccotti, A.; Swinhoe, M.; Bruggeman, M.; Ruddy, F.; El kanawati, W.; Cabrera-Palmer, B.; Sweet, M.; Parrat, D.; Cavedon, J.M.; Babu, C.; Baskaran, B.; Villard, J.F.; Buimistriuc, G.; Rosenkrantz, E.; Coulon, R.; Schyns, M.; Bronson, F.; Giraud, A.; Vuillemard, C.; Ait Abderrahim, H.; Marie, F.; Beeley, P.; Andre, J.; Turpin, L.; Waker, A.; Pafilis, C.; Townsend, D.; Chatal, J.F.; Gao, W.; Kawachi, N.; Townsend, D.; Le Foulher, F.; Magne, S.; Valkovic, V.; Rottner, B.; Lebrun, A.; Ianakiev, K.; Giot, M.; Flescher, H.

    2009-01-01

    The program of this conference is focused on instrumentation, but emphasizes the latest developments in all measurement stages: nuclear radiation detection and in-pile measurements, modelling, electronics, signal acquisition and analysis, radiotherapy, interpretation and associated training activities. This document is composed of the program of the conference and of the slides of about 102 presentations

  5. Instruments for Water Quality Monitoring

    Science.gov (United States)

    Ballinger, Dwight G.

    1972-01-01

    Presents information regarding available instruments for industries and agencies who must monitor numerous aquatic parameters. Charts denote examples of parameters sampled, testing methods, range and accuracy of test methods, cost analysis, and reliability of instruments. (BL)

  6. Scale Marking Method on the Circumference of Circle Elements for Astronomical Instruments in the Early Joseon Dynasty

    Directory of Open Access Journals (Sweden)

    Byeong-Hee Mihn

    2015-03-01

    Full Text Available During the reign of King Sejong (世宗, 1418-1450 in the Joseon Dynasty, there were lots of astronomical instruments, including miniaturized ones. Those instruments utilized the technical know-how acquired through building contemporary astronomical instruments previously developed in the Song(宋, Jin(金, and Yuan(元 dynasties of China. In those days, many astronomical instruments had circles, rings, and spheres carved with a scale of 365.25, 100, and 24 parts, respectively, on their circumference. These were called the celestial-circumference degree, hundred-interval (Baekgak, and 24 direction, respectively. These scales are marked by the angular distance, not by the angle. Therefore, these circles, rings, and spheres had to be optimized in size to accomodate proper scales. Assuming that the scale system is composed of integer multiples of unit length, we studied the sizes of circles by referring to old articles and investigating existing artifacts. We discovered that the star chart of Cheonsang yeolcha bunyajido was drawn with a royal standard ruler (周尺 based on the unit length of 207 mm. Interestingly, its circumference was marked by the unit scale of 3 puns per 1 du (or degree like Honsang (a celestial globe. We also found that Hyeonju ilgu (a equatorial sundial has a Baekgak disk on a scale of 1 pun per 1 gak (that is an interval of time similar to a quarter. This study contributes to the analysis of specifications of numerous circular elements from old Korean astronomical instruments.

  7. Antennas and Electromagnetics Instrumentation for Research and Education

    Science.gov (United States)

    2016-06-01

    Antennas and Electromagnetics Instrumentation for Research and Education The objective of this proposal is to enhance the instrumentation of FIU’s... ElectroMagnetics Lab (EMLab) directed by Dr. Georgakopoulos and create a state-of-the art lab that will support the following: (a) Dr. Georgakopoulos...funded research on reconfigurable antennas and wireless power transfer, (b) other research on advanced electromagnetic technologies that support

  8. Incorporating lab experience into computer security courses

    NARCIS (Netherlands)

    Ben Othmane, L.; Bhuse, V.; Lilien, L.T.

    2013-01-01

    We describe our experience with teaching computer security labs at two different universities. We report on the hardware and software lab setups, summarize lab assignments, present the challenges encountered, and discuss the lessons learned. We agree with and emphasize the viewpoint that security

  9. Safety Protocols at MAT Lab

    International Nuclear Information System (INIS)

    Wadawale, A.; Chopade, S.; Chaudhury, K.; Pal, M.K.; Kushwah, N.; Shah, A.Y.; Kedarnath, G.; Priyadarsini, K.I.; Jain, V.K.

    2017-01-01

    MAT Lab of Chemistry Division, BARC (A Class 10000 Clean room laboratory) has been in operation since 2004 for process development of ultra-purification of several strategically important materials (Ga, As, Sb, In, CsI and Ge) and synthesis of their organometallic compounds. Of these, work related to purification of As, Sb, and In, has been discontinued. Due to high toxicity and pyrophoric nature of some of the compounds, stringent safety regulations were formulated and subsequently implemented by the division

  10. Designing inquiry learning spaces for online labs in the Go-Lab platform

    NARCIS (Netherlands)

    de Jong, Ton; Gillet, Dennis; Sotiriou, Sofoklis; Agogi, Ellinogermaniki; Zacharia, Zacharias

    2015-01-01

    The Go-Lab project (http://www.go-lab-project.eu/) aims to enable the integration of online labs through inquiry-based learning approaches into science classrooms. Through the use of an advanced plug and play technological solution the Go-Lab project opens up remote science laboratories, data

  11. Recent Developments in Optical Detection Technologies in Lab-on-a-Chip Devices for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Nuno Miguel Matos Pires

    2014-08-01

    Full Text Available The field of microfluidics has yet to develop practical devices that provide real clinical value. One of the main reasons for this is the difficulty in realizing low-cost, sensitive, reproducible, and portable analyte detection microfluidic systems. Previous research has addressed two main approaches for the detection technologies in lab-on-a-chip devices: (a study of the compatibility of conventional instrumentation with microfluidic structures, and (b integration of innovative sensors contained within the microfluidic system. Despite the recent advances in electrochemical and mechanical based sensors, their drawbacks pose important challenges to their application in disposable microfluidic devices. Instead, optical detection remains an attractive solution for lab-on-a-chip devices, because of the ubiquity of the optical methods in the laboratory. Besides, robust and cost-effective devices for use in the field can be realized by integrating proper optical detection technologies on chips. This review examines the recent developments in detection technologies applied to microfluidic biosensors, especially addressing several optical methods, including fluorescence, chemiluminescence, absorbance and surface plasmon resonance.

  12. Methods and apparatus for cleaning objects in a chamber of an optical instrument by generating reactive ions using photon radiation

    Science.gov (United States)

    Klebanoff, Leonard E.; Delgado, Gildardo R.; Hollenshead, Jeromy T.; Umstadter, Karl R.; Starodub, Elena; Zhuang, Guorong V.

    2015-10-13

    An optical instrument, including a chamber, an object exposed to an interior of the chamber, a source of low-pressure gas, the gas comprising at least one of low-pressure molecular hydrogen gas, low-pressure molecular oxygen and a low-pressure noble gas, the source of low pressure gas being fluidly coupled to the chamber, a low voltage source electrically coupled between the object and a remaining portion of the instrument that is exposed to the interior of the chamber so as to maintain the object at a low voltage relative to the remaining portion, and an EUV/VUV light source adapted to direct EUV/VUV light through the low pressure gas in the chamber onto the object. In such a system, when the EUV/VUV light source is activated ions of the low-pressure gas are formed and directed to the object. The ions may be ions of Hydrogen, Oxygen or a noble gas.

  13. New Methods for Retrieval of Chlorophyll Red Fluorescence from Hyperspectral Satellite Instruments: Simulations and Application to GOME-2 and SCIAMACHY

    Science.gov (United States)

    Joiner, Joanna; Yoshida, Yasuko; Guanter, Luis; Middleton, Elizabeth M.

    2016-01-01

    Global satellite measurements of solar-induced fluorescence (SIF) from chlorophyll over land and ocean have proven useful for a number of different applications related to physiology, phenology, and productivity of plants and phytoplankton. Terrestrial chlorophyll fluorescence is emitted throughout the red and far-red spectrum, producing two broad peaks near 683 and 736nm. From ocean surfaces, phytoplankton fluorescence emissions are entirely from the red region (683nm peak). Studies using satellite-derived SIF over land have focused almost exclusively on measurements in the far red (wavelengths greater than 712nm), since those are the most easily obtained with existing instrumentation. Here, we examine new ways to use existing hyperspectral satellite data sets to retrieve red SIF (wavelengths less than 712nm) over both land and ocean. Red SIF is thought to provide complementary information to that from the far red for terrestrial vegetation. The satellite instruments that we use were designed to make atmospheric trace-gas measurements and are therefore not optimal for observing SIF; they have coarse spatial resolution and only moderate spectral resolution (0.5nm). Nevertheless, these instruments, the Global Ozone Monitoring Instrument 2 (GOME-2) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), offer a unique opportunity to compare red and far-red terrestrial SIF at regional spatial scales. Terrestrial SIF has been estimated with ground-, aircraft-, or satellite-based instruments by measuring the filling-in of atmospheric andor solar absorption spectral features by SIF. Our approach makes use of the oxygen (O2) gamma band that is not affected by SIF. The SIF-free O2 gamma band helps to estimate absorption within the spectrally variable O2 B band, which is filled in by red SIF. SIF also fills in the spectrally stable solar Fraunhofer lines (SFLs) at wavelengths both inside and just outside the O2 B band, which further helps

  14. Using an innovative mixed method methodology to investigate the appropriateness of a quantitative instrument in an African context: Antiretroviral treatment and quality of life.

    Science.gov (United States)

    Greeff, Minrie; Chepuka, Lignet M; Chilemba, Winnie; Chimwaza, Angela F; Kululanga, Lucy I; Kgositau, Mabedi; Manyedi, Eva; Shaibu, Sheila; Wright, Susan C D

    2014-01-01

    The relationship between quality of life (QoL) and antiretroviral treatment (ART) has mainly been studied using quantitative scales often not appropriate for use in other contexts and without taking peoples' lived experiences into consideration. Sub-Saharan Africa has the highest incidence of HIV and AIDS yet there is paucity in research done on QoL. This research report is intended to give an account of the use of a mixed method convergent parallel design as a novice approach to evaluate an instrument's context specificity, appropriateness and usefulness in another context for which it was designed. Data were collected through a qualitative exploration of the experiences of QoL of people living with HIV or AIDS (PLHA) in Africa since being on ART, as well as the quantitative measurements obtained from the HIV/AIDS-targeted quality of life (HAT-QoL) instrument. This study was conducted in three African countries. Permission and ethical approval to conduct the study were obtained. Purposive voluntary sampling was used to recruit PLHA through mediators working in community-based HIV/AIDS organisations and health clinics. Interviews were analysed through open coding and the quantitative data through descriptive statistics and the Cronbach's alpha coefficient. A much wider range and richness of experiences were expressed than measured by the HAT-QoL instrument. Although an effective instrument for use in the USA, it was found not to be sensitive, appropriate and useful in an African context in its present form. The recommendations focus on adapting the instrument using the data from the in-depth interviews or to develop a context-sensitive instrument that could measure QoL of PLHA in Africa.

  15. Automated Fast Screening Method for Cocaine Identification in Seized Drug Samples Using a Portable Fourier Transform Infrared (FT-IR) Instrument.

    Science.gov (United States)

    Mainali, Dipak; Seelenbinder, John

    2016-05-01

    Quick and presumptive identification of seized drug samples without destroying evidence is necessary for law enforcement officials to control the trafficking and abuse of drugs. This work reports an automated screening method to detect the presence of cocaine in seized samples using portable Fourier transform infrared (FT-IR) spectrometers. The method is based on the identification of well-defined characteristic vibrational frequencies related to the functional group of the cocaine molecule and is fully automated through the use of an expert system. Traditionally, analysts look for key functional group bands in the infrared spectra and characterization of the molecules present is dependent on user interpretation. This implies the need for user expertise, especially in samples that likely are mixtures. As such, this approach is biased and also not suitable for non-experts. The method proposed in this work uses the well-established "center of gravity" peak picking mathematical algorithm and combines it with the conditional reporting feature in MicroLab software to provide an automated method that can be successfully employed by users with varied experience levels. The method reports the confidence level of cocaine present only when a certain number of cocaine related peaks are identified by the automated method. Unlike library search and chemometric methods that are dependent on the library database or the training set samples used to build the calibration model, the proposed method is relatively independent of adulterants and diluents present in the seized mixture. This automated method in combination with a portable FT-IR spectrometer provides law enforcement officials, criminal investigators, or forensic experts a quick field-based prescreening capability for the presence of cocaine in seized drug samples. © The Author(s) 2016.

  16. Microbial Life in a Winogradsky Column: From Lab Course to Diverse Research Experience ?

    OpenAIRE

    Parks, Samantha T.

    2015-01-01

    Many traditional lab courses include both standard and inquiry-based experiments, yet lack cooperative and authentic lab experiences.  Such experiences are important for microbiology students and burgeoning researchers.  In a novel lab environment, students constructed Winogradsky columns using common soil and water sources.  During initial column incubation, students learned methods for identification of microbial isolates including staining, microscopy, biochemistry and 16S-rRNA sequencing....

  17. Design and Implementation of Electric Steering Gear Inspection System for Unmanned Aerial Vehicles Based on Virtual Instruments

    Directory of Open Access Journals (Sweden)

    Zheng Xing

    2016-01-01

    Full Text Available A kind of UAV electric servo detection system based on Virtual Instrument is designed in this paper, including the hardware platform based on PC-DAQ virtual instrument architecture and the software platform based on LabVIEW function, structure and system implementation methods. The function, structure and system implementation method of software platform is also described. The gear limits checking, zero testing, time domain characteristics test results showed that the system achieves testing requirements well, and can complete detection of electric steering gear automatically, fast, easy and accurate.

  18. Living labs design and assessment of sustainable living

    CERN Document Server

    Guerra-Santin, Olivia; Lockton, Dan

    2017-01-01

    This book presents the results of a multi-annual project with sustainable Living Labs in the United Kingdom, Sweden, Germany and the Netherlands. Living Labs – as initiated by the authors – have proved to be very promising research, design, co-creation and communication facilities for the development and implementation of sustainable innovations in the home. The book provides an inspiring introduction to both the methodology and business modelling for the Living Lab facilities. Understanding daily living at home is key to designing products and services that support households in their transition to more sustainable lifestyles. This book not only explores new ways of gaining insights into daily practices, but also discusses developing and testing design methods to create sustainable solutions for households. These new methods and tools are needed because those available are either ineffective or cause rebound-effects. Intended for researchers and designers with an interest in the transition to sustainable...

  19. A method and instruments to identify the torque, the power and the efficiency of an internal combustion engine of a wheeled vehicle

    Science.gov (United States)

    Egorov, A. V.; Kozlov, K. E.; Belogusev, V. N.

    2018-01-01

    In this paper, we propose a new method and instruments to identify the torque, the power, and the efficiency of internal combustion engines in transient conditions. This method, in contrast to the commonly used non-demounting methods based on inertia and strain gauge dynamometers, allows controlling the main performance parameters of internal combustion engines in transient conditions without inaccuracy connected with the torque loss due to its transfer to the driving wheels, on which the torque is measured with existing methods. In addition, the proposed method is easy to create, and it does not use strain measurement instruments, the application of which does not allow identifying the variable values of the measured parameters with high measurement rate; and therefore the use of them leads to the impossibility of taking into account the actual parameters when engineering the wheeled vehicles. Thus the use of this method can greatly improve the measurement accuracy and reduce costs and laboriousness during testing of internal combustion engines. The results of experiments showed the applicability of the proposed method for identification of the internal combustion engines performance parameters. In this paper, it was determined the most preferred transmission ratio when using the proposed method.

  20. Instrumentation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides instrumentation support for flight tests of prototype weapons systems using a vast array of airborne sensors, transducers, signal conditioning and encoding...

  1. Device Configuration Handler for Accelerator Control Applications at Jefferson Lab

    International Nuclear Information System (INIS)

    Bickley, Matt; Chevtsov, P.; Larrieu, T.

    2003-01-01

    The accelerator control system at Jefferson Lab uses hundreds of physical devices with such popular instrument bus interfaces as Industry Pack (IPAC), GPIB, RS-232, etc. To properly handle all these components, control computers (IOCs) must be provided with the correct information about the unique memory addresses of the used interface cards, interrupt numbers (if any), data communication channels and protocols. In these conditions, the registration of a new control device in the control system is not an easy task for software developers. Because the device configuration is distributed, it requires the detailed knowledge about not only the new device but also the configuration of all other devices on the existing system. A configuration handler implemented at Jefferson Lab centralizes the information about all control devices making their registration user-friendly and very easy to use. It consists of a device driver framework and the device registration software developed on the basis of ORACLE database and freely available scripting tools (perl, php)

  2. Geographic determination of the growing origins of Jamaican and international coffee using instrumental neutron activation analysis and other methods

    International Nuclear Information System (INIS)

    Antoine, J.M.R.; Hoo Fung, L.A.; Grant, Ch.N.

    2016-01-01

    This study was undertaken to determine whether elemental analysis could distinguish the growing origins of Jamaican versus international coffee and identify intra-island growing regions. Twenty-four samples of roasted and ground coffee and soluble coffee were collected and analysed using instrumental neutron activation analysis and inductively coupled plasma optical emission spectroscopy. Sixteen elements were selected for statistical evaluation. Soluble clustered discretely from roasted and ground samples. The distinction among roasted and ground samples was not as discrete. Geographic growing regions could be determined by statistical analysis; separating the growing sub-regions in Jamaica would require additional analyses. (author)

  3. Quality of Lab Appliances in Orthodontic Offices.

    Science.gov (United States)

    Pruzansky, D P; Park, J H

    Lab appliances are an integral part of orthodontics, from active treatment to retention. The quality and fit of an appliance can affect the treatment result and stability. This study aims to determine common points of failure in orthodontic appliances, and suggest methods to reduce this rate. A survey consisting of 23 questions was distributed to active members of the American Association of Orthodontists (AAO) via Survey Monkey. The most common appliance to need an adjustment was the wrap-around retainer, with the Hawley retainer as a close second. The least common appliance needing adjustment was the Essix/clear retainer. Respondents were asked which component of each appliance was most commonly responsible for an ill-fit. For Hawley and wrap-around retainers, clasps were the most common problem at 50%, whereas spring aligners had two components - clasps and labial bows, both at 38%. Ill-fitting Essix/clear retainers had gingival impingement (52%) closely followed by poor posterior seating (43%). Communication between the orthodontist and lab technician can be improved by establishing a quality assurance protocol for outgoing and incoming cases. The labial bow of Hawley's, wrap-arounds and spring aligners should be clearly demarcated on the casts. Impressions should be free of distortion and casts should be inspected for accuracy. Clear retainers and positioner should be trimmed to avoid gingival impingement. The type of clasp should be selected based on the anatomy of the teeth, and bands should be checked for accuracy of fit.

  4. Double success for neutrino lab

    CERN Multimedia

    2010-01-01

    "The Gran Sasso National Laboratory in Italy is celebrating two key developments in the field of neutrino physics. Number one is the first ever detection, by the OPERA experiement, of possible tau neutrino that has switched its identity from a muon neutrino as it travelled form its origins at CERN in Switzerland to the Italian lab. Number two is the successful start-up of the ICARUS detector, which, like OPERA, is designed to study neutrinos that "oscillate" between types" (0.5 pages)

  5. A green chemistry lab course

    International Nuclear Information System (INIS)

    Rank, J.; Lenoir, D.; Bahadir, M.; Koning, B.

    2006-01-01

    The traditional course content of chemistry classes must change to achieve better awareness of the important issues of sustainability in chemistry within the next generation of professional chemists. To provide the necessary material for the organic chemistry teaching lab course, which is part of almost all study programs in chemistry, material was developed and collected (http://www.oc-praktikum.de/en) that allows students and teachers to assess reactions beyond the experimental set up, reaction mechanism and chemical yield. Additional parameters like atom economy of chemical transformations, energy efficiency, and questions of waste, renewable feed stocks, toxicity and ecotoxicity, as well as the safety measures for the chemicals used are discussed. (author)

  6. Laser safety in the lab

    CERN Document Server

    Barat, Ken L

    2012-01-01

    There is no more challenging setting for laser use than a research environment. In almost every other setting the laser controls count on engineering controls, and human exposure is kept to a minimum. In research, however, the user often manipulates the optical layout and thereby places him or herself in peril, but this does not mean that accidents and injury are unavoidable. On the contrary, laser accidents can be avoided by following a number of simple approaches. [i]Laser Safety in the Lab[/i] provides the laser user and laser safety officer with practical guidelines from housekeeping to ey

  7. Remote Lab for Robotics Applications

    Directory of Open Access Journals (Sweden)

    Robinson Jiménez

    2018-01-01

    Full Text Available This article describes the development of a remote lab environment used to test and training sessions for robotics tasks. This environment is made up of the components and devices based on two robotic arms, a network link, Arduino card and Arduino shield for Ethernet, as well as an IP camera. The remote laboratory is implemented to perform remote control of the robotic arms with visual feedback by camera, of the robots actions, where, with a group of test users, it was possible to obtain performance ranges in tasks of telecontrol of up to 92%.

  8. Digital media labs in libraries

    CERN Document Server

    Goodman, Amanda L

    2014-01-01

    Families share stories with each other and veterans reconnect with their comrades, while teens edit music videos and then upload them to the web: all this and more can happen in the digital media lab (DML), a gathering of equipment with which people create digital content or convert content that is in analog formats. Enabling community members to create digital content was identified by The Edge Initiative, a national coalition of leading library and local government organizations, as a library technology benchmark. Surveying academic and public libraries in a variety of settings and sharing a

  9. The neuron net method for processing the clear pixels and method of the analytical formulas for processing the cloudy pixels of POLDER instrument images

    Science.gov (United States)

    Melnikova, I.; Mukai, S.; Vasilyev, A.

    Data of remote measurements of reflected radiance with the POLDER instrument on board of ADEOS satellite are used for retrieval of the optical thickness, single scattering albedo and phase function parameter of cloudy and clear atmosphere. The method of perceptron neural network that from input values of multiangle radiance and Solar incident angle allows to obtain surface albedo, the optical thickness, single scattering albedo and phase function parameter in case of clear sky. Two last parameters are determined as optical average for atmospheric column. The calculation of solar radiance with using the MODTRAN-3 code with taking into account multiple scattering is accomplished for neural network learning. All mentioned parameters were randomly varied on the base of statistical models of possible measured parameters variation. Results of processing one frame of remote observation that consists from 150,000 pixels are presented. The methodology elaborated allows operative determining optical characteristics as cloudy as clear atmosphere. Further interpretation of these results gives the possibility to extract the information about total contents of atmospheric aerosols and absorbing gases in the atmosphere and create models of the real cloudiness An analytical method of interpretation that based on asymptotic formulas of multiple scattering theory is applied to remote observations of reflected radiance in case of cloudy pixel. Details of the methodology and error analysis were published and discussed earlier. Here we present results of data processing of pixel size 6x6 km In many studies the optical thickness is evaluated earlier in the assumption of the conservative scattering. But in case of true absorption in clouds the large errors in parameter obtained are possible. The simultaneous retrieval of two parameters at every wavelength independently is the advantage comparing with earlier studies. The analytical methodology is based on the transfer theory asymptotic

  10. Is LabTutor a helpful component of the blended learning approach to biosciences?

    Science.gov (United States)

    Swift, Amelia; Efstathiou, Nikolaos; Lameu, Paula

    2016-09-01

    To evaluate the use of LabTutor (a physiological data capture and e-learning package) in bioscience education for student nurses. Knowledge of biosciences is important for nurses the world over, who have to monitor and assess their patient's clinical condition, and interpret that information to determine the most appropriate course of action. Nursing students have long been known to find acquiring useable bioscience knowledge challenging. Blended learning strategies are common in bioscience teaching to address the difficulties students have. Student nurses have a preference for hands-on learning, small group sessions and are helped by close juxtaposition of theory and practice. An evaluation of a new teaching method using in-classroom voluntary questionnaire. A structured survey instrument including statements and visual analogue response format and open questions was given to students who participated in Labtutor sessions. The students provided feedback in about the equipment, the learning and the session itself. First year (n = 93) and third year (n = 36) students completed the evaluation forms. The majority of students were confident about the equipment and using it to learn although a few felt anxious about computer-based learning. They all found the equipment helpful as part of their bioscience education and they all enjoyed the sessions. This equipment provides a helpful way to encourage guided independent learning through practice and discovery and because each session is case study based and the relationship of the data to the patient is made clear. Our students helped to evaluate our initial use of LabTutor and found the sessions enjoyable and helpful. LabTutor provides an effective learning tool as part of a blended learning strategy for biosciences teaching. Improving bioscience knowledge will lead to a greater understanding of pathophysiology, treatments and interventions and monitoring. © 2016 John Wiley & Sons Ltd.

  11. Living Labs: overview of ecological approaches for health promotion and rehabilitation.

    Science.gov (United States)

    Korman, M; Weiss, P L; Kizony, R

    2016-01-01

    The term "Living Lab" was coined to reflect the use of sensors to monitor human behavior in real life environments. Until recently such measurements had been feasible only within experimental laboratory settings. The objective of this paper is to highlight research on health care sensing and monitoring devices that enable direct, objective and accurate capture of real-world functioning. Selected articles exemplifying the key technologies that allow monitoring of the motor-cognitive activity of persons with disabilities during naturally occurring daily experiences in real-life settings are discussed in terms of (1) the ways in which the Living Lab approach has been used to date, (2) limitations related to clinical assessment in rehabilitation settings and (3) three categories of the instruments most commonly used for this purpose: personal technologies, ambient technologies and external assistive systems. Technology's most important influences on clinical practice and rehabilitation are in a shift from laboratory-based to field-centered research and a transition between in-clinic performance to daily life activities. Numerous applications show its potential for real-time clinical assessment. Current technological solutions that may provide clinicians with objective, unobtrusive measurements of health and function, as well as tools that support rehabilitation on an individual basis in natural environments provide an important asset to standard clinical measures. Until recently objective clinical assessment could not be readily performed in a client's daily functional environment. Novel technologies enable health care sensing and monitoring devices that enable direct, objective and accurate capture of real-world functioning. Such technologies are referred to as a "Living Lab" approach since they enable the capture of objective and non-obtrusive data that clinicians can use to assess performance. Research and development in this field help clinicians support maintain

  12. Virtual Labs in proteomics: new E-learning tools.

    Science.gov (United States)

    Ray, Sandipan; Koshy, Nicole Rachel; Reddy, Panga Jaipal; Srivastava, Sanjeeva

    2012-05-17

    Web-based educational resources have gained enormous popularity recently and are increasingly becoming a part of modern educational systems. Virtual Labs are E-learning platforms where learners can gain the experience of practical experimentation without any direct physical involvement on real bench work. They use computerized simulations, models, videos, animations and other instructional technologies to create interactive content. Proteomics being one of the most rapidly growing fields of the biological sciences is now an important part of college and university curriculums. Consequently, many E-learning programs have started incorporating the theoretical and practical aspects of different proteomic techniques as an element of their course work in the form of Video Lectures and Virtual Labs. To this end, recently we have developed a Virtual Proteomics Lab at the Indian Institute of Technology Bombay, which demonstrates different proteomics techniques, including basic and advanced gel and MS-based protein separation and identification techniques, bioinformatics tools and molecular docking methods, and their applications in different biological samples. This Tutorial will discuss the prominent Virtual Labs featuring proteomics content, including the Virtual Proteomics Lab of IIT-Bombay, and E-resources available for proteomics study that are striving to make proteomic techniques and concepts available and accessible to the student and research community. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 14). Details can be found at: http://www.proteomicstutorials.org/. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Nuclear medicine and image research: instrumentation and quantitative methods of evaluation. Comprehensive 3-year progress report, January 15, 1983-January 14, 1986

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.D.

    1985-09-01

    This program of research addresses problems involving the basic science and technology of radioactive tracer methods as they relate to nuclear medicine and imaging. The broad goal is to develop new instruments and methods for image formation, processing, quantitation, and display, so as to maximize the diagnostic information per unit of absorbed radiation dose to the patient. Project I addresses problems with the quantitative imaging a single-photon emitters; Project II addresses similar problems associated with the quantitative imaging of positron emitters; Project III addresses methodological problems associated with the quantitative evaluation of the efficacy of diagnostic imaging procedures

  14. Analysis for trace mercury concentration. I. Critical evaluation of current procedures. II. A proposed method for determination by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Litman, R.

    1975-01-01

    Current methods of sample pretreatments, digestion, lyophilization and extraction, have been found to lead to considerable loss of mercury, at an initial mercury concentration of 1 μg/g, and less. Storage of solutions of mercury at concentrations of less than 1 μg/ml, in glass, Teflon and polyethylene containers, leads to losses by adsorption. Electrochemical reduction of mercury to the metal, and subsequent volatilization, is postulated as the mechanism of loss from the samples studied during lyophilization. A method of instrumental neutron activation analysis, which obviates the above pretreatments, has been developed for mercury concentrations as low as 1 ng/ml

  15. Remembering the early days of the Met Lab

    International Nuclear Information System (INIS)

    Katz, J.J.

    1990-01-01

    The Met Lab was set up by the war-time Manhattan District, US Corp of Engineers to (i) find a system using normal uranium in which a chain reaction would occur; (ii) to show that if such a chain reaction did occur, it would be possible to separate plutonium chemically from the uranium matrix and the fission products formed in the chain reactions; and (iii) to prepare plans for the large-scale production of plutonium. Chemistry Section C-1 of the Met Lab was assigned the responsibility for developing separation methods for plutonium production on the industrial scale. This report describes some aspects of daily life in Section C-1

  16. New analytical portable instrument for microchip electrophoresis with electrochemical detection.

    Science.gov (United States)

    Fernández-la-Villa, Ana; Pozo-Ayuso, Diego F; Castaño-Alvarez, Mario

    2010-08-01

    A new portable instrument that includes a high voltage power supply, a bipotentiostat, and a chip holder has been especially developed for using microchips electrophoresis with electrochemical detection. The main unit of the instrument has dimensions of 150 x 165 x 70 mm (wxdxh) and consists of a four-outputs high voltage power supply with a maximum voltage of +/-3 KV and an acquisition system with two channels for dual amperometric (DC or pulsed amperometric detection) detection. Electrochemical detection has been selected as signal transduction method because it is relatively easily implemented, since nonoptical elements are required. The system uses a lithium-ion polymer battery and it is controlled from a desktop or laptop PC with a graphical user interface based on LabVIEW connected by serial RS232 or Bluetooth. The last part of the system consists of a reusable chip holder for housing the microchips, which contain all the electrical connections and reservoirs for making the work with microchips easy. The performance of the new instrument has been evaluated and compared with other commercially available apparatus using single- and dual-channel pyrex microchips for the separation of the neurotransmitters dopamine, epinephrine, and 3,4-dihydroxy-L-phenyl-alanine. The reduction of the size of the instrument has not affected the good performance of the separation and detection using microchips electrophoresis with electrochemical detection. Moreover, the new portable instrument paves the way for in situ analysis making the use of microchips electrophoresis easier.

  17. Jefferson Lab, a status report

    International Nuclear Information System (INIS)

    Dunham, B.M.

    1996-01-01

    Thomas Jefferson National Accelerator Facility (Jefferson Lab; formerly known as CEBAF), operates a 4 GeV, 200 microA continuous wave (CW) electron accelerator that re-circulates the beam five times through two superconducting 400 MeV linacs. Electrons can be extracted from any of the five recirculation passes and beam can be simultaneously delivered to the three experimental halls. As the commissioning stage nears completion, the accelerator is becoming a fully operational machine. Experiments in Hall C have been underway since November 1995 with beam powers of over 300 kW at various energies. Hall A has received beam for spectrometer commissioning, while Hall B is expected to receive its first beam in the fall of 1996. Accelerator availability of greater than 70% during physics runs and excellent beam quality have contributed to making Jefferson Lab a world class laboratory for accelerator-based electromagnetic nuclear physics. With the high performance of the superconducting RF cavities, machine upgrades to 6 GeV, and eventually 8 to 10 GeV are now in the planning stages. Operational and commissioning details concerning all aspects of the machine will be discussed

  18. Jefferson Lab, a status report

    International Nuclear Information System (INIS)

    Dunham, B.M.

    1996-01-01

    Thomas Jefferson National Accelerator Facility (Jefferson Lab; formerly known as CEBAF), operates a 4 GeV, 200 μA continuous wave (CW) electron accelerator that re-circulates the beam five times through two superconducting 400 MeV linacs. Electrons can be extracted from any of the five recirculation passes and beam can be simultaneously delivered to the three experimental halls. As the commissioning stage nears completion, the accelerator is becoming a fully operational machine. Experiments in Hall C have been underway since November 1995 with beam powers of over 300 kW at various energies. Hall A has received beam for spectrometer commissioning, while Hall B is expected to receive its first beam in the fall of 1996. Accelerator availability of greater than 70% during physics runs and excellent beam quality have contributed to making Jefferson Lab a world class laboratory for accelerator-based electromagnetic nuclear physics. With the high performance of the superconducting RF cavities, machine upgrades to 6 GeV, and eventually 8 to 10 GeV are now in the planning stages. Operational and commissioning details concerning all aspects of the machine will be discussed. (author)

  19. Safety in the Chemical Laboratory: Chemical Wastes in Academic Labs.

    Science.gov (United States)

    Walton, Wendy A.

    1987-01-01

    Encourages instruction about disposal of hazardous wastes in college chemistry laboratories as an integral part of experiments done by students. Discusses methods such as down-the-drain disposal, lab-pack disposal, precipitation and disposal, and precipitation and recovery. Suggests that faculty and students take more responsibility for waste…

  20. Instrumentation for environmental monitoring: biomedical

    International Nuclear Information System (INIS)

    1979-05-01

    An update is presented to Volume four of the six-volume series devoted to a survey of instruments useful for measurements in biomedicine related to environmental research and monitoring. Results of the survey are given as descriptions of the physical and operating characteristics of available instruments, critical comparisons among instrumentation methods, and recommendations of promising methodology and development of new instrumentation. Methods of detection and analysis of gaseous organic pollutants and metals, including Ni and As are presented. Instrument techniques and notes are included on atomic spectrometry and uv and visible absorption instrumentation

  1. TYCHO Brahe's Empiric Methods, His Instruments, His Sudden Escape from Denmark and a New Theory About His Death

    Science.gov (United States)

    Thykier, C.

    1992-07-01

    Tycho Brahe (1546-1601) was born a noble being, a son of Otto Brahe, and a member of the Royal Danish Council. Very early he developed a great interest in science and especially astronomy. In 1575 Tycho visited the learned Prince Wilhelm II in Kassel. Here he was inspired by the famous instrument maker Burgi to build new precise astronomical instruments, and on the recommendation of Wilhelm King Frederic II of Denmark was given the island Hven (which at that time belonged to Denmark) as an entailed estate. At 26 years old, Tycho became famous for his work DE NOVA STELLA on the supernova that brightened up in 1572, and since this phenomenon kept its position fixed among the stars, it immediately invalidated the Aristotelian dogma of the invariability of the fixed-star world. In 1577 Tycho observed the great comet and followed its celestial motion by means of a quadrant and a sextant. He then came to the conclusion that the comet orbit moved far out among the planets, in contradiction to the Aristotelian dogma of the crystal spheres for the planets. However, Tycho's great contribution to science was his construction of the observatory buildings Uraniborg and Stjerneborg ("Star Castle") with their equipment of ancient sighting instruments and his use of these instruments without telescopes for observations of the planets over a period of almost 20 years. Tycho's work is collected in 15 volumes, OPERA OMNIA by J. L. E. Dreyer. Tycho also mapped Hven correctly and he triangulated both sides of Oresund relative to Hven. When Tycho moved to Prague in 1599 he lived there for a couple of years and met Kepler who became his assistant and collaborator. Kepler was the one who analyzed Tycho's material and derived the Keplerian laws for the motions of the planets. On this basis Newton derived the law of gravitation. Tycho Brahe has been considered the father of modern empirical science. In 1596 he was accused of negligence of his administrative duties and several other things

  2. Instrumentation development

    International Nuclear Information System (INIS)

    Ubbes, W.F.; Yow, J.L. Jr.

    1988-01-01

    Instrumentation is developed for the Civilian Radioactive Waste Management Program to meet several different (and sometimes conflicting) objectives. This paper addresses instrumentation development for data needs that are related either directly or indirectly to a repository site, but does not touch on instrumentation for work with waste forms or other materials. Consequently, this implies a relatively large scale for the measurements, and an in situ setting for instrument performance. In this context, instruments are needed for site characterization to define phenomena, develop models, and obtain parameter values, and for later design and performance confirmation testing in the constructed repository. The former set of applications is more immediate, and is driven by the needs of program design and performance assessment activities. A host of general technical and nontechnical issues have arisen to challenge instrumentation development. Instruments can be classed into geomechanical, geohydrologic, or other specialty categories, but these issues cut across artificial classifications. These issues are outlined. Despite this imposing list of issues, several case histories are cited to evaluate progress in the area

  3. APPLICATION OF THE SPECTROMETRIC METHOD FOR CALCULATING THE DOSE RATE FOR CREATING CALIBRATION HIGHLY SENSITIVE INSTRUMENTS BASED ON SCINTILLATION DETECTION UNITS

    Directory of Open Access Journals (Sweden)

    R. V. Lukashevich

    2017-01-01

    Full Text Available Devices based on scintillation detector are highly sensitive to photon radiation and are widely used to measure the environment dose rate. Modernization of the measuring path to minimize the error in measuring the response of the detector to gamma radiation has already reached its technological ceiling and does not give the proper effect. More promising for this purpose are new methods of processing the obtained spectrometric information. The purpose of this work is the development of highly sensitive instruments based on scintillation detection units using a spectrometric method for calculating dose rate.In this paper we consider the spectrometric method of dosimetry of gamma radiation based on the transformation of the measured instrumental spectrum. Using predetermined or measured functions of the detector response to the action of gamma radiation of a given energy and flux density, a certain function of the energy G(E is determined. Using this function as the core of the integral transformation from the field to dose characteristic, it is possible to obtain the dose value directly from the current instrumentation spectrum. Applying the function G(E to the energy distribution of the fluence of photon radiation in the environment, the total dose rate can be determined without information on the distribution of radioisotopes in the environment.To determine G(E by Monte-Carlo method instrumental response function of the scintillator detector to monoenergetic photon radiation sources as well as other characteristics are calculated. Then the whole full-scale energy range is divided into energy ranges for which the function G(E is calculated using a linear interpolation.Spectrometric method for dose calculation using the function G(E, which allows the use of scintillation detection units for a wide range of dosimetry applications is considered in the article. As well as describes the method of calculating this function by using Monte-Carlo methods

  4. Calibration transfer of a Raman spectroscopic quantification method for the assessment of liquid detergent compositions between two at-line instruments installed at two liquid detergent production plants.

    Science.gov (United States)

    Brouckaert, D; Uyttersprot, J-S; Broeckx, W; De Beer, T

    2017-09-01

    Calibration transfer of partial least squares (PLS) quantification models is established between two Raman spectrometers located at two liquid detergent production plants. As full recalibration of existing calibration models is time-consuming, labour-intensive and costly, it is investigated whether the use of mathematical correction methods requiring only a handful of standardization samples can overcome the dissimilarities in spectral response observed between both measurement systems. Univariate and multivariate standardization approaches are investigated, ranging from simple slope/bias correction (SBC), local centring (LC) and single wavelength standardization (SWS) to more complex direct standardization (DS) and piecewise direct standardization (PDS). The results of these five calibration transfer methods are compared reciprocally, as well as with regard to a full recalibration. Four PLS quantification models, each predicting the concentration of one of the four main ingredients in the studied liquid detergent composition, are aimed at transferring. Accuracy profiles are established from the original and transferred quantification models for validation purposes. A reliable representation of the calibration models performance before and after transfer is thus established, based on β-expectation tolerance intervals. For each transferred model, it is investigated whether every future measurement that will be performed in routine will be close enough to the unknown true value of the sample. From this validation, it is concluded that instrument standardization is successful for three out of four investigated calibration models using multivariate (DS and PDS) transfer approaches. The fourth transferred PLS model could not be validated over the investigated concentration range, due to a lack of precision of the slave instrument. Comparing these transfer results to a full recalibration on the slave instrument allows comparison of the predictive power of both Raman

  5. Instrumental neutron activation analysis of geochemical samples by k{sub 0} standardization method using short lived nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Oura, Yasuji; Kanzaki, Chinatsu; Ebihara, Mitsuru [Tokyo Metropolitan Univ., Graduate School of Science, Tokyo (Japan)

    2003-03-01

    Mg, Al, Ca, Ti, V, and Mn contents in geochemical and cosmochemical samples were analyzed by both k{sub 0} standardization INAA and conventional INAA by a comparison method. The contents of Mg, Al, and Mn by k{sub 0} method were consistent with recommended values and ones by comparison methods. For Ti and V their values are slightly higher than recommended ones. The values by k{sub 0} method were reliable within {+-}10%. (author)

  6. SuperFormLab: showing SuperFormLab

    DEFF Research Database (Denmark)

    2013-01-01

    bachelor program, followed by two years of master studies. The courses are offered equally to students from other design disciplines, e.g. industrial design. Teaching is mainly in English as the program is attended by a relatively large group of non-Danish students, who seek exactly this combination......3D-printing in clay and ceramic objects shaped by your own sounds and movements! Digital form transferred via CNC-milling to ornamental ceramic wall-cladding. Brave New World… Students and their teacher at SuperFormLab, the new ceramic workshop of the School of Design at the Royal Danish Academy...... of Fine Arts in Copenhagen, will be showing results of their investigations into the potential of combining digital technologies with ceramic materials. It is now possible to shape the most complex mathematical, virtual 3D objects through the use of advanced software-programs. And more than that – you can...

  7. The Kodály and Rajkó Methods: Voices, Instruments, Ethnicity, and the Globalization of Hungarian Music Education in the Twentieth Century

    Directory of Open Access Journals (Sweden)

    Lynn M. Hooker

    2016-01-01

    Full Text Available Music is one of the fields in which Hungary has distinguished itself around the world, and music education is an arena in which Hungarian methods have had a profound impact. The basic principles of Hungarian music-pedagogical methods, developed by Zoltán Kodály (1882–1967 and his disciples and thus known as the Kodály method, are systematic instruction in sight-singing using “movable-do” solfège and rhythmic syllables, with the ideal of developing music literacy in all children through high-quality music, mainly classical and folk repertoire for choirs. Another type of well-known Hungarian music, so-called “Gypsy music,” is specifically denied legitimacy both in Kodály’s writings and those of some of his students, for two reasons: much of it is primarily instrumental instead of vocal, and it is considered “bad.” Yet Romani (Gypsy musicians from Hungary have also become famous internationally, some from quite a young age. The Rajkó Ensemble, established in 1952 as the Gypsy Orchestra of the Young Communists’ League, brought Hungarian and Hungarian-Gypsy music to over a hundred countries over the years. Interviews with Rajkó members, some conducted by the author and some previously published, reveal those musicians struggling to claim the legitimacy not only of their music but of their music pedagogy, implicitly comparing the Rajkó method to the Kodály method. After a brief discussion of the Kodály method and its history, this essay gives some examples of how that method has dealt with talented Romani youth in Hungary; compares the Kodály method to methods of teaching instrumental music in Roma communities and in the Rajkó Ensemble; and considers how American ideals of multicultural education challenge some of Kodály’s tenets.

  8. Open source and DIY hardware for DNA nanotechnology labs.

    Science.gov (United States)

    Damase, Tulsi R; Stephens, Daniel; Spencer, Adam; Allen, Peter B

    A set of instruments and specialized equipment is necessary to equip a laboratory to work with DNA. Reducing the barrier to entry for DNA manipulation should enable and encourage new labs to enter the field. We present three examples of open source/DIY technology with significantly reduced costs relative to commercial equipment. This includes a gel scanner, a horizontal PAGE gel mold, and a homogenizer for generating DNA-coated particles. The overall cost savings obtained by using open source/DIY equipment was between 50 and 90%.

  9. QBone University and Lab Interconnect Testbed (QUALIT). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Teitelbaum, Benjamin

    2001-10-19

    The QUALIT grant funded two broad categories of work: (1) Project-wide QBone engineering, instrumentation, and integration; (2) Focused workshops and measurement work relating specifically to advanced university/DOE connectivity. Significant progress has been made in both areas and, to both, QUALIT funding has been a key enabling resource. This final report summarizes the accomplishments of the QUALIT project and explains changes to the technical focus of the project that, while significant, remained true to the overall project goal: to research, test, and deploy IP layer traffic differentiation to redress congestion-related end-to-end performance problems on key university-DOE lab paths.

  10. MatLab Script and Functional Programming

    Science.gov (United States)

    Shaykhian, Gholam Ali

    2007-01-01

    MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.

  11. GeneLab: Open Science For Exploration

    Science.gov (United States)

    Galazka, Jonathan

    2018-01-01

    The NASA GeneLab project capitalizes on multi-omic technologies to maximize the return on spaceflight experiments. The GeneLab project houses spaceflight and spaceflight-relevant multi-omics data in a publicly accessible data commons, and collaborates with NASA-funded principal investigators to maximize the omics data from spaceflight and spaceflight-relevant experiments. I will discuss the current status of GeneLab and give specific examples of how the GeneLab data system has been used to gain insight into how biology responds to spaceflight conditions.

  12. Replacing textbook problems with lab experiences

    Science.gov (United States)

    Register, Trevor

    2017-10-01

    End-of-the-chapter textbook problems are often the bread and butter of any traditional physics classroom. However, research strongly suggests that students be given the opportunity to apply their knowledge in multiple contexts as well as be provided with opportunities to do the process of science through laboratory experiences. Little correlation has been shown linking the number of textbook problems solved with conceptual understanding of topics in mechanics. Furthermore, textbook problems as the primary source of practice for students robs them of the joy and productive struggle of learning how to think like an experimental physicist. Methods such as Modeling Instruction tackle this problem head-on by starting each instructional unit with an inquiry-based lab aimed at establishing the important concepts and equations for the unit, and this article will discuss ideas and experiences for how to carry that philosophy throughout a unit.

  13. Instrumental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-15

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  14. Instrumental analysis

    International Nuclear Information System (INIS)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-01

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  15. LOFT instrumentation

    International Nuclear Information System (INIS)

    Bixby, W.W.

    1979-01-01

    A description of instrumentation used in the Loss-of-Fluid Test (LOFT) large break Loss-of-Coolant Experiments is presented. Emphasis is placed on hydraulic and thermal measurements in the primary system piping and components, reactor vessel, and pressure suppression system. In addition, instrumentation which is being considered for measurement of phenomena during future small break testing is discussed. (orig.) 891 HP/orig. 892 BRE [de

  16. Automated correction on X-rays calibration using transmission chamber and LabVIEWTM

    International Nuclear Information System (INIS)

    Betti, Flavio; Potiens, Maria da Penha Albuquerque

    2009-01-01

    Uncertainties during prolonged exposure times on X-rays calibration procedures at the Instruments Calibration facilities at IPEN may suffer from efficiency (and therefore intensity) variations on the industrial X-Ray generator used. Using a transmission chamber as an online reference chamber during the whole irradiation process is proposed in order to compensate for such error source. Also temperature (and pressure) fluctuations may arise from the performance limited calibration room air conditioning system. As an open ionization chamber, that monitor chamber does require calculation of a correction factor due to the temperature and pressure effects on air density. Sending and processing data from all related instruments (electrometer, thermometer and barometer) can be more easily achieved by interfacing them to a host computer running an especially developed algorithm using LabVIEW TM environment which will not only apply the proper correction factors during runtime, but also determine the exact length of time to reach a desired condition, which can be: time period, charge collected, or air kerma, based on the previous calibration of the whole system using a reference chamber traceable to primary standard dosimetry laboratories. When performing such calibration, two temperature sensors (secondary standard thermistors) are simultaneously used, one for the transmission chamber, and other for the reference chamber. As the substitution method is used during actual customer's calibration, the readings from the second thermistor can also be used when desired for further corrections. Use of LabVIEW TM programming language allowed for a shorter development time, and it is also extremely convenient to make things easier when improvements and modifications are called for. (author)

  17. Adapting instruments and modifying statements: The confirmation method for the inventory and model for information sharing behavior using social media

    Directory of Open Access Journals (Sweden)

    Tiny Azleen Binti Yahaya

    2018-05-01

    Full Text Available This study aims to confirm the information sharing behavior using social media scale and to vali-date every item and make it reliable as an inventory by using Exploratory Factor Analysis (EFA. The researcher adapted the measuring instruments for every latent construct from the literature and customized the items to suit this particular study. The study sent the revised questionnaire to 262 respondents in order to gather the pilot study data and able to get 163 filled ones as final data. The set of questionnaires consists of 66 items that assess the 6 constructs. Data is analyzed using SPSS AMOS Version 21.0. The results show that every construct achieved its Bartletts’ Test of Spherici-ty 6.0 with the result of Information Sharing Behavior .000 and .871; Intention .000 and .782; Belief Expectancy .000 and .911; Attitude Influence .000 and .925; Readiness For Change .000 and .959; and Self-Efficacy .000 and .902. The entire item of the construct has exceeded the minimum limit of 0.7 reliability of Alpha Cronbach value to achieve the Internal Reliability. The new integrate model has been proposed due to this finding.

  18. Evaluation of Derivative Ultraviolet Spectrometry for Determining Saccharin in Cola and Other Matrices: An Instrumental Methods Experiment.

    Science.gov (United States)

    Stolzberg, Richard J.

    1986-01-01

    Background information and experimental procedures are provided for an experiment in which three samples of saccharin (a nickel plating solution, a dilute cola drink, and a more concentrated cola drink) are analyzed and the data interpreted using five methods. Precision and accuracy are evaluated and the best method is selected. (JN)

  19. Virtual Simulations as Preparation for Lab Exercises: Assessing Learning of Key Laboratory Skills in Microbiology and Improvement of Essential Non-Cognitive Skills

    DEFF Research Database (Denmark)

    Makransky, Guido; Warming Thisgaard, Malene; Gadegaard, Helen

    2016-01-01

    Objective To investigate if a virtual laboratory simulation (vLAB) could be used to replace a face to face tutorial (demonstration) to prepare students for a laboratory exercise in microbiology. Methods A total of 189 students who were participating in an undergraduate biology course were randomly...... selected into a vLAB or demonstration condition. In the vLAB condition students could use a vLAB at home to 'practice' streaking out bacteria on agar plates in a virtual environment. In the demonstration condition students were given a live demonstration from a lab tutor showing them how to streak out......-efficacy in the field of microbiology. Conclusion Our data show that vLABs function just as well as face to face tutorials in preparing students for a physical lab activity in microbiology. The results imply that vLABs could be used instead of face to face tutorials, and a combination of virtual and physical lab...

  20. Innovations in STEM education: the Go-Lab federation of online labs

    NARCIS (Netherlands)

    de Jong, Anthonius J.M.; Sotiriou, Sofoklis; Gillet, Dennis

    2014-01-01

    The Go-Lab federation of online labs opens up virtual laboratories (simulation), remote laboratories (real equipment accessible at distance) and data sets from physical laboratory experiments (together called “online labs”) for large-scale use in education. In this way, Go-Lab enables inquiry-based

  1. Ecological aspects of instrumental, nuclear methods in coal control; Ekologiczne aspekty stosowania instrumentalnych, jadrowych metod analizy wegla

    Energy Technology Data Exchange (ETDEWEB)

    Cywicka-Jakiel, T. [Institute of Nuclear Physics, Cracow (Poland)

    1994-02-01

    This paper presents a brief information concerning development and employment of nuclear methods for the automatic coal quality monitoring. Their importance for the environment protection is emphasized. (author). 6 refs, 3 figs.

  2. TECHNICAL TRAINING SEMINAR: National Instruments

    CERN Multimedia

    Monique Duval

    2004-01-01

    From 9:30 to 12:00 and from 13:00 to 16:00 hrs - Council Chamber, Salle B, Salle des Pas Perdus National Instruments (NI) on Tour 2004 Claudia Jüngel, Evrem Yarkin, Joel Clerc, Hervé Baour / NATIONAL INSTRUMENTS The special event NI on Tour 2004, run in Germany, Austria and Switzerland, will be at CERN on March 30. Technical seminars and free introductory courses will be offered all day long in the Council Chamber, Salle B, and Salle des Pas Perdus (buildings 61 and 503). Data acquisition systems on PCs, industrial measurement and control techniques, advanced LabVIEW software and PXI instrumentation, and system components for tests and automation will be presented. Walk-in courses will address DIAdem, LabVIEW and data acquisition. Language: English and French Free seminars and courses, no registration Organisers: Rolf Stampfli / IT-CO / 78102 & 160367 / Rolf.Stampfli@cern.ch Davide Vitè / HR-PMD-ATT / 75141 Davide.Vite@cern.ch For more information and the complete event programme, please visit the...

  3. Instrumental analysis, second edition

    International Nuclear Information System (INIS)

    Christian, G.D.; O'Reilly, J.E.

    1988-01-01

    The second edition of Instrumental Analysis is a survey of the major instrument-based methods of chemical analysis. It appears to be aimed at undergraduates but would be equally useful in a graduate course. The volume explores all of the classical quantitative methods and contains sections on techniques that usually are not included in a semester course in instrumentation (such as electron spectroscopy and the kinetic methods). Adequate coverage of all of the methods contained in this book would require several semesters of focused study. The 25 chapters were written by different authors, yet the style throughout the book is more uniform than in the earlier edition. With the exception of a two-chapter course in analog and digital circuits, the book purports to de-emphasize instrumentation, focusing more on the theory behind the methods and the application of the methods to analytical problems. However, a detailed analysis of the instruments used in each method is by no means absent. The book has the favor of a user's guide to analysis

  4. Methods and tools for the validation of neutron instrumentation; methods for the detection of loose VVER-1000 reactor internals. Technical report

    International Nuclear Information System (INIS)

    Stulik, P.; Sipek, B.; Pecinka, L.

    2004-12-01

    The following topics are addressed: (1) Development, tuning and laboratory testing of the proposed DMTS distributed system; (2) Testing of selected technological equipment and software within the technology of the Temelin NPP; (3) Proposal for basic performance testing of the temperature measurement dynamics on Temelin primary circuit loops; (4) Data for the design and manufacture of 2 measuring chains for the processing of operating signals from internal reactor detectors at the Dukovany-4 reactor unit using a modified experimental AMV set and the DMTS system being developed; (5) Trial measurement with the DMTS system; (6) Evaluation of the usability of signals from the ionization chambers of the innovated instrumentation and control system within the in-service diagnosis system of the Dukovany NPP using the DMTS system being developed; and (7) Calculation of acoustic frequencies of the Temelin primary circuit by means of electromechanical analogy for loop configurations including the effects of the pressurizer and idle coolant loops. (P.A.)

  5. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    , which aims to showcase some of the latest material science and metallurgy content published in the Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for intrinsically consist of atomic rotation Scientists Discover Material Ideal for Smart Photovoltaic Windows A

  6. Magnetic Viscous Drag for Friction Labs

    Science.gov (United States)

    Gaffney, Chris; Catching, Adam

    2016-01-01

    The typical friction lab performed in introductory mechanics courses is usually not the favorite of either the student or the instructor. The measurements are not all that easy to make, and reproducibility is usually a troublesome issue. This paper describes the augmentation of such a friction lab with a study of the viscous drag on a magnet…

  7. Hydrogel Beads: The New Slime Lab?

    Science.gov (United States)

    Brockway, Debra; Libera, Matthew; Welner, Heidi

    2011-01-01

    Creating slime fascinates students. Unfortunately, though intrigue is at its peak, the educational aspect of this activity is often minimal. This article describes a chemistry lab that closely relates to the slime lab and allows high school students to explore the concepts of chemical bonding, properties, and replacement reactions. It involves the…

  8. Innovation - A view from the Lab

    Science.gov (United States)

    The USDA Ag Lab in Peoria helps bridge the gap between agricultural producers and commercial manufacturers. In 2015, the Ag Lab, officially known as the Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR), is celebrating 75 years of research in Peoria. T...

  9. mQoL smart lab

    DEFF Research Database (Denmark)

    De Masi, Alexandre; Ciman, Matteo; Gustarini, Mattia

    2016-01-01

    serve quality research in all of them. In this paper, we present own "mQoL Smart Lab" for interdisciplinary research efforts on individuals' "Quality of Life" improvement. We present an evolution of our current in-house living lab platform enabling continuous, pervasive data collection from individuals...

  10. Programming Arduino with LabVIEW

    CERN Document Server

    Schwartz, Marco

    2015-01-01

    If you already have some experience with LabVIEW and want to apply your skills to control physical objects and make measurements using the Arduino sensor, this book is for you. Prior knowledge of Arduino and LabVIEW is essential to fully understand the projects detailed in this book.

  11. Diversity, Equity, & Inclusion at Berkeley Lab

    Science.gov (United States)

    Berkeley Lab A-Z Index Directory Search Diversity, Equity, & Inclusion at Berkeley Lab Home Diversity & Inclusion Council Women Scientists & Engineers Council Employee Resource Groups -and culture of inclusion are key to attracting and engaging the brightest minds and furthering our

  12. Instrumental Capital

    Directory of Open Access Journals (Sweden)

    Gabriel Valerio

    2007-07-01

    Full Text Available During the history of human kind, since our first ancestors, tools have represented a mean to reach objectives which might otherwise seemed impossibles. In the called New Economy, where tangibles assets appear to be losing the role as the core element to produce value versus knowledge, tools have kept aside man in his dairy work. In this article, the author's objective is to describe, in a simple manner, the importance of managing the organization's group of tools or instruments (Instrumental Capital. The characteristic conditions of this New Economy, the way Knowledge Management deals with these new conditions and the sub-processes that provide support to the management of Instrumental Capital are described.

  13. METHOD FOR THE ANALYSIS OF TEMPORAL CHANGE OF PHYSICAL STRUCTURE IN THE INSTRUMENTATION AND CONTROL LIFE-CYCLE

    Directory of Open Access Journals (Sweden)

    MARKUS GÖRING

    2013-10-01

    On one hand, this paper proposes the restructuring of the sequential IEC 61513 I&C life-cycle according to the V-model, so as to adequately integrate the concept of verification and validation. On the other hand, based on a metamodel for the modeling of I&C systems, this paper introduces a method for the modeling and analysis of the effects with respect to the superposition of failure combinations and event sequences on the I&C system design, i.e. the temporal change of physical structure is analyzed. In the first step, the method is concerned with the modeling of the I&C systems. In the second step, the method considers the analysis of temporal change of physical structure, which integrates the concepts of the diversity and defense-in-depth analysis, fault tree analysis, event tree analysis, and failure mode and effects analysis.

  14. Comparison of Predicted pKa Values for Some Amino-Acids, Dipeptides and Tripeptides, Using COSMO-RS, ChemAxon and ACD/Labs Methods Comparaison des valeurs de pKa de quelques acides aminés, dipeptides et tripeptides, prédites en utilisant les méthodes COSMO-RS, ChemAxon et ACD/Labs

    Directory of Open Access Journals (Sweden)

    Toure O.

    2013-05-01

    Full Text Available Liquid-phase pKa values play a key role in food science. Chemical properties of molecules depend largely on whether they are ionized or not. Most organic molecules are capable of gaining and/or losing a proton in aqueous solutions. Proton transfer most. frequently occurs between water and any ionizable atom of the organic molecule. The molecule’s response to profanation or deprotonation depends significantly on the site that was disturbed by proton transfer. Partial charge distribution in the molecule also varies with protonation of the acidlbase active sites. Then it can he used to determine the pKa of a molecule. First, we use the COSMO-RS method, a combination of the quantum chemical dielectric continuum solvation model COSMO with a statistical thermodynamics treatment fin- more Realistic Solvation (RS simulations, for the direct prediction of pKa constants of about 50 molecules (amino-acids, dipeptides and tripeptides. Then, we compare our results with experimental data and the pKa values predicted using two other methods. We used respectively the ChemAxon method using a program based on the calculation of partial charge of atoms in the molecule and the ACD/Labs method that enables to calculate single pKa values. for all possible dissociation centers when the rest of the molecule is considered neutral, using an internal database containing chemical structures and their experimental pKa values. The averaged Root Mean Square Error (RMSE of the predicted pKa values for each method compared to experimental results were respectively 0.596 for COSMO-RS, 0.445 for ChemAxon and 0.490 for ACD/Labs. While ACDILabs and ChemAxon are parameterized using a large set ofexperimental data (including several of the studied molecules, the COSMO- RS method was used in a fully predictive way. Regarding these results, COSMO-RS appears as a promising method to predict the pKa values of molecules of interest in food science with scarce available pKa values such

  15. Innovative instrumentation

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all

  16. Innovative instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1983-11-15

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all.

  17. Instrumental aspects

    Directory of Open Access Journals (Sweden)

    Qureshi Navid

    2017-01-01

    Full Text Available Every neutron scattering experiment requires the choice of a suited neutron diffractometer (or spectrometer in the case of inelastic scattering with its optimal configuration in order to accomplish the experimental tasks in the most successful way. Most generally, the compromise between the incident neutron flux and the instrumental resolution has to be considered, which is depending on a number of optical devices which are positioned in the neutron beam path. In this chapter the basic instrumental principles of neutron diffraction will be explained. Examples of different types of experiments and their respective expectable results will be shown. Furthermore, the production and use of polarized neutrons will be stressed.

  18. Exploring linear algebra labs and projects with Mathematica

    CERN Document Server

    Arangala, Crista

    2014-01-01

    Matrix Operations Lab 0: An Introduction to Mathematica Lab 1: Matrix Basics and Operations Lab 2: A Matrix Representation of Linear Systems Lab 3: Powers, Inverses, and Special Matrices Lab 4: Graph Theory and Adjacency Matrices Lab 5: Permutations and Determinants Lab 6: 4 x 4 Determinants and Beyond Project Set 1 Invertibility Lab 7: Singular or Nonsingular? Why Singularity Matters Lab 8: Mod It Out, Matrices with Entries in ZpLab 9: It's a Complex World Lab 10: Declaring Independence: Is It Linear? Project Set 2 Vector Spaces Lab 11: Vector Spaces and SubspacesLab 12: Basing It All on Just a Few Vectors Lab 13: Linear Transformations Lab 14: Eigenvalues and Eigenspaces Lab 15: Markov Chains, An Application of Eigenvalues Project Set 3 Orthogonality Lab 16: Inner Product Spaces Lab 17: The Geometry of Vector and Inner Product SpacesLab 18: Orthogonal Matrices, QR Decomposition, and Least Squares Regression Lab 19: Symmetric Matrices and Quadratic Forms Project Set 4 Matrix Decomposition with Applications L...

  19. Rapidly Adaptable Instrumentation Tester (RAIT)

    International Nuclear Information System (INIS)

    Vargo, Timothy D.

    1999-01-01

    Emerging technologies in the field of ''Test ampersand Measurement'' have recently enabled the development of the Rapidly Adaptable Instrumentation Tester (RAIT). Based on software developed with LabVIEW, the RAIT design enables quick reconfiguration to test and calibrate a wide variety of telemetry systems. The consequences of inadequate testing could be devastating if a telemetry system were to fail during an expensive flight mission. Supporting both open-bench testing as well as automated test sequences, the RAIT has significantly lowered total time required to test and calibrate a system. This has resulted in an overall lower per unit testing cost than has been achievable in the past

  20. Instrument uncertainty predictions

    International Nuclear Information System (INIS)

    Coutts, D.A.

    1991-07-01

    The accuracy of measurements and correlations should normally be provided for most experimental activities. The uncertainty is a measure of the accuracy of a stated value or equation. The uncertainty term reflects a combination of instrument errors, modeling limitations, and phenomena understanding deficiencies. This report provides several methodologies to estimate an instrument's uncertainty when used in experimental work. Methods are shown to predict both the pretest and post-test uncertainty